
1 
 

Invariant neural dynamics drive commands to control different movements 1 

 2 

Vivek R. Athalye1†, Preeya Khanna2†, Suraj Gowda4, Amy L. Orsborn3, Rui M. Costa1*‡, and 3 
Jose M. Carmena4,5,6*‡  4 

1 Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, 5 
Columbia University; New York, NY, USA  6 
2 Department of Neurology, University of California, San Francisco; San Francisco, CA, 7 
USA 8 
3 Departments of Bioengineering, Electrical and Computer Engineering, University of 9 
Washington, Seattle; Seattle, WA, USA 10 
4 Department of Electrical Engineering and Computer Sciences, University of California, 11 
Berkeley; Berkeley, CA, USA 12 
5 Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA, USA 13 
6 UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, 14 
Berkeley; Berkeley, CA, USA 15 
†These authors contributed equally to this work. 16 
‡Senior author 17 
*Corresponding author. Email: rc3031@columbia.edu (RMC); jcarmena@berkeley.edu 18 
(JMC) 19 

  20 
Summary: It has been proposed that the nervous system has the capacity to generate a wide 21 
variety of movements because it re-uses some invariant code. Previous work has identified that 22 
dynamics of neural population activity are similar during different movements, where dynamics 23 
refer to how the instantaneous spatial pattern of population activity changes in time. Here we test 24 
whether invariant dynamics of neural populations are actually used to issue the commands that 25 
direct movement. Using a brain-machine interface that transformed rhesus macaques’ motor 26 
cortex activity into commands for a neuroprosthetic cursor, we discovered that the same 27 
command is issued with different neural activity patterns in different movements. However, 28 
these different patterns were predictable, as we found that the transitions between activity 29 
patterns are governed by the same dynamics across movements. These invariant dynamics are 30 
low-dimensional, and critically, they align with the brain-machine interface, so that they predict 31 
the specific component of neural activity that actually issues the next command. We introduce a 32 
model of optimal feedback control that shows that invariant dynamics can help transform 33 
movement feedback into commands, reducing the input that the neural population needs to 34 
control movement. Altogether our results demonstrate that invariant dynamics drive commands 35 
to control a variety of movements, and show how feedback can be integrated with invariant 36 
dynamics to issue generalizable commands. 37 
 38 
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Introduction  42 

Our brain can generate a vast variety of movements. It is believed that the brain would 43 

not have such capacity if it used separate populations of neurons to control each movement. 44 

Thus, it has been proposed that the brain’s capacity to produce different movements relies on re-45 

using the dynamics of a specific neural population’s activity 1–3. While theoretical work shows 46 

how dynamics emerge from neural activity transmitted through recurrent connectivity1,4–6, it has 47 

been elusive to identify whether the brain re-uses dynamics to actually control movements. 48 

Recent work on the motor cortex, a region that controls movement through direct 49 

projections to the spinal cord 7 and other motor centers 8–10, has found that population dynamics 50 

are similar across different movements. Specifically, the spatial pattern of population activity at a 51 

given time point (i.e. the instantaneous firing rate of each neuron in the population) 52 

systematically influences what spatial pattern occurs next. Models of dynamics ℎ that are 53 

invariant across movements3 can predict the transition from the current population activity 54 

pattern 𝑥𝑥𝑡𝑡 to the subsequent pattern  𝑥𝑥𝑡𝑡+1:   55 

𝑥𝑥𝑡𝑡+1 = ℎ(𝑥𝑥𝑡𝑡) + input𝑡𝑡 + noise𝑡𝑡 (1) 56 

where external input input𝑡𝑡 and noise noise𝑡𝑡 are typically unmeasured. Recent work11 has 57 

provided the intuition that invariant dynamics bias neural activity to avoid “tangling” – which is 58 

when the same activity pattern undergoes different transitions in different movements. These 59 

dynamics models have explained features of neural activity that were unexpected from behavior 60 

11–14 such as oscillations12, and have predicted neural activity during different movements on 61 

single trials 15–18, for single neurons’ spiking 15, for local field potential features 19,20, and over 62 

many days 18,21. These models also help predict behavior 16,18,19,22. 63 
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While past work characterized the statistical relationship between invariant dynamics and 64 

behavior, it remains untested if invariant dynamics are actually used to issue commands for 65 

movement. This test requires identifying the causal transformation from neural activity to 66 

command, where the “command” is the instantaneous influence of the nervous system on 67 

movement. This is a long-standing challenge in motor control. While past work has modeled this 68 

transformation23–25, ongoing research reveals its complexity8–10,26–28.  69 

We addressed this challenge with a brain-machine interface (BMI) 29–32 in which the 70 

transformation from neural activity to command was known exactly and determined by the 71 

experimenter. We trained rhesus monkeys to use motor cortex population activity to move a two-72 

dimensional computer cursor on a screen through a BMI. The BMI transformed neural activity 73 

into a force-like command to update the cursor’s velocity, analogous to muscular force on the 74 

skeleton. Thus, an individual movement was produced by a series of commands, where each 75 

command acted on the cursor at an instant in time. 76 

We discovered that the same exact command is issued with different neural activity 77 

patterns in different movements. Critically, these different patterns transition according to low-78 

dimensional, invariant dynamics to patterns that issue the next command, even when the next 79 

command differs across movements. Thus, our results demonstrate that invariant dynamics drive 80 

commands to control different movements. 81 

While past work has presented a view of how dynamics operate in a feedforward manner, 82 

propagating an initial state of activity 23,33,34 to produce movement, it has been unclear how 83 

feedback24,35–37 integrates with invariant dynamics. Given that motor cortex is interconnected to 84 

larger motor control circuits including cortical38–41 and cortico-basal ganglia-thalamic 85 

circuits8,9,42,43, we introduce a hierarchical model44 of optimal feedback control (OFC) in which 86 
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the brain (i.e. larger motor control circuitry) uses feedback to control the motor cortex population 87 

which controls movement45,46. Our model reveals that invariant dynamics can help transform 88 

feedback into commands, as they reduce the input that a population needs to issue commands. 89 

Altogether, our results demonstrate that invariant neural dynamics are both used and useful for 90 

issuing commands across different movements.  91 

Results 92 

BMI to study neural population control of movement  93 

We used a BMI47–49 to study the dynamics of population activity as it issued commands 94 

for movement of a two-dimensional computer cursor (Fig. 1A). Population activity (20-151 95 

units) was recorded using chronically implanted microwire electrode arrays spanning bilateral 96 

dorsal premotor cortex and primary motor cortex. Each unit’s spiking rate at time 𝑡𝑡 (computed as 97 

the number of spikes in a temporal bin) was stacked into a vector of population activity 𝑥𝑥𝑡𝑡, and 98 

the BMI used a “decoder” given by matrix 𝐾𝐾 to linearly transform population activity into a two-99 

dimensional command:  100 

command𝑡𝑡 = 𝐾𝐾𝑥𝑥𝑡𝑡 (2) 101 

The command linearly updated the two-dimensional velocity vector of the computer cursor: 102 

velocity𝑡𝑡 = command𝑡𝑡 + α*velocity𝑡𝑡−1 + offset (3) 103 

We note that the BMI was not identical across the two subjects, as neural activity was modeled 104 

with different statistical distributions (Gaussian for Monkey G and a Point Processs47,48 for 105 

Monkey J, see STAR methods – “Neuroprosthetic decoding”). 106 

 The decoder was initialized as subjects passively watched cursor movement, calibrated as 107 

subjects used the BMI in closed-loop49 without performing trained overt movement, and then 108 

fixed for the experiment (Fig. 1B). Critically, the decoder was not fit during trained overt 109 
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movement, as was done previously16, so it did not demand neural dynamics associated with overt 110 

movement. 111 

 To study control of diverse movements, we trained monkeys to perform two different 112 

tasks (Fig. 1CD). Monkeys performed a center-out task in which they moved the cursor from the 113 

center of the workspace to one of eight radial targets, and they performed an obstacle-avoidance 114 

task in which they avoided an obstacle blocking the straight path to the target. Our tasks elicited 115 

up to 24 conditions of movement (with an average of 16-17 conditions per session), where each 116 

condition is defined as the task performed (“co” = center-out task, “cw” / “ccw” = 117 

clockwise/counterclockwise movement around the obstacle in the obstacle-avoidance task) and 118 

the target achieved (numbered 0 through 7). 119 

Importantly, the BMI enabled us to identify when neural activity issued the same exact 120 

command in different conditions (Fig. 1EF, Fig. S1). We considered two-dimensional, 121 

continuous-valued commands as the same if they fell within the same discrete bin for analysis. 122 

We categorized commands into 32 bins (8 angular x 4 magnitude) based on percentiles of the 123 

continuous-valued distribution (Fig. S1A; see STAR methods - “Command discretization for 124 

analysis”). On each session, a command (of the 32 discretized bins) was analyzed if it was used 125 

in a condition 15 or more times (Fig. S1B), for more than one condition. Each individual 126 

command was used with regularity during multiple conditions (on average ~7 conditions, Fig. 127 

S1B), within distinct local “subtrajectories” (Fig. 1F, Fig. S1, STAR methods – “Cursor and 128 

command trajectory visualization”). 129 

Using the BMI to test whether invariant dynamics are used to control different movements 130 

The BMI enabled us to test whether the pattern of neural activity systematically 131 

influences the subsequent pattern and command. We can visualize an activity pattern 𝑥𝑥𝑡𝑡 as a 132 
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point in high-dimensional activity space, where each neuron’s activity is one dimension, and 133 

visualize the transition between two patterns  𝑥𝑥𝑡𝑡 and  𝑥𝑥𝑡𝑡+1  as an arrow (Fig. 2A). Then, 134 

dynamics can be visualized as a flow field in activity space. This flow field is invariant because 135 

the predicted transition for a given neural activity pattern (i.e. its arrow) does not change, 136 

regardless of the current command or condition. Because there are more neurons than 137 

dimensions of the command, different activity patterns can issue the same command24,50 (Fig. 138 

2B), as is believed to be true in the natural motor system23,24,50. The BMI decoder defined the 139 

“decoder space” as the dimensions of neural activity that determine the command and the 140 

“decoder null space” as the orthogonal dimensions which have no consequence on the decoder. 141 

The BMI allowed us to observe the precise temporal order of commands (Fig. 2C) and test 142 

whether activity trajectories followed the flow of invariant dynamics to issue these commands 143 

for movements (Fig. 2D).  144 

The same command is issued by different neural activity patterns in different movements 145 

 First, we tested whether the same command is issued by different neural activity patterns 146 

in different movements, as would be expected if the current pattern influences the subsequent 147 

pattern and command (Fig. 3A). We calculated the distance between the average neural activity 148 

for a given command and condition and the average neural activity for the given command 149 

pooled over conditions. We then tested if this distance is larger than expected simply due to the 150 

variability of noisy neural activity. To emulate the scenario in which neural activity for a given 151 

command has the same distribution across conditions, we constructed shuffled datasets where we 152 

identified all observations of neural activity issuing a given command and shuffled their 153 

condition-labels, for all commands (see STAR methods – “Behavior-preserving shuffle of 154 
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activity”). In this scenario, the distance is expected to be greater than zero simply because 155 

average activity is estimated from limited samples and thus is subject to variability.  156 

Overall, neural activity issuing a given command significantly deviated across conditions 157 

relative to the shuffle distribution (Fig. 3B-E). Distances averaged within-session ranged from 158 

10% to 200% larger than shuffle distance (Fig. 3D, S2 for additional distributions). Distances 159 

were significantly larger than shuffle distances for a large fraction of individual (command, 160 

condition) tuples (~30% for Monkey G, ~70% for Monkey J), individual commands (~65% for 161 

G, ~90% for J) when aggregating over conditions, and individual neurons (~40% for G, ~80% 162 

for J) when aggregating over all (command, condition) tuples (Fig. 3E). Further, these deviations 163 

reflected the behavior; the distance between two patterns issuing the same command correlated 164 

with the distance between the command subtrajectories (Fig. S6E-H).  165 

Invariant dynamics predict the different neural activity patterns used to issue the same 166 

command 167 

Given that a command was not issued with the same activity pattern across conditions, 168 

we next constructed a model of invariant dynamics. We used single-trial neural activity 𝑥𝑥𝑡𝑡 from 169 

all conditions to estimate dynamics with a linear model (Fig. 4A): 170 

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 (4) 171 

We found that the dynamics 𝐴𝐴 were low-dimensional (~4 dimensions, Fig. 5D, S3B) and 172 

decaying to a fixed point (Fig. S3A,C), contrasting with rotational dynamics observed during 173 

natural motor control 12,13,16,22,51. See Fig. S3D for an illustration of how decaying invariant 174 

dynamics can control different movements. Notably, a non-linear dynamics model (a recurrent 175 

switching linear dynamical system52) did not out-perform these simple linear dynamics (Fig. 176 

S5C-F). 177 
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 We asked whether invariant dynamics predict the different activity patterns observed to 178 

issue the same command. Concretely, we predicted the activity pattern given the command it 179 

issued and its previous activity (Fig. 4A, see STAR methods – “Invariant dynamics model 180 

predictions”), combining the dynamics model (Equation 4) with the decoder (Equation 2). This 181 

analyzed whether the model could predict the component of the activity pattern that can vary 182 

when a given command is issued, i.e. the component in the decoder null space. For comparison, 183 

we also computed the prediction of neural activity when only given the command it issued (in 184 

the absence of a dynamics model). Further, we tested whether the invariant dynamics model 185 

generalized to new commands and conditions. Dynamics models were fit on neural activity 186 

specifically excluding individual commands or conditions, and these models were used to predict 187 

the neural activity for the left-out commands or conditions (Fig. 4B, Fig. S4, see STAR methods 188 

– “Invariant dynamics models”). 189 

We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on the 190 

shuffled datasets that preserved the temporal order of commands while shuffling the neural 191 

activity issuing the commands (see STAR methods – “Behavior-preserving shuffle of activity”). 192 

The shuffle dynamics model captured the expected predictability in neural activity due to the 193 

predictability of commands in the performed movements. 194 

On the level of single time points in individual trials, we found that the dynamics model 195 

significantly exceeded shuffle dynamics in predicting the activity pattern issuing a given 196 

command based on the previous pattern. Importantly, it generalized across left-out commands 197 

and conditions (Fig. 4C) and even when much larger subsets of commands and conditions were 198 

left-out (Fig. S4). We confirmed that the result was not driven by neural activity simply 199 
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representing behavioral variables (cursor kinematics, target location, and condition) in addition 200 

to the command (Fig. S5AB), consistent with previous work 53. 201 

The invariant dynamics model also predicted the different average activity patterns for 202 

each command and condition (Fig. 4D-G) significantly better than shuffle dynamics. It predicted 203 

20-40% of the condition-specific component of neural activity (i.e. the difference between 204 

average activity for a (command, condition) and the prediction of that activity based on the 205 

command alone) (Fig. 4F, see STAR methods – “Invariant dynamics model predictions”). The 206 

model predicted neural activity for the vast majority of commands, conditions, and neurons (Fig. 207 

4G), revealing that dynamics were indeed invariant. 208 

 Finally, the dynamics model preserved structure of neural activity across pairs of 209 

conditions (Fig. S6A-D) and predicted that the distance between two activity patterns issuing the 210 

same command would be correlated with the distance between the corresponding command 211 

subtrajectories (Fig. S6E-I). Altogether, these results show that invariant dynamics contribute to 212 

what activity pattern was used to issue a command, generalizing across commands and 213 

conditions. 214 

Invariant dynamics align with the decoder, propagating neural activity to issue the next 215 

command 216 

We next asked whether invariant dynamics were actually used to transition between 217 

commands. Concretely, we used the dynamics model to predict the transition from the current 218 

activity pattern to the next pattern, and then we applied the BMI decoder to this prediction of 219 

next pattern in order to predict the next command (i.e. its continuous value) (Fig. 5A). This tests 220 

whether invariant dynamics predict the component of neural activity in the decoder space, which 221 
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actually drives the BMI. The BMI enabled this analysis as it defines the transformation from 222 

neural activity to command which has not been measurable during natural motor control.  223 

We emphasize that invariant dynamics do not have to predict the command, i.e. the 224 

decoder space (Fig. 5B). Low-dimensional dynamics could be misaligned with the decoder such 225 

that they only predict the component of neural activity in the decoder null space. To assess this 226 

possibility, we fit an invariant dynamics model on the component of neural activity in the 227 

decoder null space (“decoder-null dynamics”, see STAR methods – “Invariant dynamics 228 

models”). While this model was restricted to the decoder-null space, it maintained similar 229 

dimensionality and eigenvalues to the full dynamics model (Fig. S3BC). 230 

Both the full dynamics and the decoder-null dynamics model predicted next neural 231 

activity significantly better than shuffle dynamics (Fig. 5C) on the level of single time points in 232 

individual trials. This reveals that invariant dynamics occupied decoder-null dimensions. Given 233 

that the full dynamics model was low-dimensional (Fig. S3B) and predicted ~4 dimensions more 234 

accurately than the rest of neural activity (Fig. 5D), we next tested whether the dynamics aligned 235 

with the decoder. Critically, the full dynamics model predicted the next command (Fig. 5E) 236 

better than shuffle dynamics, while decoder-null dynamics provided absolutely no prediction for 237 

the next command, as expected by construction. The dynamics were invariant, as the full 238 

dynamics model generalized across commands and conditions that were left-out from model 239 

fitting (Fig. 5E) and predicted the next command for the majority of (command, condition) tuples 240 

(Fig. 5F). These predictions preserved structure across pairs of conditions, such that invariant 241 

dynamics indicated how similar the next command would be across pairs of conditions (Fig. S6I-242 

K). 243 
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Notably, invariant dynamics could predict the turn that the next command would take 244 

following a given command in a specific condition relative to the average next command 245 

(averaged across conditions for the given current command) (Fig. 5GH). Specifically, the 246 

dynamics model predicted whether the turn would be clockwise or counter clockwise (Fig. 5H 247 

left) and the angle of turn (Fig 5H right) better than shuffle dynamics. Altogether, these results 248 

show that invariant dynamics align with the decoder and are used to transition between 249 

commands. 250 

An OFC model reveals that invariant dynamics reduce the input that a neural population 251 

needs to issue commands based on feedback 252 

We observe that the invariant dynamics model did not perfectly predict transitions 253 

between commands. Throughout movement there were substantial residuals (Fig. S3E-G), 254 

consistent with ongoing movement feedback driving neural activity in addition to invariant 255 

dynamics. However, it has been unclear how the brain can integrate feedback with invariant 256 

dynamics to control movement. Thus, we constructed a model of optimal feedback control 257 

(OFC) that incorporates invariant neural dynamics. 258 

We introduce a hierarchical model in which the brain controls the neural population 259 

which controls movement of the BMI cursor (Fig. 6A, Equation 5). Population activity 𝑥𝑥𝑡𝑡 issues 260 

commands for movement and is driven by three terms: invariant dynamics (which we 261 

hypothesize are intrinsic to some connectivity of the neural population), input, and noise. The 262 

brain transforms ongoing cursor state and population activity into the input to the population that 263 

is necessary to achieve successful movement. Concretely, the brain acts as an optimal linear 264 

feedback controller with knowledge of the neural population’s invariant dynamics, the BMI 265 

decoder, and the condition of movement. In this formulation, the brain’s objective was to achieve 266 
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the target while using the smallest possible input to the population, which minimizes the 267 

communication from the brain to the population. Importantly, this incentivized the OFC model to 268 

optimize input in order to use invariant dynamics to control movement, rather than relying solely 269 

on input to issue commands. Consistent with this formulation, experiments show that thalamic 270 

input into motor cortex is optimized during motor learning54. 271 

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 + input𝑡𝑡 + noise𝑡𝑡 (5)
inputt = 𝑓𝑓𝑡𝑡

LQR(𝑥𝑥𝑡𝑡, cursor𝑡𝑡 , condition)
cursor𝑡𝑡+1 = BMI(cursor𝑡𝑡 , 𝑥𝑥𝑡𝑡)

 272 

We simulated the model performing center-out and obstacle-avoidance movements with 273 

the decoders that were used in BMI experiments (see STAR methods – “Optimal feedback 274 

control model and simulation”). In the Full Dynamics Model, the brain computed the minimal 275 

input to a population that followed the invariant dynamics we observed experimentally. In the 276 

No Dynamics Model, the minimal input was computed to a neural population that had no 277 

invariant dynamics (i.e. the 𝐴𝐴 matrix was set to zero). To facilitate comparison, we designed the 278 

models to receive the same noise magnitude and to produce behavior with equal success and 279 

target acquisition time (Fig. 6B).  280 

These simulations revealed that the population required significantly less input in the Full 281 

Dynamics Model than in the No Dynamics Model (Fig. 6C). This effect was erased in the 282 

Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics were 283 

restricted to the decoder-null space. These results show that invariant dynamics that specifically 284 

align with the decoder, as experimentally-observed, can help the brain perform feedback control, 285 

reducing the input that the population needs to issue commands based on feedback.  286 

Finally, we confirmed the principle that feedback control with invariant dynamics makes 287 

use of distinct activity patterns to issue a particular command. As in Fig. 3, we compared the 288 
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OFC models’ neural activity against shuffled activity that preserved the temporal order of 289 

commands. The population activity distances for (command, condition) tuples were significantly 290 

larger than shuffle in the Full Dynamics Model but not in the No Dynamics Model (Fig. 6FG). 291 

Further, this effect depended on alignment between invariant dynamics and the decoder, as we 292 

detected no difference between the Decoder-Null Dynamics Model and shuffle (Fig. 6H). Thus, 293 

the OFC model used different neural activity patterns to issue the same command only when the 294 

invariant dynamics were useful for feedback control. 295 

Discussion 296 

Theoretical work shows that recurrent connectivity can give rise to neural population 297 

dynamics for motor control1,4,5 and endow the brain with the capacity to generate diverse 298 

physical movement3. Experimental work has found that population activity in the motor cortex 299 

follows similar and predictable dynamics across different movements11,12,16. But it has been 300 

untested whether dynamics that are invariant across movements are used to actually control 301 

movement, as the transformation from neural activity to motor command has been challenging to 302 

measure26,27 and model23–25. Here, we use a BMI to perform that test.  303 

We discovered that different neural activity patterns are used to issue the same command 304 

in different movements. The activity patterns issuing the same command vary systemically 305 

depending on the past pattern, and critically, they transition according to low-dimensional, 306 

invariant dynamics towards activity patterns that causally drive the subsequent command. Our 307 

results’ focus on the command provides a conceptual advance beyond previous work that 308 

characterized properties of dynamics during behavior 12,13,15,16, revealing that invariant dynamics 309 

are actually used to control movement.  310 
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Further, it has been unclear how the brain could integrate invariant dynamics with 311 

feedback 24,35–37 to control movement. We introduce a hierarchical model44 of optimal feedback 312 

control, in which the brain uses feedback to control a neural population that controls movement. 313 

Optimal control theory reveals that invariant dynamics that are aligned to the decoder can help 314 

the brain perform feedback control of movement, reducing the input that a population needs to 315 

issue the appropriate commands. The model verified that when invariant dynamics are used for 316 

feedback control, the same command is issued with different neural activity patterns across 317 

movements. Altogether, these findings form a basis for future studies on what connectivity and 318 

neural populations throughout the brain give rise to invariant dynamics, whether the brain sends 319 

inputs to a neural population to take advantage of invariant dynamics, and whether invariant 320 

dynamics actually drive muscles during physical movement. 321 

These results provide strong evidence against one traditional view that the brain reuses 322 

the same neural population activity patterns to issue a particular command. This perspective is 323 

present in classic studies that describe neurons as representing movement parameters55,56. It is 324 

still debated what movement parameters are updated by motor cortex neurons 28,57–59, as 325 

population activity encodes movement position 60–62, distance 63, velocity 61,62, speed 64, 326 

acceleration 65, and direction of movement 64,66–68 , as well as muscle-related parameters such as 327 

force/torque 55,68–70, muscle synergies 71,72, muscle activation 73–75, and even activation of motor 328 

units27. Regardless of how commands from motor cortex update physical movement, our 329 

findings using a BMI strongly suggest that the motor cortex does not use the same neural activity 330 

pattern to issue a specific motor command. Our findings instead support the recent proposal that 331 

neural activity in motor cortex avoids “tangling”11 while issuing commands.  332 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

We found that invariant dynamics do not perfectly determine the neural population’s next 333 

command. We propose that as the brain sends input to the neural population, it performs 334 

feedback control on the state of the neural population’s invariant dynamics in order to produce 335 

movement. This proposal expands the number of behaviors for which invariant dynamics are 336 

useful. This is because invariant dynamics do not need to define the precise neural 337 

trajectories12,34 that produce movement; they only need to provide useful transitions of neural 338 

activity that inputs can harness to control movement. In our data, simple dynamics (decaying 339 

dynamics with different time constants) in a low-dimensional activity space (~4 dimensions) 340 

were used to control many conditions of movement (~20 conditions). We find that invariant 341 

dynamics constrain neural activity in dimensions which do not directly matter for issuing current 342 

commands50, so that inputs in these dimensions can produce future commands (Fig. 6C). This 343 

mechanism refutes a simplistic interpretation of the minimal intervention principle76 in which 344 

neural activity should only be controlled in the few dimensions which directly drive commands. 345 

This also accords with the finding that motor cortex responses to feedback are initially in the 346 

decoder null space before transitioning to neural activity that issues corrective commands 24.  347 

There is almost surely a limitation to the behaviors that particular invariant dynamics are 348 

useful for. Motor cortex activity occupies orthogonal dimensions and shows a different influence 349 

on muscle activation during walking and trained forelimb movement 26, and follows different 350 

dynamics for reach and grasp movements 77. Notably, our finding of decaying dynamics for BMI 351 

control contrasts with rotational dynamics observed during natural arm movement 12,13,16,22. We 352 

speculate this could be because controlling the BMI relied more on feedback control than a well-353 

trained physical movement, because controlling the BMI did not require the temporal structure of 354 

commands needed to control muscles for movement2, and/or because controlling the BMI did not 355 
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involve proprioceptive feedback of physical movement35. Recent theoretical work shows that 356 

cortico-basal ganglia-thalamic loops can switch between different cortical dynamics useful for 357 

different temporal patterns of commands 46. 358 

The use of invariant dynamics to issue commands has implications for how the brain 359 

learns new behavior 78,79, enabling the brain to leverage pre-existing dynamics for initial learning 360 

25,80,81 and to develop new dynamics through gradual reinforcement 82,83. This learning that 361 

modifies dynamics relies on plasticity in cortico-basal ganglia circuits 83–85 and permits the brain 362 

to reliably access a particular neural activity pattern for a given command and movement 32, even 363 

if the same neural activity pattern is not used to issue the same command across different 364 

movements.  365 

Modeling invariant dynamics can inform the design of new neuroprosthetics that can 366 

generalize commands to new behaviors 16 and classify entire movement trajectories 86. We 367 

expect that as new behaviors are performed, distinct neural activity patterns will be used to issue 368 

the same command, but that invariant dynamics can predict and thus recognize these distinct 369 

neural patterns as signal for the BMI rather than noise. In addition, our results inform the design 370 

of rehabilitative therapies to restore dynamics following brain injury or stroke to recover 371 

movement 87,88. 372 

Overall, this study put the output of a neural population into focus, revealing how rules 373 

for neural dynamics are used to issue commands and produce different movements. This was 374 

achieved by studying the brain as it controlled the very neural activity we recorded. BMI 78,89–92, 375 

especially combined with technical advances in measuring, modeling, and manipulating activity 376 

from defined populations, provides a powerful technique to test emerging hypotheses about how 377 

neural circuits generate activity to control behavior.  378 
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Figures and legends 405 

 406 

Figure 1. BMI to study neural population control of movement.  407 

(A) Schematic of the BMI system.  408 

(B) Schematic of decoder calibration.  409 

(C) Single trials of BMI control.  410 

(D) Average target acquisition time per session.  411 
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(E) Example of the same command (black arrow) being issued during single trials of different 412 

conditions. The example command was in the -45 degree direction and the smallest magnitude 413 

bin of analysis.  414 

(F) Left: The average command subtrajectory from -500ms to 500ms. Right: The average 415 

position subtrajectory from -500ms to 500ms. See Fig. S1 for analysis of subtrajectories.  416 
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 417 

Figure 2. Using the BMI to test whether invariant dynamics are used to control different 418 

movements.  419 

(A) Illustration of invariant dynamics. 420 

(B) Multiple neural activity patterns (e.g. white and black square) issue the same command. An 421 

illustrative decoder defines the command at time 𝑡𝑡 as the difference between two neurons’ 422 

instantaneous activity  𝑥𝑥2(𝑡𝑡) −  𝑥𝑥1(𝑡𝑡), symbolized with orange arrows (top right) indicating the 423 

command’s magnitude and sign.  424 

(C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1 425 

(blue) and 2 (green) are driven by the same commands in different temporal orders. 426 
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(D) Neural activity that follows invariant dynamics h in order to issue the commands for 427 

movement. See Fig. S3D for another example of invariant dynamics (decaying dynamics).  428 
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 429 

Figure 3. The same command is issued by different neural activity patterns in different 430 

movements.  431 

(A) The same command (orange upward arrow) is issued in different conditions with different 432 

activity patterns (blue, green dots). These patterns deviate from the condition-pooled average 433 

activity pattern for the command (black dot). 434 

(B) Left: An example neuron’s average firing rate (colored dots) for the example command and 435 

conditions from Fig. 1F (position subtrajectories plotted at right legend), as well as the condition-436 

pooled average activity (dashed black line labeled “condition-pool”). The condition-shuffled 437 

distributions of average activity are shown with gray boxplots indicating the 2.5th, 25th, 50th, 75th, 438 

and 97.5th percentiles. Asterisk indicates the distance for the (command, condition, neuron) 439 
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exceeded the shuffle distance (p<0.05). 5/9 or 62.5% of the examples were significant. Distance 440 

was significantly greater than shuffle distance aggregating over all (command, condition, 441 

neuron) tuples: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 pooled 442 

over sessions. Right: Population distance normalized to the shuffle mean (colored dots). 7/9 or 443 

78% of examples were significant. Fig. S2A shows population distances for all (command, 444 

condition) tuples in this session. 445 

(C) The distribution of normalized population distances across (command, condition) tuples. 446 

Colored ticks indicate distances in (B) right. See Fig. S2BC for additional distance distributions. 447 

(D) Normalized population distance averaged across (command, condition) tuples (Monkey G 448 

[J]: n=9 [4] sessions). Bars indicate the average across sessions. Population distance was 449 

significantly greater than shuffle distances, aggregating over all (command, condition) tuples: 450 

Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled over sessions.  451 

(E) Left: Fraction of (command, condition) tuples with distance significantly greater than shuffle 452 

distance. Middle: Fraction of commands with distance significantly greater than shuffle distance, 453 

aggregating over conditions. Right: Fraction of neurons with distance significantly greater than 454 

shuffle distance, calculated for each (command, condition) separately and aggregating over all 455 

(command, condition) tuples for statistics. Throughout (E): dashed line indicates chance level 456 

(fraction equal to 0.05 significantly deviating from shuffle distance) and datapoints are each of 9 457 

[4] sessions for monkey G [J]. See Fig. S6E-H for the relationship between population distance 458 

and command subtrajectories across pairs of conditions. See Table S1 for statistics details.  459 
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 460 

Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the 461 

same command.  462 
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(A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots) that 463 

issue a given command (orange arrow) based on previous activity. See Fig. S6 for predictions of 464 

the relationship between activity patterns across pairs of conditions. 465 

(B) Models were tested on neural activity for a command (Left, magenta) or condition (Right, 466 

purple) left-out of training the model. See Fig. S4 for elaboration on invariant dynamics 467 

generalization. 468 

(C) The coefficient of determination (R2) of models predicting neural activity given the 469 

command it issues and previous activity, evaluated on test data not used for model fitting 470 

(Monkey G [J]: n=9 [4] sessions). See Fig. S3 for properties of the models. Inset shows raw R2, 471 

where “shuffle” is the 95th percentile of the shuffle distribution of R2. Main panel shows R2 472 

normalized to shuffle. Full dynamics, command left-out dynamics, and condition left-out 473 

dynamics all predicted neural activity significantly better than shuffle dynamics. For each model: 474 

Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. Fig. 475 

S5 shows models with behavior variables and non-linear dynamics. 476 

(D) Left. Average activity for the example neuron, command, and conditions from Fig. 3B, left. 477 

Right. Prediction of the activity in Left by the full dynamics model (stars), the shuffle dynamics 478 

model (black boxplot distribution), and the model predicting neural activity only using the 479 

command (gray triangle). 8/9 or 88.9% of these examples were predicted significantly better than 480 

shuffle dynamics. The full dynamics model predicted individual neuron activity better than 481 

shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-482 

value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).  483 

 484 

 485 
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(E) Left. Average population activity for the example command and conditions from Fig. 3B 486 

right, visualized along the activity dimension that captured the most variance (the first principal 487 

component, labeled “PC1”, of condition-specific average population activity). Right. Prediction 488 

of activity in Left by the full dynamics model (stars), the shuffle dynamics model (black boxplot 489 

distribution), and the model predicting neural activity only using the command (gray triangle). 490 

9/9 or 100.0% of these examples were predicted with significantly lower error than shuffle 491 

dynamics (prediction was calculated using full population activity, not just PC1). The full 492 

dynamics model predicted population activity with lower error than shuffle dynamics, 493 

aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-value < 0.001 for 494 

9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). 495 

(F) Model R2 from predicting the component of average neural activity for a given command that 496 

is specific to a condition, comparing the full dynamics model (dark gray bar and filled dots) with 497 

the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G [J]: n=9 [4] 498 

sessions). The full dynamics model predicted significantly more variance than shuffle dynamics 499 

(Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). 500 

(G) Left. Fraction of (command, condition) tuples where full dynamics predicts average 501 

population activity significantly better than shuffle dynamics. Center. Fraction of commands 502 

where full dynamics predicts average population activity significantly better than shuffle 503 

dynamics, calculated for each condition separately and then aggregated over all conditions for 504 

statistics. Right. Fraction of neurons where full dynamics predicts the neuron’s average activity 505 

significantly better than shuffle dynamics, calculated for each (command, condition) separately 506 

and then aggregated over all (command, condition) tuples for statistics. Throughout E: datapoints 507 

are each of 9[4] sessions for Monkey G[J].  508 
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See Table S1 for statistics details.  509 
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 510 

Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue 511 

the next command. 512 
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(A) A linear dynamics model predicts the transition from current neural activity (colored rings) 513 

to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e. the 514 

component of neural activity in the decoder space).  515 

(B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink 516 

plane), then they do not predict the next command (i.e. the component of neural activity in the 517 

decoder space).  518 

(C) The coefficient of determination (R2) of models predicting next neural activity given current 519 

neural activity, evaluated on test data not used for model fitting (Monkey G [J]: n=9 [4] 520 

sessions). Inset shows raw R2, where “shuffle” is the 95th percentile of the shuffle distribution of 521 

R2. Main panel shows R2 normalized to shuffle. All models predicted next neural activity 522 

significantly better than shuffle dynamics. For each model, Monkey G [J]: p-value < 0.001 for 523 

9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. 524 

(D) R2 of full model for each neural activity dimension (dynamics eigenvector), sorted by R2. 525 

(E) Same as (C), except prediction of next command given current neural activity (Monkey G 526 

[J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command 527 

significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey 528 

G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s. for 529 

0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command left-out 530 

dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions 531 

pooled. 532 

(F) Analyses of how well the next command is predicted for individual (command, condition) 533 

tuples. The full dynamics model predicted condition-specific next command better than shuffle 534 

dynamics, aggregating over all (command, condition) tuples (Monkey G [J]: p-value < 0.001 for 535 
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9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). Left. Fraction of (command, condition) 536 

tuples where full dynamics predicts the next command significantly better than shuffle dynamics 537 

(Monkey G [J]: n=9 [4] sessions). Right. Fraction of commands where full dynamics predicts the 538 

next command significantly better than shuffle dynamics, calculated for each condition 539 

separately and then aggregated over all conditions for statistics (Monkey G [J]: n=9 [4] sessions). 540 

(G) Visualization of the command angle (left) (i.e. the direction that the command points) for the 541 

example command and conditions (right) from Fig. 3B. For each condition (each row), 542 

visualization shows the average current command angle (first column), the average next 543 

command angle (second column), and the prediction of the average next command angle by the 544 

full dynamics model (third column).  545 

(H) For each (command, condition) tuple, prediction of the angle between the next command and 546 

the condition-pooled average next command. Left. Fraction of (command, condition) tuples for 547 

which the sign of the angle is accurately predicted (positive=turn counterclockwise, 548 

negative=turn clockwise). Full dynamics predictions are significantly more accurate than shuffle 549 

dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled 550 

sessions. Right. Error in predicted angle. Full dynamics predictions are significantly more 551 

accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 552 

0.001 for pooled sessions).  553 

See Table S1 for statistics details.  554 
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 555 

Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural 556 

population needs to issue commands based on feedback. 557 

(A) A model of optimal feedback control for movement that incorporates invariant neural 558 

dynamics. 559 

(B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and 560 

clockwise (cw) movements to 8 targets resulting in 24 conditions). Top: Full Dynamics Model that 561 

uses invariant dynamics fit on experimental data. Bottom: No Dynamics Model that uses dynamics 562 

matrix A set to 0.  563 

(C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9 [4] 564 

sessions). The population required significantly less input to control movement under the Full 565 

Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black ‘ND’). Un-566 

normalized data were pooled across sessions and compared with a linear mixed effect (LME) 567 

model between input magnitude and model category with session modeled as random effect 568 
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(Monkey G [J]: p-value < 0.001). Individual sessions were analyzed with a Wilcoxon signed-569 

rank test that paired condition across the models (Monkey G [J]: p-value<0.05 for 9/9 [4/4] 570 

sessions). 571 

(D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in input 572 

magnitude between Decoder-null Dynamics (pink ‘D’) and No Dynamics (black ‘ND’) when 573 

pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions (Monkey G 574 

[J]: p-value<0.05 for 0/9 [0/4] sessions).  575 

(E) The same command is issued across conditions in both the Full Dynamics Model and No 576 

Dynamics Model. Average position subtrajectories are shown locked to an example command 577 

across conditions.  578 

(F) Distance between average population activity for a (command, condition) and the average 579 

activity for the command pooling across conditions, normalized by the mean distance of the 580 

shuffle distribution (gray boxplots showing mean, 0th percentile, 25th, 75th, and 95th percentile). 581 

Left: data from Full Dynamics Model. Right: data from the No Dynamics Model. Asterisk 582 

indicates distance is greater than shuffle (p-value<0.05).  583 

(G) Same as (F), but each point is an individual session pooling over (command, condition) 584 

tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model were 585 

greater than shuffle. Data was pooled over sessions using a LME with session modeled as 586 

random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed with a 587 

Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No difference was 588 

detected in population distances between the No Dynamics Model and shuffle when pooling 589 

across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for 590 

Monkey G (J) on 0/9 (0/4) sessions). 591 
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(H) Same as (G), but for the Decoder-null Dynamics Model (pink ‘D’). No difference was 592 

detected in population distances between the Decoder-null Dynamics Model and shuffle when 593 

pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 594 

for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected in population distances 595 

between the No Dynamics Model and shuffle when pooling across sessions (Monkey G [J]: p-596 

value > 0.05) and on individual sessions (p-value<0.05 for Monkey G(J) on 0/9 (0/4) sessions). 597 

See Table S2 for statistics details.  598 
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STAR Methods 599 

RESOURCE AVAILABILITY 600 

Lead contact 601 

Further information and requests for resources and reagents should be directed to and will be 602 

fulfilled by the lead contacts, Rui M. Costa (rc3031@columbia.edu) and Jose M. Carmena 603 

(jcarmena@berkeley.edu). 604 

Materials availability 605 

This study did not generate new unique reagents. 606 

Data and code availability 607 

• Monkey BMI data (binned spike counts, cursor trajectories, condition parameters, 608 

decoder parameters, and task parameters) has been deposited the DANDI Archive at 609 

http://dandiarchive.org/dandiset/000404/draft and is publicly available as of the date of 610 

publication. Accession numbers / DOIs are listed in the key resources table. 611 

• All original code has been deposited at 612 

https://github.com/pkhanna104/bmi_dynamics_code and is publicly available as of the 613 

date of publication. DOIs are listed in the key resources table. 614 

• Any additional information required to reanalyze the data reported in this paper is 615 

available from the lead contact upon request. 616 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 617 

All training, surgery, and experimental procedures were conducted in accordance with the NIH 618 

Guide for the Care and Use of Laboratory Animals and were approved by the University of 619 

California, Berkeley Institutional Animal Care and Use Committee (IACUC). Two adult male 620 

rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey J) (Macaca mulatta, 621 
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RRID: NCBITaxon:9544) were used as subjects in this study. Prior to this study, Monkeys G and 622 

J were trained at arm reaching tasks and spike-based 2D neuroprosthetic cursor tasks for 1.5 623 

years. All animals were housed in pairs.   624 

METHOD DETAILS 625 
Electrophysiology and experimental setup 626 

Two male rhesus macaques were bilaterally, chronically implanted with 16 x 8 arrays of 627 

Teflon-coated tungsten microwire electrodes (35 mm in diameter, 500 mm separation between 628 

microwires, 6.5 mm length, Innovative Neurophysiology, Durham, NC) in the upper arm area of 629 

primary motor cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target 630 

areas was performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus 631 

brain 93. Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5 632 

- 3 mm, guided by stereotactic coordinates.  633 

During behavioral sessions, neural activity was recorded, filtered, and thresholded using the 634 

128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey J) or the 635 

256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey G). Channel 636 

thresholds were manually set at the beginning of each session based on 1–2 min of neural 637 

activity recorded as the animal sat quietly (i.e. not performing a behavioral task). Single-unit and 638 

multi-unit activity were sorted online after setting channel thresholds. Decoder units were 639 

manually selected based on a combination of waveform amplitude, variance, and stability over 640 

time. 641 

Neuroprosthetic decoding 642 

Subjects’ neural activity controlled a two-dimensional (2D) neuroprosthetic cursor in real-643 

time to perform center-out and obstacle-avoidance tasks. The neuroprosthetic decoder consists of 644 

two models:  645 
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1) A cursor dynamics model capturing the physics of the cursor’s position and velocity. 646 

2) A neural observation model capturing the statistical relationship between neural activity and the 647 

cursor.   648 

The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent for the 649 

cursor and to correspondingly update the cursor.   650 

Decoder algorithm and calibration -- Monkey G 651 

Monkey G used a velocity Kalman filter (KF) 94,95 that uses the following models for cursor 652 

state 𝑐𝑐𝑡𝑡 and observed neural activity 𝑥𝑥𝑡𝑡  :  653 

𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑡𝑡−1 + 𝑤𝑤𝑡𝑡,𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝑊𝑊) 654 

𝑥𝑥𝑡𝑡 = 𝐶𝐶𝑐𝑐𝑡𝑡 + 𝑞𝑞𝑡𝑡, 𝑞𝑞𝑡𝑡~𝑁𝑁(0,𝑄𝑄) 655 

In the cursor dynamics model, the cursor state 𝑐𝑐𝑡𝑡 ∈ 𝑅𝑅5 was a 5-by-1 vector 656 

�𝑝𝑝𝑝𝑝𝑠𝑠𝑥𝑥,𝑝𝑝𝑝𝑝𝑥𝑥𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥, 𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦, 1�
𝑇𝑇

, 𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5 captures the physics of cursor position and velocity, and 𝑤𝑤𝑡𝑡 657 

is additive Gaussian noise with covariance 𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5 capturing cursor state variance that is not 658 

explained by 𝐴𝐴.   659 

In the neural observation model, neural observation 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁 was a vector corresponding 660 

to spike counts from 𝑁𝑁 units binned at 10 Hz, or 100ms bins. 𝐶𝐶 models a linear relationship 661 

between the subjects’ neural activity and intended cursor state. The decoder only modeled the 662 

statistical relationship between neural activity and intended cursor velocity, so only the columns 663 

corresponding to cursor state velocity and the offset (columns 3-5) in 𝐶𝐶 were non-zero. 𝑄𝑄 is 664 

additive Gaussian noise capturing variation in neural activity that is not explained by 𝐶𝐶𝑐𝑐𝑡𝑡.  For 665 

Monkey G, 35-151 units were used in the decoder (median 48 units).  666 
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In summary, the KF is parameterized by matrices {𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5,𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5,𝐶𝐶 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁5,𝑄𝑄 ∈667 

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁}. The KF equations used to update the cursor based on observations of neural activity are 668 

defined as in 95. 669 

 The KF parameters were defined as follows.  For the cursor dynamics model, the 𝐴𝐴 and 𝑊𝑊 670 

matrices were fixed as in previous studies 96. Specifically, they were:  671 

𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.1
0

0
0.1

0
0

0 0
0 0

0.8
0

0 0
0.8 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
,       𝑊𝑊 =  

⎣
⎢
⎢
⎢
⎡
0 0
0 0

0
0

0
0

0
0

0 0
0 0

7
0

0 0
7 0

0 0 0 0 0⎦
⎥
⎥
⎥
⎤
 672 

where units of cursor position were in cm and cursor velocity in cm/sec.  673 

 For the neural observation model, the 𝐶𝐶 and 𝑄𝑄 matrices were initialized from neural and 674 

cursor kinematic data collected at the beginning of each experimental session while Monkey G 675 

observed 2D cursor movements that moved through either a center-out task or obstacle avoidance 676 

task. Maximum likelihood methods were used to fit 𝐶𝐶 and 𝑄𝑄.  677 

Next, Monkey G performed a “calibration block” where he performed the center-out or 678 

obstacle-avoidance task movements as the newly initialized decoder parameters were continuously 679 

calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This calibration block 680 

was performed in order to arrive at parameters that would enable excellent neuroprosthetic 681 

performance. Every 100ms, decoder matrices 𝐶𝐶 and 𝑄𝑄 were adapted using the recursive maximum 682 

likelihood CLDA algorithm 49.  Half-life values, defining how quickly 𝐶𝐶 and 𝑄𝑄 could adapt, were 683 

typically 300 sec, and adaptation blocks were performed with a weak, linearly decreasing “assist” 684 

(re-defining 𝑐𝑐𝑡𝑡 as a weighted linear combination of user-generated 𝑐𝑐𝑡𝑡 and optimal 𝑐𝑐𝑡𝑡 to drive the 685 

cursor to the target). Typical assist values at the start of the block were 90% user-generated, 10% 686 

optimal and decayed to 100% user-generated, 0% optimal over the course of the block. Following 687 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey G 688 

performing the center-out and obstacle-avoidance tasks. 689 

Decoder algorithm -- Monkey J 690 

Monkey J used a velocity Point Process Filter (PPF) 47,48. The PPF uses the same cursor 691 

dynamics model for cursor state 𝑐𝑐𝑡𝑡 as the KF above, but uses a different neural observations model 692 

(a Point Process model rather than a Gaussian model) for the spiking 𝑆𝑆𝑡𝑡1:𝑁𝑁 of each of 𝑁𝑁 neurons: 693 

𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑡𝑡−1 + 𝑤𝑤𝑡𝑡,𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝑊𝑊) 694 

𝑝𝑝(𝑆𝑆𝑡𝑡1:𝑁𝑁|𝑣𝑣𝑡𝑡) =  �(𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗)Δ)𝑆𝑆𝑡𝑡
𝑗𝑗
exp (−𝜆𝜆𝑗𝑗(𝑡𝑡|𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗)

𝑁𝑁

𝑗𝑗=1

Δ) 695 

In the neural observations model, neural observation 𝑆𝑆𝑡𝑡
𝑗𝑗 is the jth neuron’s spiking activity, 696 

equal to 1 or 0 depending on whether the jth neuron spikes in the interval (𝑡𝑡, 𝑡𝑡 +  Δ). We used Δ𝑡𝑡 697 

= 5ms bins since consecutive spikes rarely occurred within 5ms of each other. For Monkey J, 20 698 

or 21 units were used in the decoder (median 20 units). The probability distribution over spiking 699 

𝑝𝑝(𝑆𝑆𝑡𝑡1:𝑁𝑁|𝑣𝑣𝑡𝑡) was a point process with 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) as the jth neuron's instantaneous firing rate at 700 

time t. 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) depended on the intended cursor velocity 𝑣𝑣𝑡𝑡 ∈ 𝑅𝑅2 in the two dimensional 701 

workspace and the parameters 𝜙𝜙𝑗𝑗  for how neuron j encodes velocity. 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) was modeled 702 

as a log-linear function of velocity:  703 

𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) = exp (𝛽𝛽𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑇𝑇𝑣𝑣𝑡𝑡) 704 

where  𝜙𝜙𝑗𝑗  parameters consist of 𝛼𝛼𝑗𝑗 ∈ 𝑅𝑅2,𝛽𝛽𝑗𝑗 ∈ 𝑅𝑅1.   705 

In summary, the PPF is parameterized by {𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5,𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5,𝜙𝜙1:𝑁𝑁}.  The PPF equations 706 

used to update the cursor based on observations of neural activity are defined as in 48. 707 

The PPF parameters were defined as follows.  For the cursor dynamics model, the 𝐴𝐴 and 708 

𝑊𝑊 matrices are defined as:  709 
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𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.005
0

0
0.005

0
0

0 0
0 0

0.989
0

0 0
0.989 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
,       𝑊𝑊 =  

⎣
⎢
⎢
⎢
⎡
0 0
0 0

0
0

0                   0
0                   0

0 0
0 0

3.7 × 10−5
0

0                   0
3.7 × 10−5 0

0 0 0 0                   0⎦
⎥
⎥
⎥
⎤
 710 

where units of cursor position were in m and cursor velocity in m/sec. 711 

 For the neural observations model, parameters 𝜙𝜙1:𝑁𝑁 were initialized from neural and cursor 712 

kinematic data collected at the beginning of each experimental session while Monkey J observed 713 

2D cursor movements that moved through a center-out task. Decoder parameters were adapted 714 

using CLDA and optimal feedback control intention estimation as outlined in 47. Following CLDA, 715 

decoder parameters were fixed. Then the experiment proceeded with Monkey J performing the 716 

center-out and obstacle-avoidance tasks.  717 

Definition of the command for the BMI 718 

We defined the “command” for the BMI as the direct influence of subjects’ neural activity 719 

𝑥𝑥𝑡𝑡 (binned at 100ms) on the cursor. Concretely, in both decoders, the command was a linear 720 

transformation of neural activity that we write as 𝐾𝐾𝐾𝐾𝑡𝑡 which updated the cursor velocity. 721 

Command definition -- Monkey G 722 

For Monkey G, the update to the cursor state 𝑐𝑐𝑡𝑡 due to cursor dynamics and neural observation 723 

𝑥𝑥𝑡𝑡 can be written as: 724 

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 725 

where 𝐹𝐹𝑡𝑡𝑐𝑐𝑡𝑡−1 is the update in cursor state due to the cursor dynamics process and 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 is what we 726 

have defined as the command: the update in cursor state due to the current neural observation.  727 

𝐾𝐾𝑡𝑡 ∈ 𝑅𝑅5𝑥𝑥𝑥𝑥 is the Kalman Gain matrix and 𝐹𝐹𝑡𝑡 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡𝐶𝐶)𝐴𝐴. In practice 𝐾𝐾𝑡𝑡 converges to its steady-728 

state form 𝐾𝐾 within a matter of seconds 97, and thus 𝐹𝐹𝑡𝑡 converges to 𝐹𝐹 = (𝐼𝐼 − 𝐾𝐾𝐾𝐾)𝐴𝐴, so we can 729 

write the above expression in its steady state form:  730 
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𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝐾𝐾𝑡𝑡 740 

In our implementation, the structure of 𝐾𝐾 is such that neural activity 𝑥𝑥𝑡𝑡 directly updates cursor 731 

velocity, and velocity integrates to update position. The following technical note explains the 732 

structure of 𝐾𝐾. Due to the form of the 𝐴𝐴,𝑊𝑊 matrices, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) = 2. In addition, decoder 733 

adaptation imposed the constraint that the intermediate matrix 𝐶𝐶𝑇𝑇𝑄𝑄−1𝐶𝐶 was of the form 𝑎𝑎𝑎𝑎, 734 

where 𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝑇𝑇𝑄𝑄−1𝐶𝐶)). Due to this constraint, the rows of 𝐾𝐾 that update the position 735 

of the cursor are equal to the rows of 𝐾𝐾 that update the velocity multiplied by the update 736 

timestep: 𝐾𝐾(1: 2, ∶) = 𝐾𝐾(3: 4, ∶) ∗ 𝑑𝑑𝑑𝑑 98 (see independent velocity control in the reference). Given 737 

this structure of 𝐾𝐾, neural activity’s contribution to cursor position is the simple integration of 738 

neural activity’s contribution to velocity over one timestep.  739 

In summary, since 𝐾𝐾𝑥𝑥𝑡𝑡 reflects the direct effect of the motor cortex units on the velocity of 741 

the cursor, we term the velocity components of 𝐾𝐾𝑥𝑥𝑡𝑡  the “command”. We analyzed the neural spike 742 

counts binned at 100ms that were used online to drive cursor movements with no additional pre-743 

processing.   744 

Command definition -- Monkey J 745 

For Monkey J the cursor state updates in time as:  746 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) + 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 747 

where 748 

𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) = (𝐴𝐴𝑐𝑐𝑡𝑡−1 − 𝐾𝐾𝑡𝑡𝑒𝑒𝐶𝐶𝐶𝐶𝑐𝑐𝑡𝑡−1∆),     𝐾𝐾𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐶𝐶 749 

Here 𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) is the cursor dynamics process and 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 is the neural command.  𝑃𝑃𝑡𝑡 ∈ 𝑅𝑅5𝑥𝑥5 is the 750 

estimate of cursor state covariance, and 𝐶𝐶 ∈ 𝑅𝑅5𝑥𝑥𝑥𝑥 captures how neural activity encodes velocity 751 

as a matrix where each column is composed of �0, 0,𝛼𝛼𝑗𝑗𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,𝛼𝛼𝑗𝑗
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝛽𝛽𝑗𝑗�

𝑇𝑇
for the jth unit.  752 
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We define the command for analysis in this study as 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡, where 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 is a time-invariant 753 

matrix that almost perfectly approximates 𝐾𝐾𝑡𝑡. While the PPF’s 𝐾𝐾𝑡𝑡 does not necessarily converge 754 

in the same way it does in the KF, for all four analyzed sessions, neural activity mapped through 755 

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 ∈ 𝑅𝑅2𝑥𝑥𝑥𝑥 could account for 99.6, 99.6, 99.5, and 99.8 percent of the variance of the command 756 

respectively (𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 ≅ 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡). In addition, due to the accuracy of this linear approximation, we also 757 

match Monkey J’s timescale of neural activity and commands to that of Monkey G. In order to 758 

match timescales across the two animals (Monkey G: 100 ms updates, Monkey J: 5ms updates), 759 

Monkey J’s commands were aggregated into 100 ms bins by summing 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡 over 20 consecutive 760 

5ms bins to yield the aggregated command over 100ms. Correspondingly, Monkey J’s neural 761 

activity was also summed into 100ms bins by summing 𝑥𝑥𝑡𝑡 over 20 consecutive 5ms bins.  762 

Neuroprosthetic tasks 763 

Subjects performed movements in a two-dimensional workspace (Monkey J: 24cm x 24cm, 764 

Monkey G: 50cm x 28cm) for two neuroprosthetic tasks: a center-out task and an obstacle-765 

avoidance task. We define the movement “condition” as the task performed (“co” = center-out 766 

task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle in the obstacle-767 

avoidance task) and the target achieved (numbered 0 through 7). Thus, there were up to 24 different 768 

conditions possible (8 center-out conditions, 8 clockwise obstacle-avoidance conditions, 8 769 

counterclockwise obstacle-avoidance conditions). In practice, subjects mostly circumvented the 770 

obstacles for a given target location consistently in a clockwise or counterclockwise manner (as 771 

illustrated in Fig. 1C right) resulting in an average of 16-17 conditions per session. 772 

Center-out task:  773 

The center-out task required subjects to hold their cursor within a center target (Monkey J: 774 

radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of time (Monkey J: hold = 0.25 775 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

sec, Monkey G: hold = 0.2 sec) before a go cue signaled the subjects to move their cursor to one 776 

of eight peripheral targets uniformly spaced around a circle. Each target was equidistant from the 777 

center starting target (Monkey J: distance = 6.5cm, Monkey G: distance = 10cm). Subjects then 778 

had to position their cursor within the peripheral target (Monkey J: target radius = 1.2cm, Monkey 779 

G: target radius = 1.7cm) for a specified period to time (Monkey J: hold = 0.25, Monkey G: hold 780 

= 0.2sec). Failure to acquire the target within a specified window (Monkey J: 3-10 sec, Monkey 781 

G: 10 sec) or to hold the cursor within the target for the duration of the hold period resulted in an 782 

error. Following successful completion of a target, a juice reward was delivered. Monkey J was 783 

required to move his cursor back to the center target to initiate a new trial, and Monkey G’s cursor 784 

was automatically reset to the center target to initiate a new trial.  785 

Obstacle-avoidance task: 786 

Monkey G performed an obstacle-avoidance task with a very similar structure to the center-787 

out task. The only difference was that a square obstacle (side length 2 or 3 cm) would appear in 788 

the workspace centered exactly in the middle of the straight line connecting the center target 789 

position and peripheral target position. If the cursor entered the obstacle, the trial would end in an 790 

error, and the trial was repeated.  791 

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial 792 

(not necessarily center) target and another target. On arrival at the initial target, an ellipsoid 793 

obstacle appeared on the screen. If the cursor entered the obstacle at any time during the movement 794 

to the peripheral target, an error resulted, and the trial was repeated. Target positions and obstacle 795 

sizes and positions were selected to vary the amount of obstruction, radius of curvature around the 796 

obstacles, and spatial locations of targets. Trials were constructed to include the following 797 

conditions: no obstruction, partial obstruction with low-curvature, full obstruction with a long 798 
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distance between targets, and full obstruction with a short distance between targets thus requiring 799 

a high curvature. See 48 for further details. In this study, only trials that included partial obstruction 800 

or full obstruction were analyzed as “obstacle-avoidance” trials.  801 

Number of sessions  802 

We analyzed 9 sessions of data from Monkey G and 4 sessions of data from Monkey J where 803 

on each session, monkeys performed both the center-out and obstacle-avoidance tasks with the 804 

same decoder. Only successful trials were analyzed. 805 

Optimal feedback control model and simulation 806 

We introduce a model based on optimal feedback control (OFC) for how the brain can use 807 

invariant neural population dynamics to control movement based on feedback. From the 808 

perspective of the brain trying to control the BMI, we used the model to ask how invariant neural 809 

population dynamics affect the brain’s control of movement.  810 

Thus, we performed and analyzed simulations of a model in which the brain acts as an 811 

optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs to a 812 

neural population so that it performs the center-out and obstacle-avoidance tasks (Fig. 6). The 813 

feedback controller computed optimal inputs to the neural population based on the current cursor 814 

state and current neural population activity. Specifically, the inputs were computed as the solution 815 

of an optimization problem that used knowledge of the target and task, decoder, and the neural 816 

population’s invariant dynamics. We simulated 20 trials for each of 24 conditions: 8 center-out 817 

conditions, 8 clockwise obstacle-avoidance conditions, and 8 counterclockwise obstacle-818 

avoidance conditions. The neural and cursor dynamics processes in the simulation are summarized 819 

below:  820 

Neural population dynamics with input 821 
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In our simulation, the neural activity of 𝑁𝑁 neurons 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁 is driven by invariant dynamics 822 

𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 that act on previous activity 𝑥𝑥𝑡𝑡−1, an activity offset 𝑏𝑏 ∈ 𝑅𝑅𝑁𝑁, inputs from the feedback 823 

controller 𝑢𝑢𝑡𝑡−1 ∈ 𝑅𝑅𝑁𝑁 that are transformed by input matrix 𝐵𝐵 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁, and noise 𝜎𝜎𝑡𝑡−1 ∈ 𝑅𝑅𝑁𝑁: 824 

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 +  𝐵𝐵𝑢𝑢𝑡𝑡−1 + 𝜎𝜎𝑡𝑡−1 825 

The input matrix 𝐵𝐵 was set to be the identity matrix such that each neuron has its own 826 

independent input. Each neuron also had its own independent, time-invariant noise (see Noise 827 

section below for how the noise level was set). 828 

For notational convenience, an offset term was appended to 𝑥𝑥𝑡𝑡:  �
𝑥𝑥𝑡𝑡
1 �  ∈ 𝑅𝑅𝑁𝑁+1 . This enabled 829 

incorporating the offset 𝑏𝑏 into the neural dynamics matrix:  830 

�𝑥𝑥𝑡𝑡1 � = �𝐴𝐴 𝑏𝑏
0 1� �

𝑥𝑥𝑡𝑡−1
1 �  +  �𝐵𝐵0� 𝑢𝑢𝑡𝑡−1 + �𝜎𝜎𝑡𝑡−10 � 831 

BMI cursor dynamics  832 

The cursor update equations for the simulation matched the steady state cursor update equations 833 

in the online BMI experiment (see “Definition of the command for the BMI” above):  834 

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝑥𝑥𝑡𝑡−1 835 

As in the experiment, cursor state 𝑐𝑐𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐   where 𝑁𝑁𝑐𝑐 = 5 was a vector consisting of two-836 

dimensional position, velocity, and an offset: �𝑝𝑝𝑝𝑝𝑠𝑠𝑥𝑥,𝑝𝑝𝑝𝑝𝑥𝑥𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥,𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦, 1�
𝑇𝑇

. 𝐾𝐾 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁 was the 837 

decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 (Monkey J).  𝐹𝐹 ∈838 

𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 was set to the decoder’s steady-state cursor dynamics matrix (Monkey G). For Monkey J, 839 

𝐹𝐹 was estimated using the expression for calculating the steady-state cursor dynamics matrix:  840 

𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = (𝐼𝐼 − 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 𝐴𝐴100𝑚𝑚𝑚𝑚, where 𝐼𝐼 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐𝑥𝑥𝑁𝑁𝑐𝑐 ,𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐 was set using the 𝛼𝛼,𝛽𝛽 velocity 841 

encoding parameters from the point process filter (see above): 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, ∶) =  �0    0    0.01 ∗842 

𝛼𝛼𝑗𝑗(1)   0.01 ∗ 𝛼𝛼𝑗𝑗(2)    0.01 ∗ 𝛽𝛽𝑗𝑗�. Values in 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 were multiplied by 0.01 to adjust for velocities 843 
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expressed in units of cm/sec (in the simulation) instead of m/sec (as in PPF). 𝐴𝐴100𝑚𝑚𝑚𝑚 was set to the 844 

same 𝐴𝐴 used by Monkey G so that the cursor dynamics would be appropriate for 100ms timesteps:   845 

𝐴𝐴100𝑚𝑚𝑚𝑚 =  

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.1
0

0
0.1

0
0

0 0
0 0

0.8
0

0 0
0.8 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
 846 

Joint dynamics of neural activity and cursor 847 

The feedback controller sent inputs to the neural population which were optimal considering 848 

the task goal, the cursor’s current state, the neural population’s invariant dynamics, and the neural 849 

population’s current activity. To solve for the optimal input given all the listed quantities, first, the 850 

neural and cursor states are jointly defined. We append the cursor state 𝑐𝑐𝑡𝑡 to the neural activity 851 

state �𝑥𝑥𝑡𝑡1 � to form 𝑧𝑧𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁+1+𝑁𝑁𝑐𝑐:  852 

𝑧𝑧𝑡𝑡 =  �
𝑥𝑥𝑡𝑡
1
𝑐𝑐𝑡𝑡
� = �

𝐴𝐴 𝑏𝑏 0
0 1 0
𝐾𝐾 0 𝐹𝐹

� �
𝑥𝑥𝑡𝑡−1

1
𝑐𝑐𝑡𝑡−1

�  + �
𝐵𝐵
0
0
� 𝑢𝑢𝑡𝑡−1 + �

𝜎𝜎𝑡𝑡−1
0
0
� 853 

In words, this expression defines a linear dynamical system where input 𝑢𝑢𝑡𝑡−1 influences only 854 

the neural activity 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡 evolves by invariant dynamics 𝐴𝐴 with offset vector 𝑏𝑏, and 𝑥𝑥𝑡𝑡 drives cursor 855 

𝑐𝑐𝑡𝑡 through the BMI decoder 𝐾𝐾. Finally, noise 𝜎𝜎𝑡𝑡−1 only influences neural activity 𝑥𝑥𝑡𝑡 (see Noise 856 

section below for how the noise level was set).  857 

OFC to reach a target 858 

Our OFC model computes input 𝑢𝑢𝑡𝑡 to the neural population such that the activity of the neural 859 

population 𝑥𝑥𝑡𝑡 drives the cursor to achieve the desired final cursor state (i.e. the target) with minimal 860 

magnitude of input 𝑢𝑢𝑡𝑡. Concretely, in the finite horizon LQR model, the optimal control sequence 861 

(𝑢𝑢𝑡𝑡 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) is computed by minimizing the following cost function:  862 
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𝐽𝐽(𝑢𝑢0:𝑇𝑇−1) = (��(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑇𝑇
𝑄𝑄(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝑢𝑢𝑡𝑡𝑇𝑇𝑅𝑅𝑢𝑢𝑡𝑡))

𝑇𝑇−1

𝑡𝑡=0

+ �𝑧𝑧𝑇𝑇 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑇𝑇
𝑄𝑄𝑇𝑇(𝑧𝑧𝑇𝑇 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 863 

In our model, 𝑄𝑄 = 0 ∈ 𝑅𝑅(𝑁𝑁+1+𝑁𝑁𝑐𝑐)×(𝑁𝑁+1+𝑁𝑁𝑐𝑐),𝑅𝑅 = 𝐼𝐼 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 , and 𝑄𝑄𝑇𝑇 =864 

 �
0 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 0 0

0 0 ∈ 𝑅𝑅1 0
0 0 𝐼𝐼 ∗ 102 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

� ∈ 𝑅𝑅(𝑁𝑁+1+𝑁𝑁𝑐𝑐)×(𝑁𝑁+1+𝑁𝑁𝑐𝑐). Thus, the final cursor state 865 

error is penalized, and the magnitude of the input to the neural population 𝑢𝑢𝑡𝑡 is penalized (with 866 

setting 𝑅𝑅 as non-zero). Because the magnitude of the input to neural activity is penalized, the 867 

controller sends the minimal input to the neural population to produce task behavior. We defined 868 

our cost function so that the cursor state during movement before the final cursor state is not 869 

penalized, and the neural state is never penalized. 870 

The optimal control sequence (𝑢𝑢𝑡𝑡 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) is given by 𝑢𝑢𝑡𝑡 =  𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 871 

where feedback gain matrices (𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) are computed iteratively solving the 872 

dynamic Ricatti equation backwards in time.  We note that we computed the LQR solution for 𝑢𝑢𝑡𝑡 873 

using the dynamics of state error 𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and that the dynamics of state error for non-zero target 874 

states are affine rather than strictly linear.   875 

OFC for center-out task 876 

Center-out task simulations were run with the initial cursor position in the center of the 877 

workspace at 𝑐𝑐0 = [0, 0, 0, 0, 1] and the target cursor state at �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦, 𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥 = 0, 𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦 =878 

0, 1�
𝑇𝑇
. Targets were positioned 10cm away from the origin (same target arrangement as Monkey 879 

G). Target cursor velocity was set to zero to enforce that the cursor should stop at the desired target 880 

location.  881 

Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey 882 

J were used (𝐹𝐹,𝐾𝐾) in simulations. The invariant neural dynamics model parameters (𝐴𝐴, 𝑏𝑏) were 883 
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varied depending on the simulated experiment (see below). The horizon for each trial to hit its 884 

target state was set to be 𝑇𝑇 = 40 (corresponding to 4 seconds based on the BMI’s timebin of 885 

100ms). Constraining each trial to be equal length facilitated comparison of performance across 886 

different simulation experiments. We verified that all of our simulated trials completed their tasks 887 

successfully. 888 

OFC for obstacle-avoidance using a heuristic 889 

Obstacle-avoidance task simulations were performed with the same initial and target cursor 890 

states as the center-out task, except that the cursor circumvented the obstacle to reach the target in 891 

both clockwise and counterclockwise movements. We used a heuristic strategy to direct cursor 892 

movements around the obstacle; we defined a waypoint as an intermediate state the cursor had to 893 

reach enroute to the final target. The heuristic solution performs optimal control from the start 894 

position to the waypoint, and then optimal control from the waypoint to the final target. 895 

Importantly, this solution minimizes the amount of input needed to accomplish these goals. We 896 

used a heuristic solution because the linear control problem of going from the initial cursor state 897 

to the final target cursor state with the constraint of avoiding an obstacle is not a convex 898 

optimization problem. 899 

Concretely, for the first segment of the movement, a controller with a horizon T=20 directed 900 

the cursor to the waypoint, and then a controller with horizon T=20 directed the cursor from the 901 

waypoint to the final target (such that the trial length was matched to the center-out task simulation 902 

with T=40).  903 

The waypoint was defined relative to the obstacle position as follows. First the vector between 904 

the center target and the obstacle position was determined (𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). The 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was then 905 

rotated either +90 degrees or -90 degrees corresponding to clockwise and counterclockwise 906 
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movements. The waypoint position was a 6cm distance in the direction of the rotated vector, from 907 

the obstacle center.  Finally, the desired velocity vector of the intermediate target was set to be in 908 

the direction of  𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, with a magnitude of 10 cm/s, so that the cursor would be moving in a 909 

direction consistent with reaching its final target in the second segment of the movement after the 910 

waypoint was reached.   911 

To compute the input 𝑢𝑢𝑡𝑡 to execute these movements, we defined the state error at each time 912 

𝑡𝑡 as 𝑧𝑧𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑡𝑡 , where 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was the waypoint for the first half of the movement, and 913 

𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was the final target for the second half of the movement. The linear quadratic regulator 914 

feedback gain 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 matrices were computed on the appropriate state error dynamics with the 915 

shortened horizon T=20.  916 

“Full Dynamics Model” Simulation 917 

Simulations of the “Full Dynamics Model” consisted of OFC with the invariant dynamics 918 

parameters (𝐴𝐴, 𝑏𝑏) that were fit on experimentally-recorded neural activity from each subject and 919 

session (see “Invariant dynamics models” below, under “Quantification and Statistical Analysis”). 920 

𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using these experimentally-observed (𝐴𝐴, 𝑏𝑏) parameters. The initial state of 921 

neural activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the fixed point of the dynamics. 922 

“No Dynamics Model” Simulation 923 

Simulations of the “No Dynamics Model” consisted of OFC with invariant dynamics 924 

parameter 𝐴𝐴 set to zero (𝐴𝐴 = 0). The experimentally-observed offset 𝑏𝑏 was still used from each 925 

subject and session. 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using 𝐴𝐴 = 0 and the experimentally-observed 𝑏𝑏, and thus 926 

it was different than in the “Full Dynamics Model.” The initial state of neural activity (i.e. 𝑥𝑥𝑡𝑡 at 927 

t=0) was set to offset 𝑏𝑏, the fixed point of dynamics with 𝐴𝐴 = 0. 928 

“Decoder-null Dynamics Model” Simulation 929 
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Simulations of the “Decoder-null Dynamics Model” consisted of OFC with the 930 

experimentally-observed invariant dynamics parameters (𝐴𝐴, 𝑏𝑏) that were restricted to the decoder-931 

null space, i.e. each invariant dynamics model was fit only on the projection of neural activity into 932 

the decoder-null space (see “Invariant dynamics models” under “Quantification and Statistical 933 

Analysis”). 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using these experimentally-observed decoder-null (𝐴𝐴, 𝑏𝑏) 934 

parameters, and thus it was different than in the “Full Dynamics Model.” The initial state of neural 935 

activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the fixed point of the decoder-null invariant dynamics. 936 

The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”, 937 

which consisted of OFC with 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 computed using 𝐴𝐴 = 0 and the experimentally-observed 938 

decoder-null offset 𝑏𝑏 for each subject and session, and thus it was different than in the previously 939 

defined models. The initial state of neural activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the decoder-null offset 940 

𝑏𝑏, the fixed point of dynamics with 𝐴𝐴 = 0. 941 

Noise  942 

In our OFC model, movement errors arise due to noise in the neural activity, and 943 

subsequent neural activity issues commands based on feedback to correct these errors. We used 944 

two considerations to choose the noise level for neural activity. First, we sought to add a level of 945 

neural noise that was comparable to the neural “signal” needed to perform control in the absence 946 

of noise. Second, we wanted to add the same level of noise to the dynamics model (either “Full 947 

Dynamics Model” or “Decoder-null Dynamics Model”) and the corresponding “No Dynamics 948 

Model,” in order to facilitate comparison.  949 

Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each 950 

of 24 conditions, and we calculated 𝑎𝑎, the average variance of a neuron across time and trials.  951 
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Then for our noisy simulations of the “No Dynamics Model” and the corresponding 952 

dynamics models, Gaussian noise with zero mean and fixed variance 𝑎𝑎 was added to each neuron 953 

at each timestep: 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑢𝑢𝑡𝑡−1 + 𝜎𝜎𝑡𝑡−1, where 𝜎𝜎𝑡𝑡~𝑁𝑁(0,𝑎𝑎𝑎𝑎). Thus, the overall level of 954 

added noise (the sum of noise variance over neurons) matched the overall level of signal in the 955 

noiseless No Dynamics Model simulation (sum of activity variance over neurons). 956 

We note that our main findings (Fig. 6CD, 6GH) held even with different noise levels.  957 

QUANTIFICATION AND STATISTICAL ANALYSIS 958 

Command discretization for analysis 959 

We sought to analyze the occurrence of the same command across different movements. 960 

Commands on individual time points were analyzed as the same command if they fell within the 961 

same discretized bin of continuous-valued, two-dimensional command space. All commands from 962 

rewarded trials in a given experimental session (including both tasks) were aggregated and 963 

discretized into 32 bins. Individual commands were assigned to one of 8 angular bins (bin edges 964 

were 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude 965 

bins. Angular bins were selected such that the straight line from the center to each of the center-966 

out targets bisected each of the angular bins as has been done in previous work50 (Fig. S1A). 967 

Magnitude bin edges were selected as the 23.75th, 47.5th, 71.25th, and 95th percentile of the 968 

distribution of command magnitudes for that experimental session. Commands falling between the 969 

95th and 100th percentile of magnitude were not analyzed to prevent very infrequent noisy 970 

observations from skewing the bin edges for command magnitude.  971 

Conditions that used a command regularly 972 

For each session, the number of times each of the 32 (discretized) commands was used in a 973 

given condition was tabulated. If the command was used >= 15 times for that condition within a 974 
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given session pooling across trials, that condition was counted as using the command regularly 975 

and was used in all analyses involving (command, condition) tuples. Commands that were used < 976 

15 times were not used in analysis involving (command, condition) tuples. We note that the main 977 

results of the study were not affected by this particular selection. Typically, an individual 978 

command is used regularly in 5-10 conditions (distribution shown in Fig. S1A).  979 

Cursor and command trajectory visualization 980 

Cursor position subtrajectories  981 

To visualize the cursor position trajectories locally around the occurrence of a given 982 

command for each condition, we computed the average position “subtrajectory,” which we define 983 

as the average trajectory in a window locked to the occurrence of the given command. For each 984 

condition, cursor positions from successful trials were aggregated. Cursor position subtrajectories 985 

shown in Fig. 1F are from representative session 0 from Monkey G. A matrix of x-axis and y-axis 986 

position trajectories was formed by extracting a window of -500ms to 500ms (5 previous samples 987 

plus 5 proceeding samples) around each occurrence of the given command in a given condition 988 

(total of Ncom-cond occurrences, yielding a 2 x 11 x Ncom-cond matrix).  Averaging over the Ncom-cond 989 

observations yielded a condition-specific command-locked average position subtrajectory (size: 2 990 

x 11) for each condition. If a command fell in the first 500ms or last 500ms of a trial, its occurrence 991 

was not included in the subtrajectory calculation. The position subtrajectories were translated such 992 

that the occurrence of the given command was set to (0, 0) in the 2D workspace (Fig. 1F right, 993 

Fig. S1C middle).  994 

Command subtrajectories  995 

To visualize trajectories of commands around the occurrence of a given command for each 996 

condition (Fig. 1G, right), we followed the same procedure as described above for cursor position 997 
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subtrajectories to tabulate a 2 x 11 x Ncom-cond matrix but with x-axis and y-axis commands instead 998 

of positions. We note that this matrix consisted of the continuous, two-dimensional velocity values 999 

of the commands. Averaging over the Ncom-cond observations yielded the average condition-specific 1000 

command subtrajectory (size: 2 x 11 array), as shown in Fig. 1F left for example conditions. 1001 

Matching the condition-pooled distribution 1002 

In many analyses, data (e.g. neural activity or a command-locked cursor trajectory) associated 1003 

with a command and a specific condition is compared to data that pools across conditions for that 1004 

same command (Figs. 3-5). The distribution of the precise continuous value of the command 1005 

within the command’s bin may systematically differ between condition-specific and condition-1006 

pooled datasets, which we refer to as ‘within-command-bin differences.’ To ensure within-1007 

command-bin differences are not the source of significant differences between condition-specific 1008 

and condition-pooled data associated with a command, we developed a procedure to subselect 1009 

observations of condition-pooled commands so that the mean of the condition-pooled command 1010 

distribution is matched to the mean of the condition-specific command distribution. This procedure 1011 

ensures that any differences between the condition-specific quantity and condition-pooled quantity 1012 

are not due to ‘within-command-bin differences’. This procedure is performed on all analyses 1013 

comparing condition-specific data to a condition-pooled distribution of data. The matching 1014 

procedure is as follows:  1015 

1. From the condition-specific distribution, compute the command mean 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (size: 1016 

2x1) and standard deviation 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (size: 2x1).  1017 

2. Compute the deviation of each continuous-valued command observation in the condition-1018 

pooled distribution from the condition-specific distribution.  1019 
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a. Use the condition-specific distribution’s parameters to z-score the condition-pooled 1020 

distribution’s continuous-valued command observations by subtracting 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 1021 

dividing by 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 1022 

b. Compute the deviation of condition-pooled observations from the condition-specific 1023 

distribution as the L2-norm of the z-scored value 1024 

c. For indices in the condition-pooled distribution that correspond to data in the condition-1025 

specific distribution, over-write the L2-norm of the z-scored values with zeros. This step 1026 

prevents the condition-pooled distribution from dropping datapoints that are in the 1027 

condition-specific data, thereby ensuring the condition-pooled distribution contains the 1028 

condition-specific data.  1029 

3. Remove the 5% of condition-pooled observations with the largest deviations  1030 

4. Use a Student’s t-test to assess if the remaining observations in the condition-pooled 1031 

distribution are significantly different than the condition-specific distribution for the first and 1032 

second dimension of the command (two p-values) 1033 

5. If both p-values are > 0.05, then the procedure is complete and the remaining observations 1034 

in the condition-pooled distribution are considered the “command-matched condition-pooled 1035 

distribution” for a specific command and condition. 1036 

6. If either or both p-values are < 0.05, return to step 3 and repeat.  1037 

If the condition-pooled distribution cannot be matched to the condition-specific distribution such 1038 

that the size of the condition-pooled distribution is larger than the condition-specific distribution, 1039 

the particular (command, condition) will not be included in the analysis.  1040 

Comparing command subtrajectories  1041 
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To assess whether a command is used within significantly different command subtrajectories 1042 

in different conditions (Fig. S1 DE), the following analysis is performed for conditions that have 1043 

sufficient occurrences of the command (>=15): 1044 

1. The condition-specific average command subtrajectory is computed by averaging over 1045 

Ncom-cond single-trial command subtrajectories for the condition, as defined above in “Visualization 1046 

of command subtrajectories”.  1047 

2. The condition-pooled average command subtrajectory is computed: all the single-trial 1048 

command subtrajectories (Ncom) are pooled across trials from all conditions that use the given 1049 

command regularly (command occurs >= 15 times in a session) to create a condition-pooled 1050 

distribution of single-trial command subtrajectories (a 2 x 11 x Ncom matrix), which is then 1051 

averaged to yield the condition-pooled average command subtrajectory (a 2 x 11 matrix).   1052 

3. In order to test whether condition-specific average command subtrajectories were 1053 

significantly different from the condition-pooled average command subtrajectory, a distribution of 1054 

subtrajectories was created by subsampling the condition-pooled distribution to assess expected 1055 

variation in subtrajectories due to limited data. Specifically, Ncom-cond single-trial command 1056 

subtrajectories were sampled from a condition-pooled distribution of command subtrajectories that 1057 

was command-matched to the specific condition (see above, “Matching the condition-pooled 1058 

distribution”). These Ncom-cond samples were then averaged to create a single subtrajectory, 1059 

representing a plausible condition-specific average subtrajectory under the view that the condition-1060 

specific subtrajectories are just subsamples of the condition-pooled subtrajectories. This procedure 1061 

was repeated 1000 times and used to construct a bootstrapped distribution of 1000 command 1062 

subtrajectories.  1063 
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4. This distribution was then used to test whether condition-specific subtrajectories deviated 1064 

from the condition-pooled subtrajectory more than would be expected by subsampling and 1065 

averaging the condition-pooled subtrajectory distribution. Specifically, the true condition-specific 1066 

command subtrajectory distance from the condition-pooled command subtrajectory was computed 1067 

(L2-norm between condition-specific 2x11 subtrajectory and condition-pooled 2x11 subtrajectory) 1068 

and compared to the bootstrapped distribution of distances: (L2-norm between each of the 1000 1069 

subsampled averaged 2x11 command subtrajectories and the condition-pooled 2x11 command 1070 

subtrajectory). A p-value for each condition-specific command subtrajectory distance was then 1071 

derived.   1072 

The same analysis is also performed using only the next command following a given command 1073 

(Fig. S1 E).  1074 

Behavior-preserving shuffle of activity 1075 

We shuffled neural activity in a manner that preserved behavior as a control for comparison 1076 

against the hypothesis that neural activity follows invariant dynamics beyond the structure of 1077 

behavior. Shuffled datasets preserved the timeseries of discretized commands but shuffled the 1078 

neural activity that issues these commands. In order to create a shuffle for each animal on each 1079 

session, all timebins from all trials from all conditions were collated. The continuous-valued 1080 

command at each timebin was labeled with its discretized command bin. For each of the 32 1081 

discretized command bins, all timebins corresponding to a particular discretized command bin 1082 

were identified. The neural activity in these identified timebins was then randomly permuted. A 1083 

complete shuffled dataset was constructed by performing this random permutation for all 1084 

discretized command bins. This full procedure was repeated 1000 times to yield 1000 shuffled 1085 

datasets.  1086 
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Analysis of activity issuing a given command 1087 

Condition-specific neural activity distances 1088 

For each session, (command, condition) tuples with >= 15 observations were analyzed.  For 1089 

each of these (command, condition) tuples, we analyzed the distance between condition-specific 1090 

average activity and condition-pooled average activity, both for individual neurons and for the 1091 

population’s activity vector (Fig. 3B-E).   1092 

Analysis of individual neurons for a given (command, condition) tuple, given 𝑁𝑁 neurons:   1093 

1. Compute the condition-specific average neural activity (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑁𝑁) as the average 1094 

neural activity over all observations of the command in the condition. 1095 

2. Compute the condition-pooled average activity (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑅𝑅𝑁𝑁) as the average neural 1096 

activity over observations of the command pooling across conditions. The command-matching 1097 

procedure is used to form the condition-pooled dataset to account for within-command-bin 1098 

differences (see “Matching the condition-pooled distribution” above).   1099 

3. Compute the absolute value of the difference between the condition-specific and condition-1100 

pooled averages: 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 - 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∈ 𝑅𝑅𝑁𝑁 .   1101 

4. Repeat steps 1-3 for each shuffled dataset i, yielding 𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for 𝑖𝑖 = 1: 1000.   1102 

5. For each neuron j, compare 𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗) to the distribution of 1103 

𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗) for i = 1:1000. Distances greater than the 95th percentile of the shuffled 1104 

distribution are deemed to have significantly different neuron j activity for a command-condition.  1105 

Analysis of population activity for a given (command, condition) tuple:  1106 

To compute population distances, one extra step was performed. We sought to ensure that the 1107 

distances we calculated were not trivially due to “within-bin differences” between the condition-1108 

specific and condition-pooled distributions. The first step to ensure this was described above in 1109 
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“Matching the condition-pooled distribution”. The second step was to only compute distances in 1110 

the dimensions of neural activity that are null to the decoder and do not affect the composition of 1111 

the command. Thus, any subtle remaining differences in the distribution of commands would not 1112 

influence population distances. 1113 

To compute distances in the dimensions of neural activity null to the decoder, we computed 1114 

an orthonormal basis of the null space of decoder matrix 𝐾𝐾 ∈ 𝑅𝑅2𝑥𝑥𝑥𝑥 using scipy.linalg.null_space, 1115 

yielding 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁−2. The columns of 𝑉𝑉 correspond to basis vectors spanning the 𝑁𝑁 − 2 1116 

dimensional null space. Using 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 we computed: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙 =  𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ ∗ 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 1117 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ ∗ 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. We then calculated the population distance metric (L2-1118 

norm), normalized by the square-root of the number of neurons: 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =/√𝑁𝑁2  ,1119 

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅1.  In step 5, the single value 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is compared to the distribution 1120 

of 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for i = 1:1000  to derive a p-value for each (command, condition) 1121 

tuple. The fraction of (command, condition) tuples with population activity distances greater than 1122 

the 95th percentile of the shuffle data (i.e. significant) is reported in Fig. 3E. 1123 

For visualization of distances relative to the shuffle distribution (Fig. 3B-D), we divided the 1124 

observed population distance for each (command, condition) tuple by the mean of the 1125 

corresponding shuffle distribution. With this normalization, we can visualize the spread of the 1126 

shuffle distribution (Fig. 3B, right) and we can interpret a normalized distance of 1 as the expected 1127 

distance according to the shuffle distribution. 1128 

Activity distances pooling over conditions 1129 

To test whether condition-specific neural activity significantly deviated from condition-1130 

pooled neural activity for a given command (Fig. 3E, middle), we aggregated the distance between 1131 

condition-specific and condition-pooled average activity over all 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 conditions in which the 1132 
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command was used ( >= 15 occurrences of the command in a condition) . An aggregate command 1133 

distance is computed: 𝑑𝑑𝜇𝜇𝑝𝑝𝑜𝑜𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∑ 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑗𝑗=1  , and an aggregate shuffle 1134 

distribution is computed: 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∑ 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑗𝑗=1 . Then, 1135 

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 is compared to the distribution of 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 for 𝑖𝑖 = 1: 1000 to derive a p-1136 

value for each command. The fraction of commands with significant population activity distances 1137 

is reported in Fig. 3E, middle. 1138 

Single neuron distances  1139 

To test whether an individual neuron’s condition-specific activity deviated from condition-1140 

pooled activity (Fig. 3E right), we aggregated the distances between condition-specific and 1141 

condition-pooled average activity over the 𝐶𝐶 (command, condition) tuples with at least 15 1142 

observations. The aggregated distance for neuron 𝑛𝑛 was computed: 𝑑𝑑𝑑𝑑(𝑛𝑛) =  1
𝐶𝐶
∑ 𝑑𝑑𝜇𝜇𝑐𝑐(𝑛𝑛)𝐶𝐶
𝑐𝑐=1   1143 

where  𝑑𝑑𝑑𝑑𝑐𝑐(𝑛𝑛) is the condition-specific absolute difference for the 𝑛𝑛th neuron and 𝑐𝑐th (command, 1144 

condition) tuple. Then 𝑑𝑑𝑑𝑑(𝑛𝑛) was compared to the distribution of the aggregated shuffle:  1145 

𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖(𝑛𝑛) =  1
𝐶𝐶
∑ 𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐(𝑛𝑛)𝐶𝐶
𝑐𝑐=1  for 𝑖𝑖 = 1: 1000 to derive a p-value for each neuron. The 1146 

fraction of neurons with significant activity distances (p-value<0.05) is reported in Fig. 3E right. 1147 

Neural activity distances summary 1148 

Single neuron activity distances reported in Fig. S2B (left) are for all (command, condition, 1149 

neuron) tuples that had at least 15 observations. We report distances as a z-score of shuffle 1150 

distribution: 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) =
�𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)− 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,(𝑛𝑛) 𝑖𝑖=1:1000��

𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖(𝑛𝑛),𝑖𝑖=1:1000�
 .  1151 

Single neuron activity distances reported in (Fig. S2B center, right) are for (command, 1152 

condition, neuron) tuples that significantly deviated from shuffle. We report raw distances in 1153 
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neuron activity as 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) (Fig. S2B, center), and fraction distances as 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)

 (Fig. 1154 

S2B, right).  1155 

Population activity distances reported in Fig. 3BCD and Fig. S2C left are for all (command, 1156 

condition) tuples. We report distances in population activity as a fraction of shuffle mean:  1157 

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖, 𝑖𝑖 = 1: 1000)  (Fig. 3BCD), and as a z-score of shuffle 1158 

distribution: 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
�𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐− 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,𝑖𝑖=1:1000��

𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,𝑖𝑖=1:1000�
  (Fig. S2C left).  1159 

Population activity distances reported in Fig. S2C (center, right) are for (command, 1160 

condition) tuples that significantly deviated from shuffle. We report distances in population 1161 

activity as a fraction of shuffle mean 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖, 𝑖𝑖 = 1: 1000)  (Fig. S2C, 1162 

center) and fraction of condition-pooled activity as 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2

 (Fig. S2C, right). 1163 

Invariant dynamics models  1164 

In order to test whether invariant dynamics predicts the different neural activity patterns 1165 

issuing the same command for different conditions, a linear model was fit for each experimental 1166 

session on training data of neural activity from all conditions and assessed on held-out test data.  1167 

Neural activity at time t, 𝑥𝑥𝑡𝑡, was modeled as a linear function of  𝑥𝑥𝑡𝑡−1:  1168 

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 1169 

Here 𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 modeled invariant dynamics and 𝑏𝑏 ∈ 𝑅𝑅𝑁𝑁 was an offset vector that allowed the 1170 

model to identify non-zero fixed points of neural dynamics. Ridge regression was used to estimate 1171 

the 𝐴𝐴 and 𝑏𝑏 parameters. Prior to any training or testing, data was collated such that all neural 1172 

activity in bins from t=2:Ttrl in all rewarded trials were paired with neural activity from t=1:(Ttrl-1173 

1), where Ttrl is the number of time samples in a trial.  1174 

Estimation of Ridge Parameter 1175 
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For each experimental session, data collated from all conditions was randomly split into 5 1176 

sections, and a Ridge model (sklearn.linear_model.Ridge) with a ridge parameter varying from 1177 

2.5x10-5 to 106 was trained using 4 of the 5 sections and tested on the remaining test section. Test 1178 

sections were rotated, yielding five estimates of the coefficient of determination (R2) for each ridge 1179 

parameter. The ridge parameter yielding the highest cross-validated mean R2 was selected for each 1180 

experimental session. Ridge regression was used primarily due to a subset of sessions with a very 1181 

high number of units (148 and 151 units), thus a high number of parameters needed to be estimated 1182 

for the 𝐴𝐴 matrix. Without regularization, these parameters tended to extreme values, and the model 1183 

generalized poorly.  1184 

Invariant dynamics model: fitting and testing 1185 

Once a ridge parameter for a given experimental session was identified, 𝐴𝐴, 𝑏𝑏 were again 1186 

trained using 4/5 of the data. The remaining test data was predicted using the fit 𝐴𝐴, 𝑏𝑏. This 1187 

procedure was repeated, rotating the training and testing data such that after five iterations, all data 1188 

points in the experimental session had been in the test data section for one iteration of model-1189 

fitting. The predictions made on the held-out test data were collated together into a full dataset. 1190 

Predictions were then analyzed in subsequent analyses.  1191 

Generalization of invariant dynamics 1192 

We assessed how well invariant dynamics generalized when certain categories of neural 1193 

activity were not included in the training data. Invariant dynamics models were estimated after 1194 

excluding neural activity in the following categories (Fig. 4C, Fig. S4, Fig 5CD): 1195 

1. Left-out Command: For each command (total of 32 command bins), training data sets were 1196 

constructed leaving out neural activity that issued the command (Fig. 4C, Fig. S4, Fig. 5CE).  1197 
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2. Left-out Condition: For each condition (consisting of target, task, and clockwise or 1198 

counterclockwise movement for obstacle avoidance), training data sets were constructed leaving 1199 

out neural activity for the given condition (Fig. 4C, Fig. S4, Fig. 5CE).  1200 

3. Left-out Command Angle: For each command angular bin (total of 8 angular bins), training 1201 

data sets were constructed leaving out neural activity that issued commands in the given angular 1202 

bin. This corresponds to leaving out neural activity for the 4 command bins that have the given 1203 

angular bin but different magnitude bins (Fig. S4B, middle).  1204 

4. Left-out Command Magnitude: For each command magnitude bin (total of 4 magnitude 1205 

bins), training data sets were constructed leaving out neural activity that issued commands of the 1206 

given command magnitude. This corresponds to leaving out neural activity for the 8 command 1207 

bins that have the given magnitude bin but different angle bins (Fig. S4B, right). 1208 

5. Left-out Classes of Conditions (Fig. S4G):  1209 

a. vertical condition class consisting of conditions with targets located at 90 and 270 1210 

degrees for both tasks,  1211 

b. horizontal condition class consisting of conditions with targets located at 0 and 180 1212 

degrees for both tasks, 1213 

c. diagonal 1 condition class consisting of conditions with targets located at 45 and 1214 

215 degrees for both tasks, and  1215 

d. diagonal 2 condition class consisting of conditions with targets located at 135 and 1216 

315 degrees for both tasks. 1217 

For each of the listed categories above, many dynamics models were computed – each one 1218 

corresponding to the exclusion of one element of the category (i.e. one model per: command left-1219 

out, condition left-out, command angle left-out, command magnitude left-out, and class of 1220 
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conditions left-out). Each of the trained models was then used to predict the left-out data. 1221 

Predictions were aggregated across all dynamics models resulting in a full dataset of predictions. 1222 

The coefficient of determination (R2) of this predicted dataset reflected how well dynamics models 1223 

could generalize to types of neural activity that were not observed during training. We note that 1224 

Monkey J did not perform all conditions in the “diagonal 2” class, and so was not used in the 1225 

analysis predicting excluded “diagonal 2” conditions.   1226 

Decoder-null dynamics model 1227 

 As an additional comparison, we modeled invariant dynamics that lie only within the 1228 

decoder-null space (the neural activity subspace that was orthogonal to the decoder such that 1229 

variation of neural activity in this space has no effect on the decoder’s output, i.e. commands for 1230 

movement). 1231 

Our approach was to project spiking activity into the decoder null space, and then fit 1232 

invariant dynamics on the projected, decoder-null spiking activity. We first computed an 1233 

orthonormal basis of the null space of decoder matrix 𝐾𝐾 ∈ 𝑅𝑅2𝑥𝑥𝑁𝑁 using scipy.linalg.null_space, 1234 

yielding 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁−2. The columns of 𝑉𝑉 correspond to basis vectors spanning the 𝑁𝑁 − 2 1235 

dimensional null space. We then computed the projection matrix 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 where 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =1236 

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇 .  Spiking activity was then projected into the null space 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑡𝑡, where 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈1237 

𝑅𝑅𝑁𝑁𝑁𝑁1.  1238 

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge regression 1239 

parameter was selected using projected data 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. Decoder-null dynamics model parameters Anull, 1240 

bnull were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of the 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  dataset. 1241 

As before, the training/testing procedure was repeated 5 times such that all data points fell into the 1242 

test dataset once. Predictions of test data from all five repetitions were collated into one full dataset 1243 
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of predictions. We note that the average of the decoder-space activity across the entire session 1244 

𝑥𝑥�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑇𝑇
∑ 𝑥𝑥𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇
𝑡𝑡=1 , where 𝑇𝑇 is the number of bins in an entire session, was added to all 1245 

predictions of decoder-null dynamics (𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑥𝑥�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑).  1246 

Shuffle dynamics model 1247 

 The invariant dynamics model was compared to a shuffle dynamics model fit on shuffled 1248 

data (see “Behavior-preserving shuffle of activity” above). Following the above procedure (see 1249 

“Estimation of Ridge Parameter”), a ridge parameter was selected using shuffled data. Shuffle 1250 

dynamics model parameters Ashuffle, bshuffle were then fit on 4/5 of the dataset using shuffled data 1251 

and then tested on the remaining 1/5 of the dataset using original, unshuffled data.   1252 

Invariant dynamics model characterization 1253 

Dimensionality and eigenvalues 1254 

Once the linear invariant dynamics model’s parameters A, b were estimated, A was analyzed 1255 

to assess which modes of dynamics16 were present (Fig. S3). The eigenvalues of A were computed. 1256 

From each eigenvalue, an oscillation frequency and time decay value were computed using the 1257 

following equations:  1258 

Frequency = ∠𝜆𝜆/(2𝜋𝜋∆𝑡𝑡) Hz if 𝜆𝜆 is complex, else frequency = 0 Hz 1259 

Time Decay = −1
ln (|𝜆𝜆|)

Δ𝑡𝑡    sec 1260 

Modes of dynamics contributing substantially to predicting future neural variance will have 1261 

time decays greater than the BMI decoder’s binsize (here, 100ms). 2-4 such dimensions of 1262 

dynamics were found across sessions and subjects (Fig. S3).  1263 

Invariant dynamics model predictions 1264 

Predicting next neural activity: 𝑥𝑥𝑡𝑡+1| 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏 1265 
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In Fig. 5C, we predict next activity 𝑥𝑥𝑡𝑡+1 based on current activity 𝑥𝑥𝑡𝑡 by taking the expected 1266 

value according to our model: 𝐸𝐸(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏) = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏.  1267 

In Fig. 5D, we evaluated this prediction for individual dimensions of neural activity.  1268 

We projected the prediction of 𝑥𝑥𝑡𝑡+1 onto each eigenvector of the dynamics model 𝐴𝐴 matrix and 1269 

evaluated how well that dimension was predicted (via coefficient of determination). 1270 

In Fig. S3E, G, we evaluated this prediction across time from the start of trial. The magnitude 1271 

(i.e. L2 norm) of the model residual ‖𝑥𝑥𝑡𝑡+1 −  𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏‖2 (Fig. S3E) and the coefficient of 1272 

determination (R2) (Fig. S3G) are plotted for each time point from trial start, evaluated on held-1273 

out test data pooling across trials.   1274 

Predicting next command: command𝑡𝑡+1| 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾 1275 

In Fig. 5E-H, we predict the next command command𝑡𝑡+1 based on current neural activity 𝑥𝑥𝑡𝑡 1276 

by taking its expected value according to our model: 𝐸𝐸(command𝑡𝑡+1 | 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾) = 𝐾𝐾(𝐴𝐴𝑥𝑥𝑡𝑡 +1277 

𝑏𝑏), where the decoder matrix K maps between neural activity and the command. This amounts to 1278 

first predicting next activity based on current activity as above 𝐸𝐸(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏) = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 and 1279 

then applying decoder K.  1280 

Predicting activity issuing a given command  1281 

In Fig. 4C-G, we predict current activity 𝑥𝑥𝑡𝑡 not only with knowledge of previous activity 1282 

𝑥𝑥𝑡𝑡−1, but also with knowledge of the current command command𝑡𝑡 ( 𝑥𝑥𝑡𝑡| 𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡).  1283 

We modeled 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡−1 as jointly Gaussian with our dynamics model, and command𝑡𝑡 is jointly 1284 

Gaussian with them since command𝑡𝑡 = 𝐾𝐾𝐾𝐾𝑡𝑡. We modify our prediction of 𝑥𝑥𝑡𝑡 based on knowledge 1285 

of command𝑡𝑡:  𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡). Explicitly we conditioned on command𝑡𝑡, thereby 1286 

ensuring that  𝐾𝐾 ∗ 𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡  ) =  command𝑡𝑡. To do this we wrote the joint 1287 

distribution of 𝑥𝑥𝑡𝑡 and command𝑡𝑡:  1288 
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𝑥𝑥𝑡𝑡
𝐾𝐾𝑥𝑥𝑡𝑡~ 𝑁𝑁(�

𝜇𝜇
𝐾𝐾𝐾𝐾�  ,   � Σ (𝐾𝐾Σ)𝑇𝑇

𝐾𝐾Σ 𝐾𝐾Σ𝐾𝐾𝑇𝑇�) 1289 

where 𝜇𝜇 = 𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏 ) = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 , and Σ = 𝑐𝑐𝑐𝑐𝑐𝑐[𝑥𝑥𝑡𝑡 − (𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏)] is the covariance of 1290 

the noise in the dynamics model.  Then, the multivariate Gaussian conditional distribution provides 1291 

the solution to conditioning on command𝑡𝑡:  1292 

𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏, K, command𝑡𝑡) = 𝐴𝐴𝑥𝑥𝑡𝑡−1+𝑏𝑏 +  Σ𝑇𝑇𝐾𝐾𝑇𝑇(𝐾𝐾Σ𝐾𝐾𝑇𝑇)−1(command𝑡𝑡 − 𝐾𝐾(𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝑏𝑏)) 1293 

This prediction constrains the prediction of 𝑥𝑥𝑡𝑡 to produce the given command command𝑡𝑡.   1294 

For these predictions, Σ is estimated following dynamics model fitting and set to the empirical 1295 

error covariance between estimates of 𝐸𝐸(𝑥𝑥𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝑏𝑏 and true 𝑥𝑥𝑡𝑡 in the training data.  1296 

Predicting current activity only with command 1297 

In Fig. 4C-E, as a comparison to the dynamics prediction (𝑥𝑥𝑡𝑡| 𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡), we 1298 

predict 𝑥𝑥𝑡𝑡 as its expected value (𝑥𝑥𝑡𝑡| 𝐾𝐾, command𝑡𝑡) based only on the command command𝑡𝑡 =1299 

𝐾𝐾𝐾𝐾𝑡𝑡 it issues and the decoder matrix 𝐾𝐾. The same approach was used as above, except with 1300 

empirical estimates of 𝜇𝜇, Σ corresponding to the mean and covariance of the neural data instead of 1301 

using the neural dynamics model and 𝑥𝑥𝑡𝑡−1 to compute 𝜇𝜇, Σ. 1302 

𝑥𝑥𝑡𝑡
𝐾𝐾𝑥𝑥𝑡𝑡~ 𝑁𝑁(�

𝜇𝜇
𝐾𝐾𝐾𝐾�  ,   � Σ (𝐾𝐾Σ)𝑇𝑇

𝐾𝐾Σ 𝐾𝐾Σ𝐾𝐾𝑇𝑇�) 1303 

This formulation makes the prediction:  1304 

𝐸𝐸(𝑥𝑥𝑡𝑡|K, command𝑡𝑡) = 𝜇𝜇 +  Σ𝑇𝑇𝐾𝐾𝑇𝑇(𝐾𝐾Σ𝐾𝐾𝑇𝑇)−1(command𝑡𝑡 − 𝐾𝐾𝐾𝐾) 1305 

Comparing invariant dynamics to shuffle 1306 

For the above predictions, we evaluated if invariant dynamics models were more accurate 1307 

than shuffle dynamics. A distribution of shuffle dynamics R2 values (coefficient of determination) 1308 

was generated by computing one R2 value per shuffled dataset (see “Behavior-preserving shuffle 1309 

of activity” above), where 𝑅𝑅𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑗𝑗
2  corresponds to the 𝑅𝑅2 for shuffle dataset 𝑖𝑖 on session 𝑗𝑗. For 1310 
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each session 𝑗𝑗, each invariant dynamics model was considered significant if its R2 was greater than 1311 

95% of shuffle R2 values. To aggregate over 𝑆𝑆 sessions, the R2 values for all 𝑆𝑆 sessions were 1312 

averaged yielding one 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  value. This averaged value was compared to a distribution of averaged 1313 

shuffle R2 values. Specifically, for each shuffle 𝑖𝑖 (i=1:1000 shuffled dataset) an averaged R2 value 1314 

was computed across all 𝑆𝑆 sessions: 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖
2 = 1

𝑆𝑆
∑ 𝑅𝑅𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑗𝑗

2𝑆𝑆
𝑗𝑗=1 , yielding a distribution of 1315 

averaged shuffle R2 values. 1316 

Predicting condition-specific activity 1317 

The invariant dynamics model was used to predict the condition-specific average activity 1318 

for a given command  (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, i.e. the average neural activity over all observations of the 1319 

command in the condition, see “Analysis of activity issuing a given command” above) (Fig. 4D-1320 

G). The invariant dynamics model prediction (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ) was computed as 1321 

𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡) (see “Predicting activity issuing a given command” above) 1322 

averaged over all observations of neural activity for the given command and condition.  1323 

To test if the invariant dynamics prediction was significantly more accurate than the shuffle 1324 

dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle dynamics model” 1325 

above) prediction, we computed the error as the distance between true (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and predicted 1326 

 (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ) condition-specific average activity (single neuron error and population distance). 1327 

Note that population distances for true and predicted activity were taken only in the dimensions 1328 

null to the decoder (see “Condition-specific neural activity deviation”). The invariant dynamics 1329 

model was deemed significantly more accurate than shuffle dynamics if the error was less than the 1330 

5th percentile of the distribution of the errors from shuffle dynamics models. We reported the 1331 

fraction of (command, condition) tuples that were individually significant relative to shuffle (Fig. 1332 

4G, left). We determined whether commands were individually significant relative to shuffle by 1333 
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analyzing the average population activity error across conditions (Fig 4G, middle). We determined 1334 

whether neurons were individually significant relative to shuffle by analyzing the average single-1335 

neuron error over (command, condition) tuples (Fig 4G, right). 1336 

Predicting condition-specific component 1337 

The component of neural activity for a given command that was specific to a condition was 1338 

calculated as 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 |K, command𝑡𝑡), where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is neural activity 1339 

averaged over observations for the given command and condition, and 1340 

𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) is the prediction of neural activity only given the command it issued, 1341 

averaged over observations for the (command, condition) tuple (see "Predicting current activity 1342 

only with command” above). Thus,  𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) estimates the 1343 

portion of neural activity that cannot be explained by just knowing the command issued.  1344 

We analyzed how well this condition-specific component could be predicted with invariant 1345 

dynamics as: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� −  𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) (see “Predicting condition-specific 1346 

activity” above for calculation of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ). The variance of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −1347 

𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) explained by 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� −𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡 |K, command𝑡𝑡) is reported 1348 

in Fig. 4F.  1349 

Predicting condition-specific next command 1350 

For each (command, condition) tuple, the average “next command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1351 

was calculated. For every observation of the given command in the given condition, we took the 1352 

command at the time step immediately following the given command and averaged over 1353 

observations. We then analyzed how well invariant dynamics predicted this average “next 1354 

command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� , calculated as 𝐸𝐸(command𝑡𝑡+1 | 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾) averaged over all 1355 

observations of neural activity 𝑥𝑥𝑡𝑡 for the given command and condition. The L2-norm of the 1356 
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difference command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�   was computed and compared to the errors 1357 

obtained from the shuffled-dynamics predictions. For each (command, condition) tuple, the 1358 

dynamics-predicted “next command” was deemed significantly more accurate than shuffle 1359 

dynamics if the error was less than the 5th percentile of the distribution of the errors of the shuffled-1360 

dynamics predictions (Fig. 5F, left). Commands were determined to be individually significant if 1361 

the error averaged over conditions was significantly less than the shuffled-dynamics error averaged 1362 

over conditions (Fig. 5F, right).  1363 

Analysis of predicted command angle 1364 

 We sought to further analyze whether invariant dynamics predicted the transition from a 1365 

given command to different “next commands” in different movements. Thus, we calculated two 1366 

additional metrics on the direction of the predicted “next command”, i.e. the angle of the predicted 1367 

“next command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  with respect to the condition-pooled “next command” 1368 

command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (the average “next command” following a given command when pooling over 1369 

conditions).  1370 

First, we predicted whether a condition’s “next command” would rotate clockwise or 1371 

counterclockwise relative to the condition-pooled “next command.” Specifically, we calculated 1372 

whether the sign of the cross-product between command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  and command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1373 

matched the sign of the cross-product between command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The 1374 

fraction of (command, conditions) that were correctly predicted (clockwise vs counterclockwise) 1375 

was compared to the fraction of (command, condition) tuples correctly predicted in the shuffle 1376 

distribution (Fig. 5H, left). 1377 

 Second, we calculated the absolute error of the angle between the predicted “next 1378 

command” and the condition-pooled “next command” for each (command, condition) tuple:  1379 
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abs( ∠ (command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,� command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)1380 

−∠ (command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ) 1381 

Explicitly, for each (command, condition) tuple, we calculated the absolute difference between 1382 

two angles: 1) the angle between the predicted “next command” and the condition-pooled “next 1383 

command” and 2) the angle between the true “next command” and the condition-pooled “next 1384 

command”. These errors were then compared to the shuffle distribution (Fig. 5H, right).  1385 

Estimation of behavior-encoding models 1386 

To compare invariant dynamics models to models in which neural activity encodes behavioral 1387 

variables in addition to the command, we fit a series of behavior-encoding models (Fig. S5). 1388 

Regressors included cursor state (position, velocity), target position (x,y postion in cursor 1389 

workspace), and a categorical variable encoding target number (0-7) and task (“center-out”, 1390 

“clockwise obstacle-avoidance”, or “counter-clockwise obstacle-avoidance”).  1391 

Models were fit using Ridge regression following the same procedure described above (see 1392 

“Estimation of Ridge Parameter”) was followed with one additional step: prior to estimating the 1393 

ridge parameter or fitting the regression, variables were z-scored.  Without z-scoring, ridge 1394 

regression may favor giving explanatory power to the variables with larger variances, since they 1395 

would require smaller weights which ridge regression prefers. Then, as above, models were fit 1396 

using 4/5 of the data and then used to predict the held-out 1/5 of data. After 5 rotations of training 1397 

and testing data, a full predicted dataset was collated.  1398 

We then tested whether invariant neural dynamics improved the prediction of neural activity 1399 

beyond behavior-encoding. The coefficient of determination (R2) of the model containing all 1400 

regressors except previous neural activity was compared to the R2 of the model containing all 1401 
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regressors plus previous neural activity (Fig. S5B) using a paired Student’s t-test where session 1402 

was paired. One test was done for each monkey.  1403 

Analysis between pairs of conditions 1404 

We sought to assess whether the invariant dynamics model predicted the relationship between 1405 

pairs of conditions for neural activity and behavior (Fig. S6). 1406 

Average neural activity for a given command 1407 

The invariant dynamics model was used to predict the distance between average neural 1408 

activity patterns for the same command across pairs of conditions. Concretely, the predicted 1409 

distance was simply the distance between the predicted neural activity pattern for condition 1 and 1410 

for condition 2. The correlation between the true distance and the predicted distance was reported 1411 

for individual neurons (Fig. S6AC) and population activity (Fig. S6BD). The Wald test 1412 

(implemented in scipy.stats.linregress) was used to assess the significance of the correlations on 1413 

single sessions. To assess significance pooled over sessions, data points (true distances vs. 1414 

dynamics model predicted distances) were aggregated across sessions and assessed for 1415 

significance.  1416 

Average next command 1417 

The invariant dynamics model was used to predict the distance between “next commands” 1418 

for the same given command across pairs of conditions. Concretely, the predicted distance was 1419 

simply the distance between the predicted “next command” for condition 1 and for condition 2. 1420 

The correlation between the true distance and the predicted distance was reported (Fig. S6JK). As 1421 

above, the Wald test was used to assess significance of correlations on single sessions and over 1422 

pooled sessions.   1423 

Correlating neural distance with behavior 1424 
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We asked whether neural activity for a given command was more similar across conditions 1425 

with more similar command subtrajectories (see “Command subtrajectories”) (Fig. S6E), and 1426 

whether invariant dynamics predict this. Specifically, we analyzed whether the distance between 1427 

average neural activity across two conditions for a given command correlated to the distance 1428 

between command subtrajectories for the same two conditions (Fig. S6, F top, GH left ). Further, 1429 

we analyzed whether invariant dynamics predicted this correlation (Fig. S6, F bottom, GH right). 1430 

For every command (that was used in more than five conditions) and pair of conditions that used 1431 

the command (>=15 observations in each condition in the pair), 1) the distances between condition-1432 

specific average activity were computed and 2) distances between command subtrajectories were 1433 

computed.  The neural activity distances were correlated with the command subtrajectory distances 1434 

(Fig. S6, F top, GH left ) . To assess whether invariant dynamics made predictions that maintained 1435 

this structure, we performed that same analysis with distances between dynamics-predicted 1436 

condition-specific average activity across pairs of conditions (Fig. S6, F bottom, GH right).  1437 

We assessed the significance of the relationship using a linear mixed effects (LME) model 1438 

(statsmodels.formula.api.mixedlm). The LME modeled command as a random effect because the 1439 

exact parameters of the increasing linear relationship between command subtrajectories and 1440 

population activity may vary depending on command. Individual sessions were assessed for 1441 

significance. To assess significance across sessions, data points were aggregated over sessions, 1442 

and the LME model used command and session ID as random effects.   1443 

Analysis of Optimal Feedback Control Models  1444 

Input magnitude 1445 

For each simulated trial, we computed the magnitude of input to the neural population as 1446 

the L2 norm of the input matrix 𝑢𝑢𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁×𝑇𝑇 (where 𝑁𝑁 is the number of neurons and 𝑇𝑇 = 40 was 1447 
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the horizon and thus movement length).  For each of the 24 conditions, we calculated the average 1448 

input magnitude over the 20 trials. We compared the magnitude of input used by the Invariant 1449 

Dynamics Model and the No Dynamics Model, where the Invariant Dynamics Model was either 1450 

the Full Dynamics Model (Fig. 6C) or the Decoder-Null Dynamics Model (Fig. 6D). We analyzed 1451 

each individual session with a paired Wilcoxon signed-rank test, where each pair within a session 1452 

consisted of one condition (24 conditions total). We aggregated across sessions for each subject 1453 

using a linear mixed effect (LME) model between input magnitude and model category (Invariant 1454 

Dynamics Model or No Dynamics Model), with session modeled as a random effect.  1455 

Simulated activity issuing a given command 1456 

In the OFC simulations, we sought to verify if different neural activity patterns were used 1457 

to issue the same command across different conditions, applying analyses that we used on 1458 

experimental neural data to the OFC simulations. As above, we defined discretized command bins 1459 

(see “Command discretization for analysis”) and calculated the average neural activity for each 1460 

(command, condition) tuple. For (command, condition) tuples with >=15 observations (example 1461 

shown in Fig. 6E), we computed the distance between condition-specific average activity and 1462 

condition-pooled average activity by subtracting the activity, projecting into the decoder-null 1463 

space, taking the L2 norm, and normalizing by the square root of the number of neurons, as in the 1464 

experimental data analysis (see “Analysis of activity issuing a given command”). 1465 

We analyzed the distance between condition-specific average activity and condition-1466 

pooled average activity for a given command, comparing each model to its own shuffle distribution 1467 

(see “Behavior-preserving shuffle of activity”) (Fig. 6GH). Concretely, for each simulated session, 1468 

we calculated the mean of the shuffle distribution of distances for each (command, condition) tuple 1469 

and compared these shuffle means (one per (command, condition) tuple) to the observed distances 1470 
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from the simulations. We analyzed individual sessions with a Mann-Whitney U test. We 1471 

aggregated across sessions for each subject with a LME model between activity distance and data 1472 

source (OFC Simulation vs shuffle), with session modeled as a random effect. For visualization of 1473 

distances relative to the shuffle distribution (Fig. 6F-H), we divided the observed distance for each 1474 

(command, condition) tuple by the mean of the corresponding shuffle distribution (same as in Fig. 1475 

3B-D). 1476 

Statistics Summary  1477 

In many analyses, we assessed whether a quantity calculated for a specific condition was 1478 

significantly larger than expected from the distribution of the quantity due to subsampling the 1479 

condition-pooled distribution. A p-value was computed by comparing the condition-specific 1480 

quantity to the distribution of the quantity computed from subsampling the condition-pooled 1481 

distribution.  The “behavior-preserving shuffle of activity” and “matching the condition-pooled 1482 

distribution” (see above) were used to construct the condition-pooled distribution.  1483 

The following is a summary of these analyses:  1484 

• Fig. S1D, Quantity: distance between condition-specific average command 1485 

subtrajectory and condition-pooled average command subtrajectory, P-value: computed using 1486 

behavior-preserving shuffle.  1487 

• Fig. S1E, Quantity: distance between condition-specific average next command 1488 

and the condition-pooled average next command, P-value: computed using behavior-1489 

preserving shuffle. 1490 

• Fig. 3B left, 3E right: Quantity: for a given command, distance between condition-1491 

specific average activity for a neuron and condition-pooled average activity for a neuron, P-1492 

value: behavior-preserving shuffle.  1493 
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• Fig. 3B right, 3D, 3E left, middle: Quantity: for a given command, distance between 1494 

condition-specific average population activity and condition-pooled average population 1495 

activity, P-value: behavior-preserving shuffle.  1496 

• Fig. 4G right: Quantity: for a given command, error between the invariant 1497 

dynamics’ prediction of condition-specific average activity for a neuron and the true condition-1498 

specific average activity for the neuron. P-value: distribution of prediction errors from shuffle 1499 

dynamics (models fit on behavior-preserving shuffle and that made predictions using 1500 

unshuffled data).   1501 

• Fig. 4G left, middle: Quantity: for a given command, error between the invariant 1502 

dynamics’ prediction of condition-specific average population activity and the true condition-1503 

specific average population activity. P-value: distribution of prediction errors from shuffle 1504 

dynamics (models fit on behavior-preserving shuffle and that made predictions using 1505 

unshuffled data).     1506 

• Fig. 5F: Quantity: for a given command, error between the invariant dynamics’ 1507 

prediction of condition-specific average next command and true condition-specific average 1508 

next command. P-value: distribution of prediction errors from shuffle dynamics (models fit on 1509 

behavior-preserving shuffle and that made predictions using unshuffled data).     1510 

 In the above analyses, we also assessed the fraction of condition-specific quantities that 1511 

were significantly different from the condition-pooled quantities or significantly predicted 1512 

compared to a shuffled distribution (Fig. S1DE, Fig. 3E, Fig. 4G, Fig. 5F, Fig. S4DI, Fig. S6G). 1513 

In order to aggregate over all data to determine whether condition-specific quantities were 1514 

significantly different from shuffle or significantly predicted within a session relative to shuffle 1515 

dynamics, we averaged the condition-specific quantity over the relevant dimensions (command, 1516 
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condition, and/or neuron) to yield a single aggregated value for a session. For example in Fig. 3E 1517 

right, we take the distance between average activity for a (command, condition, neuron) tuple and 1518 

condition-pooled average activity for a (command, neuron) tuple, and we average this distance 1519 

over (command, condition) tuples to yield an aggregated value that is used to assess if individual 1520 

neurons are significant. We correspondingly averaged the shuffle distribution across all relevant 1521 

dimensions (command, condition, and/or neuron). Together this procedure yielded a single 1522 

aggregated value that could be compared to a single aggregated distribution to determine session 1523 

significance. Finally, when we sought to aggregate over sessions, we took the condition-specific 1524 

quantity that was aggregated within a session and averaged it across sessions and again compared 1525 

it to a shuffle distribution of this value aggregated over sessions.  1526 

When R2 was the metric assessed (Fig. 4CF, Fig. 5C-E, Fig. S4BFG), a single R2 metric was 1527 

computed for each session and compared to the R2 distribution from shuffle models. This R2 metric 1528 

is known as the “coefficient of determination,” and we  note that it assesses how well the dynamics-1529 

predicted values (e.g. spike counts) account for the variance of the true values. 1530 

In some cases, a linear regression was fit between two quantities (Fig. S6CDGJK) on both 1531 

individual sessions and on data pooled over all sessions, and the significance of the fit and 1532 

correlation coefficient were both reported. In other cases where random effects such as session or 1533 

analyzed command may have influenced the linear regression parameters (Fig. S6FG), a Linear 1534 

Mixed Effect (LME) model was used with session and/or command modeled as random effects on 1535 

intercept.  1536 

In Fig. S5, a paired Student’s t-test was used to compare two models’ R2 metric across 1537 

sessions.Fig. 6 analyzed simulations of OFC models, not experimentally-recorded data. Fig. 6CD 1538 

used a paired Wilcoxon test and a LME to compare input magnitude between a pair of OFC 1539 
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models. Fig. 6GH used a Mann-Whitney U test and a LME to compare population distance 1540 

between an OFC model and its shuffle distribution.  1541 
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