

1 **Short-term instantaneous prophylaxis and efficient treatment against SARS-**

2 **CoV-2 in hACE2 mice conferred by an intranasal nanobody (Nb22)**

3

4 Xilin Wu^{1,2†}, Yaxing Wang^{3†}, Lin Cheng^{4†}, Fengfeng Ni^{5,6†}, Linjing Zhu^{1,2†}, Sen
5 Ma³, Bilian Huang¹, Mengmeng Ji⁷, Huimin Hu^{5,6}, Yuncheng Li^{5,6}, Shijie Xu⁸, Haixia
6 Shi⁸, Doudou Zhang⁸, Linshuo Liu⁸, Waqas Nawaz¹, Qinxue Hu^{5,9}, Sheng Ye^{3,10*},
7 Yalan Liu^{5*}, Zhiwei Wu^{1,7, 11, 12,13*}

8 1. Center for Public Health Research, Medical School, Nanjing University, Nanjing,
9 P.R. China.

10 2. Department of Antibody, Abrev Biotechnology Co., Ltd. Nanjing, P.R. China.

11 3. Tianjin Key Laboratory of Function and Application of Biological Macromolecular
12 Structures, School of Life Sciences, Tianjin University, Tianjin, P.R. China.

13 4. Institute for Hepatology, National Clinical Research Center for Infectious Disease,
14 Shenzhen Third People's Hospital, Shenzhen, P.R. China.

15 5. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety
16 Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China

17 6. Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P.R.
18 China

19 7. School of Life Sciences, Ningxia University, Yinchuan, P.R. China.

20 8. Department of Antibody, Y-clone Medical Science Co. Ltd. Suzhou, P.R. China.

21 9. Institute for Infection and Immunity, St George's University of London, London, UK

22 10. Life Sciences Institute, Zhejiang University, Zhejiang, P.R. China.

23 11. Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing
24 University, Nanjing, P.R. China.

25 12. State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University,
26 Nanjing, P.R. China.

27 13. Lead contact

28 †These authors contributed equally to this work.

29 *Corresponding author: Z. Wu, E-mail: wzwhw@nju.edu.cn, S. Ye, E-mail:
30 sye@tju.edu.cn and Y. Liu, E-mail: liuyl@wh.iov.cn

31 Mailing address: 22 Hankou Road, Nanjing, Jiangsu 210093. China

32 Phone: +86 (25) 8368-6092. Fax: +86 (25) 8359-6023.

33 **Declaration of interests:** The authors have declared no conflict of interest.

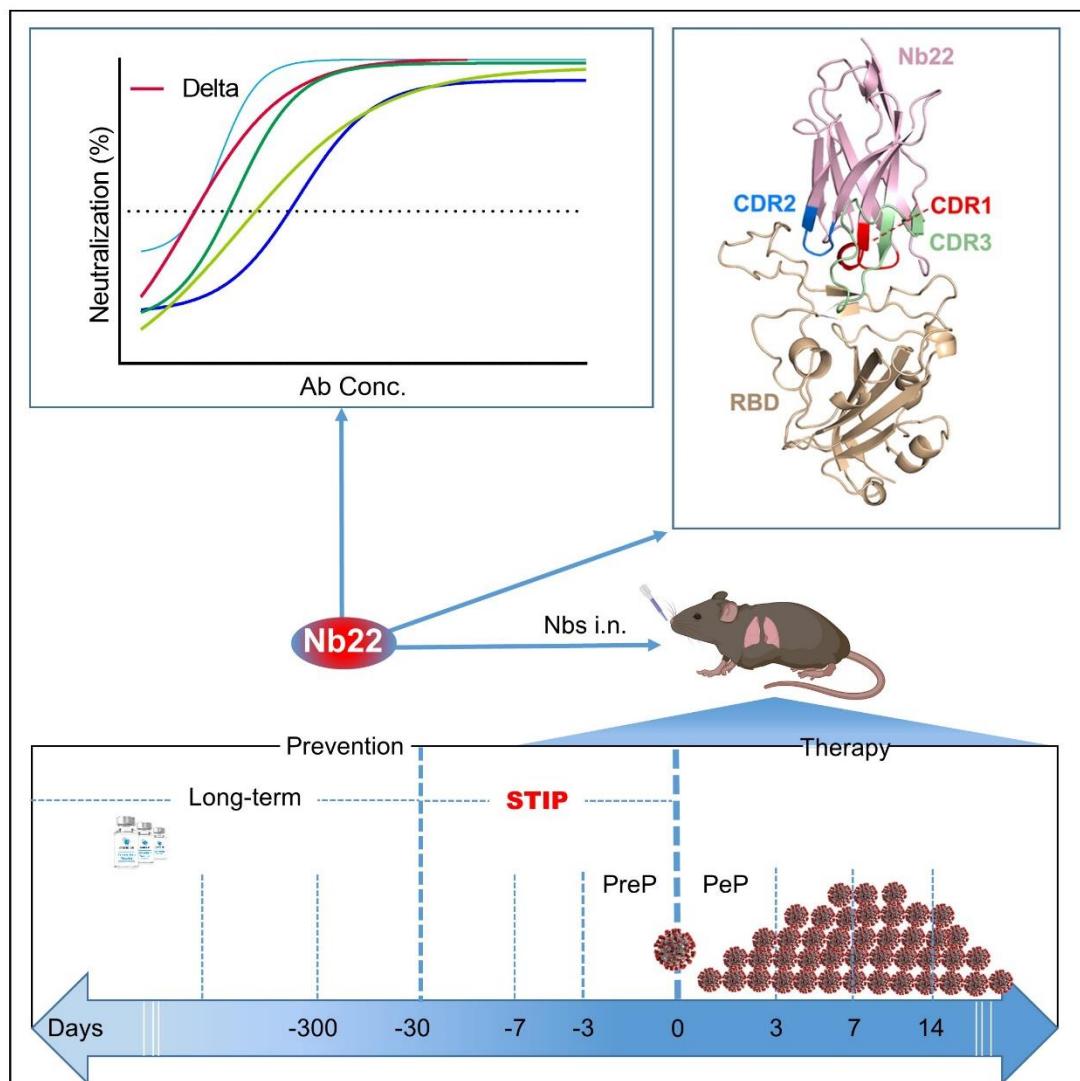
34 **Abstract** (234 words)

35 Current COVID-19 vaccines need to take at least one month to complete inoculation
36 and then become effective. Around 51% global population are still not fully vaccinated.
37 Instantaneous protection is an unmet need among those who are not fully vaccinated.
38 In addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All
39 these highlight the unmet need for short-term instantaneous prophylaxis (STIP) in
40 the communities where SARS-CoV-2 is circulating. Previously, we reported
41 nanobodies isolated from an alpaca immunized with the spike protein, exhibiting
42 ultrahigh potency against SARS-CoV-2 and its variants. Herein, we found that Nb22,
43 among our previously reported nanobodies, exhibited ultrapotent neutralization against
44 Delta variant with an IC_{50} value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal
45 structural analysis revealed that the binding of Nb22 to WH01 and Delta RBDs both
46 effectively blocked the binding of RBD to hACE2. Additionally, intranasal Nb22
47 exhibited protection against SARS-CoV-2 Delta variant in the post-exposure
48 prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of note, intranasal Nb22 also
49 demonstrated high efficacy against SARS-CoV-2 Delta variant in STIP for seven days
50 administered by single dose and exhibited long-lasting retention in the respiratory
51 system for at least one month administered by four doses, providing a means of
52 instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh potency,
53 long-lasting retention in the respiratory system as well as stability at room-temperature
54 make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against
55 SARS-CoV-2.

56

57 **Brief summary:** Nb22 exhibits ultrahigh potency against Delta variant in vitro and is
58 exploited by crystal structural analysis; furthermore, animal study demonstrates high
59 effectiveness in the treatment and short-term instantaneous prophylaxis in hACE2 mice
60 via intranasal administration.

61


62 **Keywords:** SARS-CoV-2, Delta variant, B.1.617.2, Nanobody, Nb22, STIP, Structure,
63 Instantaneous prophylaxis, Instantaneous protection

64

65 **Highlights:**

- 66 1) Nb22 exhibits ultrapotent neutralization against Delta variant with an IC_{50} value of
67 0.41 ng/ml (5.13 pM).
- 68 2) Structural analysis elucidates the ultrapotent neutralization of Nb22 against Delta
69 variant.
- 70 3) Nb22 demonstrates complete protection in the treatment of Delta variant infection
71 in hACE2 transgenic mice.
- 72 4) We complete the proof of concept of STIP against SARS-CoV-2 using intranasal
73 Nb22 with ultrahigh potency and long-lasting retention in respiratory system.

74 **Graphic Abstract**

75

76

77

78

79

80

81

82 **Introduction:**

83 SARS-CoV-2 has given rise to the COVID-19 pandemic ¹, resulting in massive
84 disruption of social and economic activities. Global vaccination has provided protection
85 against the catastrophic outcome of the pandemic. However, a number of individuals
86 are either not fully vaccinated or cannot mount adequate responses to the vaccine.
87 Additionally, current COVID-19 vaccines require multiple doses to achieve full
88 effectiveness and the immunity wanes within a matter of months, which increases the
89 risk of infection and demands the use of agents for providing instantaneous protection
90 at vulnerable times. Several antibodies were approved for emergency use within 7 days
91 of high-risk exposure in the Post-exposure prophylaxis (PEP) against SARS-CoV-2
92 infection ^{2,3}. However, there is no licensed agent in preventing infection before
93 exposure to SARS-CoV-2 (i.e., as pre-exposure prophylaxis, PrEP). A few PrEP studies
94 in animal model demonstrated that antibodies exhibited accelerated clearance of SARS-
95 CoV-2 when administered 1-3 days prior to infection^{2,4-6}. The efficacy was not fully
96 explored when antibodies were administered more than three days prior to SARS-CoV-
97 2 infection. To the best of our knowledge, there is no effective intervention to prevent
98 SARS-CoV-2 infection in advance of one week or longer. Therefore, there is a research
99 gap on short-term instantaneous prophylaxis (STIP) that prevention can take effective
100 immediately following antibody infusion and last for one week or longer. As such, STIP
101 is an unmet need for the prevention against SARS-CoV-2.

102

103 The Delta variant, also known as B.1.617.2, was first identified in India in December
104 2020 and has become predominant in many countries, characterized by the spike protein
105 mutations T19R, L452R, T478K, D614G, P681R, D950N and a double deletion at 157-
106 158 ⁷⁻¹¹. It has been designated as a Variant of Concern (VOC) and is believed to be 60%
107 more transmissible than Alpha variant ¹². Delta variant poses a challenge to the
108 available COVID-19 vaccines, such as the protective effectiveness of AstraZeneca and
109 Pfizer vaccines against Delta variant was reduced to 60% and 88%, respectively ^{11,12}.
110 More recently, a newly emerged variant, Omicron, has spread rapidly in parts of the
111 world and drawn attention for its potential impact on the global public health; however,

112 in most of the world including China, Delta variant remains the dominant virus and the
113 focus of the containment efforts. Recent research indicated that the Delta variant
114 partially but significantly resisted neutralization by mAbs including Bamlanivimab,
115 SARS-CoV-2 convalescent sera and vaccine-elicited antibodies ^{13,14}. While B1-182.1
116 and A23-58.1, recently isolated from convalescent donors, exhibited ultrapotent
117 neutralization against Delta variant with IC₅₀ values of 1.0 and 1.6 ng/ml, respectively
118 ¹⁵.

119
120 To date, a growing number of nanobodies, single-domain fragments of camelid heavy-
121 chain antibodies or VH, were reported for the prophylaxis or treatment of SARS-CoV-
122 2 infection. However, nanobodies with potent neutralization against Delta variant were
123 rarely reported ^{6,16-22}. As SARS-CoV-2 is transmitted through and replicates in
124 respiratory tract and lungs, and does not transverse in blood^{1,23}, we believe that,
125 nanobodies's exceptional resistance to extreme pH and high temperature²⁴, makes them
126 ideal candidates to be administered via intranasal or oral rout, directly to the site of viral
127 infection. Previously, we identified three ultrapotent nanobodies against the initial
128 strain of SARS-CoV-2, Wuhan-Hu-01 (WH01); accordingly, one of the intranasally
129 delivered nanobody was shown to protect hACE2 mice infected by WH01 strain²⁵.

130
131 Here, we compared the neutralizing potency of the aforementioned nanobodies against
132 various circulating SARS-CoV-2 variants. Nb22-Fc was identified to exhibit increased
133 neutralization potency against Delta variant compared to WH01 strain, to which the
134 antibody was originally raised. The binding characterization and crystal structural
135 analysis were conducted to further elucidate the potential mechanism. Furthermore,
136 therapeutic studies demonstrate that intranasal Nb22 exhibited complete protection
137 against SARS-CoV-2 Delta variant in hACE2 mice. Additionally, we comprehensively
138 evaluated the prophylactic efficacy of Nb22 when intranasally administered at 1, 3, 5,
139 7 days prior to SARS-CoV-2 infection. Notably, single dose of intranasal Nb22 still
140 exhibited protective against hACE2 mice even when administered 7 days prior to
141 infection of Delta variant. Moreover, four doses of intranasal Nb22 could maintain

142 long-lasting retention in respiratory system for more than one month. All these indicate
143 that intranasal Nb22 could be applied not only in the PrEP and PEP but also in the STIP,
144 filling the gap between the long-term lagging prevention and PreP.

145

146 **Results**

147 **Potent neutralization of Delta variant by nanobodies**

148 We previously reported the discovery and characterization of three potent neutralizing
149 nanobodies against WH01 strain and its variants with IC_{50} values of ~1 ng/ml. These
150 three nanobodies (Nb15-Fc, Nb22-Fc and Nb31-Fc) were identified to bind to RBD²⁵.
151 Neutralization experiments were further conducted to measure their activity against the
152 circulating variants including variants of concern (VOC) comprising Alpha (B.1.1.7
153 with N501Y), Beta (B.1.351 with E484K and N501Y), Delta (B.1.617.2 with L452R
154 and T478K) and Gamma (P.1 with K417T, E484K and N501Y), as well as variants of
155 interest (VOI) comprising Eta (B.1.525 with E484K), Iota (B.1.526 with E484K),
156 Epsilon (B.1.429 with L452R), and Kappa (B.1.617.1 with L452R and E484Q)⁷⁻¹⁰.
157 Nb15-Fc exhibited increased potency against Alpha variant, but decreased potency
158 against Delta variant or Epsilon as compared with WH01, the RBD used to select the
159 nanobodies. Nb31-Fc exhibited reduced potency against Alpha, Delta and Epsilon
160 variants relative to WH01 or D614G variant (Fig. 1A-G). Interestingly, Nb22-Fc
161 exhibited about 2.5-fold increased neutralizing potency against Delta variant with an
162 IC_{50} value of 0.41 ng/ml (5.13 pM) compared to WH01 with an IC_{50} of 1.01 ng/ml
163 (12.63 pM). Notably, Nb22-Fc also exhibited around 8.4-fold increased neutralization
164 potency against Delta variant relative to variant Alpha with an IC_{50} of 3.45 ng/ml (43.13
165 pM) (Fig. 1A-G). Impressively, Nb22-Fc also exhibited outstanding neutralizing curve
166 against authentic Delta variant compared to Nb15-Fc and Nb31-Fc (Fig. 1F-G). All
167 three nanobodies failed to neutralize variants containing E484K/Q mutation, suggesting
168 that E484K/Q mutation in RBD could lead to the resistance to all three nanobodies.
169 Altogether, Nb15-Fc presented the most potent neutralization against variant Alpha
170 with an IC_{50} of 0.18 ng/ml, and Nb15-Fc and Nb31-Fc still retained potent
171 neutralization of variants containing L452R and T478K mutations in RBD (Fig. 1E-F),

172 though with reduced potency like most other anti-RBD antibodies^{7,12}. Of note, Nb22-
173 Fc exhibited the most potent neutralization against pseudotyped or authentic Delta
174 variant virus among three nanobodies (Fig. 1A-G).

175

176 **Characterization of Nb22-Fc binding to RBD**

177 To explore antibody binding characteristics to the RBD with respect to their
178 neutralization of Delta variant, the interactions of three nanobodies with variant RBDs
179 were analyzed using biolayer interferometry (BLI). Nb15-Fc, Nb22-Fc and Nb31-Fc
180 showed high affinity interactions with RBD of Delta variant at 1.86 nM, 0.31 nM and
181 0.31 nM, respectively (Fig. 2A-D). However, the ultrahigh affinity of Nb22-Fc and
182 Nb31-Fc to the RBD of Delta variant did not fully reflect the neutralization potency as
183 Nb22-Fc neutralized Delta variant with markedly more potency than that of Nb31-Fc,
184 suggesting that affinity is not the only factor dictating the neutralization activity.
185 Furthermore, Nb22-Fc exhibited increased affinity with Delta variant RBD relative to
186 other variant RBDs (Fig. 2A-D), which is in line with the increased potency conferred
187 by Nb22-Fc against Delta variant as compared with other variants.

188

189 Moreover, immunofluorescence analysis revealed that Nb22-Fc specifically interacted
190 with spike protein from WH01, D614G, Alpha, Epsilon and Delta variants on the
191 surface of transfected 293T cells, whereas no binding with the spike protein from other
192 variants containing E484K/Q mutation (Fig. 2E). These results were substantiated by
193 flow cytometric results (Fig. 2F). Overall, these specific binding characteristics are
194 consistent with its specific neutralization properties.

195

196 **Structural analysis of RBD-Nb22 complex**

197 Structural analysis of Nb22 interaction with RBD was performed to address the
198 ultrahigh potency of Nb22 against WH01 strain and Delta variant. Initially, we
199 determined the crystal structure of WH01 RBD-Nb22 complex at a resolution of 2.7 Å
200 (Fig. 3A and Table S1). Nb22 adopts a typical β-barreled structure, and contains three
201 variable complementarity-determining regions (CDR) binding to RBD. The buried

202 surface area (BSA) was 800 Å², mainly constituting of hydrogen bonds and
203 hydrophobic interactions. 14 residues constituting epitope of three CDRs were
204 identified using a distance of <4 Å as the cutoff (Fig. 3B). For CDR1, T30 and S33
205 formed two hydrogen bonds with S494 of RBD, while the hydrophobic interactions
206 included A32 and F34 of Nb22 and Y449, L452, F490 and Q493 of RBD (Fig. 3C and
207 Table S2). N57 of CDR2 interacted with G485 by hydrogen bond, and the hydrophobic
208 interactions were mediated by I56 and Y489 (Fig. 3D). CDR3 is a relatively longer
209 region with only one hydrogen bond (Y119 and G446). The side chain of P104 inserted
210 into the hydrophobic cavity formed by F101, R107, Y453, F456 and Y495 (Fig. 3E).
211 Apart from the five hydrogen bonds in CDR regions, the interface of Nb22 and RBD
212 was stabilized by two additional hydrogen bonds consisting of G1, S75, N450 and E484
213 (Fig. 3F). Interactions were also facilitated by the hydrophobic network constituted by
214 P2, Q3, V4, G28, G29, R73 and D74 of Nb22 (Fig. 3G and Table S2).

215
216 Superimposition of the structure of WH01 RBD-Nb22 complex and RBD-hACE2
217 (PDB code: 6MOJ) immediately elucidates the structural basis of neutralization, in
218 which the binding of Nb22 to RBD effectively blocks the binding of RBD to hACE2
219 during virus infection. Firstly, the binding site of Nb22 on RBD partially overlaps with
220 that of hACE2 (Fig. S1A). Secondly, the loop (V102-Y117) of Nb22 clashes with two
221 α-helices of the N-terminus of hACE2 (Fig. S1B).

222
223 To elucidate the increased potency of Nb22 in neutralizing Delta variant, we determined
224 the Delta RBD-Nb22 complex structure at a resolution of 2.9 Å, which revealed that
225 two distinct mutations, T478K and L452R, had differing impact on the binding K478
226 locates outside the CDR binding regions, and does not disturb the interaction surface
227 (Fig. 4A and Table S1). Therefore, T478K mutation does not affect Nb22 neutralization
228 (Fig. 4A). However, the mutation of hydrophilic leucine to positively charged arginine
229 (R) at position 452 significantly enhances the interactions of RBD with the CDR3
230 region of Nb22. Two additionally formed hydrogen bonds, T30-R452 and S33-Q493,
231 pull the CDR3 loop of Nb22 closer to R452 region of RBD, as revealed by the

232 superimposition of the structures of WH01 and Delta RBD-Nb22 ([Fig. 4B, 4C](#) and
233 [Table S2](#)), explaining enhanced neutralization activity of Nb22 against the Delta variant.

234

235 **Nb22 exhibits room-temperature stability in vitro and long-lasting retention in**
236 **vivo**

237 Nanobodies exhibit various advantages including thermostability. We reported that
238 nanobodies could retain 100% activity even after being incubated at 70 °C for one hour
239 and retain 83% activity after 80 °C treatment for one hour²⁵. Further evaluation showed
240 that Nb22 could maintain full activity for at least two months at room temperature and
241 did not lose any activity even undergoing five rounds of freeze-thawing ([Fig. 5A](#) and
242 [5B](#)), indicating that Nb22-Fc is highly stable and idea for non-cold chain storage and
243 use at room-temperature.

244 To determine Nb22-Fc distribution in vivo, YF®750 SE-labeled Nb22 (Nb22-YF750)
245 was administered via intranasal (i.n.) in a mouse model. The fluorescence could be
246 readily detected in respiratory system including nasopharynx, trachea and lung 2h post
247 infusion. The fluorescence was detectable for more than seven days after a single dose
248 of 200 ug (average of 10 mg/kg) Nb22-YF750 administration, which is in agreement
249 with our previous reports. As expected, the fluorescence could be detected for more
250 than one month when four doses of 200 µg (average of 10 mg/kg) Nb22-YF750 were
251 administered every week ([Fig. 5C-E](#) and [Fig. S2](#)). Nb22-Fc could also be detected in
252 the blood, indicating that Nb22-Fc could also exert its activity in the blood after
253 bypassing the respiratory system ([Fig. 5F](#)). All these observations of prolonged
254 retention of Nb22-Fc in the respiratory system suggest the potential application of the
255 antibody for STIP against SARS-CoV-2 infection. Taken together, intranasal Nb22-Fc
256 could be developed as an STIP reagent for its long-lasting retention in the respiratory
257 system and a portable therapeutics thanks to its room-temperature stability.

258

259 **Intranasal Nb22 is highly efficacious in the STIP, PreP and PeP in hACE2**
260 **transgenic mice challenged by Delta variant**

261

262 To evaluate the efficacy of Nb22-Fc in vivo, hACE2 transgenic mice were challenged
263 with 1×10^5 PFU SARS-CoV-2 Delta variant (CRST: 1633.06.IVCAS 6.7593) and
264 conducted as we previously reported²⁵. hACE2 mice were divided into nine groups
265 (n=3-6) as shown in [Figure 6A](#) and 200 μ g (average of 10 mg/kg) Nb22-Fc was
266 administered via i.n. before or after Delta variant challenge to evaluate the antibody's
267 prophylactic or therapeutic efficacy against Delta variant infection. Viral RNA in the
268 lungs was detected in virus control group named as SARS-CoV-2 group (Group 2).
269 Animals in Control Nb group Group 3 were challenged with Delta variant and received
270 control nanobody treatment one hour post infection. As expected, high copy numbers
271 of viral RNA were also detected in control Nb mice without significant difference
272 compared to SARS-CoV-2 group ([Fig. 6B](#)).

273 In order to evaluate the prophylactic duration conferred by Nb22, a single dose of Nb22
274 was administered via i.n. at days 1, 3, 5, and 7, respectively, prior to Delta variant
275 challenge. Viral RNA copies increased over the course of Nb22-Fc administration ([Fig.](#)
276 [6B](#)). As expected, viral RNA copies in the aforementioned prophylactic groups were
277 all significantly lower than that in the control Nb group, indicating that even a single
278 dose of Nb22-Fc could provide protection against Delta variant infection in hACE2
279 transgenic mice for 7 days. Nb22 administered in -7d and -5d before challenge
280 significantly reduced viral load though failed to provide complete protection ([Fig. 6B](#)).
281 Notably, Nb22 exhibited significant prevention against SARS-CoV-2 infection in the -
282 3d Nb22 (Group 6) and -1d Nb22 group (Group 7) ([Fig. 6B](#)). All these indicate that
283 Nb22-Fc provides better protection at the earlier time points upon infection.

284 In the therapeutic group, viral RNA copies in the animals treated with Nb22 at 1 hour
285 or 1 day postinfection were undetectable in 5/5 mice in the groups 8 and 9, suggesting
286 that Nb22 had complete protection of hACE2 mice against Delta variant infection ([Fig.](#)
287 [6B](#)). The viral RNA results were also validated by immunofluorescence (IF) staining
288 and HE staining in the lungs ([Fig. 6C and 7E](#)). We noted that mice challenged by Delta
289 variant did not show obvious weight loss even in 4 days post infection ([Fig. S3](#)). In
290 summary, Nb22 exhibited high efficacy in both the prevention and therapy of hACE2
291 transgenic mice challenged with Delta variant. Nb22 provided complete protection in

292 PEP (in 1h Nb22 group and 1d Nb22 group) and exhibited high efficacy in PrEP (in -
293 1d Nb22 and -3d Nb22 group). Impressively, a single dose of Nb22 could maintain
294 effectiveness in the prevention against Delta variant infection for at least seven days (in
295 -7d Nb22 group), indicating the potential application for STIP against SARS-CoV-2.

296

297

298 **Discussion**

299 To date, a small number of nanobodies with ultrahigh potency against SARS-CoV-2
300 and its variants have been reported ^{15,26,27}, whereas nanobodies with potent
301 neutralization against the currently dominant Delta variant were rarely reported. Our
302 results revealed that three previously reported nanobodies ²⁵, retained ultrahigh potency
303 in neutralization against the Delta variant. Among them, Nb22-Fc with an IC₅₀ value of
304 0.41ng/ml (5.13 pM) is outstanding with increased neutralization of Delta variant
305 relative to Alpha variant. The Nb22 binding to RBD provides mechanistic insight into
306 the enhanced neutralization against Delta variant, suggesting that the increased binding
307 affinity enhanced the neutralizing potency against Delta variant relative to Alpha
308 variant (Fig. 1). Given that most anti-RBD, anti-NTD antibodies or convalescent sera
309 or vaccine-elicited antibodies showed reduced neutralization of Delta variant relative
310 to that of Alpha variant ^{7,12}, the increased neutralization activity of Nb22-Fc against
311 Delta variant is particularly striking and the structural basis of the phenomenon is of
312 interest for understanding the neutralization mechanisms.

313

314 The structural analysis further illustrated the characteristics of Nb22 binding to WH01
315 and Delta RBD and the mechanisms of viral inhibition. Nb22 binding to RBD
316 effectively blocks the binding of RBD to hACE2 during virus infection. The binding
317 site of Nb22 on RBD overlaps with that of hACE2 (Fig. S1A), and the loop (V102-
318 Y117) of Nb22 clashes with two α -helices of the N-terminus of hACE2 (Fig. S1B). In
319 addition, crystal structural analysis showed that T478K mutation of Delta variant are
320 located outside 800 \AA^2 BSA of Nb22 interacting with RBD and do not perturb the
321 interaction between Nb22 and the RBD of Delta variant. Of note, the guanidine moiety

322 in the L452R mutation forms an additional hydrogen bond with the hydroxyl group of
323 T30 of Nb22, pulling the CDR3 loop of Nb22 closer, and leading to an extra hydrogen
324 bond between S33 of Nb22 and Q493 of RBD (Fig. 4). Consequently, the BSA extends
325 from 800 Å² to 835 Å², in comparison with that of Nb22-WH01 RBD. All these
326 contribute to the enhanced binding and neutralizing potency of Nb22 against Delta
327 variant.

328 Compared to conventional antibodies for passive immunization, nanobodies are
329 efficiently produced in prokaryotic expression systems at low cost and possess
330 favorable biophysical properties including high thermostability²⁸. We reported that
331 nanobodies could remain 100% activity even incubated at 70 °C for one hour and are
332 amenable to engineering of multimeric nanobody constructs²⁵. Such nanobodies exhibit
333 high effectiveness against virus infection via intranasal administration²⁵. The results
334 reveal that Nb22 could maintain full activity for more than two months at room
335 temperature and does not lose any activity even after undergoing five rounds of freeze-
336 thawing.

337 Our results demonstrate that a single dose of intranasal Nb22 could exhibit efficacy in
338 the STIP, PrEP and PEP against SARS-CoV-2 infection in hACE2 mice. Of note, a
339 single dose of intranasal Nb22 could maintain efficacy against SARS-CoV-2 infection
340 for at least one week in hACE2 mice, which would readily serve as STIP. Our antibody
341 distribution results also revealed that Nb22 could retain in respiratory tracts for at least
342 one month when weekly administered via i.n.. As such, we anticipate that Nb22 could
343 provide one month prevention against SARS-CoV-2 infection when administered
344 intranasally every week.

345 VLong-term lagging prevention against SARS-CoV-2 conferred by approved vaccine
346 usually takes more than one month to be effective and then lasts for months or years²⁹.
347 Vaccine efficacy has been shown to wan within months after vaccination^{7,11}.
348 Instantaneous prevention of SARS-CoV-2 is also needed for individuals who do not
349 take vaccines when SARS-CoV-2 is circulating. A few studies in animal model just
350 demonstrated that antibodies exhibited accelerated clearance of SARS-CoV-2 in PrEP
351 when administered 1-3 days prior to infection^{2,4-6}. Whereas, to the best of our

352 knowledge, few studies have fully investigated the STIP that prevention could be
353 readily effective immediately following inoculation and last for more than one week to
354 one month for people at high risk of SARS-CoV-2 infection, which can also serve to
355 reduce transmission during the asymptomatic stage of the infection. As such, our results
356 demonstrate that intranasal Nb22 with ultrahigh potency and long-lasting retention in
357 the lung could satisfy the need of STIP against SARS-CoV-2.

358

359 In summary, structural analysis provides a mechanistic explanation to the enhanced
360 sensitivity of Delta variant and the increased neutralization potency of this antibody.
361 The structural analysis may further guide the rational design of pan-coronavirus
362 vaccines and therapeutics. Nb22 exhibited one of the ultrahigh neutralization potencies
363 among the reported antibodies or nanobodies against Delta variant infection^{7,12,26,30,31}.
364 We presented proof of concept of STIP against SARS-CoV-2 using our Nb22 and
365 suggest STIP as a new prophylactic strategy for long-lasting antibodies to prevent virus
366 infection. Although the newly emerged Omicron variant is spreading globally, the Delta
367 variant remains the dominant variant and likely the deadliest in most of the world;
368 therefore, the ultrahigh potent, and thermal stable Nb22 is an excellent candidate for
369 intranasal or inhalable anti-SARS-CoV-2 agent for both therapy or prophylaxis,
370 especially including STIP.

371

372

373 **Materials and Methods**

374 **Expression of nanobodies**

375 The Fc1 gene (CH2-CH3) of the human monoclonal antibody was fused with the VHH
376 gene of nanobodies (named as Nb-Fc or Nbs) to assist the purification and prolong the
377 half-life of the Nb antibody, following our previously published protocol³². The Nbs
378 were finally cloned into the pcDNA3.4 eukaryotic expression vector (Invitrogen),
379 which were transfected into 293F cells (cat.# R79007, Thermo Scientific) to produce
380 Nb-Fcs. Nb fused with Fc was purified using Protein G (cat.# 20399, Thermo

381 Scientific).

382

383 **Enzyme linked immunosorbent assay (ELISA) analysis**

384 Antibody quantification and antibody characterization were tested by ELISA as our
385 previously reported method³³, with modifications. In brief, the protein was coated to
386 ELISA plates (Corning) at a concentration of 0.5 µg/ml. After washing 2-4 times, 5%
387 non-fat milk in PBS was added and incubated for blocking at 37 °C for 1 h. After
388 washing, 100 µl serially diluted sera or purified antibody was added and incubated at
389 37 °C for 1 h. Following washing, secondary antibody of goat anti-llama IgG (H+L)
390 with HRP (Novus, cat.# NB7242, 1:10000 dilution) or goat anti-human IgG with HRP
391 was added and incubated at 37 °C for 1 h. Accordingly, 3,3',5,5'-Tetramethylbenzidine
392 (TMB, Sigma) substrate was added at 37 °C for 10 minutes (min); and 10 µl 0.2 M
393 H₂SO₄ was added to stop the reaction. The optical densities at 450 nm (OD450) were
394 measured using the Infinite 200 (Tecan, Ramsey, MN, USA). Antibody quantification
395 in the sera was calculated according to the standard curve generated by purified
396 antibody.

397

398 **Neutralization activity of nanobodies against pseudovirus**

399 Pseudovirus neutralization assay was carried out following our previously published
400 protocol²⁵, with the follow modifications. Briefly, pseudovirus of SARS-CoV-2
401 variants was produced by co-transfection of pNL4-3.Luc.R-E-, an HIV-1 NL4-3
402 luciferase reporter vector that comprises defective Nef, Env and Vpr (HIV AIDS
403 Reagent Program), and pVAX1 (Invitrogen) expression vectors encoding the spike
404 proteins of respective variants into 293T cells (ATCC). Supernatants containing
405 pseudovirus were collected after 48 hours (h), and viral titers were determined by
406 luciferase assay in relative light units (Bright-Glo Luciferase Assay Vector System,
407 Promega Biosciences). Human codon optimized S genes of SARS-CoV-2 variants were
408 synthesized, and the corresponding pseudoviruses were produced following the above
409 protocol. For neutralization assay, SNB02, an Nb-Fc specific against SFTSV³², served
410 as a negative control. Neutralization assays were conducted by incubating pseudovirus

411 with serial dilutions of purified nanobodies at 37 °C for 1 h. HEK293T-ACE2 cells
412 (cat.# 41107ES03, Yeasen Biotech Co., Ltd. China) (approximately 2.5×10^4 per well)
413 were added in duplicate to the virus-antibody mixture. Half-maximal inhibitory
414 concentrations (IC₅₀) of the evaluated nanobodies were determined by luciferase
415 activity 48 h following exposure to virus-antibody mixture, and analyzed by GraphPad
416 Prism 8.01 (GraphPad Software Inc.).

417 **Immunofluorescence and flow cytometric analysis**

418 Immunofluorescence and flow cytometric analysis were conducted following our
419 previously published protocol ³⁴, with minor modifications. Briefly, S gene sequences
420 for SARS-CoV-2 spike protein of various SARS-CoV-2 variants were obtained from
421 the GISAID website (<https://gisaid.org>). S genes were synthesized and constructed as
422 expression plasmids by GenScript. The plasmids were transfected into 293T cells
423 (ATCC) cultured in 12-well plates. Next, 48 hours post transfection, the cells were
424 washed by PBS and fixed with 4% paraformaldehyde for 20 minutes at room
425 temperature. The purified Nb-Fc was used to stain the 293T cells, followed by Alexa
426 Fluor 488 AffiniPure goat Anti-human IgG (H+L) (1:500 dilution) (109-545-003,
427 Jackson ImmunoResearch). For immunofluorescence analysis, the cells on the plate
428 were examined and the images were acquired using an OLYMPUS IX73. For flow
429 cytometric analysis, the cells were resuspended in 500 µl PBSF buffer (PBS+2% FBS)
430 and analyzed using ACEA NovoCyte TM (Agilent Biosciences); non-transfected 293T
431 cells served as a negative control.

432

433 **Affinity determination by Bio-Layer Interferometry (BLI)**

434 We measured antibody affinity using a ForteBio OctetRED 96 BLI (Molecular Devices
435 ForteBio LLC, Fremont, CA) with shaking at 1,000 rpm at 25 °C ²⁵. To determine the
436 affinity of Nbs with human Fc tag, Nb-Fcs were loaded to anti-human Fc (AHC)
437 biosensors (cat.# 18-5060, Fortebio) in a kinetic buffer (PBS, 0.02% (v/v) Tween-20,
438 pH 7.0) for 200 sec prior to baseline equilibration for 180 sec in a kinetic buffer.
439 Association of SARS-CoV-2 RBD in a three-fold dilution series from 33.3 nM to 1.2
440 nM was performed prior to dissociation for 180 sec. After each cycle, the biosensors

441 were regenerated through 3 brief pulses of 5 sec each with 100 mM pH 2.7 glycine-
442 HCL followed by a running buffer. The data were baseline subtracted before fitting
443 using a 1:1 binding model and the ForteBio data analysis software. K_D , K_a and K_d
444 values were determined by applying a global fit to all data.

445 **Expression and purification of WH01 and Delta RBD protein for crystal
446 structural analysis**

447 The WH01 and Delta RBD were expressed using the Bac-to-Bac baculovirus system.
448 The two pAcgp67-RBD (residues 333–530) plasmid with a C-terminal 8×His tag were
449 transfected into Sf9 cells using Cellfectin II Reagent (Invitrogen) to produce the
450 recombinant baculoviruses. After 3 rounds of amplification, Hi5 cells were infected
451 with baculoviruses at an MOI of 4 at a density of 2×10^6 cells/ml. The supernatants of
452 cell culture containing the secreted RBD were harvested at 60 h after infection. The
453 RBD was purified by Ni-NTA resin (GE Healthcare). Nonspecific contaminants were
454 removed by washing the resin with 20 mM Tris-HCl, 150 mM NaCl, pH 7.5, and the
455 target proteins were eluted with elution buffer containing 20 mM Tris-HCl, 150 mM
456 NaCl, 500 mM imidazole, pH 7.5. The eluted proteins were further purified by
457 Superdex 75 (GE Healthcare, USA) and stored in 20 mM Tris-HCl, 150 mM NaCl, pH
458 7.5.
459

460 **Expression and purification of Nb22 for crystal structural analysis**

461 The VHH gene for Nb22 was amplified by PCR and cloned into a pET21a vector with
462 *Bam*H I and *Xho* I restriction sites. The recombinant plasmids were transformed into
463 *Escherichia coli*. BL21 (DE3). The cells were cultured in LB medium and grown to
464 OD₆₀₀ = 0.8 at 37°C. Isopropyl-D-1-thiogalactopyranoside (IPTG) was added to a final
465 concentration of 1.0 mM to induce the protein expression, and the cultures were grown
466 at 16 °C overnight. Cells were harvested by centrifugation at 4,500 rpm for 15 min, re-
467 suspended and homogenized in the lysis buffer containing 20 mM Tris-HCl, 150 mM

468 NaCl, pH 7.5 using ultrasonic. Cell debris was removed by centrifugation at 18,000
469 rpm for 30 min. The supernatants were added to Ni- NTA resin (GE Healthcare, USA).
470 The nonspecific contaminants were eluted by washing the resin with the lysis buffer
471 containing 10 mM imidazole. The target protein with 6 x His tag, named as Nb22, was
472 subsequently eluted with the lysis buffer containing 500 mM imidazole. Nb22 was
473 eluted and purified by Superdex 75 (GE Healthcare, USA).

474

475 **Crystallization, structural determination and data acquisition**

476 The complexes were prepared by mixing WH01 or Delta RBD and Nb22 at a 1:1.2
477 molar ratio and incubating at 4 °C overnight. The complexes were further purified by
478 Superdex 75 (GE Healthcare, USA) to remove the excess nanobody. The crystals were
479 screened by vapor-diffusion sitting-drop method at 16°C. The crystals appeared and
480 reached their final size within 3 days in a well solution comprising 0.1 M HEPES (pH
481 7.0), 5% v/v (+/-)-2-Methyl-2,4-pentanediol (MPD), 10% polyethylene glycol (PEG)
482 10000 (WH01 RBD-Nb22) and 0.1 M Tris (pH 7.0), 37.5% Jeffamine (Delta RBD-
483 Nb22), respectively.

484 To collect data, a single crystal was mounted on a nylon loop and was flash-cooled with
485 a nitrogen gas stream at 100 K. Diffraction data of WH01 RBD-Nb22 was collected on
486 BL18U1 at Shanghai Synchrotron Radiation Facility (SSRF) at a wavelength of
487 0.97915 Å. While, the Delta RBD-Nb22 was collected on BL02U1 at a wavelength of
488 0.97918 Å. Data were processed and scaled using the HKL3000 package and
489 autoPROC³⁵. The structures were elucidated using the molecular replacement (MR)
490 method in PHASER program³⁶ with the structure of SARS-CoV-2 RBD (PDB code:
491 7CJF)³⁷ as the initial searching model. The model was built into the modified
492 experimental electron density using COOT³⁸ and further refined in PHENIX³⁹. The
493 final refinement statistics are summarized in Table S1. Structural figures were prepared
494 by PyMOL. Epitope and paratope residues, as well as their interactions, were identified
495 by PISA (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) at the European
496 Bioinformatics Institute.

497

498 **Pharmacokinetics (PK) of Nb22-Fc *in vivo*.**

499 Purified Nb22-Fc were injected via intranasal (*i.n.*) into BALB/c mice (Qing Long Shan
500 Animal Center, Nanjing, China) at a dose of 10 mg/kg. The concentration of Nb22-Fc
501 in serum was measured by ELISA. The $T_{1/2}$ of Nb22-Fc was caculated as $\ln(2)/k$, where
502 k is a rate constant expressed reciprocally of the x axis time units by the plateau
503 followed one phase decay or one phase decay equation in the GraphPad software.

504

505 **Spatial distribution of Nb22-Fc *in vivo***

506 Spatial distribution of Nb22-Fc were conducted following our previously published
507 protocol²⁵, with minor modifications. Nb22-Fc labeled with far infrared dye YF®750
508 SE (US EVERBRIGHT INC, YS0056) were named as Nb22-YF750. 10 mg/kg Nbs-
509 YF750 were administered via intranasal into nude mice (18-22g, Qing Long Shan
510 Animal Center, Nanjing, China). Images were recorded at Ex:740 nm/Em:780 nm by
511 NightOWL LB 983 (Berthold, Germany) at the indicated time point. Images were
512 analyzed using Indigo imaging software Ver. A 01.19.01.

513

514 **Evaluating the efficacy of Nb22-Fc in SARS-CoV-2 infected hACE2 mice.**

515 The efficacy of Nb22-Fc against SARS-CoV-2 were evaluated according to our
516 previously published protocol²⁵, with minor modifications. In brief, A total of 43 8-
517 week-old male transgenic hACE2 mice (C57BL/6J) (cat.# T037630, GemPharmatech
518 Co., Ltd., Nanjing, China) were challenged with 1×10^5 PFU SARS-CoV-2 Delta
519 variant (CRST: 1633.06.IVCAS 6.7593) per mouse. The mice were randomly divided
520 into nine groups (n=3-6) for either prophylactic or therapeutic evaluation, as described
521 in [Figure 5A](#). Mice without any treatment and challenge were taken as blank control
522 (No SARS-CoV-2, n=3). Mice challenged with SARS-CoV-2 were taken as infection
523 control (SARS-CoV-2, n=5). 250 μ g/mouse (average of 10 mg/kg) SNB02 (Y-Clone,
524 China), an anti-SFTSV antibody constructed by Nb fused with human Fc1 (Nb-Fc)³²,
525 was intranasally injected 1 hour (h) after infection and was taken as an isotype antibody
526 treated control (Control Nb, n=3). For the prophylactic group, mice were intranasally
527 injected with Nb22-Fc at a dose of 250 μ g/mouse (average of 10 mg/kg) at 7 days (d),

528 5d, 3d, 1d before infection (named as -7d Nb22, -5d Nb22, -3d Nb22, -1d Nb22,
529 respectively, n=5-6). For the therapeutic group, mice were intranasally injected with
530 Nb22-Fc at a dose of 250 µg/mouse (average of 10 mg/kg) 1 h or 24 h after infection
531 (named as 1h Nb22 and 1d Nb22, n=5, respectively). Body weight of mouse was
532 recorded daily. Given that hACE2 transgenic mice typically clear virus within 5-7 days
533 after SARS-CoV-2 infection⁴⁰, the mice were sacrificed at 4 days post infection (dpi).
534 Subsequently, lung tissues were harvested for viral load determination and tissue
535 sections for immunofluorescence (IF) and hematoxylin and eosin (H&E) staining. All
536 experiments were conducted in a Biosafety Level 3 (BSL-3) facility.

537

538

539 **Viral load measurement by quantitative RT-PCR.**

540 Viral load was measured by quantitative real-time PCR (qRT-PCR) on RNA extracted
541 from the supernatant of lung homogenates as reported previously⁴¹. Briefly, lung
542 homogenates were prepared by homogenizing perfused lung using an electric
543 homogenizer. The inactivated samples were transferred from the BSL-3 to BSL-2
544 laboratory and total RNA was extracted from the collected supernatant. Each RNA
545 sample was reverse transcribed to 50 µl cDNA with HiScript II Q RT SuperMix for
546 qPCR (+gDNA wiper) (R223-01). 5 µl cDNA was added into a 25 µl qRT-PCR reaction
547 containing the ChamQ SYBR qPCR Master Mix (High ROX Premixed) (Q341-02,
548 Vazyme Biotech, China) and primers designed to target the nucleocapsid protein of
549 SARS-CoV-2 (5' - GGGAACTTCTCCTGCTAGAAT -3' and 5' -
550 CAGACATTTGCTCTCAAGCTG -3'). The samples were run in triplicate on an
551 ABI 7900 Real-Time System (Applied Biosystems, Thermo Fisher Scientific). The
552 following cycling conditions were performed: 1 cycle of 50 °C for 2 min, 1 cycle of
553 95 °C for 10 min, and 40 cycles of 95 °C for 15 sec and 58 °C for 1 min.

554

555 **Immunofluorescence staining of SARS-CoV-2-infected cells and H&E staining in
556 tissues.**

557 The lung tissues were immersed in 10% neutral buffered formalin (cat.# Z2902, Sigma)

558 for 24 h. After the formalin fixation, the tissues were placed in 70% ethanol (Merck)
559 and subsequently embedded with paraffin. Tissue sections (5- μ m thick) were prepared
560 for H&E staining and immunofluorescence staining for SARS-CoV-2 detection using
561 the Coronavirus nucleocapsid protein (NP) antibody (cat. 40143-MM05, Sino
562 Biological). Images were collected under a Pannoramic MIDI system (3DHISTECH,
563 Thermo) using Pannoramic scanner software and analyzed by ImageJ (NIH).

564

565 **Quantification and statistical analysis**

566 All statistical analyses were carried out using GraphPad Prism 8.01 software (GraphPad)
567 or OriginPro 8.5 software (OriginLab). ANOVA or Mann-Whitney test was performed
568 for group comparisons. $P < 0.05$ was considered as statistically significant with mean
569 \pm SEM or mean \pm SD.

570

571 **Study approval**

572 The study and the protocol for this research were approved by the Center for Public
573 Health Research, Medical School, Nanjing University. All animal experimental
574 procedures without infection were approved by the Committee on the Use of Live
575 Animals by the Ethics Committee of Nanjing University. All animals infected by
576 SARS-CoV-2 were performed in Biosafety Level 3 animal facilities in accordance with
577 the recommendations for care and use of the Institutional Review Board of Wuhan
578 Institute of Virology of the Chinese Academy of Sciences (Ethics Number:
579 WIVA11202111). All the authors declare their compliance with publishing ethics.

580

581

582 **Author contributions**

583 XW conducted most experiments, analyzed the data and wrote the draft manuscript. LC
584 conducted all the neutralization experiments. LZ, BH, MJ, SX, HS, DZ, LL, WN
585 provided technical assistance. YW, SM and SY conducted the structural analysis. FN,
586 YL, HH, QH and YL, evaluated the efficacy of Nb22 in SARS-CoV-2 infected
587 transgenic hACE2 mice. ZW designed the study, directed and revised the manuscript.

588 All authors critically reviewed the draft manuscript and approved the final version.

589

590 **Acknowledgements**

591 We thank Prof. Guo. for providing the plasmid of RBD. The X-ray data were collected
592 using Shanghai Synchrotron Radiation Facility on BL18U1 and BL02U1. The
593 efficacy of Nb22 in SARS-CoV-2 infected transgenic hACE2 mice was evaluated in
594 Wuhan National Biosafety Laboratory, Chinese Academy of Sciences. This work was
595 supported by National Science Foundation of China (NSFC) (No. 81803414 to X.W.,
596 31970149 to Z.W.), the Major Research and Development Project (2018ZX10301406
597 to Z.W.), Ministry of Science and Technology (2020YFA0908500 to S.Y.), the National
598 Natural Science Foundation of China (31971127 to S.Y. and 81801998 to Y.W.), Tianjin
599 Natural Science Foundation (20JCQNJC01570 to Y.W.), Nanjing University-Ningxia
600 University Collaborative Project (Grant# 2017BN04 to Z.W.), Jiangsu Province Natural
601 Science Foundation for Young Scholar (Grant# BK20170653 to X.W.), Key Natural
602 Science Foundation of Jiangsu Province (Grant# ZDA2020014 to X.W.), the
603 Fundamental Research Funds for the Central Universities (Grant# 0214-14380523 to
604 X.W.) Jiangsu province “Innovative and Entrepreneurial talent” and Six Talent Peaks
605 Project of Jiangsu Province, the Emergency Prevention and Control Capacity Program
606 for New Severe Infectious diseases of National Institute for Viral Disease Control and
607 Prevention, and the 135 Strategic Program of Chinese Academy of Sciences, the
608 Science and Technology Innovation Committee of Shenzhen Municipality
609 (JCYJ20180228162229889 to L.C.), and the National Science Foundation of China (No.
610 31970172 to Y.L.).

611

612

613

614

615

616

617 **Reference**

1. Zhou, P., *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* (2020).
2. Baum, A., *et al.* REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. *Science (New York, N.Y.)* **370**, 1110-1115 (2020).
3. Chen, P., *et al.* SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. *N. Engl. J. Med.* (2020).
4. Zost, S.J., *et al.* Potently neutralizing and protective human antibodies against SARS-CoV-2. *Nature* **584**, 443-+ (2020).
5. Rogers, T.F., *et al.* Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. *Science* (2020).
6. Pymm, P., *et al.* Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. *Proc Natl Acad Sci U S A* **118**(2021).
7. Liu, C., *et al.* Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. *Cell* (2021).
8. Garcia-Beltran, W.F., *et al.* Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. *Cell* (2021).
9. Davies, N.G., *et al.* Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. *Nature* (2021).
10. Plante, J.A., *et al.* The variant gambit: COVID-19's next move. *Cell Host & Microbe* **29**, 508-515 (2021).
11. Bernal, J.L., *et al.* Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *N. Engl. J. Med.* (2021).
12. Planas, D., *et al.* Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. *Nature* (2021).
13. Wall, E.C., *et al.* AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC. *Lancet* **398**, 207-209 (2021).
14. Yadav, P.D., *et al.* Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* (2021).
15. Wang, L., *et al.* Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. *Science (New York, N.Y.)* **373**(2021).
16. Xiang, Y., *et al.* Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. *Science (New York, N.Y.)* **370**, 1479-1484 (2020).
17. Schoof, M., *et al.* An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. *Science (New York, N.Y.)* **370**, 1473-1479 (2020).
18. Huo, J.D., *et al.* Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. *Nature Structural & Molecular Biology* **27**, 846-+ (2020).
19. Hanke, L., *et al.* An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. *Nature Communications* **11**(2020).
20. Wu, Y., *et al.* Identification of Human Single-Domain Antibodies against SARS-CoV-2. *Cell*

- 658 21. *Host & Microbe* **27**, 891-+ (2020).
- 659 21. Dong, J., *et al.* Development of multi-specific humanized llama antibodies blocking SARS-
660 CoV-2/ACE2 interaction with high affinity and avidity. *Emerging Microbes & Infections* **9**,
661 1034-1036 (2020).
- 662 22. Nambulli, S., *et al.* Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections
663 in Syrian hamsters at ultra-low doses. *Science advances* **7**(2021).
- 664 23. Wang, W.L., *et al.* Detection of SARS-CoV-2 in Different Types of Clinical Specimens. *Jama-
665 J Am Med Assoc* **323**, 1843-1844 (2020).
- 666 24. Wu, Y., Jiang, S. & Ying, T. Single-Domain Antibodies As Therapeutics against Human viral
667 Diseases. *Frontiers in immunology* **8**(2017).
- 668 25. Wu, X., *et al.* A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2
669 infection via intranasal administration. *Cell reports*, 109869-109869 (2021).
- 670 26. Guttler, T., *et al.* Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and
671 mutation-tolerant nanobodies. *Embo Journal*.
- 672 27. Wrapp, D., *et al.* Structural Basis for Potent Neutralization of Betacoronaviruses by Single-
673 Domain Camelid Antibodies. *Cell* **181**, 1436-1441 (2020).
- 674 28. Steeland, S., Vandenbroucke, R.E. & Libert, C. Nanobodies as therapeutics: big opportunities
675 for small antibodies. *Drug Discov Today* **21**, 1076-1113 (2016).
- 676 29. Dai, L. & Gao, G.F. Viral targets for vaccines against COVID-19. *Nature Reviews Immunology*
677 (2020).
- 678 30. Koenig, P.A., *et al.* Structure-guided multivalent nanobodies block SARS-CoV-2 infection and
679 suppress mutational escape. *Science* **371**, 691-+ (2021).
- 680 31. Taylor, P.C., *et al.* Neutralizing monoclonal antibodies for treatment of COVID-19. *Nature
681 Reviews Immunology* **21**, 382-393 (2021).
- 682 32. Wu, X., *et al.* A single-domain antibody inhibits SFTSV and mitigates virus-induced
683 pathogenesis in vivo. *JCI insight* **5**(2020).
- 684 33. Wu, X., *et al.* Induction of neutralizing antibodies by human papillomavirus vaccine generated
685 in mammalian cells. *Antibody Therapeutics* (2019).
- 686 34. Huang, B., *et al.* Potent Neutralizing Humanized Antibody With Topical Therapeutic Potential
687 Against HPV18-Related Cervical Cancer. *Frontiers in immunology* **12**(2021).
- 688 35. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of
689 data reduction and structure solution--from diffraction images to an initial model in minutes.
690 *Acta Crystallogr D Biol Crystallogr* **62**, 859-866 (2006).
- 691 36. McCoy, A.J., *et al.* Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674 (2007).
- 692 37. Jin, Z., *et al.* Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. *Nature* **582**,
693 289-293 (2020).
- 694 38. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. *Acta
695 Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).
- 696 39. Adams, P.D., *et al.* PHENIX: a comprehensive Python-based system for macromolecular
697 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221 (2010).
- 698 40. Bao, L.N., *et al.* The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. *Nature* **583**,
699 830-+ (2020).
- 700 41. Cao, Y.L., *et al.* Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-
701 Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. *Cell* **182**, 73-+ (2020).

702
703
704

705 **Figure Legends**

706 **Figure 1 Characterizing nanobodies neutralizing circulating variants of SARS-
707 CoV-2.** The neutralization curve of Nb15-Fc (A), Nb22-Fc (B), Nb31-Fc(C) and
708 SNB02 (D) inhibiting SARS-CoV-2 pseudovirus of circulating variants. Nb-Fcs and
709 SNB02 were all constructed as the format of VHH fused with human Fc1. SNB02 was
710 taken as an antibody control specific for SFTS virus. (E) The summary curve of IC₅₀
711 of Nb-Fcs exhibiting potent neutralization against SARS-CoV-2 variants. (F) The
712 neutralization potency of Nb-Fcs was evaluated based on authentic SARS-CoV-2 Delta
713 variant plaque reduction neutralization test. (G) The summary table of IC₅₀ and IC₈₀ of
714 Nb-Fcs in A-C and F, displaying potent neutralization. Data are represented as mean ±
715 SD. All experiments were repeated at least twice.

716
717

718 **Figure 2. Characterizing the binding of Nbs.** Kinetic binding curve of Nb15-Fc (A),
719 Nb22-Fc (B) and Nb31-Fc (C) at the concentration 33.3 nM, 11.1nM, 3.7nM and 1.2
720 nM with RBD of Delta variant, respectively, detected by BLI. Binding curves are
721 colored black, and fit of the data to a 1:1 binding model is colored red. (D)
722 Representative binding curve of various RBD as indicated to Nb22-Fc tested by BLI.
723 Nb22-Fc binding with RBD from representative SARS-CoV-2 variants detected by
724 immunofluorescence assay (E) and flow cytometric analysis (F), respectively. Mock
725 served as a cell control without plasmid transfection. Images were visualized under the
726 ×10 objective. All experiments were repeated at least twice.

727

728 **Figure 3. Structural analysis of Nb22 and WH01 RBD complex.** (A) The overall
729 complex structure of Nb22 and WH01 RBD. The CDR1 (red), CDR2 (blue), CDR3
730 (green) of Nb22 (pink) and WH01 RBD (orange) are displayed in cartoon
731 representation. (B) The epitope of Nb22 shown in surface representation. The CDR
732 regions are colored in red, blue and green, respectively. The interaction between CDR1
733 (C), CDR2 (D), CDR3 (E) and WH01 RBD. (F) The hydrogen bonds of the interface
734 between Nb22 and WH01 RBD. The hydrogen bonds are shown in cyan dash line. (G)
735 The hydrophobic network between Nb22 and WH01 RBD. All the residues are shown
736 in sticks.

737

738 **Figure 4. Structural analysis of Nb22 and Delta RBD complex.** (A) The two
739 mutation sites of Delta RBD. K478 is located outside the CDR binding regions, R452
740 is on the CDR2 recognized epitope. R452 and K478 are colored in cyan, and the epitope
741 of CDRs is colored identical to Fig. 3. (B) The superimposition of WH01 RBD-Nb22
742 (orange and pink) and Delta RBD-Nb22 (light blue and yellow). (C) The hydrogen

743 bonds on the interaction interface of Delta RBD-Nb22. R452 and Q493 form two
744 additional hydrogen bonds with T30 and S33 of Nb22. The residues identified are shown
745 in sticks.

746

747 **Figure 5. Characterizing Nb22-Fc stability in vitro and pharmaceutics in vivo. (A)**
748 Binding curve of RBD with Nb22-Fc detected by ELISA after storage at room
749 temperature in the indicated time points including 0 d, 5 d, 10 d, 30 d, 40 d, 50 d and
750 60 d. **(B)** Binding curve of RBD with Nb22 detected by ELISA after the indicated
751 rounds of freeze-thawing including 0, 1, 3, 5 rounds, respectively. **(C)** Pharmacokinetic
752 of Nb22-Fc labeled with dye YF®750 SE via intranasal administration was detected.
753 200 μ g Nb22-YF750 was infused at day 0, 7, 14 and 21 respectively. The optical
754 imaging of mice upper half body was measured by NightOwl LB 983 0.08 d (2h) post
755 Nb22-Fc infusion or at indicated time point labeled at the top of panel. The mice in the
756 red dash line figure were sacrificed at the indicated time point in the left of panel for
757 analysis of the fluorescence intensity of lung. **(D)** The fluorescence intensity of upper
758 half body of mice in **(C)** was summarized. **(E)** The fluorescence intensity of lung in lung
759 column of **(C)** was summarized. **(F)** Bioavailability and $t_{1/2}$ of Nb22 in BALB/c
760 mice. Nb22 was intranasally (i.n.) administered into mice (n=3, Female) at 200 μ g
761 (average of 10 mg/kg mice. Serum concentrations of the Nbs were determined at
762 various time points by ELISA. $T_{1/2}$, time of half-life. Data represent mean \pm SEM.

763

764

765 **Figure 6. The efficacy of Nb22s evaluated in hACE2 transgenic mice challenged**
766 **by SARS-CoV-2. (A)** Experimental schedule of Nb22s in the prevention and treatment
767 of SARS-CoV-2 infection. Bottom, table summary of groups (n = 3–6 mice) with
768 different treatments. **(B)** Viral loads in lungs among 9 groups were measured by qRT-
769 PCR. The name of each group in the x axis was indicated as in the table in **(A)**. Each
770 dot represents one mouse. The limit of detection was 1000 copies/mg referenced to
771 blank control (No-SARS-CoV-2 group). Data are represented as mean \pm SEM; Mann-
772 Whitney test was performed to compare treatment group with the SARS-CoV-2 control
773 group. **(C)** Sections of lung were analyzed by immunofluorescence staining using
774 antibodies specific to SARS-CoV-2 NP in red and DAPI for nuclei in blue, respectively.
775 The fluorescence signal intensity of red was taken as a quantitative indicator for viral
776 infection, which was calculated by ImageJ software. ns, no significance; *p < 0.05, **p
777 < 0.01, ***p < 0.001. All experiments of **(B)** and **(C)** was repeated twice.

778

779 **Figure 7. Representative sections of lung from hACE2 mice were analyzed by**
780 **H&E staining and immunofluorescence staining.** Representative lung tissue sections
781 from the mice indicated in figure 6C including No-SARS-CoV-2, SARS-CoV-2,
782 Control Nb, -7d-Nb22, -5d-Nb22, -3d-Nb22, 1h-Nb22 and 1d-Nb22 group were
783 analyzed by immunofluorescence staining using antibodies specific to SARS-CoV-2
784 NP in red and DAPI for nuclei in blue, respectively. The corresponding representative
785 lung tissue sections were also analyzed by H&E staining. Immunofluorescence and HE
786 Images were visualized under the indicated bar.

787

788 **Supplemental Materials**

789 **Supplemental Figure 1. Nb22 blocks the binding of hACE2 to WH01 RBD. (A)**

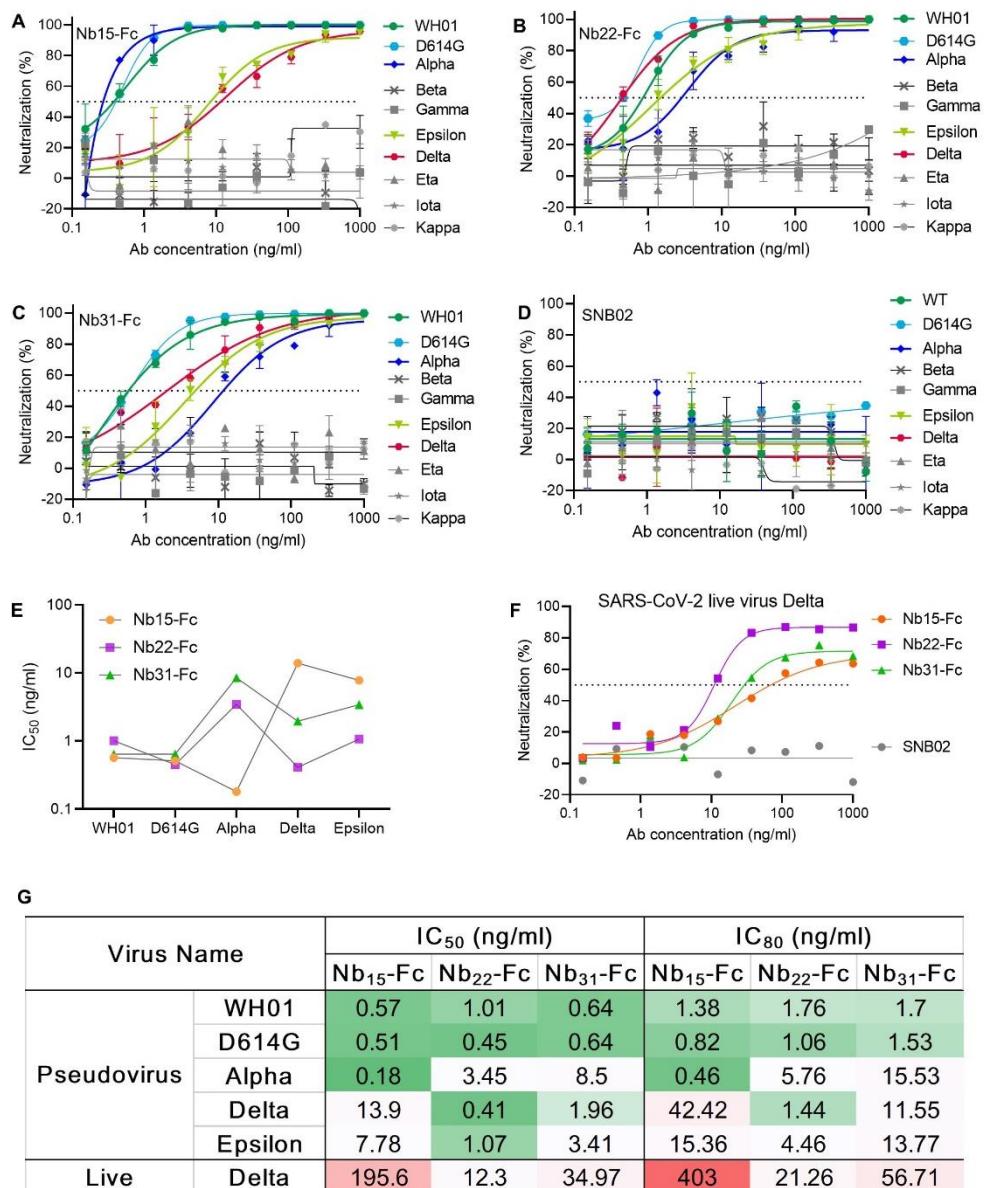
790 Overlap of Nb22 and hACE2 binding sites on WH01 RBD. hACE2 binding site on
791 WH01 RBD is shown in cyan line. Nb22 binding site is shown in pink line. The overlap
792 region is represented by ellipses with dashed lines. **(B)** The loop (V102-Y117) of Nb22
793 is clashed with the two helices on N-terminal of hACE2. The loop is colored in red and
794 helixes are colored in green.

795

796 **Supplemental Figure 2. Spational distribution of Nb22 labeled with dye YF®750**

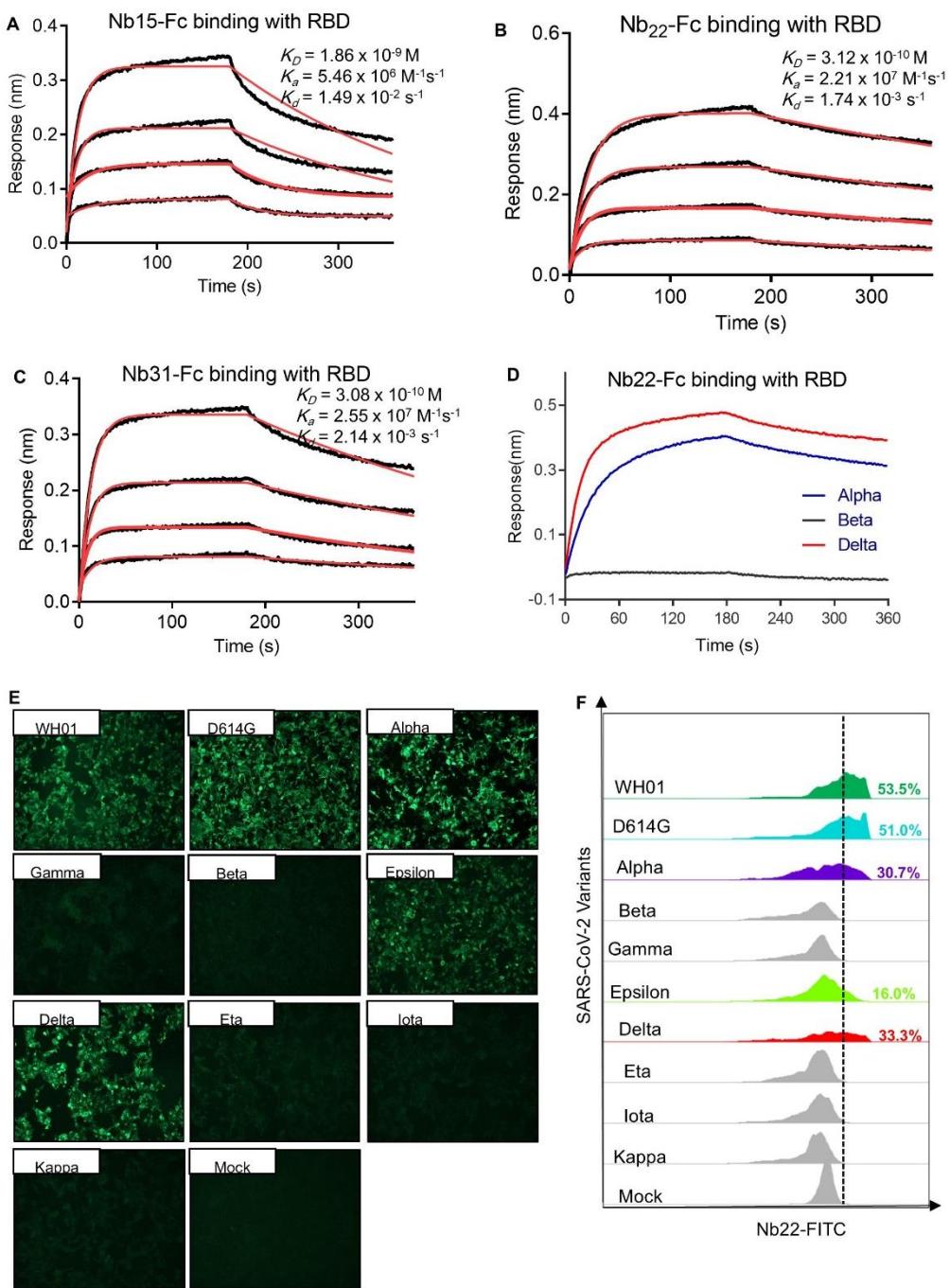
797 **SE.** Mice were dissected and detected by NightOwl LB 983 after 200 μ g Nb22-
798 YF®750 SE infusion into mice as indicated in figure 5C. The fluorescence intensity
799 was measured at 2 hours (0d-Nb22), 7d (7d-Nb22), 14d (14d-Nb22), 21d (21d-Nb22)
800 and 28d (8d-Nb22) after infusion of Nb22 via i.n., respectively. Blank, blank mice
801 without infusion of any antibody, was taken as blank control. The fluorescence intensity
802 of various organs including trachea (Tr), lung (Lu), heart (H), stomach(St), intestine
803 (In), liver(Li), spleen (Sp), kidney (Ki), bladder (B), were analyzed

804 **Supplemental Figure 3. Body weight of mice.** Body weight of mice in figure 6 was
805 recorded at the indicated time point.


806

807 **Supplemental Table 1.** Data collection and refinement statistics

808 **Supplemental Table 2.** Residues contributed to interaction between Nb22 and RBD
809 were identified by PISA at the European Bioinformatics Institute.


810

811 **Figures**

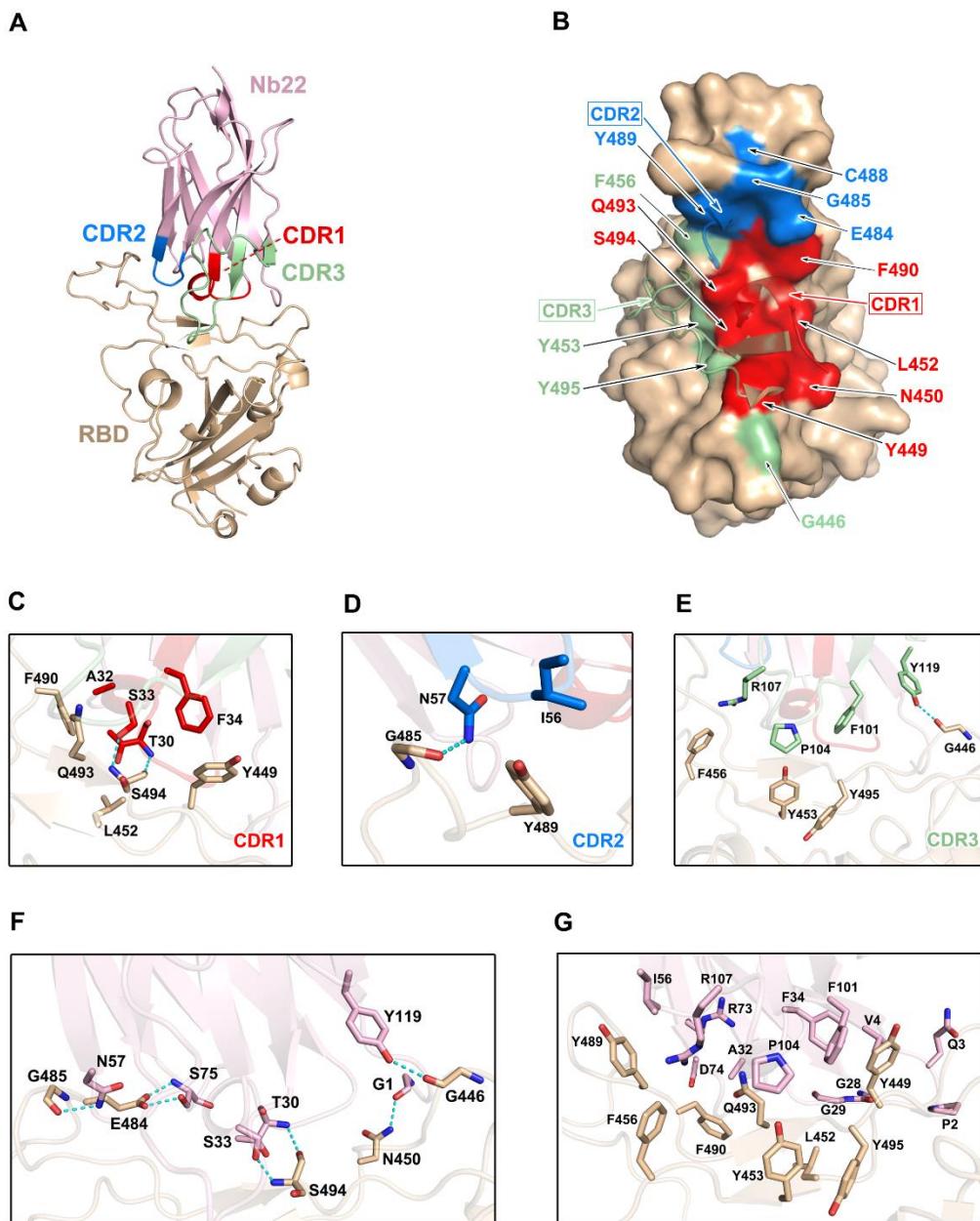
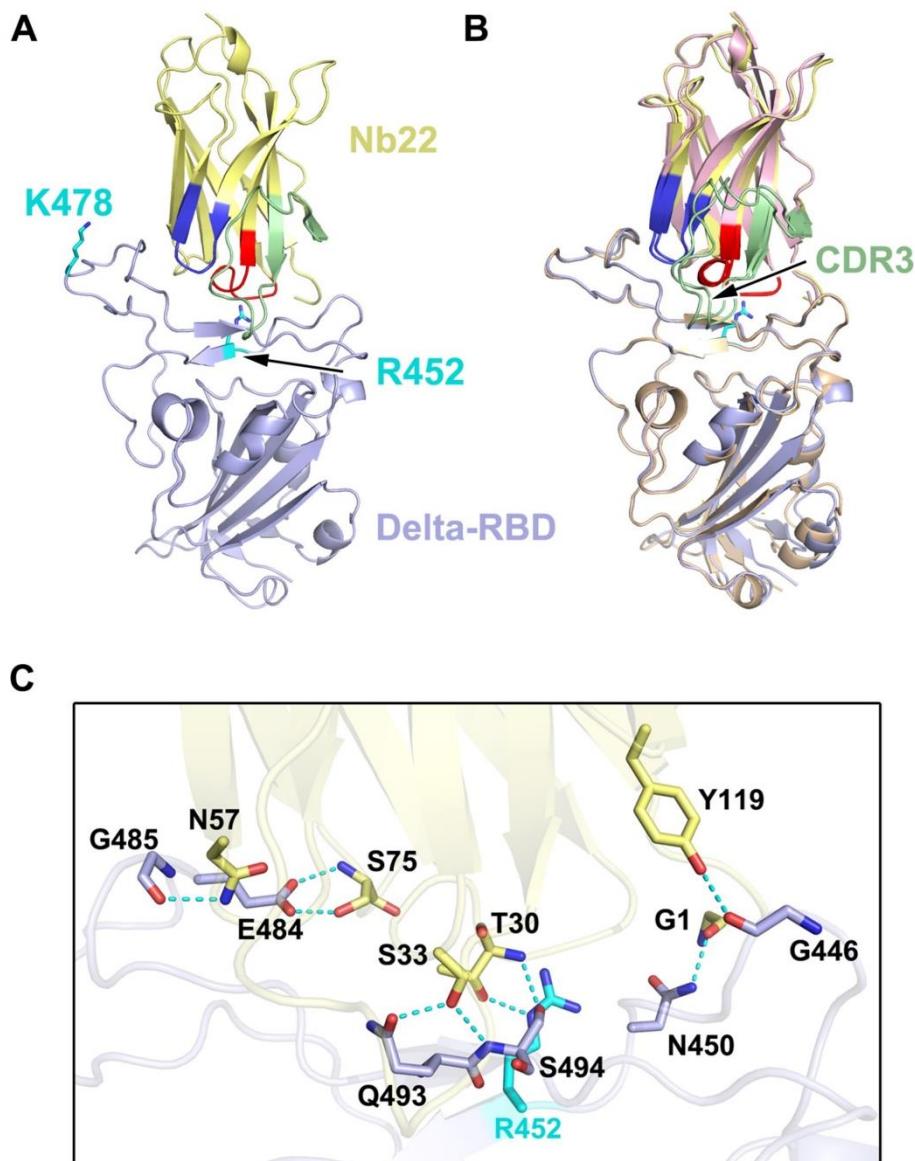
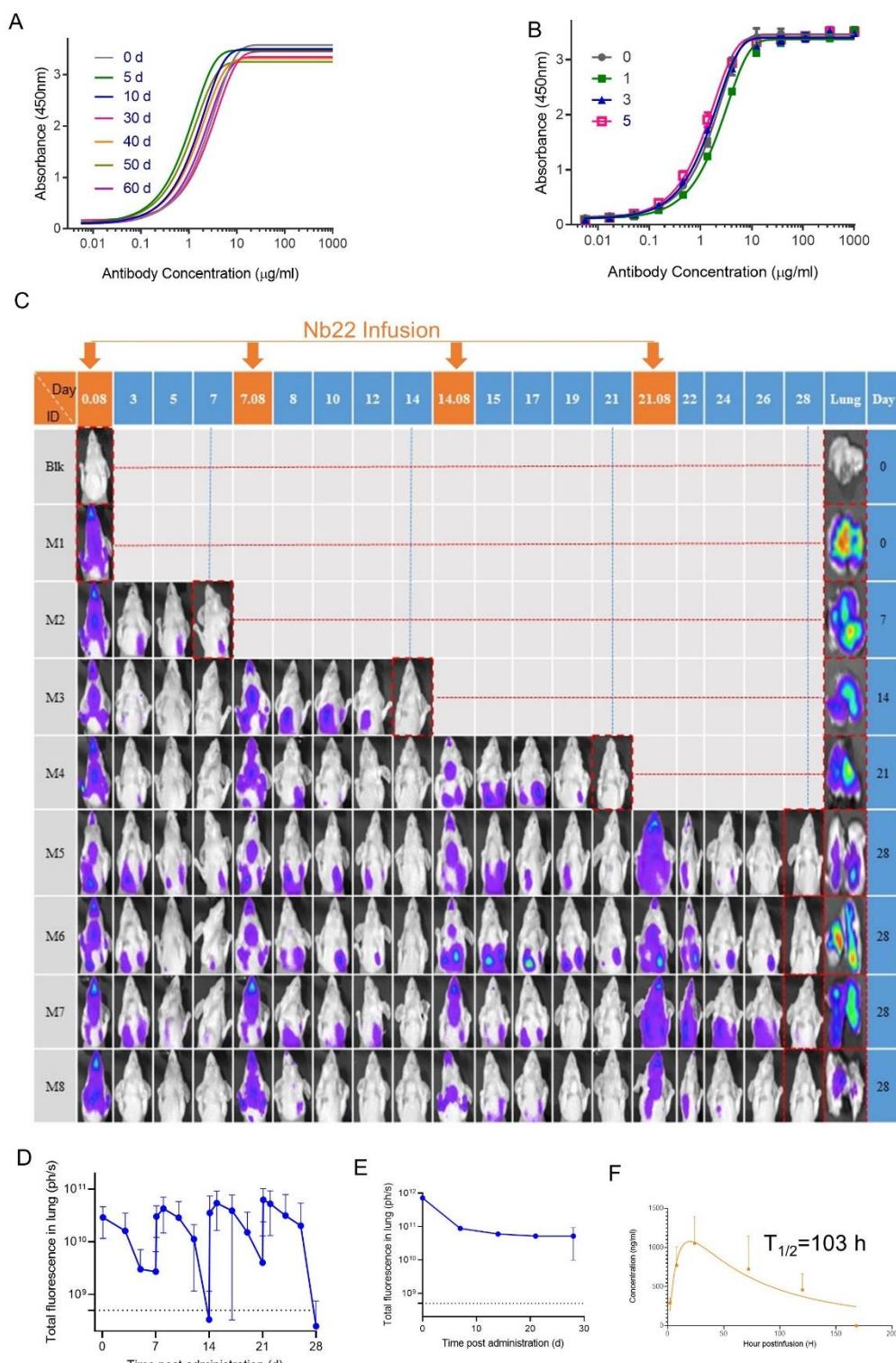

812
813
814
815
816
817
818
819
820
821
822
823

Figure 1 Characterizing nanobodies neutralizing circulating variants of SARS-CoV-2. The neutralization curve of Nb15-Fc (A), Nb22-Fc (B), Nb31-Fc(C) and SNB02 (D) inhibiting SARS-CoV-2 pseudovirus of circulating variants. Nb-Fcs and SNB02 were all constructed as the format of VHH fused with human Fc1. SNB02 was taken as an antibody control specific for SFTS virus. (E) The summary curve of IC₅₀ of Nb-Fcs exhibiting potent neutralization against SARS-CoV-2 variants. (F) The neutralization potency of Nb-Fcs was evaluated based on authentic SARS-CoV-2 Delta variant plaque reduction neutralization test. (G) The summary table of IC₅₀ and IC₈₀ of Nb-Fcs in A-C and F, displaying potent neutralization. Data are represented as mean \pm SD. All experiments were repeated at least twice.

824

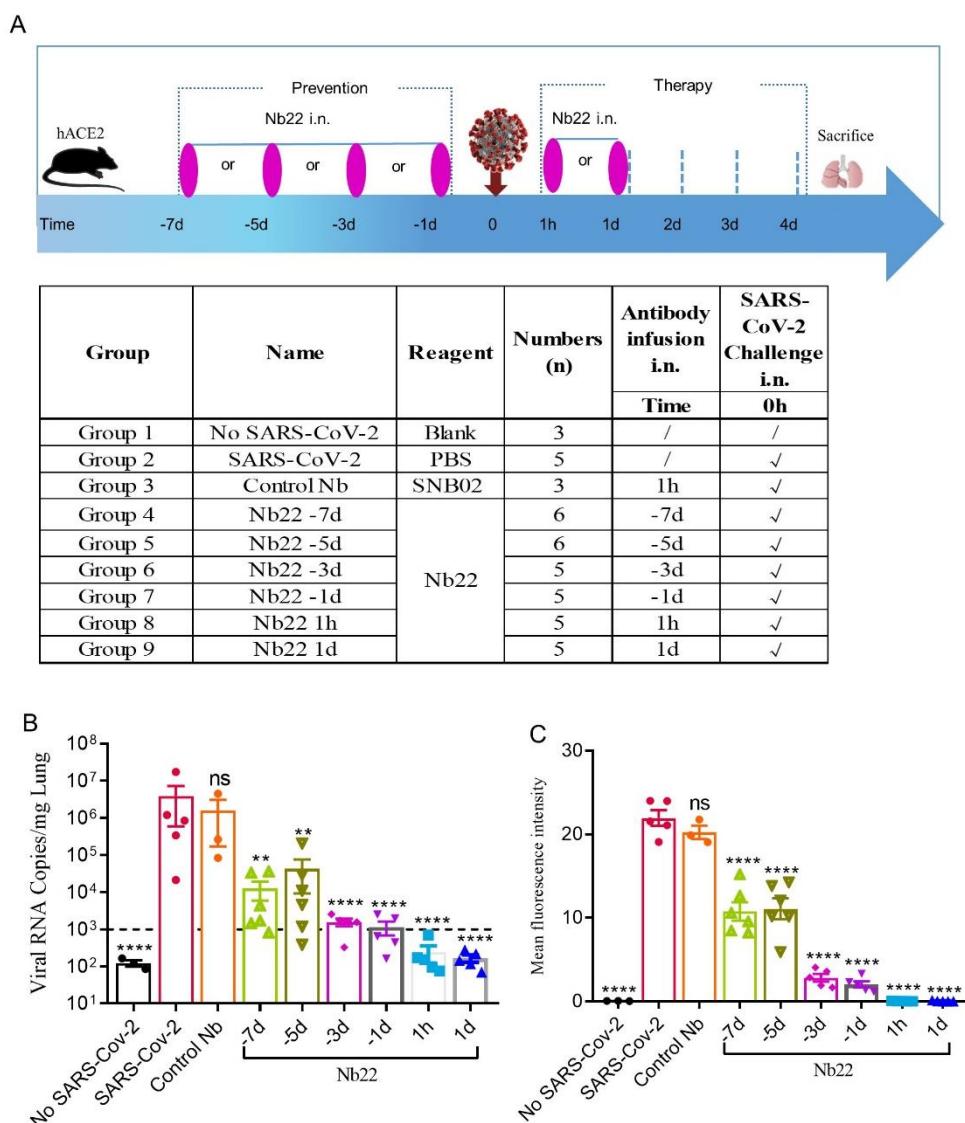

825 **Figure 2. Characterizing the binding of Nbs.** Kinetic binding curve of Nb15-Fc (A),
 826 Nb22-Fc (B) and Nb31-Fc (C) at the concentration 33.3 nM, 11.1 nM, 3.7 nM and 1.2
 827 nM with RBD of Delta variant, respectively, detected by BLI. Binding curves are
 828 colored black, and fit of the data to a 1:1 binding model is colored red. (D)
 829 Representative binding curve of various RBD as indicated to Nb22-Fc tested by BLI.
 830 Nb22-Fc binding with RBD from representative SARS-CoV-2 variants detected by
 831 immunofluorescence assay (E) and flow cytometric analysis (F), respectively. Mock
 832 served as a cell control without plasmid transfection. Images were visualized under the
 833 $\times 10$ objective. All experiments were repeated at least twice.

834

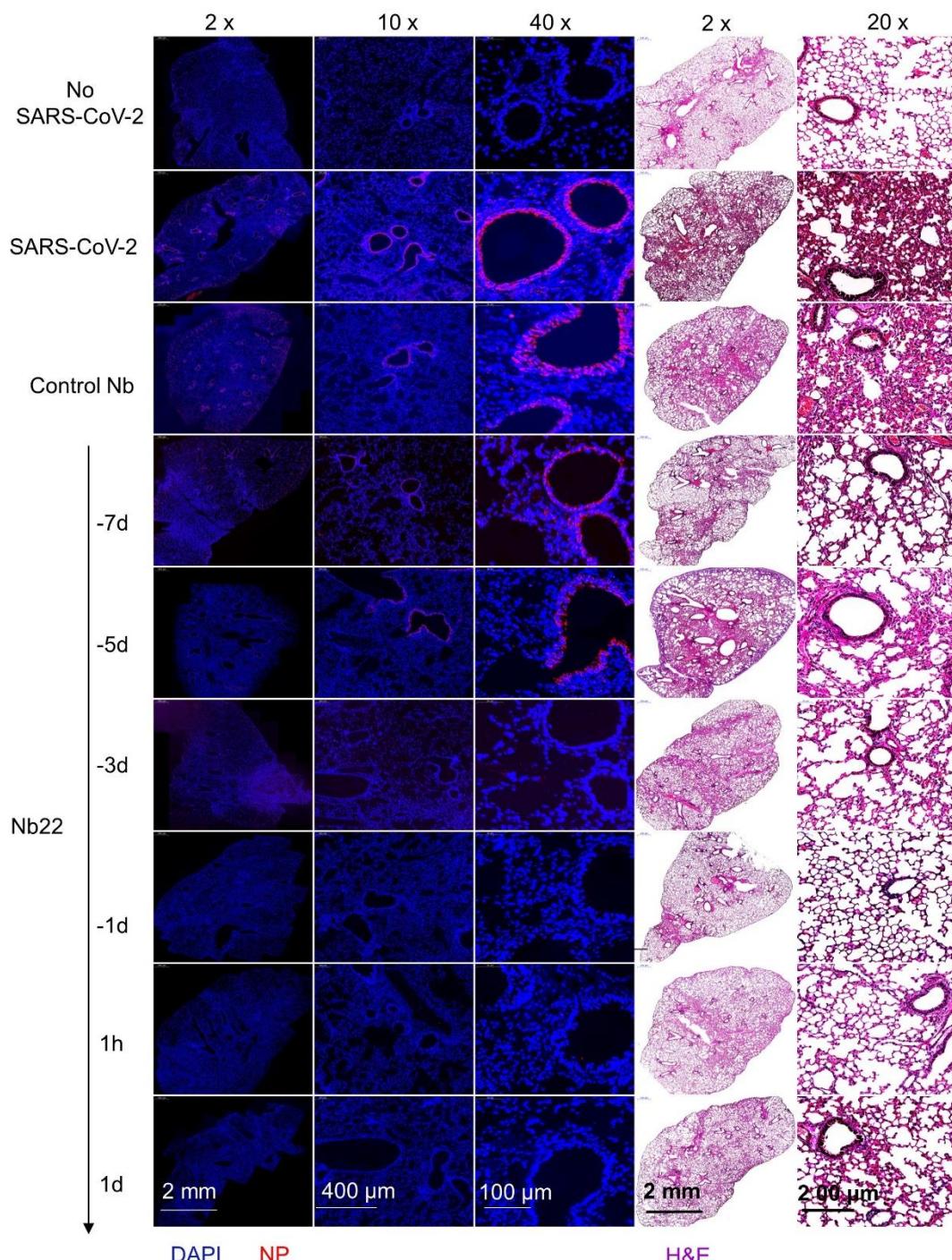

835

836 **Figure 3. Structural analysis of Nb22 and WH01 RBD complex.** (A) The overall
837 complex structure of Nb22 and WH01 RBD. The CDR1 (red), CDR2 (blue), CDR3
838 (green) of Nb22 (pink) and WH01 RBD (orange) are displayed in cartoon
839 representation. (B) The epitope of Nb22 shown in surface representation. The CDR
840 regions are colored in red, blue and green, respectively. The interaction between CDR1
841 (C), CDR2 (D), CDR3 (E) and WH01 RBD. (F) The hydrogen bonds of the interface
842 between Nb22 and WH01 RBD. The hydrogen bonds are shown in cyan dash line. (G)
843 The hydrophobic network between Nb22 and WH01 RBD. All the residues are shown
844 in sticks.

845


846 **Figure 4. Structural analysis of Nb22 and Delta RBD complex.** (A) The two
847 mutation sites of Delta RBD. K478 is located outside the CDR binding regions, R452
848 is on the CDR2 recognized epitope. R452 and K478 are colored in cyan, and the epitope
849 of CDRs is colored identical to Fig. 3. (B) The superimposition of WH01 RBD-Nb22
850 (orange and pink) and Delta RBD-Nb22 (light blue and yellow). (C) The hydrogen
851 bonds on the interaction interface of Delta RBD-Nb22. R452 and Q493 form two
852 additional hydrogen bonds with T30 and S33 of Nb22. The residues identified are shown
853 in sticks.

854


Figure 5. Characterizing Nb22-Fc stability in vitro and pharmaceutics in vivo. (A)
 855 Binding curve of RBD with Nb22-Fc detected by ELISA after storage at room
 856 temperature in the indicated time points including 0 d, 5 d, 10 d, 30 d, 40 d, 50 d and
 857 60 d. **(B)** Binding curve of RBD with Nb22 detected by ELISA after the indicated
 858 rounds of freeze-thawing including 0, 1, 3, 5 rounds, respectively. **(C)** Pharmacokinetic
 859 of Nb22-Fc labeled with dye YF®750 SE via intranasal administration was detected.
 860 200 µg Nb22-YF750 was infused at day 0, 7, 14 and 21 respectively. The optical
 861

862 imaging of mice upper half body was measured by NightOwl LB 983 0.08 d (2h) post
 863 Nb22-Fc infusion or at indicated time point labeled at the top of panel. The mice in the
 864 red dash line figure were sacrificed at the indicated time point in the left of panel for
 865 analysis of the fluorescence intensity of lung. **(D)**The fluorescence intensity of upper
 866 half body of mice in **(C)** was summarized. **(E)**The fluorescence intensity of lung in lung
 867 column of **(C)** was summarized. **(F)** Bioavailability and t_{1/2} of Nb22 in BALB/c
 868 mice.Nb22 was intranasally (i.n.) administered into mice (n=3, Female) at 200 μ g
 869 (average of 10 mg/kg mice. Serum concentrations of the Nbs were determined at
 870 various time points by ELISA. T_{1/2}, time of half-life. Data represent mean \pm SEM.

871
 872 **Figure 6. The efficacy of Nb22s evaluated in hACE2 transgenic mice challenged**
 873 **by SARS-CoV-2. (A)** Experimental schedule of Nb22s in the prevention and treatment
 874 of SARS-CoV-2 infection. Bottom, table summary of groups (n = 3–6 mice) with
 875 different treatments. **(B)** Viral loads in lungs among 9 groups were measured by qRT-
 876 PCR. The name of each group in the x axis was indicated as in the table in **(A)**. Each
 877 dot represents one mouse. The limit of detection was 1000 copies/mg referenced to
 878 blank control (No-SARS-CoV-2 group). Data are represented as mean \pm SEM; Mann-

879 Whitney test was performed to compare treatment group with the SARS-CoV-2 control
880 group. **(C)** Sections of lung were analyzed by immunofluorescence staining using
881 antibodies specific to SARS-CoV-2 NP in red and DAPI for nuclei in blue, respectively.
882 The fluorescence signal intensity of red was taken as a quantitative indicator for viral
883 infection, which was calculated by ImageJ software. ns, no significance; *p < 0.05, **p
884 < 0.01, ***p < 0.001. All experiments of (B) and (C) was repeated twice.

885
886 **Figure 7. Representative sections of lung from hACE2 mice were analyzed by**
887 **H&E staining and immunofluorescence staining.** Representative lung tissue sections
888 from the mice indicated in figure 6C including No-SARS-CoV-2, SARS-CoV-2,

889 Control Nb, -7d-Nb22, -5d-Nb22, -3d-Nb22, 1h-Nb22 and 1d-Nb22 group were
890 analyzed by immunofluorescence staining using antibodies specific to SARS-CoV-2
891 NP in red and DAPI for nuclei in blue, respectively. The corresponding representative
892 lung tissue sections were also analyzed by H&E staining. Immunofluorescence and HE
893 Images were visualized under the indicated bar.

894