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11 Abstract

12 Learning-to-learn, a progressive speedup of learning while solving a series of
13 similar problems, represents a core process of knowledge acquisition that draws
14 attention in both neuroscience and artificial intelligence. To investigate its under-
15 lying brain mechanism, we trained a recurrent neural network model on arbitrary
16 sensorimotor mappings known to depend on the prefrontal cortex. The network
17 displayed an exponential time course of accelerated learning. The neural substrate
18 of a schema emerges within a low-dimensional subspace of population activity; its
19 reuse in new problems facilitates learning by limiting connection weight changes.
20 Our work highlights the weight-driven modifications of the vector field, which de-
21 termines the population trajectory of a recurrent network and behavior. Such
2 plasticity is especially important for preserving and reusing the learnt schema in
23 spite of undesirable changes of the vector field due to the transition to learning a
2 new problem; the accumulated changes across problems account for the learning-
25 to-learn dynamics.
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» Introduction

2z In Psychology, Schema refers to an abstract mental representation that we deploy to
s interpret and respond to new experiences, and to recall these experiences later from
0 memory [, 2]. Mental schemas are thought to express knowledge garnered from past
w0 experiences [2, B, 4]. For example, expert physicists apply relevant physics schemas
n when they categorize mechanics problems based on governing physical principles (e.g.
» conservation of energy or Newton’s second law); by contrast, novice physicists who lack
13 these schemas resort to categories based on concrete problem cues (e.g. objects in the
3 problem or their physical configuration) [5]. What is the brain mechanism of schemas,

55 and what makes it essential for rapid learning and abstraction?

36 One type of schema is called a “learning set”. In a pioneering experiment, H. F.
w Harlow trained macaque monkeys on a series of stimulus-reward association problems
s [0]. While keeping the task structure fixed, each problem consisted of two novel stim-
s uli that had to be correctly mapped onto rewarded versus nonrewarded, respectively.
w0 Harlow found that the monkeys progressively improved their learning efficiency over the
s course of a few hundred problems, until they could learn new problems in one shot.
2 He concluded that rather than learning each problem independently of the earlier ones,
s the monkeys formed an abstract learning set that they deployed to learn new problems
s more efficiently — they were learning-to-learn. Evidence of schema formation from prior
s knowledge has been demonstrated in humans [7, 8 and nonhuman animals [9, 10, 11].
s Moreover, converging lines of evidence derived from functional connectivity [12, [13],
« structural plasticity [[13], lesion [9], pharmacological blockade [14], and gene expression
s [15] studies, attribute the acceleration of learning to the rapid integration of new experi-
s ences into pre-existing schema that are encoded in the neocortex. This has motivated a
so neurocentric definition of a schema as a network of strongly interconnected neocortical
si representations that affect processing of new information [[7, 12, [16]. However, these
52 previous experiments did not elucidate how, mechanistically, a neural circuit realizes a

53 schema and expedites learning.
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54 Schemas are posited to emerge as an abstraction of the commonalities across pre-
s vious experiences [4, 17]. It is the generalization of these abstract representations to
ss novel situations that is believed to accelerate learning [[18, 19, 20]. Indeed, the abstract
s neural representation of shared task variables has been observed across consecutively
ss learned problems when experience on earlier problems facilitates later learning [21, 22].
so Furthermore, the progressive improvement in learning efficiency observed by Harlow
o0 suggests that this process of abstract representation-facilitated learning undergoes pro-
e gressive refinement. The structure learning hypothesis [23] equates learning to a change
&2 in the brain’s internal parameters which control behavior, and posits that the progres-
63 sive improvement in learning efficiency emerges with a low-dimensional task-appropriate
e« realization of the internal parameter space. Parameter exploration within such a space is
s less demanding, which makes learning more efficient. Therefore, while schema formation
s emphasizes an abstraction of the task’s structure, structure learning emphasizes learning

e how to efficiently use a schema to aid in generalization.

68 In spite of tremendous progress in machine intelligence, learning-to-learn presents
s a major challenge in presently available artificial systems. Machine learning studies
70 have proposed meta-learning approaches wherein model parameters that promote rapid
7 generalization to new problems are explicitly favored and sought [24, 25]. Yet, it is not
72 known whether such mechanisms are necessary computationally or present in the brain.

7z Can learning-to-learn arise solely from the natural dynamics of learning?

74 We explored this question of broad interest to brain research, cognitive science and
s artificial intelligence, by examining the neural mechanisms of learning-to-learn in recur-
76 rent neural network (RNNs). As a behavioral paradigm we chose learning of arbitrary
77 sensorimotor associations, which requires the learning of arbitrary mappings between
s sensory stimuli and motor consequents [26, 27], and is essential for flexible behavior [2§].
79 Macaque monkeys exhibit learning-to-learn on association problems, they learn new
o problems within an average of 20 trials when they are well-trained [29]. Furthermore,
s1 their prefrontal cortex is causally engaged during rapid problem learning. Prefrontal
&2 neurons represent task stimuli and responses during visuomotor association trials [26,

3 29]. Prefrontal lesions produce substantial visuomotor association learning deficits [28,
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s« 30, Bl]. We sought to understand whether and how a sensorimotor association schema
ss may be encoded by these prefrontal representations, how it is applied to new problems,

s and how its usage is refined to improve learning efficiency.

87 Towards this end, we trained and analyzed an RNN model of prefrontal computation
s and learning. We found that RNNs trained on a series of sensorimotor association prob-
g0 lems exhibit robust learning-to-learn despite the absence of meta-learning: the number
o of trials to learn a problem decays exponentially with the number of previously learned
a1 problems without an explicit mechanism to accelerate learning with increasing experi-
e ence. We analyzed the population activity of the RNN’s units via subspace decompo-
o3 sition to uncover population-level latent variable representations [10, B2, and we used
o manifold perturbations to study the causal relationship between learning efficiency and
s the reuse of existing population representations to learn [33]. The analyses revealed that
o the model develops neural correlates of the task’s schema — a low-dimensional neural
o7 manifold that represents shared task variables in an abstract form across problems. Its
¢ reuse avoids the formation of representations de novo while learning problems which
o considerably accelerates learning by limiting the connection weight changes required
wo to learn them. We introduce a novel measure relating these weight modifications to
w1 population activity changes, which we term the weight-driven vector field change. This
102 measure showed that the reused representations are not entirely invariant across prob-
103 lems. Instead, mapping new stimuli can modify the reused representations in undesirable
e ways. Connection weight changes are primarily recruited to prevent such modifications.
s Moreover, the weight changes in early problems improve the invariance of the reused rep-
s resentations, limiting the degree to which they would be modified in the future, which
w7 further accelerates learning. The accumulation of such improvements over a series of

ws problems supports structure learning and promotes learning-to-learn.
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» Results

o Trained neural network models exhibit learning-to-learn without

m meta-learning

112 We evaluated whether an RNN model could demonstrate learning-to-learn of delayed
u3  sensorimotor association problems. In each problem, the model learned a unique map-
s ping between a pair of sensory stimuli (e.g. images) and a pair of motor responses (Fig.
115 Ela). Each trial began with a 0.5 second sample epoch, when a sensory stimulus was
s presented together with a fixation cue, and the model was required to maintain fixation.
7 A 1 second delay epoch followed, when the model had to continue fixation in the absence
us of the sample stimulus. The trial concluded with a 0.5 second choice epoch signalled by
ne removal of the fixation cue, when the model had to report its choice of an appropriate
120 motor response. The two sample stimuli in each problem were randomly generated. The
121 model was composed of a population of recurrently (or laterally) connected firing rate
122 units that received eleven inputs, one signalling fixation and ten signalling features of a
13 sample stimulus (Fig. E]b) Such stimulus representations are consistent with a recent
124 finding that visual objects are represented in the monkey inferotemporal cortex by a
15 feature-based topographic map [34]. The model is also consistent with lesion studies
126 which demonstrate the causal involvement of inferotemporal-prefrontal connections in
17 visuomotor learning and retention [30, B5]. Response choices were read out from the
128 population’s activity by three output units that represented fixation, motor response 1,

120 Or motor response 2.

130 The model was trained on a problem one trial at a time. Its parameters were ad-
131 justed at the end of each trial to minimize the errors in its output responses, until
132 the output responses achieved criterion accuracy (see Methods). The model was then
133 transitioned to a new problem (Fig. mc) Crucially, training was performed without an
134 explicit meta-learning objective. A network trained on a series of delayed sensorimotor
135 association problems demonstrated learning-to-learn (Fig. md) The network required

s a few thousand trials to learn the first problem, which was expected because the net-
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137 work was initialized with random connection weights. By contrast, solving the second
s problem took only a few hundred trials. Thereafter the trials-to-criterion progressively
130 decreased over the next few hundred problems, plateauing at an average of 20 trials per
1o problem. This decrease was well-fit by a decaying exponential function, which closely
11 matched a 30-problem moving average of the network’s trials-to-criterion. This perfor-
142 mance is commensurate with learning-to-learn in macaque monkeys, which exhibit an
143 exponential decrease in their trials-to-criterion when trained on a series of association
s problems [36], and demonstrate learning within 15-20 trials when well-trained [29]. The
us  fit’s parameters quantify the network’s learning-to-learn performance: the time constant
us measures how quickly it produces learning-to-learn, and the learning efficiency asymp-
147 tote measures its trials-to-criterion plateau. We note that while naive monkeys undergo
s behavioral shaping on the desired response set before they are introduced to the task,
149 a naive network’s learning efficiency on the first problem reflects learning both to gen-
150 erate basic responses, and the specifics of the problem. To avoid this confound related
151 to learning the response set, we quantified the network’s learning-to-learn performance

12 starting with the second problem.

153 We tested the robustness of these results by similarly training 30 independently
154 initialized networks. Across these networks, the learning-to-learn time constants and
155 asymptotes were limited to a narrow range (Fig. Ele; time constant mean=47.52, std.
15 dev.=26.22; asymptote mean=21.33, std. dev=3.85). We further tested the model over a
157 range of hyper-parameter settings (f-I transfer functions, learning rates, weight and firing
158 rate regularization levels), and observed robust learning-to-learn across all conditions
150 (Supplementary Fig. m) In addition, we found that the model was faster at re-learning
10 problems after subsequently learning several new problems (Supplementary Fig. E),
11 suggesting that it retains a memory of previously learned problems. Taken together,
12 these results demonstrate that networks trained on a series of delayed sensorimotor
163 association problems robustly exhibit learning-to-learn, despite the absence of an explicit

16« meta-learning objective.
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s Abstracted neural manifold governs the task’s schema and drives

s output responses

17 The activity of a recurrently connected population of N units co-evolves over the du-
s ration of a trial, forming a trajectory in an N-dimensional population state space (Fig.
160 Ea, top). When a problem is learned, the network responds to each sample stimulus
o with a trajectory that appropriately subserves stimulus integration, decision making,
i working memory maintenance, and fixation/motor response choice. We demixed [37]
2 (see Methods) population trajectories from consecutively learned problems to identify
13 shared representations, if any, of the latent variables that support these computations.
17a  This procedure decomposed the trajectories into components embedded within two non-
115 overlapping subspaces of the population state space (Fig. a, middle): Decision rep-
e resentations embedded within the decision subspace revealed similarities between tra-
7 jectories that shared target responses; stimulus representations embedded within the
s stimulus subspace varied in a problem- and sample stimulus-dependent manner. We fur-
e ther decomposed the two decision representations in each problem into a mean decision
180 representation, where the mean was taken over both decision representations (Fig. Ea,
151 bottom left), and residual decision representations given by subtracting out this mean

12 from the two decision representations (Fig. Ea, bottom right).

183 Decomposing the trajectories from the first 50 consecutively learned problems in this
18 manner revealed a low-dimensional shared decision subspace (mean = 2.36 dimensions;
155 std. dev. = 0.18 dimensions across 10 networks), whose constituent decision represen-
s tations explained most of the variance in population activity across problems (mean
1w = 88.54%; std. dev. = 3.16% across 10 networks). Furthermore, the mean decision
188 representations lay close to each other in state space, forming a shared manifold across
1w problems (Fig. Eb, left). The residual decision representations consistently encoded the
100 decision and choice of either response across problems, thus forming a shared manifold
1 for each decision (Fig. Eb, center). The persistence of a low-dimensional shared manifold
12 which explains a majority of the population’s variance across problems demonstrates a

103 strong abstraction of the shared task variables that it encodes. It bears mentioning that
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104 the model retains and reuses this manifold across problems, despite changes in the stimu-
105 lus set and the weight change-induced change in network dynamics that transpires while
w6 learning. Moreover, population activity changes during learning are largely determined
w7 by changes in these shared representations (Supplementary Fig. B) In contrast, the
s stimulus representations (Fig. Eb, right) were higher dimensional (mean = 7.98 dimen-
1o sions; std. dev. = 1.48 dimensions across 10 networks), but explained a small proportion
200 of the population variance. Interestingly, the distribution of neural activity in popula-
20 tion state space at the beginning and end of problem learning closely resemble each
200 other (Supplementary Fig. @) These results demonstrate that the model even reuses
203 pre-established representations when responding to novel sample stimuli and learning

200 their mappings.

205 Next, we examined the relative contribution of these components to the output re-
206 sponses by measuring the net current from each component to the choice outputs (Fig.
207 Ec) During trials where response 1 was chosen (mapping 1 trials), residual decision rep-
208 Tesentations excited the response 1 output unit and inhibited the response 2 output unit,
200 particularly within the choice epoch (Fig. Ed, center). During mapping 2 trials, these
210 representations had the opposite effect. In contrast, the mean decision representations
o inhibited both response choices throughout the sample and delay epochs, but not the
212 choice epoch (Fig. Bd, left). This was essential to preventing premature response choice
213 initiation during the delay epoch (Fig. Ed, center). The contribution of the stimulus
214 representations to response selection was negligible throughout the trial (Fig. Ed, right).
25 (Quantitatively similar results were obtained for all consecutively learned 50-problem
26 groups in all the networks that we tested. These results demonstrate that the decision
217 manifold constitutes the neural correlates of the task’s schema — it represents the shared
23 temporal (mean decision) and 2-alternative (residual decision) structure of the task in
219 an abstract form, and thereby reflects knowledge abstracted from past experiences. This

»0 predicts that the decision manifold facilitates generalization of the task structure.
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21 Schematic manifold embodies a representational scaffold that

» facilitates learning

23 We have shown that the schematic decision manifold is reused by, or scaffolds [8, B, B9,
22 the learned representations in subsequent problems. Moreover, this reuse is accompanied
»s by a stark improvement in learning efficiency between the first problem and subsequent
»s ones (Fig. md) To establish whether the reuse of the decision manifold plays a causal
27 role in improving learning efficiency, we compared the learning efficiency of networks that
»s were barred from reusing the existing decision manifold to control output responses in
29 new problems, with networks that were allowed to do so. This method has been applied
20 in brain-computer interface (BCI) studies to establish a causal link between monkeys’
2n  ability to rapidly adapt to BCI readout perturbations and their reuse of existing motor

2 cortical representations to modulate the perturbed readouts [33].

233 In our model, this intervention relies on the concept of a readout subspace. Population
24 activity modulates an output unit’s response, only when the sum of the excitatory and
235 inhibitory postsynaptic currents it produces at the unit are non-zero (output-potent ac-
2 tivity, [40]). Since these currents depend on the model’s output connection weights, the
237 output weights constrain the set of population activity levels which can modulate output
28 unit responses. This set defines the readout subspace of population state space. Our
239 observation that population representations within the decision subspace predominantly
20 modulate output responses implies that the decision subspace strongly overlaps with
21 the readout subspace. It follows that the elimination of this overlap, by appropriately
22 altering the readout subspace, would force the development of new decision represen-
23 tations to modulate the output responses. This would impair the effectiveness of the
s representational scaffold provided by the pre-existing decision manifold in composing
25 the learned trajectories. The observation of a concurrent learning deficit would establish
26 a causal link between the representational scaffold and accelerated learning. For this
27 causal intervention as well as its controls, we started by training a naive network on
2#s a single problem so that it appropriately developed overlapping readout and decision

20 subspaces (Fig. Ha).

10
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250 In the frozen readout condition, we then trained the network on its second problem
251 while freezing (or preventing changes to) the output weights (Fig. Eb, top right). This
2 helped assess whether freezing the output weights adversely affects learning efficiency.
23 Results showed that networks exhibited a substantial improvement in learning efficiency

2s¢  from the first problem to the second despite frozen readouts (Fig. Bc)

255 In the stimulus-to-stimulus (S — S) manifold perturbation condition, we perturbed
56 the output weights such that the overlap between the readout and stimulus subspaces
27 was altered, but the overlap between the readout and decision subspaces was not (Fig.
258 Hb, bottom left; see Methods). We then trained the network on its second problem
50 with frozen output weights, which prevented the training procedure from re-aligning the
w0 readout subspace with the stimulus subspace. In these networks as well, we found a

1 substantial improvement in the learning efficiency from the first problem to the second

262 (Fig. BC)

263 Finally, in the decision-to-stimulus (D — S) manifold perturbation condition, we per-
x4 turbed the output weights such that the readout subspace overlapped exclusively with
s the stimulus subspace (Fig. ab, bottom right). We then trained the network on its
6 second problem with frozen output weights. This condition eliminates any overlap be-
7 tween the readout and decision subspaces, and compels the formation of new decision
s representations within the original stimulus subspace. In contrast to networks with
x0 frozen readouts and S — S manifold perturbations, we found that the learning efficiency
oo of these networks was strongly impaired — they learned as slowly as naive networks
o learning their first problem (Fig. Bc) This demonstrates that D — S manifold perturba-
o2 tions adversely affected learning performance because the reuse of the decision manifold
o3 was impeded, and not because this was achieved by perturbing and freezing the output

ora wel ghtS.

275 We further tested whether the transfer of prior knowledge could facilitate learning
76 of problems with altered but overlapping task structure. To do so, we trained a naive
o7 network on a single problem comprised of two mappings as in Figure a. Then, we

2 transitioned it to its second problem that was comprised of three mappings (i.e. three

11
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20 sensory stimuli mapped to three motor responses). Here too, we observed a substantial
20 facilitation of learning performance compared to a naive network (Fig. Bd), accompanied
21 by a reuse of the decision manifold when learning the three-mapping problem (Fig.
282 Ee). Taken together, these results confirm that the schematic decision manifold forms
283 a representational scaffold that facilitates the transfer of prior knowledge regarding the

280 task’s structure to new problems, and expedites learning in the process.

x»s Representational reuse and synaptic plasticity differentially con-

x tribute to learning

257 We have shown that the reuse of existing representations to learn problems improves
8 learning efficiency. However, learning produces fairly large changes in population ac-
20 tivity to mediate the necessary output response corrections (Supplementary Fig. Eb)
200 How does the emergence of such sizeable changes benefit from the reuse of existing
201 representations? And how do the contributions of this reuse compare to those of the
22 plasticity-induced connection weight changes? To answer these questions, we analyzed

203 the activity changes between the beginning and end of a problem.

204 The neural population responds to a novel sample stimulus with a pre-learning tra-
205 jectory in population state space (Fig. @a right, blue curve). This trajectory evolves
206 through time due to the repetition of the following process (equation (B)) The inputs
27 and population activity at time ¢t — 1 generate postsynaptic currents subject to the
208 network’s recurrent and input connection weights; these currents are integrated by the
20 network units, which advances their activity from r;_, to r; (Fig. @a, left). In state
30 Space, this instantaneous advance in the population state is represented by a vector orig-
;0 inating at r{_, (Fig. @a, right). Note that the direction and magnitude of this advance
;2 is state-dependent — it depends on the activity levels of the population’s units, i.e. the
33 population state, at time ¢ — 1. It also depends on the network’s connection weights.
34 The temporal sequence of these vectors guides the evolution of the population’s activity

w5 between its initial (ry) and final (r7.) states (Fig. @a, right, blue arrows along blue

12
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w6 curve). Importantly, these state-dependent vectors constitute a vector field [41, 42] that
57 spans the entire state space and describes the network’s dynamics (Fig. @a, right, blue

s arrows tiling the space).

300 When the problem is learned, the population activity traverses a learned trajectory
a0 (Fig. @b right, purple curve) comprised of learned population states. Since the connec-
s tion weights at the end of a problem are given by the sum of the pre-learning weights and
si2 - the plasticity-induced weight changes, this learned trajectory is governed by the sum of
a3 the pre-learning vector field and the changes in this field caused by the weight changes.
siu - Consequently, changes in population activity from the pre-learning to the learned tra-
a5 jectory are also governed by these two factors. The change in population activity from
s a pre-learning state (r}) to a learned state (r¢) at time ¢, 24, is represented by a vector
w7 in state space from the former to the latter (Fig. @c, solid gray arrows). It emerges
ag from an accumulation of activity change increments throughout the trial (Fig. @c, green
sw arrow). The incremental change in population activity (Aziy1) between times ¢ and
20 t+ 1 derives from the pre-learning vector field (i.e. the reuse of existing representations)

s and the plasticity-induced changes in the vector field.

322 Setting aside the effect of weight changes for a moment, consider the network’s pre-
33 learning vector field at the learned and pre-learning states. Due to its state-dependence,
324 the pre-learning vector field may advance population activity quite differently at one
»s state versus at the other. In this event, the activity difference between the pre-learning
»s and learned states will change between times t (2z;) and ¢ + 1 (2441). In state space,
w2 this change is reflected by the vector difference (Fig. @d, left, pink arrow) between the
»s pre-learning vector field at the two states (blue arrows), and is referred to as the state-
29 driven vector field change (or state-driven VFC; referred to in Methods as AFields 41 -
30 equation (B)) The state-driven VFC solely depends on the pre-learning vector field (i.e.

;1 on existing representations).

33 The connection weight changes alter the net postsynaptic currents into the popula-
1 tion, thereby altering how the population activity advances over time (Fig. @b, left). In

14 state space, this translates to a change in the vector field all along the learned trajectory

13
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s (Fig. @b, right, orange arrows), including at time ¢ (Fig. @d, center), and it is referred to
16 as the weight-driven vector field change (or weight-driven VFC; referred to in Methods
s as AField, 11 - equation (B)) The sum of these two types of vector field change
1 (weight-driven and state-driven VFCs) produces the incremental change in population

30 activity (Azgiq) between times ¢t and ¢ + 1 (Fig. @d, right; equations (@)—(B))

340 Measurements revealed a substantial difference between the magnitudes of the activ-
s ity changes (z¢; Supplementary Fig. Eb) and the activity change increments (Azy; Fig.
342 Bb) That is, large population activity changes emerge from an accumulation of rela-
sz tively small change increments generated throughout the trial. We further assessed the
s relative contribution of the weight-driven and state-driven VFCs to the activity change
us increments by decomposing them (Fig. Ea; see Methods) into their respective compo-
us nents in the direction of the activity change increments (Az) - parallel component) and

s orthogonal to them (Az, - orthogonal component).

348 A key observation was that the state-driven VFC’s parallel component is much larger
uo in magnitude than the weight-driven VFC’s parallel component (Fig. Bb, green bars).
;0 Therefore, the network’s pre-learning vector field, which governs the state-driven VFC,
31 is primarily responsible for the population activity changes. Dimensionality measure-
;2 ments of these parallel components revealed that they are low-dimensional not only in
353 individual problems, but also across a group of problems (Fig. BC) This is consistent
3 with the structure learning hypothesis [23], which posits that efficient learning relies on
355 changing behavior via parametric changes within a low-dimensional internal parameter
36 space of the brain. Our results suggest that this low-dimensional internal parameter
37 space corresponds to a low-dimensional subspace of neural population activity, which

8 constrains how population activity may change when learning a problem.

350 Measurements also showed that the weight-driven VFC’s orthogonal component is
0 much larger in magnitude than its parallel component, and that it is equal in magnitude
s but opposite in direction to its state-driven counterpart and nullifies it as a result (Fig.
362 Eb, pink bars). These orthogonal components of the weight- and state-driven VFCs are

363 also low-dimensional on individual problems, but are high-dimensional across a group
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s¢  of problems (Fig. Bc) Moreover, they largely span directions along which the existing
s representations do not typically covary (Supplementary Fig. ga). These results imply
s6  that novel sample stimuli interact with the existing representations when mapped onto
7 them, in a manner that elicits uncharacteristic population responses. They also reveal
s that the existing representations can be sensitive (i.e. not entirely invariant) to the
0 sample stimuli that are mapped onto them. The weight-driven VFC emerges primarily

s to impede such interactions and thereby prevent changes to the existing representations.

371 To summarize, our analysis of the population activity changes between the start and
s end of problem learning revealed that: (i) large changes emerge over the trial timecourse
sz from the accumulation of a sequence of small local changes along the learned trajectory;
s (ii) these changes are low-dimensional and stem primarily from reusing the network’s
ws pre-learning vector field to shape the learned trajectory, thus elucidating the relative
s contribution of representational reuse to learning; (iii) the pre-existing representations
sz are not entirely invariant to having novel sample stimuli mapped onto them, and can un-
ws dergo uncharacteristic modifications in the process. Connection weight changes emerge

w9 largely to prevent such modifications.

w Magnitude of recurrent weight changes determines learning ef-

w ficiency

;2 Next, we examined why learning efficiency is enhanced by representational reuse, by
;3 exploring how learning efficiency is impacted by the connection weight changes. Before
s we could do so, it was important to evaluate the relative contribution of input versus
;s recurrent weight changes to learning. In supplementary note , we show that the
s model learns via recurrent weight changes — these changes predominantly determine
ss7 the weight-driven VFC — as it is more efficient to do so. Moreover, measurements
s showed that the magnitude of recurrent weight changes in a problem largely explains
1 the number of trials expended in learning it (Fig. Ba, left; coefficient of determination

w0 R?=0.7). This relationship was robustly observed across all 10 networks that were
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s tested (Fig. Ba, right) and is consistent with analytical bounds relating the magnitude

32 of connection weight changes and sample efficiency in deep neural networks [43, 44].

393 In light of this observation and the exponential decrease in the trials-to-criterion
s across problems, we hypothesized that the magnitude of recurrent weight changes should
305 also decrease exponentially over the sequence of learned problems. We further posited
36 that the recurrent weight change magnitudes should be proportional to the postsynaptic
so7  current change and the weight-driven VFC magnitudes, since these three quantities
w8 are directly related to each other. Consequently, we expected that the magnitudes
w9 of the postsynaptic current changes and the weight-driven VFC would also decrease
wo exponentially. Figure Bb confirms that the magnitude of these three quantities decreases
w1 exponentially as a function of the number of previously learned problems. Therefore,
w2 the progressive improvement in the model’s learning efficiency is explained by a similar
w03 decrease in the magnitudes of the recurrent weight changes and weight-driven VFC

ws  Trequired to learn problems.

405 We can now explain why the reuse of existing representations markedly improves
ws learning efficiency (Fig. E) Networks with D — S manifold perturbations are compelled
w7 to develop new representations of the task’s structure beyond the original decision sub-
ws  space, and aligned with their perturbed readout subspace (Fig. Bb, bottom right). In
w0 other words, the structure and location, in state space, of the target trajectories are
a0 largely constrained by the arbitrarily altered output weights. However, the vector field
a1 along such an arbitrarily constrained target trajectory is most likely misaligned relative
a2 to the vector field required to support it (Supplementary Fig. Ha, right, purple versus
a3 blue arrows along learned trajectory). Consequently, it is unlikely to roughly advance
ne  population activity along the target trajectory, as it does in unperturbed networks (Sup-
a5 plementary Fig. Ha, left). Measurements comparing the magnitude of the weight-driven
a6 VFC in unperturbed and perturbed networks confirms that the vector field in perturbed
a7 networks undergo drastic re-organization in comparison to unperturbed networks (Sup-
sis plementary Fig. Hb, right), so that they may shape the trajectories that will re-encode
no the task’s structure (large orange arrows, Supplementary Fig. Ha). This explains the

20 impairment in learning efficiency following D — S manifold perturbations and demon-
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w21 strates the merits of learning via representational reuse — it is this reuse of existing
a2 representations that limits the requisite weight changes (Supplementary Fig. Hb, left),

23 and thereby improves the learning efficiency.

o In supplementary note , we explore the interactions between stimulus and decision
w5 representations during trial performance and learning. We found that the stimulus and
w6 decision representations exhibit reciprocal interactions to sustain each other through
w27 the trial, and that the weight-driven VFC largely prevents uncharacteristic changes in
xs the existing stimulus representations (rather than existing decision representations). In
»9 addition, we assessed whether the weight-driven VFC is modulated more strongly by
w0 pre-synaptic population activity in the stimulus or decision subspace. A comparison of
s their approximate contributions to the weight-driven VFC revealed that it relies almost
s entirely on decision representations (Fig. BC, Supplementary Fig. Ed) This is likely due
i3 the the fact that the decision representations are larger in magnitude than the stimu-
s lus representations. These results reveal a second form of representational scaffolding,

15 wherein the decision representations scaffold the formation of the weight-driven VFC.

= Accumulation of weight changes across problems progressively

= improves learning efficiency

i3 In agreement with Harlow’s learning-to-learn experiments, our model exhibits a pro-
s gressive improvement in learning efficiency spanning a few hundred problems (Fig. m)
wo This improvement is explained by a progressive decrease in the magnitude of the weight
s changes and weight-driven VFC per problem (Fig. Ba—b). Since the weight-driven VFC
w2 in a problem primarily prevents distortions to existing representations during learning
w3 (Fig. Hb), a progressive decrease in its magnitude amounts to a progressive improve-
ss  ment in the invariance of the existing representations to having novel stimuli mapped
ws onto them. However, the source of this improvement is yet undetermined: what causes
us it in the absence of an explicit meta-learning mechanism, and how does the network’s

a7 accumulation of learning experience over problems relate to its emergence? We hypoth-
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us  esized that the accumulation of weight changes over earlier problems facilitates learning
s in future problems. That is, weight changes elicited while learning problems p — k (for
w0 1 < k < p—2) cumulatively alter the vector field such that they suppress the weight-
s driven VFC required to learn problem p (Supplementary Fig. @a, top; see Methods).
2 More generally, as problems are learned, their respective weight-driven VFCs accumulate
553 to produce a cumulative vector field change (or cumulative VFC) which suppresses the
s weight-driven VFC required to learn subsequent problems. This progressively improves

ss5  representational invariance and thereby accelerates learning.

456 To test this hypothesis, for each problem p, we measured the magnitudes of its weight-
ss7 driven VFC plus the cumulative VFC along its learned trajectory due to the accumula-
ss tion of weight changes over the sequence of problems that precede it, i.e. from problem
150 p—1 (relative problem —1) to problem 2 (relative problem 2 — p). Figure Ha summarizes
w0 these measurements across many problems p grouped by their learning-to-learn stage, i.e.
w1 the number of problems they are preceded by. Here, we focused on the magnitude along
w2 each problem’s orthogonal weight-driven VFC component (Az, ), because it dominates
w3 the total weight-driven VFC in problems at each learning-to-learn stage (Supplementary
s Fig. Eb) The results indeed show that at each stage, learning earlier problems cumula-
5 tively suppresses the weight-driven VFC required in subsequent problems. We further
ws found that this is predominantly due to an accumulation of recurrent weight changes
w7 (Supplementary Fig. Ec) These findings confirmed our hypothesis — the accumulation
w8 of weight changes over problems progressively improves representational invariance and
w0 therefore learning efficiency. Moreover, they imply that the cumulative change along
a0 the orthogonal weight-driven VFC component of problems imposes a learning efficiency

s bottleneck.

472 Surprisingly, even though the network expends many more trials on learning early
a3 problems, the approximate linearity of the curves in figure Ha indicates that early- and
s late-learned problems produce similar-sized contributions to the cumulative VFCs. In-
a5 deed, measurements showed that the per-trial cumulative VFC contributions by late-
ws learned problems are larger than those by early-learned problems (Supplementary Fig.

ar1 a). This demonstrates that with experience, the model learns to contribute to the

18


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

s learning efficiency of future problems in an increasingly efficient manner.

479 Figure Ha further demonstrates that the weight-driven VFC in a problem depends
0 on its net suppression by the preceding problems, i.e. the sum of the suppressive cu-
s mulative VFC contributions (and enhancing cumulative VFC contributions when they
s increase the requisite weight-driven VFC) by the weight changes in each preceding prob-
w3 lem going back to problem 2 (Supplementary Fig. b, left; see Methods). A larger net
s suppression produces a smaller weight-driven VFC. Since the weight-driven VFC decays
w5 exponentially with the number of preceding problems (Fig. Bb), we posited that the net
s suppression must similarly increase with it. Measurements of the net suppression along
s7  the orthogonal and parallel weight-driven VFC components of problems confirmed this
s (Fig. Bb) The net suppression mirrors the exponential decay in the weight-driven VFC
10 (see Methods) — it rapidly increases across problems at the early stages of learning-
w0 to-learn, which produces a rapid decrease in their weight-driven VFCs; it gradually
w1 plateaus for later problems, which explains the plateauing of their weight-driven VFCs.
a2 The results also showed that the net suppression is weaker along the orthogonal com-
w3 ponents than along the parallel components, which explains why the learning efficiency

s bottleneck develops along the orthogonal components.

495 Figure Hb also revealed that the net suppression of a problem’s weight-driven VFC is
w6 ot linearly related to the number of problems that precede it. This indicates that the
a7 rate at which the cumulative VFC contributions suppress a problem’s weight-driven VFC
ws depends on its learning-to-learn stage. We reasoned that slow (quick) suppression must
w0 be due to smaller (larger) contributions by the weight changes in preceding problems.
so0 Therefore, we expected that the sum of the magnitudes of these contributions would
s be small (large) for problems whose weight-driven VFC is suppressed slowly (quickly),
s and the progression of this sum over the learning-to-learn stages would resemble the
s03 net suppression magnitudes (Fig. Hb) Instead, we found that the sum increases in a
soa largely linear fashion for the cumulative VFC contributions along both the parallel and
sos orthogonal weight-driven VFC components (Supplementary Fig. b). This indicated
s6 that (7) the weight-driven VFC of problems at different learning-to-learn stages are

so7 altered to a similar extent by weight changes in the problems that precede them, and
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sos (1) the sum of the magnitudes of these cumulative VFC contributions reflects the number
soo  Of problems that they accumulate over, but not the differences in their suppression rates.
s Taken together with the results in figure Hb, this reveals a surprising result: although
s the cumulative VFC contributions are similar-sized, their suppressive effect on a future

siz problem’s weight-driven VFC depends on its learning-to-learn stage.

513 Interestingly, along both the parallel and orthogonal weight-driven VFC components,
siu. we observed that the sum of contribution magnitudes (Supplementary Fig. b) is or-
s1i5 ders of magnitude larger than the net suppression magnitudes (Fig. Hb) In other words,
si6 relatively large cumulative VFC contributions from earlier problems cumulatively sup-
si7 press an ensuing problem’s weight-driven VFC by relatively small amounts. Based on
si8 this observation, we concluded that the effect of weight changes in individual problems
s on a given future problem’s weight-driven VFC are largely inconsistent with each other;
s20 some cumulative VFC contributions suppress the problem’s weight-driven VFC while
sz others enhance it (Supplementary Fig. @b, right). In fact, the ratio of the net sup-
s22  pression magnitude to the sum of contribution magnitudes quantifies this consistency;
s23 & value of 1 would indicate that the problem’s weight-driven VFC is suppressed by the
s weight changes in each of its preceding problems, and a value of 0 would indicate that
s the cumulative VFC contributions are maximally inconsistent - the enhancing and sup-
s26  pressing contributions nullify each other resulting in no net change. For problems at all

s learning-to-learn stages, we found that this ratio was closer to 0 (Fig. Hd)

528 These results depict the suppressive effect of the accumulating weight changes on
s20 each future problem’s weight-driven VFC as a stochastic process — cumulative VFC
s30 contributions by individual problems stochastically enhance or suppress the future prob-
s lem’s weight-driven VFC. However, they collectively exhibit a weak bias towards con-
s22  sistently suppressing it (values in Fig. Hd are above zero). The cumulative effect of
533 this weakly suppressive bias is a small yet significant suppression of the weight-driven
s VEC. We illustrate this process along the orthogonal weight-driven VFC component of
s35  an example problem. Since the orthogonal weight-driven VFC components in a problem
s3 are roughly one-dimensional (Fig. Bc), the stochastic process is one-dimensional as well.

s37 ' The individual cumulative VFC contributions by earlier problems towards suppressing
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s3  the weight-driven VFC along this dimension in the example problem (grey curve) fluctu-
s ate between positive (suppressing) and negative (enhancing) values (Fig. HC) However,
ss0 due to their weakly suppressive bias, these contributions cumulatively produce a large

s net suppression of the problem’s weight-driven VFC (black curve).

542 Figure Hd further shows that the cumulative VFC contributions are more inconsistent
23 along the orthogonal weight-driven VFC components than along the parallel components,
sa« indicating that their suppressive bias is weaker along the orthogonal components. This
ss explains the weaker net suppression along the orthogonal components (Fig. Hb), and
ss why it imposes a learning efficiency bottleneck. Crucially, figure Hd demonstrates that
se7  the weight-driven VFC of problems at different learning-to-learn stages are suppressed
sis  at different rates due to differences in the consistency with which the weight changes
s in the preceding problems suppress them (Supplementary Fig. @b) That is, the ex-
sso  ponential decay in the weight-driven VFC magnitudes stems from a modulation of the
ss1 suppressive bias in the cumulative VFC contributions. The exponential decay in the
ss2 - weight-driven VFC magnitudes is largely caused by an exponential decay in magnitude
ss3 of their orthogonal components (Supplementary Fig. Bb) The bias in the cumulative
ssa VFC contributions to suppress the orthogonal weight-driven VFC component in early
ss5 stage problems rapidly increases (Fig. Hd) This rapidly increases their net suppres-
sss sion (Fig. Hb), which rapidly decreases the weight-driven VFC required to learn them.
ss7 - Subsequent problems follow a more prolonged accumulation of weight changes (because
ss3. they are preceded by more problems), albeit with a weakened bias to suppress their
ss9  orthogonal weight-driven VFC components. This results in the plateauing of their net

sso  suppression, and therefore of their weight-driven VFCs.

561 To summarize, our results identify a novel neural mechanism of accumulating learn-
s2  ing experience to progressively improve learning efficiency, despite the absence of a
ss3 meta-learning mechanism. It relies on the accumulation of connection weight changes
ssa Oover learned problems to suppress the weight-driven VFC required to learn subsequent
ss  problems and thus accelerate their learning. The model progressively accelerates learn-
s ing via, (1) a gradual improvement in the efficiency with which weight changes contribute

se7  to the suppression of the weight-driven VFC in future problems (Fig. Hb), and (ii) a
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ses  modulation of how consistently suppressive these contributions are (Fig. He). Moreover,
sso  the fact that the weight-driven VFC primarily prevents uncharacteristic representational
st changes from developing when novel sample stimuli are mapped onto existing represen-
sn tations (Fig. H) helps elucidate the objective of this learning-to-learn mechanism: the
s accumulation of weight changes over early problems improves the invariance of the ex-
s73  isting representations to having novel sample stimuli mapped onto them. This refines

sz the model’s ability to learn via representational reuse and elicits learning-to-learn.
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- Discussion

s New information is far easier to learn when it is contextualized by prior knowledge.
sz This process is thought to be facilitated by the instantiation of schemas [3, 4], which are
s hypothesized to correspond to neocortically encoded knowledge structures. Learning-
s7o  to-learn is a constructive consequence of the reciprocal influence between learning and
ss0 schema tuning, whereby schema instantiation facilitates learning, and the assimilation
ss1 of learned information into the schema improves its ability to facilitate future learn-
ss2 ing. To elucidate the underlying neurobiological basis, in this work we trained an RNN
ss3 model on a series of sensorimotor mapping problems, without any meta-learning. Our
ssa  main findings are threefold. First, the network model exhibits accelerated learning that
ses 1S quantified by an exponential time course, with a characteristic time constant and
sss  a plateau. Interestingly, this model prediction appears to be supported by an ongo-
ss7  ing experiment where monkeys displayed an exponential learning-to-learn time course
sss while solving a series of arbitrary sensorimotor mapping problems [36]. Second, schema
ss0  formation corresponds to the formation of a low-dimensional subspace of neural popula-
so0 tion activity, thereby bridging a psychological concept with a neural circuit mechanism.
s 'Third, rather than weight changes per se, it is imperative to examine weight driven
s2  changes of the vector field in order to understand the behavior of a recurrent neural
s network as a dynamical system. These new insights can be used to guide the analysis

soa  Of neurophysiological data from behaving animals during learning-to-learn.

505 Our work revealed that learning-to-learn is a process with three timescales (Fig. E)
sos L'he fastest timescale governs the evolution of population activity over a single trial. Sub-
so7 - space decomposition of this activity showed that it encodes three latent variables. First,
s0s a mean decision component which is analogous to the condition-independent component
so0 identified in prefrontal and motor cortical activity [B7, 45] — it encodes temporal aspects
so of the task in a trial-condition invariant manner, and explains most of the variance in
s1 population activity. Second, a residual decision component that encodes decisions and re-
02 sponse choices. And third, a problem stimulus representation. The first two components

03 collectively constitute low-dimensional decision representations that control fixation and
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60s response choices.

605 We found that these decision representations are shared across problems in an ab-
s stract form: the model reuses them to contextualize its neural and output responses to
e07  new sample stimuli, and to generalize from previous solutions to newer ones. Analysis of
s0s the model’s learning with a manifold perturbation intervention showed that this reuse
s0 of the decision representations causes a stark improvement in learning efficiency. These
s10 results demonstrate that the network not only abstracts commonalities across problems,
s but also exploits them to facilitate learning [4, 23, 46]. Therefore, the abstract decision
12 Tepresentations constitute the neural basis of a sensorimotor mapping schema [4, 17]. Tt
s13 is noteworthy that the abstraction of task variable- and task structure-encoding neural
s1a representations and their reuse in consecutively learned association problems has indeed

a5 been observed in the prefrontal cortex and hippocampus [[10, 21|, 22].

616 The intermediate timescale governs the process of learning, and spans the trials be-
sz tween the beginning and end of learning a single problem (Fig. E) We studied learning
sis with a novel measure of how connection weight changes (which model the effects of
s0 long-term synaptic plasticity or LTP) influence population activity in an RNN — the
20 weight-driven vector field change. Our results demonstrated that this measure is more
e1 informative and accurate at assessing the effects of the connection weight changes, than
22 direct measurements of the weight changes: (%) it dissociates the contributions of the
23 changes in different sets of connection weights more accurately than directly comparing
2« their magnitudes; (7i) its assessments are more interpretable as they directly relate to
25 the population activity; and (7ii) it isolates the contributions of the initial weights and
66 the weight changes to the learning-induced changes in population activity. For these
27 reasons, these techniques contribute to a growing set of methods that aim to overcome
s the challenges of interpretability and explainability in RNNs [47, 48], which hinder their
&0 adoption in neuroscience. In our analysis, these techniques were instrumental in identify-
0 ing (i) why reusing existing representations improves learning efficiency, (7i) the relative
su contributions of this reuse versus the connection weight changes to learning, and (i)

632 the mechanism underlying learning-to-learn.
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633 Our analysis of the change in population activity that emerges over the timespan
s of learning identified two forms of schematic scaffolding. First, the reuse of existing
635 schematic representations is primarily responsible for these activity changes. The reuse
36 avoids the formation of new task-encoding representations, which substantially reduces
s37 the weight changes required to learn a problem. This dramatically accelerates its learn-
e3¢ ing. Second, the weight-driven VFC is largely modulated by the schematic representa-
630 tions. Moreover, the primary effect of the weight-driven VFC is to prevent the unwar-
a0 Tanted changes to existing representations which develop when novel sample stimuli are

e1 mapped onto and interact with them.

642 In the training RNN framework, the network is initialized with random weights, as
&3 a blank slate. In contrast, developmental experience shapes how new information is
ssa encoded even in the brain of a task-naive animal. This confounds direct comparisons
ss  between the use of a learning algorithm and a known biological plasticity rule. Nev-
ss ertheless, our findings regarding the benefits of representational reuse do not directly
s7 depend on the learning algorithm we used, and may well be conserved under biologically
s plausible learning rules. Moreover, since our analysis techniques are independent of the
s0  underlying learning rules, they offer an approach to study learning and the properties
0 of schema formation and reuse in models with biologically plausible learning rules. Our
61 model further assumes that following schema formation, new problems continue to be
sz learned via LTP. Indeed, rapid learning of novel schema-consistent paired associates
53 was found to be prefrontal NMDA-receptor dependent in rodents [[14], suggesting that
e«  Hebbian neocortical synaptic plasticity is likely involved in schema-facilitated learning.
s However, the role of other forms of plasticity, such as intrinsic [49] and behavioral
ss6 timescale [50] plasticity, has not been experimentally precluded. Further computational

es7  and experimental studies are required to determine their relative roles in this process.

658 At the slowest timescale, several problems are learned in succession with progressively
0 improving efficiency, until asymptotic learning efficiency is realized (Fig. E) This is
s0 the timescale of learning-to-learn. We showed that, consistent with macaque monkeys’
1 behavior [29, B6], our model’s trials-to-criterion performance is well-characterized by

s a decaying exponential function, which asymptotes at roughly 20 trials per problem.
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63 Consequently, our model suggests that learning-to-learn can emerge in animal models

s« in the absence of explicit meta-learning.

665 However, the brain may adopt one or some of the many meta-learning approaches
es proposed in computational neuroscience and deep learning to facilitate learning across
e7 problems. In general, meta-learning may be conceptualized as a bi-level optimization,
ss wherein the inner-loop spans trials of a single problem over which the model’s parameters
e0 are updated to improve performance accuracy, and the outer-loop spans problems with
o0 shared task structure over which learning parameters are updated to optimize learning
en efficiently [51]. Biologically plausible outer-loop mechanisms include meta-plasticity of
s2 neuro-modulatory inputs to refine synaptic plasticity rates [62] and meta-plasticity of
o3 regulatory states governing synaptic plasticity to improve learning efficiency [27, 53]. A
e+ recently proposed model-based learning algorithm [25] may also be understood within
o5 this framework, wherein the outer-loop is composed of a model-free reinforcement learn-
o6 ing algorithm to learn a task model and a corresponding model-based learning policy for
ez problems with shared task structure, and the inner-loop is comprised of an implementa-
es  tion of this model-based policy via a neural population-level integration of choices and
e7o their outcomes on earlier trials to improve the accuracy of choices on the current and
s0 upcoming trials. The task model and learning policy are learned at the outer-loop by
61 Maximizing the sum of rewards over a sequence of trials of the problem learned in the
sz inner-loop. While our approach has no explicit outer-loop mechanism, it most closely
es3 resembles the Reptile meta-learning algorithm [54]. Reptile optimizes a network model’s
s initial connection weights towards achieving few-shot learning of problems with shared
es task structure. However, our approach is different from Reptile in important ways: (i)
es Reptile’s inner-loop learns a problem for a fixed, small number of trials, rather than
ss7 until the problem is fully learned, and its few-shot learning ability is quite sensitive to
s this number. (7i) Reptile’s estimate of the optimal initial connection weights is an expo-
seo nential moving average of the weights learned at the end of each inner-loop, rather than
s0 the weights learned at the end of the most recent inner-loop. Its few-shot learning ability
so1 is also sensitive to the weighting factor in this exponential moving average. (7ii) Conse-

s2 quently, Reptile must maintain two sets of connection weights, its current estimate of
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s3 the optimal initial weights and its estimate of the update from the inner-loop iteration.
sa  Moreover, it does not specify a biological mechanism to maintain the pair of weight
o5 estimates. (7v) After meta-learning, Reptile learns each new problem starting from the
ss fixed, meta-learned set of initial connection weights. Instead, our approach continues
e7  to accumulate weight changes across problems indefinitely. While several meta-learning
ss mechanisms have been proposed by computational and deep learning studies, further
s0  study is required to identify their neural substrates and evaluate their role in learning-

700 to-learn.

701 We have identified a novel mechanism for learning-to-learn, which relies on the accu-
72 mulation of weight changes over learned problems to progressively improve the invariance
703 of the existing representations to being reused with novel sample stimuli. An increase in
704 this invariance suppresses the weight-driven VFCs required to learn new problems which
705 accelerates their learning. Interestingly, we found that these cumulative improvements
06 are stochastic in nature — the exponential improvement in learning efficiency stems
77 from a modulation of the bias in this stochastic process to suppress the weight-driven

s  VFCs in future problems.

700 We also found evidence in support of the structure learning hypothesis, which posits
7o that improvements in learning efficiency are achieved by restricting the extent of para-
1 metric behavioral exploration while learning a problem [23]. It has been suggested that
72 exploration in the space of network connection weights directly controls behavioral ex-
73 ploration, such that learning efficiency improves due to a progressive narrowing of the
na  effective control space to the most task-relevant low-dimensional subspace of the space
75 of connection weights. Instead, we found that behavioral changes are directly controlled
76 by population activity changes within a low-dimensional subspace of population state
n7 space. In addition, connection weight changes emerge primarily to restrain activity
ns changes to this low-dimensional subspace. Learning-to-learn derives from a progressive
79 improvement in the model’s inherent ability to do so (i.e. without large connection
720 weight changes) when novel stimuli are mapped onto existing representations, rather
=1 than a progressive decrease in the dimensionality of the space within which population

=2 activity or connection weights change.
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723 Note that our results differentiate between schema-facilitated learning and structure
72s learning. While a schema and an associated behavioral control space can emerge within a
s low-dimensional subspace of population state space even after the first problem is learned,
76 structure learning proceeds thereafter and involves learning to use this control space
7 efficiently (i.e. without large connection weight changes). Recent work has demonstrated
28 the re-use of schematic prefrontal representations in rodents learning a series of odor-
720 response sequence problems [10]. However, the authors did not observe an acceleration
720 in learning. We propose that this may be explained by the presence of schema-facilitated

71 learning, but an absence of structure learning.

732 Crucially, our results offer experimentally verifiable predictions. First, the sensori-
733 motor mapping schema is encoded by low-dimensional neural representations which are
734 shared across problems, and explain a majority of the variance in population activity.
735 They encode shared task variables including the task’s temporal structure and the avail-
136 able choices. Second, the reuse of these representations to learn new problems causes a
777 speedup in learning; preventing this reuse with recently developed BMI interventions [33]
7s should produce pronounced learning deficits. Third, population activity may undergo
730 large changes between the beginning and end of problem learning. However, across prob-
o lems, these changes are restricted to a low-dimensional subspace of the activity. Fourth,
1 the number of trials to learn a problem decreases exponentially as a function of the
2 number of previously learned problems. Taken together, our results shed insights into
n3  the neural substrate of a sensorimotor mapping schema, the reason for which its reuse
s markedly improves learning efficiency, and the neural mechanisms of structure learning
s that gives rise to learning-to-learn. In doing so, they elucidate the neural mechanisms

us of learning-to-learn and present novel techniques to analyze learning-to-learn in RNNs.
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¢ publication on GitHub (https://github.com/xjwanglab). We will also provide data files
s in Python and Matlab readable formats for further analyses. Pre-trained networks will

76 be stored in a Google Drive folder with its link provided on the same GitHub repository.
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« Methods

»s Recurrent Neural Network Model (Fig. )

sss The RNN model comprises a fully-connected population of N firing rate units with firing
g7 rates 7, receiving inputs from N, input units with firing rates w. Firing rates of the

ss  network units follow the dynamical equation

" = —1 4+ f(Wlnu + Wrec'r + brec + C)

) (1)
7e¢ = —C¢ + /2702 &

sso  which expresses the leaky and non-linear integration of input (W;,u) and recurrent
g0 (Wyeer) currents. Wi, (W) is an N XN, (N x N) matrix of input (recurrent) connection
g1 weights, and 7 = 100 ms is the integration time-constant that characterizes the slow
2 decay of NMDA receptor-mediated synaptic currents [[l]. The f-I curve is modeled by a

s3  smooth rectification function

f(z) =log(1+¢€)

ss The bias term b, admits per-unit firing thresholds. Intrinsic background noise current
sos is modeled by an Ornstein-Uhlenbeck process ¢ with time constant 7. and variance oy,
ss  where & represents the underlying independent white-noise process with zero mean and

so7 Unit variance.

898 Output responses are readout from the activity of the RNN units by N, output

g0 UNits, y, whose activity is given by

Yy = g(Wout'r‘ + bout)

wo Here, Wy, is a Ny X N output weight matrix, beq: is the bias of the output units, and

o g(x;) = exp(z;)/ Z;V:"f exp(z;) is the softmax or normalized-exponential function which
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w2 produces output unit activity that indicates the probability of generating each of the

w3 N,y response choices.

904 The model is simulated by temporal discretization of equation (m) with Euler’s

o5 method, as

Ty = (1 - O'/)'r’t—l + af(Winut + Wrecrt—l + brec + Ct)

2

G = (1= ag)G—1 + v/20¢0% N (0,1) 2

w0s where the time-discretization step size is At, o = At/7, ac = At/7c and N(0,1) is
o7 a random vector sampled from a gaussian distribution with zero mean and identity
s covariance (/). In all figures, the network size N = 100, At = 1 ms, 7 = 2 ms and
0w Opee = 0.05. The magnitude of the network- and input-unit firing rates is measured
o0 as the L?-norm of 7, and wy, respectively, and summarized by averaging over all time

o1 points in a trial.

«. Task Structure (Fig. )

a3 We trained the network model on a series of delayed sensorimotor association problems,
oia one at a time. In each problem, the network had to learn a one-to-one correspondence
a5 between a pair of sample stimuli and a pair of motor responses. Each problem therefore
a6 comprised two trial types, one per stimulus-response pair. Each trial was 2 s in duration
ar (T = 2), and started with a 500 ms sample epoch, followed by a 1 s delay epoch, and
ais ended with a 500 ms choice epoch. During the sample epoch, the network concurrently
a0 Treceived inputs representing a fixation stimulus and one sample stimulus. During the
o0 delay epoch, it continued to receive only the fixation input. It received no inputs during
o1 the choice epoch. The model was required to respond by maintaining fixation during
o2 the sample and delay epochs, and choosing the appropriate motor response during the
o3 choice epoch. Therefore, the model contained three output units (N, = 3), two to

o2a report response choices and one for fixation. This trial structure, including the available
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o5 response choices, remained fixed across problems.

926 Sample stimuli were represented by ten-dimensional unit-length vectors (L?norm
oz = 1). The two sample stimulus input representations in a problem were drawn from
o a random gaussian distribution with zero mean and identity covariance. They were
o9 then orthogonalized to avoid learning efficiency confounds stemming from the relative
o0 difficulty in learning to distinguish between more versus less correlated sample stimuli.
o1 The fixation input was a scalar with value 1/v/N;, — 1 when it was on and zero when off.
o2 Therefore, there were a total of Nin = 11 input units. Learning-to-learn was robustly
a3 observed even in the absence of the orthogonalization step; however, the variance in
oz learning efficiency was higher. Qualitatively similar learning-to-learn performance was

o35 also observed with 200-dimensional sample stimulus representations and N = 1000.

036 Each problem was learned over a sequence of trials, psueudorandomly sampled from
o7 the two trial types, until the average error on fifty consecutive trials fell below a criterion
as value (see Network Training). The learning efficiency for a problem was measured by
039 the number of trials required to achieve this criterion. After a problem was learned, the
a0 model was transitioned to the next problem, wherein it had to learn to associate a new

w1 pair of pseudorandomly selected sample stimuli to the two motor responses.

« NNetwork Training (Fig. )

w3 A network was trained on a problem by updating its connection weights (W;,, Wi
ae and Wo,), biases (bree and byye) and initial network state (o), so that it could choose
ws the desired response for each of the sample stimuli. These updates were generated by
us stochastic gradient descent - an optimization algorithm that incrementally updates a
a7 network’s parameters at the end of each trial, based on the errors in the output unit
ws responses during the trial. In contrast to standard RNN training practices wherein
ao  Mmodel parameters are adjusted based on the average error from a batch of several trials
oo and learning efficiency is measured by the number of trial batches to reach criterion

os1  performance, our training procedure closely matched established animal training proto-
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sz cols and allowed learning efficiency to be measured by the number of trials to criterion
o3 performance. The backpropagation through time (BPTT) algorithm was used to resolve
o5 temporal contingencies while computing parameter updates. We additionally applied
55 the ADAM optimizer [2] to enhance the efficacy of the updates. All networks were
s trained with a learning rate of 10™%, except in Supplementary Figure m where the learn-
o7 ing rate was systematically varied. ADAM decay rates for the first and second moment
oss  estimates were set to 0.3 and 0.999, respectively, and the moment estimates were reset
sso at the beginning of each problem. The model implementation and parameter update

w0 computations were performed with Tensorflow [3].

961 Prior to the first problem, a naive network’s input weights in W;,, were initialized
o2 with random values drawn from a gaussian distribution with zero mean and variance
o3 1/N;p; the recurrent weights in W,.. were initialized with random values constrained by
ss householder transformations such that the rows (and columns) of the initial recurrent
s weight matrix were orthogonal to each other and of unit length [4]. Initializing the
ws recurrent weights in this manner allows gradients to be backpropagated more effectively.
o7 All other network parameters were initialized to zero. Upon transition to a new problem,
ws all parameters retained their values. At initialization and throughout learning, the sign
a0 and sparsity of the weights and biases were not constrained. The initial network state

o0 was always restricted to non-negative values.

o71 Network training was performed in a supervised setting, wherein the parameters were
o2 adjusted to minimize an objective function, £, that included the errors in the model’s

o3 output responses:

Nout

1 .
,Cerr = m Z Z _yi,tl()g(yi,t)

thmask =1

oa The error at each time step, t, was given by the cross-entropy of the probability dis-
o5 tribution over responses generated by the network, vy, relative to pre-specified target
o6 Tesponses, ¥¢. The total error for a trial, L.,., was the mean of the per-timestep error

o7 taken over the trial duration 7. This mean excluded a masking interval, D,,,sk, set to
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ors  the first 100 ms of the choice epoch, which allowed for flexible reaction times. Networks
oo were considered to have learned a problem when the average L., over fifty consecutive

so trials of the problem fell below a criterion value of 0.005.

081 The objective of the training procedure was to minimize the sum of this error and

o2 auxiliary regularization terms:
L= Cerr + £reg,Wm + *Creg,Wout + ﬁreg,WT-ec + C’/‘eg,rate
ses The regularization terms included both weight and activity regularization to encourage

s« solutions that generalized well [B, 6] and generated stable network dynamics. We imposed

s L2 regularization on the input and output weights as follows:

/;'reg,Wm - ]iz:i;{/v Z Z n ]7

i=1 j=1
986
/8 N Nout
Wout
'Creg,Wout = N Z Z out ]7
out i=1 j=1

o7 We observed that networks with a similar L? regularization of the recurrent weights
ss were sensitive to the value of meta-parameter [y, , particularly when the network
w9 size was large—small values of By, . produced unstable network dynamics during later
oo problems, while large values hindered learning efficiency. The squared frobenius norm

o1 of the recurrent weight matrix, which constitutes such an L? regularization, is given by:

Y Wl = Y

i=1 j=1

w2 where o; is the i singular value of the recurrent weight matrix W,...

993 An analysis of these singular values under conditions that led to unstable network
s« dynamics revealed that their L2-norm (i.e. the square root of the right-hand side of the
w5 equation above) remained roughly fixed over the course of learning several problems;
ws However, their distribution changed considerably across problems - smaller singular val-
o7 ues shrank, while larger singular values grew and ultimately resulted in unstable network

os  Tresponses to novel sample stimuli. We mitigated this by introducing an alternate form
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oo Of recurrent weight regularization that penalized the magnitude of the first & singular

w00 values of W
k

B, 2
£T697Wrec = Nk Zzl Ui
1001 Finally, we imposed a homeostatic firing rate regularization:

£Teg,rate - 67“

1 N
2
Wzizlﬁ,t_h

t

w2 The meta-parameter h was set to zero for the first problem, effectively imposing an L?
w3 regularization of the recurrent unit firing rates as the first problem was learned. To avoid
woa unrestrained growth or reduction in the firing rates while learning subsequent problems,
wos  the homeostatic set-point h was then set to the mean squared firing rates averaged over
wos  the last fifty trials of the first problem. All networks were trained with By, = 1074
wor Bw,.. = 0.1, Bw,., = 0.1, k =10 and 3, = 5 x 107*, except in Supplementary Figure m,

100e where these hyper-parameters were systematically varied.

wo Learning-to-learn Performance Characterization (Fig. )

w0 A network exhibits learning-to-learn if its learning efficiency improves as a function
wn of the number of previously learned problems. We evaluated this by quantifying the
12 relationship between the trials-to-criterion on a problem and the number of problems
w13 learned thus far, where a decreasing relationship indicates learning-to-learn. Specifically,
e we fit a decaying exponential function to the number of trials to criterion {(p) on problem
ws P, as a function of the number of learned problems p — 1:

1) = st cap (TP

T

e Here, a; represents asymptotic learning efficiency, 7; represents the time-constant to
w17 achieve this asymptote, and s; represents the improvement in learning efficiency between
s early and late problems. A large asymptote signifies poor learning-to-learn, while a large

w19 time-constant signifies slow learning-to-learn. The three parameters of the function
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w0 were fit with the Levenberg-Marquardt algorithm implemented by the fit function
wzn of MATLAB’s curve fitting toolbox. The learning efficiency on the first problem was

w2 excluded from this analysis.

s Subspace Decomposition (Fig. )

w2a - We performed semi-supervised dimensionality reduction on the population activity, to
w25 determine how strongly and consistently the shared task structure is represented across
w2 problems. The procedure begins by compiling a tensor Ry, ;,; of activity patterns gen-
w7 erated by the population of firing rate units (k € [1, N]) over time (¢t € (0,7]), for
s the two response types (j € {response;,responses}) across a group of fifty consecu-
w2 tively learned problems (i € [p + 1,p + 50]). This assembles a tensor of one hundred
1030 population trajectories for the group, fifty for each response type. The semi-supervised
w0 dimensionality reduction extracts decision representations that are shared by the group
w2 as follows. Stimulus- and problem-specific representations for each response type are

w3 averaged out, or marginalized, across problems in the group:
Rt =< Bipji >i

3¢ Principal components analysis is performed on a concatenation of the resulting two tra-
w3 jectories in Ry, ;. The loading vectors for the first m principal components are collected
w3 into a N X m loading matrix Lp. These vectors define a basis for the decision subspace.
w7 Importantly, to ensure that the decision subspace fully captures shared decision repre-
w38 sentations, the marginalized trajectories are not de-meaned before performing principal
139 components analysis. Here, we set m to 4, as the first 4 principal components collec-
o tively explained at least 98% of the variance in the marginalized trajectories, in all the

wa  networks we analyzed.

1042 Next, an N x N projection matrix P (@) that projects population activity into the

a3 decision subspace (stimulus subspace), is defined as:

P=LpL}
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1044

Q=I1-P

145 where [ is the identity matrix. The decision components of the learned trajectories for

ws problem p + x (z € [1,50]) are identified as:

N
Rgl,t,j,i:p—&-m = Z P(k1,k2) Riat jimpia
k2=1
w47 and their stimulus components as:
N
zl»tyj,i:p—&-ac = Z Q(k1, k2)Rk2,t,j,i:p+x
k2=1

e where P(k1,k2) and Q(k1,k2) represent the element in the k1% row and k2! column
a9 Of the respective projection matrices. The decision components are further decomposed

- dm ; dr . .
w0 into mean (Ry'},;_,.,) and residual (Ry’, ;,_ . .) decision components, as:

dm _ d
k.t,. i=p+x =< Rk,t,j,i:p—l—:p >
1051

dr o d dm
k,t,j,’i:p+$ — Rk,t,],l:p+$ - Rkvtz’Z:erI

1052 The net current from these components Ry, .,_ ., (v =€ {s, dm, dr}) to an output
w3 unit o was computed as S n | W2 (o, k) Y i iiepse Where WEET is the output weight
s« matrix learned in problem p + z. The dimensionality of any set of vectors (e.g. pop-

ss  ulation activity in the stimulus subspace) was approximated by its participation ratio

(i i)?

S where ); is the " eigenvalue of the covariance matrix of the
[

wss  [[7], computed as

1057 vectors.

ws Manifold Perturbations (Fig. )

wse 1o assess whether the reuse of the decision representations improves learning efficiency,
w0 networks were trained on their second problem while constraining them in a manner
wer  that required the formation of new decision representations. The learning efficiency of
we2  such networks was compared to controls that were allowed to reuse existing decision

w63 representations while learning their second problem.
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1064 A naive network was first trained on 50 problems and the corresponding populations
wes  trajectories were used to identify its decision and stimulus subspaces. The network’s
wes parameters, including its output weights, were reset to their values at the end of the
wer  first problem. Then, its output weights were perturbed, and the network was trained
s ON a new problem, i.e. a second problem with respect to its parameters, while barring
e the training procedure from changing its output weights. This procedure was repeated
wo fifty times for each network, resetting its parameters, applying an independently chosen
wn  random perturbation to its output weights, freezing the output weights, and training the
w2 network on a new sample stimulus pair each time. The output weights were subjected to
w3 one of three forms of perturbation. In the frozen readout condition, the output weights
wra  were unperturbed after the parameter reset. In D — S manifold perturbations, following
wrs  the parameter reset, the output weights were perturbed to replace the overlap between
wre  the network’s readout and decision subspaces with a corresponding overlap between its

wrz  readout and stimulus subspaces:

4 4
T T
Wout,D—>S = Wout — Z WoutliDliD + Z WOUtlleg(z)

=1 =1

wis where Wy poys is the perturbed output weight matrix, I” (1) is the i principal com-
e ponent loading vector of the decision (stimulus) subspace, and () represents a random
s shuffle or permutation of the stimulus subspace principal component loading vectors. In
w1 S — S manifold perturbations, following the parameter reset, the output weights were

ws2 perturbed to permute the overlap between the readout and stimulus subspaces:

4 4
T T
Wout,S—>S = Wout — Z Woutlislis + Z W"“tlislf(i)
=1 =1
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ws Relationship between pre-learning and learned trajectories

v based on weight- and state-driven vector field changes

ws (Figs. [ - B)

wss  Over the course of learning problem p, the model’s parameters change from their values

ws7  at the beginning of the problem, i.e. their pre-learning values (qu, wr-t pp-1 Wthl,

rec ? rec ’

ws b2 and rE71), to their values at the end of the problem, i.e. their learned values (W7,

out mn?
bP

WPe
1089 rec’ Orecs

WPh., bb. and ry). The difference between the learned and pre-learning
o values of the parameters quantify their change due to learning problem p (AW?  AWE, |
1091 Abp AWp

r b AbE  and Arl), and are collectively referred to as AWP.
1002 Due to these parameter changes, the population activity in response to inputs u? is

wes  altered from its pre-learning levels, "';2[0 )5 10 its learned ones, Tfe[o 1] (Fig. @c, left).

wu  We derive an expression for this change in population activity, zfe [0,r]> 11 terms of the

00s parameter changes. Based on the time-discretized model equation (E), we have:

P_ P _ D
2y =Ty Ty

= [(1—a)ri_y +afWiul + W r_y +b,.)] —

rec rec

(1 — )y + af(WE ul + WE P | + b2 )]

rec rec

rP , +bP )] -

rec

- [rf—1 - 7“,{,’11} + [—'rf_l + f(WPuP + WP

m Tt rec

« [_T?il + f(WiZ:liluf + Wpilrﬁl + bp_l)]

rec rec

= [ri_ — ] o [=rfy + VR ul + Wherf_y + b0, )] —

rec rec

o [=rf g+ FOVE ) + WE 2 + 02 )] +

rec rec

o [y + FOVE Tl + WE ey + B2 )] —

rec rec

a[=rp_y + VLl + Wiy + 62

rec rec
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w6 Rearranging the terms, we have:

2 =2{ 4+
o [{=rf_y + FOVE ) + WYy + 021 )=

P p=1,p p—1,./P -1 ()
{—rEy+ fW) ul + WE P+ b2 )} +

m rec rec

a[f(WhuP + WE rP | + P, ) — f(WE 'ul + W2 rP_ | + b2 )]

rec rec rec

wer  This expression shows that the change in population activity emerges from an accumu-

w0es  lation of activity change increments, Az (Fig. @c, center):

A% =2p -2 (@)

w0 These increments are composed of two terms:

Az} = AField? , + AField?, | (5)

1100 The first term, AFieldy, ;, expresses the difference in the pre-learning vector field at
not  the positions in state space along the learned (r}_,) and pre-learning (r;* ;) trajectories
ue  (Fig. @d, left). It is therefore referred to as the state-driven wvector field change (or
uos  state-driven VFC):

AFieldg’t = [{—rf_l + f(V[/Z?:;luf + Wp—l,ri?_l + bp_l)}—

Tec rec

{=ria+ FOVE  uf + WIC 2y + 072}

m rec rec

1104 The second term, AFieldﬁ,,t, expresses the change in the vector field at population
uos  states along the learned trajectory due to the parameter changes (Fig. @d, center; Fig.
1106 @b, right). It is therefore referred to as the weight-driven vector field change (or weight-

uor  driven VFC):

AField?, , = o [f(Whu? + WErE y +b8,.) — f(WE 'l + W2 'rD + 02 H] (7)

rec rec m rec rec
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nos  The weight-driven VFC stems from the change in the net afferent currents to the popu-

moo lation, ACurrenty, ;, due to the parameter changes (Fig. @b, left):
AField;, , = o [f(W]uf + Whrfy +b0.) = FWVE uf + Wy g + 0721

rec rec
p—1_p p—1,..P p—1
f Wzn ut + Wrec Tt—l + brec )}

(

a [f(WE + AWE Ul + (WE + AWE )rP_y + (B2 + AbP, ) —
(
(

rec rec

a [f WhtuP + WeteP |+ bPt 4 ACurrent} |)—

f(W.p_luf +We el 4 b”_l)}

m rec rec

mo where ACurrent,, ; is determined by AWP  AWE | AbP, . as:
ACurrentl, , = AWpu? + AW, ry_ + AbY 9)
1 The change in initial population state is defined as Az8 = Arh = r5—55~" We omit

m2  the contribution of this change from our analyses, as it consistently showed a negligible
ms effect on the evolution of the learned trajectory and the activity changes, across all

us  problems and networks tested.

1115 The contribution of the two vector field change terms to the activity change incre-
me ment, AzP was measured by their magnitude along, or in the direction of, Az} (Fig.

117 Ba). This was computed by vector projection, as:

AField,, | a0 = AFields, , - Az

ms where p € {w, s}, - represents the dot product operator, and Az? is the unit vector in

mo the direction of Az (AzY = %). Therefore, the vector field change along Az? is
t

46


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1120 given by:

AFields,, , , = |AField, |y AzF (10)

Il"tAzﬁ)

nz The remainder of each vector field change term represents its components orthogonal to

u» Az} (Fig. Ba):

: o1 P _ oldP i o1 P
AerlthAzi = AF'ield?, Aerldu,tAzﬁ' (11)
1123 In order to compare the relative direction of the orthogonal components of the weight-

w2 and state-driven VFCs (Fig. Ha), we arbitrarily (but without loss of generality) chose
s the direction of AFieldﬁ,t A,» s the reference — signed magnitudes were computed by
€1

s vector projection of AField},, , , onto a unit vector in the direction of AField}; , ».
tAZP LAZY

1127 The magnitude of change in the input and recurrent connection weights was measured

12 by their frobenius norm, ||W? — W»=!||p = \/ziﬁj(vvp(z', 3) — Wr=L(4, )2,

e Contribution of changes in individual parameters to the weight-

mo driven vector field change (Fig. H)

un We measured the individual contributions of changes in the input weights (AW? ), re-

un current weights (AWP

P ) and network unit biases (AbP__) to the weight-driven vector

us  field change. Note that, the postsynaptic current changes can be linearly decomposed
e based on the contributions of these parameter changes: they are given by the 3 terms
uss on the right-hand side of equation (a), which we denote as ACurrent,, ; to signify
us  postsynaptic current changes due to changes in the parameter p (1 € {Wipn, Wiee, brec})-
uz  In contrast, the vector field change is a non-linear function of these parameter changes.

s Therefore, we formulated non-linear approximations of their contributions, which we
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u  denote as AFiele’t. Such an approximation must solely depend on changes in the
w0 parameter p, and the approximations must collectively satisfy the following with an

ua  acceptably small approximation error:

AFieldﬁ]’t ~ AFieldgvimt + AField%rec,t + AFieldgmc’t (12)
1142 AFiele’t is a vector, whose elements AFl’;t(z’), represent the approximate change in

s the firing rate of network unit ¢, at time ¢ along the learned trajectory for problem p, due
use  to the changes in parameter p. From equations (E) and (E), we observe that it is related
s to the net postsynaptic current at unit i due to the pre-learning parameter values, Cy? (i),
s and the net change in the postsynaptic current at unit i, AC?(i). These net currents
uer  are given by the summations Cff (i) = > CP(i,§) and ACY(i) = >, ACY (i, j), where
s j denotes an individual connection/bias that contributes to the net current into unit 4.
s These include its individual afferent input and recurrent connections weights and its bias.
nso We use the notation ACY (i) = > ., ACY(4, j) to explicitly refer to the net contribution
usi  of changes in parameter p to the postsynaptic current changes at unit ¢. We derive an

us2 - expression for AF, (i) via taylor-expansion of equation (H)

AF}(i) = o [f(C (i) + ACT (i) — f(CP(i))]

~a [f<czp<z’>> + 30 Ve (NACHG. )+
% Z Z HCép(i) (]7 k)ACf(Z,])ACf(Z, k) +HOT. — f(Cép@))
ik

= [Z (Z vfcf,t(i) (j)Acﬁ,t(iaj)_‘_

M JEM
1 . . .
5 DD Hew oG K)ACE, (6, ))AC, (i, k) + H.O.T.u> +
JEK kep
+ N.LIT.
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:alz( D)+ 3 Ve o DAL )+

I3 JEM

—ZZHC/p o (7. K)ACE (i, ))ACE (i, k)+

JER kEN

H.O.T., — f(CP(i ))) + N.L.I.T.

=a [Z (f(Ct"’(i) +ACE, (1) = f(CP(i ))) +N.L.IT.

I

=Y AF!,(i)+a[N.LIT]
~ > AFD (i)

uss where V fom(;y and Hem ;) correspond to the gradient and hessian of f for unit ¢, when
use the magnitude of its net postsynaptic current is C;¥(i). H.O.T. corresponds to the higher-
uss order terms of the taylor expansion, H.O.T'., corresponds to the higher-order terms that
uss only involve changes to parameter i, and N.L.I.T. corresponds to non-linear interactions

usz  between the terms due to changes in Wy,, W, and be.. From the derivation above, we

uss  have:
AField;, , = a [f(Cu’rrent;” + ACurrent? ,) — f(Current?) (13)
1159 This equation expresses the unique contribution of changes in the parameter u to

ueo the vector field change. Furthermore, the collective contribution of the changes in the
uer three parameters satisfy equation (), subject to an approximation error of « N.L.I.T..
ez We calculated the magnitude (L?-norm) of this error; at each trial timestep and in each
ues  network tested, this error was found to be less than 1% (average across problems). In
ues  supplementary figures B - B, we forego presenting the contribution of the change in
ues network unit biases (AbP_ ), as it consistently showed a negligible effect on the changes

rec

ues  in postsynaptic currents and the vector field in all problems and networks tested.

49


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1167 For figure B, this approach was extended to estimate the unique contribution of
ues the changes in recurrent connection weights from the decision (W2>5P) and stimulus

rec

) subspaces to the vector field change, where WDP=SD — . P and W529P =

rec rec

WS—>S,D

1169 ( rec

uno WieeQ. To do so, we extended the parameter set in the derivation above to u €
un AWin, WEZSP W3 29D byee}. Also, the decision and stimulus components of the vec-

rec rec

un  tor field change due to recurrent weight changes were calculated as AF'ieldy;,s,p~p , =

rec 9t

uws PAFieldw,, . and AFieldy,sp—s , = QAFieldw,,.t, respectively.

174 The clamping simulations to evaluate reciprocal interactions between stimulus and
urs  decision representations (Supplementary Fig. gc) were performed as follows. Starting
urs from the initial population state (rg), the model was simulated for a single timestep
urz with the learned parameter values as per equation () This advanced the population
urs  state to r;. The stimulus (decision) representation was then reset to its pre-learning
ure value Qr] (Pr}), and the model were simulated for another timestep. This process was
uso repeated until the end of the trial. The Euclidean distance (or magnitude of deviation)
usi  between the decision (stimulus) representations observed during these simulations and

us2  the learned decision (stimulus) representations reflected the strength of the reciprocal

1us3  Interactions.

s« Relationship between the accumulation of weight changes across

uss problems and the progressive decrease in the weight-driven vec-

e tor field change (Fig. B)

usr - We measured the contribution of the weight changes elicited while learning problem p—k&
uss (AWP™F for 1 < k < p—2) to the cumulative vector field change (or cumulative VFC)
uss along the learned trajectory for problem p (AFieldeTtk’p ) as:

rec rec

AField? P = o | f(WE ul + W Frl | 4+ b2 F)—
(14)

m rec rec

FOVE T g e WER e bk
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no Then, the cumulative vector field change due to the accumulation of weight changes

na  across all the learned problems from p — k to p — 1 was given by:

k
> AFields P = o [f(Wh ul + WP | + b2 1) —

= rec (15)
f(ng e 1up + erck 1,',. + b’ o 1)]

1192 In figure B, we present the magnitude of cumulative VFC along the parallel (Azﬁ’ )
ues  and orthogonal (Az%) components of the vector field change for problem p. These
nu  were computed via vector projection of the cumulative VFC onto unit vectors in the
nos direction of the vector field change components. Specifically, given that the vectors
ue  AField (AField:
ne7  problem p F1g Hc we apphed principal components analysis to find a single basis (unit-

s norm) vector, Aerle Aerldp , that accurately represents their shared

weAP

are nearly one-dimensional across trial time ¢ within

'thP w,t A » P)

ne direction during each non- overlapplng 250 ms epoch, e, of the trial. The magnitude of
oo the cumulative change along the parallel / orthogonal vector field change component

1o was given by:

k
1> AFields, 7| 5 = |( ZAerld” 7). AField., (16)

j=1

Wye A » P|

e where p € {||, L}, and time ¢ lies within the interval of epoch e. The magnitudes of
s cumulative VFC contribution by individual problems along the parallel / orthogonal

o vector field change component (|AF ieldw}k’p |azz) were computed similarly.

1205 The signed cumulative VFC and per-problem cumulative VFC contributions in figure Hc

1o were calculated as above, but without taking the absolute value on the right-hand-side.

1207 The per-trial magnitude of the cumulative VFC contribution by problem p — k to
|AField?,

l(p—k)
100 problem p — k. The sum of the magnitudes of the cumulative VFC contributions to

p|Azp

1208 problem p was calculated as £ where [(p — k) is the trials-to-criterion for

o1
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0 problem p was calculated as Z?;f |AField:, /7| AL

1211 The magnitude of net suppression of problem p’s weight-driven VFC along its par-
vz allel / orthogonal component is defined as the net suppression in the direction of the
1213 corresponding component due to net weight changes between the start of problems 2
214 and p. It was computed from the total vector field change along the learned trajectory
dtotal,p
w,t

1215 for problem p since the start of problem 2. Let AF'iel represent this total vector

1216 field change at time t:

p—2
AField0'"? = "AField?, /% + AField?, ,

j=1

17 Then the total change along the parallel / orthogonal vector field change component was

1218 given by:

total, . 1 jtotal, P
ARG, = AField!gte . AerleﬂAzﬁ
120 We applied a sign correction to this quantity to ensure that its temporal mean is al-
120 ways positive. This allowed us to accurately calculate the net suppression. After sign

. total
w2 correction, AF,%*" | , becomes:
’ Iz

total,p
AF

w7t Azﬁ

o total,p total,p
= sgn(AF,” Azﬁ>AF

’LU,t AZE

12 where AFtalp A» Tepresents the temporal mean of AFotalp A,p OVer time ¢ within a
b m k) m
s trial, and sgn() represents the signum function. Similarly, the weight-driven VFC for

124 problem p along its parallel / orthogonal components was given by:

AF?,, , = AField’, - AField,

WEAZE w,e AR,
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s Then, the magnitude of net suppression along the parallel / orthogonal vector field

1226 change component for problem p was:

——net,p ——total,p

AF =AF

’LU,t Azﬁ

(17)

w,t

i P
sy — AFY

7tAZfL

1227 The progression of this quantity over the learning-to-learn timecourse can be de-

1228 scribed in terms of the number of previously learned problems. We note that the tem-

1229

poral mean of the magnitude of the weight-driven VFC along its parallel / orthogonal

component (AFP ) decays exponentially from problem 2 onwards until an asymptotic

1230
w,-Azh

n value b, is converged upon (as in Fig. Bb) This decay may be expressed as:

(AFP

w,-Azf,

_bu> = (AFQ

Wi Az2

rw2 for an appropriate base r, < 1. Taking the temporal mean of equation () over trial

1233 time ¢, we have:

E’net,p AF’totoll,p AFP
Wy Azh T wy Azl B Wy Azl
— AR AF? by + b
- w. AR ( w.AE T O + u)
total,p
_ _ P _ —
= AF, "~ (AR = b)) by
total,p
_ ’ _ 2 _ p—2 _
- W, AZh (AFw,.AZﬁ b#)ru bﬂ
1234 Rearranging, we have:
——net,p total,p 9
— p—2
AFw,. AR T (AFw7. AP o bﬂ) - (AFw,.Azg - bﬂ)ru (18)

1235 This equation expresses the progression of the magnitude of net suppression over the

1236 learning-to-learn timecourse, and determines its shape as a function of the number of

23
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——total,p

vy previously learned problems (Fig. Hb) Note that when the first term (AF,,  , , —b,)
I ZV'
3 is roughly constant across learning-to-learn stages (as we found by measurement), the

1239 magnitude of net suppression is given by an inverted exponential function.

1240 Finally, we determined the relative contributions of the cumulative input versus
a1 recurrent weight changes to the cumulative VFC along the orthogonal vector field change
22 component (Supplementary Fig. gc) To do so, we calculated the cumulative VFC for
1243 problem p solely due to the accumulation of input weight changes elicited by previously

1244 learned problems as:

k
> AFields, 7 = o | f(Whuf + W

m 't rec

TPy bl) — FOVE Tl Wt b,

rec wm rec
i=1

1245 'The cumulative VFC solely to due to recurrent weight changes was calculated similarly.

1246 Both quantities were then projected onto the basis vector for the orthogonal vector field

a7 change components in problem p (as in equation (@)), to compare their contributions

1248 along this component.
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e Supplementary Notes

s 1.1 Recurrent plasticity elicits efficient learning, but is not nec-

1269 essary for it

2o The reuse of the decision manifold to compose learned trajectories implies that a problem
i is learned by mapping each of its sample stimuli onto an appropriate decision represen-
1272 tation within the decision manifold. The model may achieve this either by adjusting its
1273 input connection weights to appropriately remap the novel sensory inputs, or by adjust-
7a  ing its recurrent connection weights to alter how these inputs are recurrently integrated
1275 into the appropriate decision representations, or by some combination of the two. To as-
s sess the relative contributions of these two mechanisms, we compared: (i) the magnitude
w7 of change in the input and recurrent weights when problems are learned; (ii) the decrease
g in output accuracy when the input or recurrent weights changes are reversed; (iii) the
1279 learning-to-learn performance of networks with a pre-established representational mani-
180 fold, that must exclusively rely on changes to either their input or recurrent weights to

1281 learn new problems.

1282 We observed that the input weight changes were similar in magnitude to the re-
g3 current weight changes (Supplementary Fig. Ha). Yet, reversing these relatively large
12ss  input weight changes produced a negligible decrease in response accuracy. In contrast,
12ss  reversing the recurrent weight changes decreased response accuracies to chance levels
ves  (Supplementary Fig. Bb) To address this discrepancy between the relative magnitude
1er  of the weight changes and their effect on output response accuracy, we approximated
128 and compared the individual contributions of the input and recurrent weight changes to
g the weight-driven VFC (equation (), see Methods). Consistent with the latter result,
1290 we found that the weight-driven VFC is primarily caused by recurrent weight changes
o1 (Supplementary Fig. EC, left). Recall that the weight-driven VFC is directly related
e to changes in the postsynaptic currents (Fig. @b, equation (E)), which is a product of
103 the connection weight changes and the firing rates of network and input units (equation

1204 (g)) Given that the input and recurrent weight changes are comparable in magnitude,

26


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1295 we posited that the disproportionate contribution of the recurrent weight changes would
1o be explained by a difference in the magnitudes of the network and input unit firing rates.
o7 A comparison of these firing rate magnitudes confirmed our hypothesis (Supplementary

10 Fig. Bd, Input Act. Mag. = 1, W, gain = 1, Baseline).

1209 These results demonstrate that the model prefers solutions that rely on recurrent
1o weight changes, and that these solutions make more efficient use of the weight changes
o to alter the vector field. But are these solutions preferred because they are more efficient
12 to learn? In other words, do solutions that rely on input weight changes exhibit poor
13 learning efficiency? To answer this question, we trained networks with pre-established
e decision and stimulus manifolds (i.e. networks trained on their first problem) on new
1os  problems, either with frozen input weights or with frozen recurrent weights. We then
s compared their asymptotic learning efficiency. Indeed, we found that networks with
1oz frozen recurrent weights exhibited substantially higher learning efficiency asymptotes
s than networks with frozen input weights (Supplementary Fig. BC)—the model’s prefer-
1300 ence for solutions that relied on recurrent weight changes was predicated on their superior
1o learning efficiency. Moreover, networks with frozen recurrent weights required consider-
s able changes to their input weights before they had learned a problem (Supplementary
s Fig. ac, Input Act. Mag. = 1, W;,, gain = 1). This suggests that the model’s learning
113 efficiency on a problem is related to the magnitude of connection weights changes that

s are necessary to learn it. We further explore this relationship in the main text (Fig. B)

1315 In the networks explored thus far, learning is more efficient when it relies on recur-
we rent weight changes. We sought to understand whether this is always true, i.e. are
w7 recurrent weight changes a necessary condition for efficient learning? Or, do network
8 regimes exist wherein learning is equally efficient when driven by input weight changes?
139 Networks that learn via input weight changes exhibit poorer learning efficiency due to
1320 deficits in their influence on the postsynaptic current changes and the weight-driven
s VFC (Fig. @b) Therefore, we reasoned that such networks may become efficient learn-
1322 ers in regimes where this deficit is eliminated. To test this, we measured the asymptotic
1323 learning efficiency of networks with a tenfold increase in input unit firing rates, and

124 with frozen recurrent weights. We expected that this increase would facilitate a stronger
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1325 influence of input weight changes on postsynaptic current changes, thereby improving
e learning efficiency. Surprisingly, we found that these networks also under-performed in
1327 comparison to networks with plastic recurrent weights (Supplementary Fig. Bb, Input
ws  Act. Mag. = 10, W;, gain = 1). Consistent with the original networks (Input Act. Mag.
e = 1, Wy, gain = 1), they required considerable input weights changes (Supplementary
1330 Fig. Ec) to generate similarly-sized postsynaptic current changes as fully plastic net-
s works (Supplementary Fig. Be). Again, this was due to an asymmetry in the input and
132 network unit firing rate magnitudes (Supplementary Fig. Bd): the network unit firing
1333 rates further increased in response to the elevated input unit firing rates, because the

13« network units were receiving larger currents from the input units.

1335 Finally, we reasoned that this increase in the network unit firing rate magnitudes
36 could be avoided by additionally scaling down the magnitude of the input weights. This
1337 would both generate similarly-sized efferent currents from the input units as in our
1338 original networks, and facilitate a stronger influence of input weight changes on the
1330 postsynaptic current changes due to the elevated input unit firing rates. We tested this
140 in networks with both a tenfold increase in the input unit firing rates and a 20-fold
s decrease in the initial input weights (i.e. input weights of the naive network). We now
12 found that networks with frozen recurrent weights exhibited learning efficiency asymp-
13 totes that were comparable to their fully plastic counterparts (Supplementary Fig. Bb,
s Input Act. Mag. = 10, W;, gain = 0.05). These networks produced input weight
s changes of comparable magnitude to the weights changes in fully plastic networks (Sup-
1346 plementary Fig. Bc), while also producing postsynaptic current changes of comparable
1 magnitude (Supplementary Fig. Be). This was because input and network unit firing
s rates were comparable in magnitude (Supplementary Fig. Bd) Taken together, these
1349 analyses demonstrate that fully plastic networks learn new problems largely via recur-
1so rent connection weight changes because it is generally more efficient to do so. However,
s recurrent weight changes are not necessary for efficient learning: Network regimes exist

12 wherein learning via input weight changes is equally efficient.
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sz 1.2 Plasticity alters stimulus representations far more than de-

1354 cision representations

1355 We have demonstrated that the model learns a problem when each sample stimulus
s elicits decision and choice representations that appropriately direct the desired output
sz response, and that this is achieved by the preferential engagement of plasticity in the
s network’s recurrent connections. But does this process also enlist and alter the stimulus
13so  representations, and if so, to what end? Measurements showed that both the decision
e and the stimulus representations developed sizeable changes after learning (Supplemen-
o1 tary Fig. Bb) To test the utility of the changes in the stimulus representations, we
12 simulated trials in a network that had learned a problem, while clamping its stimulus
13 representations at their pre-learning values (see Methods), and measuring the effect of
1es  this intervention on the decision representations. If the learned decision representations
1es evolve independently of the stimulus representations, they should remain largely unal-
e tered. Instead, we found that the decision representations experienced large deviations
ez (Supplementary Fig. gc) Similarly, clamping the decision representations at their pre-
1es learning values produced large deviations in the stimulus representations. This shows
e that the stimulus and decision representations sustain strongly recurrent interactions,
1o and that changes in the stimulus representations are necessary both to remap sensory
11 inputs onto the appropriate decision manifold and to maintain these decision represen-

12 tations throughout the trial.

1373 We also examined whether the decision and stimulus representations mutually influ-
17a  ence each other’s weight-driven VFC. Specifically, how is the weight-driven VFC modu-
15 lated by pre-synaptic population activity in the stimulus versus decision subspaces? And
e to what extent does the resulting weight-driven VFC alter subsequent stimulus versus
17 decision representations? In figure Bc, we show that the weight-driven VFC is primarily
s modulated by pre-synaptic population activity in the decision subspace, i.e. the decision
19 representations predominantly scaffold the weight-driven VFC. Moreover, this decision-
s and weight-driven vector field change is primarily responsible for learning — reversing

a1 it reduced output accuracy almost to chance levels, while reversing the stimulus- and
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e weight-driven vector field change had a much weaker effect (Supplementary Fig. Ed)
us3 Finally, a comparison of the overlap of the weight-driven VFC with the stimulus versus
13ss  decision subspaces showed that weight changes mostly alter stimulus representations

s (Supplementary Fig. Be).

1386 These results suggest that reciprocal interactions between the stimulus and decision
1sr  representations play a key role not only in decision making and working memory main-
s tenance of these decisions, but also in learning the two mappings in each problem. They
180 further demonstrate that the decision representations scaffolds the weight-driven VFC,
1o and that the weight-driven VFC largely prevents uncharacteristic changes to the exist-
1o ing stimulus representations, a finding that is consistent with our results in figure B and

12 supplementary figure ga.
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1394

1os  Figure 1: Recurrent neural networks trained on a series of delayed sensorimotor
1306 association problems exhibit learning-to-learn. a. An example problem illustrating the
1307 structure of the delayed sensorimotor association task. The model must learn to associate each
1es  of two sensory stimuli (e.g. images) with a corresponding motor response (e.g. a saccade).
1309 Targets are colored to emphasize the distinction between response choices, and not to indicate
1o  that the response targets are colored. b. RNN model trained to perform the task. It is composed
o1 of recurrently connected rate units that receive a fizxation stimulus and features of the sample
1402 sensory stimulus as inputs, and reports its response choices via output units corresponding to
w3 fization, motor response choice 1 (brown), or motor response choice 2 (teal). c. Learning-to-
104 Learn training protocol. The model is trained on a series of sensorimotor association problems,
105 each with randomly chosen sample stimulus pair. It is transitioned to a new problem once it
106 Teaches criterion performance on the current problem. d. Learning efficiency, measured as
107 the number of trials to criterion performance on a problem, over a series of 1000 problems
108 learned by a network. Bozx plots summarize the learning efficiency in groups of 50 consecutive

100 problems. The number of trials to criterion on a problem decreases with the number of previously
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learned problems. This is characterized by a decaying exponential function and demonstrates
the model’s ability to produce learning-to-learn. e. 30 RNNs with different initial conditions
exhibit robust learning-to-learn, as indicated by the time-constants (left) and asymptotes (right)

of the exponential fits to their learning efficiency over a series of 1000 problems.
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us Figure 2: Neural representations of decision and choice are shared across prob-
117 lems. a. Schematic of the demixing procedure that identifies shared versus problem-dependent
s components of the neural representations. Population trajectories for the two mappings in 50
e consecutively learned problems (illustrated for 2 problems, for clarity) are decomposed into com-
1420 ponents within a decision subspace which are shared by trajectories that map their respective
11 sample stimuli onto a common response choice, and problem-dependent components embedded
142 in a stimulus subspace. The shared decision representations are further decomposed into their
1423 mean and residual components for each problem. b. Decomposed representations for problems
124 1-50, presented in the first 8 principal components of their respective subspaces. c. Schematic
125 illustrating that the component representations collectively drive the response choice outputs.
ws d. The net current from the mean (left) and residual (center) decision representations, and
w2 the stimulus representations (right), to response 1 (brown) and response 2 (teal) outputs, in
s mapping 1 (top) and mapping 2 (bottom) trials. The mean decision components inhibit motor
120 responses during the sample and delay epochs, and the residual decision components drive the
130 correct response while inhibiting the incorrect one. Dashed vertical lines indicate the end of
w1 the sample and delay epochs. Plots show mean of the net currents across the 50 problems, and

132 error bars indicate their standard errors.

1433
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1435 reveal that the reuse of the schematic decision

Figure 3: Manifold perturbations

a. Output responses are readout from a subspace of the

e manifold facilitates learning.

137 population state space, which is spanned by the network’s output weights. Owverlap between

1438 this readout subspace and the decision subspace enables the control of output responses by the

1430 decision representations. b. Illustration of the manifold perturbation interventions that assess

a0 the role of decision manifold reuse in learning. A network is trained on a single problem to

ua  establish its decision and readout subspaces (top left). It is then trained on a second problem (i)

w2 while its output weights are frozen (frozen readout, top right), (ii) after perturbing and freezing

was  its output weights such that its readout subspace only overlaps with its stimulus subspace (D— S

wuas manifold perturbation, bottom right), or (iii) after perturbing and freezing its output weights

s such that the overlap between its readout and stimulus subspaces is altered (S— S manifold

64


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

wis  perturbation, bottom left). c. The average learning efficiency on the second problem in each
147 of the three conditions, compared to the learning efficiency on the first problem. d. The
1as  learning efficiency on the first problem comprised of two versus three mappings, compared
1440 with the average learning efficiency on the second problem. The latter is a three-mapping
uso  problem and was preceded either by a two-mapping (2— 8 mappings) or three-mapping (3— 3
ust  mappings) problem. e. Decomposed neural representations in the 2— 3 mapping condition.
us2  Plot shows learned representations for the second problem in the first 3 principal components
uss  of the decision subspace (light), and the decision representations for the first problem projected
usa into the same subspace (dark). Second problem decision representations are shown for 50
uss  independently chosen stimulus sets.  Trials-to-criterion on the second problem is averaged
uss over 50 independently chosen random perturbations (¢) / stimulus sets (d), and presented as
s the distribution of these average learning efficiencies across 10 networks with different initial
uss  conditions.
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ue1  Figure 4: Learned trajectories emerge from wector field changes. a-b. Schematic
us2  describing the temporal evolution of population activity at the start (Pre-learning, a) and end
uss  (Learned, b) of a problem, with illustrations of this evolution in population state space (right).
ues a. The activity advances due to the integration of net postsynaptic currents, which depend
uss on the activity levels (or state) of the network and input units and their efferent connection
uss  weights (left). This population state-dependent advance determines a vector field that tiles
uer  state space (right, blue arrows) and guides the evolution of the population trajectory (right,
ues blue curve). b. Plasticity-induced connection weight changes (AW') alter the postsynaptic
ueo currents (ACurrent), thereby altering the advance in population activity (left). The effect
w0 of this weight-driven vector field change is a continual series modifications to the vector field
wun  (right, orange arrows) that determines the evolution of the learned population trajectory (right,
w2 purple curve). . The divergence of the learned trajectory from the pre-learning trajectory
w3 (zZe41, right, solid gray arrow) emerges from an accumulation of activity change increments
ws  throughout the trial (Aziy1, right, green arrow). d. Each increment is the sum of the state-
urs  and weight-driven vector field changes (left and center, pink and orange arrows, respectively).
e The state-driven vector field change is a result of state-dependent differences in the pre-learning
urr vector field, specifically between learned and pre-learning population states (left, blue arrows
ws  at Ty and ry, respectively). Dashed gray arrows in (c, d) represent a displaced version of the
ure  vector z¢41 to help illustrate vector differences.

1480

67


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a b c
%1072
Az, Orthogonal to Az 4 Along Az (Az,) 16 7 g Single
Orth. to Az (Az,) Problem
A 14 A [ Group of

P v 31 Problems
% - Az, Parallel to Az @ 12 4

3 2 2 10
© = E
— ©
(0] =
Component Component T 14 @ .% 8
State-driven parallel to Az orthogonal to Az z 25 S
g E 6 -
VFC(t+1) g 0 s
= E# + ﬂr 4
-1 4
@ 2 T o
= # + 2 T T T 0 T T
Total(Az) State-driven Along Ortho. to
y . VFC Az (Az) Bz (bz,)
Activity change increment .
1481 component Vec. field change component

us2  Figure 5: Weight- and state-driven vector field changes differentially contribute to
uss  population activity changes. a. The state- and weight-driven vector field changes may be
usa  decomposed into components along (or that contribute to) the activity change increment (green
wes  arrows), and components orthogonal to it (or that cancel out, pink arrows). b. Magnitude (L?-
uss  norm) of the population activity change increments, and its vector field change constituents
usr  (weight- and state-driven vector field changes) decomposed along and orthogonal to the popula-
uss  tion activity change increments. Measurements shown are the temporal mean of the magnitudes
uso over the trial duration, averaged over both mappings of problems 2-51. c. Dimensionality of
us  the vector field change components on single problems (averaged over problems 2-51) and for
uo a group of 50 problems (problems 2-51). Plots represent distributions over 10 networks with
o2 different initial conditions.
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uos  Figure 6: The magnitude of recurrent weight changes explains both the magnitude
1 of the weight-driven VFC and the number of trials to learn a problem. a. The
107 magnitude of the plasticity-induced recurrent connection weight changes explains a majority of
ues the variance in the number of trials to learn problems (left). This relationship was robustly
1 observed across ten networks with different initial conditions (right). b. The magnitude of
w00 recurrent weight (blue), postsynaptic current (gray) and weight-driven vector field (orange)
o1 changes, averaged in groups of 50 non-overlapping and consecutively learned problems. FEach
102 quantity has been normalized by its corresponding value for the first problem group. All quan-
103 tities decrease exponentially with the number of previously learned problems. c. Approximate
1s0a  contribution of presynaptic population activity in the stimulus versus decision subspace to the
105 weight-driven vector field change, averaged over problems 2-51. The magnitudes (L?>-norm) of
106 the change in the postsynaptic currents and vector field represent their temporal mean over the
107 entire trial duration, averaged over both mappings in each problem. The magnitude of recurrent
1508 weight changes was measured by their Frobenius norm. Plot (b) (plot (c)) reflects mean values
1500 (the distribution) over 10 networks with different initial conditions, and the error bars indicate
110 their standard errors.
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113 Figure 7: Accumulation of weight changes progressively improves invariance of
1514 existing representations to learning. a. Magnitude of vector field change along the
1515 learned trajectory for a problem p due to the accumulation of (i) the weight changes in problem
s p (WP — WP relative problem = 0; weight-driven vector field change), and (ii) weight
1517 changes in each of the earlier problems, proceeding backwards to problem 2 (WP — WP=k=1 for
118 1 < k < p— 2, relative problem —k; cumulative vector field change contributions). The curve
1510 for each problem measures the magnitude of change in the direction of its orthogonal weight-
1520 driven VEC component, smoothed with a 30-problem moving average filter. Plot summarizes

121 the measurements for problems in 4 problem groups at different stages of learning-to-learn,
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152 and demonstrates the suppressive effect of the cumulative vector field change at each stage. b.
1523 Magnitude of net suppression for each problem p, due to the net weight changes between the
124 start of problems 2 and p (WP~ — W1), summarized in 50-problem groups. c. Magnitudes
125 of the cumulative VFC and cumulative VFC contributions by individual problems along an
126 example problem’s orthogonal weight-driven VFC component. d. Ratio of the net suppression
127 magnitude to the sum of magnitudes of the cumulative VFC' contributions, summarized as
128 in (b). This measures how consistently suppressive the cumulative VFC' contributions for a
1529 problem are. Measures in (b, d) are presented separately for vector field changes along the
130 parallel (green) and orthogonal (pink) weight-driven VFC components. Magnitudes shown are
1531 the temporal mean of the unsigned (L'-norm; a) and signed (b, c) projections onto the parallel
122/ orthogonal weight-driven VFC components, averaged over both mappings in a problem. Plots
1533 in (a, b and d) reflect mean values over 10 networks with different initial conditions, and
s34 shading/error bars indicate standard errors.
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1537 Figure 8: Learning-to-learn is a process with three timescales. The fastest timescale
1538 (bottom) governs the neural dynamics within a trial which drive output responses. The inter-
139 mediate timescale (middle) governs the learning dynamics across trials within a problem; it
1540 ultimately produces the requisite weight-driven vector field change which results in problem being
1541 learned. The slowest timescale (top) governs the dynamics of learning-to-learn across problems;
1542 it ultimately improves the invariance of existing representations to learning new problems which
1543 results in asymptotic learning efficiency.
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Supplementary Figure 1: Learning-to-learn is robustly observed across a range
of hyper-parmeter settings. Problem 1 learning efficiency (left), learning efficiency asymp-
totes (middle), and learning efficiency time constants (right), of networks trained with different
learning rates, recurrent (Bw,..), input (Bw,,) and output (Bw,,,) weight reqularization lev-
els, numbers of recurrent weight matriz singular values (k) that are reqularized, firing rate
reqularization levels (), and f-I transfer functions. Performance measures are presented in
comparison to the baseline networks discussed in the main text. The regularization hyper-

parameters and learning rates spanned 2 orders of magnitude. 10 networks were trained per
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hyper-parameter setting. Networks with sigmoid f-I transfer functions were trained with input
unit firing rates scaled up by a factor of 10. Networks at the slowest learning rate and those with
a sigmoid f-I transfer functions exhibited slower learning. However, all networks demonstrated

learning-to-learn.
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61 Supplementary Figure 2: Model retains a memory of past problems. a. Learning
162 efficiency of new problems (novel condition, blue) at early-stage learning-to-learn (20 problems
163 in the range 11 - 55), in comparison to the learning efficiency when re-learning them following
164 a varying number of intervening problems (repeat condition, red). b-c. Similar comparison
1565 of novel versus repeat learning efficiency for problems at middle-stage (b, 20 problems in the
166 range 146 - 205) and late-stage (¢, 20 problems in the range 346 - 405) learning-to-learn. Plots
167 reflect mean values over 10 networks with different initial conditions, and error bars indicate

168 the standard error of the mean.
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i1 Supplementary Figure 3: Learning dynamics are largely comprised of changes in
152 shared population representations across problems. a-b. Temporal (a) and trial (b)
1573 factors produced by tensor decomposition analysis | /@] ) when applied to population activity
1574 during trials between the beginning and end of learning 10 consecutive problems at early-stage
1575 learning-to-learn (problems 2 - 11). e¢-d. Temporal (¢) and trial (d) factors of population
1576 activity during learning trials of problems at middle-stage learning-to-learn (problems 96 -
1577 105). Plots reveal the emergence of large changes in delay- and choice-epoch activity as the
1578 problems are learned. These changes separate the population activity for the two mappings
1579 in a problem, in a manner that is consistent across problems. In addition, they emerge more

180 rapidly while learning problems at middle-stage learning-to-learn.
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153 Supplementary Figure 4: Intrinsic structure of the learned neural representations
1534 1S also recruited in response to novel sample stimuli. a. Comparison of the variance
185 in pre-learning and learned population activity that is explained by each principal component
186 of the decision subspace. The decision subspace and its principal components were computed
187 from the learned population activity across 50 consecutive problems. The variance in both
1588 the pre-learning and learned activity was measured along these principal components. b-c.
1ss0  Comparison of the variance in pre-learning and learned population activity that is explained
100 by the first 15 principal component of the stimulus subspace, measured across the entire trial
o1 duration (b) and across the sample epoch of the trials only (¢). The structure underlying
1592 learned neural representations is recruited even at the start of each problem, when the sample
1503 stimuli presented to the network are novel. The first problem was excluded from the pre-learning
1504 variance measurements, as the decision and stimulus representations develop only after the first
105 problem is learned. Bars show mean variance explained are across 10 networks with different
196 initial conditions, and error bars indicate standard errors of the mean.
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109 Supplementary Figure 5: Learning largely relies on changes in the recurrent con-
1600 mection weights. a. Magnitude of the recurrent and input connection weight changes, mea-
w1 sured by their Frobenius morms. b. QOutput accuracy when either the input or recurrent
1602 connection weight changes are reversed. c. Approrimate magnitude of the weight-driven vec-
1603 tor field change due recurrent and input connection weight changes. Magnitudes shown are
w0s  the temporal mean of the L?-norm of the corresponding vector quantities over the entire trial
1605 duration, and averaged over both mappings in a problem. All measures presented are averages
1606 across problems 2 thru 51. All bars represent the mean across 10 networks with different initial
1607 conditions, and error bars indicate their standard errors.

1608

78


https://doi.org/10.1101/2021.09.02.455707
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.455707; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a b 200 -
160
@ )
.8 140+ 8
= £ 150
2 1204 2
2 2
a a
; 100 ;
) o 100
T g0 ©
) ©
g g
© 60 ©
E £
2 a0 2 501
o
I Al et [] = (107
0 T T T T 0 L L L
8 A A A SES [SSR 7 8.
9. 70, 7o, 70, Sey, %% Sey,  Rg Sesy, e,
e, <6, w <6, w <6, w ey, Ihe Sy, N
3 (X (8 e "o e
Input Act. mag.=1 Input Act. mag.=10 Input Act. mag.=10
W, gain =1 W, gain =1 W, gain = 0.05
€ 035, - d _ s, € _14;
npu > >
[ Recurrent g i h g
03 o 30 8 %12 l
— T o > O -I-
3 2E 2E
©0.25 5T 251 g': 11
» a2 29
= €0 €8
> 0.2 I >c 20 £ ¢ 0.8
] 58 33
z B E °g
£0.15 & ~ 151 S - 0.6
o c5 z5
= S 9 S 9
s 0.1 T $ 10 B i - B £ S04 I
S 2w S0
© : S ° 2
0.051 & a2 5 2 202 PO t
=z
. % |l - 5 e
oo S0y oo Pn Gag a0 0y a0y S0 % Cag oy, Gog oy Gag
3@//}7;?% w S@//heo?@ "1, 3@//}75??@0 w \3‘@/,)7:?@,7 w 3@//}7:?@,7 w Se/,;?g?e” w *?e/,bg?@ "1 5‘@/,)7@089,7 w *?e/,bge@ "1,
s - s o e oo N (N oo
Input Act. mag.=1 Input Act. mag.=10 Input Act. mag.=1 Input Act. mag.=10 Input Act. mag.=1 Input Act. mag.=10
W, gain=1 W, gain = 0.05 W, gain =1 W, gain =0.05 W, gain =1 W, gain = 0.05
Input Act. mag.=10 Input Act. mag.=10 Input Act. mag.=10
W, gain =1 W, gain=1 W, gain =1

1609

1610 Supplementary Figure 6: Plasticity of recurrent connection weights results in,
111 but is not necessary for, efficient learning. a. Comparison of the learning-to-learn
w12 asymptotes of fully plastic networks (Baseline), and those trained with frozen input, recurrent
1613 or output weights. Weights were frozen after the first problem was learned, to ensure the
1614 emergence of the decision and stimulus manifolds. b-e. Comparison of fully plastic networks
w15 (baseline) and those with frozen recurrent weights in three network regimes that differed in the
w16 magnitude of the input unit firing rates (Input Act. mag.) and the relative strengths of the
w17 initial input connection weights (Wi, gain). Comparison of the learning-to-learn asymptotes
s (b), magnitude (Frobenius norm) of input and recurrent weights changes (c), magnitude (L?
w10 norm) of input and network unit firing rates (d), and magnitude (L*> norm) of the input and
120 recurrent postsynaptic current changes (e). Quantities in (d-e) are temporal means over the

w21 sample epoch of the trials. Quantities in (c-e) are averages across problems 951-1000. All bars
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1622 represent means across 10 networks with different initial conditions, and error bars indicate

1623 their standard errors.
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1625

16 Supplementary Figure 7: The pre-existing decision manifold provides a repre-
1627 sentational scaffold for the formation of learned trajectories in new problems.
1628 @. Schematic illustrating pre-learning and learned population trajectories, together with the
120 Tequisite weight-driven vector field change (orange arrows) in a network with frozen readouts
w30 (left) and a network with a D— S manifold perturbation (right). Vector field shaped by prior
1631 learning is approximately oriented to support the evolution of learned trajectories in networks
1632 with frozen readouts, but not in networks with D— S manifold perturbations. Therefore, the
1633 latter requires a substantial weight-driven vector field change. b. Distribution of the magnitude
w634 of recurrent weight (left) and weight-driven vector field (right) changes required to learn the
1635 second problem, in the frozen readout and D— S manifold perturbation conditions, across 10
1636 networks with different initial conditions. Smaller weight changes required by networks with
1637 frozen readouts makes them efficient learners. For each network, the measures were averaged
s over 50 perturbations, with new sample stimuli used each time. The magnitude (L?-norm)
1630 of the weight-driven vector field change represented is its temporal mean over the entire trial
1640 duration, averaged over both mappings in each problem.
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1643 Supplementary Figure 8: Reciprocal interactions between stimulus and decision
1644 Tepresentations shape network dynamics and support learning. a. Schematic of recur-
1645 rent interactions within and between stimulus (magenta) and decision (green) representations.
w46 Efferent (afferent) connections are represented in darker (lighter) colors. b. Euclidean distance
1647 between pre-learning and learned decision and stimulus representations. c. Fuclidean distance
1648 between learned decision (stimulus) representations and those generated by the network when
w640 simulated with its stimulus (decision) representations clamped to their pre-learning values. d.
w50 Quiput accuracy when the weight-driven current changes modulated by presynaptic population
st activity in the stimulus or decision subspace are reversed. e. Magnitude (L*>-norm) of weight-
1652 driven vector field change within the stimulus and decision subspaces. The magnitudes and
1653 Fuclidean distances represented are their temporal mean over the entire trial duration, averaged
1654 over both mappings in problems 2-51. All bars represent mean values over 10 networks with
1655 different initial conditions, and error bars indicate their standard errors.
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1658 Supplementary Figure 9: Properties and contributions of the orthogonal com-
1650 ponents of the vector field change. a. Comparison of the percentage of variance in
w60 the stimulus representations (black) and the orthogonal components of the vector field change
w61 within the stimulus subspace (pink) explained by the first 8 and remaining principal components
1662 of the stimulus subspace. The orthogonal components largely lie off the stimulus manifold. b.
163 Magnitudes of the weight-driven vector field change (orange), and its components in the direc-
w64 tion of the activity change increments (green) and orthogonal them (pink), for early and late
1665 learned problem groups. The orthogonal components dominate the total weight-driven vector
w666 field change across the learning-to-learn timecourse. c¢. Magnitude of vector field change along
w67 the learned trajectory for a problem p due to the accumulation of (i) the weight changes in
s problem p (WP — WP~ relative problem = 0), and (ii) weight changes in each of the earlier
ws0  problems, proceeding backwards to problem 2 (WP —WP=F=1 for 1 < k < p—2, relative problem
wo —k). The curve for each problem measures the magnitude of change in the direction of its
1671 orthogonal weight-driven VEC component, smoothed with a 30-problem moving average filter.
w2 Plot summarizes the measurements for problems at late-stage learning-to-learn (problems 452-
w3 501), and separately shows contributions of changes in input weights (yellow), recurrent weights
wra  (blue), and both (pink). The cumulative suppression of the weight-driven vector field change
1675 in the direction of its orthogonal component is almost entirely caused by an accumulation of
w6 recurrent weight changes. The magnitude (L?-norm) of the vector field change represented
w7 in (b-c) is its temporal mean over the entire trial duration, averaged over both mappings of
w678 all the problems in the respective group of 50 problems. All plots represent mean values over
w79 10 networks with different initial conditions, and shading/error bars indicate their standard
1680 ETTOTS.
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1683 Supplementary Figure 10: Weight-driven vector field changes in earlier problems
168s  cumulatively suppress the weight-driven vector field change required to learn future

185 problems. a. Schematic illustrating cumulative changes in the vector field along the learned
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1686 trajectory for problem p due to an accumulation of the weight changes elicited while learning
1687 the problems that precede it. This cumulative vector field change reduces the weight-driven
188 vector field change required to support the evolution of problem p’s learned trajectory. The total
1680 vector field change at problem p measures the net effect of all the vector field changes along
100 problem p’s learned trajectory due to the weight changes between the start of problem 2 and the
1601 end of problem p. b. Difference between consistently and inconsistently suppressive cumulative
1602 vector field change contributions illustrated along a problem’s orthogonal vector field change
1603 component. Stronger consistency produces a larger net suppression, which reduces the requisite
1604 weight-driven vector field change by a larger amount.
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1607 Supplementary Figure 11: Properties of vector field change along the learned
1608 trajectory for a problem due to weight changes in the preceding problems. a.
1600 Magnitude of per-trial cumulative vector field change contributions along the learned trajectory
1700 for a problem p by the weight changes in each of the earlier problems, proceeding backwards
w1 to problem 2 (WP — WP=F=1 for 1 < k < p — 2, relative problem —k). The curve for each
1702 problem measures the per-trial magnitude of change in the direction of its orthogonal weight-
1703 driven VFC component, smoothed with a 30-problem moving average filter. Plot summarizes
1704 the measurements for problems in 4 problem groups at different stages of learning-to-learn.
105 b. Sum of the magnitudes of the cumulative VFC contributions for each problem p due to
1706 weight changes in problems 2 thru p — 1. summarized in 50-problem groups. The measure is
o7 presented separately for the vector field change along the parallel (green) and orthogonal (pink)
108 weight-driven VFC components. Magnitudes shown in both plots are the temporal mean of the
100 unsigned projections onto the parallel / orthogonal weight-driven VFC components, averaged
1710 over both mappings in a problem. Plots reflect mean values over 10 networks with different
v inigtial conditions, and shading/error bars indicate standard errors.
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