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Abstract11

Learning-to-learn, a progressive speedup of learning while solving a series of12

similar problems, represents a core process of knowledge acquisition that draws13

attention in both neuroscience and artificial intelligence. To investigate its under-14

lying brain mechanism, we trained a recurrent neural network model on arbitrary15

sensorimotor mappings known to depend on the prefrontal cortex. The network16

displayed an exponential time course of accelerated learning. The neural substrate17

of a schema emerges within a low-dimensional subspace of population activity; its18

reuse in new problems facilitates learning by limiting connection weight changes.19

Our work highlights the weight-driven modifications of the vector field, which de-20

termines the population trajectory of a recurrent network and behavior. Such21

plasticity is especially important for preserving and reusing the learnt schema in22

spite of undesirable changes of the vector field due to the transition to learning a23

new problem; the accumulated changes across problems account for the learning-24

to-learn dynamics.25
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Introduction26

In Psychology, Schema refers to an abstract mental representation that we deploy to27

interpret and respond to new experiences, and to recall these experiences later from28

memory [1, 2]. Mental schemas are thought to express knowledge garnered from past29

experiences [2, 3, 4]. For example, expert physicists apply relevant physics schemas30

when they categorize mechanics problems based on governing physical principles (e.g.31

conservation of energy or Newton’s second law); by contrast, novice physicists who lack32

these schemas resort to categories based on concrete problem cues (e.g. objects in the33

problem or their physical configuration) [5]. What is the brain mechanism of schemas,34

and what makes it essential for rapid learning and abstraction?35

One type of schema is called a “learning set”. In a pioneering experiment, H. F.36

Harlow trained macaque monkeys on a series of stimulus-reward association problems37

[6]. While keeping the task structure fixed, each problem consisted of two novel stim-38

uli that had to be correctly mapped onto rewarded versus nonrewarded, respectively.39

Harlow found that the monkeys progressively improved their learning efficiency over the40

course of a few hundred problems, until they could learn new problems in one shot.41

He concluded that rather than learning each problem independently of the earlier ones,42

the monkeys formed an abstract learning set that they deployed to learn new problems43

more efficiently — they were learning-to-learn. Evidence of schema formation from prior44

knowledge has been demonstrated in humans [7, 8] and nonhuman animals [9, 10, 11].45

Moreover, converging lines of evidence derived from functional connectivity [12, 13],46

structural plasticity [13], lesion [9], pharmacological blockade [14], and gene expression47

[15] studies, attribute the acceleration of learning to the rapid integration of new experi-48

ences into pre-existing schema that are encoded in the neocortex. This has motivated a49

neurocentric definition of a schema as a network of strongly interconnected neocortical50

representations that affect processing of new information [7, 12, 16]. However, these51

previous experiments did not elucidate how, mechanistically, a neural circuit realizes a52

schema and expedites learning.53
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Schemas are posited to emerge as an abstraction of the commonalities across pre-54

vious experiences [4, 17]. It is the generalization of these abstract representations to55

novel situations that is believed to accelerate learning [18, 19, 20]. Indeed, the abstract56

neural representation of shared task variables has been observed across consecutively57

learned problems when experience on earlier problems facilitates later learning [21, 22].58

Furthermore, the progressive improvement in learning efficiency observed by Harlow59

suggests that this process of abstract representation-facilitated learning undergoes pro-60

gressive refinement. The structure learning hypothesis [23] equates learning to a change61

in the brain’s internal parameters which control behavior, and posits that the progres-62

sive improvement in learning efficiency emerges with a low-dimensional task-appropriate63

realization of the internal parameter space. Parameter exploration within such a space is64

less demanding, which makes learning more efficient. Therefore, while schema formation65

emphasizes an abstraction of the task’s structure, structure learning emphasizes learning66

how to efficiently use a schema to aid in generalization.67

In spite of tremendous progress in machine intelligence, learning-to-learn presents68

a major challenge in presently available artificial systems. Machine learning studies69

have proposed meta-learning approaches wherein model parameters that promote rapid70

generalization to new problems are explicitly favored and sought [24, 25]. Yet, it is not71

known whether such mechanisms are necessary computationally or present in the brain.72

Can learning-to-learn arise solely from the natural dynamics of learning?73

We explored this question of broad interest to brain research, cognitive science and74

artificial intelligence, by examining the neural mechanisms of learning-to-learn in recur-75

rent neural network (RNNs). As a behavioral paradigm we chose learning of arbitrary76

sensorimotor associations, which requires the learning of arbitrary mappings between77

sensory stimuli and motor consequents [26, 27], and is essential for flexible behavior [28].78

Macaque monkeys exhibit learning-to-learn on association problems, they learn new79

problems within an average of 20 trials when they are well-trained [29]. Furthermore,80

their prefrontal cortex is causally engaged during rapid problem learning. Prefrontal81

neurons represent task stimuli and responses during visuomotor association trials [26,82

29]. Prefrontal lesions produce substantial visuomotor association learning deficits [28,83
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30, 31]. We sought to understand whether and how a sensorimotor association schema84

may be encoded by these prefrontal representations, how it is applied to new problems,85

and how its usage is refined to improve learning efficiency.86

Towards this end, we trained and analyzed an RNN model of prefrontal computation87

and learning. We found that RNNs trained on a series of sensorimotor association prob-88

lems exhibit robust learning-to-learn despite the absence of meta-learning: the number89

of trials to learn a problem decays exponentially with the number of previously learned90

problems without an explicit mechanism to accelerate learning with increasing experi-91

ence. We analyzed the population activity of the RNN’s units via subspace decompo-92

sition to uncover population-level latent variable representations [10, 32], and we used93

manifold perturbations to study the causal relationship between learning efficiency and94

the reuse of existing population representations to learn [33]. The analyses revealed that95

the model develops neural correlates of the task’s schema — a low-dimensional neural96

manifold that represents shared task variables in an abstract form across problems. Its97

reuse avoids the formation of representations de novo while learning problems which98

considerably accelerates learning by limiting the connection weight changes required99

to learn them. We introduce a novel measure relating these weight modifications to100

population activity changes, which we term the weight-driven vector field change. This101

measure showed that the reused representations are not entirely invariant across prob-102

lems. Instead, mapping new stimuli can modify the reused representations in undesirable103

ways. Connection weight changes are primarily recruited to prevent such modifications.104

Moreover, the weight changes in early problems improve the invariance of the reused rep-105

resentations, limiting the degree to which they would be modified in the future, which106

further accelerates learning. The accumulation of such improvements over a series of107

problems supports structure learning and promotes learning-to-learn.108
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Results109

Trained neural network models exhibit learning-to-learn without110

meta-learning111

We evaluated whether an RNN model could demonstrate learning-to-learn of delayed112

sensorimotor association problems. In each problem, the model learned a unique map-113

ping between a pair of sensory stimuli (e.g. images) and a pair of motor responses (Fig.114

1a). Each trial began with a 0.5 second sample epoch, when a sensory stimulus was115

presented together with a fixation cue, and the model was required to maintain fixation.116

A 1 second delay epoch followed, when the model had to continue fixation in the absence117

of the sample stimulus. The trial concluded with a 0.5 second choice epoch signalled by118

removal of the fixation cue, when the model had to report its choice of an appropriate119

motor response. The two sample stimuli in each problem were randomly generated. The120

model was composed of a population of recurrently (or laterally) connected firing rate121

units that received eleven inputs, one signalling fixation and ten signalling features of a122

sample stimulus (Fig. 1b). Such stimulus representations are consistent with a recent123

finding that visual objects are represented in the monkey inferotemporal cortex by a124

feature-based topographic map [34]. The model is also consistent with lesion studies125

which demonstrate the causal involvement of inferotemporal-prefrontal connections in126

visuomotor learning and retention [30, 35]. Response choices were read out from the127

population’s activity by three output units that represented fixation, motor response 1,128

or motor response 2.129

The model was trained on a problem one trial at a time. Its parameters were ad-130

justed at the end of each trial to minimize the errors in its output responses, until131

the output responses achieved criterion accuracy (see Methods). The model was then132

transitioned to a new problem (Fig. 1c). Crucially, training was performed without an133

explicit meta-learning objective. A network trained on a series of delayed sensorimotor134

association problems demonstrated learning-to-learn (Fig. 1d). The network required135

a few thousand trials to learn the first problem, which was expected because the net-136
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work was initialized with random connection weights. By contrast, solving the second137

problem took only a few hundred trials. Thereafter the trials-to-criterion progressively138

decreased over the next few hundred problems, plateauing at an average of 20 trials per139

problem. This decrease was well-fit by a decaying exponential function, which closely140

matched a 30-problem moving average of the network’s trials-to-criterion. This perfor-141

mance is commensurate with learning-to-learn in macaque monkeys, which exhibit an142

exponential decrease in their trials-to-criterion when trained on a series of association143

problems [36], and demonstrate learning within 15-20 trials when well-trained [29]. The144

fit’s parameters quantify the network’s learning-to-learn performance: the time constant145

measures how quickly it produces learning-to-learn, and the learning efficiency asymp-146

tote measures its trials-to-criterion plateau. We note that while naive monkeys undergo147

behavioral shaping on the desired response set before they are introduced to the task,148

a naive network’s learning efficiency on the first problem reflects learning both to gen-149

erate basic responses, and the specifics of the problem. To avoid this confound related150

to learning the response set, we quantified the network’s learning-to-learn performance151

starting with the second problem.152

We tested the robustness of these results by similarly training 30 independently153

initialized networks. Across these networks, the learning-to-learn time constants and154

asymptotes were limited to a narrow range (Fig. 1e; time constant mean=47.52, std.155

dev.=26.22; asymptote mean=21.33, std. dev=3.85). We further tested the model over a156

range of hyper-parameter settings (f-I transfer functions, learning rates, weight and firing157

rate regularization levels), and observed robust learning-to-learn across all conditions158

(Supplementary Fig. 1). In addition, we found that the model was faster at re-learning159

problems after subsequently learning several new problems (Supplementary Fig. 2),160

suggesting that it retains a memory of previously learned problems. Taken together,161

these results demonstrate that networks trained on a series of delayed sensorimotor162

association problems robustly exhibit learning-to-learn, despite the absence of an explicit163

meta-learning objective.164
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Abstracted neural manifold governs the task’s schema and drives165

output responses166

The activity of a recurrently connected population of N units co-evolves over the du-167

ration of a trial, forming a trajectory in an N -dimensional population state space (Fig.168

2a, top). When a problem is learned, the network responds to each sample stimulus169

with a trajectory that appropriately subserves stimulus integration, decision making,170

working memory maintenance, and fixation/motor response choice. We demixed [37]171

(see Methods) population trajectories from consecutively learned problems to identify172

shared representations, if any, of the latent variables that support these computations.173

This procedure decomposed the trajectories into components embedded within two non-174

overlapping subspaces of the population state space (Fig. 2a, middle): Decision rep-175

resentations embedded within the decision subspace revealed similarities between tra-176

jectories that shared target responses; stimulus representations embedded within the177

stimulus subspace varied in a problem- and sample stimulus-dependent manner. We fur-178

ther decomposed the two decision representations in each problem into a mean decision179

representation, where the mean was taken over both decision representations (Fig. 2a,180

bottom left), and residual decision representations given by subtracting out this mean181

from the two decision representations (Fig. 2a, bottom right).182

Decomposing the trajectories from the first 50 consecutively learned problems in this183

manner revealed a low-dimensional shared decision subspace (mean = 2.36 dimensions;184

std. dev. = 0.18 dimensions across 10 networks), whose constituent decision represen-185

tations explained most of the variance in population activity across problems (mean186

= 88.54%; std. dev. = 3.16% across 10 networks). Furthermore, the mean decision187

representations lay close to each other in state space, forming a shared manifold across188

problems (Fig. 2b, left). The residual decision representations consistently encoded the189

decision and choice of either response across problems, thus forming a shared manifold190

for each decision (Fig. 2b, center). The persistence of a low-dimensional shared manifold191

which explains a majority of the population’s variance across problems demonstrates a192

strong abstraction of the shared task variables that it encodes. It bears mentioning that193
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the model retains and reuses this manifold across problems, despite changes in the stimu-194

lus set and the weight change-induced change in network dynamics that transpires while195

learning. Moreover, population activity changes during learning are largely determined196

by changes in these shared representations (Supplementary Fig. 3). In contrast, the197

stimulus representations (Fig. 2b, right) were higher dimensional (mean = 7.98 dimen-198

sions; std. dev. = 1.48 dimensions across 10 networks), but explained a small proportion199

of the population variance. Interestingly, the distribution of neural activity in popula-200

tion state space at the beginning and end of problem learning closely resemble each201

other (Supplementary Fig. 4). These results demonstrate that the model even reuses202

pre-established representations when responding to novel sample stimuli and learning203

their mappings.204

Next, we examined the relative contribution of these components to the output re-205

sponses by measuring the net current from each component to the choice outputs (Fig.206

2c). During trials where response 1 was chosen (mapping 1 trials), residual decision rep-207

resentations excited the response 1 output unit and inhibited the response 2 output unit,208

particularly within the choice epoch (Fig. 2d, center). During mapping 2 trials, these209

representations had the opposite effect. In contrast, the mean decision representations210

inhibited both response choices throughout the sample and delay epochs, but not the211

choice epoch (Fig. 2d, left). This was essential to preventing premature response choice212

initiation during the delay epoch (Fig. 2d, center). The contribution of the stimulus213

representations to response selection was negligible throughout the trial (Fig. 2d, right).214

Quantitatively similar results were obtained for all consecutively learned 50-problem215

groups in all the networks that we tested. These results demonstrate that the decision216

manifold constitutes the neural correlates of the task’s schema — it represents the shared217

temporal (mean decision) and 2-alternative (residual decision) structure of the task in218

an abstract form, and thereby reflects knowledge abstracted from past experiences. This219

predicts that the decision manifold facilitates generalization of the task structure.220
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Schematic manifold embodies a representational scaffold that221

facilitates learning222

We have shown that the schematic decision manifold is reused by, or scaffolds [8, 38, 39],223

the learned representations in subsequent problems. Moreover, this reuse is accompanied224

by a stark improvement in learning efficiency between the first problem and subsequent225

ones (Fig. 1d). To establish whether the reuse of the decision manifold plays a causal226

role in improving learning efficiency, we compared the learning efficiency of networks that227

were barred from reusing the existing decision manifold to control output responses in228

new problems, with networks that were allowed to do so. This method has been applied229

in brain-computer interface (BCI) studies to establish a causal link between monkeys’230

ability to rapidly adapt to BCI readout perturbations and their reuse of existing motor231

cortical representations to modulate the perturbed readouts [33].232

In our model, this intervention relies on the concept of a readout subspace. Population233

activity modulates an output unit’s response, only when the sum of the excitatory and234

inhibitory postsynaptic currents it produces at the unit are non-zero (output-potent ac-235

tivity, [40]). Since these currents depend on the model’s output connection weights, the236

output weights constrain the set of population activity levels which can modulate output237

unit responses. This set defines the readout subspace of population state space. Our238

observation that population representations within the decision subspace predominantly239

modulate output responses implies that the decision subspace strongly overlaps with240

the readout subspace. It follows that the elimination of this overlap, by appropriately241

altering the readout subspace, would force the development of new decision represen-242

tations to modulate the output responses. This would impair the effectiveness of the243

representational scaffold provided by the pre-existing decision manifold in composing244

the learned trajectories. The observation of a concurrent learning deficit would establish245

a causal link between the representational scaffold and accelerated learning. For this246

causal intervention as well as its controls, we started by training a naive network on247

a single problem so that it appropriately developed overlapping readout and decision248

subspaces (Fig. 3a).249
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In the frozen readout condition, we then trained the network on its second problem250

while freezing (or preventing changes to) the output weights (Fig. 3b, top right). This251

helped assess whether freezing the output weights adversely affects learning efficiency.252

Results showed that networks exhibited a substantial improvement in learning efficiency253

from the first problem to the second despite frozen readouts (Fig. 3c).254

In the stimulus-to-stimulus (S→ S) manifold perturbation condition, we perturbed255

the output weights such that the overlap between the readout and stimulus subspaces256

was altered, but the overlap between the readout and decision subspaces was not (Fig.257

3b, bottom left; see Methods). We then trained the network on its second problem258

with frozen output weights, which prevented the training procedure from re-aligning the259

readout subspace with the stimulus subspace. In these networks as well, we found a260

substantial improvement in the learning efficiency from the first problem to the second261

(Fig. 3c).262

Finally, in the decision-to-stimulus (D→ S) manifold perturbation condition, we per-263

turbed the output weights such that the readout subspace overlapped exclusively with264

the stimulus subspace (Fig. 3b, bottom right). We then trained the network on its265

second problem with frozen output weights. This condition eliminates any overlap be-266

tween the readout and decision subspaces, and compels the formation of new decision267

representations within the original stimulus subspace. In contrast to networks with268

frozen readouts and S→ S manifold perturbations, we found that the learning efficiency269

of these networks was strongly impaired — they learned as slowly as naive networks270

learning their first problem (Fig. 3c). This demonstrates that D→ S manifold perturba-271

tions adversely affected learning performance because the reuse of the decision manifold272

was impeded, and not because this was achieved by perturbing and freezing the output273

weights.274

We further tested whether the transfer of prior knowledge could facilitate learning275

of problems with altered but overlapping task structure. To do so, we trained a naive276

network on a single problem comprised of two mappings as in Figure 3a. Then, we277

transitioned it to its second problem that was comprised of three mappings (i.e. three278
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sensory stimuli mapped to three motor responses). Here too, we observed a substantial279

facilitation of learning performance compared to a naive network (Fig. 3d), accompanied280

by a reuse of the decision manifold when learning the three-mapping problem (Fig.281

3e). Taken together, these results confirm that the schematic decision manifold forms282

a representational scaffold that facilitates the transfer of prior knowledge regarding the283

task’s structure to new problems, and expedites learning in the process.284

Representational reuse and synaptic plasticity differentially con-285

tribute to learning286

We have shown that the reuse of existing representations to learn problems improves287

learning efficiency. However, learning produces fairly large changes in population ac-288

tivity to mediate the necessary output response corrections (Supplementary Fig. 8b).289

How does the emergence of such sizeable changes benefit from the reuse of existing290

representations? And how do the contributions of this reuse compare to those of the291

plasticity-induced connection weight changes? To answer these questions, we analyzed292

the activity changes between the beginning and end of a problem.293

The neural population responds to a novel sample stimulus with a pre-learning tra-294

jectory in population state space (Fig. 4a right, blue curve). This trajectory evolves295

through time due to the repetition of the following process (equation (2)): The inputs296

and population activity at time t − 1 generate postsynaptic currents subject to the297

network’s recurrent and input connection weights; these currents are integrated by the298

network units, which advances their activity from r′
t−1 to r′

t (Fig. 4a, left). In state299

space, this instantaneous advance in the population state is represented by a vector orig-300

inating at r′
t−1 (Fig. 4a, right). Note that the direction and magnitude of this advance301

is state-dependent — it depends on the activity levels of the population’s units, i.e. the302

population state, at time t − 1. It also depends on the network’s connection weights.303

The temporal sequence of these vectors guides the evolution of the population’s activity304

between its initial (r′
0) and final (r′

T ) states (Fig. 4a, right, blue arrows along blue305
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curve). Importantly, these state-dependent vectors constitute a vector field [41, 42] that306

spans the entire state space and describes the network’s dynamics (Fig. 4a, right, blue307

arrows tiling the space).308

When the problem is learned, the population activity traverses a learned trajectory309

(Fig. 4b right, purple curve) comprised of learned population states. Since the connec-310

tion weights at the end of a problem are given by the sum of the pre-learning weights and311

the plasticity-induced weight changes, this learned trajectory is governed by the sum of312

the pre-learning vector field and the changes in this field caused by the weight changes.313

Consequently, changes in population activity from the pre-learning to the learned tra-314

jectory are also governed by these two factors. The change in population activity from315

a pre-learning state (r′
t) to a learned state (rt) at time t, zt, is represented by a vector316

in state space from the former to the latter (Fig. 4c, solid gray arrows). It emerges317

from an accumulation of activity change increments throughout the trial (Fig. 4c, green318

arrow). The incremental change in population activity (∆zt+1) between times t and319

t+1 derives from the pre-learning vector field (i.e. the reuse of existing representations)320

and the plasticity-induced changes in the vector field.321

Setting aside the effect of weight changes for a moment, consider the network’s pre-322

learning vector field at the learned and pre-learning states. Due to its state-dependence,323

the pre-learning vector field may advance population activity quite differently at one324

state versus at the other. In this event, the activity difference between the pre-learning325

and learned states will change between times t (zt) and t + 1 (zt+1). In state space,326

this change is reflected by the vector difference (Fig. 4d, left, pink arrow) between the327

pre-learning vector field at the two states (blue arrows), and is referred to as the state-328

driven vector field change (or state-driven VFC; referred to in Methods as ∆Fields,t+1 -329

equation (6)). The state-driven VFC solely depends on the pre-learning vector field (i.e.330

on existing representations).331

The connection weight changes alter the net postsynaptic currents into the popula-332

tion, thereby altering how the population activity advances over time (Fig. 4b, left). In333

state space, this translates to a change in the vector field all along the learned trajectory334
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(Fig. 4b, right, orange arrows), including at time t (Fig. 4d, center), and it is referred to335

as the weight-driven vector field change (or weight-driven VFC; referred to in Methods336

as ∆Fieldw,t+1 - equation (7)). The sum of these two types of vector field change337

(weight-driven and state-driven VFCs) produces the incremental change in population338

activity (∆zt+1) between times t and t+ 1 (Fig. 4d, right; equations (4)-(5)).339

Measurements revealed a substantial difference between the magnitudes of the activ-340

ity changes (zt; Supplementary Fig. 8b) and the activity change increments (∆zt; Fig.341

5b). That is, large population activity changes emerge from an accumulation of rela-342

tively small change increments generated throughout the trial. We further assessed the343

relative contribution of the weight-driven and state-driven VFCs to the activity change344

increments by decomposing them (Fig. 5a; see Methods) into their respective compo-345

nents in the direction of the activity change increments (∆z∥ - parallel component) and346

orthogonal to them (∆z⊥ - orthogonal component).347

A key observation was that the state-driven VFC’s parallel component is much larger348

in magnitude than the weight-driven VFC’s parallel component (Fig. 5b, green bars).349

Therefore, the network’s pre-learning vector field, which governs the state-driven VFC,350

is primarily responsible for the population activity changes. Dimensionality measure-351

ments of these parallel components revealed that they are low-dimensional not only in352

individual problems, but also across a group of problems (Fig. 5c). This is consistent353

with the structure learning hypothesis [23], which posits that efficient learning relies on354

changing behavior via parametric changes within a low-dimensional internal parameter355

space of the brain. Our results suggest that this low-dimensional internal parameter356

space corresponds to a low-dimensional subspace of neural population activity, which357

constrains how population activity may change when learning a problem.358

Measurements also showed that the weight-driven VFC’s orthogonal component is359

much larger in magnitude than its parallel component, and that it is equal in magnitude360

but opposite in direction to its state-driven counterpart and nullifies it as a result (Fig.361

5b, pink bars). These orthogonal components of the weight- and state-driven VFCs are362

also low-dimensional on individual problems, but are high-dimensional across a group363
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of problems (Fig. 5c). Moreover, they largely span directions along which the existing364

representations do not typically covary (Supplementary Fig. 9a). These results imply365

that novel sample stimuli interact with the existing representations when mapped onto366

them, in a manner that elicits uncharacteristic population responses. They also reveal367

that the existing representations can be sensitive (i.e. not entirely invariant) to the368

sample stimuli that are mapped onto them. The weight-driven VFC emerges primarily369

to impede such interactions and thereby prevent changes to the existing representations.370

To summarize, our analysis of the population activity changes between the start and371

end of problem learning revealed that: (i) large changes emerge over the trial timecourse372

from the accumulation of a sequence of small local changes along the learned trajectory;373

(ii) these changes are low-dimensional and stem primarily from reusing the network’s374

pre-learning vector field to shape the learned trajectory, thus elucidating the relative375

contribution of representational reuse to learning; (iii) the pre-existing representations376

are not entirely invariant to having novel sample stimuli mapped onto them, and can un-377

dergo uncharacteristic modifications in the process. Connection weight changes emerge378

largely to prevent such modifications.379

Magnitude of recurrent weight changes determines learning ef-380

ficiency381

Next, we examined why learning efficiency is enhanced by representational reuse, by382

exploring how learning efficiency is impacted by the connection weight changes. Before383

we could do so, it was important to evaluate the relative contribution of input versus384

recurrent weight changes to learning. In supplementary note 1.1, we show that the385

model learns via recurrent weight changes — these changes predominantly determine386

the weight-driven VFC — as it is more efficient to do so. Moreover, measurements387

showed that the magnitude of recurrent weight changes in a problem largely explains388

the number of trials expended in learning it (Fig. 6a, left; coefficient of determination389

R2=0.7). This relationship was robustly observed across all 10 networks that were390
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tested (Fig. 6a, right) and is consistent with analytical bounds relating the magnitude391

of connection weight changes and sample efficiency in deep neural networks [43, 44].392

In light of this observation and the exponential decrease in the trials-to-criterion393

across problems, we hypothesized that the magnitude of recurrent weight changes should394

also decrease exponentially over the sequence of learned problems. We further posited395

that the recurrent weight change magnitudes should be proportional to the postsynaptic396

current change and the weight-driven VFC magnitudes, since these three quantities397

are directly related to each other. Consequently, we expected that the magnitudes398

of the postsynaptic current changes and the weight-driven VFC would also decrease399

exponentially. Figure 6b confirms that the magnitude of these three quantities decreases400

exponentially as a function of the number of previously learned problems. Therefore,401

the progressive improvement in the model’s learning efficiency is explained by a similar402

decrease in the magnitudes of the recurrent weight changes and weight-driven VFC403

required to learn problems.404

We can now explain why the reuse of existing representations markedly improves405

learning efficiency (Fig. 3). Networks with D→ S manifold perturbations are compelled406

to develop new representations of the task’s structure beyond the original decision sub-407

space, and aligned with their perturbed readout subspace (Fig. 3b, bottom right). In408

other words, the structure and location, in state space, of the target trajectories are409

largely constrained by the arbitrarily altered output weights. However, the vector field410

along such an arbitrarily constrained target trajectory is most likely misaligned relative411

to the vector field required to support it (Supplementary Fig. 7a, right, purple versus412

blue arrows along learned trajectory). Consequently, it is unlikely to roughly advance413

population activity along the target trajectory, as it does in unperturbed networks (Sup-414

plementary Fig. 7a, left). Measurements comparing the magnitude of the weight-driven415

VFC in unperturbed and perturbed networks confirms that the vector field in perturbed416

networks undergo drastic re-organization in comparison to unperturbed networks (Sup-417

plementary Fig. 7b, right), so that they may shape the trajectories that will re-encode418

the task’s structure (large orange arrows, Supplementary Fig. 7a). This explains the419

impairment in learning efficiency following D→ S manifold perturbations and demon-420
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strates the merits of learning via representational reuse — it is this reuse of existing421

representations that limits the requisite weight changes (Supplementary Fig. 7b, left),422

and thereby improves the learning efficiency.423

In supplementary note 1.2, we explore the interactions between stimulus and decision424

representations during trial performance and learning. We found that the stimulus and425

decision representations exhibit reciprocal interactions to sustain each other through426

the trial, and that the weight-driven VFC largely prevents uncharacteristic changes in427

the existing stimulus representations (rather than existing decision representations). In428

addition, we assessed whether the weight-driven VFC is modulated more strongly by429

pre-synaptic population activity in the stimulus or decision subspace. A comparison of430

their approximate contributions to the weight-driven VFC revealed that it relies almost431

entirely on decision representations (Fig. 6c, Supplementary Fig. 8d). This is likely due432

the the fact that the decision representations are larger in magnitude than the stimu-433

lus representations. These results reveal a second form of representational scaffolding,434

wherein the decision representations scaffold the formation of the weight-driven VFC.435

Accumulation of weight changes across problems progressively436

improves learning efficiency437

In agreement with Harlow’s learning-to-learn experiments, our model exhibits a pro-438

gressive improvement in learning efficiency spanning a few hundred problems (Fig. 1).439

This improvement is explained by a progressive decrease in the magnitude of the weight440

changes and weight-driven VFC per problem (Fig. 6a-b). Since the weight-driven VFC441

in a problem primarily prevents distortions to existing representations during learning442

(Fig. 5b), a progressive decrease in its magnitude amounts to a progressive improve-443

ment in the invariance of the existing representations to having novel stimuli mapped444

onto them. However, the source of this improvement is yet undetermined: what causes445

it in the absence of an explicit meta-learning mechanism, and how does the network’s446

accumulation of learning experience over problems relate to its emergence? We hypoth-447
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esized that the accumulation of weight changes over earlier problems facilitates learning448

in future problems. That is, weight changes elicited while learning problems p − k (for449

1 ≤ k ≤ p − 2) cumulatively alter the vector field such that they suppress the weight-450

driven VFC required to learn problem p (Supplementary Fig. 10a, top; see Methods).451

More generally, as problems are learned, their respective weight-driven VFCs accumulate452

to produce a cumulative vector field change (or cumulative VFC) which suppresses the453

weight-driven VFC required to learn subsequent problems. This progressively improves454

representational invariance and thereby accelerates learning.455

To test this hypothesis, for each problem p, we measured the magnitudes of its weight-456

driven VFC plus the cumulative VFC along its learned trajectory due to the accumula-457

tion of weight changes over the sequence of problems that precede it, i.e. from problem458

p−1 (relative problem −1) to problem 2 (relative problem 2−p). Figure 7a summarizes459

these measurements across many problems p grouped by their learning-to-learn stage, i.e.460

the number of problems they are preceded by. Here, we focused on the magnitude along461

each problem’s orthogonal weight-driven VFC component (∆z⊥), because it dominates462

the total weight-driven VFC in problems at each learning-to-learn stage (Supplementary463

Fig. 9b). The results indeed show that at each stage, learning earlier problems cumula-464

tively suppresses the weight-driven VFC required in subsequent problems. We further465

found that this is predominantly due to an accumulation of recurrent weight changes466

(Supplementary Fig. 9c). These findings confirmed our hypothesis — the accumulation467

of weight changes over problems progressively improves representational invariance and468

therefore learning efficiency. Moreover, they imply that the cumulative change along469

the orthogonal weight-driven VFC component of problems imposes a learning efficiency470

bottleneck.471

Surprisingly, even though the network expends many more trials on learning early472

problems, the approximate linearity of the curves in figure 7a indicates that early- and473

late-learned problems produce similar-sized contributions to the cumulative VFCs. In-474

deed, measurements showed that the per-trial cumulative VFC contributions by late-475

learned problems are larger than those by early-learned problems (Supplementary Fig.476

11a). This demonstrates that with experience, the model learns to contribute to the477
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learning efficiency of future problems in an increasingly efficient manner.478

Figure 7a further demonstrates that the weight-driven VFC in a problem depends479

on its net suppression by the preceding problems, i.e. the sum of the suppressive cu-480

mulative VFC contributions (and enhancing cumulative VFC contributions when they481

increase the requisite weight-driven VFC) by the weight changes in each preceding prob-482

lem going back to problem 2 (Supplementary Fig. 10b, left; see Methods). A larger net483

suppression produces a smaller weight-driven VFC. Since the weight-driven VFC decays484

exponentially with the number of preceding problems (Fig. 6b), we posited that the net485

suppression must similarly increase with it. Measurements of the net suppression along486

the orthogonal and parallel weight-driven VFC components of problems confirmed this487

(Fig. 7b). The net suppression mirrors the exponential decay in the weight-driven VFC488

(see Methods) — it rapidly increases across problems at the early stages of learning-489

to-learn, which produces a rapid decrease in their weight-driven VFCs; it gradually490

plateaus for later problems, which explains the plateauing of their weight-driven VFCs.491

The results also showed that the net suppression is weaker along the orthogonal com-492

ponents than along the parallel components, which explains why the learning efficiency493

bottleneck develops along the orthogonal components.494

Figure 7b also revealed that the net suppression of a problem’s weight-driven VFC is495

not linearly related to the number of problems that precede it. This indicates that the496

rate at which the cumulative VFC contributions suppress a problem’s weight-driven VFC497

depends on its learning-to-learn stage. We reasoned that slow (quick) suppression must498

be due to smaller (larger) contributions by the weight changes in preceding problems.499

Therefore, we expected that the sum of the magnitudes of these contributions would500

be small (large) for problems whose weight-driven VFC is suppressed slowly (quickly),501

and the progression of this sum over the learning-to-learn stages would resemble the502

net suppression magnitudes (Fig. 7b). Instead, we found that the sum increases in a503

largely linear fashion for the cumulative VFC contributions along both the parallel and504

orthogonal weight-driven VFC components (Supplementary Fig. 11b). This indicated505

that (i) the weight-driven VFC of problems at different learning-to-learn stages are506

altered to a similar extent by weight changes in the problems that precede them, and507
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(ii) the sum of the magnitudes of these cumulative VFC contributions reflects the number508

of problems that they accumulate over, but not the differences in their suppression rates.509

Taken together with the results in figure 7b, this reveals a surprising result: although510

the cumulative VFC contributions are similar-sized, their suppressive effect on a future511

problem’s weight-driven VFC depends on its learning-to-learn stage.512

Interestingly, along both the parallel and orthogonal weight-driven VFC components,513

we observed that the sum of contribution magnitudes (Supplementary Fig. 11b) is or-514

ders of magnitude larger than the net suppression magnitudes (Fig. 7b). In other words,515

relatively large cumulative VFC contributions from earlier problems cumulatively sup-516

press an ensuing problem’s weight-driven VFC by relatively small amounts. Based on517

this observation, we concluded that the effect of weight changes in individual problems518

on a given future problem’s weight-driven VFC are largely inconsistent with each other;519

some cumulative VFC contributions suppress the problem’s weight-driven VFC while520

others enhance it (Supplementary Fig. 10b, right). In fact, the ratio of the net sup-521

pression magnitude to the sum of contribution magnitudes quantifies this consistency;522

a value of 1 would indicate that the problem’s weight-driven VFC is suppressed by the523

weight changes in each of its preceding problems, and a value of 0 would indicate that524

the cumulative VFC contributions are maximally inconsistent - the enhancing and sup-525

pressing contributions nullify each other resulting in no net change. For problems at all526

learning-to-learn stages, we found that this ratio was closer to 0 (Fig. 7d).527

These results depict the suppressive effect of the accumulating weight changes on528

each future problem’s weight-driven VFC as a stochastic process — cumulative VFC529

contributions by individual problems stochastically enhance or suppress the future prob-530

lem’s weight-driven VFC. However, they collectively exhibit a weak bias towards con-531

sistently suppressing it (values in Fig. 7d are above zero). The cumulative effect of532

this weakly suppressive bias is a small yet significant suppression of the weight-driven533

VFC. We illustrate this process along the orthogonal weight-driven VFC component of534

an example problem. Since the orthogonal weight-driven VFC components in a problem535

are roughly one-dimensional (Fig. 5c), the stochastic process is one-dimensional as well.536

The individual cumulative VFC contributions by earlier problems towards suppressing537
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the weight-driven VFC along this dimension in the example problem (grey curve) fluctu-538

ate between positive (suppressing) and negative (enhancing) values (Fig. 7c). However,539

due to their weakly suppressive bias, these contributions cumulatively produce a large540

net suppression of the problem’s weight-driven VFC (black curve).541

Figure 7d further shows that the cumulative VFC contributions are more inconsistent542

along the orthogonal weight-driven VFC components than along the parallel components,543

indicating that their suppressive bias is weaker along the orthogonal components. This544

explains the weaker net suppression along the orthogonal components (Fig. 7b), and545

why it imposes a learning efficiency bottleneck. Crucially, figure 7d demonstrates that546

the weight-driven VFC of problems at different learning-to-learn stages are suppressed547

at different rates due to differences in the consistency with which the weight changes548

in the preceding problems suppress them (Supplementary Fig. 10b). That is, the ex-549

ponential decay in the weight-driven VFC magnitudes stems from a modulation of the550

suppressive bias in the cumulative VFC contributions. The exponential decay in the551

weight-driven VFC magnitudes is largely caused by an exponential decay in magnitude552

of their orthogonal components (Supplementary Fig. 9b). The bias in the cumulative553

VFC contributions to suppress the orthogonal weight-driven VFC component in early554

stage problems rapidly increases (Fig. 7d). This rapidly increases their net suppres-555

sion (Fig. 7b), which rapidly decreases the weight-driven VFC required to learn them.556

Subsequent problems follow a more prolonged accumulation of weight changes (because557

they are preceded by more problems), albeit with a weakened bias to suppress their558

orthogonal weight-driven VFC components. This results in the plateauing of their net559

suppression, and therefore of their weight-driven VFCs.560

To summarize, our results identify a novel neural mechanism of accumulating learn-561

ing experience to progressively improve learning efficiency, despite the absence of a562

meta-learning mechanism. It relies on the accumulation of connection weight changes563

over learned problems to suppress the weight-driven VFC required to learn subsequent564

problems and thus accelerate their learning. The model progressively accelerates learn-565

ing via, (i) a gradual improvement in the efficiency with which weight changes contribute566

to the suppression of the weight-driven VFC in future problems (Fig. 7b), and (ii) a567
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modulation of how consistently suppressive these contributions are (Fig. 7e). Moreover,568

the fact that the weight-driven VFC primarily prevents uncharacteristic representational569

changes from developing when novel sample stimuli are mapped onto existing represen-570

tations (Fig. 5) helps elucidate the objective of this learning-to-learn mechanism: the571

accumulation of weight changes over early problems improves the invariance of the ex-572

isting representations to having novel sample stimuli mapped onto them. This refines573

the model’s ability to learn via representational reuse and elicits learning-to-learn.574
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Discussion575

New information is far easier to learn when it is contextualized by prior knowledge.576

This process is thought to be facilitated by the instantiation of schemas [3, 4], which are577

hypothesized to correspond to neocortically encoded knowledge structures. Learning-578

to-learn is a constructive consequence of the reciprocal influence between learning and579

schema tuning, whereby schema instantiation facilitates learning, and the assimilation580

of learned information into the schema improves its ability to facilitate future learn-581

ing. To elucidate the underlying neurobiological basis, in this work we trained an RNN582

model on a series of sensorimotor mapping problems, without any meta-learning. Our583

main findings are threefold. First, the network model exhibits accelerated learning that584

is quantified by an exponential time course, with a characteristic time constant and585

a plateau. Interestingly, this model prediction appears to be supported by an ongo-586

ing experiment where monkeys displayed an exponential learning-to-learn time course587

while solving a series of arbitrary sensorimotor mapping problems [36]. Second, schema588

formation corresponds to the formation of a low-dimensional subspace of neural popula-589

tion activity, thereby bridging a psychological concept with a neural circuit mechanism.590

Third, rather than weight changes per se, it is imperative to examine weight driven591

changes of the vector field in order to understand the behavior of a recurrent neural592

network as a dynamical system. These new insights can be used to guide the analysis593

of neurophysiological data from behaving animals during learning-to-learn.594

Our work revealed that learning-to-learn is a process with three timescales (Fig. 8).595

The fastest timescale governs the evolution of population activity over a single trial. Sub-596

space decomposition of this activity showed that it encodes three latent variables. First,597

a mean decision component which is analogous to the condition-independent component598

identified in prefrontal and motor cortical activity [37, 45] — it encodes temporal aspects599

of the task in a trial-condition invariant manner, and explains most of the variance in600

population activity. Second, a residual decision component that encodes decisions and re-601

sponse choices. And third, a problem stimulus representation. The first two components602

collectively constitute low-dimensional decision representations that control fixation and603
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response choices.604

We found that these decision representations are shared across problems in an ab-605

stract form: the model reuses them to contextualize its neural and output responses to606

new sample stimuli, and to generalize from previous solutions to newer ones. Analysis of607

the model’s learning with a manifold perturbation intervention showed that this reuse608

of the decision representations causes a stark improvement in learning efficiency. These609

results demonstrate that the network not only abstracts commonalities across problems,610

but also exploits them to facilitate learning [4, 23, 46]. Therefore, the abstract decision611

representations constitute the neural basis of a sensorimotor mapping schema [4, 17]. It612

is noteworthy that the abstraction of task variable- and task structure-encoding neural613

representations and their reuse in consecutively learned association problems has indeed614

been observed in the prefrontal cortex and hippocampus [10, 21, 22].615

The intermediate timescale governs the process of learning, and spans the trials be-616

tween the beginning and end of learning a single problem (Fig. 8). We studied learning617

with a novel measure of how connection weight changes (which model the effects of618

long-term synaptic plasticity or LTP) influence population activity in an RNN — the619

weight-driven vector field change. Our results demonstrated that this measure is more620

informative and accurate at assessing the effects of the connection weight changes, than621

direct measurements of the weight changes: (i) it dissociates the contributions of the622

changes in different sets of connection weights more accurately than directly comparing623

their magnitudes; (ii) its assessments are more interpretable as they directly relate to624

the population activity; and (iii) it isolates the contributions of the initial weights and625

the weight changes to the learning-induced changes in population activity. For these626

reasons, these techniques contribute to a growing set of methods that aim to overcome627

the challenges of interpretability and explainability in RNNs [47, 48], which hinder their628

adoption in neuroscience. In our analysis, these techniques were instrumental in identify-629

ing (i) why reusing existing representations improves learning efficiency, (ii) the relative630

contributions of this reuse versus the connection weight changes to learning, and (iii)631

the mechanism underlying learning-to-learn.632
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Our analysis of the change in population activity that emerges over the timespan633

of learning identified two forms of schematic scaffolding. First, the reuse of existing634

schematic representations is primarily responsible for these activity changes. The reuse635

avoids the formation of new task-encoding representations, which substantially reduces636

the weight changes required to learn a problem. This dramatically accelerates its learn-637

ing. Second, the weight-driven VFC is largely modulated by the schematic representa-638

tions. Moreover, the primary effect of the weight-driven VFC is to prevent the unwar-639

ranted changes to existing representations which develop when novel sample stimuli are640

mapped onto and interact with them.641

In the training RNN framework, the network is initialized with random weights, as642

a blank slate. In contrast, developmental experience shapes how new information is643

encoded even in the brain of a task-naive animal. This confounds direct comparisons644

between the use of a learning algorithm and a known biological plasticity rule. Nev-645

ertheless, our findings regarding the benefits of representational reuse do not directly646

depend on the learning algorithm we used, and may well be conserved under biologically647

plausible learning rules. Moreover, since our analysis techniques are independent of the648

underlying learning rules, they offer an approach to study learning and the properties649

of schema formation and reuse in models with biologically plausible learning rules. Our650

model further assumes that following schema formation, new problems continue to be651

learned via LTP. Indeed, rapid learning of novel schema-consistent paired associates652

was found to be prefrontal NMDA-receptor dependent in rodents [14], suggesting that653

Hebbian neocortical synaptic plasticity is likely involved in schema-facilitated learning.654

However, the role of other forms of plasticity, such as intrinsic [49] and behavioral655

timescale [50] plasticity, has not been experimentally precluded. Further computational656

and experimental studies are required to determine their relative roles in this process.657

At the slowest timescale, several problems are learned in succession with progressively658

improving efficiency, until asymptotic learning efficiency is realized (Fig. 8). This is659

the timescale of learning-to-learn. We showed that, consistent with macaque monkeys’660

behavior [29, 36], our model’s trials-to-criterion performance is well-characterized by661

a decaying exponential function, which asymptotes at roughly 20 trials per problem.662
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Consequently, our model suggests that learning-to-learn can emerge in animal models663

in the absence of explicit meta-learning.664

However, the brain may adopt one or some of the many meta-learning approaches665

proposed in computational neuroscience and deep learning to facilitate learning across666

problems. In general, meta-learning may be conceptualized as a bi-level optimization,667

wherein the inner-loop spans trials of a single problem over which the model’s parameters668

are updated to improve performance accuracy, and the outer-loop spans problems with669

shared task structure over which learning parameters are updated to optimize learning670

efficiently [51]. Biologically plausible outer-loop mechanisms include meta-plasticity of671

neuro-modulatory inputs to refine synaptic plasticity rates [52] and meta-plasticity of672

regulatory states governing synaptic plasticity to improve learning efficiency [27, 53]. A673

recently proposed model-based learning algorithm [25] may also be understood within674

this framework, wherein the outer-loop is composed of a model-free reinforcement learn-675

ing algorithm to learn a task model and a corresponding model-based learning policy for676

problems with shared task structure, and the inner-loop is comprised of an implementa-677

tion of this model-based policy via a neural population-level integration of choices and678

their outcomes on earlier trials to improve the accuracy of choices on the current and679

upcoming trials. The task model and learning policy are learned at the outer-loop by680

maximizing the sum of rewards over a sequence of trials of the problem learned in the681

inner-loop. While our approach has no explicit outer-loop mechanism, it most closely682

resembles the Reptile meta-learning algorithm [54]. Reptile optimizes a network model’s683

initial connection weights towards achieving few-shot learning of problems with shared684

task structure. However, our approach is different from Reptile in important ways: (i)685

Reptile’s inner-loop learns a problem for a fixed, small number of trials, rather than686

until the problem is fully learned, and its few-shot learning ability is quite sensitive to687

this number. (ii) Reptile’s estimate of the optimal initial connection weights is an expo-688

nential moving average of the weights learned at the end of each inner-loop, rather than689

the weights learned at the end of the most recent inner-loop. Its few-shot learning ability690

is also sensitive to the weighting factor in this exponential moving average. (iii) Conse-691

quently, Reptile must maintain two sets of connection weights, its current estimate of692
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the optimal initial weights and its estimate of the update from the inner-loop iteration.693

Moreover, it does not specify a biological mechanism to maintain the pair of weight694

estimates. (iv) After meta-learning, Reptile learns each new problem starting from the695

fixed, meta-learned set of initial connection weights. Instead, our approach continues696

to accumulate weight changes across problems indefinitely. While several meta-learning697

mechanisms have been proposed by computational and deep learning studies, further698

study is required to identify their neural substrates and evaluate their role in learning-699

to-learn.700

We have identified a novel mechanism for learning-to-learn, which relies on the accu-701

mulation of weight changes over learned problems to progressively improve the invariance702

of the existing representations to being reused with novel sample stimuli. An increase in703

this invariance suppresses the weight-driven VFCs required to learn new problems which704

accelerates their learning. Interestingly, we found that these cumulative improvements705

are stochastic in nature — the exponential improvement in learning efficiency stems706

from a modulation of the bias in this stochastic process to suppress the weight-driven707

VFCs in future problems.708

We also found evidence in support of the structure learning hypothesis, which posits709

that improvements in learning efficiency are achieved by restricting the extent of para-710

metric behavioral exploration while learning a problem [23]. It has been suggested that711

exploration in the space of network connection weights directly controls behavioral ex-712

ploration, such that learning efficiency improves due to a progressive narrowing of the713

effective control space to the most task-relevant low-dimensional subspace of the space714

of connection weights. Instead, we found that behavioral changes are directly controlled715

by population activity changes within a low-dimensional subspace of population state716

space. In addition, connection weight changes emerge primarily to restrain activity717

changes to this low-dimensional subspace. Learning-to-learn derives from a progressive718

improvement in the model’s inherent ability to do so (i.e. without large connection719

weight changes) when novel stimuli are mapped onto existing representations, rather720

than a progressive decrease in the dimensionality of the space within which population721

activity or connection weights change.722
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Note that our results differentiate between schema-facilitated learning and structure723

learning. While a schema and an associated behavioral control space can emerge within a724

low-dimensional subspace of population state space even after the first problem is learned,725

structure learning proceeds thereafter and involves learning to use this control space726

efficiently (i.e. without large connection weight changes). Recent work has demonstrated727

the re-use of schematic prefrontal representations in rodents learning a series of odor-728

response sequence problems [10]. However, the authors did not observe an acceleration729

in learning. We propose that this may be explained by the presence of schema-facilitated730

learning, but an absence of structure learning.731

Crucially, our results offer experimentally verifiable predictions. First, the sensori-732

motor mapping schema is encoded by low-dimensional neural representations which are733

shared across problems, and explain a majority of the variance in population activity.734

They encode shared task variables including the task’s temporal structure and the avail-735

able choices. Second, the reuse of these representations to learn new problems causes a736

speedup in learning; preventing this reuse with recently developed BMI interventions [33]737

should produce pronounced learning deficits. Third, population activity may undergo738

large changes between the beginning and end of problem learning. However, across prob-739

lems, these changes are restricted to a low-dimensional subspace of the activity. Fourth,740

the number of trials to learn a problem decreases exponentially as a function of the741

number of previously learned problems. Taken together, our results shed insights into742

the neural substrate of a sensorimotor mapping schema, the reason for which its reuse743

markedly improves learning efficiency, and the neural mechanisms of structure learning744

that gives rise to learning-to-learn. In doing so, they elucidate the neural mechanisms745

of learning-to-learn and present novel techniques to analyze learning-to-learn in RNNs.746
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Methods884

Recurrent Neural Network Model (Fig. 1)885

The RNN model comprises a fully-connected population of N firing rate units with firing886

rates r, receiving inputs from Nin input units with firing rates u. Firing rates of the887

network units follow the dynamical equation888

τ ṙ = −r + f(Winu+Wrecr + brec + ζ)

τζ ζ̇ = −ζ +
√

2τζσ2
recξ

(1)

which expresses the leaky and non-linear integration of input (Winu) and recurrent889

(Wrecr) currents. Win (Wrec) is an N×Nin (N×N) matrix of input (recurrent) connection890

weights, and τ = 100 ms is the integration time-constant that characterizes the slow891

decay of NMDA receptor-mediated synaptic currents [1]. The f-I curve is modeled by a892

smooth rectification function893

f(x) = log(1 + ex)

The bias term brec admits per-unit firing thresholds. Intrinsic background noise current894

is modeled by an Ornstein-Uhlenbeck process ζ with time constant τζ and variance σrec,895

where ξ represents the underlying independent white-noise process with zero mean and896

unit variance.897

Output responses are readout from the activity of the RNN units by Nout output898

units, y, whose activity is given by899

y = g(Woutr + bout)

Here, Wout is a Nout ×N output weight matrix, bout is the bias of the output units, and900

g(xi) = exp(xi)/
∑Nout

j=1 exp(xj) is the softmax or normalized-exponential function which901
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produces output unit activity that indicates the probability of generating each of the902

Nout response choices.903

The model is simulated by temporal discretization of equation (1) with Euler’s904

method, as905

rt = (1− α)rt−1 + αf(Winut +Wrecrt−1 + brec + ζt)

ζt = (1− αζ)ζt−1 +
√

2αζσ2
recN (0, I)

(2)

where the time-discretization step size is ∆t, α = ∆t/τ , αζ = ∆t/τζ and N (0, I) is906

a random vector sampled from a gaussian distribution with zero mean and identity907

covariance (I). In all figures, the network size N = 100, ∆t = 1 ms, τζ = 2 ms and908

σrec = 0.05. The magnitude of the network- and input-unit firing rates is measured909

as the L2-norm of rt and ut, respectively, and summarized by averaging over all time910

points in a trial.911

Task Structure (Fig. 1)912

We trained the network model on a series of delayed sensorimotor association problems,913

one at a time. In each problem, the network had to learn a one-to-one correspondence914

between a pair of sample stimuli and a pair of motor responses. Each problem therefore915

comprised two trial types, one per stimulus-response pair. Each trial was 2 s in duration916

(T = 2), and started with a 500 ms sample epoch, followed by a 1 s delay epoch, and917

ended with a 500 ms choice epoch. During the sample epoch, the network concurrently918

received inputs representing a fixation stimulus and one sample stimulus. During the919

delay epoch, it continued to receive only the fixation input. It received no inputs during920

the choice epoch. The model was required to respond by maintaining fixation during921

the sample and delay epochs, and choosing the appropriate motor response during the922

choice epoch. Therefore, the model contained three output units (Nout = 3), two to923

report response choices and one for fixation. This trial structure, including the available924
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response choices, remained fixed across problems.925

Sample stimuli were represented by ten-dimensional unit-length vectors (L2-norm926

= 1). The two sample stimulus input representations in a problem were drawn from927

a random gaussian distribution with zero mean and identity covariance. They were928

then orthogonalized to avoid learning efficiency confounds stemming from the relative929

difficulty in learning to distinguish between more versus less correlated sample stimuli.930

The fixation input was a scalar with value 1/
√
Nin − 1 when it was on and zero when off.931

Therefore, there were a total of Nin = 11 input units. Learning-to-learn was robustly932

observed even in the absence of the orthogonalization step; however, the variance in933

learning efficiency was higher. Qualitatively similar learning-to-learn performance was934

also observed with 200-dimensional sample stimulus representations and N = 1000.935

Each problem was learned over a sequence of trials, psueudorandomly sampled from936

the two trial types, until the average error on fifty consecutive trials fell below a criterion937

value (see Network Training). The learning efficiency for a problem was measured by938

the number of trials required to achieve this criterion. After a problem was learned, the939

model was transitioned to the next problem, wherein it had to learn to associate a new940

pair of pseudorandomly selected sample stimuli to the two motor responses.941

Network Training (Fig. 1)942

A network was trained on a problem by updating its connection weights (Win, Wrec943

and Wout), biases (brec and bout) and initial network state (r0), so that it could choose944

the desired response for each of the sample stimuli. These updates were generated by945

stochastic gradient descent - an optimization algorithm that incrementally updates a946

network’s parameters at the end of each trial, based on the errors in the output unit947

responses during the trial. In contrast to standard RNN training practices wherein948

model parameters are adjusted based on the average error from a batch of several trials949

and learning efficiency is measured by the number of trial batches to reach criterion950

performance, our training procedure closely matched established animal training proto-951
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cols and allowed learning efficiency to be measured by the number of trials to criterion952

performance. The backpropagation through time (BPTT) algorithm was used to resolve953

temporal contingencies while computing parameter updates. We additionally applied954

the ADAM optimizer [2] to enhance the efficacy of the updates. All networks were955

trained with a learning rate of 10−4, except in Supplementary Figure 1 where the learn-956

ing rate was systematically varied. ADAM decay rates for the first and second moment957

estimates were set to 0.3 and 0.999, respectively, and the moment estimates were reset958

at the beginning of each problem. The model implementation and parameter update959

computations were performed with Tensorflow [3].960

Prior to the first problem, a naive network’s input weights in Win were initialized961

with random values drawn from a gaussian distribution with zero mean and variance962

1/Nin; the recurrent weights in Wrec were initialized with random values constrained by963

householder transformations such that the rows (and columns) of the initial recurrent964

weight matrix were orthogonal to each other and of unit length [4]. Initializing the965

recurrent weights in this manner allows gradients to be backpropagated more effectively.966

All other network parameters were initialized to zero. Upon transition to a new problem,967

all parameters retained their values. At initialization and throughout learning, the sign968

and sparsity of the weights and biases were not constrained. The initial network state969

was always restricted to non-negative values.970

Network training was performed in a supervised setting, wherein the parameters were971

adjusted to minimize an objective function, L, that included the errors in the model’s972

output responses:973

Lerr =
1

T − |Dmask|
∑

t/∈Dmask

Nout∑
i=1

−y̌i,tlog(yi,t)

The error at each time step, t, was given by the cross-entropy of the probability dis-974

tribution over responses generated by the network, yt, relative to pre-specified target975

responses, y̌t. The total error for a trial, Lerr, was the mean of the per-timestep error976

taken over the trial duration T . This mean excluded a masking interval, Dmask, set to977
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the first 100 ms of the choice epoch, which allowed for flexible reaction times. Networks978

were considered to have learned a problem when the average Lerr over fifty consecutive979

trials of the problem fell below a criterion value of 0.005.980

The objective of the training procedure was to minimize the sum of this error and981

auxiliary regularization terms:982

L = Lerr + Lreg,Win
+ Lreg,Wout + Lreg,Wrec + Lreg,rate

The regularization terms included both weight and activity regularization to encourage983

solutions that generalized well [5, 6] and generated stable network dynamics. We imposed984

L2 regularization on the input and output weights as follows:985

Lreg,Win
=

βWin

NinN

Nin∑
i=1

N∑
j=1

(Win(j, i))
2

986

Lreg,Wout =
βWout

NoutN

N∑
i=1

Nout∑
j=1

(Wout(j, i))
2

We observed that networks with a similar L2 regularization of the recurrent weights987

were sensitive to the value of meta-parameter βWrec , particularly when the network988

size was large—small values of βWrec produced unstable network dynamics during later989

problems, while large values hindered learning efficiency. The squared frobenius norm990

of the recurrent weight matrix, which constitutes such an L2 regularization, is given by:991

N∑
i=1

N∑
j=1

(Wrec(j, i))
2 =

N∑
i=1

σ2
i

where σi is the ith singular value of the recurrent weight matrix Wrec.992

An analysis of these singular values under conditions that led to unstable network993

dynamics revealed that their L2-norm (i.e. the square root of the right-hand side of the994

equation above) remained roughly fixed over the course of learning several problems;995

However, their distribution changed considerably across problems - smaller singular val-996

ues shrank, while larger singular values grew and ultimately resulted in unstable network997

responses to novel sample stimuli. We mitigated this by introducing an alternate form998
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of recurrent weight regularization that penalized the magnitude of the first k singular999

values of Wrec:1000

Lreg,Wrec =
βWrec

Nk

k∑
i=1

σ2
i

Finally, we imposed a homeostatic firing rate regularization:1001

Lreg,rate = βr

∣∣∣∣∣ 1

NT

∑
t

N∑
i=1

r2i,t − h

∣∣∣∣∣
The meta-parameter h was set to zero for the first problem, effectively imposing an L21002

regularization of the recurrent unit firing rates as the first problem was learned. To avoid1003

unrestrained growth or reduction in the firing rates while learning subsequent problems,1004

the homeostatic set-point h was then set to the mean squared firing rates averaged over1005

the last fifty trials of the first problem. All networks were trained with βWin
= 10−4,1006

βWrec = 0.1, βWout = 0.1, k = 10 and βr = 5 × 10−4, except in Supplementary Figure 1,1007

where these hyper-parameters were systematically varied.1008

Learning-to-learn Performance Characterization (Fig. 1)1009

A network exhibits learning-to-learn if its learning efficiency improves as a function1010

of the number of previously learned problems. We evaluated this by quantifying the1011

relationship between the trials-to-criterion on a problem and the number of problems1012

learned thus far, where a decreasing relationship indicates learning-to-learn. Specifically,1013

we fit a decaying exponential function to the number of trials to criterion l(p) on problem1014

p, as a function of the number of learned problems p− 1:1015

l(p) = sl exp

(
−(p− 1)

τl

)
+ al

Here, al represents asymptotic learning efficiency, τl represents the time-constant to1016

achieve this asymptote, and sl represents the improvement in learning efficiency between1017

early and late problems. A large asymptote signifies poor learning-to-learn, while a large1018

time-constant signifies slow learning-to-learn. The three parameters of the function1019
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were fit with the Levenberg-Marquardt algorithm implemented by the fit function1020

of MATLAB’s curve fitting toolbox. The learning efficiency on the first problem was1021

excluded from this analysis.1022

Subspace Decomposition (Fig. 2)1023

We performed semi-supervised dimensionality reduction on the population activity, to1024

determine how strongly and consistently the shared task structure is represented across1025

problems. The procedure begins by compiling a tensor Rk,t,j,i of activity patterns gen-1026

erated by the population of firing rate units (k ∈ [1, N ]) over time (t ∈ (0, T ]), for1027

the two response types (j ∈ {response1, response2}) across a group of fifty consecu-1028

tively learned problems (i ∈ [p + 1, p + 50]). This assembles a tensor of one hundred1029

population trajectories for the group, fifty for each response type. The semi-supervised1030

dimensionality reduction extracts decision representations that are shared by the group1031

as follows. Stimulus- and problem-specific representations for each response type are1032

averaged out, or marginalized, across problems in the group:1033

Rk,t,j,. =< Rk,t,j,i >i

Principal components analysis is performed on a concatenation of the resulting two tra-1034

jectories in Rk,t,j,.. The loading vectors for the first m principal components are collected1035

into a N ×m loading matrix LD. These vectors define a basis for the decision subspace.1036

Importantly, to ensure that the decision subspace fully captures shared decision repre-1037

sentations, the marginalized trajectories are not de-meaned before performing principal1038

components analysis. Here, we set m to 4, as the first 4 principal components collec-1039

tively explained at least 98% of the variance in the marginalized trajectories, in all the1040

networks we analyzed.1041

Next, an N ×N projection matrix P (Q) that projects population activity into the1042

decision subspace (stimulus subspace), is defined as:1043

P = LDL
T
D

41

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2021.09.02.455707doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/


1044

Q = I − P

where I is the identity matrix. The decision components of the learned trajectories for1045

problem p+ x (x ∈ [1, 50]) are identified as:1046

Rd
k1,t,j,i=p+x =

N∑
k2=1

P (k1, k2)Rk2,t,j,i=p+x

and their stimulus components as:1047

Rs
k1,t,j,i=p+x =

N∑
k2=1

Q(k1, k2)Rk2,t,j,i=p+x

where P (k1, k2) and Q(k1, k2) represent the element in the k1th row and k2th column1048

of the respective projection matrices. The decision components are further decomposed1049

into mean (Rdm
k,t,j,i=p+x) and residual (Rdr

k,t,j,i=p+x) decision components, as:1050

Rdm
k,t,.,i=p+x =< Rd

k,t,j,i=p+x >j

1051

Rdr
k,t,j,i=p+x = Rd

k,t,j,i=p+x −Rdm
k,t,.,i=p+x

The net current from these components Rν
k,t,j,i=p+x (ν =∈ {s, dm, dr}) to an output1052

unit o was computed as
∑N

k=1 W
p+x
out (o, k)Rν

k,t,j,i=p+x where W p+x
out is the output weight1053

matrix learned in problem p + x. The dimensionality of any set of vectors (e.g. pop-1054

ulation activity in the stimulus subspace) was approximated by its participation ratio1055

[7], computed as (
∑

i λi)
2∑

i λ
2
i

, where λi is the ith eigenvalue of the covariance matrix of the1056

vectors.1057

Manifold Perturbations (Fig. 3)1058

To assess whether the reuse of the decision representations improves learning efficiency,1059

networks were trained on their second problem while constraining them in a manner1060

that required the formation of new decision representations. The learning efficiency of1061

such networks was compared to controls that were allowed to reuse existing decision1062

representations while learning their second problem.1063
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A naive network was first trained on 50 problems and the corresponding populations1064

trajectories were used to identify its decision and stimulus subspaces. The network’s1065

parameters, including its output weights, were reset to their values at the end of the1066

first problem. Then, its output weights were perturbed, and the network was trained1067

on a new problem, i.e. a second problem with respect to its parameters, while barring1068

the training procedure from changing its output weights. This procedure was repeated1069

fifty times for each network, resetting its parameters, applying an independently chosen1070

random perturbation to its output weights, freezing the output weights, and training the1071

network on a new sample stimulus pair each time. The output weights were subjected to1072

one of three forms of perturbation. In the frozen readout condition, the output weights1073

were unperturbed after the parameter reset. In D→ S manifold perturbations, following1074

the parameter reset, the output weights were perturbed to replace the overlap between1075

the network’s readout and decision subspaces with a corresponding overlap between its1076

readout and stimulus subspaces:1077

Wout,D→S = Wout −
4∑

i=1

Woutl
D
i lDi

T
+

4∑
i=1

Woutl
D
i lSσ(i)

T

where Wout,D→S is the perturbed output weight matrix, lDi (lSi ) is the ith principal com-1078

ponent loading vector of the decision (stimulus) subspace, and σ() represents a random1079

shuffle or permutation of the stimulus subspace principal component loading vectors. In1080

S→ S manifold perturbations, following the parameter reset, the output weights were1081

perturbed to permute the overlap between the readout and stimulus subspaces:1082

Wout,S→S = Wout −
4∑

i=1

Woutl
S
i l

S
i

T
+

4∑
i=1

Woutl
S
i l

S
σ(i)

T
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Relationship between pre-learning and learned trajectories1083

based on weight- and state-driven vector field changes1084

(Figs. 4 - 5)1085

Over the course of learning problem p, the model’s parameters change from their values1086

at the beginning of the problem, i.e. their pre-learning values (W p−1
in , W p−1

rec , bp−1
rec , W p−1

out ,1087

bp−1
out and rp−1

0 ), to their values at the end of the problem, i.e. their learned values (W p
in,1088

W p
rec, bprec, W p

out, bpout and rp
0). The difference between the learned and pre-learning1089

values of the parameters quantify their change due to learning problem p (∆W p
in, ∆W p

rec,1090

∆bprec, ∆W p
out, ∆bpout and ∆rp

0), and are collectively referred to as ∆W p.1091

Due to these parameter changes, the population activity in response to inputs up
t is1092

altered from its pre-learning levels, r′p
t∈[0,T ], to its learned ones, rp

t∈[0,T ] (Fig. 4c, left).1093

We derive an expression for this change in population activity, zp
t∈[0,T ], in terms of the1094

parameter changes. Based on the time-discretized model equation (2), we have:1095

zp
t = rp

t − r′p
t

=
[
(1− α)rp

t−1 + αf(W p
inu

p
t +W p

recr
p
t−1 + bprec)

]
−[

(1− α)r′p
t−1 + αf(W p−1

in up
t +W p−1

rec r′p
t−1 + bp−1

rec )
]

=
[
rp
t−1 − r′p

t−1

]
+ α

[
−rp

t−1 + f(W p
inu

p
t +W p

recr
p
t−1 + bprec)

]
−

α
[
−r′p

t−1 + f(W p−1
in up

t +W p−1
rec r′p

t−1 + bp−1
rec )

]
=
[
rp
t−1 − r′p

t−1

]
+ α

[
−rp

t−1 + f(W p
inu

p
t +W p

recr
p
t−1 + bprec)

]
−

α
[
−r′p

t−1 + f(W p−1
in up

t +W p−1
rec r′p

t−1 + bp−1
rec )

]
+

α
[
−rp

t−1 + f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )

]
−

α
[
−rp

t−1 + f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )

]
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Rearranging the terms, we have:1096

zp
t = zp

t−1+

α
[
{−rp

t−1 + f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )}−

{−r′p
t−1 + f(W p−1

in up
t +W p−1

rec r′p
t−1 + bp−1

rec )}
]
+

α
[
f(W p

inu
p
t +W p

recr
p
t−1 + bprec)− f(W p−1

in up
t +W p−1

rec rp
t−1 + bp−1

rec )
]

(3)

This expression shows that the change in population activity emerges from an accumu-1097

lation of activity change increments, ∆zp
t (Fig. 4c, center):1098

∆zp
t = zp

t − zp
t−1 (4)

These increments are composed of two terms:1099

∆zp
t = ∆Fieldp

s,t +∆Fieldp
w,t (5)

The first term, ∆Fieldp
s,t, expresses the difference in the pre-learning vector field at1100

the positions in state space along the learned (rp
t−1) and pre-learning (r′p

t−1) trajectories1101

(Fig. 4d, left). It is therefore referred to as the state-driven vector field change (or1102

state-driven VFC):1103

∆Fieldp
s,t = α

[
{−rp

t−1 + f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )}−

{−r′p
t−1 + f(W p−1

in up
t +W p−1

rec r′p
t−1 + bp−1

rec )}
] (6)

The second term, ∆Fieldp
w,t, expresses the change in the vector field at population1104

states along the learned trajectory due to the parameter changes (Fig. 4d, center; Fig.1105

4b, right). It is therefore referred to as the weight-driven vector field change (or weight-1106

driven VFC):1107

∆Fieldp
w,t = α

[
f(W p

inu
p
t +W p

recr
p
t−1 + bprec)− f(W p−1

in up
t +W p−1

rec rp
t−1 + bp−1

rec )
]

(7)
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The weight-driven VFC stems from the change in the net afferent currents to the popu-1108

lation, ∆Currentpw,t, due to the parameter changes (Fig. 4b, left):1109

∆Fieldp
w,t = α

[
f(W p

inu
p
t +W p

recr
p
t−1 + bprec)− f(W p−1

in up
t +W p−1

rec rp
t−1 + bp−1

rec )
]

= α
[
f((W p−1

in +∆W p
in)u

p
t + (W p−1

rec +∆W p
rec)r

p
t−1 + (bp−1

rec +∆bprec))−

f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )

]
= α

[
f(W p−1

in up
t +W p−1

rec rp
t−1 + bp−1

rec +∆Currentpw,t)−

f(W p−1
in up

t +W p−1
rec rp

t−1 + bp−1
rec )

]
(8)

where ∆Currentpw,t is determined by ∆W p
in, ∆W p

rec, ∆bprec, as:1110

∆Currentpw,t = ∆W p
inu

p
t +∆W p

recr
p
t−1 +∆bprec (9)

The change in initial population state is defined as ∆zp
0 = ∆rp

0 = rp
0−rp−1

0 . We omit1111

the contribution of this change from our analyses, as it consistently showed a negligible1112

effect on the evolution of the learned trajectory and the activity changes, across all1113

problems and networks tested.1114

The contribution of the two vector field change terms to the activity change incre-1115

ment, ∆zp
t , was measured by their magnitude along, or in the direction of, ∆zp

t (Fig.1116

5a). This was computed by vector projection, as:1117

|∆Fieldpµ,t|∆zp∥
= ∆Fieldp

µ,t · ∆̂zp
t

where µ ∈ {w, s}, · represents the dot product operator, and ∆̂zp
t is the unit vector in1118

the direction of ∆zp
t (∆̂zp

t =
∆z

p
t

||∆z
p
t ||2

). Therefore, the vector field change along ∆zp
t is1119
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given by:1120

∆Fieldp
µ,t∆z

p
∥
= |∆Fieldpµ,t|∆zp∥

∆̂zp
t (10)

The remainder of each vector field change term represents its components orthogonal to1121

∆zp
t (Fig. 5a):1122

∆Fieldp
µ,t∆z

p
⊥
= ∆Fieldp

µ,t −∆Fieldp
µ,t∆z

p
∥

(11)

In order to compare the relative direction of the orthogonal components of the weight-1123

and state-driven VFCs (Fig. 5a), we arbitrarily (but without loss of generality) chose1124

the direction of ∆Fieldp
s,t∆z

p
⊥

as the reference — signed magnitudes were computed by1125

vector projection of ∆Fieldp
µ,t∆z

p
⊥

onto a unit vector in the direction of ∆Fieldp
s,t∆z

p
⊥

.1126

The magnitude of change in the input and recurrent connection weights was measured1127

by their frobenius norm, ||W p −W p−1||F =
√∑

i,j(W
p(i, j)−W p−1(i, j))2.1128

Contribution of changes in individual parameters to the weight-1129

driven vector field change (Fig. 6)1130

We measured the individual contributions of changes in the input weights (∆W p
in), re-1131

current weights (∆W p
rec) and network unit biases (∆bprec) to the weight-driven vector1132

field change. Note that, the postsynaptic current changes can be linearly decomposed1133

based on the contributions of these parameter changes: they are given by the 3 terms1134

on the right-hand side of equation (9), which we denote as ∆Currentpµ,t to signify1135

postsynaptic current changes due to changes in the parameter µ (µ ∈ {Win,Wrec, brec}).1136

In contrast, the vector field change is a non-linear function of these parameter changes.1137

Therefore, we formulated non-linear approximations of their contributions, which we1138
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denote as ∆Fieldp
µ,t. Such an approximation must solely depend on changes in the1139

parameter µ, and the approximations must collectively satisfy the following with an1140

acceptably small approximation error:1141

∆Fieldp
w,t ≈ ∆Fieldp

Win,t +∆Fieldp
Wrec,t

+∆Fieldp
brec,t

(12)

∆Fieldp
µ,t is a vector, whose elements ∆F p

µ,t(i), represent the approximate change in1142

the firing rate of network unit i, at time t along the learned trajectory for problem p, due1143

to the changes in parameter µ. From equations (8) and (9), we observe that it is related1144

to the net postsynaptic current at unit i due to the pre-learning parameter values, C ′p
t (i),1145

and the net change in the postsynaptic current at unit i, ∆Cp
t (i). These net currents1146

are given by the summations C ′p
t (i) =

∑
j C

′p
t (i, j) and ∆Cp

t (i) =
∑

j ∆Cp
t (i, j), where1147

j denotes an individual connection/bias that contributes to the net current into unit i.1148

These include its individual afferent input and recurrent connections weights and its bias.1149

We use the notation ∆Cp
µ,t(i) =

∑
j∈µ∆Cp

t (i, j) to explicitly refer to the net contribution1150

of changes in parameter µ to the postsynaptic current changes at unit i. We derive an1151

expression for ∆F p
µ,t(i) via taylor-expansion of equation (7):1152

∆F p
t (i) = α

[
f(C ′p

t (i) + ∆Cp
t (i))− f(C ′p

t (i))
]

= α

[
f(C ′p

t (i)) +
∑
j

∇fC′p
t (i)(j)∆Cp

t (i, j)+

1

2

∑
j

∑
k

HC′p
t (i)(j, k)∆Cp

t (i, j)∆Cp
t (i, k) +H.O.T.− f(C ′p

t (i))

]

= α

[∑
µ

(∑
j∈µ

∇fC′p
µ,t(i)

(j)∆Cp
µ,t(i, j)+

1

2

∑
j∈µ

∑
k∈µ

HC′p
µ,t(i)

(j, k)∆Cp
µ,t(i, j)∆Cp

µ,t(i, k) +H.O.T.µ

)
+

+N.L.I.T.

]
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= α

[∑
µ

(
f(C ′p

t (i)) +
∑
j∈µ

∇fC′p
µ,t(i)

(j)∆Cp
µ,t(i, j)+

1

2

∑
j∈µ

∑
k∈µ

HC′p
µ,t(i)

(j, k)∆Cp
µ,t(i, j)∆Cp

µ,t(i, k)+

H.O.T.µ − f(C ′p
t (i))

)
+N.L.I.T.

]

= α

[∑
µ

(
f(C ′p

t (i) + ∆Cp
µ,t(i))− f(C ′p

t (i))

)
+N.L.I.T.

]
=
∑
µ

∆F p
µ,t(i) + α [N.L.I.T.]

≈
∑
µ

∆F p
µ,t(i)

where ∇fC′p
t (i) and HC′p

t (i) correspond to the gradient and hessian of f for unit i, when1153

the magnitude of its net postsynaptic current is C ′p
t (i). H.O.T. corresponds to the higher-1154

order terms of the taylor expansion, H.O.T.µ corresponds to the higher-order terms that1155

only involve changes to parameter µ, and N.L.I.T. corresponds to non-linear interactions1156

between the terms due to changes in Win, Wrec and brec. From the derivation above, we1157

have:1158

∆Fieldp
µ,t = α

[
f(Current′pt +∆Currentpµ,t)− f(Current′pt )

]
(13)

This equation expresses the unique contribution of changes in the parameter µ to1159

the vector field change. Furthermore, the collective contribution of the changes in the1160

three parameters satisfy equation (12), subject to an approximation error of αN.L.I.T..1161

We calculated the magnitude (L2-norm) of this error; at each trial timestep and in each1162

network tested, this error was found to be less than 1% (average across problems). In1163

supplementary figures 5 - 6, we forego presenting the contribution of the change in1164

network unit biases (∆bprec), as it consistently showed a negligible effect on the changes1165

in postsynaptic currents and the vector field in all problems and networks tested.1166
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For figure 6, this approach was extended to estimate the unique contribution of1167

the changes in recurrent connection weights from the decision (WD→S,D
rec ) and stimulus1168

(W S→S,D
rec ) subspaces to the vector field change, where WD→S,D

rec = WrecP and W S→S,D
rec =1169

WrecQ. To do so, we extended the parameter set in the derivation above to µ ∈1170 {
Win,W

D→S,D
rec ,W S→S,D

rec , brec
}

. Also, the decision and stimulus components of the vec-1171

tor field change due to recurrent weight changes were calculated as ∆FieldW
S,D→D
rec ,t =1172

P∆FieldWrec,t and ∆FieldW
S,D→S
rec ,t = Q∆FieldWrec,t, respectively.1173

The clamping simulations to evaluate reciprocal interactions between stimulus and1174

decision representations (Supplementary Fig. 8c) were performed as follows. Starting1175

from the initial population state (r0), the model was simulated for a single timestep1176

with the learned parameter values as per equation (2). This advanced the population1177

state to r1. The stimulus (decision) representation was then reset to its pre-learning1178

value Qr′
1 (Pr′

1), and the model were simulated for another timestep. This process was1179

repeated until the end of the trial. The Euclidean distance (or magnitude of deviation)1180

between the decision (stimulus) representations observed during these simulations and1181

the learned decision (stimulus) representations reflected the strength of the reciprocal1182

interactions.1183

Relationship between the accumulation of weight changes across1184

problems and the progressive decrease in the weight-driven vec-1185

tor field change (Fig. 7)1186

We measured the contribution of the weight changes elicited while learning problem p−k1187

(∆W p−k, for 1 ≤ k ≤ p− 2) to the cumulative vector field change (or cumulative VFC)1188

along the learned trajectory for problem p (∆Fieldp−k,p
w,t ) as:1189

∆Fieldp−k,p
w,t = α

[
f(W p−k

in up
t +W p−k

rec rp
t−1 + bp−k

rec )−

f(W p−k−1
in up

t +W p−k−1
rec rp

t−1 + bp−k−1
rec )

] (14)
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Then, the cumulative vector field change due to the accumulation of weight changes1190

across all the learned problems from p− k to p− 1 was given by:1191

k∑
j=1

∆Fieldp−j,p
w,t = α

[
f(W p−1

in up
t +W p−1

rec rp
t−1 + bp−1

rec )−

f(W p−k−1
in up

t +W p−k−1
rec rp

t−1 + bp−k−1
rec )

] (15)

In figure 7, we present the magnitude of cumulative VFC along the parallel (∆zp
∥)1192

and orthogonal (∆zp
⊥) components of the vector field change for problem p. These1193

were computed via vector projection of the cumulative VFC onto unit vectors in the1194

direction of the vector field change components. Specifically, given that the vectors1195

∆Fieldp
w,t∆z

p
∥

(∆Fieldp
w,t∆z

p
⊥

) are nearly one-dimensional across trial time t within1196

problem p (Fig. 5c), we applied principal components analysis to find a single basis (unit-1197

norm) vector, ∆F̂ ield
p

w,e∆z
p
∥

(∆F̂ ield
p

w,e∆z
p
⊥

), that accurately represents their shared1198

direction during each non-overlapping 250 ms epoch, e, of the trial. The magnitude of1199

the cumulative change along the parallel / orthogonal vector field change component1200

was given by:1201

|
k∑

j=1

∆Fieldp−j,p
w,t |∆zpµ = |(

k∑
j=1

∆Fieldp−j,p
w,t ) ·∆F̂ ield

p

w,e∆z
p
µ
| (16)

where µ ∈ {∥,⊥}, and time t lies within the interval of epoch e. The magnitudes of1202

cumulative VFC contribution by individual problems along the parallel / orthogonal1203

vector field change component (|∆Fieldp−k,p
w,t |∆zpµ) were computed similarly.1204

The signed cumulative VFC and per-problem cumulative VFC contributions in figure 7c1205

were calculated as above, but without taking the absolute value on the right-hand-side.1206

The per-trial magnitude of the cumulative VFC contribution by problem p − k to1207

problem p was calculated as
|∆Fieldp−k,p

w,t |
∆z

p
µ

l(p−k)
, where l(p − k) is the trials-to-criterion for1208

problem p − k. The sum of the magnitudes of the cumulative VFC contributions to1209
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problem p was calculated as
∑p−2

j=1 |∆Fieldp−j,p
w,t |∆zpµ .1210

The magnitude of net suppression of problem p’s weight-driven VFC along its par-1211

allel / orthogonal component is defined as the net suppression in the direction of the1212

corresponding component due to net weight changes between the start of problems 21213

and p. It was computed from the total vector field change along the learned trajectory1214

for problem p since the start of problem 2. Let ∆Fieldtotal,p
w,t represent this total vector1215

field change at time t:1216

∆Fieldtotal,p
w,t =

p−2∑
j=1

∆Fieldp−j,p
w,t +∆Fieldp

w,t

Then the total change along the parallel / orthogonal vector field change component was1217

given by:1218

∆F total,p
w,t ∆zpµ

= ∆Fieldtotal,p
w,t ·∆F̂ ield

p

w,e∆z
p
µ

We applied a sign correction to this quantity to ensure that its temporal mean is al-1219

ways positive. This allowed us to accurately calculate the net suppression. After sign1220

correction, ∆F total,p
w,t ∆zpµ

becomes:1221

∆̃F
total,p

w,t ∆zpµ
= sgn(∆F total,p

w,. ∆zpµ
)∆F total,p

w,t ∆zpµ

where ∆F total,p
w,. ∆zpµ

represents the temporal mean of ∆F total,p
w,t ∆zpµ

over time t within a1222

trial, and sgn() represents the signum function. Similarly, the weight-driven VFC for1223

problem p along its parallel / orthogonal components was given by:1224

∆F p
w,t∆zpµ

= ∆Fieldp
w,t ·∆F̂ ield

p

w,e∆z
p
µ
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Then, the magnitude of net suppression along the parallel / orthogonal vector field1225

change component for problem p was:1226

∆̃F
net,p

w,t ∆zpµ
= ∆̃F

total,p

w,t ∆zpµ
−∆F p

w,t∆zpµ
(17)

The progression of this quantity over the learning-to-learn timecourse can be de-1227

scribed in terms of the number of previously learned problems. We note that the tem-1228

poral mean of the magnitude of the weight-driven VFC along its parallel / orthogonal1229

component (∆F p
w,.∆zpµ

) decays exponentially from problem 2 onwards until an asymptotic1230

value bµ is converged upon (as in Fig. 6b). This decay may be expressed as:1231

(∆F p
w,.∆zpµ

− bµ) = (∆F 2
w,.∆z2µ

− bµ)r
p−2
µ

for an appropriate base rµ < 1. Taking the temporal mean of equation (17) over trial1232

time t, we have:1233

∆̃F
net,p

w,. ∆zpµ
= ∆̃F

total,p

w,. ∆zpµ
−∆F p

w,.∆zpµ

= ∆̃F
total,p

w,. ∆zpµ
− (∆F p

w,.∆zpµ
− bµ + bµ)

= ∆̃F
total,p

w,. ∆zpµ
− (∆F p

w,.∆zpµ
− bµ)− bµ

= ∆̃F
total,p

w,. ∆zpµ
− (∆F 2

w,.∆z2µ
− bµ)r

p−2
µ − bµ

Rearranging, we have:1234

∆̃F
net,p

w,. ∆zpµ
= (∆̃F

total,p

w,. ∆zpµ
− bµ)− (∆F 2

w,.∆z2µ
− bµ)r

p−2
µ (18)

This equation expresses the progression of the magnitude of net suppression over the1235

learning-to-learn timecourse, and determines its shape as a function of the number of1236
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previously learned problems (Fig. 7b). Note that when the first term (∆̃F
total,p

w,. ∆zpµ
− bµ)1237

is roughly constant across learning-to-learn stages (as we found by measurement), the1238

magnitude of net suppression is given by an inverted exponential function.1239

Finally, we determined the relative contributions of the cumulative input versus1240

recurrent weight changes to the cumulative VFC along the orthogonal vector field change1241

component (Supplementary Fig. 9c). To do so, we calculated the cumulative VFC for1242

problem p solely due to the accumulation of input weight changes elicited by previously1243

learned problems as:1244

k∑
j=1

∆Fieldp−j,p
win,t = α

[
f(W p

inu
p
t +W p

recr
p
t−1 + bprec)− f(W p−k−1

in up
t +W p

recr
p
t−1 + bprec)

]

The cumulative VFC solely to due to recurrent weight changes was calculated similarly.1245

Both quantities were then projected onto the basis vector for the orthogonal vector field1246

change components in problem p (as in equation (16)), to compare their contributions1247

along this component.1248
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Supplementary Notes1267

1.1 Recurrent plasticity elicits efficient learning, but is not nec-1268

essary for it1269

The reuse of the decision manifold to compose learned trajectories implies that a problem1270

is learned by mapping each of its sample stimuli onto an appropriate decision represen-1271

tation within the decision manifold. The model may achieve this either by adjusting its1272

input connection weights to appropriately remap the novel sensory inputs, or by adjust-1273

ing its recurrent connection weights to alter how these inputs are recurrently integrated1274

into the appropriate decision representations, or by some combination of the two. To as-1275

sess the relative contributions of these two mechanisms, we compared: (i) the magnitude1276

of change in the input and recurrent weights when problems are learned; (ii) the decrease1277

in output accuracy when the input or recurrent weights changes are reversed; (iii) the1278

learning-to-learn performance of networks with a pre-established representational mani-1279

fold, that must exclusively rely on changes to either their input or recurrent weights to1280

learn new problems.1281

We observed that the input weight changes were similar in magnitude to the re-1282

current weight changes (Supplementary Fig. 5a). Yet, reversing these relatively large1283

input weight changes produced a negligible decrease in response accuracy. In contrast,1284

reversing the recurrent weight changes decreased response accuracies to chance levels1285

(Supplementary Fig. 5b). To address this discrepancy between the relative magnitude1286

of the weight changes and their effect on output response accuracy, we approximated1287

and compared the individual contributions of the input and recurrent weight changes to1288

the weight-driven VFC (equation (13), see Methods). Consistent with the latter result,1289

we found that the weight-driven VFC is primarily caused by recurrent weight changes1290

(Supplementary Fig. 5c, left). Recall that the weight-driven VFC is directly related1291

to changes in the postsynaptic currents (Fig. 4b, equation (8)), which is a product of1292

the connection weight changes and the firing rates of network and input units (equation1293

(9)). Given that the input and recurrent weight changes are comparable in magnitude,1294
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we posited that the disproportionate contribution of the recurrent weight changes would1295

be explained by a difference in the magnitudes of the network and input unit firing rates.1296

A comparison of these firing rate magnitudes confirmed our hypothesis (Supplementary1297

Fig. 6d, Input Act. Mag. = 1, Win gain = 1, Baseline).1298

These results demonstrate that the model prefers solutions that rely on recurrent1299

weight changes, and that these solutions make more efficient use of the weight changes1300

to alter the vector field. But are these solutions preferred because they are more efficient1301

to learn? In other words, do solutions that rely on input weight changes exhibit poor1302

learning efficiency? To answer this question, we trained networks with pre-established1303

decision and stimulus manifolds (i.e. networks trained on their first problem) on new1304

problems, either with frozen input weights or with frozen recurrent weights. We then1305

compared their asymptotic learning efficiency. Indeed, we found that networks with1306

frozen recurrent weights exhibited substantially higher learning efficiency asymptotes1307

than networks with frozen input weights (Supplementary Fig. 6c)—the model’s prefer-1308

ence for solutions that relied on recurrent weight changes was predicated on their superior1309

learning efficiency. Moreover, networks with frozen recurrent weights required consider-1310

able changes to their input weights before they had learned a problem (Supplementary1311

Fig. 6c, Input Act. Mag. = 1, Win gain = 1). This suggests that the model’s learning1312

efficiency on a problem is related to the magnitude of connection weights changes that1313

are necessary to learn it. We further explore this relationship in the main text (Fig. 6).1314

In the networks explored thus far, learning is more efficient when it relies on recur-1315

rent weight changes. We sought to understand whether this is always true, i.e. are1316

recurrent weight changes a necessary condition for efficient learning? Or, do network1317

regimes exist wherein learning is equally efficient when driven by input weight changes?1318

Networks that learn via input weight changes exhibit poorer learning efficiency due to1319

deficits in their influence on the postsynaptic current changes and the weight-driven1320

VFC (Fig. 4b). Therefore, we reasoned that such networks may become efficient learn-1321

ers in regimes where this deficit is eliminated. To test this, we measured the asymptotic1322

learning efficiency of networks with a tenfold increase in input unit firing rates, and1323

with frozen recurrent weights. We expected that this increase would facilitate a stronger1324
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influence of input weight changes on postsynaptic current changes, thereby improving1325

learning efficiency. Surprisingly, we found that these networks also under-performed in1326

comparison to networks with plastic recurrent weights (Supplementary Fig. 6b, Input1327

Act. Mag. = 10, Win gain = 1). Consistent with the original networks (Input Act. Mag.1328

= 1, Win gain = 1), they required considerable input weights changes (Supplementary1329

Fig. 6c) to generate similarly-sized postsynaptic current changes as fully plastic net-1330

works (Supplementary Fig. 6e). Again, this was due to an asymmetry in the input and1331

network unit firing rate magnitudes (Supplementary Fig. 6d): the network unit firing1332

rates further increased in response to the elevated input unit firing rates, because the1333

network units were receiving larger currents from the input units.1334

Finally, we reasoned that this increase in the network unit firing rate magnitudes1335

could be avoided by additionally scaling down the magnitude of the input weights. This1336

would both generate similarly-sized efferent currents from the input units as in our1337

original networks, and facilitate a stronger influence of input weight changes on the1338

postsynaptic current changes due to the elevated input unit firing rates. We tested this1339

in networks with both a tenfold increase in the input unit firing rates and a 20-fold1340

decrease in the initial input weights (i.e. input weights of the naive network). We now1341

found that networks with frozen recurrent weights exhibited learning efficiency asymp-1342

totes that were comparable to their fully plastic counterparts (Supplementary Fig. 6b,1343

Input Act. Mag. = 10, Win gain = 0.05). These networks produced input weight1344

changes of comparable magnitude to the weights changes in fully plastic networks (Sup-1345

plementary Fig. 6c), while also producing postsynaptic current changes of comparable1346

magnitude (Supplementary Fig. 6e). This was because input and network unit firing1347

rates were comparable in magnitude (Supplementary Fig. 6d). Taken together, these1348

analyses demonstrate that fully plastic networks learn new problems largely via recur-1349

rent connection weight changes because it is generally more efficient to do so. However,1350

recurrent weight changes are not necessary for efficient learning: Network regimes exist1351

wherein learning via input weight changes is equally efficient.1352
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1.2 Plasticity alters stimulus representations far more than de-1353

cision representations1354

We have demonstrated that the model learns a problem when each sample stimulus1355

elicits decision and choice representations that appropriately direct the desired output1356

response, and that this is achieved by the preferential engagement of plasticity in the1357

network’s recurrent connections. But does this process also enlist and alter the stimulus1358

representations, and if so, to what end? Measurements showed that both the decision1359

and the stimulus representations developed sizeable changes after learning (Supplemen-1360

tary Fig. 8b). To test the utility of the changes in the stimulus representations, we1361

simulated trials in a network that had learned a problem, while clamping its stimulus1362

representations at their pre-learning values (see Methods), and measuring the effect of1363

this intervention on the decision representations. If the learned decision representations1364

evolve independently of the stimulus representations, they should remain largely unal-1365

tered. Instead, we found that the decision representations experienced large deviations1366

(Supplementary Fig. 8c). Similarly, clamping the decision representations at their pre-1367

learning values produced large deviations in the stimulus representations. This shows1368

that the stimulus and decision representations sustain strongly recurrent interactions,1369

and that changes in the stimulus representations are necessary both to remap sensory1370

inputs onto the appropriate decision manifold and to maintain these decision represen-1371

tations throughout the trial.1372

We also examined whether the decision and stimulus representations mutually influ-1373

ence each other’s weight-driven VFC. Specifically, how is the weight-driven VFC modu-1374

lated by pre-synaptic population activity in the stimulus versus decision subspaces? And1375

to what extent does the resulting weight-driven VFC alter subsequent stimulus versus1376

decision representations? In figure 6c, we show that the weight-driven VFC is primarily1377

modulated by pre-synaptic population activity in the decision subspace, i.e. the decision1378

representations predominantly scaffold the weight-driven VFC. Moreover, this decision-1379

and weight-driven vector field change is primarily responsible for learning — reversing1380

it reduced output accuracy almost to chance levels, while reversing the stimulus- and1381
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weight-driven vector field change had a much weaker effect (Supplementary Fig. 8d).1382

Finally, a comparison of the overlap of the weight-driven VFC with the stimulus versus1383

decision subspaces showed that weight changes mostly alter stimulus representations1384

(Supplementary Fig. 8e).1385

These results suggest that reciprocal interactions between the stimulus and decision1386

representations play a key role not only in decision making and working memory main-1387

tenance of these decisions, but also in learning the two mappings in each problem. They1388

further demonstrate that the decision representations scaffolds the weight-driven VFC,1389

and that the weight-driven VFC largely prevents uncharacteristic changes to the exist-1390

ing stimulus representations, a finding that is consistent with our results in figure 5 and1391

supplementary figure 9a.1392
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Figure 1: Recurrent neural networks trained on a series of delayed sensorimotor1395

association problems exhibit learning-to-learn. a. An example problem illustrating the1396

structure of the delayed sensorimotor association task. The model must learn to associate each1397

of two sensory stimuli (e.g. images) with a corresponding motor response (e.g. a saccade).1398

Targets are colored to emphasize the distinction between response choices, and not to indicate1399

that the response targets are colored. b. RNN model trained to perform the task. It is composed1400

of recurrently connected rate units that receive a fixation stimulus and features of the sample1401

sensory stimulus as inputs, and reports its response choices via output units corresponding to1402

fixation, motor response choice 1 (brown), or motor response choice 2 (teal). c. Learning-to-1403

Learn training protocol. The model is trained on a series of sensorimotor association problems,1404

each with randomly chosen sample stimulus pair. It is transitioned to a new problem once it1405

reaches criterion performance on the current problem. d. Learning efficiency, measured as1406

the number of trials to criterion performance on a problem, over a series of 1000 problems1407

learned by a network. Box plots summarize the learning efficiency in groups of 50 consecutive1408

problems. The number of trials to criterion on a problem decreases with the number of previously1409
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learned problems. This is characterized by a decaying exponential function and demonstrates1410

the model’s ability to produce learning-to-learn. e. 30 RNNs with different initial conditions1411

exhibit robust learning-to-learn, as indicated by the time-constants (left) and asymptotes (right)1412

of the exponential fits to their learning efficiency over a series of 1000 problems.1413

1414
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Figure 2: Neural representations of decision and choice are shared across prob-1416

lems. a. Schematic of the demixing procedure that identifies shared versus problem-dependent1417

components of the neural representations. Population trajectories for the two mappings in 501418

consecutively learned problems (illustrated for 2 problems, for clarity) are decomposed into com-1419

ponents within a decision subspace which are shared by trajectories that map their respective1420

sample stimuli onto a common response choice, and problem-dependent components embedded1421

in a stimulus subspace. The shared decision representations are further decomposed into their1422

mean and residual components for each problem. b. Decomposed representations for problems1423

1-50, presented in the first 3 principal components of their respective subspaces. c. Schematic1424

illustrating that the component representations collectively drive the response choice outputs.1425

d. The net current from the mean (left) and residual (center) decision representations, and1426

the stimulus representations (right), to response 1 (brown) and response 2 (teal) outputs, in1427

mapping 1 (top) and mapping 2 (bottom) trials. The mean decision components inhibit motor1428

responses during the sample and delay epochs, and the residual decision components drive the1429

correct response while inhibiting the incorrect one. Dashed vertical lines indicate the end of1430

the sample and delay epochs. Plots show mean of the net currents across the 50 problems, and1431

error bars indicate their standard errors.1432

1433
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Figure 3: Manifold perturbations reveal that the reuse of the schematic decision1435

manifold facilitates learning. a. Output responses are readout from a subspace of the1436

population state space, which is spanned by the network’s output weights. Overlap between1437

this readout subspace and the decision subspace enables the control of output responses by the1438

decision representations. b. Illustration of the manifold perturbation interventions that assess1439

the role of decision manifold reuse in learning. A network is trained on a single problem to1440

establish its decision and readout subspaces (top left). It is then trained on a second problem (i)1441

while its output weights are frozen (frozen readout, top right), (ii) after perturbing and freezing1442

its output weights such that its readout subspace only overlaps with its stimulus subspace (D→S1443

manifold perturbation, bottom right), or (iii) after perturbing and freezing its output weights1444

such that the overlap between its readout and stimulus subspaces is altered (S→S manifold1445
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perturbation, bottom left). c. The average learning efficiency on the second problem in each1446

of the three conditions, compared to the learning efficiency on the first problem. d. The1447

learning efficiency on the first problem comprised of two versus three mappings, compared1448

with the average learning efficiency on the second problem. The latter is a three-mapping1449

problem and was preceded either by a two-mapping (2→ 3 mappings) or three-mapping (3→ 31450

mappings) problem. e. Decomposed neural representations in the 2→ 3 mapping condition.1451

Plot shows learned representations for the second problem in the first 3 principal components1452

of the decision subspace (light), and the decision representations for the first problem projected1453

into the same subspace (dark). Second problem decision representations are shown for 501454

independently chosen stimulus sets. Trials-to-criterion on the second problem is averaged1455

over 50 independently chosen random perturbations (c) / stimulus sets (d), and presented as1456

the distribution of these average learning efficiencies across 10 networks with different initial1457

conditions.1458

1459
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Figure 4: Learned trajectories emerge from vector field changes. a-b. Schematic1461

describing the temporal evolution of population activity at the start (Pre-learning, a) and end1462

(Learned, b) of a problem, with illustrations of this evolution in population state space (right).1463

a. The activity advances due to the integration of net postsynaptic currents, which depend1464

on the activity levels (or state) of the network and input units and their efferent connection1465

weights (left). This population state-dependent advance determines a vector field that tiles1466

state space (right, blue arrows) and guides the evolution of the population trajectory (right,1467

blue curve). b. Plasticity-induced connection weight changes (∆W ) alter the postsynaptic1468

currents (∆Current), thereby altering the advance in population activity (left). The effect1469

of this weight-driven vector field change is a continual series modifications to the vector field1470

(right, orange arrows) that determines the evolution of the learned population trajectory (right,1471

purple curve). c. The divergence of the learned trajectory from the pre-learning trajectory1472

(zt+1, right, solid gray arrow) emerges from an accumulation of activity change increments1473

throughout the trial (∆zt+1, right, green arrow). d. Each increment is the sum of the state-1474

and weight-driven vector field changes (left and center, pink and orange arrows, respectively).1475

The state-driven vector field change is a result of state-dependent differences in the pre-learning1476

vector field, specifically between learned and pre-learning population states (left, blue arrows1477

at rt and r′t, respectively). Dashed gray arrows in (c, d) represent a displaced version of the1478

vector zt+1 to help illustrate vector differences.1479

1480
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Figure 5: Weight- and state-driven vector field changes differentially contribute to1482

population activity changes. a. The state- and weight-driven vector field changes may be1483

decomposed into components along (or that contribute to) the activity change increment (green1484

arrows), and components orthogonal to it (or that cancel out, pink arrows). b. Magnitude (L2-1485

norm) of the population activity change increments, and its vector field change constituents1486

(weight- and state-driven vector field changes) decomposed along and orthogonal to the popula-1487

tion activity change increments. Measurements shown are the temporal mean of the magnitudes1488

over the trial duration, averaged over both mappings of problems 2-51. c. Dimensionality of1489

the vector field change components on single problems (averaged over problems 2-51) and for1490

a group of 50 problems (problems 2-51). Plots represent distributions over 10 networks with1491

different initial conditions.1492
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Figure 6: The magnitude of recurrent weight changes explains both the magnitude1495

of the weight-driven VFC and the number of trials to learn a problem. a. The1496

magnitude of the plasticity-induced recurrent connection weight changes explains a majority of1497

the variance in the number of trials to learn problems (left). This relationship was robustly1498

observed across ten networks with different initial conditions (right). b. The magnitude of1499

recurrent weight (blue), postsynaptic current (gray) and weight-driven vector field (orange)1500

changes, averaged in groups of 50 non-overlapping and consecutively learned problems. Each1501

quantity has been normalized by its corresponding value for the first problem group. All quan-1502

tities decrease exponentially with the number of previously learned problems. c. Approximate1503

contribution of presynaptic population activity in the stimulus versus decision subspace to the1504

weight-driven vector field change, averaged over problems 2-51. The magnitudes (L2-norm) of1505

the change in the postsynaptic currents and vector field represent their temporal mean over the1506

entire trial duration, averaged over both mappings in each problem. The magnitude of recurrent1507

weight changes was measured by their Frobenius norm. Plot (b) (plot (c)) reflects mean values1508

(the distribution) over 10 networks with different initial conditions, and the error bars indicate1509

their standard errors.1510

1511
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Figure 7: Accumulation of weight changes progressively improves invariance of1513

existing representations to learning. a. Magnitude of vector field change along the1514

learned trajectory for a problem p due to the accumulation of (i) the weight changes in problem1515

p (W p − W p−1, relative problem = 0; weight-driven vector field change), and (ii) weight1516

changes in each of the earlier problems, proceeding backwards to problem 2 (W p −W p−k−1 for1517

1 ≤ k ≤ p − 2, relative problem −k; cumulative vector field change contributions). The curve1518

for each problem measures the magnitude of change in the direction of its orthogonal weight-1519

driven VFC component, smoothed with a 30-problem moving average filter. Plot summarizes1520

the measurements for problems in 4 problem groups at different stages of learning-to-learn,1521
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and demonstrates the suppressive effect of the cumulative vector field change at each stage. b.1522

Magnitude of net suppression for each problem p, due to the net weight changes between the1523

start of problems 2 and p (W p−1 − W 1), summarized in 50-problem groups. c. Magnitudes1524

of the cumulative VFC and cumulative VFC contributions by individual problems along an1525

example problem’s orthogonal weight-driven VFC component. d. Ratio of the net suppression1526

magnitude to the sum of magnitudes of the cumulative VFC contributions, summarized as1527

in (b). This measures how consistently suppressive the cumulative VFC contributions for a1528

problem are. Measures in (b, d) are presented separately for vector field changes along the1529

parallel (green) and orthogonal (pink) weight-driven VFC components. Magnitudes shown are1530

the temporal mean of the unsigned (L1-norm; a) and signed (b, c) projections onto the parallel1531

/ orthogonal weight-driven VFC components, averaged over both mappings in a problem. Plots1532

in (a, b and d) reflect mean values over 10 networks with different initial conditions, and1533

shading/error bars indicate standard errors.1534

1535
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Figure 8: Learning-to-learn is a process with three timescales. The fastest timescale1537

(bottom) governs the neural dynamics within a trial which drive output responses. The inter-1538

mediate timescale (middle) governs the learning dynamics across trials within a problem; it1539

ultimately produces the requisite weight-driven vector field change which results in problem being1540

learned. The slowest timescale (top) governs the dynamics of learning-to-learn across problems;1541

it ultimately improves the invariance of existing representations to learning new problems which1542

results in asymptotic learning efficiency.1543

1544
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Supplementary Figures1545
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Supplementary Figure 1: Learning-to-learn is robustly observed across a range1547

of hyper-parmeter settings. Problem 1 learning efficiency (left), learning efficiency asymp-1548

totes (middle), and learning efficiency time constants (right), of networks trained with different1549

learning rates, recurrent (βWrec), input (βWin) and output (βWout) weight regularization lev-1550

els, numbers of recurrent weight matrix singular values (k) that are regularized, firing rate1551

regularization levels (βr), and f-I transfer functions. Performance measures are presented in1552

comparison to the baseline networks discussed in the main text. The regularization hyper-1553

parameters and learning rates spanned 2 orders of magnitude. 10 networks were trained per1554
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hyper-parameter setting. Networks with sigmoid f-I transfer functions were trained with input1555

unit firing rates scaled up by a factor of 10. Networks at the slowest learning rate and those with1556

a sigmoid f-I transfer functions exhibited slower learning. However, all networks demonstrated1557

learning-to-learn.1558

1559
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Supplementary Figure 2: Model retains a memory of past problems. a. Learning1561

efficiency of new problems (novel condition, blue) at early-stage learning-to-learn (20 problems1562

in the range 11 - 55), in comparison to the learning efficiency when re-learning them following1563

a varying number of intervening problems (repeat condition, red). b-c. Similar comparison1564

of novel versus repeat learning efficiency for problems at middle-stage (b, 20 problems in the1565

range 146 - 205) and late-stage (c, 20 problems in the range 346 - 405) learning-to-learn. Plots1566

reflect mean values over 10 networks with different initial conditions, and error bars indicate1567

the standard error of the mean.1568
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Supplementary Figure 3: Learning dynamics are largely comprised of changes in1571

shared population representations across problems. a-b. Temporal (a) and trial (b)1572

factors produced by tensor decomposition analysis ([1]) when applied to population activity1573

during trials between the beginning and end of learning 10 consecutive problems at early-stage1574

learning-to-learn (problems 2 - 11). c-d. Temporal (c) and trial (d) factors of population1575

activity during learning trials of problems at middle-stage learning-to-learn (problems 96 -1576

105). Plots reveal the emergence of large changes in delay- and choice-epoch activity as the1577

problems are learned. These changes separate the population activity for the two mappings1578

in a problem, in a manner that is consistent across problems. In addition, they emerge more1579

rapidly while learning problems at middle-stage learning-to-learn.1580

1581
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Supplementary Figure 4: Intrinsic structure of the learned neural representations1583

is also recruited in response to novel sample stimuli. a. Comparison of the variance1584

in pre-learning and learned population activity that is explained by each principal component1585

of the decision subspace. The decision subspace and its principal components were computed1586

from the learned population activity across 50 consecutive problems. The variance in both1587

the pre-learning and learned activity was measured along these principal components. b-c.1588

Comparison of the variance in pre-learning and learned population activity that is explained1589

by the first 15 principal component of the stimulus subspace, measured across the entire trial1590

duration (b) and across the sample epoch of the trials only (c). The structure underlying1591

learned neural representations is recruited even at the start of each problem, when the sample1592

stimuli presented to the network are novel. The first problem was excluded from the pre-learning1593

variance measurements, as the decision and stimulus representations develop only after the first1594

problem is learned. Bars show mean variance explained are across 10 networks with different1595

initial conditions, and error bars indicate standard errors of the mean.1596

1597
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Supplementary Figure 5: Learning largely relies on changes in the recurrent con-1599

nection weights. a. Magnitude of the recurrent and input connection weight changes, mea-1600

sured by their Frobenius norms. b. Output accuracy when either the input or recurrent1601

connection weight changes are reversed. c. Approximate magnitude of the weight-driven vec-1602

tor field change due recurrent and input connection weight changes. Magnitudes shown are1603

the temporal mean of the L2-norm of the corresponding vector quantities over the entire trial1604

duration, and averaged over both mappings in a problem. All measures presented are averages1605

across problems 2 thru 51. All bars represent the mean across 10 networks with different initial1606

conditions, and error bars indicate their standard errors.1607
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Supplementary Figure 6: Plasticity of recurrent connection weights results in,1610

but is not necessary for, efficient learning. a. Comparison of the learning-to-learn1611

asymptotes of fully plastic networks (Baseline), and those trained with frozen input, recurrent1612

or output weights. Weights were frozen after the first problem was learned, to ensure the1613

emergence of the decision and stimulus manifolds. b-e. Comparison of fully plastic networks1614

(baseline) and those with frozen recurrent weights in three network regimes that differed in the1615

magnitude of the input unit firing rates (Input Act. mag.) and the relative strengths of the1616

initial input connection weights (Win gain). Comparison of the learning-to-learn asymptotes1617

(b), magnitude (Frobenius norm) of input and recurrent weights changes (c), magnitude (L21618

norm) of input and network unit firing rates (d), and magnitude (L2 norm) of the input and1619

recurrent postsynaptic current changes (e). Quantities in (d-e) are temporal means over the1620

sample epoch of the trials. Quantities in (c-e) are averages across problems 951-1000. All bars1621
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represent means across 10 networks with different initial conditions, and error bars indicate1622

their standard errors.1623

1624
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Supplementary Figure 7: The pre-existing decision manifold provides a repre-1626

sentational scaffold for the formation of learned trajectories in new problems.1627

a. Schematic illustrating pre-learning and learned population trajectories, together with the1628

requisite weight-driven vector field change (orange arrows) in a network with frozen readouts1629

(left) and a network with a D→S manifold perturbation (right). Vector field shaped by prior1630

learning is approximately oriented to support the evolution of learned trajectories in networks1631

with frozen readouts, but not in networks with D→S manifold perturbations. Therefore, the1632

latter requires a substantial weight-driven vector field change. b. Distribution of the magnitude1633

of recurrent weight (left) and weight-driven vector field (right) changes required to learn the1634

second problem, in the frozen readout and D→S manifold perturbation conditions, across 101635

networks with different initial conditions. Smaller weight changes required by networks with1636

frozen readouts makes them efficient learners. For each network, the measures were averaged1637

over 50 perturbations, with new sample stimuli used each time. The magnitude (L2-norm)1638

of the weight-driven vector field change represented is its temporal mean over the entire trial1639

duration, averaged over both mappings in each problem.1640

1641
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Supplementary Figure 8: Reciprocal interactions between stimulus and decision1643

representations shape network dynamics and support learning. a. Schematic of recur-1644

rent interactions within and between stimulus (magenta) and decision (green) representations.1645

Efferent (afferent) connections are represented in darker (lighter) colors. b. Euclidean distance1646

between pre-learning and learned decision and stimulus representations. c. Euclidean distance1647

between learned decision (stimulus) representations and those generated by the network when1648

simulated with its stimulus (decision) representations clamped to their pre-learning values. d.1649

Output accuracy when the weight-driven current changes modulated by presynaptic population1650

activity in the stimulus or decision subspace are reversed. e. Magnitude (L2-norm) of weight-1651

driven vector field change within the stimulus and decision subspaces. The magnitudes and1652

Euclidean distances represented are their temporal mean over the entire trial duration, averaged1653

over both mappings in problems 2-51. All bars represent mean values over 10 networks with1654

different initial conditions, and error bars indicate their standard errors.1655
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Supplementary Figure 9: Properties and contributions of the orthogonal com-1658

ponents of the vector field change. a. Comparison of the percentage of variance in1659

the stimulus representations (black) and the orthogonal components of the vector field change1660

within the stimulus subspace (pink) explained by the first 8 and remaining principal components1661

of the stimulus subspace. The orthogonal components largely lie off the stimulus manifold. b.1662

Magnitudes of the weight-driven vector field change (orange), and its components in the direc-1663

tion of the activity change increments (green) and orthogonal them (pink), for early and late1664

learned problem groups. The orthogonal components dominate the total weight-driven vector1665

field change across the learning-to-learn timecourse. c. Magnitude of vector field change along1666

the learned trajectory for a problem p due to the accumulation of (i) the weight changes in1667

problem p (W p −W p−1, relative problem = 0), and (ii) weight changes in each of the earlier1668

problems, proceeding backwards to problem 2 (W p−W p−k−1 for 1 ≤ k ≤ p−2, relative problem1669

−k). The curve for each problem measures the magnitude of change in the direction of its1670

orthogonal weight-driven VFC component, smoothed with a 30-problem moving average filter.1671

Plot summarizes the measurements for problems at late-stage learning-to-learn (problems 452-1672

501), and separately shows contributions of changes in input weights (yellow), recurrent weights1673

(blue), and both (pink). The cumulative suppression of the weight-driven vector field change1674

in the direction of its orthogonal component is almost entirely caused by an accumulation of1675

recurrent weight changes. The magnitude (L2-norm) of the vector field change represented1676

in (b-c) is its temporal mean over the entire trial duration, averaged over both mappings of1677

all the problems in the respective group of 50 problems. All plots represent mean values over1678

10 networks with different initial conditions, and shading/error bars indicate their standard1679

errors.1680
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Supplementary Figure 10: Weight-driven vector field changes in earlier problems1683

cumulatively suppress the weight-driven vector field change required to learn future1684

problems. a. Schematic illustrating cumulative changes in the vector field along the learned1685
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trajectory for problem p due to an accumulation of the weight changes elicited while learning1686

the problems that precede it. This cumulative vector field change reduces the weight-driven1687

vector field change required to support the evolution of problem p’s learned trajectory. The total1688

vector field change at problem p measures the net effect of all the vector field changes along1689

problem p’s learned trajectory due to the weight changes between the start of problem 2 and the1690

end of problem p. b. Difference between consistently and inconsistently suppressive cumulative1691

vector field change contributions illustrated along a problem’s orthogonal vector field change1692

component. Stronger consistency produces a larger net suppression, which reduces the requisite1693

weight-driven vector field change by a larger amount.1694

1695
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Supplementary Figure 11: Properties of vector field change along the learned1697

trajectory for a problem due to weight changes in the preceding problems. a.1698

Magnitude of per-trial cumulative vector field change contributions along the learned trajectory1699

for a problem p by the weight changes in each of the earlier problems, proceeding backwards1700

to problem 2 (W p − W p−k−1 for 1 ≤ k ≤ p − 2, relative problem −k). The curve for each1701

problem measures the per-trial magnitude of change in the direction of its orthogonal weight-1702

driven VFC component, smoothed with a 30-problem moving average filter. Plot summarizes1703

the measurements for problems in 4 problem groups at different stages of learning-to-learn.1704

b. Sum of the magnitudes of the cumulative VFC contributions for each problem p due to1705

weight changes in problems 2 thru p − 1. summarized in 50-problem groups. The measure is1706

presented separately for the vector field change along the parallel (green) and orthogonal (pink)1707

weight-driven VFC components. Magnitudes shown in both plots are the temporal mean of the1708

unsigned projections onto the parallel / orthogonal weight-driven VFC components, averaged1709

over both mappings in a problem. Plots reflect mean values over 10 networks with different1710

initial conditions, and shading/error bars indicate standard errors.1711
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