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Abstract 

Stress defense and cell growth are inversely related in bulk culture analyses; however, 
these studies miss substantial cell-to-cell heterogeneity, thus obscuring true phenotypic 
relationships. Here, we devised a microfluidics system to characterize multiple 
phenotypes in single yeast cells over time before, during, and after salt stress. The 
system measured cell and colony size, growth rate, and cell-cycle phase along with 
nuclear trans-localization of two transcription factors: stress-activated Msn2 that 
regulates defense genes and Dot6 that represses ribosome biogenesis genes during an 
active stress response. By tracking cells dynamically, we discovered unexpected 
discordance between Msn2 and Dot6 behavior that revealed subpopulations of cells 
with distinct growth properties. Surprisingly, post-stress growth recovery was positively 
corelated with activation of the Dot6 repressor. In contrast, cells lacking Dot6 displayed 
slower growth acclimation, even though they grow normally in the absence of stress. 
We show that wild-type cells with a larger Dot6 response display faster production of 
Msn2-regulated Ctt1 protein, separable from the contribution of Msn2. These results are 
consistent with the model that transcriptional repression during acute stress in yeast 
provides a protective response, likely by redirecting translational capacity to induced 
transcripts. 

 

Introduction  

All organisms respond to cellular stress, which can arise from external conditions such 

as drugs and environmental shifts or internal perturbations including mutation and 

disease. Thus, at the cellular level, organisms must be able to sense both external and 

internal signals to mount a proper response. Yet in both single- and multi-celled 

organisms, there can be large variation in how individual cells respond to environmental 

stress, even among genetically identical cells in the same environment. For example, 

cell-to-cell variation in signaling and gene expression have been linked to differential 

survival of isogenic cancer cells responding to drugs (Lee et al. 2014; Paek et al. 2016; 

Shaffer et al. 2017; Inde and Dixon 2018). Similarly, cellular heterogeneity in bacterial 

growth and gene expression can produce variation in survival upon antibiotic treatment 
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(Balaban et al. 2004; Keren et al. 2004). Understanding the nature of this variation could 

facilitate the modulation of stress survival, with therapeutic applications. 

One marker of heterogeneity in stress responses is dynamic localization of 

stress-activated transcription factors. Several canonical factors, including p53 in 

mammalian cells (Purvis et al. 2012; Kracikova et al. 2013; Paek et al. 2016) and Msn2 

and its paralog Msn4 in fungi (Görner et al. 1998), reside in the cytosol in the absence 

of stress but rapidly translocate to the nucleus upon activation. These and other stress-

activated factors can vary substantially in their responsiveness, in ways that can impact 

cellular outputs including gene-expression. For example, Msn2 localization dynamics 

differ depending on the nature of the stress (Hao and O’Shea 2012; Petrenko et al. 

2013; Granados et al. 2018), and these differences impart distinct effects on different 

target genes (Hao and O’Shea 2012; Hansen and O’Shea 2013; Stewart-Ornstein et al. 

2013; Hansen and O’Shea 2015a; Hansen and O’Shea 2015b; Hansen and O’Shea 

2016; Hansen and Zechner 2021). Msn2 targets with highly responsive promoters can 

be induced even with brief pulses of nuclear Msn2, whereas genes with less responsive 

promoters require prolonged Msn2 activation (Hansen and O’Shea 2013; Hansen and 

O’Shea 2015a; Hansen and O’Shea 2015b; Hansen and O’Shea 2016). Similarly, 

differences in the dynamics of p53 localization can lead to distinct transcriptional 

outputs, and these distinctions correlate with differences in stress survival (Purvis et al. 

2012). Several studies have observed substantial cell-to-cell heterogeneity in nuclear 

localization dynamics of these factors (Cai et al. 2008; Cheong et al. 2011; Purvis and 

Lahav 2013; Lin et al. 2015; AkhavanAghdam et al. 2016; Gasch et al. 2017; Granados 
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et al. 2018; Li et al. 2018); however, the causes and functional effects of this variation 

remain poorly understood.  

 Cell-to-cell variation in transcription factor localization dynamics could arise for 

several reasons. Changes in the state of a single transcription factor may alter its 

localization independent of or separable from the cellular system (defined as factor-

specific variation). In contrast, activity-state changes in the upstream signaling networks 

or cellular system itself could produce coordinated activation of the stress response 

(referred to as systemic variation). Distinguishing between local versus systemic 

variation has been difficult, since most studies to date have followed only single 

transcription factors. We recently developed strains in which two differentially tagged 

transcription factors regulated by the same signaling network are expressed in the same 

yeast cell. Msn2 activator fused to mCherry is co-expressed with the transcriptional 

repressor Dot6 fused to GFP. Both factors help to coordinate the yeast environmental 

stress response (Gasch et al. 2000; Causton et al. 2001): whereas Msn2 activates 

defense genes that are induced in the ESR (iESR genes), Dot6 represses growth-

promoting genes involved in ribosome biogenesis that are correspondingly repressed in 

the ESR during stress (rESR genes) (Lippman and Broach 2009; Bergenholm et al. 

2018). Both factors are controlled by the Protein Kinase A (PKA) and mTOR pathways, 

which are generally associated with promoting growth (Figure 1A): PKA/TOR-

dependent phosphorylation of Msn2 and Dot6 maintains the factors in the cytosol, 

whereas Msn2 and Dot6 dephosphorylation after PKA/TOR inhibition leads to their 

nuclear localization. (Görner et al. 1998; Smith et al. 1998; Lippman and Broach 2009). 

Thus, we expect the two factors to be coordinated in their localization when the stress 
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response is activated systemically but discordant in response to factor-specific 

differences in regulation.  

 The challenges in distinguishing factor-specific versus systemic variation have 

obscured how systemic activation of the stress response relates to other physiological 

responses. One important factor is growth rate. Growth rate and stress tolerance are 

competing interests in the cell and are often antagonistically regulated: fast growing 

cells tend to be the most susceptible to stress and toxins, whereas slow growing or 

quiescent cells generally survive extreme conditions (Balaban et al. 2004; Lu et al. 

2009; Zakrzewska et al. 2011; Levy et al. 2012). Part of this antagonistic correlation is 

thought to be controlled, at least under specific situations, by the RAS-PKA pathway, 

which promotes growth and suppresses the stress response (Smith et al. 1998; Gasch 

et al. 2000; Zaman et al. 2008; Zaman et al. 2009). Li et al. (2018) used single-cell 

microscopy to show that slower growing cells in an isogenic culture displayed lower 

levels of the PKA allosteric activator cAMP and that artificial activation of PKA 

diminished the slow growing population (Li et al. 2018). They further showed a slight but 

statistically significant negative correlation between Msn2 nuclear localization and 

micro-colony growth over the subsequent 10 hours in the absence of stress. This 

suggests that activation of Msn2 is coupled to reduced growth rate, a theory put forward 

and debated in other bulk-culture studies (Regenberg et al. 2006; Castrillo et al. 2007; 

Brauer et al. 2008; Ho et al. 2018). The inability to distinguish between factor-specific 

variation and systemic activation of the stress response likely obscures the true 

relationship with growth.  
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Here we monitored dynamic localization changes of both Msn2 and Dot6 in the 

same yeast cells, along with a panel of other single-cell measurements, to dissect local 

and systemic variation and illuminate the relationship between ESR activation and 

growth rate. We optimized a microfluidics system that can monitor single-cell 

localization levels and dynamics of both Msn2-mCherry and Dot6-GFP along with 

single-cell and colony growth rates, size, shape, cell-cycle phase and size changes 

before and after an acute dose of sodium chloride (NaCl) as a model stressor. Our 

results revealed several insights, including surprising levels of discordance in Msn2 and 

Dot6 activation that partly explained variation in post-stress growth rate. We developed 

a multi-factorial model explaining cell growth rate after stress acclimation to 

demonstrate that stress acclimation is partly predictable based on prior cellular states. 

Remarkably, one of the important predictors is the activation level of the Dot6 repressor, 

which counterintuitively is associated with faster growth acclimation and faster 

production of stress-induced catalase Ctt1. We discuss implications of this work for 

understanding how cellular state and transcriptional repression influence stress 

responses. 

Results 

We optimized a microfluidics system that could measure nuclear localization dynamics 

as well as one- and two-cell colony growth rates before and after exposure to 0.7 M 

NaCl (Figure 1B and Methods). Using this system, we characterized the variation in cell 

responses for 72 min before and 144 min after exposure to NaCl, which induces ionic 

and osmotic stress, in biological triplicates done on separate days. This time frame 

captures phenotypic variation in cells growing in the absence of stress, during the acute 
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stress-response phase (from 0 to 54 minutes after osmotic stress), and over later 

timepoints as cells acclimate to continuous NaCl. Microscopy imaging and analysis 

reports on Msn2-mCherry and Dot6-GFP nuclear localization dynamics in the same 

cells (Figure 1C, Figure 1 – supplement 1). We used MATLAB scripts to identify nuclear 

translocation events, which we refer to as “peaks” in the traces (see Methods). We also 

measured cell and colony growth phenotypes, including colony size, colony growth 

rates (defined by increase in pixel number of masked colony area and vetted with 

several analyses, Figure 1 – supplement 2) both before and after stress, and change in 

cell size due to volume loss upon NaCl stress (Figure 1D and Methods). To ensure 

accurate measures of growth, we limited our analysis to colonies of only one or two  

Figure 1 

 
 
Figure 1. Experimental approach. A. Schematic of Msn2 and Dot6 localization in the absence 
(left) and presence (right) of stress. B. Diagram of microfluidic device used for time-lapse 
microscopy. C. Representative nuclear localization scores (see Methods) for pre-stress growth, 
the acute-stress response, and the acclimation phase. D. Cell or two-cell colony size was 
estimated by the number of pixels within the mask for each colony, and growth rates were 
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calculated based of regression of those points during the pre- or post-stress phases. Cell 
volume change was reflected in the difference in pixel number before and after stress. 

 

cells at the beginning of the time series and to cells that passed several quality-control 

filters (see Methods). In total, we analyzed 221 cells passing these filters, collected from 

the three independent biological replicates. 

This system captured variation in all of the features measured. As expected 

based on previous studies (Levy et al. 2012; Fehrmann et al. 2013; Crane et al. 2014; Li 

et al. 2018; Jin et al. 2019), there was substantial variation in cellular growth rates 

before NaCl addition, confirming that cells vary considerably in their growth properties in 

the absence of stress (Figure 2A). Most colonies reduced their growth rate in response 

to NaCl stress (but not a mock treatment, Figure 1 – supplement 2F), but once again 

there was substantial variation: some cells showed dramatic growth reduction upon 

NaCl whereas others showed little to no change (Figure 2B). There were even individual 

colonies that accelerated growth after stress: 11 of 14 of these cells showed a small bud 

at the time of salt exposure, suggesting a cell cycle connection. NaCl-induced osmotic 

pressure is expected to produce rapid water loss before cells acclimate, and indeed 

most cells shrunk immediately after stress despite substantial variation in size changes 

(Figure 2C). Together, these results highlight the extensive cell-to-cell variation in 

behavior that is not identified in bulk measures of culture growth.  
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Figure 2 

 
 

Figure 2. Cell-to-cell heterogeneity in the NaCl stress response. A-C. Shown are 
the distributions of the natural log of A. colony growth rates before stress, B. the change 
in growth rate after NaCl stress compared to before stress, and C. the maximum 
change in cell pixel size during the acute-stress response versus during the pre-stress 
phase.  
 

Msn2 and Dot6 nuclear localization show only partial coordination  

 We next investigated co-variation in Msn2-mCherry and Dot6-GFP localization 

dynamics, before and as cells responded to NaCl. Both factors showed sporadic 

activation in unstressed cells, with brief and typically low levels of nuclear translocation 

(Figure 3A). Roughly 54% of Msn2 pre-stress peaks and 37% of Dot6 pre-stress peaks 

were temporally coordinated with the other factor (Figure 3B), which is significantly 

above chance (p << 0.0001, permutation analysis, see Methods) and suggests systemic 

activation of the stress response. This reveals both coordinated and independent 

fluctuations in Msn2 and Dot6 activation in the absence of stress, consistent with our 

prior results (Gasch et al. 2017). In the vast majority of cells, NaCl provoked a dramatic 

and coordinated increase in nuclear localization of both Msn2 and Dot6 (acute phase). 

However, after stress Msn2 and Dot6 behavior deviated: whereas few cells showed 

post-stress Dot6 nuclear translocation, many cells showed asynchronous pulses of 
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Msn2 (Figure 3C-F), consistent with prior work (Petrenko et al. 2013). This was 

surprising, since we expected that Msn2 and Dot6 would be highly correlated during 

and immediately after NaCl treatment. 

Figure 3 
 

 
 
Figure 3. Nuclear translocation dynamics of Msn2 and Dot6 are more coordinated before 
stress. A. Representative traces of Msn2 and Dot6 in the same cell. B. The average number of 
coordinated peaks for Msn2 and Dot6, i.e. peaks called within 6 minutes (1 timepoint) of each 
other. C. The average number of nuclear localization peaks per cell for Msn2 (red) and Dot6 
(blue) during pre-stress and acclimation phases. D-E. The average (black line) +/- one standard 
deviation (colored spread) of Msn2 (D) and Dot6 (E) nuclear localization during the time course. 
F. Trace of the standard deviation of nuclear localization over the time course for Msn2 (red) 
and Dot6 (blue).  

 

 In the course of this analysis, we realized another key difference between Msn2 

and Dot6: the profiles of Dot6 nuclear pulses were often highly correlated between 

unstressed cells in the same colony, indicated by co-occurring peaks in two-cell 
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colonies (Table S1). Permutation tests showed that this was highly significant compared 

to random chance (p = 9.3e-4, see Methods). In contrast, the co-occurrence of Msn2 

peaks in cells from the same colony was not significantly different from random. Since 

these cells are in the same local environment and have a shared life history in that one 

cell is the daughter of the other, it suggests that some feature of Dot6 regulation is 

predictable but separable from Msn2 behavior.  

 

 Reproducible differences in Msn2 versus Dot6 activation reveal subpopulations 

of cells  

  Comparisons of Msn2 and Dot6 nuclear localization patterns indicated different 

localization dynamics across cells, raising the possibility of distinct cell subpopulations. 

To investigate, we used Gaussian finite mixture modelling (Scrucca et al. 2016) of the 

population-normalized Msn2 and Dot6 nuclear localization traces to identify populations 

or ‘clusters’ of cells with distinguishable localization patterns (Figure 4, see Methods). 

Most clusters captured cells from all three biological replicates, with the exception of cell 

Cluster 9 and several small clusters that were enriched for cells from one replicate 

(Table S2). Six of these patterns were clearly recapitulated in an independent 

experiment (Figure 4 – supplement 1). Thus, most of the cell groupings represent 

reproducible subpopulations with different stress-responsive behaviors.  

The subpopulations were differentiated by a combination of transcription-factor 

phenotypes. One distinguishing feature was the level of Dot6 activation during the 
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Figure 4 

 
 
Figure 4. Subpopulations of cells show distinct Msn2 and Dot6 translocation dynamics. 
221 cells passing quality control metrics were partitioned into sub clusters based on their 
population-centered nuclear translocation dynamics shown on the right. Each row represents a 
cell and each column in a block represents a single timepoint; time of NaCl addition is indicated 
with an arrow. Data on the left show the log2 ratio of nuclear versus total Msn2 (left) or Dot6 
(right) according to the orange-scale key, see Methods. Data on the right show the same data 
normalized to the population median at each timepoint: yellow values indicate higher-than-
median nuclear localization levels and blue indicates lower-than-median nuclear localization. 
Cell clusters identified by the package mclust are labeled to the right.  

 

acute-stress phase. Cluster 11 was characterized by lower than population-median 

magnitude of acute-stress Dot6 nuclear translocation, whereas cells in Clusters 6 and 7 
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showed higher-than-median Dot6 response. These results are consistent with the wider 

variance of Dot6 nuclear translocation levels during the acute phase (Figure 3D-F). A 

second distinguishing feature was the level of nuclear Msn2 and Dot6 before stress. 

Cluster 11 cells showed low levels of Dot6 before stress, whereas cells in Clusters 9 

and 6 displayed higher-than-median nuclear Msn2 and Dot6 during this phase. Finally, 

the behavior of Msn2 during the post-stress acclimation phase was significantly different 

across subpopulations. Whereas Clusters 11 and to some extent 7 showed low levels of 

post-stress Msn2 nuclear localization, cells in multiple clusters showed high levels 

and/or pulsatile nuclear Msn2 as cells acclimated. We noticed that cells in Clusters 2 

and 3 showed elevated levels of mCherry that persisted over time compared to other 

cells. Closer inspection of the microscopy images suggested that some of the signal 

may not reflect nuclear translocation but instead was likely vacuolar signal (see more 

below). As mentioned above, the variation in nuclear localization dynamics captured 

within these clusters occurred in all three biological replicates and in a separate 

experiment (See Table S2 and Figure 4 – supplement 1), indicating reproducible 

distinctions in transcription factor behavior. Together, this analysis revealed important 

differences in cellular behavior across the phases of the NaCl response that are 

obscured by aggregate analysis of all cells in the population. 

 

Cell subpopulations show different relationships with cell growth 

Are subpopulations of cells identified above biologically meaningful? We turned 

to the other cellular measurements to look for co-variates in cellular behavior that reflect 

on higher-order relationships (Figure 5). We tested each of the cell subpopulations for 
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statistically significant differences in pre-stress growth rate, post-stress growth rate, 

starting size, volume change, and cell-cycle phase at the time of NaCl exposure 

(inferred by visual inspection of bud size and nucleus location in the cell, see Methods). 

We found no significant correlations with cell volume changes or cell-cycle phase 

(although there was a minor signal for cell cycle, Figure 5 – supplement 1). This is 

consistent with the lack of strong connection between cell-cycle phase and stress 

response found in several other studies (Paek et al. 2016; Gasch et al. 2017; Bagamery 

et al. 2020). In contrast, several clusters showed significant differences in growth rates. 

 Overall, there was a positive correlation between pre-stress growth rate 

compared to post-stress growth rate (Figure 5A); however, the association was different 

for subpopulations of cells. Cells in Cluster 11, which were characterized by below-

average Dot6 response before and during stress, showed slower growth rates before 

and after NaCl treatment (Figure 5B-C), and the slower growth was consistent when 

biological replicates were analyzed individually (p < 0.02, T-test) and across multiple 

experiments (Figure 5 – supplement 2). In contrast, cells in Cluster 7 showed higher 

than average recovery growth rates – these cells were characterized by larger-than-

average Dot6 nuclear localization responses and somewhat below-average nuclear 

translocation of Msn2 during the acute-response phase. The relationships between 

post-stress growth rate and Dot6 response during the acute phase raised the possibility 

that this factor’s activation is more closely tied to growth rate than Msn2, even when 

both factors are activated in a systemic response. Interestingly, cells in Cluster 2 that 

had unusually high (and potentially vacuolar) mCherry fluorescence before stress 

displayed very slow growth recovery after stress, demonstrating the biological validity of 
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the subpopulation and raising the possibility of poor stress acclimation in these cells. 

(We note that cells with apparent vacuolar signal were excluded from subsequent 

analyses). 

Figure 5 

 
 
Figure 5. Cell subpopulations display different growth rates before and after stress. A. 
Correlation between the natural log of pre- and post-stress growth rates for each cell, colored 
according to its cell cluster in Figure 4. B-C. Distribution of median-centered growth rates before 
(B) and after (C) NaCl addition, for cell clusters shown in Figure 4. Boxes are colored yellow or 
blue if the distribution was significantly higher or lower, respectfully, from all other cells in the 
analysis (Wilcoxon Rank Sum test, FDR < 0.022). Dashed line indicates the median of all cells 
analyzed. 

 

Combining multiple characteristics increases the predictive power to explain 

post-stress growth rate  

 The above results hinted that how well cells acclimate to NaCl stress, as 

indicated by post-stress growth rate, may be predicted by cellular responses both 

before and during the stress response. Based on the work of (Li et al. 2018), we 

expected a negative correlation between Msn2 nuclear localization and growth rate 

(which they reported over much longer time frames). While there was no correlation with 

pre-stress growth rate (p = 0.65), we did observe a negative correlation between pre-

stress Msn2 activation (taken as the area under the nuclear-localization curve (AUC) for 
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pre-stress timepoints) and post-stress growth rate; however, the correlation explained 

only 3% of the variance (p = 0.016, linear regression), indicating that the pre-stress 

behavior of Msn2 has little power to predict post-stress growth rate in our study. 

We next investigated other features that could explain differences in post-stress 

growth rate (Figure 6A-B). Pairwise correlations revealed that some individual features, 

such as the magnitude of Dot6 acute-stress response, correlated well with post-stress 

growth rate but others did not (Figure 6 – supplement 1). However, the most impactful 

single factor – pre-stress growth rate – explained only 20% of the variance in post-

stress growth rate (Table S3).  

 We next asked if combining cellular phenotypes into a single multiple linear 

model could explain more of the variance in growth. We considered multiple metrics for 

summarizing pre-stress nuclear localization, including AUC (which is a measure of the 

overall nuclear abundance) and the sum of called translocation peak heights (which is 

influenced by the magnitude and frequency of pre-stress pulses), along with acute-

stress translocation peak height and AUC during the acclimation phase. The model also 

incorporated other cell features including pre-stress growth rate, cell-cycle phase at the 

time of NaCl exposure, and cell size factors (See ‘Model 1’ in Table S3 for all 

parameters used). Factors that did not contribute significantly (adjusted p > 0.05) were 

progressively removed until the variance explain decreased (Table S3). The final 

regression identified four factors that contributed significantly to explain post-stress 
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Figure 6 
 

 
 
Figure 6. A multi-factor model best explains variation in post-stress growth rate. 
A. A representation of the nuclear localization measurements used in the multi-factor 
linear regression model. B. Factors considered in the multi-factor linear regression 
model; those with significant contributions are highlighted with ***. C. The variance in 
ln(post-stress growth rate) explained by the multi-factor linear regression model. P-
value and R2 are shown a the top of the plot and cell subcluster is indicated according 
to the key, showing that no single cluster dominates the correlation. D. Principal 
component (PC) regression of post-stress growth rate and deconvolution of contributing 
factors according to the key. Variance explained is listed at the top of each bar (where 
PC2 does not contribute to post-stress growth rate).  
 

rate (‘Model 3’ in Table S3): pre-stress AUC of Dot6 nuclear localization, the sum of pre-

stress Msn2 peak heights, the pre-stress growth rate of the cells, and the magnitude of 

Dot6 nuclear localization change immediately after NaCl. Together, these factors – all 

but one of which represent pre-stress cellular phenotypes – explained 35% of the 
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variance in post-stress growth rate (Figure 6C), nearly doubling the explanatory power 

of any single feature alone.  

 One challenge is that several of these phenotypes could be co-variants of an 

underlying hidden variable or cellular state. For example, both pre-stress growth rate 

and Dot6 acute-stress peak height correlate with post-stress growth rate, but they also 

correlate with each other: cells growing faster before stress have a larger Dot6 stress-

response. The mixed-linear model reports that both factors contribute separable 

predictive power, and indeed together they explain more of the variance in stress 

acclimation than either factor alone. Nonetheless, to further disentangle their co-

variation, we applied principal component (PC) regression. We first analyzed the four 

statistically-significant model-input variables in Figure 6B by PCA and then used the 

resulting components as factors in a linear model of post-stress growth rates (see 

Methods). PC1 and PC3 together explained 21% of the variance in post-stress growth 

rate: both captured co-variation in pre-stress growth rate, acute-stress Dot6 response, 

and pre-stress transcription factor behaviors, indicating that these features likely reflect 

the same aspects of the cellular state (Figure 6D). However, PC4 that is dominated by 

Dot6 behavior but not influenced by pre-stress growth rate explained an additional 14% 

of growth acclimation (p = 1e-4). A fourth component, PC2, was dominated by pre-

stress Msn2 behavior but showed no power to predict post-stress growth acclimation 

rates. Thus, behavior of the Dot6 repressor independently correlates with post-stress 

growth rate. As further confirmation, we analyzed the correlation between Dot6 acute-

stress peak height and post-stress acclimation in a subset of cells with similar pre-stress 

growth rates. Indeed, pre-stress growth rate had no predictive power for this subset of 
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cells, whereas Dot6 peak height explained 12% of the variance (p = 1e-4, Figure 6 – 

supplement 2). Thus, the behavior of the Dot6 repressor during acute NaCl stress is 

associated with growth recovery as cells acclimate (see Discussion). 

 

Dot6 activation is associated with faster production of Ctt1 protein 

Dot6 is the transcriptional repressor of growth-promoting ribosome biogenesis 

(RiBi) genes; thus, its positive association with post-stress growth rate may seem 

counterintuitive. However, this result is consistent with past work from our lab: in 

response to NaCl stress, cells lacking DOT6 and its paralog TOD6 fail to repress 

hundreds of genes in the RiBi regulon (Lee et al. 2011; Ho et al. 2018). These 

transcripts remain associated with ribosomes, whereas stress-induced transcripts 

including Msn2-regulated CTT1 show reduced ribosome association (Ho et al. 2018). 

Despite producing more CTT1 mRNA, the dot6∆tod6∆ mutant shows delayed 

production of Ctt1 protein. We proposed that transcriptional repression of otherwise 

highly transcribed mRNAs is important to free up translational capacity to translate 

stress-induced transcripts (Ho et al. 2018). 

 To investigate on a cellular level, we attempted microscopy in a dot6∆tod6∆ 

strain; however, whereas the strain grew fine in the device before stress, it was unable 

to recover growth after NaCl treatment. Indeed, bulk-culture experiments revealed that 

the dot6∆tod6∆ mutant grew as wild type before stress, but showed significantly 

reduced growth rate after NaCl treatment (Figure 7A). This is consistent with our results 

in wild-type cells, where cells with a weaker Dot6 response show a reduced post-stress 

growth rate. Thus, Dot6 provides a protective response during NaCl stress. 
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Figure 7 

 

Figure 7. Dot6 activation correlates with faster Ctt1 production. A. The average and 
standard deviation (n=4) of growth rates of wildtype (black lines) and dot6∆tod6∆ cells (blue 
lines) in the absence (solid) and presence (dashed) of 0.7M NaCl added at 75 min (arrow). B. 
Representative traces of single-cell Ctt1 production for pairs of cells that reach similar levels of 
Ctt1. C. Correlation of Ctt1 production timing (time to change 5%) versus acute-stress peak 
heights. D. The two-factor model correlates with measured Ctt1 production time, with only 
marginal contribution of Msn2 peak height (p = 0.053). Adjusted R2 is shown in both figures. 

 
 

A major unanswered question is how Dot6 behavior in a wild type cell relates to 

growth and Ctt1 production. We therefore generated a strain to track Dot6-GFP, Msn2-

mCherry, and Ctt1-iRFP in the same cells. Cellular Ctt1 levels (defined as maximum 

iRFP signal normalized to pre-stress levels, see Methods) were correlated with both 

Msn2 and Dot6 peak heights (but not their pre- or post-stress behaviors). However, the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2021.09.08.459442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459442
http://creativecommons.org/licenses/by/4.0/


 21 

explanatory power was significantly higher when considering the timing of Ctt1 

production. We defined the time for Ctt1-iRFP levels to cross a change threshold (see 

Methods). Even for cells that reached the same maximal Ctt1 levels, the time to get 

there varied (Figure 7B). We found that the time to cross that threshold was correlated 

with both Msn2 and Dot6 peak heights, which are themselves weakly correlated; 

however, the variance explained was significantly higher for Dot6 activity (Figure 7C). 

Indeed, a mixed model considering both factors confirmed that the contribution of Dot6 

was significantly more than that of Msn2 behavior, which was only marginally significant 

in the model (p = 0.053, Figure 7D). Dot6 is not known to regulate Ctt1 or bind its 

promoter (Zhu et al. 2009), and we previously showed that dot6∆tod6∆ cells induce 

CTT1 transcript to higher levels than wild type during NaCl stress (Ho et al. 2018). 

Together, this suggests an indirect effect of Dot6 that is separable from Msn2 

regulation. In sum, our results indicate that Dot6 provides a protective response during 

NaCl treatment (Figure 7A), is correlated with faster Ctt1 production in both mutant (Ho 

et al. 2018) and wild-type cells (Figure 7D), and is associated with faster growth 

recovery after NaCl treatment (Figure 6, see Discussion). 

  

Discussion 

By following dynamic activation of two different stress-regulated transcription factors, in 

conjunction with other cellular features including growth rate, cell size, and cell cycle 

stage, we uncovered previously unrecognized inter-dependencies that present new 

insights into mechanisms of stress defense. Our results reveal much more complexity in 

Msn2 and Dot6 behavior than previously recognized, that the relative activation of these 
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factors along with other pre-stress phenotypes can partly predict cellular outcomes 

including growth acclimation, and that behavior of the Dot6 repressor influences post-

stress growth rate and the dynamics of a downstream response. Below we discuss 

implications of these results. 

 

Complexities in Msn2 dynamics reflect diversity in stress-responsive states 

Past studies focusing on aggregate analysis of all single cells in the population 

reported condition-specific dynamical behavior of Msn2, such as prolonged nuclear 

pulsing after glucose starvation versus a burst of activation before acclimating to 

osmotic stress (Hao and O’Shea 2012; Petrenko et al. 2013; AkhavanAghdam et al. 

2016). Elegant studies by Hansen et al. used artificial activation of Msn2 (through 

chemical inhibition of PKA activity) to show that these differences in Msn2 nuclear 

translocation dynamics produce different transcriptional outputs (Hansen and O’Shea 

2013; Hansen and O’Shea 2015a; Hansen and O’Shea 2015b; Hansen and O’Shea 

2016). Target-gene promoters display different dependencies on the amplitude, 

frequency, and duration of Msn2 nuclear translocation, such that distinctions in Msn2 

behavior activate different sets of genes. Comparable studies of regulators in 

mammalian systems also reported stress-specific differences in the dynamics of nuclear 

translocation, which correspond to differences in gene activation (Purvis et al. 2012; 

Kracikova et al. 2013; Paek et al. 2016). One limitation of the approach of Hansen et al. 

is that activating Msn2 by wholesale inhibition of PKA likely loses much of the 

heterogeneity seen in natural responses. Our study thus provides an important 

complement to artificial system activation.  
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In fact, our analysis revealed highly varied responses across subpopulations of 

cells responding to the same stress stimulus. Some cells responded to the osmotic/ionic 

stress induced by NaCl with a large nuclear pulse of Msn2 followed by near complete 

acclimation, as previously reported for sorbitol-induced osmotic stress – but other cells 

showed extensive and prolonged Msn2 fluctuations during the acclimation phase, akin 

to what has been reported for glucose starvation. These subpopulations are obscured 

by aggregate analysis but have important implications, since the different dynamics of 

Msn2 (and likely also Dot6) activation produce different transcriptomic outputs, even for 

cells responding to the same stressor in the same environment. This hypothesis is 

consistent with past work from our lab investigating single-cell transcriptomics, in which 

isogenic cells in the same culture displayed different transcriptomes upon NaCl stress, 

including for ESR genes, indicating that they experience the stress differently (Gasch et 

al. 2017).  

 

The Dot6 repressor provides a protective response during stress. 

Although the variety in Msn2 responses likely has important consequences on 

downstream gene expression, we were surprised to find little connection to growth rate, 

at least in the short time frames studied here. Instead, the response of Dot6 explained a 

much larger fraction of the variance in post-stress growth rate, when considered alone 

or in the multi-factor linear model (Figure 6 and Table 3). Cells with a larger Dot6 

response during the acute-stress phase showed faster production of Ctt1, separable 

from Msn2 activity (Figure 7), and faster growth recovery during the acclimation phase. 

In contrast, cells completely lacking Dot6 and its paralog show delayed Ctt1 
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accumulation despite having more transcript (Ho et al. 2018) and dramatically reduced 

post-stress acclimation (Figure 7A). 

These results are consistent with our working model of Dot6 activity. At least in 

response to NaCl treatment, transcriptional repression does not lead to reduced 

abundance of the encoded proteins (Lee et al. 2011). Instead, we proposed that 

transcriptional repression helps to deplete the pool of RiBi transcripts that are normally 

highly transcribed and translated in actively growing cells (Lee et al. 2011; Ho et al. 

2018). In the absence of Dot6 repression, aberrantly abundant RiBi transcripts compete 

with induced mRNAs for available translational machinery, thereby delaying translation 

of stress-defense transcripts. In the case of NaCl, the limiting factor is unlikely to be 

ribosomes: we previously showed that this yeast strain exposed to the same dose of 

NaCl removes a population of ribosomes from the translating pool immediately after 

stress (Ho et al. 2018). This is consistent with bacterial models of growth regulation, in 

which cells preserve some ribosomes for later stress acclimation (also indicating that 

growth rate under these conditions is not limited by ribosome availability) (Mori et al. 

2017; Kim et al. 2018; Korem Kohanim et al. 2018; Remigi et al. 2019; Wu et al. 2022). 

Evidence from bacteria and incidental results in yeast suggest that other features 

related to translation elongation may limit cell growth in this situation (Dai et al. 2018; 

Ho et al. 2018; Wu et al. 2022), a limitation that may be alleviated by removing some 

ribosomes from the translating pool. How all of this fits into broader cellular states is 

discussed below. 

  

Differences in pre-stress cellular states influence stress acclimation 
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Many studies have found significant variation in how cells respond to acute 

stress. Using our system and the conditions studied here, upwards of 35% of the 

variance in post-stress growth rate could be explained by a multi-factorial model that 

includes both pre-stress and acute-stress phenotypes. The remaining unexplained 

variation is likely influenced by additional features of the cellular state, as well as 

stochastic effects. We found no connection to cell-cycle phase or cell size, although the 

lack of correlation could be masked by other confounders (Barber et al. 2021). But one 

likely contributor is differences in pre-stress metabolic or mitochondrial states as 

implicated in several studies (Fehrmann et al. 2013; Gasch et al. 2017; Laporte et al. 

2018; Dhar et al. 2019; Bagamery et al. 2020). Bagamery et al. showed that pre-stress 

fluctuations in fermentative versus respirative metabolism influence how cells recover 

from glucose starvation, with antagonistic fitness effects depending on the situation 

(Bagamery et al. 2020). Other studies linked variation in mitochondrial function and 

morphology to cell age and the ability to enter quiescence, which could also influence 

stress responsiveness (Fehrmann et al. 2013; Laporte et al. 2018). An interesting 

avenue for future investigation would be to measure metabolic and mitochondrial states 

along with features studied here. 

 Regardless, our results are consistent with the fact that pre-stress cellular states 

influence how cells will respond to future stress. Some cells in our study were fast 

growing before stress, showed a larger Dot6 response during stress, and acclimated 

faster in terms of post-stress growth rate; in turn, cells that were slow growing before 

stress had lower pre-stress Dot6 activity, lower Dot6 activation during the acute phase, 

and a slower growth acclimation. One hypothesis is fast-growing cells may have higher 
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biosynthetic capacity, and thus more need for ribosomes and higher transcription of RiBi 

genes. These cells may therefore need to slam on the brakes of RiBi production more 

strongly in order to free up translational capacity. Repression of RiBi transcripts in and 

of itself need not impact subsequent growth recovery, if cells already harbor ample 

ribosomes at the time of stress. 

 On the other hand, the size of the Dot6 acute-stress peak correlates with post-

stress growth acclimation in a way that can be separated from pre-stress growth rate 

(Figure 6C, 6D, and 6 – supplement 2). Thus, some cells may be growing at average 

rates but still require a large Dot6 response, for example if they are already somewhat 

limited in translational capacity for other reasons and therefore require a strong Dot6 

response. Interestingly, pre-stress growth rate did not correlate with the time to cross 

the Ctt1 threshold (p = 0.24), indicating that the correlation with Dot6 is independent. 

Future studies will be required to test these hypotheses. Interestingly, the Dot6 acute-

stress peak height can be fairly well predicted by the relative pre-stress activity of Msn2 

versus Dot6 (R2 = 0.42, Figure 7 – supplement 1), again linking acute-stress behavior to 

pre-stress cell states.  

 Our work adds to a growing body investigating the relationship between stress 

defense and growth rate. While we expected a relationship between coordinated 

Msn2/Dot6 activation and growth rate based on past studies (Brauer et al. 2008; Ho et 

al. 2018), we instead discovered unexpected discordance in the factors’ behavior and 

an unexpected association of acclimation growth rate and Dot6 activity, the opposite of 

what several past models predict (Regenberg et al. 2006; Castrillo et al. 2007; Brauer et 

al. 2008; Airoldi et al. 2009). These results highlight the complexities of eukaryotic 
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growth control and set the stage for further dissection of the driving regulators of growth 

rate and how best to predict growth under fluctuating conditions. 

 

Methods 

Strains used include AGY1328 (BY4741 DOT6-GFP(S65T)-His3MX, MSN2-mCherry-

HYGMX), AGY1813 (BY1471 DOT6-GFP(S65T)-His3MX, MSN2-mCherry-HYGMX, 

CTT1-iRFP-KanMX), and AGY1363 (BY4741 dot6::KAN tod6::HYG CTT1-GFP(S65T)-

His3MX) (strains available upon request). For microscopy experiments, overnight 

cultures were grown from single colonies to exponential phase at 30°C (Optical Density, 

OD600 < 1) in Low Fluorescent Medium (LFM) before cells were adhered to the 

microscope slide as described below. LFM consisted of 0.17% Yeast Nitrogen Base 

without Ammonium Sulfate, Folic Acid, or Riboflavin (#MP114030512, Thermo Fisher 

Scientific, Waltham, Massachusetts), 0.5% Ammonium Sulfate, 0.2% complete amino 

acids supplement, where individual amino acids concentrations are as defined in Yeast 

Synthetic Drop-out Media Supplements (Sigma-Aldrich, Saint Louis, Missouri), and 2% 

Glucose. Cells were grown in LFM shake flasks at 30°C for data shown in Figure 7A. 

An FCS2 chamber (Bioptechs Inc, Butler, Pennsylvania) microfluidic system was 

used for time-lapse microscopy. In short, a 40 mm round glass coverslip and FCS2 

lower gasket were assembled, and Concanavalin A solution (2 mg/mL Concanavalin A, 

5 mM MnCl2, 5 mM CaCl2) was applied to the coverslip, incubated for two minutes, then 

aspirated. Next, 350 L of an ~ 0.5 OD600 culture was placed on the coverslip and 

incubated 5 minutes for cells to settle and adhere to the Concanavalin A. 150 L of the 

media was then removed and the rest of the FCS2 chamber was assembled.  
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 Media was flown through the FCS2 chamber using gravity flow. Input tubing was 

attached to elevated bottles containing either LFM or LFM + 0.7 M NaCl (See diagram 

in Figure 1B) with a valve to switch between media with and without 0.7 M NaCl. The 

outflow tubing was connected to an additional ~1 meter of BD Intramedic PE Tubing 

(#1417012D, Thermo Fisher Scientific, Waltham, Massachusetts) with the smaller inner 

diameter of 0.86 mm being vital to controlling the gravity flow of media. The entire 

assembly, including the microscope stand, bottles containing media, and FCS2 

chamber, were enclosed in an incubator maintaining internal temperature of 30C 

throughout the entire protocol.  

A Nikon Eclipse Ti inverted microscope with the Perfect Focus System (Nikon 

Inc., Melville, New York) was used for time-lapse microscopy. The GFP signal was 

captured using a ET-EGFP single band filter cube (#49002, Chroma Technology Corp, 

Bellows Falls, Vermont excitation 470/40x emission 525/50m). The mCherry signal was 

captured using a ET/mCH/TR single band filter cube (#96365, Chroma Technology 

Corp, Bellows Falls, Vermont excitation 560/40x emission 630/75m). In addition, 

exposure from a halogen lamp was used to capture white-light images of all cells. For 

experiments using AGY1813, the iRFP signal was captured using a Cy 5.5 filter cube 

(#49022, Chroma Technology Corp, Bellows Falls, Vermont excitation 650/45x emission 

720/60m). 

Images of each field of view were captured at 6-minute intervals. The z-focal 

plane focus was set on the center of cells, and images were taken 1 m above, at, and 

1 um below this center of focus, generating a three-image z-stack for each channel. The 
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three-image z-stacks were collapsed into a single image by taking the maximum 

projection of the 3 images using a custom MATLAB script. 

Cells were identified using a MATLAB circle-finding function on the brightfield 

images. Individual cells were then tracked through all images using the MATLAB 

simpletracker function (Tinevez 2019). Cell colonies were defined by segmenting 

images into a binary black-and-white image, and single colonies were defined as 

enclosed masks. The number of cells within each colony was determined simply as the 

number of identified circles that overlapped with a given enclosed white area of the 

binary images. Pre-stress growth was scored by linear regression on colony size 

(defined as the total pixel number within the masked area of the colony) for the first 

twelve 6-minute time points and reported as the natural log of the rate of increase. Post-

stress growth was measured in the same manner for time points 20-29 (representing 

resumed growth at the beginning of the acclimation phase: 114-168 minutes into the 

time course).  

We applied several quality control filters to insure accuracy of growth rates. First, 

to ensure that colony growth rates were representative of nuclear localization dynamics 

within individual cells, we limited our analysis to colonies consisting of no more than two 

cells at the time points leading up to NaCl exposure. Most of these two-cell colonies 

represented mother/daughter cells and therefore had clear shared life histories. Second, 

in some cases a budding daughter cell was lost during the time-course, resulting in a 

misleading negative growth rate. Consequently, regressions resulting in negative slopes 

were excluded. Lastly, a visual inspection of individual colonies during the time course 

excluded colonies where new cells adhered to a given colony. Thirty cells were 
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excluded from post-stress measures due to these cell adhesion issues that skewed 

colony size measures. Another six cells (2.7% of total cells) had no apparent post-stress 

growth and the calculated slope was therefore dominated by noise in pixel number. This 

resulted in either a negative or near zero slope and consequently did not provide an 

informative growth rate measure when taking the natural log of the change in colony 

size. Consequently, these six cells were also excluded from post-stress growth rate 

measures. Experiments with AGY1813 (n=3) had the same quality control filters applied 

to them, with an additional metric applied to exclude cells expressing persistent, high 

iRFP signal throughout the time course (11 cells). This resulted in an analysis of 228 

cells. 

 Cell-cycle phase at the time of osmotic stress was measured by visual inspection 

of cell bud presence/size and nucleus location within the cell in accordance with 

standard yeast cell-cycle definitions (Howell and Lew 2012). Specifically, S-phase) 

appearance of a bud but no migration of nucleus, G2) bud and nucleus migration toward 

bud, but no nucleus in daughter cell, M-phase) nucleus in both cell and bud, and active 

division of nuclei, G1) no bud and nucleus is not actively dividing.  

Nuclear localization of Msn2 and Dot6 was measured by taking the pixel intensity 

of the top 5% of pixels in the cell divided by the median pixel intensity within the circle 

mask identified for each cell, similar to other studies (Cai et al. 2008; Hao and O’Shea 

2012; Petrenko et al. 2013; Lin et al. 2015; AkhavanAghdam et al. 2016; Gasch et al. 

2017; Granados et al. 2018). The following nuclear localization metrics were analyzed:  

* Nuclear localization peaks: Temporal peaks of nuclear localization were identified 

using the MATLAB findpeaks function, where a peak height is called from a local 
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maximum to the nearest minimum (‘valley’) on either side of the peak. In order to 

estimate a threshold for a true peak of nuclear localization versus background noise, a 

linear regression was done on pre-stress nuclear localization time points to calculate the 

difference of each point from the regression line, resulting in a baseline standard 

deviation of localization values. Since from visual inspection of traces and cells there 

were many more true peaks for Dot6, the standard deviation for the Msn2-mCherry 

channel was used to calculate this baseline threshold for both Msn2 and Dot6. 

Specifically, two standard deviations from the mean of the distribution of was used as a 

threshold. This threshold appeared to be accurate by visual inspection of cells, where 

the threshold distinguished what looked like true nuclear localization from the images.  

* Area Under the Curve (AUC) of nuclear localization: For pre-stress time points, 

AUC was calculated by summing the first 9 measurements of nuclear localization 

scores (top brightest 5% of pixels over the median cellular signal). This summation 

represents the total relative levels of nuclear localization between all cells. The same 

AUC calculation was done for the acclimation phase using time points 24 -37. The 

difference in AUC between the two signals (Msn2 – Dot6 AUC in Figures 6 and 7) is 

simply the difference of the two individual AUC measurements.  

* Acute Stress Peak Height: The acute stress peak height was calculated by taking 

the maximum of nuclear localization score during the acute stress response (time points 

13 – 20) and then subtracting the minimum of the nuclear localization scores just before 

stress (time points 11 – 13).  

iRFP fluorescence was recorded as the median pixel intensity within cell masks, 

divided by the background fluorescence measured for each image using ImageJ 
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(Abràmoff et al. 2004). Maximum Ctt1 levels were taken as the maximum fluorescence 

signal from T12-T43 timepoints minus the median of pre-stress (T1-T11) signal. 

Threshold analysis was done by identifying the time it took each cell to cross a 5% 

change in Ctt1 abundance. Cells that did not cross that threshold were not included in 

the timing analysis (but were included in correlations with maximum Ctt1 production). 

 

Cell clustering to identify subpopulations 

Nuclear localization scores were log2 transformed, and for each cell and each 

factor, the value at each timepoint was normalized to the median of all cells for that 

factor and time point (Figure 4, blue/yellow scale data). The population-median-

normalized vector for Msn2 and Dot6 were concatenated and clustered by mclust 

(Scrucca et al. 2016) using model EII and k=30 (which was collapsed to k=11 by mclust 

for data shown in Figure 4 and k = 9 for data shown in Figure 4 – supplement 1). The 

log2 of unnormalized nuclear traces for each cell was added for display in Figure 4 and 

supplement (orange/white scale data). Relationships with logged growth rate data 

before and after stress, calculated as described above, were scored for each cluster of 

cells compared to all other cells in the data (Figure 5 and supplements, Wilcoxon Rank 

Sum test). 

 Visual inspection of cells within mclust clusters 2 and 3 indicated that some Msn2 

signal was focused but outside the nucleus (evidence after NaCl treatment), likely in the 

vacuole. There were 18 cells were this was observed visually. Since the impact of this 

signal was uncertain, these cells were excluded from subsequent regression modeling 

(i.e. Figures 5A, 6 and 7).  
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Probabilities of the number cells from each of the three biological replicates.  
  
 Binomial probabilities were used to determine if each cluster contained more 

cells from one of the three biological replicates than would be expected by chance. 

Specifically, if 𝑥 is the number of cells from a given biological replicate present in a 

cluster, then probability of having 𝑥 cells or more in the cluster is 

 

Pr⁡(X⁡⁡x) = ∑ (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝑛

𝑘=𝑋

 

 

where 𝑛 is the number of cells in the cluster and 𝑝 is the expected probability of having 

a cell from a given replicates (that is, the total number of cells in the replicate divided by 

the total number of cells in all three replicates). Since clusters 8 and 10 had a total of 5 

and 6 cells, respectively, they lacked statistical power and were excluded from the 

analysis. 

The Holm-Bonferroni method was used for multiple hypotheses correction, where 

there were 𝑛⁡ = ⁡27 (9 clusters and testing the number of cells from 3 biological 

replicates in each cluster) and  ⁡ = 0.05. Using this threshold, only Cluster 9 showed 

strong enrichment for cells from one replicate compared to expected after multiple-test 

correction. Of note, this was the only cluster (besides Clusters 8 and 10), that had zero 

cells from a given replicate (Table S2).  

 
Permutations of nuclear localization peak matches 
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To identify if matched peaks of Msn2 and Dot6 were more coordinated than 

expected by chance, permutations were performed where a random Msn2 and Dot6 

trace, including the time points of the called peaks, were randomly paired from the 

entire dataset. Coordinated peaks were then calculated from these random Msn2/Dot6 

trace pairs. These permutations indicated that the number of matched Msn2/Dot6 peaks 

per cell was much higher than expected by random combinations (zero permuted 

datasets out of 100,000 total had 0.21 matched pre-stress peaks per cell or more). The 

same test was done for the matched peaks during the acclimation phase, and although 

the number of matched peaks per cell was significant for the acclimation time points (a 

fraction of 4 x 10-4 of permuted datasets had 0.07 matched peaks per cell or more), this 

was significantly less than that for the pre-stress time points. This again demonstrated 

that there was more coordination in nuclear localization between Msn2 and Dot6 during 

the before stress compared to after stress.  

 

Permutations of nuclear localization peak correlations between cells in two-cell 

colonies 

There were 56 two-cell colonies in the dataset. Of these, 15 colonies showed 

coordinated Dot6 peaks between the two cells, defined as peaks, occurring within one 

time point of each other. Permutations were performed where the 112 cells from these 

56 colonies were randomly assigned in pairs and the same coordinated peak 

measurements were performed. Similarly, permutations were performed on matched 

peaks of Msn2. Results are shown in Table S1. 
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Linear models 

Multiple linear regressions shown in Figure 6 and Table S3 were performed using 

fitlm in MATLAB. Each model was represented by 

𝑦⁡ = ⁡𝛽0 + 𝛽1𝑥1 +⁡𝛽2𝑥2⁡ +⋯+⁡𝛽𝑛𝑥𝑛⁡ + ⁡ 

where the dependent variable 𝑦 is the post-stress growth rate, 𝛽0 is the intercept, each 

subsequent 𝛽 is the estimate of the slope for each independent variable 𝑥 , and  is the 

error term. A list of independent variables is shown in Table S3 for each of the multiple 

linear regression performed. The p-values shown in Table S3 were determined from the 

t-statistic of each 𝛽 coefficient was not equal to zero. In Table S3, Model 1 included all 

variables in the model. Model 2 only included the significant independent variables from 

Model 1. Model 3 excluded Msn2 acclimation AUC and cell/colony size from Model 2 as 

the p-values did not pass Holm-Bonferroni correction (⁡ = 0.05 and 𝑛⁡ = 14). Since 

Model 3 gave the four most-significant variables, Model 4 then removed pre-stress 

growth rate to see the resulting explained variance. Model 5 measured the explained 

variance of the two most significant variables: Dot6 acute stress peak height and pre-

stress growth rate. Trends and significance were the same when analyzing only single-

cell colonies, except that the minor contribution of the sum of prestress Msn2 peaks to 

the original model was no longer significant.  

 For principle component regression (Figure 6D), principle component analysis 

(PCA) was performed using pca in MATLAB on the 4 factors that had significant 

influence on post-stress growth rate (Figure 6B, bold). The resulting PCA coefficients 

(i.e. the loadings) represent the contribution of each of these 4 factors to each PC. For 

each PC, the value of each coefficient was divided by the sum of coefficient values to 
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give a fractional contribution of each factor to each PC (Drummond et al. 2006). A linear 

model was then performed as described above, where the dependent variable, y, was 

again the post-stress growth rate, but the independent variables, x, were the resulting 

PCA scores for each of the 4 factors. 
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Supplemental Figures and Tables 
 

 
 
Figure 1 – supplemental 1. Cellular response to salt within microfluidics device. 
Time lapse of a single budding cell expressing Dot6-GFP (center panel) and Msn2-mCherry 
(right panel) before and after NaCl stress. Halogen images (left panel) were analyzed to identify 
cells and track them throughout the time course. Images were taken every 6 minutes, with salt 
added after 72 minutes. Top left image is time point 1, and time points continue from left to right 
and top to bottom. Salt was added after time point 12. The halogen images were used to 
measure colony size, while the Dot6-GFP and Msn2-mCherry images were used to measure 
transcription factor nuclear localization. The cell shown is from strain AGY1328; however, it is 
representative to what was also observed with other strains. For visualization, the brightness of 
the mCherry channel was increased by 50%. 
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Figure 1 – supplement 2. Growth rate estimates are robust. A. Growth rate was estimated 
based from the linear fit of collapsed-image pixel area versus time, from timepoints T1-T12 
before addition of salt. The change in pixel area was highly linear for most cells (median R2 = 
0.92, grey box plot). To test the robustness to time points considered, we performed a sliding-
window analysis in which growth rates were calculated from subsets of timepoints. The linear fit 
remained high, and estimated growth rates were well correlated with the growth rates calculated 
from all pre-stress timepoints (B). The median of sliding-window growth rates plotted against 
rates estimated from all timepoints is shown in black, whereas comparisons to sliding-window 
measurements match the colors from (A). C-D. Same plots except for post-stress growth rate. 
As reported in the main text, there was a wider range of growth rates and thus a wider range of 
linear fits of the data (median R2 = 0.72). Nonetheless, the measured growth rates were highly 
correlated with those calculated from sliding windows of fewer timepoints. E. As might be 
expected, growth rate of cells that recovered growth after NaCl stress were well estimated by a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2021.09.08.459442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459442
http://creativecommons.org/licenses/by/4.0/


 45 

linear change in colony area, whereas cells that did not recover pre-stress growth rates showed 
a lower linear fit that was more heavily influenced by noise (confirmed by visual inspection). F. 
The reduction in growth rate seen after NaCl treatment (here as in Figure 2B, blue plot) were 
specific to stress treatment (median ln(growth rate change) = -0.85), since most cells exposed 
to a shift in media without NaCl (grey bars) showed subtle changes in growth rate (median 
ln(growth rate change) = -0.20). Together, these analyses show that our estimates of growth 
rate are robust to time points used and that growth-rate changes discussed in the text are 
specific to NaCl stress. 

 
 
 

 
 
Figure 4 – supplement 1. Cellular profiles are recapitulated. Patterns seen in data from 
Figure 4 (strain AGY1328, left side) are identifiable in a separate series of triplicated 
experiments with a second strain (AGY1813: BY4741 Dot6-GFP, Msn-mCherry, Ctt1-iRFP, right 
side). Data from AGY1813 were clustered independently by mixed-model clustering as 
described for Figure 4. This analysis identified 6 clusters of more than 3 cells (several small 
clusters were omitted from the figure). Patterns seen in Figure 4 shown on the left were visually 
identified and aligned with clusters from the second experiment on the right.  
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Figure 5 – supplement 1. The strength of transcription factor nuclear localization is 
weakly related to cell cycle phase and budding. Cells grow the fastest in G1 and M-phase 
(Goranov et al., 2009), thus cells were binned if they were in G1 or M phase or S/G2 phases at 
the time of NaCl exposure. A. The peak height of nuclear localization for Msn2 and Dot6 during 
the acute-stress phase are plotted, with cells in S/G2 or M/G1 indicated in red or blue, 
respectively. B. and C. The distribution of acute-stress peak heights for Dot6 (B) or Msn2 (C) 
was plotted for cells in M/G1 or S/G2. Wilcoxon rank sum tests show that cells in S/G2 had 
slightly higher nuclear accumulation of both factors (p<0.001). 
 

 

 
 
Figure 5 supplement 2. Cell clusters show similar relationships with pre- and post-stress 
growth rates. As shown in Figure 5 except for the independent triplicated experiments shown in 
Figure 4 supplement 1. Similar cell clusters show similar relationships in pre- and post-stress 
growth rates, further confirming that the trends are reproducible across biological replicates, 
strains, and microscopy conditions. 
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Figure 6 – supplement 1. Linear regression of individual parameters on post-stress 
growth rate. (A-J). Linear regressions of individual parameters listed in Table S2. Parameters 
in which the false discovery rate was < 0.025 (p < 0.003) are bold whereas other plots are 
deemphasized. There is a significant fit between cell/colony size at the experiment start time 
and post-stress growth rate (I); however, this parameter was not significant beyond the multiple-
test threshold in the multi-factor linear model (see Table S3), suggesting that much of cell-size 
contribution is correlated with and thus absorbed by other factors in the model. K. Fit from a 
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multiple linear model similar to that shown in Figure 6 except in which pre-stress growth rate 
was not included (coefficient set to 0).  

 
 
 

 
 
Figure 6 – supplement 2. Dot6 acute-stress peak height correlates with post-stress 
growth rate even across cells with no difference in pre-stress growth. As an independent 
approach to disentangle the contribution of Dot6 behavior and pre-stress growth rate, we 
analyzed only the subset cells that show no difference in pre-stress growth (between dashed 
lines in A). This subset of cells retains a correlation between Dot6 peak height and post-stress 
growth rate with nearly the same predictive power (R2 = 0.12, compare to Figure 6D). A. 
Correlation between pre- and post-stress growth rate over all analyzed cells. B. Same as A 
except for cells between the dashed lines of A. The figure shows that for this subset of cells, 
there is no longer a correlation between pre- and post-stress growth rate. C. Correlation 
between Dot6 acute-stress peak height and post-stress growth rate for cells shown in B. Cell 
colors correspond to clusters from Figure 4. 
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Figure 7 – supplement 1. Dot6 acute-stress response is correlated with pre-stress 
transcription factor behaviors. We noticed in Figure 4 that many subpopulations showed 
inverse trends in pre-stress Msn2 versus Dot6 activation. Several clusters that had higher 
nuclear levels of Dot6 before stress had lower levels of Msn2, and vice versa. We therefore 
wondered if the relative activation of Dot6 versus Msn2 before stress was any indication of 
different cellular states. Acute stress peak heights and pre-stress area under the curve (AUC) 
are as defined in Figure 6B, and cell points are colored according to their cell cluster from 
Figure 4 as shown in the key. A-B. Acute-stress peak height plotted against pre-stress AUC for 
Msn2 (A) or Dot6 (B). C-D. Acute-stress peak height for Msn2 (A) or Dot6 (B) plotted against 
the difference in pre-stress AUC. E. The results show that Dot6 peak height is best explained by 
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the relative pre-stress activation of Msn2 versus Dot6. These differences are likely capturing 
distinctions about pre-stress cellular states (see Discussion). P-values and R2 of the fit are 
shown on each plot. All p-values were significant at a Benjamini-Hochberg corrected false 
discovery rate of 0.05. 

 
 
 
Table S1. Permutations of coordinately timed peaks in cells in two-cell colonies 
 
  number of colonies with 

coordinated peaks 
(out of 56 total) 

Fraction of permutations with coordinated 
peak number equal or greater to actual 

number of colonies with coordinated 
peaks* 

 
Dot6 coordinated 
peak 
 

 
15 

 
9.5 x 10-4 

Msn2 coordinated 
peak 

6 0.19 

* There were 50,000 iterations of permutations for each comparison. 
 
 
 
 
Table S2. Cell subpopulations are identified in multiple biological replicates 
 
  Cell number from each biological 

replicate 
P-value (before Holm-Bonferroni 

correction) 

mclust 
cluster 

Number 
of cells in 
cluster 

Biological 
replicate 1 

Biological 
replicate 2 

Biological 
replicate 3 

Biological 
replicate 1 

Biological 
replicate 2 

Biological 
replicate 3 

1 61  23 21 17  0.46  0.13   0.94 
2 9 3 3 3  0.69  0.46   0.69 
3 18 7 9 2  0.50  0.034   1.00 
4 13 3 7 3  0.90  0.038   0.90 
5 22 10 4 8  0.25  0.89   0.58 
6 16 3 2 11  0.96 0.96   0.0086 
7 20 5 3 12  0.90  0.94  0.027 
8 5 1 0 4  0.90  1.00  0.062 
9 16 3 0 13  0.96  1.00  0.0003* 
10 6 4 1 1  0.13 0.85  0.93 
11 35 17 11 7  0.094  0.35  0.99 

*Significant after Holm-Bonferroni correction. 
 
The number of cells in each mclust cluster from Figure 4 is shown along with the 
number of those cells from each of three biological replicates. P-values from binomial 
probability tests (see Methods) are shown and those significant after Holm-Bonferroni 
correction (namely Cluster 9 which was enriched for cells from replicate 3) are indicated 
with an asterisk. 
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Table S3. Multiple Linear Models: variables, significance, and explained variance. 
 
  Multiple Linear Model  

(p-values of included variables) 

Model Parameter  Model 1 Model 2** Model 3*** Model 4 Model 5 

Intercept  3.7E-04 8.9E-07 3.1E-05 0.0009 1.75E-05 
Dot6 pre-stress AUC 0.016 0.0004 0.00011 0.0070  
Msn2 pre-stress AUC NaN     
Msn2 – Dot6 AUC 0.468     
Sum of Dot6 peak heights 
(pre-stress) 0.767   

  

Sum of Msn2 peak heights 
(pre-stress) 0.016 0.0024 0.00010 0.0007 

 

Dot6 acute stress peak height 1.4E-07 6.3E-10 1.0E-08 3.41E-10 0.00013 
Msn2 acute stress peak height 0.125     
Msn2 acclimation AUC 0.017 0.0084    
G1 (at time of stress)* 0.438     
S-phase (at time of stress) 0.528     
G2 (at time of stress) 0.233     
M-phase (at time of stress) 0.221     
Cell/colony size at experiment 
start 0.042 0.0104 

   

Pre-stress growth rate 2.2E-06 4.0E-07 2.7E-08  1.59E-06 
      

R2 (explained variance) 0.45 0.40 0.35 0.22 0.26 

 
*Cell-cycle phase included four binary parameters (i.e. dummy variables) corresponding 
to the four cell-cycle phases (G1, S, G2 and M phase). See the Methods section for how 
these were scored.  
** Model 2 only included all the significant dependent variables from Model 1. 
*** Model 3 excluded Msn2 acclimation AUC and Cell/colony size from Model 2 as the 
p-values did not pass Holm-Bonferroni correction.  
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