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Abstract:

Hypoplastic left heart syndrome (HLHS) is a severe form of single ventricle congenital
heart disease characterized by the underdevelopment of the left ventricle. Early serial
postmortem examinations revealed high rate of coronary artery abnormalities in HLHS
fetal hearts, such as thickened wall, kinking arteries and ventriculo-coronary arterial
connection. However, it is unclear if there is an intrinsic defect in the HLHS coronary

vessels and what the underlying molecular mechanism is.

Here, we profiled both human fetal heart with an underdeveloped left ventricle (ULV) and
ECs differentiated from induced pluripotent stem cells (iPSCs) derived from HLHS
patients at single cell resolution. CD144*/NPR3" vascular ECs were selected and further
classified as venous, arterial and late arterial subclusters. To study the arterial EC
phenotype, we specifically generated iPSC-arterial ECs (AECs,
CD34*CDH5*CXCR4*NT5E"") derived from three HLHS patients and three age-

matched healthy controls.
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Gene ontology analysis revealed that ULV late arterial EC subcluster showed specific
defects in endothelial development, proliferation, and Notch signaling compared to control.
Consistently, HLHS iPSCs exhibited impaired AEC differentiation shown as the reduced
CXCR4*NT5E"°% AEC progenitor population. Mature HLHS iPSC-AECs also exhibited
increased GO/G1 cell cycle arrest with decreased expression of cell cycle related genes
(e.g., Kie7, CCND1/2). Additionally, NOTCH targeted genes (e.g., DLL4, HEY1, GJAS5)
were found suppressed in both ULV AECs and HLHS iPSC-AECs compared to control.
We also found the HLHS de novo mutation gene KMT2D directly regulated the
transcription of NOTCH targeted genes participating in arterial differentiation and cell
proliferation, contributing to the HLHS AEC dysfunctionalities. Intriguingly, the treatment
of NOTCH ligand JAG1 improved cell proliferation of HLHS AECs and upregulated G1/S

transition genes downstream of NOTCH pathway.

In summary, our results revealed that KMT2D directly regulated transcription activity of
NOTCH signaling, contributing to the poor differentiation and low proliferation of HLHS

coronary AECs.
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Main text:

Hypoplastic left heart syndrome (HLHS) is a severe form of single ventricle congenital
heart disease (CHD) characterized by the underdevelopment of the left ventricle, mitral
valve, aortic valve, and ascending aorta. Coronary arterial abnormalities such as
thickened wall, kinking arteries, and coronary arterial fistulous communications have been
revealed by postmortem examinations’, which may impact ventricular development and
intra-cardiac hemodynamics, leading to a poor prognosis after surgical palliation’.
However, the intrinsic defect in coronary vessels and its genetic basis remain unclear.
Through single-cell RNA sequencing (scRNA-seq) analysis of human fetal heart with an
underdeveloped left ventricle (ULV) and ECs differentiated from induced pluripotent stem
cells (iPSCs) with HLHS, we uncovered an abnormal population of coronary arterial ECs
with loss of arterial features and decreased proliferation, which were attributed to

HLHS de novo mutation (DNM) KMT2D mediated NOTCH signaling defect.

To reveal the transcriptomic changes in HLHS coronary vessels, heart ECs (CDH5") were
enriched from dissociated human fetal heart (healthy control vs. ULV) (A) and iPSC-
derived ECs (iPSC-ECs, healthy control vs. HLHS)? (Online A) and subjected to scRNA-
seq. We first excluded the endocardial population (NPR3") by selecting CDH5"/NPR3
vascular ECs? for downstream analysis. Out of the six sub-clusters in fetal heart vascular
ECs, we focused on four clusters (Cluster 0-3) containing predominate vascular ECs and
excluded those in transitional states. EC subtypes were annotated by multiple cell-type-
specific markers, such as vein (NR2F2*, Cluster 0&2), artery (MECOM®, Cluster 1&3)

(Online A), and late artery (GJA5*, Cluster 1)3 (A). iPSC-vascular ECs were
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heterogeneous and classified into four sub-clusters. The majority of the cells (Cluster 0&1)
showed arterial characteristics (high MECOM, GJAS, and low NR2F2), possibly due to
the high VEGEF in the differentiation medium that induced an arterial cell fate? (Online A).
Gene ontology (GO) analysis was performed based on differentially expressed genes
(DEGs) between control and ULV vascular ECs (A). Compared with control, ULV showed
defects in general EC functions such as cell junction organization and EC migration.
Notably, C1 late arterial cluster exhibited cell-type specific defects in endothelium
development, EC proliferation, artery morphogenesis, and Notch signaling, which were
not observed in other EC subclusters. These results intrigued us to further focus on

understanding the coronary arterial ECs (AECs) abnormalities in HLHS.

Next, we generated pure AECs from three HLHS and age-matched control iPSC lines?
using a published protocol*. HLHS iPSCs exhibited impaired AEC differentiation as
evidenced by the reduced CXCR4*NT5E°% AEC progenitors compared to the control
(Ba). Mature AECs were further enriched by CXCR4* cell sorting. HLHS AECs
demonstrated impaired proliferation with increased G0/G1 and decreased S/G2/M cell
percentage (Ba), accompanied by the downregulation of Ki67 and G1/S transition genes
(CCND1/2), and the upregulation of G1/S transition inhibitor COKN2A/P16 (Online B).
This was further validated in HLHS human fetal heart tissue showing reduced proliferative
AECs labeled by Ki67 (Bb). Consistent with GO analysis showing NOTCH defect in ULV
AECs (A), several critical NOTCH targeted arterial genes (GJAS, DLL4, HEY1) were

suppressed in AECs from ULV (Cluster 1) and HLHS iPSC-ECs (Cluster 0&1) (Online
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C). Decreased expression of NOTCH targeted genes and NOTCH intracellular domain

(NICD) were also observed in HLHS iPSC-AECs (Ca) and fetal heart tissue (Cb).

Previously, we revealed that the majority of the HLHS DNMs encoded genes were highly
enriched in endocardial and endothelial populations in human fetal heart?>. To further
understand the genetic underpinnings in the HLHS cases we studied, we first examined
the expression levels of several key chromatin remodelers harboring HLHS DNMs. We
identified five genes (e.g., FOXM1, KMT2D) that significantly reduced in HLHS iPSC-ECs
(Da). Among them, KMT2D, a lysine methyltransferase, favors NICD-RBPJ complex
mediated gene activation by maintaining a permissive chromatin status via catalyzing
H3K4me1, me2 and me3®. Interestingly, knockdown of KMT2D in primary coronary ECs
suppressed the expression of NOTCH related genes (Online D). KMT2D protein level
was also reduced in HLHS coronary arteries (Db). Additionally, ChlP-gPCR revealed
reduced KMT2D binding capacity and H3K4me2 signals to the promoter loci of several
NOTCH targeted genes in mature HLHS AECs (E), which are critical in maintaining
arterial characteristics (DLL4, HEY1/2, HES 1) and cell proliferation (CCND1). Intriguingly,
the treatment of NOTCH ligand Jag1 and DII1 improved cell proliferation of HLHS AECs

and upregulated G1/S transition genes downstream of the NOTCH pathway (F).

In summary, our study revealed that KMT2D-mediated NOTCH defect contributed to the
coronary AECs abnormalities in HLHS. The NOTCH-related defects were more
pronounced in coronary AECs compared with other cardiac cell types. Disruption of

NOTCH signaling led to impaired proliferation and maintenance of arterial features in
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HLHS AECs, which may partially explain the decreased vascular density and coronary
artery malformation in HLHS fetal heart'. Notably, NOTCH ligands rescued HLHS
associated gene expression abnormalities and cellular phenotypes, providing a potential

therapeutic target.

Footnotes

Consent for iPSC generation was obtained from both control and patients under approved
IRBs: Mayo Clinic: 10-006845; Stanford: IRB 5443. Tissue collection and use in the
research were approved by the University of Washington: IRB STUDY00000380. Human
tissue sections were obtained under approved IRBs: Hospital for Sick Children IRB

1000011284; Mount Sinai Hospital REB# 08-0009-E.

Data sharing

Raw data and complete methods can be made available upon request from the
corresponding author. Single-cell RNA sequencing Seurat object have been deposited in
the GEO database under accession number GSE138979. Online supplemented figure

can be found in Biorxiv version.
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Figure Legend:

A. scRNA-seq analysis of vascular ECs (CDH5*/NPR3’). UMAP projection of Control
vs. ULV human fetal left heart vascular ECs were shown on the left. Cluster1: GJAS" late
artery. Cluster4: venous-to-endocardial transitional population. N=1 per group. Then
Gene Ontology analysis were performed on each cluster and showed downregulated
pathways in ULV vascular ECs vs. control. GO terms: adjusted p-value < 0.05. UMI:
Unique Molecular Identifier.

B. Artery differentiation and proliferation were impaired in HLHS. Ba, flow cytometry
analysis of IPSC-AEC progenitors percentage and their cell-cycle status. Bb,
Immunostaining and quantification of Ki67* arteries in human heart tissue. aSMA: smooth
muscle actin.

C. NOTCH pathway was suppressed in HLHS AECs. Ca, qPCR of NOTCH genes in
iPSC-AECs. Cb, Immunostaining and quantification of NICD* arteries in human heart
tissue.

D. KMT2D expression was decreased in HLHS AECs. Da, qPCR of HLHS DNM gene
expression in iPSC-ECs. Db, Immunostaining and quantification of KMT2D™ arteries in
human heart tissue.

E. KMT2D binding capacity and H3K4me2 signal were reduced in HLHS iPSC-AECs.
(Evaluated via ChIP-gPCR)

F. NOTCH ligands treatment improved the proliferation of HLHS iPSC-AECs. Both
BrdU proliferation assay and qPCR showed improved proliferation in HLHS iPSC-AECs.
N=4 technical repeats. FC: fold change normalized to control.

Statistics (GraphPad Prism 9.3.1): Based on additional literature support from similar
studies, our samples fit normal distribution. Parametric test: unpaired 2-tailed t-test (2
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groups), ANOVA (>2 groups) with post hoc tests as indicated; non-parametric test: Mann-
Whitney (2 groups). MeantSEM; n= biological replicates as indicated.
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