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Abstract

Stress defense and cell growth are inversely related in bulk culture analyses; however,
these studies miss substantial cell-to-cell heterogeneity, thus obscuring true phenotypic
relationships. Here, we devised a microfluidics system to characterize multiple
phenotypes in single yeast cells over time before, during, and after salt stress. The
system measured cell and colony size, growth rate, and cell-cycle phase along with
nuclear trans-localization of two transcription factors: stress-activated Msn2 that
regulates defense genes and Dot6 that represses ribosome biogenesis genes during an
active stress response. By tracking cells dynamically, we discovered unexpected
discordance between Msn2 and Dot6 behavior that revealed subpopulations of cells
with distinct growth properties. Surprisingly, post-stress growth recovery was positively
corelated with activation of the Dot6 repressor. In contrast, cells lacking Dot6 displayed
slower growth acclimation, even though they grow normally in the absence of stress.
We show that wild-type cells with a larger Dot6 response display faster production of
Msn2-regulated Cttl protein, separable from the contribution of Msn2. These results are
consistent with the model that transcriptional repression during acute stress in yeast
provides a protective response, likely by redirecting translational capacity to induced
transcripts.

Introduction

All organisms respond to cellular stress, which can arise from external conditions such
as drugs and environmental shifts or internal perturbations including mutation and
disease. Thus, at the cellular level, organisms must be able to sense both external and
internal signals to mount a proper response. Yet in both single- and multi-celled
organisms, there can be large variation in how individual cells respond to environmental
stress, even among genetically identical cells in the same environment. For example,
cell-to-cell variation in signaling and gene expression have been linked to differential
survival of isogenic cancer cells responding to drugs (Lee et al. 2014; Paek et al. 2016;
Shaffer et al. 2017; Inde and Dixon 2018). Similarly, cellular heterogeneity in bacterial

growth and gene expression can produce variation in survival upon antibiotic treatment
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(Balaban et al. 2004; Keren et al. 2004). Understanding the nature of this variation could
facilitate the modulation of stress survival, with therapeutic applications.

One marker of heterogeneity in stress responses is dynamic localization of
stress-activated transcription factors. Several canonical factors, including p53 in
mammalian cells (Purvis et al. 2012; Kracikova et al. 2013; Paek et al. 2016) and Msn2
and its paralog Msn4 in fungi (Gorner et al. 1998), reside in the cytosol in the absence
of stress but rapidly translocate to the nucleus upon activation. These and other stress-
activated factors can vary substantially in their responsiveness, in ways that can impact
cellular outputs including gene-expression. For example, Msn2 localization dynamics
differ depending on the nature of the stress (Hao and O’Shea 2012; Petrenko et al.
2013; Granados et al. 2018), and these differences impart distinct effects on different
target genes (Hao and O’Shea 2012; Hansen and O’Shea 2013; Stewart-Ornstein et al.
2013; Hansen and O’Shea 2015a; Hansen and O’Shea 2015b; Hansen and O’Shea
2016; Hansen and Zechner 2021). Msn2 targets with highly responsive promoters can
be induced even with brief pulses of nuclear Msn2, whereas genes with less responsive
promoters require prolonged Msn2 activation (Hansen and O’Shea 2013; Hansen and
O’Shea 2015a; Hansen and O’Shea 2015b; Hansen and O’Shea 2016). Similarly,
differences in the dynamics of p53 localization can lead to distinct transcriptional
outputs, and these distinctions correlate with differences in stress survival (Purvis et al.
2012). Several studies have observed substantial cell-to-cell heterogeneity in nuclear
localization dynamics of these factors (Cai et al. 2008; Cheong et al. 2011; Purvis and

Lahav 2013; Lin et al. 2015; AkhavanAghdam et al. 2016; Gasch et al. 2017; Granados
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et al. 2018; Li et al. 2018); however, the causes and functional effects of this variation
remain poorly understood.

Cell-to-cell variation in transcription factor localization dynamics could arise for
several reasons. Changes in the state of a single transcription factor may alter its
localization independent of or separable from the cellular system (defined as factor-
specific variation). In contrast, activity-state changes in the upstream signaling networks
or cellular system itself could produce coordinated activation of the stress response
(referred to as systemic variation). Distinguishing between local versus systemic
variation has been difficult, since most studies to date have followed only single
transcription factors. We recently developed strains in which two differentially tagged
transcription factors regulated by the same signaling network are expressed in the same
yeast cell. Msn2 activator fused to mCherry is co-expressed with the transcriptional
repressor Dot6 fused to GFP. Both factors help to coordinate the yeast environmental
stress response (Gasch et al. 2000; Causton et al. 2001): whereas Msn2 activates
defense genes that are induced in the ESR (iIESR genes), Dot6 represses growth-
promoting genes involved in ribosome biogenesis that are correspondingly repressed in
the ESR during stress (rESR genes) (Lippman and Broach 2009; Bergenholm et al.
2018). Both factors are controlled by the Protein Kinase A (PKA) and mTOR pathways,
which are generally associated with promoting growth (Figure 1A): PKA/TOR-
dependent phosphorylation of Msn2 and Dot6 maintains the factors in the cytosol,
whereas Msn2 and Dot6 dephosphorylation after PKA/TOR inhibition leads to their
nuclear localization. (Gorner et al. 1998; Smith et al. 1998; Lippman and Broach 2009).

Thus, we expect the two factors to be coordinated in their localization when the stress
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response is activated systemically but discordant in response to factor-specific
differences in regulation.

The challenges in distinguishing factor-specific versus systemic variation have
obscured how systemic activation of the stress response relates to other physiological
responses. One important factor is growth rate. Growth rate and stress tolerance are
competing interests in the cell and are often antagonistically regulated: fast growing
cells tend to be the most susceptible to stress and toxins, whereas slow growing or
quiescent cells generally survive extreme conditions (Balaban et al. 2004; Lu et al.
2009; Zakrzewska et al. 2011; Levy et al. 2012). Part of this antagonistic correlation is
thought to be controlled, at least under specific situations, by the RAS-PKA pathway,
which promotes growth and suppresses the stress response (Smith et al. 1998; Gasch
et al. 2000; Zaman et al. 2008; Zaman et al. 2009). Li et al. (2018) used single-cell
microscopy to show that slower growing cells in an isogenic culture displayed lower
levels of the PKA allosteric activator cAMP and that artificial activation of PKA
diminished the slow growing population (Li et al. 2018). They further showed a slight but
statistically significant negative correlation between Msn2 nuclear localization and
micro-colony growth over the subsequent 10 hours in the absence of stress. This
suggests that activation of Msn2 is coupled to reduced growth rate, a theory put forward
and debated in other bulk-culture studies (Regenberg et al. 2006; Castrillo et al. 2007;
Brauer et al. 2008; Ho et al. 2018). The inability to distinguish between factor-specific
variation and systemic activation of the stress response likely obscures the true

relationship with growth.
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Here we monitored dynamic localization changes of both Msn2 and Dot6 in the
same yeast cells, along with a panel of other single-cell measurements, to dissect local
and systemic variation and illuminate the relationship between ESR activation and
growth rate. We optimized a microfluidics system that can monitor single-cell
localization levels and dynamics of both Msn2-mCherry and Dot6-GFP along with
single-cell and colony growth rates, size, shape, cell-cycle phase and size changes
before and after an acute dose of sodium chloride (NaCl) as a model stressor. Our
results revealed several insights, including surprising levels of discordance in Msn2 and
Dot6 activation that partly explained variation in post-stress growth rate. We developed
a multi-factorial model explaining cell growth rate after stress acclimation to
demonstrate that stress acclimation is partly predictable based on prior cellular states.
Remarkably, one of the important predictors is the activation level of the Dot6 repressor,
which counterintuitively is associated with faster growth acclimation and faster
production of stress-induced catalase Cttl. We discuss implications of this work for
understanding how cellular state and transcriptional repression influence stress

responses.

Results

We optimized a microfluidics system that could measure nuclear localization dynamics
as well as one- and two-cell colony growth rates before and after exposure to 0.7 M
NaCl (Figure 1B and Methods). Using this system, we characterized the variation in cell
responses for 72 min before and 144 min after exposure to NaCl, which induces ionic
and osmotic stress, in biological triplicates done on separate days. This time frame

captures phenotypic variation in cells growing in the absence of stress, during the acute
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stress-response phase (from 0 to 54 minutes after osmotic stress), and over later
timepoints as cells acclimate to continuous NaCl. Microscopy imaging and analysis
reports on Msn2-mCherry and Dot6-GFP nuclear localization dynamics in the same
cells (Figure 1C, Figure 1 — supplement 1). We used MATLAB scripts to identify nuclear
translocation events, which we refer to as “peaks” in the traces (see Methods). We also
measured cell and colony growth phenotypes, including colony size, colony growth
rates (defined by increase in pixel number of masked colony area and vetted with
several analyses, Figure 1 — supplement 2) both before and after stress, and change in
cell size due to volume loss upon NaCl stress (Figure 1D and Methods). To ensure

accurate measures of growth, we limited our analysis to colonies of only one or two
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Figure 1. Experimental approach. A. Schematic of Msn2 and Dot6 localization in the absence
(left) and presence (right) of stress. B. Diagram of microfluidic device used for time-lapse
microscopy. C. Representative nuclear localization scores (see Methods) for pre-stress growth,
the acute-stress response, and the acclimation phase. D. Cell or two-cell colony size was
estimated by the number of pixels within the mask for each colony, and growth rates were
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calculated based of regression of those points during the pre- or post-stress phases. Cell
volume change was reflected in the difference in pixel number before and after stress.
cells at the beginning of the time series and to cells that passed several quality-control
filters (see Methods). In total, we analyzed 221 cells passing these filters, collected from
the three independent biological replicates.

This system captured variation in all of the features measured. As expected
based on previous studies (Levy et al. 2012; Fehrmann et al. 2013; Crane et al. 2014; Li
et al. 2018; Jin et al. 2019), there was substantial variation in cellular growth rates
before NaCl addition, confirming that cells vary considerably in their growth properties in
the absence of stress (Figure 2A). Most colonies reduced their growth rate in response
to NaCl stress (but not a mock treatment, Figure 1 — supplement 2F), but once again
there was substantial variation: some cells showed dramatic growth reduction upon
NaCl whereas others showed little to no change (Figure 2B). There were even individual
colonies that accelerated growth after stress: 11 of 14 of these cells showed a small bud
at the time of salt exposure, suggesting a cell cycle connection. NaCl-induced osmotic
pressure is expected to produce rapid water loss before cells acclimate, and indeed
most cells shrunk immediately after stress despite substantial variation in size changes
(Figure 2C). Together, these results highlight the extensive cell-to-cell variation in

behavior that is not identified in bulk measures of culture growth.
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Figure 2. Cell-to-cell heterogeneity in the NaCl stress response. A-C. Shown are
the distributions of the natural log of A. colony growth rates before stress, B. the change
in growth rate after NaCl stress compared to before stress, and C. the maximum
change in cell pixel size during the acute-stress response versus during the pre-stress
phase.
Msn2 and Dot6 nuclear localization show only partial coordination

We next investigated co-variation in Msn2-mCherry and Dot6-GFP localization
dynamics, before and as cells responded to NaCl. Both factors showed sporadic
activation in unstressed cells, with brief and typically low levels of nuclear translocation
(Figure 3A). Roughly 54% of Msn2 pre-stress peaks and 37% of Dot6 pre-stress peaks
were temporally coordinated with the other factor (Figure 3B), which is significantly
above chance (p << 0.0001, permutation analysis, see Methods) and suggests systemic
activation of the stress response. This reveals both coordinated and independent
fluctuations in Msn2 and Dot6 activation in the absence of stress, consistent with our
prior results (Gasch et al. 2017). In the vast majority of cells, NaCl provoked a dramatic
and coordinated increase in nuclear localization of both Msn2 and Dot6 (acute phase).

However, after stress Msn2 and Dot6 behavior deviated: whereas few cells showed

post-stress Dot6 nuclear translocation, many cells showed asynchronous pulses of
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Msn2 (Figure 3C-F), consistent with prior work (Petrenko et al. 2013). This was
surprising, since we expected that Msn2 and Dot6 would be highly correlated during

and immediately after NaCl treatment.
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Figure 3. Nuclear translocation dynamics of Msn2 and Dot6 are more coordinated before
stress. A. Representative traces of Msn2 and Dot6 in the same cell. B. The average number of
coordinated peaks for Msn2 and Dot6, i.e. peaks called within 6 minutes (1 timepoint) of each
other. C. The average number of nuclear localization peaks per cell for Msn2 (red) and Dot6
(blue) during pre-stress and acclimation phases. D-E. The average (black line) +/- one standard
deviation (colored spread) of Msn2 (D) and Dot6 (E) nuclear localization during the time course.
F. Trace of the standard deviation of nuclear localization over the time course for Msn2 (red)
and Dot6 (blue).

In the course of this analysis, we realized another key difference between Msn2
and Dot6: the profiles of Dot6 nuclear pulses were often highly correlated between

unstressed cells in the same colony, indicated by co-occurring peaks in two-cell
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colonies (Table S1). Permutation tests showed that this was highly significant compared
to random chance (p = 9.3e-4, see Methods). In contrast, the co-occurrence of Msn2
peaks in cells from the same colony was not significantly different from random. Since
these cells are in the same local environment and have a shared life history in that one
cell is the daughter of the other, it suggests that some feature of Dot6 regulation is

predictable but separable from Msn2 behavior.

Reproducible differences in Msn2 versus Dot6 activation reveal subpopulations
of cells

Comparisons of Msn2 and Dot6 nuclear localization patterns indicated different
localization dynamics across cells, raising the possibility of distinct cell subpopulations.
To investigate, we used Gaussian finite mixture modelling (Scrucca et al. 2016) of the
population-normalized Msn2 and Dot6 nuclear localization traces to identify populations
or ‘clusters’ of cells with distinguishable localization patterns (Figure 4, see Methods).
Most clusters captured cells from all three biological replicates, with the exception of cell
Cluster 9 and several small clusters that were enriched for cells from one replicate
(Table S2). Six of these patterns were clearly recapitulated in an independent
experiment (Figure 4 — supplement 1). Thus, most of the cell groupings represent
reproducible subpopulations with different stress-responsive behaviors.

The subpopulations were differentiated by a combination of transcription-factor

phenotypes. One distinguishing feature was the level of Dot6 activation during the
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Figure 4. Subpopulations of cells show distinct Msn2 and Dot6 translocation dynamics.
221 cells passing quality control metrics were partitioned into sub clusters based on their
population-centered nuclear translocation dynamics shown on the right. Each row represents a
cell and each column in a block represents a single timepoint; time of NaCl addition is indicated
with an arrow. Data on the left show the log. ratio of nuclear versus total Msn2 (left) or Dot6
(right) according to the orange-scale key, see Methods. Data on the right show the same data
normalized to the population median at each timepoint: yellow values indicate higher-than-
median nuclear localization levels and blue indicates lower-than-median nuclear localization.
Cell clusters identified by the package mclust are labeled to the right.

acute-stress phase. Cluster 11 was characterized by lower than population-median

magnitude of acute-stress Dot6 nuclear translocation, whereas cells in Clusters 6 and 7

12
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showed higher-than-median Dot6 response. These results are consistent with the wider
variance of Dot6 nuclear translocation levels during the acute phase (Figure 3D-F). A
second distinguishing feature was the level of nuclear Msn2 and Dot6 before stress.
Cluster 11 cells showed low levels of Dot6 before stress, whereas cells in Clusters 9
and 6 displayed higher-than-median nuclear Msn2 and Dot6 during this phase. Finally,
the behavior of Msn2 during the post-stress acclimation phase was significantly different
across subpopulations. Whereas Clusters 11 and to some extent 7 showed low levels of
post-stress Msn2 nuclear localization, cells in multiple clusters showed high levels
and/or pulsatile nuclear Msn2 as cells acclimated. We noticed that cells in Clusters 2
and 3 showed elevated levels of mCherry that persisted over time compared to other
cells. Closer inspection of the microscopy images suggested that some of the signal
may not reflect nuclear translocation but instead was likely vacuolar signal (see more
below). As mentioned above, the variation in nuclear localization dynamics captured
within these clusters occurred in all three biological replicates and in a separate
experiment (See Table S2 and Figure 4 — supplement 1), indicating reproducible
distinctions in transcription factor behavior. Together, this analysis revealed important
differences in cellular behavior across the phases of the NaCl response that are

obscured by aggregate analysis of all cells in the population.

Cell subpopulations show different relationships with cell growth
Are subpopulations of cells identified above biologically meaningful? We turned
to the other cellular measurements to look for co-variates in cellular behavior that reflect

on higher-order relationships (Figure 5). We tested each of the cell subpopulations for
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statistically significant differences in pre-stress growth rate, post-stress growth rate,
starting size, volume change, and cell-cycle phase at the time of NaCl exposure
(inferred by visual inspection of bud size and nucleus location in the cell, see Methods).
We found no significant correlations with cell volume changes or cell-cycle phase
(although there was a minor signal for cell cycle, Figure 5 — supplement 1). This is
consistent with the lack of strong connection between cell-cycle phase and stress
response found in several other studies (Paek et al. 2016; Gasch et al. 2017; Bagamery
et al. 2020). In contrast, several clusters showed significant differences in growth rates.

Overall, there was a positive correlation between pre-stress growth rate
compared to post-stress growth rate (Figure 5A); however, the association was different
for subpopulations of cells. Cells in Cluster 11, which were characterized by below-
average Dot6 response before and during stress, showed slower growth rates before
and after NaCl treatment (Figure 5B-C), and the slower growth was consistent when
biological replicates were analyzed individually (p < 0.02, T-test) and across multiple
experiments (Figure 5 — supplement 2). In contrast, cells in Cluster 7 showed higher
than average recovery growth rates — these cells were characterized by larger-than-
average Dot6 nuclear localization responses and somewhat below-average nuclear
translocation of Msn2 during the acute-response phase. The relationships between
post-stress growth rate and Dot6 response during the acute phase raised the possibility
that this factor’s activation is more closely tied to growth rate than Msn2, even when
both factors are activated in a systemic response. Interestingly, cells in Cluster 2 that
had unusually high (and potentially vacuolar) mCherry fluorescence before stress

displayed very slow growth recovery after stress, demonstrating the biological validity of
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the subpopulation and raising the possibility of poor stress acclimation in these cells.

(We note that cells with apparent vacuolar signal were excluded from subsequent

analyses).
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Figure 5. Cell subpopulations display different growth rates before and after stress. A.
Correlation between the natural log of pre- and post-stress growth rates for each cell, colored
according to its cell cluster in Figure 4. B-C. Distribution of median-centered growth rates before
(B) and after (C) NaCl addition, for cell clusters shown in Figure 4. Boxes are colored yellow or
blue if the distribution was significantly higher or lower, respectfully, from all other cells in the
analysis (Wilcoxon Rank Sum test, FDR < 0.022). Dashed line indicates the median of all cells
analyzed.
Combining multiple characteristics increases the predictive power to explain
post-stress growth rate

The above results hinted that how well cells acclimate to NaCl stress, as
indicated by post-stress growth rate, may be predicted by cellular responses both
before and during the stress response. Based on the work of (Li et al. 2018), we
expected a negative correlation between Msn2 nuclear localization and growth rate
(which they reported over much longer time frames). While there was no correlation with

pre-stress growth rate (p = 0.65), we did observe a negative correlation between pre-

stress Msn2 activation (taken as the area under the nuclear-localization curve (AUC) for
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pre-stress timepoints) and post-stress growth rate; however, the correlation explained
only 3% of the variance (p = 0.016, linear regression), indicating that the pre-stress
behavior of Msn2 has little power to predict post-stress growth rate in our study.

We next investigated other features that could explain differences in post-stress
growth rate (Figure 6A-B). Pairwise correlations revealed that some individual features,
such as the magnitude of Dot6 acute-stress response, correlated well with post-stress
growth rate but others did not (Figure 6 — supplement 1). However, the most impactful
single factor — pre-stress growth rate — explained only 20% of the variance in post-
stress growth rate (Table S3).

We next asked if combining cellular phenotypes into a single multiple linear
model could explain more of the variance in growth. We considered multiple metrics for
summarizing pre-stress nuclear localization, including AUC (which is a measure of the
overall nuclear abundance) and the sum of called translocation peak heights (which is
influenced by the magnitude and frequency of pre-stress pulses), along with acute-
stress translocation peak height and AUC during the acclimation phase. The model also
incorporated other cell features including pre-stress growth rate, cell-cycle phase at the
time of NaCl exposure, and cell size factors (See ‘Model 1’ in Table S3 for all
parameters used). Factors that did not contribute significantly (adjusted p > 0.05) were
progressively removed until the variance explain decreased (Table S3). The final

regression identified four factors that contributed significantly to explain post-stress
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Figure 6. A multi-factor model best explains variation in post-stress growth rate.
A. A representation of the nuclear localization measurements used in the multi-factor
linear regression model. B. Factors considered in the multi-factor linear regression
model; those with significant contributions are highlighted with ***. C. The variance in
In(post-stress growth rate) explained by the multi-factor linear regression model. P-
value and R? are shown a the top of the plot and cell subcluster is indicated according
to the key, showing that no single cluster dominates the correlation. D. Principal
component (PC) regression of post-stress growth rate and deconvolution of contributing
factors according to the key. Variance explained is listed at the top of each bar (where
PC2 does not contribute to post-stress growth rate).

rate (‘Model 3’ in Table S3): pre-stress AUC of Dot6 nuclear localization, the sum of pre-
stress Msn2 peak heights, the pre-stress growth rate of the cells, and the magnitude of
Dot6 nuclear localization change immediately after NaCl. Together, these factors — all

but one of which represent pre-stress cellular phenotypes — explained 35% of the
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variance in post-stress growth rate (Figure 6C), nearly doubling the explanatory power
of any single feature alone.

One challenge is that several of these phenotypes could be co-variants of an
underlying hidden variable or cellular state. For example, both pre-stress growth rate
and Dot6 acute-stress peak height correlate with post-stress growth rate, but they also
correlate with each other: cells growing faster before stress have a larger Dot6 stress-
response. The mixed-linear model reports that both factors contribute separable
predictive power, and indeed together they explain more of the variance in stress
acclimation than either factor alone. Nonetheless, to further disentangle their co-
variation, we applied principal component (PC) regression. We first analyzed the four
statistically-significant model-input variables in Figure 6B by PCA and then used the
resulting components as factors in a linear model of post-stress growth rates (see
Methods). PC1 and PC3 together explained 21% of the variance in post-stress growth
rate: both captured co-variation in pre-stress growth rate, acute-stress Dot6 response,
and pre-stress transcription factor behaviors, indicating that these features likely reflect
the same aspects of the cellular state (Figure 6D). However, PC4 that is dominated by
Dot6 behavior but not influenced by pre-stress growth rate explained an additional 14%
of growth acclimation (p = 1e-4). A fourth component, PC2, was dominated by pre-
stress Msn2 behavior but showed no power to predict post-stress growth acclimation
rates. Thus, behavior of the Dot6 repressor independently correlates with post-stress
growth rate. As further confirmation, we analyzed the correlation between Dot6 acute-
stress peak height and post-stress acclimation in a subset of cells with similar pre-stress

growth rates. Indeed, pre-stress growth rate had no predictive power for this subset of
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cells, whereas Dot6 peak height explained 12% of the variance (p = 1e-4, Figure 6 —
supplement 2). Thus, the behavior of the Dot6 repressor during acute NaCl stress is

associated with growth recovery as cells acclimate (see Discussion).

Dot6 activation is associated with faster production of Cttl protein

Dot6 is the transcriptional repressor of growth-promoting ribosome biogenesis
(RiBI) genes; thus, its positive association with post-stress growth rate may seem
counterintuitive. However, this result is consistent with past work from our lab: in
response to NaCl stress, cells lacking DOT6 and its paralog TODG fail to repress
hundreds of genes in the RiBi regulon (Lee et al. 2011; Ho et al. 2018). These
transcripts remain associated with ribosomes, whereas stress-induced transcripts
including Msn2-regulated CTT1 show reduced ribosome association (Ho et al. 2018).
Despite producing more CTT1 mRNA, the dot6Atod6A mutant shows delayed
production of Cttl protein. We proposed that transcriptional repression of otherwise
highly transcribed mRNAs is important to free up translational capacity to translate
stress-induced transcripts (Ho et al. 2018).

To investigate on a cellular level, we attempted microscopy in a dot6Atod6A
strain; however, whereas the strain grew fine in the device before stress, it was unable
to recover growth after NaCl treatment. Indeed, bulk-culture experiments revealed that
the dot6Atod6A mutant grew as wild type before stress, but showed significantly
reduced growth rate after NaCl treatment (Figure 7A). This is consistent with our results
in wild-type cells, where cells with a weaker Dot6 response show a reduced post-stress

growth rate. Thus, Dot6 provides a protective response during NaCl stress.
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Figure 7. Dot6 activation correlates with faster Cttl production. A. The average and
standard deviation (n=4) of growth rates of wildtype (black lines) and dot6Atod6A cells (blue
lines) in the absence (solid) and presence (dashed) of 0.7M NaCl added at 75 min (arrow). B.
Representative traces of single-cell Cttl production for pairs of cells that reach similar levels of
Cttl. C. Correlation of Cttl production timing (time to change 5%) versus acute-stress peak
heights. D. The two-factor model correlates with measured Cttl production time, with only
marginal contribution of Msn2 peak height (p = 0.053). Adjusted R? is shown in both figures.

A major unanswered question is how Dot6 behavior in a wild type cell relates to
growth and Cttl production. We therefore generated a strain to track Dot6-GFP, Msn2-
mCherry, and Ctt1-iRFP in the same cells. Cellular Cttl levels (defined as maximum
iIRFP signal normalized to pre-stress levels, see Methods) were correlated with both

Msn2 and Dot6 peak heights (but not their pre- or post-stress behaviors). However, the
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explanatory power was significantly higher when considering the timing of Cttl
production. We defined the time for Cttl1-iRFP levels to cross a change threshold (see
Methods). Even for cells that reached the same maximal Cttl levels, the time to get
there varied (Figure 7B). We found that the time to cross that threshold was correlated
with both Msn2 and Dot6 peak heights, which are themselves weakly correlated;
however, the variance explained was significantly higher for Dot6 activity (Figure 7C).
Indeed, a mixed model considering both factors confirmed that the contribution of Dot6
was significantly more than that of Msn2 behavior, which was only marginally significant
in the model (p = 0.053, Figure 7D). Dot6 is not known to regulate Cttl or bind its
promoter (Zhu et al. 2009), and we previously showed that dot6Atod6A cells induce
CTT1 transcript to higher levels than wild type during NaCl stress (Ho et al. 2018).
Together, this suggests an indirect effect of Dot6 that is separable from Msn2
regulation. In sum, our results indicate that Dot6 provides a protective response during
NaCl treatment (Figure 7A), is correlated with faster Cttl production in both mutant (Ho
et al. 2018) and wild-type cells (Figure 7D), and is associated with faster growth

recovery after NaCl treatment (Figure 6, see Discussion).

Discussion

By following dynamic activation of two different stress-regulated transcription factors, in
conjunction with other cellular features including growth rate, cell size, and cell cycle
stage, we uncovered previously unrecognized inter-dependencies that present new
insights into mechanisms of stress defense. Our results reveal much more complexity in

Msn2 and Dot6 behavior than previously recognized, that the relative activation of these
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factors along with other pre-stress phenotypes can partly predict cellular outcomes
including growth acclimation, and that behavior of the Dot6 repressor influences post-
stress growth rate and the dynamics of a downstream response. Below we discuss

implications of these results.

Complexities in Msn2 dynamics reflect diversity in stress-responsive states

Past studies focusing on aggregate analysis of all single cells in the population
reported condition-specific dynamical behavior of Msn2, such as prolonged nuclear
pulsing after glucose starvation versus a burst of activation before acclimating to
osmotic stress (Hao and O’Shea 2012; Petrenko et al. 2013; AkhavanAghdam et al.
2016). Elegant studies by Hansen et al. used artificial activation of Msn2 (through
chemical inhibition of PKA activity) to show that these differences in Msn2 nuclear
translocation dynamics produce different transcriptional outputs (Hansen and O’Shea
2013; Hansen and O’Shea 2015a; Hansen and O’'Shea 2015b; Hansen and O’Shea
2016). Target-gene promoters display different dependencies on the amplitude,
frequency, and duration of Msn2 nuclear translocation, such that distinctions in Msn2
behavior activate different sets of genes. Comparable studies of regulators in
mammalian systems also reported stress-specific differences in the dynamics of nuclear
translocation, which correspond to differences in gene activation (Purvis et al. 2012;
Kracikova et al. 2013; Paek et al. 2016). One limitation of the approach of Hansen et al.
is that activating Msn2 by wholesale inhibition of PKA likely loses much of the
heterogeneity seen in natural responses. Our study thus provides an important

complement to artificial system activation.
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In fact, our analysis revealed highly varied responses across subpopulations of
cells responding to the same stress stimulus. Some cells responded to the osmaotic/ionic
stress induced by NaCl with a large nuclear pulse of Msn2 followed by near complete
acclimation, as previously reported for sorbitol-induced osmotic stress — but other cells
showed extensive and prolonged Msn2 fluctuations during the acclimation phase, akin
to what has been reported for glucose starvation. These subpopulations are obscured
by aggregate analysis but have important implications, since the different dynamics of
Msn2 (and likely also Dot6) activation produce different transcriptomic outputs, even for
cells responding to the same stressor in the same environment. This hypothesis is
consistent with past work from our lab investigating single-cell transcriptomics, in which
isogenic cells in the same culture displayed different transcriptomes upon NacCl stress,
including for ESR genes, indicating that they experience the stress differently (Gasch et

al. 2017).

The Dot6 repressor provides a protective response during stress.

Although the variety in Msn2 responses likely has important consequences on
downstream gene expression, we were surprised to find little connection to growth rate,
at least in the short time frames studied here. Instead, the response of Dot6 explained a
much larger fraction of the variance in post-stress growth rate, when considered alone
or in the multi-factor linear model (Figure 6 and Table 3). Cells with a larger Dot6
response during the acute-stress phase showed faster production of Cttl, separable
from Msn2 activity (Figure 7), and faster growth recovery during the acclimation phase.

In contrast, cells completely lacking Dot6 and its paralog show delayed Cttl
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accumulation despite having more transcript (Ho et al. 2018) and dramatically reduced
post-stress acclimation (Figure 7A).

These results are consistent with our working model of Dot6 activity. At least in
response to NaCl treatment, transcriptional repression does not lead to reduced
abundance of the encoded proteins (Lee et al. 2011). Instead, we proposed that
transcriptional repression helps to deplete the pool of RiBi transcripts that are normally
highly transcribed and translated in actively growing cells (Lee et al. 2011; Ho et al.
2018). In the absence of Dot6 repression, aberrantly abundant RiBi transcripts compete
with induced mRNAs for available translational machinery, thereby delaying translation
of stress-defense transcripts. In the case of NaCl, the limiting factor is unlikely to be
ribosomes: we previously showed that this yeast strain exposed to the same dose of
NaCl removes a population of ribosomes from the translating pool immediately after
stress (Ho et al. 2018). This is consistent with bacterial models of growth regulation, in
which cells preserve some ribosomes for later stress acclimation (also indicating that
growth rate under these conditions is not limited by ribosome availability) (Mori et al.
2017; Kim et al. 2018; Korem Kohanim et al. 2018; Remigi et al. 2019; Wu et al. 2022).
Evidence from bacteria and incidental results in yeast suggest that other features
related to translation elongation may limit cell growth in this situation (Dai et al. 2018;
Ho et al. 2018; Wu et al. 2022), a limitation that may be alleviated by removing some
ribosomes from the translating pool. How all of this fits into broader cellular states is

discussed below.

Differences in pre-stress cellular states influence stress acclimation
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Many studies have found significant variation in how cells respond to acute
stress. Using our system and the conditions studied here, upwards of 35% of the
variance in post-stress growth rate could be explained by a multi-factorial model that
includes both pre-stress and acute-stress phenotypes. The remaining unexplained
variation is likely influenced by additional features of the cellular state, as well as
stochastic effects. We found no connection to cell-cycle phase or cell size, although the
lack of correlation could be masked by other confounders (Barber et al. 2021). But one
likely contributor is differences in pre-stress metabolic or mitochondrial states as
implicated in several studies (Fehrmann et al. 2013; Gasch et al. 2017; Laporte et al.
2018; Dhar et al. 2019; Bagamery et al. 2020). Bagamery et al. showed that pre-stress
fluctuations in fermentative versus respirative metabolism influence how cells recover
from glucose starvation, with antagonistic fitness effects depending on the situation
(Bagamery et al. 2020). Other studies linked variation in mitochondrial function and
morphology to cell age and the ability to enter quiescence, which could also influence
stress responsiveness (Fehrmann et al. 2013; Laporte et al. 2018). An interesting
avenue for future investigation would be to measure metabolic and mitochondrial states
along with features studied here.

Regardless, our results are consistent with the fact that pre-stress cellular states
influence how cells will respond to future stress. Some cells in our study were fast
growing before stress, showed a larger Dot6 response during stress, and acclimated
faster in terms of post-stress growth rate; in turn, cells that were slow growing before
stress had lower pre-stress Dot6 activity, lower Dot6 activation during the acute phase,

and a slower growth acclimation. One hypothesis is fast-growing cells may have higher

25


https://doi.org/10.1101/2021.09.08.459442
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.08.459442; this version posted August 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

biosynthetic capacity, and thus more need for ribosomes and higher transcription of RiBI
genes. These cells may therefore need to slam on the brakes of RiBi production more
strongly in order to free up translational capacity. Repression of RiBi transcripts in and
of itself need not impact subsequent growth recovery, if cells already harbor ample
ribosomes at the time of stress.

On the other hand, the size of the Dot6 acute-stress peak correlates with post-
stress growth acclimation in a way that can be separated from pre-stress growth rate
(Figure 6C, 6D, and 6 — supplement 2). Thus, some cells may be growing at average
rates but still require a large Dot6 response, for example if they are already somewhat
limited in translational capacity for other reasons and therefore require a strong Dot6
response. Interestingly, pre-stress growth rate did not correlate with the time to cross
the Cttl threshold (p = 0.24), indicating that the correlation with Dot6 is independent.
Future studies will be required to test these hypotheses. Interestingly, the Dot6 acute-
stress peak height can be fairly well predicted by the relative pre-stress activity of Msn2
versus Dot6 (R? = 0.42, Figure 7 — supplement 1), again linking acute-stress behavior to
pre-stress cell states.

Our work adds to a growing body investigating the relationship between stress
defense and growth rate. While we expected a relationship between coordinated
Msn2/Dot6 activation and growth rate based on past studies (Brauer et al. 2008; Ho et
al. 2018), we instead discovered unexpected discordance in the factors’ behavior and
an unexpected association of acclimation growth rate and Dot6 activity, the opposite of
what several past models predict (Regenberg et al. 2006; Castrillo et al. 2007; Brauer et

al. 2008; Airoldi et al. 2009). These results highlight the complexities of eukaryotic
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growth control and set the stage for further dissection of the driving regulators of growth

rate and how best to predict growth under fluctuating conditions.

Methods
Strains used include AGY1328 (BY4741 DOT6-GFP(S65T)-His3MX, MSN2-mCherry-
HYGMX), AGY1813 (BY1471 DOT6-GFP(S65T)-His3MX, MSN2-mCherry-HYGMX,
CTT1-iRFP-KanMX), and AGY1363 (BY4741 dot6::KAN tod6::HYG CTT1-GFP(S65T)-
His3MX) (strains available upon request). For microscopy experiments, overnight
cultures were grown from single colonies to exponential phase at 30°C (Optical Density,
ODsoo < 1) in Low Fluorescent Medium (LFM) before cells were adhered to the
microscope slide as described below. LFM consisted of 0.17% Yeast Nitrogen Base
without Ammonium Sulfate, Folic Acid, or Riboflavin (#MP114030512, Thermo Fisher
Scientific, Waltham, Massachusetts), 0.5% Ammonium Sulfate, 0.2% complete amino
acids supplement, where individual amino acids concentrations are as defined in Yeast
Synthetic Drop-out Media Supplements (Sigma-Aldrich, Saint Louis, Missouri), and 2%
Glucose. Cells were grown in LFM shake flasks at 30°C for data shown in Figure 7A.
An FCS2 chamber (Bioptechs Inc, Butler, Pennsylvania) microfluidic system was
used for time-lapse microscopy. In short, a 40 mm round glass coverslip and FCS2
lower gasket were assembled, and Concanavalin A solution (2 mg/mL Concanavalin A,
5 mM MnClz, 5 mM CaCl2) was applied to the coverslip, incubated for two minutes, then
aspirated. Next, 350 uL of an ~ 0.5 ODsoo culture was placed on the coverslip and
incubated 5 minutes for cells to settle and adhere to the Concanavalin A. 150 uL of the

media was then removed and the rest of the FCS2 chamber was assembled.
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Media was flown through the FCS2 chamber using gravity flow. Input tubing was
attached to elevated bottles containing either LFM or LFM + 0.7 M NaCl (See diagram
in Figure 1B) with a valve to switch between media with and without 0.7 M NaCl. The
outflow tubing was connected to an additional ~1 meter of BD Intramedic PE Tubing
(#1417012D, Thermo Fisher Scientific, Waltham, Massachusetts) with the smaller inner
diameter of 0.86 mm being vital to controlling the gravity flow of media. The entire
assembly, including the microscope stand, bottles containing media, and FCS2
chamber, were enclosed in an incubator maintaining internal temperature of 30°C
throughout the entire protocol.

A Nikon Eclipse Ti inverted microscope with the Perfect Focus System (Nikon
Inc., Melville, New York) was used for time-lapse microscopy. The GFP signal was
captured using a ET-EGFP single band filter cube (#49002, Chroma Technology Corp,
Bellows Falls, Vermont excitation 470/40x emission 525/50m). The mCherry signal was
captured using a ET/mCH/TR single band filter cube (#96365, Chroma Technology
Corp, Bellows Falls, Vermont excitation 560/40x emission 630/75m). In addition,
exposure from a halogen lamp was used to capture white-light images of all cells. For
experiments using AGY 1813, the iRFP signal was captured using a Cy 5.5 filter cube
(#49022, Chroma Technology Corp, Bellows Falls, Vermont excitation 650/45x emission
720/60m).

Images of each field of view were captured at 6-minute intervals. The z-focal
plane focus was set on the center of cells, and images were taken 1 um above, at, and

1 um below this center of focus, generating a three-image z-stack for each channel. The
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three-image z-stacks were collapsed into a single image by taking the maximum
projection of the 3 images using a custom MATLAB script.

Cells were identified using a MATLAB circle-finding function on the brightfield
images. Individual cells were then tracked through all images using the MATLAB
simpletracker function (Tinevez 2019). Cell colonies were defined by segmenting
images into a binary black-and-white image, and single colonies were defined as
enclosed masks. The number of cells within each colony was determined simply as the
number of identified circles that overlapped with a given enclosed white area of the
binary images. Pre-stress growth was scored by linear regression on colony size
(defined as the total pixel number within the masked area of the colony) for the first
twelve 6-minute time points and reported as the natural log of the rate of increase. Post-
stress growth was measured in the same manner for time points 20-29 (representing
resumed growth at the beginning of the acclimation phase: 114-168 minutes into the
time course).

We applied several quality control filters to insure accuracy of growth rates. First,
to ensure that colony growth rates were representative of nuclear localization dynamics
within individual cells, we limited our analysis to colonies consisting of no more than two
cells at the time points leading up to NaCl exposure. Most of these two-cell colonies
represented mother/daughter cells and therefore had clear shared life histories. Second,
in some cases a budding daughter cell was lost during the time-course, resulting in a
misleading negative growth rate. Consequently, regressions resulting in negative slopes
were excluded. Lastly, a visual inspection of individual colonies during the time course

excluded colonies where new cells adhered to a given colony. Thirty cells were
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excluded from post-stress measures due to these cell adhesion issues that skewed
colony size measures. Another six cells (2.7% of total cells) had no apparent post-stress
growth and the calculated slope was therefore dominated by noise in pixel number. This
resulted in either a negative or near zero slope and consequently did not provide an
informative growth rate measure when taking the natural log of the change in colony
size. Consequently, these six cells were also excluded from post-stress growth rate
measures. Experiments with AGY1813 (n=3) had the same quality control filters applied
to them, with an additional metric applied to exclude cells expressing persistent, high
IRFP signal throughout the time course (11 cells). This resulted in an analysis of 228
cells.

Cell-cycle phase at the time of osmotic stress was measured by visual inspection
of cell bud presence/size and nucleus location within the cell in accordance with
standard yeast cell-cycle definitions (Howell and Lew 2012). Specifically, S-phase)
appearance of a bud but no migration of nucleus, G2) bud and nucleus migration toward
bud, but no nucleus in daughter cell, M-phase) nucleus in both cell and bud, and active
division of nuclei, G1) no bud and nucleus is not actively dividing.

Nuclear localization of Msn2 and Dot6 was measured by taking the pixel intensity
of the top 5% of pixels in the cell divided by the median pixel intensity within the circle
mask identified for each cell, similar to other studies (Cai et al. 2008; Hao and O’Shea
2012; Petrenko et al. 2013; Lin et al. 2015; AkhavanAghdam et al. 2016; Gasch et al.
2017; Granados et al. 2018). The following nuclear localization metrics were analyzed:
* Nuclear localization peaks: Temporal peaks of nuclear localization were identified

using the MATLAB findpeaks function, where a peak height is called from a local
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maximum to the nearest minimum (‘valley’) on either side of the peak. In order to
estimate a threshold for a true peak of nuclear localization versus background noise, a
linear regression was done on pre-stress nuclear localization time points to calculate the
difference of each point from the regression line, resulting in a baseline standard
deviation of localization values. Since from visual inspection of traces and cells there
were many more true peaks for Dot6, the standard deviation for the Msn2-mCherry
channel was used to calculate this baseline threshold for both Msn2 and Dot6.
Specifically, two standard deviations from the mean of the distribution of was used as a
threshold. This threshold appeared to be accurate by visual inspection of cells, where
the threshold distinguished what looked like true nuclear localization from the images.
* Area Under the Curve (AUC) of nuclear localization: For pre-stress time points,
AUC was calculated by summing the first 9 measurements of nuclear localization
scores (top brightest 5% of pixels over the median cellular signal). This summation
represents the total relative levels of nuclear localization between all cells. The same
AUC calculation was done for the acclimation phase using time points 24 -37. The
difference in AUC between the two signals (Msn2 — Dot6 AUC in Figures 6 and 7) is
simply the difference of the two individual AUC measurements.
* Acute Stress Peak Height: The acute stress peak height was calculated by taking
the maximum of nuclear localization score during the acute stress response (time points
13 — 20) and then subtracting the minimum of the nuclear localization scores just before
stress (time points 11 — 13).

IRFP fluorescence was recorded as the median pixel intensity within cell masks,

divided by the background fluorescence measured for each image using ImageJ
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(Abramoff et al. 2004). Maximum Cttl levels were taken as the maximum fluorescence
signal from T12-T43 timepoints minus the median of pre-stress (T1-T11) signal.
Threshold analysis was done by identifying the time it took each cell to cross a 5%
change in Cttl abundance. Cells that did not cross that threshold were not included in

the timing analysis (but were included in correlations with maximum Ctt1l production).

Cell clustering to identify subpopulations

Nuclear localization scores were logz transformed, and for each cell and each
factor, the value at each timepoint was normalized to the median of all cells for that
factor and time point (Figure 4, blue/yellow scale data). The population-median-
normalized vector for Msn2 and Dot6 were concatenated and clustered by mclust
(Scrucca et al. 2016) using model Ell and k=30 (which was collapsed to k=11 by mclust
for data shown in Figure 4 and k = 9 for data shown in Figure 4 — supplement 1). The
log2 of unnormalized nuclear traces for each cell was added for display in Figure 4 and
supplement (orange/white scale data). Relationships with logged growth rate data
before and after stress, calculated as described above, were scored for each cluster of
cells compared to all other cells in the data (Figure 5 and supplements, Wilcoxon Rank
Sum test).

Visual inspection of cells within mclust clusters 2 and 3 indicated that some Msn2
signal was focused but outside the nucleus (evidence after NaCl treatment), likely in the
vacuole. There were 18 cells were this was observed visually. Since the impact of this
signal was uncertain, these cells were excluded from subsequent regression modeling

(i.e. Figures 5A, 6 and 7).
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Probabilities of the number cells from each of the three biological replicates.
Binomial probabilities were used to determine if each cluster contained more

cells from one of the three biological replicates than would be expected by chance.

Specifically, if x is the number of cells from a given biological replicate present in a

cluster, then probability of having x cells or more in the cluster is

Prxzn = ) ()pFa-pr
k=X

where n is the number of cells in the cluster and p is the expected probability of having
a cell from a given replicates (that is, the total number of cells in the replicate divided by
the total number of cells in all three replicates). Since clusters 8 and 10 had a total of 5
and 6 cells, respectively, they lacked statistical power and were excluded from the
analysis.

The Holm-Bonferroni method was used for multiple hypotheses correction, where
there were n = 27 (9 clusters and testing the number of cells from 3 biological
replicates in each cluster) and « = 0.05. Using this threshold, only Cluster 9 showed
strong enrichment for cells from one replicate compared to expected after multiple-test
correction. Of note, this was the only cluster (besides Clusters 8 and 10), that had zero

cells from a given replicate (Table S2).

Permutations of nuclear localization peak matches
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To identify if matched peaks of Msn2 and Dot6 were more coordinated than
expected by chance, permutations were performed where a random Msn2 and Dot6
trace, including the time points of the called peaks, were randomly paired from the
entire dataset. Coordinated peaks were then calculated from these random Msn2/Dot6
trace pairs. These permutations indicated that the number of matched Msn2/Dot6 peaks
per cell was much higher than expected by random combinations (zero permuted
datasets out of 100,000 total had 0.21 matched pre-stress peaks per cell or more). The
same test was done for the matched peaks during the acclimation phase, and although
the number of matched peaks per cell was significant for the acclimation time points (a
fraction of 4 x 10 of permuted datasets had 0.07 matched peaks per cell or more), this
was significantly less than that for the pre-stress time points. This again demonstrated
that there was more coordination in nuclear localization between Msn2 and Dot6 during

the before stress compared to after stress.

Permutations of nuclear localization peak correlations between cells in two-cell
colonies

There were 56 two-cell colonies in the dataset. Of these, 15 colonies showed
coordinated Dot6 peaks between the two cells, defined as peaks, occurring within one
time point of each other. Permutations were performed where the 112 cells from these
56 colonies were randomly assigned in pairs and the same coordinated peak
measurements were performed. Similarly, permutations were performed on matched

peaks of Msn2. Results are shown in Table S1.
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Linear models

Multiple linear regressions shown in Figure 6 and Table S3 were performed using
fittlm in MATLAB. Each model was represented by

Yy = BotBixy+ Boxy + o+ Buxy + €

where the dependent variable y is the post-stress growth rate, S, is the intercept, each
subsequent g is the estimate of the slope for each independent variable x , and ¢is the
error term. A list of independent variables is shown in Table S3 for each of the multiple
linear regression performed. The p-values shown in Table S3 were determined from the
t-statistic of each g coefficient was not equal to zero. In Table S3, Model 1 included all
variables in the model. Model 2 only included the significant independent variables from
Model 1. Model 3 excluded Msn2 acclimation AUC and cell/colony size from Model 2 as
the p-values did not pass Holm-Bonferroni correction (¢ = 0.05 and n = 14). Since
Model 3 gave the four most-significant variables, Model 4 then removed pre-stress
growth rate to see the resulting explained variance. Model 5 measured the explained
variance of the two most significant variables: Dot6 acute stress peak height and pre-
stress growth rate. Trends and significance were the same when analyzing only single-
cell colonies, except that the minor contribution of the sum of prestress Msn2 peaks to
the original model was no longer significant.

For principle component regression (Figure 6D), principle component analysis
(PCA) was performed using pca in MATLAB on the 4 factors that had significant
influence on post-stress growth rate (Figure 6B, bold). The resulting PCA coefficients
(i.e. the loadings) represent the contribution of each of these 4 factors to each PC. For

each PC, the value of each coefficient was divided by the sum of coefficient values to
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give a fractional contribution of each factor to each PC (Drummond et al. 2006). A linear
model was then performed as described above, where the dependent variable, y, was
again the post-stress growth rate, but the independent variables, x, were the resulting

PCA scores for each of the 4 factors.
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Supplemental Figures and Tables

Figure 1 — supplemental 1. Cellular response to salt within microfluidics device.

Time lapse of a single budding cell expressing Dot6-GFP (center panel) and Msn2-mCherry
(right panel) before and after NaCl stress. Halogen images (left panel) were analyzed to identify
cells and track them throughout the time course. Images were taken every 6 minutes, with salt
added after 72 minutes. Top left image is time point 1, and time points continue from left to right
and top to bottom. Salt was added after time point 12. The halogen images were used to
measure colony size, while the Dot6-GFP and Msn2-mCherry images were used to measure
transcription factor nuclear localization. The cell shown is from strain AGY1328; however, it is
representative to what was also observed with other strains. For visualization, the brightness of
the mCherry channel was increased by 50%.
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Figure 1 — supplement 2. Growth rate estimates are robust. A. Growth rate was estimated
based from the linear fit of collapsed-image pixel area versus time, from timepoints T1-T12
before addition of salt. The change in pixel area was highly linear for most cells (median R? =
0.92, grey box plot). To test the robustness to time points considered, we performed a sliding-
window analysis in which growth rates were calculated from subsets of timepoints. The linear fit
remained high, and estimated growth rates were well correlated with the growth rates calculated
from all pre-stress timepoints (B). The median of sliding-window growth rates plotted against
rates estimated from all timepoints is shown in black, whereas comparisons to sliding-window
measurements match the colors from (A). C-D. Same plots except for post-stress growth rate.
As reported in the main text, there was a wider range of growth rates and thus a wider range of
linear fits of the data (median R? = 0.72). Nonetheless, the measured growth rates were highly
correlated with those calculated from sliding windows of fewer timepoints. E. As might be
expected, growth rate of cells that recovered growth after NaCl stress were well estimated by a
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linear change in colony area, whereas cells that did not recover pre-stress growth rates showed
a lower linear fit that was more heavily influenced by noise (confirmed by visual inspection). F.
The reduction in growth rate seen after NaCl treatment (here as in Figure 2B, blue plot) were
specific to stress treatment (median In(growth rate change) = -0.85), since most cells exposed
to a shift in media without NaCl (grey bars) showed subtle changes in growth rate (median
In(growth rate change) = -0.20). Together, these analyses show that our estimates of growth
rate are robust to time points used and that growth-rate changes discussed in the text are
specific to NaCl stress.
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Figure 4 — supplement 1. Cellular profiles are recapitulated. Patterns seen in data from
Figure 4 (strain AGY1328, left side) are identifiable in a separate series of triplicated
experiments with a second strain (AGY1813: BY4741 Dot6-GFP, Msn-mCherry, Ctt1-iRFP, right
side). Data from AGY1813 were clustered independently by mixed-model clustering as
described for Figure 4. This analysis identified 6 clusters of more than 3 cells (several small
clusters were omitted from the figure). Patterns seen in Figure 4 shown on the left were visually
identified and aligned with clusters from the second experiment on the right.
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Figure 5 — supplement 1. The strength of transcription factor nuclear localization is
weakly related to cell cycle phase and budding. Cells grow the fastest in G1 and M-phase
(Goranov et al., 2009), thus cells were binned if they were in G1 or M phase or S/G2 phases at
the time of NaCl exposure. A. The peak height of nuclear localization for Msn2 and Dot6 during
the acute-stress phase are plotted, with cells in S/G2 or M/G1 indicated in red or blue,
respectively. B. and C. The distribution of acute-stress peak heights for Dot6 (B) or Msn2 (C)
was plotted for cells in M/G1 or S/G2. Wilcoxon rank sum tests show that cells in S/G2 had
slightly higher nuclear accumulation of both factors (p<0.001).
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Figure 5 supplement 2. Cell clusters show similar relationships with pre- and post-stress
growth rates. As shown in Figure 5 except for the independent triplicated experiments shown in
Figure 4 supplement 1. Similar cell clusters show similar relationships in pre- and post-stress
growth rates, further confirming that the trends are reproducible across biological replicates,
strains, and microscopy conditions.
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Figure 6 — supplement 1. Linear regression of individual parameters on post-stress
growth rate. (A-J). Linear regressions of individual parameters listed in Table S2. Parameters
in which the false discovery rate was < 0.025 (p < 0.003) are bold whereas other plots are
deemphasized. There is a significant fit between cell/colony size at the experiment start time
and post-stress growth rate (I); however, this parameter was not significant beyond the multiple-
test threshold in the multi-factor linear model (see Table S3), suggesting that much of cell-size
contribution is correlated with and thus absorbed by other factors in the model. K. Fit from a
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multiple linear model similar to that shown in Figure 6 except in which pre-stress growth rate
was not included (coefficient set to 0).
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Figure 6 — supplement 2. Dot6 acute-stress peak height correlates with post-stress
growth rate even across cells with no difference in pre-stress growth. As an independent
approach to disentangle the contribution of Dot6 behavior and pre-stress growth rate, we
analyzed only the subset cells that show no difference in pre-stress growth (between dashed
lines in A). This subset of cells retains a correlation between Dot6 peak height and post-stress
growth rate with nearly the same predictive power (R? = 0.12, compare to Figure 6D). A.
Correlation between pre- and post-stress growth rate over all analyzed cells. B. Same as A
except for cells between the dashed lines of A. The figure shows that for this subset of cells,
there is no longer a correlation between pre- and post-stress growth rate. C. Correlation
between Dot6 acute-stress peak height and post-stress growth rate for cells shown in B. Cell
colors correspond to clusters from Figure 4.
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Figure 7 — supplement 1. Dot6 acute-stress response is correlated with pre-stress
transcription factor behaviors. We noticed in Figure 4 that many subpopulations showed
inverse trends in pre-stress Msn2 versus Dot6 activation. Several clusters that had higher
nuclear levels of Dot6 before stress had lower levels of Msn2, and vice versa. We therefore
wondered if the relative activation of Dot6 versus Msn2 before stress was any indication of
different cellular states. Acute stress peak heights and pre-stress area under the curve (AUC)
are as defined in Figure 6B, and cell points are colored according to their cell cluster from
Figure 4 as shown in the key. A-B. Acute-stress peak height plotted against pre-stress AUC for
Msn2 (A) or Dot6 (B). C-D. Acute-stress peak height for Msn2 (A) or Dot6 (B) plotted against
the difference in pre-stress AUC. E. The results show that Dot6 peak height is best explained by
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the relative pre-stress activation of Msn2 versus Dot6. These differences are likely capturing
distinctions about pre-stress cellular states (see Discussion). P-values and R? of the fit are
shown on each plot. All p-values were significant at a Benjamini-Hochberg corrected false
discovery rate of 0.05.

Table S1. Permutations of coordinately timed peaks in cells in two-cell colonies

number of colonies with  Fraction of permutations with coordinated

coordinated peaks peak number equal or greater to actual
(out of 56 total) number of colonies with coordinated
peaks*
Dot6 coordinated 15 9.5 x10*
peak
Msn2 coordinated 6 0.19
peak

* There were 50,000 iterations of permutations for each comparison.

Table S2. Cell subpopulations are identified in multiple biological replicates

Cell number from each biological P-value (before Holm-Bonferroni

replicate correction)

mclust  Number Biological Biological Biological Biological Biological Biological
cluster ofcellsin replicate 1 replicate 2 replicate 3 replicate 1  replicate 2  replicate 3

cluster

1 61 23 21 17 0.46 0.13 0.94

2 9 3 3 3 0.69 0.46 0.69

3 18 7 9 2 0.50 0.034 1.00

4 13 3 7 3 0.90 0.038 0.90

5 22 10 4 8 0.25 0.89 0.58

6 16 3 2 11 0.96 0.96 0.0086
7 20 5 3 12 0.90 0.94 0.027
8 5 1 0 4 0.90 1.00 0.062
9 16 3 0 13 0.96 1.00 0.0003*
10 6 4 1 1 0.13 0.85 0.93
11 35 17 11 7 0.094 0.35 0.99

*Significant after Holm-Bonferroni correction.

The number of cells in each mclust cluster from Figure 4 is shown along with the
number of those cells from each of three biological replicates. P-values from binomial
probability tests (see Methods) are shown and those significant after Holm-Bonferroni
correction (namely Cluster 9 which was enriched for cells from replicate 3) are indicated
with an asterisk.
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Table S3. Multiple Linear Models: variables, significance, and explained variance.

Multiple Linear Model
(p-values of included variables)

Model Parameter Model 1 Model 2** Model 3** Model4  Model 5
Intercept 3.7E-04  8.9E-07 3.1E-05  0.0009 1.75E-05
Dot6 pre-stress AUC 0.016 0.0004 0.00011 0.0070

Msn2 pre-stress AUC NaN

Msn2 — Dot6 AUC 0.468

Sum of Dot6 peak heights

(pre-stress) 0.767

Sum of Msn2 peak heights

(pre-stress) 0.016 0.0024 0.00010 0.0007

Dot6 acute stress peak height  1.4E-07 6.3E-10  1.0E-08 3.41E-10 0.00013
Msn2 acute stress peak height 0.125

Msn2 acclimation AUC 0.017 0.0084

G1 (at time of stress)* 0.438

S-phase (at time of stress) 0.528

G2 (at time of stress) 0.233

M-phase (at time of stress) 0.221

Cell/colony size at experiment

start 0.042 0.0104

Pre-stress growth rate 2.2E-06 4.0E-07 2.7E-08 1.59E-06
R? (explained variance) 0.45 0.40 0.35 0.22 0.26

*Cell-cycle phase included four binary parameters (i.e. dummy variables) corresponding
to the four cell-cycle phases (G1, S, G2 and M phase). See the Methods section for how
these were scored.

** Model 2 only included all the significant dependent variables from Model 1.

*** Model 3 excluded Msn2 acclimation AUC and Cell/colony size from Model 2 as the
p-values did not pass Holm-Bonferroni correction.
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