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Abstract: Batch effects, undesirable sources of variability across multiple experiments,

present significant challenges for scientific and clinical discoveries. Batch effects can (i)

produce spurious signals and/or (ii) obscure genuine signals, contributing to the ongoing

reproducibility crisis. Because batch effects are typically modeled as classical statistical

effects, they often cannot differentiate between sources of variability due to confounding

biases, which may lead them to erroneously conclude batch effects are present (or not).

We formalize batch effects as causal effects, and introduce algorithms leveraging causal

machinery, to address these concerns. Simulations illustrate that when non-causal methods

provide the wrong answer, our methods either produce more accurate answers or “no answer”,

meaning they assert the data are an inadequate to confidently conclude on the presence of a

batch effect. Applying our causal methods to 27 neuroimaging datasets yields qualitatively

similar results: in situations where it is unclear whether batch effects are present, non-causal

methods confidently identify (or fail to identify) batch effects, whereas our causal methods

assert that it is unclear whether there are batch effects or not. In instances where batch
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effects should be discernable, our techniques produce different results from prior art, each of

which produce results more qualitatively similar to not applying any batch effect correction

to the data at all. This work therefore provides a causal framework for understanding the

potential capabilities and limitations of analysis of multi-site data.
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1 Introduction

The 21st century has seen the advent of high-throughput techniques for acquiring data on an unprece-

dented scale. Collection of these datasets often occurs through consortia across different sites, requiring

post-hoc data aggregation approaches. These “mega-studies” comprise numerous individual studies,

rendering samples sizes substantially larger than any individual study and addressing the small-sample

size woes associated with modern big biomedical data (Marek et al., 2022).

Unfortunately, aggregating data across diverse datasets introduces a source of undesirable variability

known as a batch effect. Lazar et al. (2013) provides a recent consensus definition of batch effect: “the

batch effect represents the systematic technical differences when samples are processed and measured in

different batches and which are unrelated to any biological variation.” While these batch effects may not

be immediately nefarious, their correlation with upstream biological variables can be problematic (Leek

et al., 2010). When biological variables are correlated with batch-related variables, our ability to discern

veridical from spurious signals is limited (Akey et al., 2007; Conrads et al., 2004). This problem has

“led to serious concerns about the validity of the biological conclusions” (Leek et al., 2010) in data that

may be corrupted by these biases; that is, it is unclear whether subsequent detected variability can be

attributed to the biological variables, or to the so called “batch effect”. Unfortunately, the qualitative

description provided by Lazar et al. (2013) presents limited technical information about how batch effects

can be detected or mitigated.

Many approaches model the batch collection or measurement process as a nuisance variable (Johnson

et al., 2007; Leek & Peng, 2015; Leek et al., 2010; Pearl, 2010b; Pomponio et al., 2020; Wachinger

et al., 2020; Yu et al., 2018). The implicit model justifying these approaches assumes batch effects

are associational or conditional, but not causal. Such assumptions are strong, potentially unjustified,

and often inappropriate. Two of the most prominent examples of these techniques are ComBat and

Conditional ComBat (cComBat) (Johnson et al., 2007). These approaches have demonstrated empirical

utility in various genomics and neuroimaging contexts (Pomponio et al., 2020; Zhang et al., 2020);

however, it remains unclear when these approaches will be successful, and when they will fail. Specifically,

it is unclear when they remove biofidelic variability or fail to remove nuisance variability (Bayer et al.,

2022). We still do not know when they produce “wrong answers”, removing desirable signal or failing to

remove spurious signal.

In this work, we develop a causal approach to define, detect, estimate, and mitigate batch effects. Our

main conceptual advance is modeling batch effects as causal effects rather than associational or con-

ditional effects. Given this structure, we introduce a formal definition of causal batch effects. This
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4 1 INTRODUCTION

formal definition reveals the limitations of (typically inappropriate) assumptions implicit in existing ap-

proaches (Rosenbaum & Rubin, 1983, 1985; Stuart, 2010) and provides a theoretical explanation for

many limitations of batch harmonization noted in Bayer et al. (2022).

Methodologically, we introduce a simple pre-processing strategy that one can apply to existing techniques

for batch effect detection and mitigation. First, to detect and estimate batch effects, we introduce

Causal cDcorr (Bridgeford et al., 2023; Wang et al., 2015)—building on modern, non-parametric

statistical methods—to estimate and detect the presence of batch effects. Second, to mitigate batch

effects, we introduce Matching cComBat—an augmentation of the ComBat procedure (Johnson et al.,

2007)—to remove batch effects while limiting the removal of veridical biological variation. Our proposed

techniques introduce the possibility of “no answer” to batch effect correction and detection; that is, the

data are insufficient to make a conclusion either way.

We apply these methods to simulations and a large neuroimaging mega-study assembled by the Con-

sortium for Reliability and Reproducibility (CoRR) (Zuo et al., 2014), consisting of more than 1,700

individuals across 27 disparate studies. Our simulations and real data analysis demonstrate that existing

strategies can, under many realistic use-cases, experience biases wherein they will confidently produce

potentially erroneous conclusions regarding batch effects, where our proposed techniques either produce

expected behaviors or avoid inference entirely. This work therefore represents a seminal effort to design

methodologies which identify or overcome potential biases in the detection and correction of batch effects

from multi-site data.
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2 Methods

2.1 A conceptual illustration of the value of causal modeling of batch effects

Consider a simple example in Figure 1. We observe n = 300 measurements in two batches, where one

batch (orange) tends to sample younger people, and the other batch (blue) tends to sample older people.

The observed outcome of interest is disease state (y-axis), and there is a single potential confounder,

which is measured: age (x-axis). The solid lines indicate the true distribution governing the relationship

between age and disease for both batches, which is unknown in practice. That the data-generating

distributions differ indicates that a batch effect is present (red band). Techniques are desired to remove

the batch effect given only the data measurements (outcome and covariate pairs, indicated as points).

The two rows show two different settings: the top shows a case where the orange batch tends to be

larger than the blue before any correction is applied (a positive batch effect), and the bottom shows the

reverse (a negative batch effect).

Figure 1A illustrates an example with a moderate amount of covariate overlap, meaning that data from

the two batches have similar (but not identical) age ranges. This problem is typically conceptualized

via the the location/scale (L/S) cComBat model of Johnson et al. (2007), which can be generalized as

Pomponio et al., 2020:

Yijk = fk(Xij) + γik + δikϵijk, (1)

where the measurements Yijk for a sample j in batch i and dimension k with covariates Xij are a linear

combination of an overall “true” underlying property fk(Xij) with an additive batch effect γik and a

multiplicative batch effect δik for the error ϵijk, which is typically assumed to be normally distributed.

This model is typically fit via regression, such as the cComBat procedure. Non-causal strategies such

as cComBat learn from each batch, and then extrapolate trends across covariates (in this case, age)

using the model to infer a relationship between the two batches. The problem is that this approach is

strongly sensitive to the specifics of the extrapolation. Because the true data-generating distribution is

unknown at the time of analysis, most non-causal approaches perform a linear extrapolation (Chen et al.,

2022; Fortin et al., 2018; Johnson et al., 2007; Pomponio et al., 2020), where fk is assumed to be a

linear function. This is typically performed by “removing” the batch effect terms; e.g., the “batch-effect

corrected” measurements are:

Y ∗
ijk =

Yijk − f̂k(Xij)− γ̂ik

δ̂ik
+ f̂k(Xij)
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6 2 METHODS

Figure 1: Non-causal batch effect mitigation procedures are subject to both over and under
correction and cannot rectify “confounding.” Our causally enriched methods address these
issues. I. shows the observed data (points), where color indicates batch. The orange line and the blue
line indicated the expected outcome per-batch, and the “batch effect” describes the observed difference
(red band) between the expected outcomes. Ideally, after batch effect correction, the blue and orange
lines should overlap. The orange batch tends to oversample people with younger ages, and the blue
batch tends to oversample people with higher ages. (A) A scenario where the covariate distributions
are moderately confounded and partially overlap, and the orange batch tends to see higher outcomes
than the blue batch. (B) A scenario where the covariate distributions are moderately confounded and
partially overlap, and the orange batch tends to see lower outcomes than the blue batch. II. and III.
illustrate the corrected data after correction, via non-causal and causal methods respectively. If the batch
effect is removed, the orange and blue lines should be approximately equal. Non-causal methods attempt
to adjust for the batch effect over the entire covariate range, and in so doing, are subject to strong
confounding biases. Supposed “batch effect correction” instead introduces spurious artifacts ((A)) or
fails to mitigate batch effects ((B)). Causal methods instead look to a reduced covariate range (gray
box), finding points between the two datasets that are “similar,” and are not subject to these biases.
Simulation settings are described in Appendix D.2.
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2.2 Models motivating different batch effect techniques 7

When covariate overlap is imperfect, however, misspecification of fk can be disastrous (Figure 1A.II).

While before correction the true data-generating distribution for the orange batch is higher than the blue

batch, after correction the blue batch is higher the orange batch (the batch effect was over-corrected ;

i.e., too much correction was applied). Reversing the relationship between the blue and orange batches

in Figure 1B, non-causal strategies are still unable to properly remove the batch effect and may still over-

or under-correct for batch effects. As a result, “batch-effect-corrected data” from non-causal strategies

may not actually be corrected, and in many situations may be more different after “correction” than

before. In other words, even though a fundamental desiderata of batch effect correction is to decorrelate

the relationship between the batch and upstream covariates of interest (Leek et al., 2010), the presence

of such a correlation also hampers our ability to remove the batch effect.

On the other hand in Figure 1A.III or Figure 1B.III, causal techniques focus instead on deriving conclusions

within a range of covariate overlap in the data, where confounding is better controlled. The true data-

generating distributions (and the points themselves) almost perfectly align after batch effect correction

across the range of overlapping covariates, indicating that the batch effect has been removed, despite

no foreknowledge of the true data-generating model.

In this manuscript, we posit that we desire that methods report confounding when it is present, some-

thing only causal methods do. Motivated by this perspective, we augment traditional approaches with

causal machinery for batch effect detection and correction. Theory, simulations, and real data analysis

demonstrate that traditional strategies to detect or correct batch effects from mega-studies lack the

ability to identify confounding, and therefore, often add or remove batch effects inappropriately when

covariate overlap is low. Therefore, such approaches cannot be trusted without further analysis. These

issues highlight the primary challenges of performing valid statistical inference while pooling data across

studies. This work therefore contributes to the ongoing effort to improve the validity and reliability of

inferences in past and future mega-studies.

2.2 Models motivating different batch effect techniques

Here we build up the implicit modeling assumption underlying various approaches to mitigating batch

effects. Our working example is that the exposure is batch, and the outcome is connectome. We want

to know whether the differences between the batches are due to variability in the participants themselves

who are measured, or veridical differences in outcomes across the two batches. Figure 2 shows four

different models and provides details of which kinds of variables are relevant in neuroimaging studies,

though the concepts apply much more generally. Directionality of arrows (e.g., T → Y ) indicates that
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8 2 METHODS

the variable T can influence the variable Y . Therefore, our goal is to identify a regime in which a strategy

can provide evidence of a batch effect; that is, the degree to which the exposure influences the outcome

(i.e., a causal effect).

We begin with the simplest approach, an “Associational” model (Figure 2A). Using an associational

model enables us to obtain valid answers to: “are differences in outcome associated with differences

in exposure?” The answer to this question is often important, for example, in biomarker studies, but

may be insufficient for determining causality. Dcorr(Székely et al., 2007) and naive ComBat(Johnson

et al., 2007) (e.g., the model in Equation (1), but omitting covariate modeling via fk(Xij)) are methods

designed to test and correct for associational effects. For example, if the batch and the outcome are

dependent upon any covariates, which they often are in real studies, then an estimated associational effect

is not a valid estimate of a batch effect (Figure 2(A)). For instance, if the two batches differ because

they have sampled individuals in different age groups, and the outcome is a function of age, then using

this approach will lead to falsely concluding causal batch effects. On the other hand, if a batch effect is

truly present, but somehow another covariate cancels out this variability, then this approach could falsely

conclude there does not exist a batch effect when it is present.

The “Conditional” model (Figure 2B) enables us to seek valid answers to a more nuanced question: “are

differences in outcome associated with differences in exposure, after conditioning on measured covariates

(Figure 2B)?” If there are differences in outcome after conditioning, this can suggest that the differences

are due to different exposures. cDcorr(Wang et al., 2015) and cComBat(Johnson et al., 2007) (e.g.,

the model in Equation (1)) are methods designed to test and correct for conditional effects. However,

this model is subject to errors in the presence of confounding. The covariates might also impact the

exposure, and if so, also impact our ability to identify a causal estimand, but without our knowledge.

Imagine, for instance, that the two batches have covariates that partially overlap; for example, one

sampled adolescents and adults, but not geriatrics, and the other sampled adults and geriatrics, but

not adolescents. Conditional approaches make implicit assumptions about how to interpolate outcomes

across covariate distributions potentially unobserved in a given batch. When those assumptions do not

reflect the real data, the results can be erroneous. In this light, the identified effect may be a veridical

batch effect, or an artificial covariate effect, thereby leading to either false positives or false negatives.

The “Adjusted” model (Figure 2C) enables us to mitigate this concern. Here, we seek valid answers

to the following question: “conditioned on any impact of measured covariates on either exposure or

outcome, do we see any residual differences in outcomes associated with differences in exposure?” This

is effectively the model in most observational studies, which are a critical component of causal inference

(Stuart, 2010). Our proposed Causal cDcorr and Matching cComBat (described below) are methods
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2.2 Models motivating different batch effect techniques 9

designed to test and correct for data following this model (Bridgeford et al., 2023). For example, to

address the above concern, an adjusted model might discard all the adolescents and geriatrics, and simply

focus on modeling the adults, for which we have data in both batches. While this reduces the sample

size, it avoids the pitfalls of confidently concluding the presence or absence of a batch effect, even when

it is not clear. Further, conclusions readily generalize to samples similar to the reduced samples, so

many of the excluded samples may still be able to be batch effect corrected and used in subsequent

inference. However, it also suffers from a potential confounding issue. While adjustment can be used to

address confounding with measured covariates, it cannot be used to address confounding with unobserved

covariates. Specifically, if there exist unobserved covariates that do not correlate with the observed ones

and yet impact the outcomes, exposures, or both, then adjusted methods may lead to spurious results.

The “Cross-over” model (Figure 2D) addresses this concern. In a cross-over investigation, each partic-

ipant is measured across all exposure groups. When properly performed, cross-over models enable us

to seek valid answers to questions such as: “conditioned on almost all potential confounding, are differ-

ences in outcome associated with differences in exposure?” When the experimental design is a cross-over

study and states are unchanging or randomized, simple ComBat approaches can be adequate, though the

authors are not aware of any extensions of distance correlation or other non-parametric tests to these

paired settings for high-dimensional data. If participant states change, then confounding remains unless

the order participants are measured in each batch is randomized or participant states are measured and

suitably adjusted for, as-per the above adjusted model.

The importance of these models can be formalized more rigorously through the statistical notions of causal

consistency, positivity, and ignorability. Reasoning that data may satisfy these assumptions forms the

cornerstone of causal inference from observational studies. In the context of an investigation with batch

effects, causal consistency asserts that each individual has a set of potential measurements corresponding

to each possible batch, and the observed measurement for an individual is equivalent to their potential

outcome for the batch they were actually measured in (Frangakis et al., 2007). This criterion can be

intuitively be reasoned for batch effects investigations, in that individuals could conceptually be measured

across all batches (but we only observe their potential measurement for the batch in which they were

measured). Positivity, equivalent to covariate overlap, states that for every combination of covariates,

there must be a non-zero probability of being measured in any of the included batches (Rosenbaum

& Rubin, 1983, 1985). Adjusted techniques attempt to enforce positivity or covariate overlap on the

data, by reducing the scope of inference to individuals who could have been measured across all batches.

Ignorability asserts that given the observed covariates, the batch assignment and the potential outcomes

are independent. Stated another way, conditional on the observed covariates, the batch assignment

process is effectively random, and there are no unmeasured factors that influence both batch assignment
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10 2 METHODS

and the potential outcomes (Rosenbaum & Rubin, 1983). While this may seem like an insurmountable

hurdle, measured covariates are often sufficient conditioning sets so long as the measured covariates are

suitably correlated with unmeasured variables (Pearl, 2009a).
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2.2 Models motivating different batch effect techniques 11

Figure 2: Causal Graph of Study Covariates. Causal Directed Graphs illustrating the underlying
assumptions under which various procedures to detect or correct for batch effects are reasonable. Boxes
represent variables of interest, and arrows indicate “cause and effect” relationships between variables. The
causal estimand is the impact of the exposure (the batch) on the outcome (the participant’s measurement)
and is a cumulative effect of effect modifiers (black variables) both known and unknown that yield batch-
specific differences. The relationship between the exposure and the outcome are confounded if there
are open backdoor paths (Pearl, 2009b). (A) Associational procedures and (B) conditional procedures
are reasonable when there is no confounding. (C) Adjusted causal procedures are reasonable when
backdoor paths can be blocked by measured covariates (Pearl, 1995, 2009b). (D) Crossover procedures
are reasonable under many forms of potential confounding, both measured or unmeasured, so long as
participant states are non-confounding. If participant states are confounding, the confounding states
must be measured (red arrow). Note that some participant traits (e.g., intelligence or mental health)
may be caused by the connectome, and introduce the potential for bi-directional arrows in the causal
graph with the measurement, visited in the Discussion Section 4.
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12 2 METHODS

Appendix A provides rigorous definitions and mathematical models contextualizing the above definitions.

2.3 Detecting and mitigating batch effects

The causal graphs in Figure 2 of batch effects makes immediately clear their undesirability. If we want to

learn about the impact of any upstream variable on the measurement, batch effects may be a mediator of

the relationship between that variable and the measurement. If we want to learn about the impact of the

measurement on any traits of a person (such as in a brain-behavioral investigation), batch effects may

introduce cycles in the causal graph, due to the the inability to faithfully represent underlying neurological

properties free from such measurement errors. Both of these characteristics are immediately problematic

for subsequently deriving causal conclusions, as failure to account fort the batch effect may limit the

identifiability of other potential estimands we may wish to subsequently investigate (Pearl, 2009b, 2010a,

2014). Removal of the batch effect on the data derivative represents a strategy to control for these

problematic characteristics (via deletion of the arrow on the causal graph from batch to measurement),

and motivates why studying, understanding, and deciphering strategies to detect or remove batch effects

are desirable for subsequent inference tasks. Colloquially, this causal presentation delineates that batch

effects are not just undesirable artifacts that could potentially yield spurious correlations (Leek et al.,

2010), but asserts that a failure to account for them may prohibit principled subsequent inference.

At present, literature approaches for detecting and mitigating batch effects tend to (implicitly or explicitly)

model the effects as associational or conditional, which often fail to adequately account for confounding

biases. To this end, we propose a simple technique to augment classical strategies (Figure 3, see Appendix

C for methodological details):

1. Use classical causal procedures to re-weight the measurements from the batches so that measured

covariate distributions across all batches are overlapping or balanced. For batch effect detection,

we use vector matching (Lopez & Gutman, 2014), a form of propensity trimming which performs

a multinomial regression of batch onto the covariates and then trims individuals with uncharacter-

istically low or high estimated probabilities (propensities) for any of the batches. For batch effect

correction, Matching cComBat uses vector matching followed by a nearest neighbor matching (with-

out replacement) of a “reference study” to the other studies in a mega-study. This matching may

be performed many-to-one or one-to-many depending on the relative sizes of the reference study and

the other studies. We propose the use of exact matching on categorical or binary covariates when

possible, and Mahalanobis distance matching for continuous covariates. Our experiments and real

data use-cases leverage a 0.1 distance caliper, which upper-bounds the Mahalanobis distance between
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2.3 Detecting and mitigating batch effects 13

a given matched pair of individuals.

2. Apply traditional procedures for detection or correction of batch effects post re-weighting. We use

cDcorr for batch effect detection (Bridgeford et al., 2023; Wang et al., 2015), and cComBat for

batch effect correction (Johnson et al., 2007; Leek & Peng, 2015; Leek et al., 2010; Pearl, 2010b;

Pomponio et al., 2020; Wachinger et al., 2020; Yu et al., 2018).

3. Optionally, apply estimated batch effect corrections to excluded samples with covariates similar to the

re-weighted samples or samples demographically dissimilar to the re-weighted samples. The former

requires few additional assumptions, and may increase sample sizes for subsequent inference. Applying

learned batch effects to demographically dissimilar individuals requires stringent assumptions regard-

ing whether extrapolations to individuals demographically dissimilar from the re-weighted samples is

appropriate.

Our proposed augmentations via classical causal procedures could be equivalently exchanged for other

re-weighting procedures, such as inverse-probability weighting (IPW) or augmented inverse-probability

weighting (AIPW). Our simulations explore an additional technique, AIPW cComBat, which uses aug-

mented inverse-probability weighting to produce batch effect estimates. Through AIPW, we estimate

propensity weights from the observed data, and incorporate these propensity weights into outcome model

regression (J. Robins, 1986). While not the focus of this article, we explore the utility of these methods

in simulation settings.
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14 2 METHODS

Covariate Value (e.g., Age)

De
ns

ity Reference
 Dataset

Control 1

Control 2

Male
Female

Matching cComBat

AIPW cComBat

Causal cDCorr

A  Unadjusted Data
B  Propensity Trim

C.I  Matching

C.II Propensity Weight D.II Propensity weights

D.I  Matched Data

D.III  Trimmed Data

E  Downstream Analysis

Figure 3: The demographic balancing procedure serves to demographically align poorly bal-
anced datasets using causal approaches. (A) The unadjusted datasets are imbalanced in covariate
distributions. The reference dataset is indicated. (B) Propensity trimming (shaded boxes) provide
general alignment of demographics, such that no datasets will include demographics unrepresented in
other datasets. (C.I) samples from other datasets are matched to samples from the reference dataset,
and (D.I) samples without matches are discarded from subsequent analysis. The adjusted data after
matching have nearly identical covariate distributions. (C.II) samples are weighted according to their in-
verse propensities, such that samples which look non-representative of other datasets are down-weighted.
(D.II) This can serve to also yield somewhat similar covariate distributions after re-weighting. (D.III)
the trimmed data generally feature overlapping covariate distributions, but may not be identical across
datasets. (E) Downstream analysis for batch effect correction or detection applied to the adjusted data
(and potentially propensity weights) via Matching cComBat, AIPW cComBat, or Causal cDcorr.
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3 Results

3.1 Causal machinery helps mitigate limitations of traditional batch effect

methods

Here we quantify the performance of causal and non-causal methods by generalizing the simulations from

Figure 1. 1000 samples are generated from one of two batches. Figure 4A shows multiple simulation

settings, including linear (left), nonlinear (center), and non-monotonic (right). Solid lines indicate the

expected outcome at a given covariate value for a particular batch. Appendix D provides details for the

empirical settings of the simulations. The standard measure of effect size in the causal literature is called

the ‘Average Treatment Effect’ (ATE) (Rosenbaum & Rubin, 1983, 1985). The red bands in Figure 4A

show the treatment effect for all possible values of the covariate, so the ATE is just the average width of

that bar, which happens to be −1 here. In this case, we consider the Average Absolute Treatment Effect,

which we denote by ‘AATE’ for brevity, which is the average absolute width of the bar, which happens to

be 1 here. Since the treatment here is batch, the goal is to remove the treatment effect, which requires

correctly estimating the treatment effect and then removing it. When AATE = 0 (no batch effect), the

covariate/outcome relationship is equal across the two batches, and non-zero otherwise.

We consider four different algorithms for this purpose: cComBat, cComBatGAM, Matching cComBat, and

AIPW cComBat. These approaches are compared to the oracle, a batch effect correction technique

which has prior knowledge of the true data generating model. We show the estimates of the mean

AATE after correction over 1000 trials for each method and each simulation setting as we vary the

amount of covariate overlap (top row, Figure 4B). Ideally, after batch effect correction is performed, the

covariate/outcome relationship will be equal across the batches, and the AATE will be approximately

zero. When the relationship between covariate and outcome is linear, all the methods work regardless

of the amount of overlap (Figure 4C.I). However, when the relationship is non-linear, the non-causal

methods mis-estimate the batch effect unless there is a nearly perfect overlap, and the resulting data

are qualitatively dissimilar across batches after correction, indicated by the mean AATE being far from

0 (Figure 4B.II). In cases of extreme non-overlap, note that the data are similarly dissimilar after batch

effect correction to before any correction were applied (AATE near or above the dotted black line). In

contrast, Matching cComBat and AIPW cComBat correctly estimate and remove the batch effect, and

demonstrate near optimal performance of the oracle. The results are qualitatively similar when the

relationship is non-monotonic (Figure 4B.III).

In addition to removing batch effects, it is critical that a batch effect correction technique preserves
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16 3 RESULTS

underlying signal in the data. We evaluate how well the corrected data reflects the true underlying

relationship (linear, non-linear, or non-monotonic) between the covariate and the outcome. We compare

the corrected data to the true relationship using Pearson’s correlation Pearson, 1896, restricting to the

matched samples so that the correlations are all computed with respect to the same set of sample

in Figure 4(C). Low correlations indicate that the data poorly reflect the true relationship, suggesting

that regardless of whether or not there is a batch effect, the underlying signal has been perturbed.

Again, regardless of the a priori presence of batch effects, causal methods tend to outperform non-causal

methods for preserving the underlying signal in the data, and show performance near that of the oracle,

particularly as covariate overlap declines.

The results are qualitatively and quantitatively similar when there is no batch effect a priori (the focus of

Appendix D.5), indicating that non-causal methods can also introduce artifacts to the data when none

are present. On the other hand, causal methods show greater robustness to these situations too, with

performance closely mirroring the oracle. Taken together, these results suggest the utility of causal

methods for identifying and correcting for batch effects from data, as they have near-optimal performance

in our simulation regimes for identifying and removing batch effects when batch effects are present, and

avoiding the introduction of artifacts to the data when no batch effects are present a priori.
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3.1 Causal machinery helps mitigate limitations of traditional batch effect methods 17

Figure 4: Simulation regimes illustrate that non-causal procedures are subject to strong biases
without covariate matching. (A) illustrates the relationship between the relative expected outcome
and the covariate value, for each batch (color), across (I.) linear, (II.) non-linear, and (III.) non-
monotone regimes. The conditional average treatment effect (red box) highlights the batch effect for
each covariate value. The average treatment effect (ATE) is the average width of this box, and the
average absolute treatment effect (AATE) is the average absolute width of this box. In these simulations,
the AATE before treatment is 1. (B) The effectiveness of the techniques at removing the batch effect.
Techniques with high performance will have a mean AATE after correction at or near 0 (the batch
effect was eliminated). (C) illustrates the effectiveness of different batch effect correction techniques
for preserving the underlying true signal. Techniques with high performance will have higher correlations
with the underlying true signal.
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3.2 The CoRR Studies have disparate demographic characteristics

The motivation for our work is the neuroimaging mega-study produced by the Consortium for Reliability

and Reproducibility (Zuo et al., 2014), a collection of over 3,500 functional neuroimaging measurements

from over 1,700 individuals spanning 27 separate datasets. A full description of data pre-processing for the

neuroimaging and covariate information is provided in Appendix E. Figure 5A explores the demographic

characteristics for the individuals in the CoRR mega-study. Many of the studies have a narrow age range,

and several studies only include females. Because sex (Ingalhalikar et al., 2014; Satterthwaite et al.,

2015; Weis et al., 2020), age (Hampson et al., 2012; Sala-Llonch et al., 2015; Varangis et al., 2019),

and continent (as a surrogate for race and culture) (Ge et al., 2023; Misiura et al., 2020) are variables

that have been associated with brain connectivity, they serve as measured demographic covariates used

in our investigation.

Figure 5B illustrates the level of demographic overlap in the CoRR mega-study, using a distribution-free

overlapping index (Pastore & Calcagǹı, 2019) (see Appendix E.2 for details). The CoRR mega-study

includes many pairs of datasets with varying degrees of overlap, from high (near 1) to low (near 0).

Further, many of the datasets do not overlap at all (overlap of 0), making inference about batch effects

impossible without making strong assumptions. This is particularly troublesome, as the covariate records

for the CoRR mega-study common to all sites include only three covariates: age, sex, and continent

of measurement. Additional measured covariates can only reduce the estimated overlap between the

pairs of datasets, so having poor overlap on such a sparse set of covariates indicates that the actual

demographic overlap is likely even lower.

3.3 Detecting Batch Effects in the CoRR mega-study

Figure 6A focuses on discerning the viability of different types of effects one could use to test for

batch effects from Section 2.2. For each pair of datasets in the CoRR study, we test whether (or

not) a discernable effect is present, while controlling for age, sex, and continent differences between

the individuals within each dataset. Intuitively, we would like to believe that if such a test rejects the

null hypothesis in favor of the alternative, the data supports that a batch effect is present. When we

account for demographic covariates using conditional (non-causal) approaches (orange squares, top left),

differences between the datasets are detected 26.9% of the time (checkboxes, cDcorr, BH correction,

α = 0.05). Conditional procedures may be “confounded” in extreme cases; e.g., the batch effect

conditional on age and sex is confounded between NKI24 and IPCAS5 because one dataset is entirely

female and the other is entirely male, and the age distributions do not overlap (Figure 5(B)). This results

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.3 Detecting Batch Effects in the CoRR mega-study 19

Figure 5: Demographic data for the 27 studies from the CoRR Mega-Study. (A) Each point
represents the age of a participant corresponding to a single measurement. Rows are studies, boxes are
continents, and color indicates sex. n = 3,597 samples are shown which featured age, sex, and continent
information, and were successfully processed to connectomes. (B) Even with only 3 observed covariates
(sex, age, and continent of measurement), the CoRR studies often show extremely limited covariate
overlap (Pastore & Calcagǹı, 2019). This makes inference regarding batch effects difficult.

in cDcorr being unable to compare the conditional distributions (across batch), since the conditional

distributions are non-comparable across the batches in the data. Further, as explained in Section 2.2,

the viability of these approaches as tests for batch effects is the assumption that the measured covariates

are overlapping and non-confounding, which is overwhelmingly false for many of these comparisons, as

shown in Figure 5B. Similar tests are performed using adjusted (causal) approaches in 6A (blue squares,

bottom right). Many pairs of studies could not have an adjusted (causal) effect estimated due to

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 3 RESULTS

poor demographic alignment (242 of 351 pairs of studies), where here “poor demographic alignment”

corresponds to fewer than 30 samples retained after matching across the two sites. Notably, adjusted

(causal) procedures can be used to estimate effects between all pairs of the American Clique (a group

of separate studies consisting of similar demographics collected in North America, consisting of NYU1,

NYU2, IBATRT, UWM, MRN1). After adjustment for the sample characteristics of the demographics

associated with individual studies, a majority of adjusted (causal) effects (66.1%) remain significant

(Causal cDcorr, BH correction, α = 0.05).

Note that confounding (red “X”s) in Figure 6A for causal effects extremely closely align with datasets

with low covariate overlap in Figure 5B. A possible source of a batch effect could be different types

of scanners were used to collect the data (Chen et al., 2022; Johnson et al., 2007; Pomponio et al.,

2020), which is represented in our presentation as a causal effect modifier in Figure 2A. To this end,

we aggregate the fraction of comparisons which report the indicated test outcome for different levels of

covariate overlap (rows) when the scanner model is the same (right column) or different (left column).

When the scanners are different and the covariates overlap, both causal and non-causal methods reliably

detect batch effects a majority of the time, and they do so at a higher rate than when the scanner

is the same (Figure 6B.I). When the covariate overlap is low (Figure 6B.II), or when the continent

of measurement is different entirely (and the overlap is zero, (Figure 6B.III), conditional (non-causal)

procedures almost always fail to reject. On the other hand, adjusted (causal) procedures overwhelmingly

report that a given pair of studies are demographically confounded, and are too different for any effect

to be investigated.

Appendix E.3 computes numerous within-individual topological properties of functional connectomes,

illustrating that ComBat-derived approaches do not tend to disrupt within-individual signal of the con-

nectomes, which leaves open the possibility that while within-individual signal may be preserved, cross-

individual variability may be altered by the techniques, and motivates our final analysis.

3.4 Traditional Approaches Produce Disparate Inference from Techniques

Leveraging Causality

We investigate the strength of the sex effect, conditional on age, in the connectomes before and after

batch effect correction (Figure 7). Connectomes are filtered to the American Clique, a selection of

datasets with overlapping demographics from Figure 5(A), and then either have no batch effect correction,

ComBat, or cComBat (the non-causal approaches) applied to the resulting derivatives, and are finally

filtered to a matched subset of individuals (Figure 7A). Similarly, we apply Matching cComBat to the
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3.4 Traditional Approaches Produce Disparate Inference from Techniques Leveraging Causality 21

Figure 6: Comparison of types of effects between datasets from the CoRR study. (A) Heatmap
of different types of effects (conditional and adjusted causal procedures) that can be used to detect
differences between each pair of datasets in the CoRR study. Whereas most (25.8%) non-confounded
conditional effects are not significant, most (66.1%) non-confounded adjusted effects are significant.
(B).I delineation of how one possible source of batch effects, scanner model, impacts significance rates
of batch effects. Almost all pairs of studies conducted on different scanners with high covariate overlap
(> .05) have discernable batch effects. The rate of detected effects is lower when the scanner model
is the same. (B).II and (B).III When the level of estimated covariate overlap is lower (< .05) or zero
(different continent), conditional effects never detect a difference across datasets. On the other hand,
adjusted causal procedures instead report that the data is too confounded for subsequent inference and
avoid running entirely.
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American Clique, which conceptually applies batch effect correction to the matched subset itself. In

this sense, while the manner in which the data were post-processed for batch effects differs, the actual

individuals included and the techniques used for the subsequent analysis are identical. We test for a

significant sex effect, conditional on age, using the generalised covariance measure. The generalised

covariance measure (Shah & Peters, 2018) is a conditional independence test, which performs nonlinear

regressions of the outcomes (connectivity) on the conditioning variable (age) and then tests for a vanishing

covariance between the resulting residuals across sex. These tests can be adapted for two-sample testing

regimes, such as for testing for differences across sex (Panda et al., 2025). The edges which show a

significant sex effect conditional on age (generalized covariance measure, BH correction, α = .05) are

colored from smallest test statistic to largest test statistic (rank = 1, dark purple), and edges without a

significant conditional sex effect are colored white (Figure 7B).

While these plots appear superficially similar, we compare the DICE overlap (Dice, 1945; Sørensen,

1948) of the top 100 edges (by effect size) across all approaches. A high DICE overlap indicates that the

subsets of edges are similar. ComBat, cComBat, and cComBatGAM tend to produce similar inferences. In

contrast, they all have lower overlap with Matching cComBat (Figure 7C), and all produce more similar

subsequent inference to the raw connectomes (no batch effect correction) than Matching cComBat. This

suggests that causal and non-causal strategies for batch effect correction can yield dissimilar subsequent

inference, even though the selection of individuals being subsequently analyzed is the same.
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Figure 7: Significant Edges Before and After Batch Effect Removal. (A) The presence of a sex
effect (conditional on individual age) is investigated for each edge in the connectome. Significant edges
are shown in rank order from largest (rank = 1) to smallest sex effect (α = .05, Benjamini Hochberg
(Benjamini & Hochberg, 1995) correction). Analysis is performed on the American Clique, and then either
pre-hoc filtering (e.g., before any batch effect correction is applied, in the case of Matching cComBat) or
post-hoc filtering (e.g., after batch effect correction is applied, in the case of Raw, ComBat, cComBat) to
a matching subset of individuals. Subsequent inference appears qualitatively dissimilar, even though the
subjects used for inference are the same. (B) the DICE overlap of the top n = 100 edges, by effect size,
between all pairs in (A). cComBat, ComBat, and no batch effect correction provide similar subsequent
inference, whereas Matching cComBat provides disparate subsequent inference.
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4 Discussion

Succinctly, this manuscript is driven by two questions: (1) should data collected from mega-studies

be combined or analyzed separately, and (2) when it should be combined, the optimal strategies for

doing so. Our primary conceptual contribution is establishing that batch effects can be formalized as

causal effects. This formulation explicitly delineates the desirability of detecting and controlling for batch

effects, as failure to do so limits the identifiability of other potential estimands of interest one may wish

to study. Given this realization, we propose a framework for quantifying and removing batch effects

in high-dimensional datasets featuring non-Euclidean measurements. We propose augmenting existing

strategies for proper batch effect correction and removal by prepending causal balancing procedures.

We explore the advantages of these procedures by demonstrating that causal approaches (such as

Matching cComBat and Causal cDcorr) yield empirically valid approaches to handling batch effects,

or report that no inference can be made due to insufficient covariate overlap. This represents a princi-

pled approach over alternative strategies, which we show may introduce spurious biases and dramatically

under- or over-estimate batch effects. We illustrate how, ignorant of potential confounding, otherwise

principled strategies may misrepresent batch effects. This demonstrates that causal adjustment proce-

dures can augment hypothesis testing by indicating when the data may be unsuitable to provide answers

to a particular question due to irreconcilable confounding, rather than permitting false positives or false

negatives.

Our neuroimaging use-case shows the utility of the methods developed herein for estimating and removing

batch-related effects from large biological datasets. We demonstrate that many non-detected effects in

the CoRR study may yield false conclusions due to excessive confounding between datasets. When

demographic overlap was high and the scanner differed, batch effects were nearly always detectable using

conditional (non-causal) or adjusted (causal) procedures. Conversely, with lower demographic overlap,

effects were entirely undetectable by conditional procedures. Adjusted (causal) procedures explicitly

delineate when the datasets are overly confounded by demographic covariates. We believe this to be a

more desirable conclusion, as it highlights that in many cases, even with infinite data following similar

covariate distributions, determining the presence or absence of a batch effect would be impossible due

to high demographic confounding.

We conclude that batch effect correction represents a theoretically appropriate step supported by sim-

ulations for mega-studies with sufficient covariate overlap. When such overlap exists, causal methods

demonstrate substantial performance improvements over alternative methods for eliminating undesir-

able spurious variability without distorting underlying veridical signal. Our methods identify different
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downstream demographic effects compared to prior approaches, even though the same individuals were

analyzed, whereas prior approaches produce conclusions that are qualitatively more similar to the un-

harmonized data than causal approaches. These approaches are established in the causal literature to

permit numerous false positives and false negatives (Ding & Miratrix, 2015; Forstmeier et al., 2017). To-

gether, our work rigorously defines and studies measurement bias and strategies to mitigate demographic

confounding in complex, non-Euclidean data.

Limitations Researchers may perceive a tradeoff: when datasets lack high demographic overlap, model

limitations can impart substantial bias on the investigation’s conclusions. Conversely, enforcing demo-

graphic overlap through propensity trimming or matching may seem to yield fewer samples or narrow

the scope of conclusions. In practice, with biological data lacking ground truths, we cannot evaluate the

introduction of imparted residual bias or determine whether downstream conclusions stem from these

biases.

We do not claim that our specific choices for re-weighting measurements are ’optimal’. Rather, we chose

simple, principled approaches for illustrative purposes. Our proposed methods can be conceptualized as

“bias-corrected” matching approaches, where we combine matching approaches as a non-parametric data

pre-processing step with subsequent regression adjustments (Abadie & Imbens, 2011; Rubin & Thomas,

2000). These methods have been shown to reduce model dependence in parametric settings, such as

those leveraged by cComBat or cComBatGAM (Ho et al., 2007). Our simulations elucidate that even

these simple balancing approaches sufficiently highlight substantial shortcomings in existing approaches

for detecting or correcting batch effects, and that causal machinery may mitigate these shortcomings.

In our real data analysis, we used only three covariates: age, sex, and continent of measurement (as

a surrogate for race) – these being the only covariates collected across the CoRR study. While we

acknowledge this limited covariate set is likely insufficient for formal harmonized analyses, it serves our

exploratory purpose of illustrating the differences between causal and non-causal analyses. Moreover,

even in mega-studies that collect more comprehensive covariate sets, many analyses focus primarily on

age and sex for harmonization. We believe insufficient evidence exists to support the adequacy of such

limited covariate sets for harmonization, and our work demonstrates how this limitation may lead to

problematic confounding biases.

It is likely that other methods, such as extensions of our proposed AIPW cComBat, may be more ap-

propriate in certain contexts than matching-based methods. In particular, for matching-based methods,

one would typically restrict the study population (across all studies) to the “narrowest” covariate range;

e.g., the “intersection” of the covariate distributions across the included studies. AIPW-based methods
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may instead present promise for aligning each dataset to a broader “reference”, and then sequentially

estimating batch effects for each non-reference group against the broad reference group. This may be

complementary to current efforts to produce so-called “lifespan” reference curves (Zhu et al., 2024),

which propose harmonizing datasets on the basis of reference templates gradually developed over time.

Our work highlights that the appropriateness of such comparisons require careful consideration of the

demographic and phenotypic characteristics of both the groups used to develop these reference templates

as well as the new datasets being aligned against the reference, which we believe has been insufficiently

explored by the current literature. Further, AIPW-based methods generally offer the “doubly robust”

property in parametric settings, where subsequent inference may be consistent if either the outcome

or the propensity score model are correctly specified, affording two opportunities for correct estimation

(J. M. Robins et al., 1994). Of note, our proof-of-concept AIPW cComBat implementation outper-

forms cComBat and cComBatGAM approaches in simulation environments. However, these methods are

more difficult to adapt to present approaches due to the fact that they necessitate the incorporation

of weighting schemes to batch effect correction techniques. It is possible that there are other desirable

characteristics (such as generalizability to broader target populations) in which AIPW-based methods are

more optimal than matching-based methods, or alternative causal approaches that are more performant

than those investigated here.

Our work highlights the question of how to properly interpret multi-site scientific studies, particularly

regarding internal and external validity (Degtiar & Rose, 2023; Patino & Ferreira, 2018). When we

re-weight data to impose demographic overlap, we can make internally valid conclusions in regions of

the covariate space that support analysis, albeit potentially for a narrower set of covariate values. Our

procedures learn a batch effect correction for a matched subset of individuals, with conclusions method-

ologically valid for individuals within a range of covariate overlap with this re-weighted population. This

approach allows investigators to benefit from causal methods while minimizing discarded samples, bal-

ancing internal validity with statistical power for subsequent investigations. Less conservative approaches

might attempt to apply the internally valid batch effect correction to a wider target population, requiring

potentially dubious extrapolations of estimated batch effects to new covariate values. In such contexts, a

more conservative approach would be to analyze data separately and derive conclusions across subsequent

analyses (i.e., via meta-study).

While causal re-weighting procedures will attempt to impose demographic overlap (when possible), we

explicitly avoid making recommendations as to sample sizes sufficient for subsequent inference. Rather,

we believe that these balancing procedures should be considered in tandem with the proposed inference

question (e.g., after correcting for batch effects), and subsequent conclusions described in terms of the

retained sample. For instance, if one wishes to learn a relationship between age and brain connectivity
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across the lifespan from multiple datasets, but a “matched sample” only includes individuals between 20

and 25 across the different datasets, perhaps a meta-study would be more appropriate than a mega-study

incorporating batch effect correction techniques. If one wished to continue with a mega-study approach,

care should be taken that subsequent inference methods are sensitive to sample sizes (e.g., at a fixed

effect size, a method would provide less confident answers with fewer samples) and that the inference

is presented alongside descriptors of the retained sample (e.g., explicitly delineating that the analysis

only applies to individuals between 20 and 25). Our software implementations, and consequently our

simulations and real data analyses, default to raise errors if fewer than 30 samples are retained, a typical

threshold for central limit theorem-based inference (such as regressions) (Rice, 2006), but this should

not be used as a strict criterion.

Another limitation is that our methods exchange traditional statistical assumptions for sets of causal

assumptions. This allows us to delineate a relatively understandable context (intuited via causal graphs

and notions of covariate overlap) in which traditional batch effect correction techniques may be valid,

and illustrate that data from mega-studies often do not resemble these assumptions. Even if “all models

are wrong” (Box, 1976), their utility presupposes they loosely capture elements of the real data, which

we show is frequently not the case for mega-studies.

Future Work This work suggests that harmonized analyses should be conducted with both harmonized

measurement parameters and demographic distributions, departing from current practices in many mega-

studies (Di Martino et al., 2014, 2017; Yamashita et al., 2019; Zuo et al., 2014). Post-hoc batch effect

detection and removal presents theoretical and conceptual inconsistencies regarding internal validity when

not viewed through a causal lens. This is evident in the poor demographic overlap in popular neuroimaging

studies like CoRR and ABIDE (Di Martino et al., 2014, 2017). While SRBPS (Yamashita et al., 2019)

shows greater demographic overlap, both ABIDE and SRBPS introduce additional complexities by using

neurodivergences in participant recruitment. If the measured connectome proxies underlying neurology,

neurodivergent brain features may cause symptoms of different neurocognitive behavioral phenotypes

(Hashem et al., 2020; Konrad & Eickhoff, 2010; Vogelstein, Bridgeford, Pedigo, et al., 2019), potentially

introducing collider biases or differential-exposure measurement errors (Bareinboim & Pearl, 2012; Nebel

et al., 2022; Pearl, 2014). This can be conceptualized as participant illness status yielding violations

of the ignorability assumption (Bridgeford et al., 2023) and rendering some causal effects unidentifiable

(Pearl, 1995, 2010a). While this problem has been defined for data fusion (Bareinboim & Pearl, 2016),

its impact on batch effect detection or correction in high-dimensional biological studies remains unclear.

Recent work has proposed the use of deep learning methods for harmonization of magnetic resonance

data derivatives such as T1w and T2w anatomical images (Hu et al., 2024; Liu & Yap, 2024). While to
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our knowledge no such developments have been proposed for fMRI, dMRI, or derivatives thereof (such

as connectomes), we believe that these will likely be on the horizon. The methods proposed are heavily

complementary to deep learning methods. In particular, deep learning methods are flexible for learning

complicated batch effects from the data, and may hold similar promise to traveling subjects datasets

for estimating and removing batch effects (Liu & Yap, 2024). However, deep learning methods are

known be vulnerable to data dissimilar from that previously seen, known as the dataset or distribution

shift problem, across many domains (Arjovsky, 2021; Ovadia et al., 2019; Taori et al., 2020). This

is a particular concern for multi-site mega-studies, where as we have illustrated demographic overlap

cannot be anticipated. We therefore do not anticipate that deep learning based batch effect correction

methods will be immune to these concerns. We believe that incorporating many of these techniques with

approaches such as vertex matching or other causal balancing procedures, as we propose in Section 2.2,

may represent a future area of interest.

Future work will focus on applying these methods to correct batch effects in mega-studies like the Ado-

lescent Brain Cognitive Development (ABCD) (Karcher & Barch, 2021), which includes N > 11,000

demographically diverse individuals across the United States, using a consistent, harmonized protocol.

Studies may build upon the NKI-RS and Noble et al. (2017) by collecting measurements from diverse

groups across multiple neuroimaging sites or protocols. Our work provides a theoretical foundation for

evaluating studies like (Noble et al., 2017) and (Yamashita et al., 2019), which advocate aggregating

multi-site traveling subject datasets to explore batch effects with minimal assumptions. This allows ap-

preciation of internally valid demographic-specific effects and informs modeling assumptions, potentially

enabling extrapolatory batch effect removal techniques in non-demographic-aligned datasets. Recent

work highlights that data pre-processing strategies significantly impact subsequent derivatives (Bhagwat

et al., 2021; Bridgeford et al., 2020; Gargouri et al., 2018; Vergara et al., 2017). While some strategies

may optimally satisfy certain criteria (e.g., registration quality), they may improve or worsen batch ef-

fects. Future research could explore optimizing pre-processing to limit batch effects while meeting other

requirements.

Ethics Statement

This study analyzes publicly available neuroimaging data from the Consortium for Reliability and Repro-

ducibility (CoRR) mega-study (Zuo et al., 2014). All data collection protocols from the original studies

were approved by their respective institutional review boards (IRB), and data was shared through CoRR

with approval or exemption from the original study IRBs and ethics committees. The research presented

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/


29

here involves secondary analysis of de-identified data (including de-facing of MRI data) and does not

involve direct human subject experimentation. Our methodological approaches prioritize transparency

and reproducibility through open-source code and detailed documentation. Care was taken to avoid

over-interpretation of results, particularly when analyzing data with demographic imbalances or limited

covariate overlap. When dealing with sensitive demographic variables like sex, age, and continent of

measurement (as a proxy for race/ethnicity), we explicitly acknowledge the limitations of our covariate

set and the potential for unmeasured confounding factors. The methods developed aim to promote more

rigorous and ethical analysis of multi-site neuroimaging data by helping researchers identify when data

may be insufficient to draw reliable conclusions, rather than potentially producing misleading results.
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40 A DEFINITIONS

A Definitions

For a formal description of the below definitions, see Bridgeford et al. (2023). Informally, we adopt

the following notation to describe batch effect correction. We assume that Yi represents an observed

measurement of interest (e.g., a connectome), Ti represents the batch in which the measurement is

collected, Xi represents observed covariates, (e.g., age or biological sex), and Zi represents unobserved

covariates (e.g., height). The data (Yi, Ti, Xi, Zi) are n independent and identical samples from some

true and unknown data generating distribution. The quantity Y
(t)
i represents the measurement that

would have been observed, had the measurement been collected in a given batch t. The key distinction

is that Yi represents the actual measurement, which is collected and studied. On the other hand, Y
(t)
i is a

potentially hypothetical measurement, which is only actually observed for the case where Ti = t in most

experimental contexts Cole and Frangakis, 2009. That is, individuals have a potential measurement Y
(t)
i

for every possible batch, but only a single of these potential measurements are studied under standard

observational contexts. This is known as the consistency assumption, and can be written mathematically

as:

Yi =
∑
t∈T

1{Ti=t}Y
(t)
i = Y

(Ti)
i , (2)

where T is the set of batch labels. That the observed measurements Yi given the batch (or measured

covariates) and the potential measurements Y
(t)
i do not, in general, have similar distributions is known as

the “fundamental problem of causal inference.” This problem requires resorting to additional assumptions

to make conclusions on the basis of the observed data.

Using this convention, a batch effect is defined in Definition 1.

Definition 1 (Batch Effect). A batch effect exists between two batches t and t′ if Y
(t)
i and Y

(t′)
i have

different distributions.

In light of this definition, a batch effect can be conceptualized as the potential measurements having

different distributions between a given pair of batches. A batch effect is present if an individual’s potential

measurements (which are random quantities) would differ (in terms of their distributions) by virtue of

them being measured in batches t and t′.

The major conceptual leap is that, under the manner in which most mega-studies are collected (where

individuals are unique to each batch), Definition 1 is about potential measurements rather than realized

measurements. Causal claims regarding potential measurements will only be valid on the basis of the

observed (realized) data insofar as the reasonableness of the assumptions upon which they rest.
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A.1 Associational Effects

In an associational context, we observe measurements yi and batches ti for each individual i ∈ [n], so

effects can only be determined from realizations of Yi and Ti.

Definition 2 (Associational Effect). An associational effect exists between batches t and t′ if Yi|Ti = t

and Yi|Ti = t′ have different distributions.

Likewise, we can use this intuition to develop a suitable definition for associational batch effect correction:

Definition 3 (Associational Effect Correction). Associational effect correction is a function g, where:

g
(
{(Yi, Ti)}i∈[n]

)
=

{
Ỹi

}
i∈[n]

such that for all pairs of batches t and t′, Ỹi|Ti = t and Ỹi|Ti = t′ have the same distribution.

Whereas Yi represents the measurement for an individual, the intuition is that Ỹi can be thought of as

the “corrected” measurement, which does not have an associational effect for any pair of batches in the

observed data.

Associational effects will often poorly characterize whether a batch effect is present. Consider, for

instance, if in one batch t, we tend to measure older individuals, whereas in another batch t′, we tend

to measure younger individuals. If age is related to the measurement we obtained, then the differences

between Yi|Ti = t and Yi|Ti = t′ could be due to age or batch identity, and we have no way of

differentiating whether the effect is a bona fide batch effect versus merely an associational effect. A

sufficient condition for an associational effect to facilitate detecting or estimating a batch effect would be

that individuals are randomized to each batch, in that individuals are randomly assigned to be measured

in particular batches pre-hoc. Associational effect detection can be facilitated via Dcorr Székely et al.,

2007, and associational effect correction can be facilitated via ComBat Johnson et al., 2007.

A.2 Conditional Effects

In a conditional context, we observe measurements yi, batches ti, and covariates xi for all individuals

i ∈ [n], so effects can be determined from realizations of Yi, Ti, and Xi.
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Definition 4 (Conditional Effect). A conditional effect exists between batches t and t′ if for some

covariate x, Yi|Ti = t,Xi = x and Yi|Ti = t′, Xi = x have different distributions.

We can define conditional effect correction using this logic:

Definition 5 (Conditional effect correction). Conditional effect correction is a function g, where:

g
(
{(Yi, Ti, Xi)}i∈[n]

)
=

{
Ỹi

}
i∈[n]

such that for all pairs of batches t and t′ and for all covariate levels x, Ỹi|Ti = t,Xi = x and

Ỹi|Ti = t′, Xi = x have the same distribution.

Conceptually, given the consistency assumption from Equation 2, a conditional effect is equivalent to a

batch effect if two conditions hold:

1. the measured covariates overlap in distribution between the batches (propensity overlap), and

2. the measured covariates provide all of the information regarding the mechanism about how people

ended up in one batch versus the other (strong ignorability).

The former condition denotes that both batches must contain similar groups of people (in terms of

measured covariates), and the latter condition specifies that the measured covariates Xi tell us all of

the information needed to “exchange” measurements from one batch to the other. Borrowing the

preceding example, even if we observe more young people in a batch t, we must still observe some young

people in the other batch t′. In this sense, the measured covariates contain the information needed to

“de-confound” disparities that might be batch effects or veridical effects due to upstream covariates.

Therefore, when we make subsequent comparisons, we do not need to guess what people with similar

covariates would have looked like in the other batch, and vice versa.

In this fashion, our comparisons can be thought of as locally (with respect to the covariates) exchanging

a realized measurement Yi in batch t with a realized measurement Yi in batch t′, where both individuals

have similar covariates x. Intuitively, these comparisons can therefore be conceptualized as syntheti-

cally comparing Y
(t)
i and Y

(t′)
i (the target estimand for establishing a batch effect) by using observed
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measurements Yi from individuals who are similar on the basis of the covariates Xi between the two

batches. Condition 1 ensures that we can make this intuitive step over the entire span of covariates in our

batches. Conditional effect detection can be facilitated via cDcorr Wang et al., 2015, and conditional

effect correction can be facilitated via cComBat Johnson et al., 2007.

In practice, we never know whether the propensity distributions overlap; we can only estimate them from

the data. If our estimated propensities do not overlap given finite data, we again cannot reasonably

differentiate between differences in the two groups being due to bona fide batch effects or empirical

differences in the propensity distributions. This motivates a third approach.

A.3 Adjusted Effects

As before, we observe measurements yi, batches ti, and covariates xi for all individuals i ∈ [n], and we

determine effects from realizations of Yi, Ti, and Xi. Prior to assessing the equality of any distribu-

tions, however, we weight the observations such that the observed covariate distributions are rendered

approximately overlapping.

Definition 6 (Adjusted Effect). An adjusted effect exists between batches t and t′ if after re-weighting

samples such that Xi|Ti = t and Xi|Ti = t′ are approximately overlapping (or, alternatively,

approximately equal) in distribution, Yi|Ti = t,Xi = x and Yi|Ti = t′, Xi = x have different

distributions.

We can similarly define adjusted effect correction as:

Definition 7 (Adjusted Effect Correction). Assume that the samples are re-weighted via weights wi

(possibly 0 or 1) such that after re-weighting, Xi|Ti = t and Xi = t′ are approximately overlapping (or

alternatively, approximately equal) in distribution for all wi ̸= 0.

Adjusted effect correction is a function g, where:

g
(
{(Yi, Ti, Xi, wi)}i∈[n]

)
=

{
Ỹi

}
i∈[n]

such that for all pairs of batches t and t′ and for all covariate levels x, Ỹi|Ti = t,Xi = x and

Ỹi|Ti = t′, Xi = x have the same distribution.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Adjusted effects, by default, satisfy the first criterion for a conditional effect to be a batch effect. This

is because rendering measured covariate distributions approximately equal intuitively is a more strict

criterion than simply ensuring that they approximately overlap. The reason that we believe that re-

weighting to ensure approximate covariate distribution equality is desirable for effect correction, versus

simply approximate covariate overlap, is discussed in Section 3.1 and Appendix D.3. Adjusted effect

detection can be facilitated via Causal cDcorr Bridgeford et al., 2023, and adjusted effect correction

can be facilitated with Matching cComBat (described in Section 2.3).

We still must satisfy the latter criterion for a conditional effect to be a batch effect; that is, given the

measured covariates, we can ignore how people ended up in one batch versus the other. This assumption

has the same interpretation as before.

A.4 Crossover Effects

We observe measurements y
(t)
i and covariates x

(t)
i , for all individuals i ∈ [n] and for all batches t ∈ T .

In this case, we can make statements on the basis of Y
(t)
i itself, because we actually observe outcomes

for each possible batch. Therefore, we typically will not need to resort to local exchangeability (similar

individuals/covariates across batches) as before, unless there are aspects of the individuals changing

from one batch to another. Crossover effects in general require the fewest assumptions to derive causal

conclusions, since we directly observe all possible potential measurements for each individual.

Definition 8 (Crossover Effect, constant states). A crossover effect exists between batches t and t′ if,

given that
(
X

(t)
i , Z

(t)
i

)
and

(
X

(t′)
i , Z

(t′)
i

)
are sufficiently similar, Y

(t)
i and Y

(t′)
i have the same

distribution.

We are certain that any traits of the participants (i.e., variables that are constant for a given participant,

such as genome) are the same across the two groups since the group members are identical (even if

we did not measure these traits). However, states may differ as they may be functions of location or

time. For example, if being measured impacts subsequent states, then a crossover effect may not be

indicative of a batch effect without further assumptions and/or experimental design considerations (such

as randomizing exposure order across participants, or resorting to adjusted effect strategies as before if

these states are measured).

In the case where participant states are unchanging or are randomized, new associational strategies would

need to be developed which, rather than comparing data directly across batches, batch effects would be
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estimated (or detected) by looking at disparities that arise across batches for the same individual measured

multiple times. For instance, instead of investigating batch effects by comparing across batches, one

could investigate batch effects by instead looking at within-individual differences across batches, and

then investigating batch effects by aggregating across these within-individual differences.

In the case where participant states are changing and are not randomized but are measured, we can resort

to adjusted strategies for adjusted effect detection or correction, via a crossover effect for non-constant

states:

Definition 9 (Crossover Effect, non-constant states). A crossover effect exists between batches t and

t′ if, after re-weighting samples such that X
(t)
i and X

(t′)
i are approximately overlapping (or,

alternatively, approximately equal) in distribution, Y
(t)
i and Y

(t′)
i have the same distribution.

For this effect to be a true batch effect, we need to make the same assumptions as before; that is, that

given the measured covariates (which include the changing states), we can ignore how people ended up in

one batch versus the other. New methods would need to be devised which combine covariate adjustment

strategies with similar strategies to those proposed to address crossover effects with constant states.
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46 B STATISTICAL METHODS

B Statistical Methods

B.1 Hypothesis Testing

Recall that statements of the form f(y) = g(y) against f(y) ̸= g(y) are equivalent to Pf = Pg against

Pf ̸= Pg, as probability densities uniquely define distribution functions. Therefore, hypotheses for the

effects described in Section 2.2 require two-sample and conditional two-sample testing procedures. A

natural test statistic for the two-sample testing procedure is the Distance Correlation Székely et al., 2007,

which is a non-parametric test for testing whether two variables are correlated. A simple augmentation

of the distance correlation procedure Shen et al., 2017; Vogelstein, Bridgeford, Wang, et al., 2019 shows

that DCorr can be used for the two-sample test, or a test of whether two samples are drawn from different

distributions. DCorr is exactly equivalent in this context to the Maximum Mean Discrepency (MMD),

which embeds points in a reproducing kernel Hilbert Space (RKHS) and looks for functions over the unit

ball in the RKHS that maximize the difference of the means of the embedded points. When we instead

consider the conditional two-sample test (i.e., a test of f(y|x) = g(y|x) against f(y|x) ̸= g(y|x)), we
instead use the conditional distance correlation Wang et al., 2015, a kernel-based approach in which the

points are embedded in a new, non-linear Hilbert Space, which augments the traditional linear Hilbert

Space used in distance correlation to allow the definition of the squared distance covariance. Below, we

let Y = (yi) ∈ Yn denote realizations across both samples and t⃗ = (ti) ∈ {t, t′}n indicate from which

sample each realization is drawn. X = (xi) ∈ X n denotes covariates which are known about the objects

of interest.

Associational Effect We have the following null and alternative hypotheses:

H0 : f(y|t) = f(y|t′) against HA : f(y|t) ̸= f(y|t′)

A test of the preceding hypotheses is performed using the distance correlation, and the natural test

statistic is DCorr(Y, t⃗).

Conditional Effect We have the following null and alternative hypotheses:

H0 : f(y|t, x) = f(y|t′, x) against HA : f(y|t, x) ̸= f(y|t′, x)

A test of the preceding hypotheses is performed using the conditional distance correlation, and the natural

test statistic is cDCorr(Y, t⃗|X).
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Adjusted Conditional Effect We have the following null and alternative hypotheses:

H0 : f̃(y|t, x) = f̃(y|t′, x) against HA : f̃(y|t, x) ̸= f̃(y|t′, x)

Unlike the preceding tests, we instead consider the data (Ỹ, ⃗̃t, X̃), which are the measurements, sam-

ple indicators, and covariates of the n realizations after covariate adjustment. A test of the preced-

ing hypotheses is performed using the conditional distance correlation, and the natural test statistic is

cDCorr(Ỹ, ⃗̃t|X̃).

Causal Crossover Effect We have the following null and alternative hypotheses:

H0 : f
(
y(t)

∣∣t, x(t)
)
= f

(
y(t

′)
∣∣t′, x(t′)

)
against HA : H0 : f

(
y(t)

∣∣t, x(t)
)
̸= f

(
y(t

′)
∣∣t′, x(t′)

)
If the known covariates are identical between batches t and t′, we test the preceding hypotheses using

the distance correlation, and the natural test statistic is DCorr(Y, t⃗). If the known covariates are not

identical between batches t and t′, we test the preceding hypotheses using the conditional distance

correlation, and the natural test statistic is cDCorr(Y, t⃗|X). Note that to our knowledge, there are no

energy statistical methods similar to other tests utilized herein that we are aware of for naturally paired

data with multivariate responses that are non-parametric, so we use these tests as surrogates due to the

lack of an alternative. These tests may afford robustness to certain types of model misspecification, at

the expense of violations of independence assumptions across repeated samples. Therefore, the outcomes

of such tests should be interpreted with caution.

More Than Two Batches The above approaches generalize sufficiently to K batches using K-sample

testing approaches Bridgeford et al., 2023. With fk for k ∈ [K] denoting the densities associated with

K sites or batches, this motivates hypotheses of the form:

H0 : fk = fl for all k, l against HA : fk ̸= fl for some k ̸= l,

which can be tested using the distance correlation or the conditional distance correlation as above, with

the caveat that t⃗ becomes the matrix T = (ti,k) ∈ {0, 1}n×K . Each entry tik = 1 if sample i is in batch

k, and 0 otherwise. For the purposes of this manuscript, we focus on the two-batch case.
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B.2 Control Numerical Experiments

Control experiments are performed to ensure that after batch effect correction, the resulting data main-

tains interpretability and utility for scientific inquiry. Even if the data is devoid of batch effects, it must

still be useful for downstream inference. For our connectome data, we investigate the preservation of

demographic effects after batch effect correction.

Demographic Effect Demographic effects are investigated across both the subset of connectomes

upon which Matching cComBat is executed (the matched American Clique). We observe the tuple

(yi(k, l), si, ai, ti) for i ∈ [n], and k, l ∈ [V ], where V = 116 denotes the number of parcels in the

Automated Anatomical Labelling (AAL) parcellation N Tzourio-Mazoyer et al., 2002. We suppose that

Y (k, l) is the [0, 1]-valued random variable denoting the weight of edge (k, l), S is the binary-valued

random variable denoting the biological sex, A is the positive real-valued random variable denoting age,

and T is the [K]-valued random variable denoting the batch. We let y⃗(k, l) = (yi(k, l)) ∈ [0, 1]n denote

the realized edge weights, s⃗ = (si) ∈ {0, 1}n denote the realized biological sexes, a⃗ = (ai) ∈ Rn

denote the realized biological ages, and t⃗ = (ti) ∈ [K]n denote the realized batches. We say that a

demographic sex effect exists when:

f(y|a, s) ̸= f(y|a, s′)

To test for a demographic sex effect, we have the following null and alternative hypotheses:

H0 : f(y|a, s) = f(y|a, s′) against f(y|a, s) ̸= f(y|a, s′)

We are able to test the preceding hypothesis using the generalized covariance measure Shah and Peters,

2018, and the test statistic is gcm(y⃗(k, l), s⃗|⃗a).

B.3 p-values and Multiple Hypothesis Correction

p-values in this manuscript are estimated using permutation testing, which is an approach to obtain the

distribution of the test statistic under the null with minimal assumptions and approximations Efron, 2004.

All p-values are estimated using N = 1,000 (detection, Figure 6) or N = 10,000 (correction, Figure 7)

permutations. Across all figures associated with this work, we are concerned with obtaining a proper

estimate of the rate at which we detect effects (discoveries). Therefore, we control the false discovery

rate (FDR) with the Benjamini-Hochberg Correction Benjamini and Hochberg, 1995.
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C Procedures for detecting and mitigating batch effects

C.1 Detecting batch effects with Causal cDcorr

Many of the more direct types of detectable effects, such as associational and conditional effects, fail to

adaequately account for confounding biases present in the data. We instead propose the use of Causal

cDcorr, in which a conditionalK-sample test (Wang et al., 2015) is performed on samples with the same

“range” of covariate values after propensity trimming via a strategy known as vector matching (Lopez

& Gutman, 2014). Specifically, from (Bridgeford et al., 2023), given a dataset with batch assignments

ti, covariates xi, and measurements yi, Causal cDcorr is performed as follows:

1. Perform vertex matching, using the batch assignments given the covariate variables.

(a) Perform a multinomial regression, regressing the batch assignments ti onto the covariates xi, to

estimate a probability vector r̂(t, xi) for each of the individuals for all batches t ∈ [K].

(b) For each batch t, use the procedure of (Lopez & Gutman, 2014) to produce high and low

probability thresholds l(t), h(t).

(c) Exclude samples j for which r̂(t, xj) ̸∈ (l(t), h(t)) for any t ∈ [K]. This step excludes samples

which are overly probable (or improbable) to be from any particular batch.

2. One-hot-encode the batch assignments ti to obtain the K-dimensional vectors v⃗i, where vit = 1 when

t = ti and 0 otherwise.

3. Compute the distance correlation between yi and v⃗i conditional on xi, using cDcorr (Wang et al.,

2015).

This strategy is the focus of a complementary theoretical manuscript, in which we illustrate the theoretical

and empirical (via simulations) benefits of this technique over competing approaches for detecting causal

effects between potential outcomes. This strategy maintains both high sensitivity and specificity under

traditionally problematic data regimes (high-dimensionality, non-monotonicities, and non-linearities) in

which other methods typically fail (Bridgeford et al., 2023), making it a natural choice for causal dis-

crepancy testing (of which “batch effect” detection, termed causal unconditional discrepancy testing in

(Bridgeford et al., 2023), as-defined herein is a special case).

Figure 5C illustrates visually the causal procedures employed for adjusting the batches. Rather than fully

matching to produce the adjusted batches, samples are retained only such that they have approximately
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50 C PROCEDURES FOR DETECTING AND MITIGATING BATCH EFFECTS

overlapping covariate distributions (propensity trimming, shaded boxes). A full schematic illustrating

the use of vector matching is detailed in Appendix E of (Bridgeford et al., 2023). In the event that

the batch assignment mechanism is ignorable given the covariates and that effects between datasets are

in the same direction across all covariate levels, the adjusted effect detected by Causal cDcorr is a

causal batch effect, as proven in (Bridgeford et al., 2023). That the effects between datasets are in the

same “direction” across all covariate levels can be best intuited via example. Consider the case where

a batch effect exists, such that there is a signal disparity (a difference in the expected connectivity) in

a particular edge of a connectome between two batches. If this signal disparity is a positive difference

between batches 1 and 2 across all covariate levels (or, a negative difference across all covariate levels),

Causal cDcorr will detect a causal batch effect. In the event that the assignment mechanism is ignorable

but that effects between datasets are not in the same direction across all covariate levels, the adjusted

effect detected by Causal cDcorr is a causal effect, but may reflect a causal conditional discrepancy

(e.g., there are batch-specific differences, but they are isolated to particular covariate levels). In the

event that the batch assignment mechanism is not ignorable, the effect may not reflect any causal effects

(e.g., it may reflect unmeasured demographic differences between the batches).

C.2 Mitigating batch effects using Matching cComBat

Unfortunately, many existing techniques for the removal of batch effects fail to adequately account for

confounding biases that may be present in the data. We propose Matching cComBat, in which cComBat

is performed on a subset of observational studies in which all pairs of studies are balanced against

measured demographic covariates. Matching cComBat is performed as follows. Given measurements

and covariates from n individuals across K batches, each of which has nk individuals:

1. Perform vertex matching, using the batch assignments given the covariate variables.

2. Match control datasets to a reference dataset (defaults to smallest dataset).

(a) Perform nearest neighbor matching (without replacement) for all pairs of control datasets against

the reference. This matching is performed many-to-one or one-to-many, with the aim of retain-

ing the maximum number of possible matched pairs. When possible, use exact matching for

categorical and binary covariates, and Mahalanobis distance matching for continuous and ordinal

covariates. Default behavior uses a 0.1-width distance caliper (maximum possible distance for

continuous and ordinal covariates).

(b) Retain all reference samples with a match to a control sample, and exclude all reference samples

with no suitable matches (the matched reference samples).
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(c) Retain control samples matched to a reference sample, and exclude control samples which are

unmatched (the matched control samples).

3. Perform cComBat (Johnson et al., 2007) on the measurements of the matched reference and matched

control individuals across the K batches, conditioned on the measured covariates xi.

In the event that the conditioning set closes backdoor paths (Pearl, 2009b, 2010b), Matching cComBat

yields the removal of an internally valid causal effect and does not require extrapolation assumptions,

unlike cComBat (Ho et al., 2011; Rosenbaum & Rubin, 1983, 1985; Stuart, 2010). If the conditioning

set does not close backdoor paths, the effect removed is a conditional effect and may potentially yield

the removal of demographic effects, as we saw in Figure 4. Appendix E.2 depicts the impact on the

empirical covariate distribution of the adjustment procedure.

C.3 Mitigating batch effects using AIPW cComBat

In addition to Matching cComBat, we propose AIPW cComBat, in which cComBat is combined with IPW

methods to mitigate batch effects. AIPW cComBat is performed as follows. Given measurements and

covariates from n individuals across K batches, each of which has nk individuals, and a reference batch:

1. Perform vertex matching using the batch assignments given the covariate variables to remove samples

with no overlap in covariate space.

2. Estimate propensity scores using multinomial logistic regression on the batch assignments given the

covariates.

3. For each feature/dimension:

(a) Fit separate outcome regression models for each batch using the specified covariate model, and

(b) Calculate potential outcomes for each sample under each possible batch assignment using these

models.

4. Compute the AIPW estimator for each batch and feature by:

(a) Weighting the difference between observed and modeled outcomes by inverse propensity scores,

and

(b) Adding back the average modeled potential outcomes.

5. Adjust measurements by removing the estimated batch-specific component:
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(a) Subtract the modeled outcome for the observed batch.

(b) Add back the modeled outcome for the reference batch.

This model provides double robustness, in that if either the outcome model for each batch or the

propensity model are correctly specified, estimated batch effects are consistent for the true underlying

batch effect, with respect to the reference batch.

C.4 Covariate Adjustment

The exposed group t defaults to be the smaller of the two groups, and the unexposed group t′ is

selected to be the larger of the two groups, where nt is the number of individuals in the exposed

group and nt′ is the number of individuals in the unexposed group. The “covariate overlap” procedure

attempts to ensure positivity of the propensity distribution for the unexposed group (i.e., e(t′|x) > 0).

Intuitively, we exclude individuals from the unexposed group who do not appear “similar” to individuals

in the exposed group. In this work, covariate overlap is established via vewrtex matching (Lopez &

Gutman, 2017). Similarly, the “covariate balancing” procedure attempts to re-weight observations in

the per-batch covariate distributions such that the covariate distributions are approximately equal (i.e.,

f(x|t) ≈ f(x|t′)). In this work, we perform k : 1 or 1 : k nearest-neighbor matching using the MatchIt

package Ho et al., 2011. The number of matches k = ⌊nt′
nt
⌋ is chosen to be the largest number of

unexposed matches possible. Individuals are balanced on the basis of individual sex, individual age, and

continent of study. As there are likely many other categories with which brain connectivity may be

confounded, we do not believe this covariate set is necessarily sufficient to identify a Causal Batch Effect

1, as we would need to be confident that these covariates exhibited the covariate sufficiency property.

We perform exact matching on the basis of individual sex and individual continent of measurement, and

use a 0.1-width distance caliper on the propensity score to obtain at most k matched participants for

each treated individual Powell et al., 2020.
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D Simulations

D.1 Batch Effect Detection Simulations

Simulations illustrating the sensitivity (high testing power when a causal effect is present) and specificity

(tests which do not falsely detect effects) of Causal cDcorr for causal effect detection are in Bridgeford

et al. (2023).

D.2 Simple Simulations

This delineates the simulation settings for Figure 1 in our manuscript.

n = 500 points are sampled from Batch 0 or Batch 1 with probability 0.5; e.g., Ti
iid∼ Bern(0.5).

D.2.1 Covariate distributions

In Figure 4, the covariate distributions are determined by:

Xi|Ti = t
d∼

2Beta(2, 4)− 1 t = 0

2Beta(4, 2)− 1 t = 1

D.2.2 Outcome model

With ϵi
iid∼ N (0, 1), and the batch effect β is either 1 (bottom row) or −1 (top row):

Yi = −4sigmoid(8Xi) + 4 + βTi +
1

2
ϵi,

D.3 Full Simulations

This delineates the simulation settings for Figure 4 in our manuscript.

n = 1000 points are sampled from Batch 0 or Batch 1 with probability 0.5; e.g. Ti
iid∼ Bern(0.5).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 D SIMULATIONS

D.3.1 Covariate distributions

In Figure 4, the covariate distributions are determined by:

Xi|Ti = t
d∼

2Beta(2, 2b)− 1 t = 0

2Beta(2b, 2)− 1 t = 1

where b denotes the “unbalancedness”. We vary b from 1 to 5. Letting f0 denote the probability density

function of Xi|Ti = 0 and f1 the probability density function of Xi|Ti = 1, the covariate overlap is:

overlap =

∫ 1

−1

min (f0(x), f1(x)) dx.

D.3.2 Simulation contexts

We investigate these in three simulation contexts, where for all simulations, ϵi
iid∼N (0, 1), and the batch

effect β is either −1 (Batch Effect) or 0 (No Batch Effect):

Non-linearity A sigmoidal relationship between the covariate and the outcome. The outcome is:

Yi = −4sigmoid(8Xi) + 4 + βTi +
1

2
ϵi,

where sigmoid(x) is the non-linear sigmoid function; e.g.:

sigmoid(x) =
1

1 + exp(−x)
.

Non-monotonicity A gaussian non-monotonic relationship between the covariate and the outcome.

The outcome is:

Yi = 4φ

(
Xi, µ = −0.5, σ =

1

2

)
+ βTi +

1

2
ϵi.

This non-monotonicity is “asymmetric” because µ = −0.5, which leads to the effect not being symmetric

about x = 0 (whereas the covariates are, by construction, symmetric about x = 0).
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Linear A linear relationship between the covariate and the outcome. The outcome is:

Yi = −2(Xi − 1) + βTi +
1

2
ϵi.

D.4 Estimated Absolute Average Treatment Effect

To evaluate the effectiveness of each batch effect correction technique on simulated data, we compute

the true data expected signal for each covariate level; e.g., E
[
Y

(t)
i |x

]
for each batch t and each covariate

level x. Since ϵi has mean 0, this would be the quantity:

E
[
Y

(t)
i

∣∣x] = f(x)− t,

where f is the covariate/outcome relationship (possibly incorrectly modeled). Since x is continuous,

we compute this value for x across B = 200 evenly spaced breakpoints for evaluation. Given a set of

samples, we train a batch effect correction model, and fit the trained model to the expected signal for

each covariate level, leaving us with corrected expected signal for each batch, which we denote by v(t, x).

In theory, if the batch effect correction technique removes the batch effect as modeled, v(1, x) ≈ v(0, x)

for all x. To evaluate each technique, we consider the estimated average absolute treatment effect

(estimated AATE, for brevity) for each trial r of 1000 trials:

dr =
1

B

∑
x∈X

|v(1, x)− v(0, x)| ,

and the magnitudes of dr are annotated in the plots (shaded red boxes) for a single simulation. We

compute the mean estimated average absolute treatment effect (Mean Absolute ATE, Mean AATE) as:

mean AATE =
1

R

∑
r∈[R]

dr.

A value of 0 corresponds to the batch effect being completely eliminated (the expected signal for each

batch after correction is identical), a value of 1 would equate to the AATE between the expected signals

being the same as before batch effect correction, and a value > 1 corresponds to the residual disparity

between the expected signals exceeding the original batch effect. The procedure for simulations is

illustrated in Figure 8.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2021.09.03.458920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458920
http://creativecommons.org/licenses/by-nc-nd/4.0/


56 D SIMULATIONS

Figure 8: The procedure for assessing simulation performance in Figure 4. I. n individuals are sampled
with equal probability from each batch. II. illustrates the generative model for the data in each batch.
The ATE before correction is −1, and the average absolute treatment effect (AATE) is 1. III. illustrates
the samples for each batch. IV. illustrates that the samples are used to train a batch effect correction
model. V. the batch effect correction is applied to the data generating model, and the AATE is again
computed between the two batches (and is still 1 here; e.g., the batch effect has not been removed).
This procedure is repeated R = 1000 times for a given setting to produce the mean estimated AATE.

D.5 No batch effect simulations

Figure 9A shows similar simulations to Figure 4, but now there is no batch effect whatsoever (the AATE

before correction is 0). The goal of these simulations is to identify whether the different methods are

able to identify the lack of a batch effect, and avoid introducing a batch effect. All the methods correctly

estimate that there is no batch effect in the linear setting (Figure 4B.I). However, non-causal methods

incorrectly estimate the presence of a batch effect for both the nonlinear and non-monotonic settings,

except when the covariates are nearly perfectly overlapping (Figure 4B.II and Figure 9B.III), and introduce

batch effects to the data. In these regimes, non-causal techniques tend to introduce a batch effect, when

none is present a priori. The causal methods behave better here, correctly identifying the relative absence

of a batch effect (and therefore avoiding the introduction of a batch effect).

We evaluate how well the corrected data reflects the true underlying relationship (linear, non-linear, or

non-monotonic) between the covariate and the outcome. We compare the corrected data to the true

relationship using Pearson’s correlation Pearson, 1896, restricting to the matched samples so that the

correlations are all computed with respect to the same set of sample in Figure 9(C). Low correlations

indicate that the data poorly reflect the true relationship, suggesting that regardless of whether a batch

effect were introduced to the data, the underlying signal has been perturbed. Causal methods here

too tend to outperform non-causal methods for preserving the underlying signal in the data, and show

performance near that of the oracle, particularly as covariate overlap declines.
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Figure 9: Simulation regimes illustrate that non-causal procedures are subject to strong biases
without covariate matching. (A) illustrates the relationship between the relative expected outcome
and the covariate value, for each batch (color), across (I.) linear, (II.) non-linear, and (III.) non-
monotone regimes. The conditional average treatment effect (red box) highlights the batch effect for
each covariate value. The average treatment effect (ATE) is the average width of this box, and the
average absolute treatment effect (AATE) is the average absolute width of this box. In these simulations,
the AATE before correction is 0. (B) The effectiveness of the techniques at avoiding the introduction
of batch effects. Techniques with high performance will have a mean AATE after correction at or near
0 (no artifacts were introduced). (C) illustrates the effectiveness of different batch effect correction
techniques for preserving the underlying true signal. Techniques with high performance will have higher
correlations with the underlying true signal.
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E Datasets

E.1 Consortium for Reliability and Reproducibiliy (CoRR) data Pre-processing

The CoRR Mega-Study Zuo et al., 2014 is an aggregate dataset consisting of 27 studies collected with a

similar goal: assessing the reliability and reproducibility of neuroimaging data. The mega-study consists

of 1313 individuals, most of whom are measured numerous times, for a total of N = 3597 connectomes.

All connectomes are estimated using the m2g (MRI to Graphs) pipeline Kiar et al., 2018, which provides

a wrapper for the CPAC Pipeline Craddock et al., 2013. fMRI scans for each individual are first processed

to remove motion artifacts using mcflirt Jenkinson et al., 2002. The fMRI scans are then registered

to the corresponding individual’s anatomical scan using FSL’s boundary-based registration (BBR) via

epireg Greve and Fischl, 2009. A non-linear transformation from the individual’s anatomical scan to

the MNI152 Fonov et al., 2009 template is estimtaed using FNIRT Jenkinson et al., 2012. Nuisance

artifacts are removed by fitting the voxelwise timeseries to a regression model incorporating regressors

for the Friston 24-parameter model Friston et al., 1996, the top five principal components of the voxelwise

timeseries in cerebrospinal fluid aCompCor Behzadi et al., 2007, and a quadratic drift term. The adjusted

voxelwise timeseries is downsampled to the regions of interest (ROIs) of the Automated Anatomical

Labelling (AAL) parcellation N Tzourio-Mazoyer et al., 2002 by taking the spatial mean signal for each

timepoint across voxels within the region of interest. Functional connectivity is estimated using the

pairwise correlation between all pairs of ROI timeseries within the AAL parcellation. Parcels are sorted

throughout the manuscript according to hemispheric order, in which the parcels are aligned with left

hemisphere parcels followed by right hemisphere parcels. Within hemisphere, parcels are sorted by AAL

parcel number. For each study, we have baseline covariates for the continent, sex, and the age of

participants.

The American Clique The “American Clique” describes a subset of the CoRR Mega-Study in which

the sample populations share similarities in sample demographic characteristics. These studies share a

demographic focusing on males and females (in roughly equal proportions) of individuals across a wide

age range, and include the “NYU2”, “IBATRT”, “MRN1”, “UWM”, and “NYU1” studies. The 833

connectomes comprising the studies of the American clique are reduced to the N = 284 connectomes

with maximal demographic overlap identified through covariate adjustment C.4.

The NKI Rockland Sample Nooner et al., 2012 is a single study from the CoRR Mega-Study

consisting of 24 individuals, each of whom is measured two times across three functional MRI acquisition
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protocols, which vary in the repetition time for each slice of the sequence (TR). The data was collected

with the intention of investigating the impact of the different MRI protocols in a crossover-randomized

approach. Due to the crossover property, evidence in favor of an effect provides strong evidence of a

causal batch effect. Images with a TR of 645 millisecond (ms), 1400 ms, and 2500 ms are measured,

with the prompt for each subject remaining identical.

E.2 Overlap of Empirical Covariates

The empirical overlap of the covariate distributions is difficult to compute in the case of data without

making heavy parametric assumptions. For this reason, we turn to the distribution-free overlapping

index Pastore and Calcagǹı, 2019. The distribution free overlapping index, v̂kl, is computed by first

approximating the density of the distribution of the measured covariates for each dataset d, X =

(A, S,C), where A is a random variable whose realizations a ∈ A are ages, S is a random variable

whose realizations s ∈ S are sexes (M or F), and C is a random variable whose realizations c ∈ C
denote continent, using the base R function stats::density. The random variable D has realizations

d ∈ D whose realizations denote dataset. The density fd(a|S = s, C = c) is the conditional density of

age, conditional on the individual’s sex being s, continent of measurement being c for a given dataset d.

The mass Pd(S = s|C = c) is the conditional mass of sex, conditional on the individual’s continent of

measurement being c, for dataset d. Finally, the mass Pd(C = c) represents the mass of an individual’s

continent of measurement being c, for dataset d (0 or 1 for all d, since all individuals from dataset d

are either measured on continent c or not). An estimate of the overlap between the two densities, v̂kl

between datasets k and l, is computed using the formula:

v̂kl =
∑
c∈C

min
(
P̂k(C = c), P̂l(C = c)

) ∑
s∈{M,F}

min
(
P̂k(S = s|C = c), P̂l(S = s|C = c)

)[
∫
A
min

(
f̂d(a|S = s, C = c), f̂l(a|S = s, C = c)

)
da

]
which is obtained via numerical quadrature.

Intuitively, this can be conceptualized as representing the mass of the “area under the curve” which is

shared by the two densities for datasets k and l.
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Figure 10: The overlap of the empirical covariate distributions for the American Clique, before
and after adjustment. (A) The empirical distributions of the covariates before adjustment. (B) The
empirical overlap of the covariate distributions after the adjustment procedure is applied, as discussed in
Appendix E.2.

E.3 Preservation of within-individual signal

The most fundamental properties of interest for bach effect correction methods to satisfy are that,

for each individual, the connectomes after correction can be interpreted in the same context as the

connectomes before correction. In this light, we investigate whether the topological properties of the

connectomes are similar after correction as before. Figure 12(A) shows the connectomes before (Raw)

and after batch effect correction is applied, by computing the cross-individual mean connectome. Note

that before and after batch effect correction, the connectomes appear topologically similar, in that the

relative edge-weights (across the methods) appear relatively consistent.

Figure 12(B) considers two properties of functional connectomes, homotopy and homophily. Homotopic

edges are edges between ROIs in the same hemisphere of the brain (e.g., two an edge between two nodes
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in the left hemisphere). Homophilic edges are edges between ROIs which denote the same brain area,

but are in opposite hemispheres of the brain (e.g., an edge between the left and right motor cortex).

In general, functional connectomes show a slight homophilic effect, and a very strong homotopic effect

(Chung et al., 2020). We compute the effect size for each individual before and after correction, as the

difference in average connectivity for edges in the noted edge group and edges not in the noted edge

group (e.g., a comparison between the average connectivity of homophilic and non-homophilic edges,

for “Homophilic”, and a comparison between the average connectivity of homotopic and non-homotopic

edges, for “Homotopic”). Points falling along the diagonal dotted black line y = x tend to have a similar

signal effect before and after batch correction, which includes the vast majority of the individuals.
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Figure 11: The overlap of the empirical covariate distributions for two mega-studies. (A) The
empirical distribution of covariates. (B) The overlap of covariate distributions given by the distribution-
free overlapping index for ABIDE mega-study Di Martino et al., 2014, 2017. (C) The overlap of covariate
distributions given by the distribution-free overlapping index for the SRPBS mega-study. Yamashita et
al., 2019. Like for the CoRR mega-study, while several pairs of sites have overlapping demographic
distributions, many of the sites have extremely poor overlap in both mega-studies. In these cases,
attempts to normalize for batch effects using model-based approaches like cComBat would be subject to
the pitfalls of Figure 4 if modeling assumptions are not reasonable.
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E.3 Preservation of within-individual signal 63

Figure 12: Preservation of Topological Properties of Connectomes after Batch Correction.
(A) The average connectome, before (Raw) and after batch effect correction (other columns) across
all individuals in the American Clique. (B) Scatter plots of two topological features of connectomes,
homophily and homotopy. The x-axis denotes the average edge weight between edges which satisfy the
noted feature and edges which do not, before any correction is applied (the “raw” connectomes). The
y-axis denotes the same property for connectomes after correction is applied (point color).
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