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Abstract

Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal
phyla. Despite the emerging threat that microsporidia have become to humans and agricultural animals,
few reliable treatment options exist. To identify novel chemical inhibitors of microsporidia infection, we
developed a high-throughput screening method using Caenorhabditis elegans and the microsporidia
species Nematocida parisii. We screened the Spectrum Collection of 2,560 FDA-approved compounds
and natural products to identify compounds that prevent C. elegans progeny inhibition caused by N.
parisii infection. We developed a semi-automated method for quantifying C. elegans progeny number in
liquid culture, confirming 11 candidate microsporidia inhibitors. We show that five compounds prevent
microsporidia infection by inhibiting spore firing, and demonstrate that one compound, dexrazoxane,
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slows infection progression. We also show that these compounds have activity against several other
microsporidia species, including those which infect humans. Together, our results demonstrate the
effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens and
provide a scalable high-throughput system for the identification and characterization of additional

microsporidia inhibitors.

Introduction

Microsporidia are a diverse group of parasites, comprising over 1400 species that can infect most major
animal phyla (1-3). Many microsporidia species infect agriculturally important animals. This includes
invertebrate-infecting species such as Nosema ceranae and Nosema apis which infect honey bees,
Enterocytozoon hepatopenaei which infects shrimp, Hepatospora eriocheir which infects crabs, and
Nosema bombycis which infects silkworms (4—7). Additionally, there are several species that infect
farmed fish, including Loma salmonae which infects salmon and trout, as well as Enterospora nucleophila
which infects gilthead sea bream (8, 9). Microsporidia infection in these animals can result in reduced
body size, fewer offspring, and increased mortality (4—9). The economic impact of microsporidia infections
is high. The infection of silkworms has triggered historical collapses of the sericulture industry, and
microsporidia infections are estimated to cost over $200 million USD annually to Thailand’s shrimp
industry (7, 10). Livestock such as pigs, cattle, and sheep, as well as pets such as dogs, cats and rabbits
are infected by Encephalitozoon species and Enterocytozoon bieneusi. Humans are also infected by
these species, with infections in the immunocompromised being more prevalent (11). Microsporidia
commonly infect animals, with over half of honeybee hives and approximately 40% of pigs reported to be
infected (11, 12). Microsporidia are also emerging pathogens, with the threat posed by many of these

species only being recognized in the last several decades (13).

Despite the threat that these parasites pose to human and animal health, few therapeutic options exist.
Fumagillin is a compound from the fungus Aspergillus fumigatus which inhibits methionine
aminopeptidase type 2 (MetAP2), and has been used since the 1950s to treat microsporidia infections in
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honeybees (14). However, recent reports suggest that fumagillin may be ineffective against N. ceranae
in honeybees and E. hepatopenaei in shrimp (15, 16). In addition, fumagillin causes toxicity in humans
and its use in beekeeping is banned in some countries (17). The other most used therapeutic agent
against microsporidia is albendazole, which disrupts p-tubulin function. Several microsporidia species,
including E. bieneusi, have B-tubulin variants associated with albendazole resistance, and as a result,
these species are not susceptible to the drug (18). Several other approaches for the drug treatment of
microsporidia infections have been described, including inhibition of chitin synthase, as well as inhibition
of spore firing by blocking calcium channels (18, 19). Microsporidia only grow inside of host cells, making
screening for inhibitors challenging. Several screens to identify microsporidia inhibitors have been
performed, but these have been limited to less than 100 compounds at a time due to a lack of applicable

high-throughput screening assays (20, 21).

The model organism Caenorhabditis elegans is a powerful system to study infectious diseases and is
widely amenable to high-throughput drug screens. C. elegans is commonly infected in nature by the
microsporidian Nematocida parisii, which has been used as model to study microsporidia spore exit, host
immunity, and proteins used by microsporidia to interact with its host (22—26). The infection of C. elegans
begins when N. parisii spores are ingested. Spores then germinate in the intestinal lumen, where their
unigue invasion apparatus known as a polar tube is fired, enabling sporoplasm deposition into intestinal
epithelial cells. Intracellularly, the sporoplasm initiates a proliferative process of multiplication by binary
or multiple fission, known as merogony, producing meronts in direct contact with the host cytosol (27,
28). Following proliferation, meronts undergo sporogony to form spores which then exit the worm, with
over 100,000 spores being produced by each infected animal (29). Infection of C. elegans by N. parisii
results in impaired growth, reduced progeny production, and lethality (23, 27). The ease of culturing and
growing large numbers of animals, along with easily discernible phenotypes, has made C. elegans a

powerful platform to identify novel anthelmintic, antibiotic, and antifungal agents (30-37).
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To discover additional microsporidia inhibitors, we used the C. elegans / N. parisii model system to
develop a high-throughput, liquid-based drug screening assay in which compounds were scored for their
ability to prevent infection-induced progeny inhibition. Using this assay, we screened the Spectrum
Collection of 2,560 FDA-approved compounds and natural products, and identified 11 chemical inhibitors
of microsporidia infection, which we confirmed using a semi-automated method for quantifying C. elegans
progeny number in liquid culture. We report that five of these compounds, including the known serine
protease inhibitor ZPCK and four compounds that share a quinone structure, prevent microsporidia
invasion in C. elegans by inhibiting spore firing. Additionally, the iron chelator and topoisomerase I
inhibitor dexrazoxane prevents infection progression. Together, this work describes methods to screen
thousands of putative microsporidia inhibitors and identifies novel microsporidia inhibitors that either

block microsporidia invasion or proliferation.

Results

High-throughput screen of 2,560 Spectrum Collection compounds reveals 11 microsporidia
inhibitors

To identify inhibitors of microsporidia infection, we developed a novel screening assay for chemical
inhibitors based on the observation that C. elegans progeny production is greatly inhibited when infected
with N. parisii (23, 38). In our screening assay, L1 animals in 96-well plates were grown in liquid and
infected with N. parisii spores for six days at 21°C (Fig. 1A, see methods). In the absence of N. parisii
spores, C. elegans larvae develop into adults and produce progeny. In the presence of spores, the
animals are smaller and produce fewer progeny, providing a convenient visual indication of infection. This
inhibition of progeny production is prevented by the known microsporidia inhibitor fumagillin (Fig. 1B).
Using this assay, we tested 2,560 FDA-approved compounds and natural products from the Spectrum
Collection for their ability to prevent infection-induced progeny inhibition. After incubation with compounds
for six days, each well was visually assessed for C. elegans progeny production. We identified 25 initial
compounds that when added to wells, resulted in the production of more progeny than the vehicle, DMSO,
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controls. Upon retesting, 11 compounds were confirmed to reproducibly restore C. elegans progeny

production in the presence of spores (Table S1).

To quantify the inhibitory effect of each compound, we developed a semi-automated approach to quantify
progeny number in liquid culture, (Fig. 1A, see methods). Animals were grown in wells as described
above, stained with the dye rose bengal, and imaged using a flatbed scanner. Images were processed
with consistent parameters to highlight stained animals and analyzed with WorMachine to detect and
count the number of animals in each well (Fig. S1A-C) (39). Counts of animals detected using
WorMachine correlated well with those counted manually (Fig. S1D). Additionally, there was good
correlation (average R? of 0.71) between technical replicates (Fig. S1E). This approach is similar to a
recently published method, but with the advantage of using a relatively cheap flatbed scanner for imaging
(40-42). We observed that each of the 11 compounds was able to significantly increase the number of
progeny produced by animals under infection conditions (Fig. 1C). This effect is even more pronounced
when considering that for six of the compounds, there was a significant reduction in progeny production

in uninfected animals, indicating moderate host toxicity (Fig. 1D).

Our initial screen identified compounds that could rescue the ability of C. elegans to produce progeny in
the presence of N. parisii spores. To determine whether the compounds have a direct effect on
microsporidia infection, we performed continuous infection assays. L1 animals were infected continuously
with N. parisii spores in the presence of compounds for 4 days at 21°C in 24-well plates in liquid (Fig.
2A). After incubation, animals were fixed and stained with direct yellow 96 (DY96), a fluorescent dye that
binds chitin, a crucial component of both the microsporidia spore wall and C. elegans embryos (Fig. 2B)
(43, 44). First, we observed that every compound significantly increased the proportion of adult animals
containing embryos in the presence of N. parisii spores (Fig. 2C). These results are consistent with our
data from the initial screen showing that all compounds increased progeny production in the presence of

spores (Fig. 1C). Second, we determined that the control inhibitor fumagillin and 9 of the 11 compounds
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inhibited microsporidia infection, as the proportion of animals with newly formed spores was significantly

lower upon treatment with these compounds (Fig. 2D).

N. parisii proliferation is inhibited by dexrazoxane

Microsporidia infection can be inhibited either by blocking invasion, or by preventing proliferation after
infection is established. To distinguish between these possibilities, we performed pulse-chase infection
assays where L1 animals were infected with N. parisii spores for 3 hours, washed to remove excess
spores, and incubated with compounds for 4 days (Fig. 3A). As expected, given its described mode of
action as a MetAP2 inhibitor (17), fumagillin restricted N. parisii proliferation (Fig 3B). Surprisingly, of our
11 compounds, only one, dexrazoxane, inhibited N. parisii proliferation (Fig. 3E). Both fumagillin and
dexrazoxane restored the ability of animals to make embryos when infected, whereas none of the other
compounds were able to do so (Fig. 3D). The effect of dexrazoxane, at a concentration of 60 uM, is
especially striking with a ~1200-fold reduction in the proportion of animals with newly-formed spores,
compared to just ~2-fold for fumagillin, at a concentration of 350 uM (Fig. 3E). At this concentration of
dexrazoxane, we observed no negative effect on uninfected animals (Fig. 1D). Together, these results
suggest that of the compounds identified from our screen, only dexrazoxane inhibits N. parisii after

invasion of C. elegans has occurred.

To determine whether dexrazoxane inhibits microsporidia by slowing proliferation or enhancing parasite
clearance, we used FISH staining of pulse-chase infected animals with probes specific for N. parisii 18S
RNA to visualize the sporoplasms and meronts of the earlier stages of infection prior to new spore
formation (27). Although fumagillin and dexrazoxane both resulted in many fewer animals with newly
formed spores (Fig. 3E), there was no significant difference in the proportion of animals that had at least
some FISH signal (Fig. 3F). When C. elegans is pulse-chase infected with N. parisii for 48 h, many large,
multinucleated meronts are observed. Worms treated with fumagillin contain both large meronts with
many nuclei as well as some parasite cells that fail to progress beyond having 2 nuclei. In contrast,
dexrazoxane treatment leads to almost all parasite cells containing 1 or 2 nuclei, and many parasite cells
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displaying irregular morphology (Fig. 3C). Using images of FISH-stained N. parisii, we quantified the area
of the infected animal that is covered by sporoplasms and meronts. We observed that fumagillin and
dexrazoxane treatment resulted in a significantly reduced pathogen load, with dexrazoxane having the
strongest effect (Fig. 3G). Together, these results indicate that dexrazoxane can greatly inhibit N. parisii

proliferation but does not cause the infection to be cleared.

Dexrazoxane is an iron chelator, and iron levels have been shown to impact the growth of other
microsporidia species (45, 46). To determine if iron levels are important for N. parisii growth in C. elegans,
we supplemented our liquid cultures with ferric ammonium citrate (FAC) as a water-soluble iron source
(47), and continuously infected L1 animals with a low dose of spores for 4 days. While the proportion of
animals with newly formed spores was slightly higher in the supplemented condition, this effect was not
statistically significant (Fig. S2A). In contrast, addition of FAC resulted in a small, but significant increase
in the proportion of animals containing embryos (Fig. S2B). To determine whether dexrazoxane is likely
acting as an iron chelator in our system, we tested another iron chelator, 2,2’-bipyridyl (BP), for anti-
microsporidial activity in our continuous infection assay, but did not observe an effect (Fig. 3H and S2C).
In addition, FAC supplementation was unable to counteract the anti-microsporidial effect of dexrazoxane
(Fig. 3H and S2C). We also tested the smf-3(0k1035) mutant strain RB1074 for sensitivity to
dexrazoxane. RB1074 has ~50% less iron levels compared to the wild-type N2 strain and displays a
striking growth defect upon treatment with the iron chelator BP (47). However, RB1074 did not display
any such growth impairment upon treatment with dexrazoxane (Fig. S3). Taken together, these results
demonstrate that the inhibitory effect of dexrazoxane on N. parisii infection is likely independent of its

established function as an iron chelator.

Protease inhibitors and quinone derivatives prevent invasion by inhibiting spore firing

Compounds that displayed strong activity against microsporidia infection in the continuous infection
assays, but not the pulse-chase infections, may be preventing invasion by inhibiting spore firing. In C.
elegans, N. parisii spores are ingested, and spore firing is triggered in the intestinal lumen (27, 48). To

7


https://doi.org/10.1101/2021.09.06.459184
http://creativecommons.org/licenses/by/4.0/

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.06.459184; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

test if any compounds interfere with this process, we performed spore firing assays on the 7 compounds
with the strongest effect in the continuous infection assays (Fig. 2D). L1 stage C. elegans were infected
with N. parisii for 3 hours, and then stained with FISH and DY 96 (Fig. 4A). This dual staining enables us
to determine whether a given spore in the intestine has fired, based on whether it has released its
sporoplasm (Fig. 4C). We found that treatment with five compounds (ZPCK, menadione, plumbagin,
thymoquinone and dalbergione) resulted in a significantly reduced proportion of fired spores in the
intestine (Fig. 4D). Treatment with these compounds, as well as chloranil, also lead to a notable reduction
in the number of sporoplasms per animal (Fig. 4E). The two compounds that inhibit microsporidia
proliferation, fumagillin and dexrazoxane, had no significant effect on spore firing, although fumagillin

treatment did result in a significant decrease in sporoplasm numbers (Fig. 4D and E).

ZPCK is an irreversible inhibitor of serine proteases, and a microsporidia serine protease has previously
been suggested to be involved in spore firing (49, 50). To determine if other serine protease inhibitors
can prevent N. parisii invasion, we tested three additional small molecules (TPCK, TLCK and PMSF) and
three peptides (Antipain, Chymostatin and Leupeptin) known to inhibit serine proteases in a modified
version of our spore firing assay. For these experiments, we incubated spores with serine protease
inhibitors for 24 hours to accentuate their effects, and then used the spores to infect L1 stage C. elegans
for 3 hours in the presence of inhibitors (Fig. 4B). Analysis of the proportion of spores fired and the
number of sporoplasms per animal revealed that both ZPCK and the structurally related inhibitor TPCK

displayed strong inhibition of N. parisii spore firing and invasion (Fig. 4F and G).

Inhibitors of spore firing could function either by inhibiting an N. parisii spore protein or a C. elegans
protein necessary for firing and invasion. To distinguish between these possibilities, we incubated spores
for 24 hours with each of the compounds that inhibited spore firing, washed away excess inhibitor, and
then used the treated spores to infect L1 stage C. elegans for 3 hours in the absence of inhibitors (Fig.
4B). Treatment with all 6 inhibitors (ZPCK, TPCK, menadione, plumbagin, thymoquinone and
dalbergione) significantly inhibited spore firing and sporoplasm invasion (Fig. 4H and I). These results
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demonstrate that all of these inhibitors act directly on N. parisii spores to prevent firing and invasion, and

in the case of ZPCK and TPCK, this likely occurs through the inhibition of a serine protease.

Identified compounds inhibit multiple microsporidia species

We next determined if the compounds we identified could inhibit infection by other microsporidia species.
In addition to being infected by N. parisii, C. elegans is also infected by Pancytospora epiphaga. This
species infects the epidermis of C. elegans and belongs to the Enterocytozoonida clade which includes
the human infecting species Vittaformae cornea and Enterocytozoon bieneusi (22, 51). To determine if
dexrazoxane could inhibit P. epiphaga proliferation, we infected C. elegans with this species and
monitored parasite growth using FISH staining (Fig. 5A) When animals were treated with 350 yM
fumagillin or 60 uyM dexrazoxane we observed significantly less parasite than in untreated control

animals, with the least parasite growth occurring in the animals treated with dexrazoxane (Fig. 5B).

Anncaliia algerae infects both mosquitos and humans and belongs to the Neopereziida clade of
microsporidia (51, 52). To test whether dexrazoxane could also prevent inhibition of this species, we
infected human fibroblast cells with A. algerae and visualized infection using FISH (Fig. 5C). We observed
a significant dose dependent response of inhibition of parasite division (Fig. 5D). To test whether
dexrazoxane was toxic to cells at the concentrations that prevented A. algerae proliferation, we monitored

cell viability and observed no significant toxicity in the concentrations we tested (Fig. 5E).

Encephalitozoon intestinalis infects humans and other mammals and belongs to the Nosematida clade
of microsporidia (51, 53). To determine if the compounds we identified could block spore firing in this
species we pre-treated E. intestinalis spores with menadione, plumbagin, thymoquinone, or ZPCK, and
then carried out an in vitro spore germination assay, in which we can directly observe polar tube firing.
We observed a significant decrease in the frequency of germination when spores were pre-treated with
each of these compounds (Fig. 5F). To test whether these compounds impact host cell infection, we
incubated Vero cells with spores that were either untreated or pre-treated with each compound, and
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monitored infection with FISH (Fig. 5G). We observed that cells remained largely uninfected when
incubated with spores that had been pre-treated with the compounds, suggesting that all these inhibitors
also prevent invasion (Fig. 5H). In the presence of ZPCK, we identified a small number of single invasion
events (Fig. 5G), but no replication of parasites. Together our results indicate that a diverse set of

microsporidia species can be inhibited by the compounds we identified.

Discussion

To identify inhibitors of microsporidia, we screened 2,560 compounds for their ability to counteract
infection-induced C. elegans progeny inhibition. We identified 11 compounds with reproducible inhibitory
activity (Table S1). We found that dexrazoxane inhibits N. parisii proliferation, whereas the protease
inhibitors ZPCK and TLCK, along with 4 quinone derivatives, prevent spore firing and invasion (Fig. 6).
Three of the identified inhibitors, curcumin, plumbagin, and thymoquinone, have been previously shown
to inhibit microsporidia infection, although in the case of plumbagin and thymoquinone, the compounds
were effective after microsporidia had infected cells (20, 21). This contrasts with our results, where these
compounds only prevent microsporidia invasion. To our knowledge none of the other compounds we
identified have been previously reported to prevent microsporidia infection, demonstrating the value in

this unbiased approach to identify novel microsporidia inhibitors.

Dexrazoxane is an FDA-approved drug for the prevention of cardiomyopathies caused by
chemotherapeutic drugs in cancer patients (54). Dexrazoxane can be hydrolyzed into a structure that is
similar to the metal ion chelator ethylenediaminetetraacetic acid and is thought to work by reducing the
amount of iron complexed with anthracycline chemotherapeutics, thus reducing the number of superoxide
radicals formed by such interactions (55, 56). Iron is an important metabolite for microsporidia
proliferation. Honey bees infected with N. ceranae have reduced levels of iron and the growth of E.
cuniculi in macrophages was promoted with the addition of iron and inhibited upon addition of an iron
chelator (45, 46). We found that dexrazoxane could prevent microsporidia proliferation, at a concentration
that has no significant effect on host fithess. Given the established role of dexrazoxane as an iron

10


https://doi.org/10.1101/2021.09.06.459184
http://creativecommons.org/licenses/by/4.0/

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

2901

292

293

294

295

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.06.459184; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

chelator, it seemed likely that its mechanism as an anti-microsporidial might involve sequestering iron
away from sporoplasms and meronts, thus depriving them of a crucial resource required for growth and
infection progression. However, our results do not support this. Neither treatment with the iron chelator
BP, nor iron supplementation using FAC, had any significant effect on N. parisii infection. Additionally,
dexrazoxane still exhibited strong anti-microsporidial effects when C. elegans were exposed to N. parisii
in a high iron environment. These results suggest that the anti-microsporidial properties of dexrazoxane
are unlikely to be the result of drug-induced alterations in iron homeostasis. This is contrast to lethality of
C. elegans caused by the pathogenic bacteria Pseudomonas aeruginosa, which can be reversed by
treatment with the iron chelator ciclopirox olamine, which was included in our screen, but was not
observed to have an effect against N. parisii (57). The iron chelator deferoxamine, which inhibits E.
cuniculi in macrophages, was also included in our screen, but not observed to have activity against N.
parisii (46). A second proposed mechanism for dexrazoxane is the inhibition of topoisomerase Il (58).
However, several topoisomerase Il inhibitors that have previously been used with C. elegans (etoposide,
teniposide, dactinomycin, and amsacrine), were included in our initial screen, but were not observed to
have activity against N. parisii (59). The mechanism of action of dexrazoxane in blocking N. parisii

proliferation thus remains elusive.

The proteins that control spore firing in microsporidia are unknown (60, 61). Although the in vivo signal
for firing is undetermined, several different pH and salt conditions can trigger firing in vitro (60). Once
microsporidia spores are exposed to a host signal, the osmotic pressure of the spore increases forcing
the polar tube to be extruded. One protein hypothesized to control spore firing is the subtilisin serine
protease which is conserved throughout microsporidia (61). This protein localizes to the poles of N.
bombycis spores, and the activated version of the protease localizes to the end of the spore from which
the polar tube fires (62). Here we show that two irreversible serine protease inhibitors (ZPCK and TPCK)
can block firing and prevent invasion. Additionally, we identified four quinone derivatives (menadione,
plumbagin, thymoquinone and dalbergione) that also block firing and invasion. For all six of these spore
firing inhibitors, we observed that firing is still blocked even when the compounds are washed away
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following their use in the pre-treatment of spores. These results demonstrate that the inhibitors likely act
directly on the spores to irreversibly block firing, even when the trigger for firing occurs inside of the host
animal. As spore firing is the initial step in invasion, blocking spore firing is a promising potential strategy

to prevent microsporidia infections in agricultural animals.

The C. elegans / N. parisii system provides a powerful tool to both uncover and characterize novel
microsporidia inhibitors. Our approach is high-throughput, relatively cheap and scalable, allowing the
screening of even more diverse collections of small-molecule libraries (63). Our screen is advantageous
as it is performed with wild-type animals and pathogens, and by screening based on host fitness, this
approach only identifies compounds with minimal host toxicity (35). C. elegans is also infected by P.
epiphaga, providing the opportunity to test the specificity of compound inhibition on multiple species of
microsporidia in the same host (22). Several of the compounds we identified also inhibited other
microsporidia species, demonstrating the power of using N. parisii to discovery novel microsporidia
inhibitors. As evidenced by our results, C. elegans is a very useful host for determining at what stages of
microsporidia infection the identified inhibitors are acting (23). Several strategies to identify inhibitor
targets have been successfully used with other eukaryotic parasites, including generating and
sequencing parasite variants that are resistant to inhibition or through thermal proteome profiling (64—
66). C. elegans is also likely to be useful for future work to identify inhibitor targets in N. parisii using

these approaches.
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Methods

Chemical sources

The Spectrum Collection of FDA-approved compounds and natural products was obtained from
MicroSource. For retesting and post-screen analyses, individual compounds were obtained from Sigma-

Aldrich and MicroSource.

C. elegans strains, maintenance and bleach-synchronization

Animals were cultured as previously described (67). All experiments were performed with the wild-type
N2 strain of Caenorhabditis elegans unless otherwise indicated. The smf-3(0k1035) mutant strain
RB1074 was obtained from the CGC. To generate bleach-synchronized L1 stage animals, L4 animals

were first picked onto 10 cm NGM plates and grown for ~96 hours at 21°C. Worms were then washed off
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plates with M9, and treated with ~4% NaCIlO / 1 M NaOH solution for 1 — 3 minutes to extract embryos,

then washed with M9. Embryos were incubated in M9 for 18 — 24 hours at 21°C to allow hatching.

N. parisii strains and spore preparation
Nematocida parisii spores were prepared as previously described (23). All experiments were performed

with N. parisii strain ERTmL1.

96-well plate-based screen for microsporidia inhibitors

C. elegans liquid culture methods and 96-well plate-based screening methods were partially adapted
from established protocols (32, 68). N. parisii spores were prepared as described above, mixed in K-
medium (51 mM NacCl, 32 mM KCI, 3 mM CaCl2, 3 mM MgS04, 3.25 uM cholesterol) with 5x saturated
OP50-1 E. coli, and added to 96-well culture plate. 96-well Spectrum Collection plates were thawed from
—80°C. Using a V&P Scientific 96-well pinning tool, 300 nL of DMSO-dissolved compounds were pinned
into screening plate columns 2 — 11, and 300 nL of DMSO was pinned into screening plate columns 1
and 12 to be used for DMSO infected, DMSO uninfected, and fumagillin controls. Bleach-synchronized
L1s were prepared as described above, mixed in K-medium with 5x saturated OP50-1 E. coli, and added
to the screening plates. The final volume in each well was 50 pL, with ~100 L1s, N. parisii spores at a
final concentration of 6,250 spores/uL, DMSO at a final concentration of <1%, and compounds at a final
concentration of 60 uyM except for fumagillin (used at a concentration of 350 uM in all experiments).
Screening plates were covered with adhesive porous film, placed in parafilm wrapped humidity boxes,
and incubated at 21°C, shaking at 180 rpm for 6 days. After incubation, progeny production was scored
manually by visual inspection of the screening plates. Initial hits were rescreened for reproducibility at a
final concentration of 60 uM in the same manner using individual compounds resuspended in DMSO.
The inhibitory effect of compounds that passed rescreening were quantified in separate experiments

using semi-automated methods described below.

Semi-automated quantification of progeny production
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Bleach-synchronized L1s were treated with compounds +/- N. parisii spores in 96-well plates prepared
and incubated as described above. Three wells were assayed for each condition for each biological
replicate. After incubation, animals were stained by adding 10 uL of 0.3125 mg/mL Rose Bengal solution
to each well using an Integra VIAFLO 96 Electronic pipette. Plates were wrapped in parafiim and
incubated at 37°C for 16 — 24 hours. To each well, 240 uL of M9+0.1% Tween-20 was added. Plates
were then centrifuged for 1 minute at 2200 x g. Next, 200 yL was removed and 150 uL of M9+0.1%
Tween-20 added to each well. 25 yL from each well was then transferred to a white 96-well plate
containing 300 uL M9 per well. Plates were imaged using an Epson Perfection V850 Pro flat-bed scanner
with the following parameters (dpi = 4800, colour = 24-bit, .jpg compression = 1). Images were edited in
GIMP version 2.10 or later to highlight stained animals by removing HTML colour codes #000000 and
#FFC9AF, applying unsharp masking with the following parameters (radius = 10, effect = 10, threshold =
10), editing hue saturation with the following parameters (For yellow, green, blue and cyan: lightness =
100, saturation = -100. For red and magenta: lightness = -100, saturation = 100), and exporting each well
as a single .tiff image with LZW compression (69). The number of animals in each well was counted using
the MATLAB-based phenotypic analysis tool WorMachine with the following parameters (pixel

neighbouring threshold = 1, pixel binarization threshold = 30, max object area to remove = 0.003%) (39).

Continuous infection assays

Continuous infection assays were performed in 24-well assay plates with each well containing a final
volume 400 pL, ~800 L1s, 5,000 N. parisii spores/uL, 60 uM of each compound except for fumagillin (see
above), and DMSO at a final concentration of 1%. Three wells were assayed for each compound for each
of three biological replicates. Assay plates were covered with adhesive porous film, placed in parafiim
wrapped humidity boxes, incubated at 21°C, 180 rpm for 4 days, and stored at 4°C, 20 rpm for 1 — 2 days.
After incubation, samples were acetone-fixed, DY96-stained, and subject to fluorescence microscopy as

described below.

Pulse infection assays
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~8,000 bleach-synchronized L1s and 10 million N. parisii spores were added to 6 cm NGM plates with
10 yL 10x OP50-1. Plates were dried in a clean cabinet and incubated for a total of 3 hours at room
temperature. After pulse infection, animals were washed 1 — 2x with 1 mL M9+0.1% Tween-20 to remove
excess spores, then added to transparent 24-well assay plates prepared as described above for the
continuous infection assay, except without adding any spores. Three wells were assayed for each
compound for each of three biological replicates. Assay plates were treated as described for continuous
infection assays, except the incubation period was either 2 or 4 days. Samples incubated for 4 days were
acetone-fixed, FISH-stained and DY96-stained, while samples incubated for 2 days were fixed in 4%

PFA and FISH-stained. Fluorescence microscopy was performed as described below.

Spore firing assays

24-well assay plates were prepared exactly as in the continuous infection assay with N. parisii spores at
a final concentration of 5,000 spores/uL, compounds at a final concentration of 60 uM except for
fumagillin (see above), and DMSO at a final concentration of 1%. For all spore firing assays containing
TPCK, spores at a concentration of 10,000 spores/uL were incubated for 24 hours at 21°C in K-medium
with compounds at a concentration of 120 yM, and DMSO at a concentration of 2%. These spores were
then used to prepare assay plates exactly as in the continuous infection assay with final concentrations
as stated above. For all spore firing assays where excess compound was removed prior to infection,
spores were washed 3x with 1 mL K-medium before being used in assay plate preparation. Three wells
were assayed for each compound for each of three biological replicates. Assay plates were covered with
adhesive porous film, placed in parafilm wrapped humidity boxes, and incubated at 21°C, shaking at 180
rpm for 3 hours. After incubation, samples were acetone-fixed, FISH-stained, DY96-stained, and subject

to fluorescence microscopy as described below.

Iron chelation and supplementation
24-well assay plates were prepared exactly as in the continuous infection assay with N. parisii spores at
a final concentration of 5,000 spores/uL (normal dose) or 78 spores/uL (low dose), 2,2’-bipyridyl (BP) or
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dexrazoxane at a final concentration of 60 uM, water-dissolved ferric ammonium citrate (FAC) at a final
concentration of 6.6 mg/mL, and DMSO at a final concentration of 1%. Assay plates were treated as
described for continuous infection assays. After incubation, samples were acetone-fixed, DY96-stained,

and subject to fluorescence microscopy as described below.

RB1074 drug sensitivity tests

~1000 RB1074 or N2 bleach-synchronized L1s were added to 6 cm NGM plates top plated with 120 uL
10x OP50-1, 2,2-bipyridyl (BP) or dexrazoxane at a final concentration of 60 uM, and DMSO at a final
concentration of 1%. Plates were dried in a clean cabinet for ~1 hour at room temperature, and then
incubated at 21°C for 3 days. After incubation, live animals were imaged using a Leica Microsystems

dissecting scope.

DY96 staining, fluorescence in situ hybridization (FISH), and microscopy

Post-incubation, samples were washed 1 — 2x with 1 mL M9+0.1% Tween-20 to remove excess OP50,
fixed in 700 pL acetone and stored at —20°C, or fixed in 500 uL PFA solution (4% PFA, 1x PBS, 0.1%
Tween-20) and stored at 4°C until ready for subsequent steps. Samples were then washed 1 — 2x with 1
mL 1xPBS+0.1% Tween-20 and 1x with 1 mL hybridization buffer (900 mM NaCl, 20 mM Tris HCI, 0.01%
SDS). 100 uL FISH staining solution (5 ng/pL FISH probe in hybridization buffer) was added, and samples
were incubated for 18 — 24 hours at 46°C. The N. parisii 18S rRNA-specific microB FISH probe
(ctctcggcactccttectg) conjugated to Cal Fluor Red 610 (LGC Biosearch Technologies) was used (27).
After FISH incubation, samples were washed 1x with 1 mL wash buffer (50 mL hybridization buffer + 5
mM EDTA) to remove excess FISH probe. 500 yL DY96 staining solution (20 pg/puL DY96, 0.1% SDS in
1xPBS+0.1% Tween-20) was added, and samples were incubated for 1 hour at 21°C. After DY96
incubation, samples were suspended in EverBrite™ Mounting Medium with DAPI, and subject to
fluorescence microscopy using a ZEISS Axio Imager 2 at 5x — 63x magnification. For continuous infection

assays, FISH staining steps were omitted, and just stained with DY96.
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Quantification of FISH fluorescence

FISH fluorescence was quantified using FIJI version 2.1.0 (70). Animal area was determined by outlining
boundaries based on DAPI staining. Minimum fluorescence threshold for FISH signal was set to 4000 to
exclude auto-fluorescence and background staining of embryos while maximizing inclusion of FISH-
stained N. parisii sporoplasms and meronts. The percentage area of animal covered by FISH signal was

calculated.

P. epiphaga infection assays

Spores of P. epiphaga strain JUm1396 were prepared the same as N. parisii. For infections, ~8,000
bleach-synchronized L1s and 80 million P. epiphaga spores were added to 6 cm NGM plates with 4 pL
10X OP50-1. Plates were dried and incubated for a total of 3 hours at room temperature. After the
pulse infection, the animals were washed 2X with M9+0.1% Tween-20 to remove excess spores, then
added to transparent 24-well assay plates. Wells contained a total volume of 400 pL of K-medium + 5x
OP50-1 mixed with ~800 worms. DMSO was added to wells for a final concentration of 1%, fumagillin
was added for a final concentration of 350 yM, and dexrazoxane was added for a final concentration of
60 uM. Assay plates were covered with adhesive porous film, placed in parafilm wrapped humidity
boxes, and incubated at 21°C, 180 rpm for 4 days. Samples were fixed in 4% PFA and FISH-stained
with 5ng/pL of FISH probe specific to P. epiphaga 18S RNA (CAL Fluor Red 610-
CTCTATACTGTGCGCACGG). Fluorescence microscopy and quantification of FISH fluorescence was

performed as described for N. parisii infections.

Determining the effect of dexrazoxane on A. algerae cell division

A. algerae spores were purified as previously described (71). Human Fibroblasts (HFF) cells were seeded
on coverslips at a density of 5x10* cells/well in MEM medium supplemented with 10% inactivated FBS,
2 mM glutamine, 2.5 pg.mL-* amphotericin B, 100 ug mL* streptomycin, 100 U.mL"* penicillin, 25 pg.mL-

1 gentamicin, at 37°C in a humidified 5% CO, atmosphere. Once confluence was reached, cells were
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infected with 1x108 spores of A. algerae for 1 h. After 3 washes with culture medium, infected cells were
incubated for 30-35h at 30°C in culture medium containing either 0, 15, 30, 60 or 120 uM of Dexrazoxane.
Two biological replicates were performed, with either 2 or 3 coverslips tested per replicate. After overnight
fixation with methanol at -20°C, parasites were FISH-stained using a Cy3-labeled probe specific to A.
algerae, following the protocol described (71). Samples were also stained with DAPI and DY96. Effects
of Dexrazoxane on parasite divisions was evaluated by counting the number of meronts in each infected
host cell using a ZEISS Axio Imager 2 microscope. The number of divisions for each infected cell was
obtained by the following formula: Number of meronts currently dividing x 2 + number of meronts not

currently dividing -1.

Determining cytotoxicity of dexrazoxane

HFF cells were seeded in 96-well-microplates at a density of 10* cells/well in the culture medium
described above at 37°C in a humidified 5% CO, atmosphere for approximately 48 h to reach confluence.
The medium was then replaced by fresh culture medium containing different concentrations of
Dexrazoxane (15, 30, 60 and 120 uM). Negative control (cells with culture medium only) and positive
control (cells with 20% DMSO diluted in medium) were also included. Each condition was tested in 3
separate experiments, in 6 wells per experiment. Dexrazoxane cytotoxicity was evaluated using the

tetrazolium dye MTT as previously described (71).

E. intestinalis spore propagation and preparation

E. intestinalis (ATCC 50506) were grown in Vero cells (ATCC CCL-81) using Dulbecco’s Modified Eagle's
Medium with high glucose (DMEM) supplemented with Nonessential amino acids (1X) and 10% heat-
inactivated fetal bovine serum (FBS) at 37°C and with 5% CO.,. At 70%-80% confluence, parasites were
added into a 75 cm? tissue culture flask and the media was switched to DMEM supplemented with 3%
FBS. Cells were allowed to grow for ten days and medium was changed every two days. To purify spores,
the infected cells were detached from tissue culture flasks using a cell scraper and placed into a 15 ml

conical tube, followed by centrifugation at 1,300 xg for 10 min at 25 °C. Cells were resuspended in sterile
19
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DPBS and mechanically disrupted using a G-27 needle. The released spores were purified using a
Percoll gradient. Equal volumes (5 mL) of spore suspension and 100% Percoll were added to a 15 mL
conical tube, vortexed and then centrifuged at 1,800 xg for 30 min at room temperature. The purified
spore pellets were washed three times with sterile DPBS and further purified in a discontinuous Percoll
gradient. Briefly, spore pellets were resuspended in 2 mis of sterile DPBS and layered onto a 10 ml four-
layered percoll gradient (2.5 mis 100% Percoll, 2.5 mls 75% Percoll, 2.5 mls 50% Percoll, 2.5 mls 25%
Percoll), centrifuged at 8600 xg for 30 min at RT. Spores that separated into the fourth layer (100%
percoll) were carefully collected and washed twice in 10 mls of sterile DPBS at 3000 xg for 5 min at RT.

Purified spore pellets were stored in sterile DPBS at 4°C for further analyses.

E. intestinalis germination and infection assays
Purified E. intestinalis spores (2.3 x 107 spores) were treated with compounds at a final concentration of
60 uM or DMSO at a final concentration of 0.6%. For both spore firing and infectivity assays, spores were

incubated with compounds for 24h at room temperature.

For polar tube germination assays, 0.3 pl of purified E. intestinalis spores was placed on poly-L-lysine
treat slides and allowed to air dry briefly. Next, 3 ul of pre-warmed germination buffer (140 mM NacCl, 5
mM KCI, 1 mM CaClz, 1 mM MgCl;, and 5% (v/v) H20- at pH 9.5) was added to the slide and sealed with
a #1.5 18 x 18 mm coverslip. PT firing occurs within ~30 s to 1 min of adding germination buffer to the
spores. PT firing was imaged on a ZEISS Elyra 7 microscope with a Zeiss C-Apochromat 40x/1.2 water
objective with a Dual PCO.Edge 4.2 sCMOS camera. All imaging was performed at 37 C. Z stacks were
collected at 0.12 pm spacing. Germinated spores were defined as those in which the polar tube was

released. At least 100 spores were counted per condition.

For measuring infectivity rates, Vero cells were grown on 12mm diameter, #1.5 coverslips and infected
with spores for 24 h. Cells were fixed in 4% PFA in PBS-T (0.1% Tween 20) for 45 min at room
temperature and then processed for FISH. Prior to mounting, cells were stained with NucBlue to visualize
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host and parasite DNA. Coverslips were mounted onto slides using ProLong Diamond Antifade
(ThermoScientific) and sealed. All samples were imaged on a Nikon W1 spinning disc confocal
microscope with a Nikon Apo 60x 1.40 Oil objective and dual Andor 888 Live EMCCD cameras. Z stacks

were collected at 0.3 um spacing. At least 100 cells were counted per condition.

Statistical analysis
All statistical analyses were conducting using Microsoft Excel and R version 3.6.1 or later accessed via

RStudio version 1.2.5019 or later (72-74).
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Figure 1. High-throughput drug screen of the Spectrum Collection identifies compounds that
restore progeny production in C. elegans infected with N. parisii. (A) Schematic of small molecule
inhibitor screen (see methods). Bleach-synchronized L1 animals were incubated with 60 uM of each
compound from the Spectrum Collection for 6 days at 21 °C in the presence of N. parisii spores. 2,560
total compounds were screened once, yielding 25 initial hits. The initial hits were retested once, yielding
11 confirmed hits. The effectiveness of these 11 compounds was then quantified across multiple
replicates of the screening assay using WorMachine. (B) Representative images of wells containing

worms. (B Far Left) Normal worm growth in the absence of spores. (B Middle Left) Microsporidia
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infection leads to inhibition of progeny production. (B Middle & Far Right) Treatment with anti-
microsporidial compounds restores progeny production. (C & D) Effect of compounds on progeny
production in (C) infected and (D) uninfected animals. Progeny levels expressed as a percentage of the
DMSO uninfected control. Statistical significance evaluated in relation to DMSO controls using two-sided
t-tests: *** = p <0.001, ** = p < 0.01, * = p < 0.05, ns = not significant (p > 0.05). Data for each condition

includes 3 — 6 biological replicates.
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Figure 2. Identified compounds inhibit microsporidiainfection. (A) Schematic of continuous infection
assay (see methods). Bleach-synchronized L1 animals were incubated with compounds for 4 days at 21
°C in the presence of N. parisii spores in liquid. Animals were subsequently fixed with acetone, and
stained with DAPI and DY96. (B) Representative images taken at 5x magnification; scale bars are 500
pm. (B Far Left) Normal worm growth in the absence of spores. (B Middle Left) Microsporidia infection
results in production of new spores highlighted in bright green by DY96, and slows growth thereby

preventing development of gravid adults. (B Middle Right & Far Right) Treatment with anti-
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microsporidial compounds reduces formation of new spores, and restores the development of gravid
adults. (C) Percentage of animals that contain embryos (N = 2200 animals counted per biological
replicate). (D) Percentage of animals that contain newly formed spores (N = 2200 animals counted per
biological replicate). Significance evaluated in relation to DMSO infected controls using one-way ANOVA
with Dunnett’s post-hoc test: *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant (p > 0.05).

Data for each condition includes 3 biological replicates.
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Figure 3. Dexrazoxane prevents microsporidia proliferation. (A) Schematic of pulse-chase infection

assay (see methods). Bleach-synchronized L1 animals were pulse infected with N. parisii spores for 3

hours at 21 °C on NGM plates. Excess spores were washed away, and infected animals were incubated

with compounds for 2 or 4 days at 21 °C in liquid. Animals were fixed in acetone or PFA, FISH stained,

and then stained with DY96 and DAPI. (B) Representative images of acetone-fixed animals 4 days post

infection taken at 5x magnification; scale bars are 500 ym. (B Far Left) Normal growth in uninfected
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worms. (B Middle Left) Pulse infection results in sporoplasms and meronts highlighted in red by microB
FISH probes and new spores highlighted in bright green by DY96. Pulse infection also slows growth
thereby preventing development of gravid adults. (B Middle Right & Far Right) Treatment of pulse-
infected animals with fumagillin or dexrazoxane reduces sporoplasms and meronts, new spores, and
restores development of gravid adults. (C) Representative images (z-stack maximum intensity
projections; 7 slices, 0.25 ym spacing) of PFA-fixed animals 2 days post infection taken at 63x
magnification; scale bars are 20 um. (C Left) In the absence of drug treatment, pulse-infected animals
develop large meronts with many nuclei. (C Middle) Fumagillin treatment restricts proliferation; both large
and small meronts are observed. (C Right) Dexrazoxane treatment restricts proliferation; only small
meronts with one or two nuclei are observed. (D) Percentage of animals with embryos (N = =170 animals
counted per biological replicate). (E) Percentage of animals with newly formed spores (N = 2170 animals
counted per biological replicate). (F) Percentage of animals with FISH signal (N = =170 animals counted
per biological replicate). ANOVA not significant (p = 0.111). (G) Quantitation of FISH fluorescence per
worm (N = 15 animals quantified per biological replicate). (H) Effects of iron chelation with BP on infection,
and effects of iron supplementation with FAC on dexrazoxane activity. Percentage of animals with newly
formed spores (N = 2120 animals counted per biological replicate) after 4 days of continuous infection is
shown. Significance evaluated in relation to DMSO infected controls using one-way ANOVA with
Dunnett’s post-hoc test: *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant (p > 0.05). Data

for each condition includes 3 biological replicates.
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Figure 4. Several compounds prevent microsporidia infection by inhibiting spore firing. (A)
Schematic of spore firing assay (see methods). Bleach-synchronized L1 animals were incubated with
compounds for 3 hours at 21 °C in the presence of N. parisii spores in liquid. Spore prep control was
generated by incubating spores in liquid in the absence of C. elegans. Animals and spores were fixed in
acetone, and stained with microB FISH probes and DY96. (B) Schematic of modified spore firing assay
(see methods). Spores were incubated with compounds for 24 hours at 21 °C, and then used to infect
beach-synchronized L1 animals either with or without prior washing to remove excess compounds. (C)
Representative images of unfired and fired spores at 63x magnification; scale bars are 5 ym. Unfired
spore is indicated by white arrowhead. (D & E) Effects of microsporidia inhibitors on (D) the percentage
of fired spores in the C. elegans intestinal lumen (N = 260 spores counted per biological replicate) and
(E) the average number of sporoplasms per animal (N = 240 animals counted per biological replicate) in
a spore firing assay. (F & G) Effects of serine protease inhibitors on (F) spore firing and (G) sporoplasm
invasion in a modified spore firing assay without washing away compounds prior to infection (N = 239
animals and =60 spores counted per biological replicate, except for one chymostatin replicate where only

12 animals and 19 spores were counted). (H & 1) Effects of spore firing inhibitors on (H) spore firing and
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(I) sporoplasm invasion in a modified spore firing assay with compounds washed away prior to infection
(N = 240 animals and 270 spores counted per biological replicate). Significance evaluated in relation to
DMSO controls using one-way ANOVA with Dunnett’s post-hoc test: *** = p <0.001, * =p<0.01,*=p

< 0.05, ns = not significant (p > 0.05). Data for each condition includes 3 biological replicates.
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Figure 5. Identified inhibitors display activity against multiple diverse microsporidia species. (A-
B) Bleach-synchronized L1 animals were pulse infected with P. epiphaga spores for 3 hours on NGM
plates. Excess spores were washed away, and infected animals were incubated with 350 uM fumagillin
or 60 uM dexrazoxane for 4 days at 21 °C in liquid. Animals were fixed and stained with DAPI and a FISH
probe. (A) Representative images of animals 4 days post infection; scale bars are 25 um. (B) Quantitation

of FISH fluorescence per worm (N = 15 animals quantified in each condition for three biological
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replicates). (C-D) Cells infected with A. algerae spores for 1 hour with various concentrations of
dexrazoxane for 30-35 hours. (C) Representative images of an infected cell; scale bars are 5 ym. (D)
Average number of A. algerae divisions per cell (Between 30-243 cells were analyzed per each two
biological replicates). (E) Host cell viability (experiment consisted of three biological replicates). (F-H) E.
intestinalis spores were treated with 60 uM inhibitors for 24 hours. Spores were either induced to fire (F)
or used to infect cells for 24 h and then stained with a FISH probe and DAPI (G-H). (F) Percentage of
spores that have undergone germination (N = =100 spores counted per each of five biological replicates).
(G) Representative images of cells infected with E. intestinalis that were either untreated or treated with
ZPCK; scale bars are 10 um. Merged images are shown on the left and individual channels to the right.
DNA (grey), E. intestinalis FISH (yellow). (H) Percentage of cells infected (N = 2100 cells counted per
biological replicate for each of four biological replicates). Significance evaluated in relation to DMSO
infected controls using one-way ANOVA with Dunnett’s post-hoc test: *** = p < 0.001, * = p < 0.01, * =

p < 0.05, ns = not significant (p > 0.05).
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Figure 6. Compound structures and mechanisms. (A) Structures of compounds containing a quinone
moiety (circled in red) that were identified in the initial screen as inhibitors of microsporidia infection. (B)
Microsporidia infection model depicting the stages at which various microsporidia inhibitors act. Two

protease inhibitors and four quinone-derivatives were shown to act directly on N. parisii spores to prevent
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spore firing and subsequent invasion of sporoplasms. Fumagillin and dexrazoxane act after invasion has
occurred, inhibiting proliferation of sporoplasms and meronts, ultimately reducing parasite burden and

preventing the production of microsporidia spores. Figure made using Biorender.com.
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Figure S1. Quantitation of progeny number using semi-automated image processing. (A) Flatbed
scanner image of a plate following staining and dilution steps. (B) Sample images of wells prior to
processing. (C) Sample images of wells after processing. (D) Correlation between manual counts and
WorMachine counts (N = 24). (E) Correlations between pairs of technical replicates as a measure of

technical variability (N = 140 per correlation).
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869

870  Figure S2. N. parisii infection in C. elegans is unaffected by altering iron levels. (A & B) Effects of
871  iron supplementation with FAC on N. parisii infection in C. elegans. (A) Percentage of animals with newly
872  formed spores (N = 2140 animals counted per biological replicate; significance evaluated using a two-
873  sample t-test) and (B) percentage of animals with embryos (N = 2140 animals counted per biological
874  replicate; significance evaluated using a one-way ANOVA with Tukey’s post-hoc test) after 4 days of
875  continuous infection with a low dose of spores are shown. (C) Effects of iron chelation with BP on
876 infection, and effects of iron supplementation with FAC on dexrazoxane activity. Percentage of animals
877  with embryos (N = 2120 animals counted per biological replicate; significance evaluated using a one-way
878  ANOVA with Tukey’s post-hoc test) after 4 days of continuous infection with a normal dose of spores is
879  shown. *** =p <0.001, * =p <0.01, *=p < 0.05, ns = not significant (p > 0.05). Data for each condition
880 includes 3 biological replicates.
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883  Figure S3. C. elegans mutant strain with reduced iron is not sensitive to dexrazoxane. RB1074

884  animals have 50% less iron compared to N2 and display severe growth defects during treatment with the
885  iron chelator BP on NGM plates for 3 days from the L1 stage (bottom middle), but not after treatment with
886  dexrazoxane (bottom right) (47).

887

888 Table S1: Compound names and available PubChem CIDs.

Compound PubChem CID

Ethinyl Estradiol 5991
Menadione 4055
Parthenolide 108068
Plumbagin 10205
Curcumin 969516
Chloranil 8371
4,4'-Dimethoxydalbergione (Dalbergione) 364106
4,6-Dimethoxytoluquinone (Toluguinone) NA
Thymoquinone 10281
1-Benzyloxycarbonylaminophenethyl chloromethyl ketone (ZPCK) 99625
Dexrazoxane 71384

889
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