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Abstract: 

Hypoplastic left heart syndrome (HLHS) is a severe form of single ventricle congenital 

heart disease characterized by the underdevelopment of the left ventricle. Early serial 

postmortem examinations revealed high rate of coronary artery abnormalities in HLHS 

fetal hearts, such as thickened wall, kinking arteries and ventriculo-coronary arterial 

connection. However, it is unclear if there is an intrinsic defect in the HLHS coronary 

vessels and what the underlying molecular mechanism is. 

Here, we profiled both human fetal heart with an underdeveloped left ventricle (ULV) and 

ECs differentiated from induced pluripotent stem cells (iPSCs) derived from HLHS 

patients at single cell resolution. CD144+/NPR3- vascular ECs were selected and further 

classified as venous, arterial and late arterial subclusters. To study the arterial EC 

phenotype, we specifically generated iPSC-arterial ECs (AECs, 

CD34+CDH5+CXCR4+NT5E-/low) derived from three HLHS patients and three age-

matched healthy controls. 
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Gene ontology analysis revealed that ULV late arterial EC subcluster showed specific 

defects in endothelial development, proliferation, and Notch signaling compared to control. 

Consistently, HLHS iPSCs exhibited impaired AEC differentiation shown as the reduced 

CXCR4+NT5E-/low AEC progenitor population. Mature HLHS iPSC-AECs also exhibited 

increased G0/G1 cell cycle arrest with decreased expression of cell cycle related genes 

(e.g., Ki67, CCND1/2). Additionally, NOTCH targeted genes (e.g., DLL4, HEY1, GJA5) 

were found suppressed in both ULV AECs and HLHS iPSC-AECs compared to control. 

We also found the HLHS de novo mutation gene KMT2D directly regulated the 

transcription of NOTCH targeted genes participating in arterial differentiation and cell 

proliferation, contributing to the HLHS AEC dysfunctionalities. Intriguingly, the treatment 

of NOTCH ligand JAG1 improved cell proliferation of HLHS AECs and upregulated G1/S 

transition genes downstream of NOTCH pathway.  

In summary, our results revealed that KMT2D directly regulated transcription activity of 

NOTCH signaling, contributing to the poor differentiation and low proliferation of HLHS 

coronary AECs. 
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Main text: 

Hypoplastic left heart syndrome (HLHS) is a severe form of single ventricle congenital 

heart disease (CHD) characterized by the underdevelopment of the left ventricle, mitral 

valve, aortic valve, and ascending aorta. Coronary arterial abnormalities such as 

thickened wall, kinking arteries, and coronary arterial fistulous communications have been 

revealed by postmortem examinations1, which may impact ventricular development and 

intra-cardiac hemodynamics, leading to a poor prognosis after surgical palliation1. 

However, the intrinsic defect in coronary vessels and its genetic basis remain unclear. 

Through single-cell RNA sequencing (scRNA-seq) analysis of human fetal heart with an 

underdeveloped left ventricle (ULV) and ECs differentiated from induced pluripotent stem 

cells (iPSCs) with HLHS, we uncovered an abnormal population of coronary arterial ECs 

with loss of arterial features and decreased proliferation, which were attributed to 

HLHS de novo mutation (DNM) KMT2D mediated NOTCH signaling defect. 

 

To reveal the transcriptomic changes in HLHS coronary vessels, heart ECs (CDH5+) were 

enriched from dissociated human fetal heart (healthy control vs. ULV) (A) and iPSC-

derived ECs (iPSC-ECs, healthy control vs. HLHS)2 (Online A) and subjected to scRNA-

seq. We first excluded the endocardial population (NPR3+) by selecting CDH5+/NPR3- 

vascular ECs2 for downstream analysis. Out of the six sub-clusters in fetal heart vascular 

ECs, we focused on four clusters (Cluster 0-3) containing predominate vascular ECs and 

excluded those in transitional states. EC subtypes were annotated by multiple cell-type-

specific markers, such as vein (NR2F2+, Cluster 0&2), artery (MECOM+, Cluster 1&3) 

(Online A), and late artery (GJA5+, Cluster 1)3 (A). iPSC-vascular ECs were 
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heterogeneous and classified into four sub-clusters. The majority of the cells (Cluster 0&1) 

showed arterial characteristics (high MECOM, GJA5, and low NR2F2), possibly due to 

the high VEGF in the differentiation medium that induced an arterial cell fate2 (Online A). 

Gene ontology (GO) analysis was performed based on differentially expressed genes 

(DEGs) between control and ULV vascular ECs (A). Compared with control, ULV showed 

defects in general EC functions such as cell junction organization and EC migration. 

Notably, C1 late arterial cluster exhibited cell-type specific defects in endothelium 

development, EC proliferation, artery morphogenesis, and Notch signaling, which were 

not observed in other EC subclusters. These results intrigued us to further focus on 

understanding the coronary arterial ECs (AECs) abnormalities in HLHS. 

 

Next, we generated pure AECs from three HLHS and age-matched control iPSC lines2 

using a published protocol4. HLHS iPSCs exhibited impaired AEC differentiation as 

evidenced by the reduced CXCR4+NT5E-/low AEC progenitors compared to the control 

(Ba). Mature AECs were further enriched by CXCR4+ cell sorting. HLHS AECs 

demonstrated impaired proliferation with increased G0/G1 and decreased S/G2/M cell 

percentage (Ba), accompanied by the downregulation of Ki67 and G1/S transition genes 

(CCND1/2), and the upregulation of G1/S transition inhibitor CDKN2A/P16 (Online B). 

This was further validated in HLHS human fetal heart tissue showing reduced proliferative 

AECs labeled by Ki67 (Bb). Consistent with GO analysis showing NOTCH defect in ULV 

AECs (A), several critical NOTCH targeted arterial genes (GJA5, DLL4, HEY1) were 

suppressed in AECs from ULV (Cluster 1) and HLHS iPSC-ECs (Cluster 0&1) (Online 
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C). Decreased expression of NOTCH targeted genes and NOTCH intracellular domain 

(NICD) were also observed in HLHS iPSC-AECs (Ca) and fetal heart tissue (Cb). 

 

Previously, we revealed that the majority of the HLHS DNMs encoded genes were highly 

enriched in endocardial and endothelial populations in human fetal heart2. To further 

understand the genetic underpinnings in the HLHS cases we studied, we first examined 

the expression levels of several key chromatin remodelers harboring HLHS DNMs. We 

identified five genes (e.g., FOXM1, KMT2D) that significantly reduced in HLHS iPSC-ECs 

(Da). Among them, KMT2D, a lysine methyltransferase, favors NICD-RBPJ complex 

mediated gene activation by maintaining a permissive chromatin status via catalyzing 

H3K4me1, me2 and me35. Interestingly, knockdown of KMT2D in primary coronary ECs 

suppressed the expression of NOTCH related genes (Online D). KMT2D protein level 

was also reduced in HLHS coronary arteries (Db). Additionally, ChIP-qPCR revealed 

reduced KMT2D binding capacity and H3K4me2 signals to the promoter loci of several 

NOTCH targeted genes in mature HLHS AECs (E), which are critical in maintaining 

arterial characteristics (DLL4, HEY1/2, HES1) and cell proliferation (CCND1). Intriguingly, 

the treatment of NOTCH ligand Jag1 and Dll1 improved cell proliferation of HLHS AECs 

and upregulated G1/S transition genes downstream of the NOTCH pathway (F).  

 

In summary, our study revealed that KMT2D-mediated NOTCH defect contributed to the 

coronary AECs abnormalities in HLHS. The NOTCH-related defects were more 

pronounced in coronary AECs compared with other cardiac cell types. Disruption of 

NOTCH signaling led to impaired proliferation and maintenance of arterial features in 
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HLHS AECs, which may partially explain the decreased vascular density and coronary 

artery malformation in HLHS fetal heart1. Notably, NOTCH ligands rescued HLHS 

associated gene expression abnormalities and cellular phenotypes, providing a potential 

therapeutic target.  

 

Footnotes 

Consent for iPSC generation was obtained from both control and patients under approved 

IRBs: Mayo Clinic: 10-006845; Stanford: IRB 5443. Tissue collection and use in the 

research were approved by the University of Washington: IRB STUDY00000380. Human 

tissue sections were obtained under approved IRBs: Hospital for Sick Children IRB 

1000011284; Mount Sinai Hospital REB# 08-0009-E. 

 

Data sharing 

Raw data and complete methods can be made available upon request from the 

corresponding author. Single-cell RNA sequencing Seurat object have been deposited in 

the GEO database under accession number GSE138979. Online supplemented figure 

can be found in Biorxiv version. 
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Figure Legend: 

A. scRNA-seq analysis of vascular ECs (CDH5+/NPR3-). UMAP projection of Control 

vs. ULV human fetal left heart vascular ECs were shown on the left. Cluster1: GJA5+ late 

artery. Cluster4: venous-to-endocardial transitional population. N=1 per group. Then 

Gene Ontology analysis were performed on each cluster and showed downregulated 

pathways in ULV vascular ECs vs. control. GO terms: adjusted p-value < 0.05. UMI: 

Unique Molecular Identifier. 

B. Artery differentiation and proliferation were impaired in HLHS. Ba, flow cytometry 

analysis of iPSC-AEC progenitors percentage and their cell-cycle status. Bb, 

Immunostaining and quantification of Ki67+ arteries in human heart tissue. aSMA: smooth 

muscle actin. 

C. NOTCH pathway was suppressed in HLHS AECs. Ca, qPCR of NOTCH genes in 

iPSC-AECs. Cb, Immunostaining and quantification of NICD+ arteries in human heart 

tissue.  

D. KMT2D expression was decreased in HLHS AECs. Da, qPCR of HLHS DNM gene 

expression in iPSC-ECs. Db, Immunostaining and quantification of KMT2D+ arteries in 

human heart tissue.  

E. KMT2D binding capacity and H3K4me2 signal were reduced in HLHS iPSC-AECs. 

(Evaluated via ChIP-qPCR) 

F. NOTCH ligands treatment improved the proliferation of HLHS iPSC-AECs. Both 

BrdU proliferation assay and qPCR showed improved proliferation in HLHS iPSC-AECs. 

N=4 technical repeats. FC: fold change normalized to control.  

Statistics (GraphPad Prism 9.3.1): Based on additional literature support from similar 
studies, our samples fit normal distribution. Parametric test: unpaired 2-tailed t-test (2 
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groups), ANOVA (>2 groups) with post hoc tests as indicated; non-parametric test: Mann-
Whitney (2 groups). Mean±SEM; n= biological replicates as indicated. 
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