
Expectations boost the reconstruction of  auditory features
from electrophysiological responses to noisy speech

Andrew W. Corcoran1,2, Ricardo Perera1, Matthieu Koroma3, Sid Kouider3,
Jakob Hohwy1,2, & Thomas Andrillon2,4

1 Cognition & Philosophy Laboratory, School of  Philosophical,Historical, and International
Studies, Monash University, Melbourne, Australia

2 Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne,
Australia

3 Brain and Consciousness Group (ENS, EHESS, CNRS), Département d’Études Cognitives,
École Normale Supérieure-PSL Research University, Paris, 75005, France

4 Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris, 75013, France.

Corresponding author: Andrew W. Corcoran, Room E672, 20 Chancellors Walk, Clayton, VIC
3800, Australia. E-mail: andrew.corcoran@monash.edu Telephone: +61 3 9905 9166

Running title: Expectations boost reconstruction of noisy speech

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.09.06.459160doi: bioRxiv preprint 

mailto:andrew.corcoran@monash.edu
https://doi.org/10.1101/2021.09.06.459160
http://creativecommons.org/licenses/by/4.0/


Expectations boost reconstruction of  noisy speech

Abstract

Online speech processing imposes significant computational demands on the listening brain,

the underlying mechanisms of which remain poorly understood. Here, we exploit the

perceptual ‘pop-out’ phenomenon (i.e. the dramatic improvement of speech intelligibility after

receiving information about speech content) to investigate the neurophysiological effects of

prior expectations on degraded speech comprehension. We recorded

electroencephalography and pupillometry from 21 adults while they rated the clarity of

noise-vocoded and sine-wave synthesised sentences. Pop-out was reliably elicited following

visual presentation of the corresponding written sentence, but not following incongruent or

neutral text. Pop-out was associated with improved reconstruction of the acoustic stimulus

envelope from low-frequency EEG activity, implying that improvements in perceptual clarity

were mediated via top-down signals that enhance the quality of cortical speech

representations. Spectral analysis further revealed that pop-out was accompanied by a

reduction in theta-band power, consistent with predictive coding accounts of acoustic

filling-in and incremental sentence processing. Moreover, delta-band power, alpha-band

power, and pupil diameter were all increased following the provision of any written sentence

information, irrespective of content. Together, these findings reveal distinctive profiles of

neurophysiological activity that differentiate the content-specific processes associated with

degraded speech comprehension from the context-specific processes invoked under

adverse listening conditions.

Keywords: EEG, pop-out, predictive processing, speech comprehension, stimulus

reconstruction
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Introduction

The ability to understand spoken language is a remarkable feat of human cognition. Fluent

speech recognition requires the parsing of a continuously changing acoustic signal into a

series of discrete units, and the mapping of these units onto abstract representations

spanning multiple scales (Halle and Stevens 1962; Hickok and Poeppel 2007). Such

processing must occur quickly enough to keep abreast of the unfolding speech stream

(Christiansen and Chater 2016), while remaining robust to signal variation and degradation

(Mattys et al. 2012; Guediche et al. 2014). There is growing consensus that the brain meets

these demands by predicting sensory input on the basis of prior knowledge (Kuperberg and

Jaeger 2016; Bornkessel-Schlesewsky and Schlesewsky 2019; Brodbeck and Simon 2020).

However, the neurocomputational mechanisms supporting such processes remain poorly

understood.

Prediction has long been accorded an important role in language comprehension (e.g., Miller

and Isard, 1963; Tulving and Gold, 1963). Contemporary predictive coding models of speech

processing formalise this notion in terms of (hierarchical) Bayesian inference, whereby

perceptual experience reflects the integration of ‘top-down’ prior expectations (derived, e.g.,

from lexical, speaker, or world-knowledge) and ‘bottom-up’ sensory evidence (see Friston

and Kiebel, 2009; Heilbron and Chait, 2018). On this view, resolved speech content

constitutes the brain’s ‘best guess’ about the causes of its sensory input, given an internal

model of the way sensations are generated (cf. ‘analysis-by-synthesis’; Halle and Stevens,

1959; Poeppel et al., 2008).

Prior knowledge plays a decisive role in word recognition. Under adverse listening

conditions, speech intelligibility can be improved by the provision of prior information about

lexical content (e.g., hearing the undistorted version of the word or reading its written

transcription; Giraud et al., 2004; Dehaene-Lambertz et al., 2005). Such information typically
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engenders a dramatic improvement in the subjective clarity of the degraded utterance -- a

striking change in perceptual experience referred to as ‘pop-out’ (Davis et al. 2005).

Predictive coding and perceptual pop-out

Consistent with the empirical predictions of predictive coding theory, auditory cortical

responses to degraded words tend to be suppressed during the experience of pop-out

(Sohoglu et al., 2012; Sohoglu and Davis, 2016; cf. Banellis et al., 2020). Similar findings

have been observed during the restoration or ‘filling-in’ of speech sounds at the sublexical

level (Riecke et al. 2012; Shahin et al. 2012; Leonard et al. 2016). Interestingly, auditory

cortical responses to degraded words depend on both the severity of stimulus degradation

and the accuracy of prior expectations: while clearer speech evokes greater suppression of

cortical responses when expectations are realised, neural activity is enhanced when

expectations are violated (Blank and Davis 2016; Sohoglu and Davis 2020). This coheres

with the view that the discrepancy between predicted and actual sensory inputs (prediction

error) is modulated by the quality of sensory evidence, whereby noisier stimuli are assigned

a lower degree of confidence or precision.

Few studies have investigated the predictive mechanisms of pop-out during continuous

speech processing. Consistent with the (sub)lexical studies mentioned above, functional

magnetic resonance imaging has shown that degraded sentences elicit increased primary

auditory cortical activation relative to clear speech, indicative of increased sensory prediction

error (Tuennerhoff and Noppeney 2016). The contrast between unintelligible and intelligible

speech was characterised by the activation of higher-order cortical regions that appeared to

modulate lower-level sensory processing. Electrocorticographic recordings of high-frequency

broadband activity have further revealed the rapid tuning of auditory cortical ensembles

during sentence pop-out, whereby hearing the undistorted sentence renders neuronal

populations more sensitive to speech-specific spectro-temporal auditory features of the
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subsequently-replayed degraded stimulus (Holdgraf et al., 2016). These findings suggest

prior exposure to clear speech induces altered patterns of neural activity that serve to

enhance the extraction of linguistic information from noisy input. However, this study was

unable to establish whether such cortical plasticity is driven by top-down or bottom-up

mechanisms.

More recently, ‘cortical tracking’ techniques (Wöstmann, Fiedler, et al. 2017; Beier et al.

2021) have been used to investigate electroencephalographic (EEG) correlates of degraded

speech comprehension. Baltzell and colleagues (2017) reported that the cross-correlation

between the amplitude envelopes of the acoustic stimulus and broadband (1-50 Hz) EEG

activity is increased while listening to degraded vs. clear sentences. This effect was

amplified when degraded stimuli were rendered intelligible by prior exposure to the

undistorted version of the utterance, implying that prior experience of sentence content

improves the alignment (or ‘entrainment’; see Obleser and Kayser 2019) of neural

oscillations to the speech envelope. Di Liberto and colleagues (2018) further demonstrated

that sentence pop-out is associated with enhanced phonemic encoding activity in the delta

(but not the theta) band. This effect was accompanied by evidence of an overall reduction in

phoneme-level processing, concordant with the predictive coding view that accurate prior

expectations suppress low-level cortical responses to sensory input.

The present study

In this study, we deploy a unique combination of analytic techniques spanning stimulus

reconstruction, time-frequency/spectral analysis, and pupillometry to bring recent findings

from the speech pop-out literature into contact with the spectral architecture of language

processing and perceptual inference. Specifically, this multimodal suite of analyses was

designed to complement previous model-based analyses of degraded speech processing
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(e.g., Holdgraf et al., 2016; Di Liberto et al., 2018; Sohoglu and Davis, 2020) with

mechanistic insights into the neurophysiological activity that accompanies pop-out. While

these studies showed that prior information led to enhanced sensory processing and more

precise neural tuning to acoustic features, our use of backward modelling (i.e. stimulus

reconstruction) allowed us to directly quantify changes in the fidelity of auditory cortical

speech representations depending on the availability of prior information (Cervantes

Constantino and Simon 2018), and to map these effects to their neurophysiological

correlates.

We furthermore compared the effects of prior information on sentence processing across two

complementary forms of speech degradation. To do so, we used: (1) noise-vocoding, which

obscures spectral cues with white noise (Shannon et al., 1995); and (2) sine-wave synthesis,

which obliterates fine-grained temporal structure (Remez et al., 1981). Although vocoding is

a popular technique for degrading speech stimuli, little is known about the

neurophysiological correlates of pop-out in sine-wave speech (but see Lee and Noppeney

2011; Khoshkhoo et al. 2018). Crucially, we trained our decoder on an independent dataset

(EEG recorded while listening to an undistorted narrative) to test our prediction that stimulus

reconstruction tracks the enhanced neural representation of sensory content as opposed to

specific features of degraded speech.

Finally, our study departs from previous reports by rigorously controlling the extent to which

differences in sensory processing and neurophysiological activity can be ascribed to

top-down mechanisms. Given the exquisite sensitivity of auditory cortical ensembles to

spectro-temporal speech features (cf. Holdgraf et al., 2016), exposure to clear speech might

induce bottom-up changes in cortical activity that facilitate subsequent encoding of the

degraded stimulus. The present study avoids this potential confound by using visual

information (written text) to instil top-down expectations about the linguistic content of

degraded stimuli (Wild et al. 2012; Sohoglu et al. 2014). We also contrasted the effects of
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correct and incorrect prior information against a baseline condition in which no written

sentence information was provided, thus enabling us to characterise the influence of prior

information on auditory and higher-level processing independent of its lexical content, while

also disentangling the effects of ‘misinformed’ vs. ‘uninformed’ expectations. In this way, we

were able to cross-modally manipulate prior knowledge and sentence intelligibility while

holding prior exposure to acoustic stimuli constant across conditions.

We hypothesised that a multivariate decoder model trained on EEG responses to

undistorted continuous speech would reconstruct the acoustic envelope of degraded

sentences more accurately after listeners had been provided with correct (but not incorrect

or no) written information about sentence content. This prediction was borne out in both the

noise-vocoded and sine-wave speech conditions. Moreover, this effect was accompanied by

a selective reduction in theta-band activity. Our analysis also revealed general effects of prior

expectation, whereby delta-band power, alpha-band power, and pupil diameter were all

increased while the listener evaluated whether degraded speech corresponded to written

sentence information. Together, these results demonstrate that top-down mechanisms shape

the online integration of bottom-up sensory information during continuous speech

processing.
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Materials and methods

Participants

Twenty-one native English-speaking adults were recruited to participate in this study. Of

these, two were excluded due to faulty EEG recordings. The remaining sample comprised 8

females and 11 males aged 19 to 33 years (M = 25.8, SD = 4.5). All participants reported

normal (or corrected-to-normal) vision and audition.

All participants provided written, informed consent, and were remunerated AU$30 for their

time. This protocol was approved by the Monash University Human Research Ethics

Committee (Project ID: 10994).

Stimuli

A total of 80 pairs of English sentences were constructed. These pairs had similar but not

identical grammatical structures and lengths (11.7 words on average, range: 8-15). They

were divided into 5 lists of 16 pairs (32 sentences per list). Each sentence was vocoded

using Apple OS’s noise-to-speech command ‘say’ (voice: ‘Alex’; gender: male; sampling

rate: 44.1 kHz; rate: 200 words/minute). Each vocoded sentence was approximately 3.5 s

long and was then concatenated three times to obtain audio files of ~10.5 s. The sounds

were saved in the Audio Interchange File Format (AIFF) format and converted to the

MPEG-1 Audio Layer III (MP3) format using the “Swiss Army Knife of Sound” (SoX)

command line utility.

We then used publicly available scripts written for PRAAT (Boersma and Weenink 2011) to

turn clear speech into sine-wave speech (SWS) and noise-vocoded speech (NVS). These

files were saved in the Waveform Audio File Format (WAV) format. Clear audio files were

also converted to the WAV format. In SWS, phonemes’ formants are replaced by sinusoids
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at the same frequency, stripping fine-grained temporal acoustic features from the original

clear speech and thereby making SWS speech-like but unintelligible (Remez et al. 1981). In

NVS, the envelope of clear speech in a set of fixed logarithmically-spaced frequency bands

(here, 7 bands) was used to modulate the amplitude of band-limited white noise for each

frequency band. This transformation preserves the temporal cues of the original signal but

erases the spectral cues (Shannon et al. 1995). Consequently, SWS and NVS represent two

complementary ways of degrading clear speech by removing fine-grained temporal cues

(SWS) or spectral information (NVS; see Figure 1A).

The amplitude of the degraded speech was equalised across all sentences and the duration

was adapted to a fixed 10.5 s interval using the VSOLA algorithm. In addition to these

sentences, in the training session, we also played to participants an audiobook (Cat-Skin

from Grimms’ Fairy Tales, LibriVox) for a duration of 11’ 38’’. The properties of the speech

(female voice, rate, etc.) were not modified except for the overall volume (same volume as

degraded sentences). All auditory stimuli were delivered using the Psychtoolbox extension

(v3.0.14; Brainard, 1997) for Matlab (R2018b; The MathWorks, Natick, MA, USA) running on

Linux. The stimuli were played using speakers placed in front of the participant.

Experimental design and procedure

Participants performed the experimental task in a well-lit room while sitting at a desk with

their head stabilised on a chinrest ~50 cm from the monitor. Following a 9-point eye-tracker

calibration, participants were instructed to actively attend to the audiobook narration

(training) while maintaining fixation on a cross at the centre of the computer screen. They

subsequently performed 6 blocks of 16 experimental trials each (test trials) for a total of 96

trials (16 trials per condition). Participants were instructed to maintain central fixation and

refrain from excessive blinking while listening to the sentence presentations, but were

permitted to blink and saccade outside these periods. Blocks were separated by self-paced
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breaks, with a recalibration of the eye-tracker prior to block 4. In total, the experimental

procedure lasted approximately 75 min.

Each test trial started with the presentation of one noisy stimulus (NVS or SWS; 10.5 s long).

Participants were then asked to rate the clarity (intelligibility) of the noisy stimulus on a

4-point scale (1 = “I did not understand anything”; 2 = “I understood some of the sentence”; 3

= “I understood most of the sentence”; 4 = “I clearly understood everything”). Following this

first clarity rating, participants were visually displayed either the corresponding written

sentence (P+ condition), a different sentence (P- condition), or four hash symbols in lieu of a

sentence (P0 condition), for a fixed duration of 4 s. In all cases, the same noisy stimulus was

presented a second time and participants were asked to rate the clarity of the stimulus using

the same 4-point scale. Following this, when a sentence was visually displayed between the

two presentations (P+ and P- conditions), participants were asked to indicate whether the

displayed sentence corresponded to the noisy stimulus (Yes or No). A pause of 1.5 to 2 s

(random jitter) was introduced before starting the next trial. See Figure 1B for a schematic

illustration of the trial procedure.

Participants heard a total of 96 sentence stimuli. Sentences were sampled from a pool of 80

stimulus pairs distributed amongst 5 lists (Lists A-E, 160 stimuli). Four lists of 16 stimulus

pairs were attributed to experimental conditions (stimulus type: SWS or NVS; prior condition:

P+, P-). For these conditions, only one member of each stimulus pair was presented (e.g.,

16 NVS P- stimuli from list A, 16 NVS P+ from list B, 16 SWS P- from list C, 16 SWS P+

from list D; total: 64) and the remaining paired stimuli were not used. The remaining list of 16

stimulus pairs was attributed to the condition P0 (e.g., 16 NVS P0 from list E and 16 SWS

P0 from list E; total: 32). The attribution was randomly assigned and counterbalanced across

participants following a latin-square design. For conditions P+ and P-, the participants were

exposed to one sentence per pair from the corresponding lists (see section above on

Stimuli). This allowed us to present to participants, in the case of the P- condition, a
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sentence close to (but different from) the one heard in the trial, and never heard or seen

earlier or later on in the experiment. For the P0 condition, as no pairing was needed since no

written sentence was shown to the participant, the remaining list of 16 pairs was split into the

SWS and NVS conditions and formed 16 stimuli per condition. Overall, every stimulus was

novel when presented the first time and heard exactly twice within one trial throughout the

whole experiment and across all conditions.

EEG acquisition and preprocessing

The electroencephalogram (EEG) was continuously recorded during both the training

(audiobook) and test trials (noisy speech) from 64 Ag/AgCl EasyCap mounted active

electrodes. The recording was acquired at a sampling rate of 500 Hz using a BrainAmp

system in conjunction with BrainVision Recorder (v1.21.0402; Brain Products GmbH,

Gilching, Germany). AFz served as the ground electrode and FCz as the online reference.

Offline preprocessing was performed in MATLAB R2019b (v9.7.0.1319299; The MathWorks,

Natick, MA, USA) using custom-build scripts incorporating functions from the FieldTrip

(v20200623; Oostenveld et al., 2011) and EEGLAB (v2019.1; Delorme and Makeig, 2004)

toolboxes. For the training data, the EEG was segmented in a single epoch from 5 s before

the start of the audiobook to 5 s after its end. For test trials, EEG data were segmented into

20 s epochs beginning 5 s before stimulus onset. All epochs were centred around 0 prior to

high- and low-pass filtering (1 Hz and 125 Hz, respectively; two-pass 4th-order Butterworth

filters). A notch (discrete Fourier transform) filter was also applied at 50 and 100 Hz to

mitigate line noise.

For test trials, epoch and channel data were manually screened for excessive artefact using

the ‘ft_rejectvisual’ function. A median 3 channels (range = [1, 5]) and 2 epochs (range = [0,

5]) were rejected per participant (note, an additional 5 trials were missing for one participant
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due to a technical error). For training data, we performed only the channel rejection

procedure. Rejected channels were interpolated via the weighted neighbour approach as

implemented in the ‘ft_channelrepair’ function (where channel neighbours were defined by

triangulation).

Channels were re-referenced to the common average prior to independent component

analysis (‘runica’ implementation in FieldTrip of the logistic infomax ICA algorithm; Bell and

Sejnowski, 1995). ICA was performed on the test and training data separately to ensure

systematic differences between clear and degraded speech processing did not impair or bias

source separation. Components were visually inspected and those identified as ocular

(median number of rejected components = 2; range = [0, 3]), cardiac (median = 0, range =

[0, 2]), or non-physiological (median = 0, range = [0, 2]) in origin were subtracted prior to

backprojection.

Pupillometry acquisition and preprocessing

Eye-movements and pupil size on both eyes were recorded with a Tobii Pro TX300 system

(Tobii Pro) at a sampling rate of 300 Hz. We recorded good-quality data in only 17

participants. One participant had incomplete data (43/96 trials). The eye-tracker was

calibrated at the start of each recording. Blinks were detected as interruptions of the

eye-tracking signal on each eye independently (maximum duration = 5 s). For each of these

blinks, the pupil size was corrected by linearly interpolating the median signal preceding the

blink onset ([-0.1, 0]s) and following the blink offset ([0, 0.1]s). The corrected signal was then

low-pass filtered below 6 Hz (two-pass 4th order Butterworth filter) and the pupil size for

each eye averaged together. The continuous averaged pupil data were then epoched

according to the presentation onset ([-1, 11]s) and both the first and second presentation

windows were baseline corrected using the average pupil size before the first presentation
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([-1, 0]s). Event-related pupil dilation responses were computed on these epochs (see Figure

4B).

Data analysis

Stimulus reconstruction.

We used a stimulus reconstruction approach to estimate the quality of auditory processing

from the EEG. In particular, we focused on the reconstruction of the auditory envelope of the

noisy speech from EEG recordings. Our rationale was that participants’ ability to extract

relevant cues from noisy speech should be reflected in a better entrainment of EEG activity

by the noisy speech (cf. Baltzell et al. 2017) and/or a better encoding of acoustic features,

both resulting in a better ability to reconstruct the envelope of the auditory input from EEG

recordings. A similar approach was successfully applied to decode attention when

participants are exposed to clear speech in a multitalker environment (O’Sullivan et al.,

2015; Legendre et al., 2019), or to reconstruct the envelope of noise-masked speech

segments (Cervantes Constantino and Simon 2018).

We first extracted the acoustic envelope of the training and test stimuli in the 2-8 Hz band.

This band was chosen for its correspondence with syllabic rhythms and the robust

entrainment of EEG oscillations with the speech envelope observed in this frequency band

(Giraud and Poeppel 2012; Peelle and Davis 2012; O’Sullivan et al. 2015). To do so, we ran

the 10.5 s degraded speech as well as the training stimulus through a peripheral auditory

model using the standard Spectro-Temporal Excitation Pattern approach (STEP; Leaver and

Rauschecker, 2010). The stimuli were first resampled at 22.05 kHz and passed through a

bandpass filter simulating outer and middle-ear pre-processing. Cochlear frequency analysis

was then simulated by a bank of linear gammatone filters (N=128 filters). Temporal

integration was applied on each filter output by applying half-wave rectification and a 100 Hz

low-pass 2nd-order Butterworth filter. Next, square-root compression was applied to the
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smoothed signals and the power in each frequency band was log-transformed. Finally, the

auditory envelope was computed by summing the envelope of the 128 gammatone filters

and downsampled to 100 Hz.

For each presentation of the (training or test) stimuli, we processed the EEG recordings as

follows. ICA-corrected data epochs were re-referenced to the average of all EEG electrodes,

bandpass-filtered between 2 and 8 Hz using a two-pass finite impulse response (FIR) filter,

and then resampled at 100 Hz. We trimmed the EEG epochs so that the start and end

corresponded to the start and end of the stimulus presentation.

We then used the Multivariate Temporal Response Function (mTRF) Toolbox (v2.0; Crosse

et al., 2016) for Matlab to build a linear model between auditory and EEG signals from the

training session (clear speech). By using an independent part of the experiment compared to

test trials, and by using clear speech, we ensured that the model was not affected by our

experimental design and represented normal speech processing. EEG data were shifted

relative to the auditory envelope from 0 ms to 300 ms in steps of 10 ms (31 time lags),

allowing the integration of a broad range of EEG data to reconstruct each stimulus time

point. The linear model was optimised to map the EEG signal from each electrode and time

lag to the sound envelope. The obtained filter (matrix of weights: sensor ✕ time lags) was

then used in the test trials to reconstruct the stimuli.

In the test trials, we used the model trained on clear speech (training set) to reconstruct the

envelope of the noisy stimuli. This was done independently for each of the two presentations

of the stimuli in each trial. Finally, the reconstructed envelope was compared to the envelope

of the degraded stimulus played for this trial (NVS or SWS) by computing the Pearson’s

correlation coefficient between the real and reconstructed envelope of the degraded speech.

We computed this coefficient for the three repetitions of the same sentence in each stimulus

presentation. This coefficient (bounded between -1 and 1) was used as an index of the
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quality of the stimulus reconstruction. In our analyses, we focused on the first presentation of

the sentence within a given trial and the first following the presentation of the correct (P+),

incorrect (P-), or no (P0) visual sentence information (first 3.5 s of each presentation). This

decision mitigated potential fluctuations in task engagement over the course of the 2nd

presentation depending on whether stimuli elicited pop-out.

Time-frequency decomposition.

EEG data from test trials were subjected to spectral (time-frequency) analysis. Preprocessed

datasets were re-referenced to the average of linked mastoids. Spectral power estimates

were then computed for epochs spanning -2 to 12 s relative to stimulus onset over a

frequency range of 1 to 30 Hz (1 Hz increments) using the ‘ft_freqanalysis’ function (Hanning

taper length = 1 s; 100 ms increments). As in the stimulus reconstruction analysis,

time-frequency analysis was limited to the first iteration of each sentence presentation period

(timepoints spanning [0.5, 3] s; first and last 0.5 s omitted to avoid spurious/confounding

effects pertaining to stimulus onset/offset and spectral leakage).

Channel-level spectral power estimates were averaged across time for each trial, and

averaged across trials for each factorial combination of sentence type, prior condition, and

presentation order. Averaged power estimates were then log10 transformed and subjected to

a nonparametric cluster-based permutation analysis (Maris and Oostenveld 2007) as

implemented in FieldTrip. Briefly, this procedure involved computing dependent-samples

t-tests across pairwise power estimates for each corresponding channel ✕ frequency bin,

identifying t-values that exceed a specified alpha threshold (0.025, two-tailed test), and

clustering these samples into spatio-spectrally contiguous sets (minimum 2 neighbouring

channels located within a 40 mm radius; average 3.9 neighbours per channel). T-values

within each resolved cluster were then summed and the maximum value assessed against a

Monte Carlo simulation-based reference (null) distribution generated over 1000 random
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permutations. We derived a Monte-Carlo p-value from this comparison, which we used to

determine the significance of the identified clusters.

To test the interaction of interest, the difference between 1st and 2nd presentation power

estimates was contrasted across pairwise combinations of prior conditions for each sentence

type. Clusters with a Monte Carlo p-value <.05 were deemed indicative of a significant

difference between contrasts. Importantly, this procedure only licences inferences about the

existence of a statistically significant difference between contrasts; it does not permit the

topographic or spectral localisation of such effects (see Maris and Oostenveld, 2007; Maris,

2012; Sassenhagen and Draschkow, 2019). This caveat notwithstanding, the frequency

bounds of the resolved clusters were used to inform the selection of frequency band limits in

the subsequent linear mixed-effects regression analysis (see Statistical modelling section

below).

Time-resolved oscillatory activity.

To examine the temporal evolution of electrophysiological dynamics during sentence

processing, we complemented our analysis of time-averaged changes in spectral power with

time-resolved profiles of induced (i.e. non-phase-locked) oscillatory activity. These profiles

were derived using an intertrial variance method of estimating event-related

(de)synchronisation (Kalcher and Pfurtscheller 1995; Pfurtscheller and Lopes da Silva 1999).

ICA-corrected, mastoid-referenced EEG data were high- and low-pass filtered (one-pass

zero-phase FIR filters) into the same frequency bands derived following the time-frequency

cluster-based permutation analysis. For each frequency band, filtered signals were divided

into factorial combinations of stimulus type, prior condition, and presentation order, and the

evoked response subtracted from each set. Waveforms were then squared, log10

transformed, and averaged within each set. The resulting spectral profiles were smoothed

using a moving average filter (‘movmean’, 500 ms sliding window) and downsampled to 10
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Hz. Please note, induced responses were not scaled according to a prestimulus reference

period, since doing so would have conflated differences between the prior and no-prior

conditions during the visual presentation period with differences between these conditions

during the 2nd auditory presentation period.

Spectral profiles of induced activity were compared across conditions using a similar

cluster-based permutation approach to that described above (Time-frequency

decomposition), with the exception that channel-wise power estimates were clustered over

the temporal (rather than frequency) dimension. Permutation tests evaluating the temporal

evolution of induced power dynamics were performed on the entire 2nd presentation window

([-1, 11]s). This analysis was conducted separately for SWS and NVS sentences, in order to

explore qualitative differences in the temporal patterning of neural responses to these two

stimulus types. The temporal dynamics of pupil size were examined using the same

statistical procedure in the temporal domain, but without the spatial (electrode) dimension.

Statistical modelling

Statistical analysis of trial-level subjective clarity ratings, frequency band power, and stimulus

reconstruction scores was performed in R (v4.1.1; R Core Team 2021). Our general strategy

for each analysis was to fit the appropriate mixed-effects model to the dependent variable of

interest from the 2nd presentation, and regress these estimates onto the corresponding

estimate from the 1st presentation (including the 1st presentation estimate as a covariate

essentially functions as a form of baseline correction; see Alday, 2019). Trial number was

also included as a proxy for time-on-task, thereby controlling for the effects of perceptual

learning (Davis and Johnsrude 2007; Eisner et al. 2010; Sohoglu and Davis 2016) and other

potential sources of nonstationarity (Benwell et al. 2019). Additional independent variables

were stimulus type (SWS, NVS), prior condition (P+, P-, P0), and the interaction between

these factors, which were introduced into each model in that order. Model comparisons (see
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below) were performed using the ‘anova’ function to assess whether the additional

complexity introduced by each new fixed (and accompanying random) effect term was

merited by a sufficient improvement in model fit. Categorical variables (stimulus type, prior

condition) were sum-to-zero contrast-coded (reference level coded -1).

All mixed-effects models were fitted with by-participant random intercepts. We attempted to

fit maximal random effects structures for all fixed effects of interest (i.e. stimulus type, prior

condition, stimulus type ✕ prior condition) on this intercept (Barr et al. 2013). Simpler

random effects structures were selected when the maximal model failed to converge,

generated a singular fit, or when random effects could be reduced in complexity without

significant impairment of model fit (Matuschek et al. 2017). Random intercepts were also

specified for sentence items in all models; EEG electrode channel locations were included

as random intercepts in the spectral power models only (see Liebherr et al. 2021, for a

similar approach).

Subjective clarity ratings following the 2nd presentation were modelled as ordinal data using

(logit-linked) cumulative link mixed-effects models (i.e. proportional odds mixed-models).

These models were fit via the Laplace approximation using the ‘clmm’ function from the

ordinal package (v2019.12-10; Christensen 2019) in R. No assumptions about the distance

between cut-point thresholds were specified.

Linear mixed-effects models for spectral power (averaged over time and frequency bins; first

sentence iteration only) and stimulus reconstruction scores (first sentence iteration only)

were fitted using the ‘lmer’ function from the lme4 package (v1.1-27.1; Bates et al., 2015). In

addition to the fixed effects described above (which were again introduced in a sequential

fashion to enable model comparison), an ordered factor encoding the clarity rating on the 1st

presentation was included as a covariate. Model diagnostics were assessed with the aid of

the performance package (v0.8.0; Lüdecke et al., 2021).
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The significance of main effect and interaction terms for each winning model was assessed

using likelihood-ratio chi-square tests from Type-II analysis-of-deviance tables obtained via

the RVAideMemoire package (v0.9-81; Hervé, 2021) for the cumulative link mixed-effects

models; equivalent tables were obtained from the car package (v3.0-12; Fox and Weisberg,

2019) for the linear mixed-effects models. Significant effects were disambiguated using

post-hoc contrasts (Tukey-corrected for multiple pairwise comparisons; Sidak-corrected for

pairwise interaction contrasts) obtained from the emmeans package (v1.7.1-1; Lenth 2021),

which was also used to estimate marginal mean predictions for model visualisation. For

completeness, β coefficients (log odds in the case of the cumulative link mixed-models) and

standard errors (SEs) are reported alongside corresponding analysis-of-deviance results for

significant model terms. Model predictions and individual-level estimates were visualised

with the aid of the tidyverse package (v1.3.1; Wickham et al., 2019).

Data and code availability

De-identified raw data are openly available on the Open Science Framework:

https://osf.io/5qxds. The code used to produce the analyses reported in this manuscript are

archived on GitHub: https://github.com/corcorana/SWS_NVS_code
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Results

Correct prior information evokes perceptual pop-out

We first examined participant- and group-level average clarity ratings to determine if our

protocol was successful in eliciting perceptual pop-out (Figure 1C). We found that prior

condition had a significant effect on clarity ratings following the 2nd stimulus presentation:

including prior condition within the cumulative link mixed-effects model yielded a significant

improvement in fit (𝜒2(2)=1325, p<.001). Allowing prior condition to interact with stimulus type

further enhanced model fit (𝜒2(2)=7.41, p=.025). This model revealed significant main effects

of prior condition (𝜒2(2)=57.95, p<.001; βP+=4.21, SE=0.27; βP-=-2.03, SE=0.13) and stimulus

type (𝜒2(1)=13.71, p<.001; βSWS=0.18, SE=0.69), in addition to the significant interaction of

these factors (βSWS:P+=-0.29, SE=0.10; βSWS:P-=0.15, SE=0.08).

To interrogate these results, we performed post-hoc contrasts comparing differences in

clarity ratings between stimulus types and prior conditions. Clarity ratings were significantly

higher following SWS stimuli than NVS stimuli (z-ratio=2.64, p=.008). Clarity was

significantly higher for P+ than both the P0 (z-ratio=14.81, p<.001) and P- (z-ratio=16.10,

p<.001) conditions, consistent with the experience of perceptual pop-out. Conversely, clarity

levels did not significantly differ between P0 and P- (z-ratio=1.00, p=.575), confirming that

participants needed to be provided with the correct sentence information for pop-out to

occur. Interaction contrasts further confirmed that the increase in clarity ratings observed in

the P+ condition was stronger for NVS than SWS stimuli (P+ vs. P0: z-ratio=2.51, p=.036;

P+ vs. P-: z-ratio=2.56, p=.032), owing to the lower average clarity of NVS stimuli in the

absence of correct prior information (see Fig 1C).

Finally, all participants performed at or near ceiling level when asked to determine if the

visually displayed sentence (P+ or P- condition) corresponded to the auditory stimulus
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(mean performance: 95.8% +/- 1.3 and 95.0% +/- 1.4 for SWS and NVS, respectively). This

indicates that participants were almost always able to distinguish whether correct information

had been supplied, even when the perceived clarity of the degraded sentence remained low.
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Figure 1: Experimental design and behavioural results

A: Cochlear representations (see Methods for details) of 3.5 s of clear speech (left), Sine

Wave Speech (SWS; middle) and Noise Vocoded Speech (NVS; right). B: In each trial,

participants listened to two repetitions of the same noisy speech. The two presentations of

the stimuli were interleaved with either (i) the corresponding written sentence (correct prior,

condition P+), (ii) a different sentence (incorrect prior, condition P-), or (iii) hash symbols (no

prior, condition P0). Following each presentation of the stimulus, participants were asked to

indicate the subjective clarity of the stimulus they heard. EEG was recorded throughout the

task. C: Clarity ratings for the SWS (left, circles) and NVS (right, diamonds) stimuli.

Participants were asked to rate the stimuli after the 1st (unfilled circles and diamonds) and

2nd (filled circles and diamonds) presentations. Clarity ratings are averaged for each

stimulus type and prior condition (P+: green, P-: orange, and P0: purple). Individual

data-points are shown with small circles (SWS) and diamonds (NVS). The two average

ratings of each participant and each category are connected with a continuous line if it

increases from the 1st to 2nd presentation and a dashed line if it decreases. Large circles

and diamonds show the average across the sample (N=19 participants) and error bars show

the standard error of the mean (SEM) across participants. Stars indicate the significance

levels of post-hoc contrasts across condition levels (marginalised over stimulus type; ***:

p<.001, **: p<.01, *: p<.05).

Correct prior information enhances stimulus reconstruction

Having established the efficacy of our prior condition manipulation, we next explored the

neurophysiological substrates of the pop-out effect by examining participant- and group-level

average reconstruction coefficients (Figure 2A). The mixed-effects model for reconstruction

scores revealed a significant main effect of stimulus type (𝜒2(1)=23.49, p<.001; βSWS=0.036,

SE=0.007), indicating that reconstruction scores, just as clarity ratings, were higher following
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SWS than NVS stimuli. Importantly, a significant main effect was also observed for prior

condition (𝜒2(2)=15.97, p<.001; βP+=0.022, SE=0.006; βP-=-0.009, SE=0.006). In fact, model

comparisons indicated that models not including the prior condition effect fitted the data

significantly worse (𝜒2(2)=15.92, p<.001), but including interaction terms (two-way interaction

between prior condition and stimulus type; three-way interaction between prior condition,

stimulus type, and baseline reconstruction score) did not fit the data significantly better (all

ps>.10).

Again, we interrogated the main effect of prior condition with post-hoc pairwise comparisons.

These contrasts revealed that reconstruction scores for the 2nd presentation were higher in

the P+ compared to P0 (t-ratio=3.66, p<.001) and P- (t-ratio=3.22, p=.004) conditions,

respectively. Reconstruction scores did not significantly differ between P- and P0

(t-ratio=0.44, p=0.90). In sum, the effect of prior condition on reconstruction scores matched

the pattern of effects found on clarity ratings, suggesting a link between perceptual pop-out

and auditory cortical encoding.

We subsequently examined whether the stimulus reconstruction scores could predict the

clarity of stimuli on the 2nd presentation above and beyond the prior condition. To do so, we

re-fitted the cumulative link mixed-effects model reported above with additional terms

encoding the main-effect of reconstruction score, and its interaction with stimulus type and

prior condition. These additional terms delivered a significant improvement in model fit

(𝜒2(6)=13.27, p=.039). This model revealed a significant three-way interaction (𝜒2(2)=8.43,

p=.015; βSWS:P+:REC=1.51, SE=0.59; βSWS:P-:REC=-0.24, SE=0.47), whereby higher

reconstruction scores predicted greater improvement in the subjective clarity of SWS stimuli

following the provision of correct vs. no sentence information (z-ratio=2.87, p=.012). No such

differences were found for the P+ vs. P- (z-ration=1.82, p=.191) nor P- vs. P0 contrasts

(z-ratio=1.40, p=.411).
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Figure 2: Correct priors improve stimulus reconstruction

A: The envelope of noisy speech was reconstructed from EEG recordings (N=19

participants, see Methods) and a stimulus reconstruction score was computed for the first

3.5 s (1st iteration of the sentence) of each stimulus presentation (1st: unfilled markers; 2nd:

filled markers) and for the SWS (left, circles) and NVS (right, diamonds) stimuli separately.

Reconstruction scores are averaged for each stimulus type and prior condition (P+: green,

P-: orange, and P0: purple). Individual data-points are shown with small circles (SWS) and

diamonds (NVS). The two average ratings of each participant and each category are

connected with a continuous line if it increases from the 1st to 2nd presentation and a

dashed line if it decreases. Large circles and diamonds show the average across the sample

(N=19 participants) and error bars show the standard error of the mean (SEM) across

participants. Stars indicate the significance levels of post-hoc contrasts across condition
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levels (***: p<.001, **: p<.01, *: p<.05). B: Correlation between clarity ratings and

reconstruction scores on the 2nd presentation for SWS (left, circles) and NVS (right,

diamonds). Individual data-points are shown with small circles (SWS) and diamonds (NVS).

Large circles and diamonds show the average across the sample (N=19 participants) and

error bars show the standard error of the mean (SEM) across participants. The Pearson’s

correlation coefficient computed across conditions for the SWS and NVS is shown on each

graph along with the associated p-value.

Prior information exerts frequency-specific effects on speech processing

We next examined how the provision of correct or incorrect prior information impacted brain

responses to degraded speech. Grand-average time-frequency representations from the 2nd

presentation period are displayed for each prior condition in Figure 3A. Cluster-based

permutation tests revealed significant differences in the average power across prior

conditions for each stimulus type. Relative to the absence of written sentence information

(P0), receiving correct sentence information (P+) resulted in significant positive clusters

(indicative of increased mean power) spanning 12 to 17 Hz in the SWS condition (p=.006),

and 11 to 15 Hz in the NVS condition (p=.005). Similarly, receipt of incorrect sentence

information (P-) resulted in a significant positive cluster spanning 10 to 15 Hz in the SWS

condition (p=.002). No significant clusters were identified for the corresponding NVS

contrast. Topographies visualising the distribution of these clusters are presented in Figure

3B.

In order to investigate these modulations in (high) alpha-band activity in more detail, we

used linear-mixed effects regression analysis to model trial-level power fluctuations in the

frequency band spanning 10 to 15 Hz. Additionally, frequency bands were also specified for

the delta (1-3 Hz), theta (4-9 Hz) and beta (16-30 Hz) frequencies. It is worth noting that all
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these bands have been associated with speech processing in previous studies (see

Discussion). All electrode channels were included in the random effects structure for each

model. In each set of nested model comparisons across the four frequency bands, the full

model (i.e. including the fixed effect and by-participant random slope interactions between

stimulus type and prior condition) demonstrated significantly better fits than the reduced

models.

The main effect of stimulus type was significant in the delta (𝜒2(1)=5.87, p=.015; βSWS=-0.007,

SE=0.003) and theta (𝜒2(1)=5.53, p=.019; βSWS=-0.005, SE=0.003) models, indicating that

NVS stimuli tended to elicit higher mean power than SWS stimuli. This effect was

non-significant in the alpha (𝜒2(1)=1.78, p=.182) and beta (𝜒2(1)=1.68, p=.194) models. The

main effect of prior condition was significant for all frequency bands except beta (Delta:

𝜒2(2)=16.63, p<.001; βP+=0.005, SE=0.005; βP-=0.015, SE=0.004; Theta: 𝜒2(2)=15.56,

p<.001; βP+=-0.023, SE=0.006; βP-=0.020, SE=0.005; Alpha: 𝜒2(2)=30.70, p<.001; βP+=0.010,

SE=0.007; βP-=0.021, SE=0.006; Beta: 𝜒2(2)=0.14, p=.931). The interaction between

stimulus type and prior condition was significant in the alpha model (𝜒2(2)=6.21, p=.045;

βSWS:P+=-0.001, SE=0.004; βSWS:P-=0.008, SE=0.004), but non-significant in the remaining

frequency bands (Delta: 𝜒2(2)=0.97, p=.617; Theta: 𝜒2(2)=2.88, p=.237; Beta: 𝜒2(2)=0.26,

p=.877).

The estimated effects of prior condition on mean spectral power in the delta-, theta-, and

alpha-bands are visualised in Figure 3C. Post-hoc comparisons revealed that delta power

was significantly increased following P+ compared to P0 (z-ratio=2.37, p=.047), and P-

compared to P0 (z-ratio=3.91, p<.001); the difference between P+ and P- was

non-significant (z-ratio=1.48, p=.300). Alpha-band power showed a similar pattern, where

power was increased following P+ compared to P0 (z-ratio=3.60, p<.001), and following P-

compared to P0 (z-ratio=5.47, p<.001). Notably, the difference between P- and P0 conditions

was more pronounced for SWS than NVS stimuli (z-ratio=2.49, p=.038). Again, there was no
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significant difference in alpha power between P+ and P- (z-ratio=0.95, p=.607). By contrast,

the theta model revealed a significant decrease in power following P+ compared to P0

(z-ratio=2.64, p=.022), and P- (z-ratio=4.27, p<.001); the difference between P- and P0 was

non-significant (z-ratio=1.94, p=.127).
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Figure 3: Time frequency analysis and mixed-effects modelling

A: Time-frequency representation depicting grand-average power over the course of the 2nd

sentence presentation following the provision of correct (P+), incorrect (P-), or no (P0)

written sentence information (averaged across stimulus types). Each presentation comprised

29

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.09.06.459160doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459160
http://creativecommons.org/licenses/by/4.0/


Expectations boost reconstruction of  noisy speech

3 iterations of the same noisy stimulus (~3.5 s each). Spectral power estimates from each

frequency bin were baseline-corrected using the mean power estimate from the

corresponding frequency bin averaged over all time bins spanning the 1st presentation

period. B: Topographic distribution of electrodes’ involvement in the clusters identified via

cluster-based permutation analysis of the first sentence iteration. Scale indicates probability

of electrode inclusion (i.e. the proportion of times an electrode was included within the

cluster) within the 10-15 Hz range used to define the alpha-band. These plots indicate that

significant clusters were predominantly composed of electrodes over posterior scalp regions

for P+ vs. P0 contrasts, and more broadly distributed for the SWS P- vs. P0 contrast. C:

Visualisation of linear mixed-effects model predictions for delta (1-3 Hz), theta (4-9 Hz), and

alpha (10-15 Hz) power during the first sentence iteration for each prior condition (P+: green,

P-: orange, and P0: purple; averaged across stimulus types). Individual data-points are

shown with small circles. Large circles show the estimated marginal means for the prior

condition across the sample (N=19 participants); error bars show the standard error of the

mean (SEM) across participants. Stars indicate the significance levels of post-hoc contrasts

across condition levels (***: p<.001, **: p<.01, *: p<.05). Note, estimates have been

mean-centred for the purposes of visualisation.

Prior information induces increased alpha power and pupil size during

sentence processing

Finally, we focused more specifically on the effect of prior information (P+ or P- vs. P0) on

participants’ neurophysiological activity, regardless of the correctness of this information.

Consistent with our analysis of time-averaged spectral power, the time-course of induced

alpha-band activity during the 2nd presentation period was modulated by the provision of

prior information. Cluster-based permutation analysis across all electrodes confirmed that P+

and P- both induced significant increases in alpha power compared to P0 during the 2nd
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auditory presentation (Figure 4A). These positive clusters were broadly distributed over the

entire scalp, with posterior electrode sites revealing effects that spanned the largest number

of time bins (SWS: P+ vs. P0 = [0.8, 3.6]s, P- vs. P0 = [0.8, 3.3]s; NVS: P+ vs. P0 = [1.1,

3.7]s, P- vs. P0 = [0.9, 3.7]s). Note that these effects were preceded by significant negative

clusters spanning the pre-stimulus period, most likely reflecting alpha desynchronisation in

response to the processing of visually-presented sentence information (SWS: P+ vs. P0 =

[-1, 0.4]s, P- vs. P0 = [-1, 0.3]s; NVS: P+ vs. P0 = [-1, 0.6]s, P- vs. P0 = n.s.). Induced

activity did not significantly differ between P+ and P- conditions.

We complemented our analysis of alpha power dynamics with a cluster-based permutation

on pupil dilation responses during sentence processing. Similar to the alpha-band findings

above, P+ and P- conditions both evoked increased pupil size compared to P0 (Figure 4B).

When examining SWS and NVS stimuli separately, we observed a significant cluster for both

P+ vs P0 and P- vs P0 contrasts (SWS: [0.7, 6.4]s, [3.8, 11]s; NVS: [0.6, 11]s, [0.6, 11]s, for

P+ vs P0 and P- vs P0 respectively).
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Figure 4: Expectations modulate induced alpha power and pupil size

Temporal dynamics of induced alpha power (A) and pupil size (B) over the course of the 2nd

presentation period for each stimulus type (top: SWS; bottom: NVS) and prior condition (P+:

green, P-: orange, and P0: purple). Alpha power is averaged over parieto-occipital

electrodes (see black dots on the inset) and expressed as log10 units. Pupil size is averaged

across the two eyes and expressed in arbitrary units. Error shades show the standard error

of the mean (SEM) across participants (N=19 participants for alpha power and N=17 for

pupil, see Methods). Horizontal bars show the clusters of timepoints showing significant

differences (cluster-permutation, p<.05, see Methods) between the P+ and P0 conditions

(green), and P- and P0 conditions (orange).
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Discussion

This study leveraged the pop-out phenomenon to investigate the predictive mechanisms

underpinning continuous speech processing. Our key finding suggests that sentence pop-out

is mediated via a top-down mechanism that enhances the quality of auditory cortical

representations. This observation – which was replicated across two markedly different kinds

of acoustic degradation – is consistent with recent electrophysiological evidence that the

encoding of degraded speech features is significantly improved after exposure to the

undistorted speech stream (Holdgraf et al. 2016; Baltzell et al. 2017; Di Liberto et al. 2018).

Crucially, our use of cross-modal (written) information to induce expectations about sentence

content ensured these effects could not have arisen due to prior auditory experience of the

clear utterance, but were exclusively driven by top-down information. Our design further

ensured that the quality and quantity of acoustic stimulation were held constant across

conditions, thereby eliminating potential confounds stemming from stimulus novelty and

repetition effects. Our data thus provide compelling evidence in support of a predictive

coding explanation of sentence pop-out.

This study is the first to use a neural decoding approach to explore the effects of prior

information on sentence pop-out. Combining this approach with complementary analyses of

spectral power and pupil diameter revealed distinctive patterns of neurophysiological activity

that differentiated the content-specific processes (decrease in theta power) associated with

the experience of sentence pop-out (P+ condition) from context-specific processes (increase

in delta power, alpha power, and pupil size) associated with the generic processing of

degraded speech in the context of prior information (P+ and P- conditions). Similar results

were observed regardless of whether the acoustic stimulus had been degraded via the

removal of spectral or temporal features, speaking to the generality of these effects as

indices of auditory perceptual inference. We interpret these findings in light of previous

studies of auditory filling-in, speech processing under adverse listening conditions, and the
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spectral architecture of predictive coding (Arnal and Giraud 2012; Bastos et al. 2012, 2020;

Fontolan et al. 2014; Sedley et al. 2016; Auksztulewicz et al. 2017).

Sentence pop-out is accompanied by enhanced stimulus reconstruction

In line with previous studies using written text to elicit the pop-out of degraded words (e.g.,

Sohoglu et al., 2012; Sohoglu and Davis, 2016), sentence intelligibility was markedly

improved by the provision of correct prior information (P+) only. Incongruent prior information

(P-) did not significantly affect clarity ratings compared to the neutral prior (P0) condition (cf.

Sohoglu et al., 2014). Although noise-vocoded speech (NVS) was rated less-clear on

average than sine-wave speech (SWS), sentence pop-out was reliably obtained across both

stimulus conditions.

This pop-out effect was accompanied by two main electrophysiological correlates: (1)

improved stimulus reconstruction (an index of cortical speech envelope tracking), and (2)

theta-band (4-9 Hz) power suppression. The stimulus reconstruction finding suggests that

information extracted from the written sentence promotes the modulation of low-frequency

EEG activity while listening to the corresponding sentence, such that the phase dynamics of

the EEG signal better approximate the temporal fluctuations of the speech envelope. This

finding is striking for at least two reasons: First, the participant never hears the undistorted

version of the sentence at any point in the experiment; hence, the effect is likely mediated by

top-down mechanisms rather than low-level adaptations induced by prior sensory

experience. Second, the decoding model used to reconstruct the original speech envelope

was trained on brain responses to natural, continuous speech (i.e. the audiobook). As such,

the model was never exposed to the particular acoustic features of degraded stimuli,

suggesting that improvements in stimulus reconstruction could be detected on the basis of

generalisation from cortical responses to clear speech.
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The enhancement of stimulus reconstruction quality in the P+ condition, and the additional

improvement in goodness-of-fit brought about by the incorporation of trial-level

reconstruction scores into the clarity rating model, support the notion that reconstruction

quality is a reliable indicator of subjective speech clarity. Given that clarity and reconstruction

scores were both improved by correct sentence information in the absence of any physical

alteration of the auditory stimulus, our findings suggest that top-down information contributes

to the experience of pop-out by restoring or enhancing the spectro-temporal detail of

degraded speech features (cf. Holdgraf et al. 2016; Cervantes Constantino and Simon

2018). This observation accords with previous reports that the quality of speech tracking

covaries with speech intelligibility (Ahissar et al. 2001; Luo and Poeppel 2007; Gross et al.

2013; Peelle et al. 2013; Ding and Simon 2014; Doelling et al. 2014), as when vocoded

speech is rendered intelligible after hearing the clear version of the utterance (Baltzell et al.

2017). These results also complement findings from studies that directly manipulated speech

tracking and intelligibility through top-down attentional modulation (Rimmele et al. 2015) and

bottom-up transcranial stimulation (Riecke et al. 2018).

Theta-band suppression indexes sentence comprehension

Improved sentence comprehension and stimulus reconstruction in the P+ condition were

accompanied by a relative reduction in theta-band activity. Mean theta power was also more

reduced while listening to SWS stimuli, which tended to elicit higher clarity ratings on

average than NVS stimuli (suggesting that NVS constituted a more acoustically (or

cognitively) challenging stimulus than SWS; see Peelle, 2018). These findings are consistent

with previous reports linking perceptual filling-in and speech intelligibility with the attenuation

of sensory cortical responses (e.g., Sohoglu et al., 2012; Sohoglu and Davis, 2016),

including evidence directly implicating theta-band suppression (e.g., Riecke et al., 2009,

2012; Strauß et al., 2014a). They also highlight the utility of complementing stimulus

reconstruction with spectral power analysis.
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The inverse relation between theta-band power and speech intelligibility can be explained by

the involvement of theta dynamics in the retrieval and integration of linguistic representations

during online sentence processing (Bastiaansen et al. 2010; Halgren et al. 2015; Lam et al.

2016; Piai et al. 2016; Cross et al. 2018). From a predictive coding perspective, the provision

of correct prior information furnishes the listener with an accurate prediction (hypothesis)

about the auditory input they are about to encounter. Such information activates lexical

representations in working memory, engendering top-down messages that propagate

through descending neuronal pathways to sensory cortices. In this way, correct priors may

instantiate neural ‘templates’ that facilitate the extraction and integration of syntactic and

phonological structures from the acoustic stream (Hickok et al. 2011; Tuennerhoff and

Noppeney 2016), thereby inhibiting theta-band activity (cf. Keitel et al., 2017; Rommers et

al., 2017; Donhauser and Baillet, 2020).

Delta power, alpha power, and pupil dilation as correlates of  active listening

Listening to degraded speech following the provision of written sentence information (P+, P-)

resulted in elevated delta-band power compared to the absence of such information (P0;

Figure 3C). Delta oscillations have been implicated in the synthesis of higher-level linguistic

structure (Keitel et al. 2018; Meyer and Gumbert 2018; Molinaro and Lizarazu 2018; Etard

and Reichenbach 2019; Kaufeld et al. 2020), although much of this literature concerns

phase (rather than power) dynamics. Elevated delta-band power might derive from attempts

to parse continuous speech according to the segmentation prescribed by the written

sentence (cf. Ding et al., 2016; Bonhage et al., 2017; Meyer et al., 2017). Alternatively, it

might reflect increased phase-synchrony driven by precise expectations about the timing of

salient auditory input (Lakatos et al. 2008; Schroeder and Lakatos 2009; Calderone et al.

2014; Arnal et al. 2015; Kayser et al. 2015; Boucher et al. 2019).
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Increased alpha-band power and pupil dilation have received comparatively more

widespread attention in the speech comprehension literature, most notably in association

with effortful, ‘active’ listening under adverse conditions (Zekveld et al. 2010; Wöstmann et

al. 2015; Dimitrijevic et al. 2017, 2019). Parametric increases in alpha-band power (e.g.,

Obleser and Weisz, 2012; cf. Hauswald et al., 2020) and pupil size (e.g., Winn et al., 2015;

cf. Zekveld et al., 2018) have been reported as the severity of speech degradation

intensifies, complementing recent evidence that covariation between pupil diameter and

alpha-band activity indexes fluctuations in arousal and attentional states (Pfeffer et al. 2021;

cf. Podvalny et al. 2021; Sharon et al. 2021). However, the differences we observed in these

dependent variables between the prior and no-prior conditions cannot be ascribed to

stimulus properties, since the degree of acoustic degradation was held constant across

conditions. Likewise, such differences cannot be explained by sentence (un)intelligibility (cf.

Becker et al., 2013) or prior (in)congruence, given the similarity of the responses induced by

P+ and P- conditions.

Following previous work implicating alpha oscillations in the top-down inhibition of

task-irrelevant cortical networks (Klimesch et al. 2007; Jensen and Mazaheri 2010) or stimuli

(Kerlin et al. 2010; Strauß, Wöstmann, et al. 2014; Wöstmann et al. 2016; Wöstmann, Lim,

et al. 2017), the transition from alpha desynchronisation during the presentation of written

sentence information, to a marked and widespread pattern of synchronisation following

auditory stimulus onset, might reflect the dynamic re-allocation of attentional resources from

the visual to the auditory domain (i.e. a covert attentional switch from visual sampling during

reading to auditory sampling during active listening; cf. Foxe et al., 1998; Fu et al., 2001;

Henry et al., 2017). Note that the event-related synchronisation observed in the P+ and P-

conditions significantly exceeded corresponding power estimates in the P0 condition (Figure

4A), implying that speech onset promoted a concerted synchronisation of alpha-band

oscillations (rather than a mere restoration of baseline levels of activity following the offset of

visual stimuli).
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An additional (but not mutually exclusive) explanation of this effect derives from the putative

role of alpha-band synchronisation in the working memory processes responsible for

mapping online auditory inputs to specific linguistic predictions (i.e. hypotheses about

sentence content induced by prior information; cf. Obleser et al., 2012; Meyer et al., 2013;

Sedley et al., 2016; Wilsch and Obleser, 2016). This explanation is appealing given the close

correspondence between the time-course of the alpha-band synchronisation and the first

sentence iteration. Given the immediacy of the pop-out effect, attempts to match the prior

with incoming acoustic information are unlikely to persist beyond the first sentence iteration

-- either the hypothesis instantiated by the prior is confirmed and the sentence correctly

parsed (cf. Friston et al., 2021), or it is disconfirmed and abandoned. This hypothetical

process would seem concordant with the temporal evolution of the induced response, which

peaks ~2 s following sentence onset, declining thereafter.

While pupil diameter also showed a marked increase at the beginning of the auditory

stimulus presentation following written sentence information, this response decayed at a

much slower rate than that of the alpha synchronisation. Moreover, the profile of the pupil

response following prior information varied across stimulus types: while pupil dilation was

protracted in both the P+ and P- conditions during NVS, this effect was curtailed for P+ and

delayed for P- during SWS. Such differences cohere with the notion that pupil diameter and

alpha-band dynamics may tap dissociable cognitive processes (cf. McMahon et al. 2016;

Miles et al. 2017; Alhanbali et al. 2019; Podvalny et al. 2021).

Given the tight linkage between pupil size and the neuromodulatory regulation of arousal

and attention (Joshi and Gold 2020; Dahl et al. 2022), we interpret these results in terms of

generic aspects of cognitive task engagement (Hess and Polt 1964; Kahneman and Beatty

1966; Beatty 1982; Zekveld and Kramer 2014; Hjortkjær et al. 2020). Increased pupil

diameter in both the P+ and P- conditions is consistent with a greater allocation of cognitive

38

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.09.06.459160doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459160
http://creativecommons.org/licenses/by/4.0/


Expectations boost reconstruction of  noisy speech

resources to the auditory stream when prior information is available, as compared to an

absence of prior information in the P0 condition. Participants may have been more quick to

disengage from SWS stimuli during the P+ condition since it may have been easier to

arbitrate the congruence of the written and acoustic stimuli given the increased clarity of

SWS during the 1st auditory presentation. NVS, on the other hand, may have presented a

more challenging stimulus in general (cf. lower average clarity ratings; Figure 1C), thus

explaining the more consistent and protracted dilation response observed across P+ and P-

conditions.

An important caveat to the interpretation of these results is that the low-level visual

properties of written text stimuli were not precisely matched to ensure parity across

conditions. It is thus feasible that differences in luminance might be partially responsible for

the differential patterns of alpha-band power and pupil size dynamics observed during the

2nd presentation period. However, while posterior alpha-band activity may ‘rebound’

following the offset of visual stimuli, such effects typically unfold over the course of ~1 s (see,

e.g., Pfurtscheller and Lopes da Silva 1999). By contrast, the synchronisation effect

observed here persisted for 3-4 s, consistent with the duration of the first sentence iteration.

Moreover, the evoked pupil response in the period preceding visual stimulus offset was very

similar across conditions, implying that the average difference in luminance between P0 and

P+/P- conditions was negligible (recall that the pupil response was baseline-corrected to the

pre-trial interval, which always featured a blank screen). Finally, we note that the interaction

between stimulus type and prior condition in the alpha power model, and the distinct

patterning of pupil responses >4 s after the onset of SWS stimuli, are difficult to explain in

terms of visual stimulus differences. Rather, these specific response profiles are more likely

to derive from the cognitive factors outlined above.
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Conclusion

This study isolated the electrophysiological effects of cross-modal prior information on

auditory cortical sentence processing, providing further evidence of the top-down predictive

mechanisms that support continuous speech comprehension. By manipulating the content of

prior expectations while holding bottom-up auditory input and prior stimulus exposure

constant, we found that correct expectations led to improved perceptual clarity and

enhanced stimulus reconstruction, which could result from the enhanced cortical

representation of degraded speech. Furthermore, neurophysiological measures revealed

that these effects were accompanied by distinctive functional profiles: while theta activity

was relatively reduced following correct sentence information only, delta power, alpha power,

and pupil size were all increased following any written information. These findings suggest

that theta-band activity indexes the efficiency of incremental sentence processing and is

sensitive to speech intelligibility, whereas delta- and alpha-band oscillations, along with pupil

size, may track more domain-general predictive mechanisms involved in active listening.
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