
1

Invariant neural dynamics drive commands to control different movements 1

 2

Vivek R. Athalye1†, Preeya Khanna2†, Suraj Gowda4, Amy L. Orsborn3, Rui M. Costa1*‡, and 3
Jose M. Carmena4,5,6*‡ 4

1 Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, 5
Columbia University; New York, NY, USA 6
2 Department of Neurology, University of California, San Francisco; San Francisco, CA, 7
USA 8
3 Departments of Bioengineering, Electrical and Computer Engineering, University of 9
Washington, Seattle; Seattle, WA, USA 10
4 Department of Electrical Engineering and Computer Sciences, University of California, 11
Berkeley; Berkeley, CA, USA 12
5 Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA, USA 13
6 UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, 14
Berkeley; Berkeley, CA, USA 15
†These authors contributed equally to this work. 16
‡Senior author 17
*Corresponding author. Email: rc3031@columbia.edu (RMC); jcarmena@berkeley.edu 18
(JMC) 19

 20
Summary: It has been proposed that the nervous system has the capacity to generate a wide 21
variety of movements because it re-uses some invariant code. Previous work has identified that 22
dynamics of neural population activity are similar during different movements, where dynamics 23
refer to how the instantaneous spatial pattern of population activity changes in time. Here we test 24
whether invariant dynamics of neural populations are actually used to issue the commands that 25
direct movement. Using a brain-machine interface that transformed rhesus macaques’ motor 26
cortex activity into commands for a neuroprosthetic cursor, we discovered that the same 27
command is issued with different neural activity patterns in different movements. However, 28
these different patterns were predictable, as we found that the transitions between activity 29
patterns are governed by the same dynamics across movements. These invariant dynamics are 30
low-dimensional, and critically, they align with the brain-machine interface, so that they predict 31
the specific component of neural activity that actually issues the next command. We introduce a 32
model of optimal feedback control that shows that invariant dynamics can help transform 33
movement feedback into commands, reducing the input that the neural population needs to 34
control movement. Altogether our results demonstrate that invariant dynamics drive commands 35
to control a variety of movements, and show how feedback can be integrated with invariant 36
dynamics to issue generalizable commands. 37
 38

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

mailto:rc3031@columbia.edu
mailto:jcarmena@berkeley.edu
https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Keywords: neural population dynamics, motor cortex, motor control, brain-machine interfaces, 39
neuroprosthetics, optimal feedback control, motor commands, movement representations, 40
dynamical systems 41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Introduction 42

Our brain can generate a vast variety of movements. It is believed that the brain would 43

not have such capacity if it used separate populations of neurons to control each movement. 44

Thus, it has been proposed that the brain’s capacity to produce different movements relies on re-45

using the dynamics of a specific neural population’s activity 1–3. While theoretical work shows 46

how dynamics emerge from neural activity transmitted through recurrent connectivity1,4–6, it has 47

been elusive to identify whether the brain re-uses dynamics to actually control movements. 48

Recent work on the motor cortex, a region that controls movement through direct 49

projections to the spinal cord 7 and other motor centers 8–10, has found that population dynamics 50

are similar across different movements. Specifically, the spatial pattern of population activity at a 51

given time point (i.e. the instantaneous firing rate of each neuron in the population) 52

systematically influences what spatial pattern occurs next. Models of dynamics ℎ that are 53

invariant across movements3 can predict the transition from the current population activity 54

pattern 𝑥𝑥𝑡𝑡 to the subsequent pattern 𝑥𝑥𝑡𝑡+1: 55

𝑥𝑥𝑡𝑡+1 = ℎ(𝑥𝑥𝑡𝑡) + input𝑡𝑡 + noise𝑡𝑡 (1) 56

where external input input𝑡𝑡 and noise noise𝑡𝑡 are typically unmeasured. Recent work11 has 57

provided the intuition that invariant dynamics bias neural activity to avoid “tangling” – which is 58

when the same activity pattern undergoes different transitions in different movements. These 59

dynamics models have explained features of neural activity that were unexpected from behavior 60

11–14 such as oscillations12, and have predicted neural activity during different movements on 61

single trials 15–18, for single neurons’ spiking 15, for local field potential features 19,20, and over 62

many days 18,21. These models also help predict behavior 16,18,19,22. 63

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

While past work characterized the statistical relationship between invariant dynamics and 64

behavior, it remains untested if invariant dynamics are actually used to issue commands for 65

movement. This test requires identifying the causal transformation from neural activity to 66

command, where the “command” is the instantaneous influence of the nervous system on 67

movement. This is a long-standing challenge in motor control. While past work has modeled this 68

transformation23–25, ongoing research reveals its complexity8–10,26–28. 69

We addressed this challenge with a brain-machine interface (BMI) 29–32 in which the 70

transformation from neural activity to command was known exactly and determined by the 71

experimenter. We trained rhesus monkeys to use motor cortex population activity to move a two-72

dimensional computer cursor on a screen through a BMI. The BMI transformed neural activity 73

into a force-like command to update the cursor’s velocity, analogous to muscular force on the 74

skeleton. Thus, an individual movement was produced by a series of commands, where each 75

command acted on the cursor at an instant in time. 76

We discovered that the same exact command is issued with different neural activity 77

patterns in different movements. Critically, these different patterns transition according to low-78

dimensional, invariant dynamics to patterns that issue the next command, even when the next 79

command differs across movements. Thus, our results demonstrate that invariant dynamics drive 80

commands to control different movements. 81

While past work has presented a view of how dynamics operate in a feedforward manner, 82

propagating an initial state of activity 23,33,34 to produce movement, it has been unclear how 83

feedback24,35–37 integrates with invariant dynamics. Given that motor cortex is interconnected to 84

larger motor control circuits including cortical38–41 and cortico-basal ganglia-thalamic 85

circuits8,9,42,43, we introduce a hierarchical model44 of optimal feedback control (OFC) in which 86

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

the brain (i.e. larger motor control circuitry) uses feedback to control the motor cortex population 87

which controls movement45,46. Our model reveals that invariant dynamics can help transform 88

feedback into commands, as they reduce the input that a population needs to issue commands. 89

Altogether, our results demonstrate that invariant neural dynamics are both used and useful for 90

issuing commands across different movements. 91

Results 92

BMI to study neural population control of movement 93

We used a BMI47–49 to study the dynamics of population activity as it issued commands 94

for movement of a two-dimensional computer cursor (Fig. 1A). Population activity (20-151 95

units) was recorded using chronically implanted microwire electrode arrays spanning bilateral 96

dorsal premotor cortex and primary motor cortex. Each unit’s spiking rate at time 𝑡𝑡 (computed as 97

the number of spikes in a temporal bin) was stacked into a vector of population activity 𝑥𝑥𝑡𝑡, and 98

the BMI used a “decoder” given by matrix 𝐾𝐾 to linearly transform population activity into a two-99

dimensional command: 100

command𝑡𝑡 = 𝐾𝐾𝑥𝑥𝑡𝑡 (2) 101

The command linearly updated the two-dimensional velocity vector of the computer cursor: 102

velocity𝑡𝑡 = command𝑡𝑡 + α*velocity𝑡𝑡−1 + offset (3) 103

We note that the BMI was not identical across the two subjects, as neural activity was modeled 104

with different statistical distributions (Gaussian for Monkey G and a Point Processs47,48 for 105

Monkey J, see STAR methods – “Neuroprosthetic decoding”). 106

 The decoder was initialized as subjects passively watched cursor movement, calibrated as 107

subjects used the BMI in closed-loop49 without performing trained overt movement, and then 108

fixed for the experiment (Fig. 1B). Critically, the decoder was not fit during trained overt 109

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

movement, as was done previously16, so it did not demand neural dynamics associated with overt 110

movement. 111

 To study control of diverse movements, we trained monkeys to perform two different 112

tasks (Fig. 1CD). Monkeys performed a center-out task in which they moved the cursor from the 113

center of the workspace to one of eight radial targets, and they performed an obstacle-avoidance 114

task in which they avoided an obstacle blocking the straight path to the target. Our tasks elicited 115

up to 24 conditions of movement (with an average of 16-17 conditions per session), where each 116

condition is defined as the task performed (“co” = center-out task, “cw” / “ccw” = 117

clockwise/counterclockwise movement around the obstacle in the obstacle-avoidance task) and 118

the target achieved (numbered 0 through 7). 119

Importantly, the BMI enabled us to identify when neural activity issued the same exact 120

command in different conditions (Fig. 1EF, Fig. S1). We considered two-dimensional, 121

continuous-valued commands as the same if they fell within the same discrete bin for analysis. 122

We categorized commands into 32 bins (8 angular x 4 magnitude) based on percentiles of the 123

continuous-valued distribution (Fig. S1A; see STAR methods - “Command discretization for 124

analysis”). On each session, a command (of the 32 discretized bins) was analyzed if it was used 125

in a condition 15 or more times (Fig. S1B), for more than one condition. Each individual 126

command was used with regularity during multiple conditions (on average ~7 conditions, Fig. 127

S1B), within distinct local “subtrajectories” (Fig. 1F, Fig. S1, STAR methods – “Cursor and 128

command trajectory visualization”). 129

Using the BMI to test whether invariant dynamics are used to control different movements 130

The BMI enabled us to test whether the pattern of neural activity systematically 131

influences the subsequent pattern and command. We can visualize an activity pattern 𝑥𝑥𝑡𝑡 as a 132

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

point in high-dimensional activity space, where each neuron’s activity is one dimension, and 133

visualize the transition between two patterns 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡+1 as an arrow (Fig. 2A). Then, 134

dynamics can be visualized as a flow field in activity space. This flow field is invariant because 135

the predicted transition for a given neural activity pattern (i.e. its arrow) does not change, 136

regardless of the current command or condition. Because there are more neurons than 137

dimensions of the command, different activity patterns can issue the same command24,50 (Fig. 138

2B), as is believed to be true in the natural motor system23,24,50. The BMI decoder defined the 139

“decoder space” as the dimensions of neural activity that determine the command and the 140

“decoder null space” as the orthogonal dimensions which have no consequence on the decoder. 141

The BMI allowed us to observe the precise temporal order of commands (Fig. 2C) and test 142

whether activity trajectories followed the flow of invariant dynamics to issue these commands 143

for movements (Fig. 2D). 144

The same command is issued by different neural activity patterns in different movements 145

 First, we tested whether the same command is issued by different neural activity patterns 146

in different movements, as would be expected if the current pattern influences the subsequent 147

pattern and command (Fig. 3A). We calculated the distance between the average neural activity 148

for a given command and condition and the average neural activity for the given command 149

pooled over conditions. We then tested if this distance is larger than expected simply due to the 150

variability of noisy neural activity. To emulate the scenario in which neural activity for a given 151

command has the same distribution across conditions, we constructed shuffled datasets where we 152

identified all observations of neural activity issuing a given command and shuffled their 153

condition-labels, for all commands (see STAR methods – “Behavior-preserving shuffle of 154

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

activity”). In this scenario, the distance is expected to be greater than zero simply because 155

average activity is estimated from limited samples and thus is subject to variability. 156

Overall, neural activity issuing a given command significantly deviated across conditions 157

relative to the shuffle distribution (Fig. 3B-E). Distances averaged within-session ranged from 158

10% to 200% larger than shuffle distance (Fig. 3D, S2 for additional distributions). Distances 159

were significantly larger than shuffle distances for a large fraction of individual (command, 160

condition) tuples (~30% for Monkey G, ~70% for Monkey J), individual commands (~65% for 161

G, ~90% for J) when aggregating over conditions, and individual neurons (~40% for G, ~80% 162

for J) when aggregating over all (command, condition) tuples (Fig. 3E). Further, these deviations 163

reflected the behavior; the distance between two patterns issuing the same command correlated 164

with the distance between the command subtrajectories (Fig. S6E-H). 165

Invariant dynamics predict the different neural activity patterns used to issue the same 166

command 167

Given that a command was not issued with the same activity pattern across conditions, 168

we next constructed a model of invariant dynamics. We used single-trial neural activity 𝑥𝑥𝑡𝑡 from 169

all conditions to estimate dynamics with a linear model (Fig. 4A): 170

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 (4) 171

We found that the dynamics 𝐴𝐴 were low-dimensional (~4 dimensions, Fig. 5D, S3B) and 172

decaying to a fixed point (Fig. S3A,C), contrasting with rotational dynamics observed during 173

natural motor control 12,13,16,22,51. See Fig. S3D for an illustration of how decaying invariant 174

dynamics can control different movements. Notably, a non-linear dynamics model (a recurrent 175

switching linear dynamical system52) did not out-perform these simple linear dynamics (Fig. 176

S5C-F). 177

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

 We asked whether invariant dynamics predict the different activity patterns observed to 178

issue the same command. Concretely, we predicted the activity pattern given the command it 179

issued and its previous activity (Fig. 4A, see STAR methods – “Invariant dynamics model 180

predictions”), combining the dynamics model (Equation 4) with the decoder (Equation 2). This 181

analyzed whether the model could predict the component of the activity pattern that can vary 182

when a given command is issued, i.e. the component in the decoder null space. For comparison, 183

we also computed the prediction of neural activity when only given the command it issued (in 184

the absence of a dynamics model). Further, we tested whether the invariant dynamics model 185

generalized to new commands and conditions. Dynamics models were fit on neural activity 186

specifically excluding individual commands or conditions, and these models were used to predict 187

the neural activity for the left-out commands or conditions (Fig. 4B, Fig. S4, see STAR methods 188

– “Invariant dynamics models”). 189

We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on the 190

shuffled datasets that preserved the temporal order of commands while shuffling the neural 191

activity issuing the commands (see STAR methods – “Behavior-preserving shuffle of activity”). 192

The shuffle dynamics model captured the expected predictability in neural activity due to the 193

predictability of commands in the performed movements. 194

On the level of single time points in individual trials, we found that the dynamics model 195

significantly exceeded shuffle dynamics in predicting the activity pattern issuing a given 196

command based on the previous pattern. Importantly, it generalized across left-out commands 197

and conditions (Fig. 4C) and even when much larger subsets of commands and conditions were 198

left-out (Fig. S4). We confirmed that the result was not driven by neural activity simply 199

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

representing behavioral variables (cursor kinematics, target location, and condition) in addition 200

to the command (Fig. S5AB), consistent with previous work 53. 201

The invariant dynamics model also predicted the different average activity patterns for 202

each command and condition (Fig. 4D-G) significantly better than shuffle dynamics. It predicted 203

20-40% of the condition-specific component of neural activity (i.e. the difference between 204

average activity for a (command, condition) and the prediction of that activity based on the 205

command alone) (Fig. 4F, see STAR methods – “Invariant dynamics model predictions”). The 206

model predicted neural activity for the vast majority of commands, conditions, and neurons (Fig. 207

4G), revealing that dynamics were indeed invariant. 208

 Finally, the dynamics model preserved structure of neural activity across pairs of 209

conditions (Fig. S6A-D) and predicted that the distance between two activity patterns issuing the 210

same command would be correlated with the distance between the corresponding command 211

subtrajectories (Fig. S6E-I). Altogether, these results show that invariant dynamics contribute to 212

what activity pattern was used to issue a command, generalizing across commands and 213

conditions. 214

Invariant dynamics align with the decoder, propagating neural activity to issue the next 215

command 216

We next asked whether invariant dynamics were actually used to transition between 217

commands. Concretely, we used the dynamics model to predict the transition from the current 218

activity pattern to the next pattern, and then we applied the BMI decoder to this prediction of 219

next pattern in order to predict the next command (i.e. its continuous value) (Fig. 5A). This tests 220

whether invariant dynamics predict the component of neural activity in the decoder space, which 221

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

actually drives the BMI. The BMI enabled this analysis as it defines the transformation from 222

neural activity to command which has not been measurable during natural motor control. 223

We emphasize that invariant dynamics do not have to predict the command, i.e. the 224

decoder space (Fig. 5B). Low-dimensional dynamics could be misaligned with the decoder such 225

that they only predict the component of neural activity in the decoder null space. To assess this 226

possibility, we fit an invariant dynamics model on the component of neural activity in the 227

decoder null space (“decoder-null dynamics”, see STAR methods – “Invariant dynamics 228

models”). While this model was restricted to the decoder-null space, it maintained similar 229

dimensionality and eigenvalues to the full dynamics model (Fig. S3BC). 230

Both the full dynamics and the decoder-null dynamics model predicted next neural 231

activity significantly better than shuffle dynamics (Fig. 5C) on the level of single time points in 232

individual trials. This reveals that invariant dynamics occupied decoder-null dimensions. Given 233

that the full dynamics model was low-dimensional (Fig. S3B) and predicted ~4 dimensions more 234

accurately than the rest of neural activity (Fig. 5D), we next tested whether the dynamics aligned 235

with the decoder. Critically, the full dynamics model predicted the next command (Fig. 5E) 236

better than shuffle dynamics, while decoder-null dynamics provided absolutely no prediction for 237

the next command, as expected by construction. The dynamics were invariant, as the full 238

dynamics model generalized across commands and conditions that were left-out from model 239

fitting (Fig. 5E) and predicted the next command for the majority of (command, condition) tuples 240

(Fig. 5F). These predictions preserved structure across pairs of conditions, such that invariant 241

dynamics indicated how similar the next command would be across pairs of conditions (Fig. S6I-242

K). 243

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

Notably, invariant dynamics could predict the turn that the next command would take 244

following a given command in a specific condition relative to the average next command 245

(averaged across conditions for the given current command) (Fig. 5GH). Specifically, the 246

dynamics model predicted whether the turn would be clockwise or counter clockwise (Fig. 5H 247

left) and the angle of turn (Fig 5H right) better than shuffle dynamics. Altogether, these results 248

show that invariant dynamics align with the decoder and are used to transition between 249

commands. 250

An OFC model reveals that invariant dynamics reduce the input that a neural population 251

needs to issue commands based on feedback 252

We observe that the invariant dynamics model did not perfectly predict transitions 253

between commands. Throughout movement there were substantial residuals (Fig. S3E-G), 254

consistent with ongoing movement feedback driving neural activity in addition to invariant 255

dynamics. However, it has been unclear how the brain can integrate feedback with invariant 256

dynamics to control movement. Thus, we constructed a model of optimal feedback control 257

(OFC) that incorporates invariant neural dynamics. 258

We introduce a hierarchical model in which the brain controls the neural population 259

which controls movement of the BMI cursor (Fig. 6A, Equation 5). Population activity 𝑥𝑥𝑡𝑡 issues 260

commands for movement and is driven by three terms: invariant dynamics (which we 261

hypothesize are intrinsic to some connectivity of the neural population), input, and noise. The 262

brain transforms ongoing cursor state and population activity into the input to the population that 263

is necessary to achieve successful movement. Concretely, the brain acts as an optimal linear 264

feedback controller with knowledge of the neural population’s invariant dynamics, the BMI 265

decoder, and the condition of movement. In this formulation, the brain’s objective was to achieve 266

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

the target while using the smallest possible input to the population, which minimizes the 267

communication from the brain to the population. Importantly, this incentivized the OFC model to 268

optimize input in order to use invariant dynamics to control movement, rather than relying solely 269

on input to issue commands. Consistent with this formulation, experiments show that thalamic 270

input into motor cortex is optimized during motor learning54. 271

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 + input𝑡𝑡 + noise𝑡𝑡 (5)
inputt = 𝑓𝑓𝑡𝑡

LQR(𝑥𝑥𝑡𝑡, cursor𝑡𝑡 , condition)
cursor𝑡𝑡+1 = BMI(cursor𝑡𝑡 , 𝑥𝑥𝑡𝑡)

 272

We simulated the model performing center-out and obstacle-avoidance movements with 273

the decoders that were used in BMI experiments (see STAR methods – “Optimal feedback 274

control model and simulation”). In the Full Dynamics Model, the brain computed the minimal 275

input to a population that followed the invariant dynamics we observed experimentally. In the 276

No Dynamics Model, the minimal input was computed to a neural population that had no 277

invariant dynamics (i.e. the 𝐴𝐴 matrix was set to zero). To facilitate comparison, we designed the 278

models to receive the same noise magnitude and to produce behavior with equal success and 279

target acquisition time (Fig. 6B). 280

These simulations revealed that the population required significantly less input in the Full 281

Dynamics Model than in the No Dynamics Model (Fig. 6C). This effect was erased in the 282

Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics were 283

restricted to the decoder-null space. These results show that invariant dynamics that specifically 284

align with the decoder, as experimentally-observed, can help the brain perform feedback control, 285

reducing the input that the population needs to issue commands based on feedback. 286

Finally, we confirmed the principle that feedback control with invariant dynamics makes 287

use of distinct activity patterns to issue a particular command. As in Fig. 3, we compared the 288

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

OFC models’ neural activity against shuffled activity that preserved the temporal order of 289

commands. The population activity distances for (command, condition) tuples were significantly 290

larger than shuffle in the Full Dynamics Model but not in the No Dynamics Model (Fig. 6FG). 291

Further, this effect depended on alignment between invariant dynamics and the decoder, as we 292

detected no difference between the Decoder-Null Dynamics Model and shuffle (Fig. 6H). Thus, 293

the OFC model used different neural activity patterns to issue the same command only when the 294

invariant dynamics were useful for feedback control. 295

Discussion 296

Theoretical work shows that recurrent connectivity can give rise to neural population 297

dynamics for motor control1,4,5 and endow the brain with the capacity to generate diverse 298

physical movement3. Experimental work has found that population activity in the motor cortex 299

follows similar and predictable dynamics across different movements11,12,16. But it has been 300

untested whether dynamics that are invariant across movements are used to actually control 301

movement, as the transformation from neural activity to motor command has been challenging to 302

measure26,27 and model23–25. Here, we use a BMI to perform that test. 303

We discovered that different neural activity patterns are used to issue the same command 304

in different movements. The activity patterns issuing the same command vary systemically 305

depending on the past pattern, and critically, they transition according to low-dimensional, 306

invariant dynamics towards activity patterns that causally drive the subsequent command. Our 307

results’ focus on the command provides a conceptual advance beyond previous work that 308

characterized properties of dynamics during behavior 12,13,15,16, revealing that invariant dynamics 309

are actually used to control movement. 310

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

Further, it has been unclear how the brain could integrate invariant dynamics with 311

feedback 24,35–37 to control movement. We introduce a hierarchical model44 of optimal feedback 312

control, in which the brain uses feedback to control a neural population that controls movement. 313

Optimal control theory reveals that invariant dynamics that are aligned to the decoder can help 314

the brain perform feedback control of movement, reducing the input that a population needs to 315

issue the appropriate commands. The model verified that when invariant dynamics are used for 316

feedback control, the same command is issued with different neural activity patterns across 317

movements. Altogether, these findings form a basis for future studies on what connectivity and 318

neural populations throughout the brain give rise to invariant dynamics, whether the brain sends 319

inputs to a neural population to take advantage of invariant dynamics, and whether invariant 320

dynamics actually drive muscles during physical movement. 321

These results provide strong evidence against one traditional view that the brain reuses 322

the same neural population activity patterns to issue a particular command. This perspective is 323

present in classic studies that describe neurons as representing movement parameters55,56. It is 324

still debated what movement parameters are updated by motor cortex neurons 28,57–59, as 325

population activity encodes movement position 60–62, distance 63, velocity 61,62, speed 64, 326

acceleration 65, and direction of movement 64,66–68 , as well as muscle-related parameters such as 327

force/torque 55,68–70, muscle synergies 71,72, muscle activation 73–75, and even activation of motor 328

units27. Regardless of how commands from motor cortex update physical movement, our 329

findings using a BMI strongly suggest that the motor cortex does not use the same neural activity 330

pattern to issue a specific motor command. Our findings instead support the recent proposal that 331

neural activity in motor cortex avoids “tangling”11 while issuing commands. 332

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

We found that invariant dynamics do not perfectly determine the neural population’s next 333

command. We propose that as the brain sends input to the neural population, it performs 334

feedback control on the state of the neural population’s invariant dynamics in order to produce 335

movement. This proposal expands the number of behaviors for which invariant dynamics are 336

useful. This is because invariant dynamics do not need to define the precise neural 337

trajectories12,34 that produce movement; they only need to provide useful transitions of neural 338

activity that inputs can harness to control movement. In our data, simple dynamics (decaying 339

dynamics with different time constants) in a low-dimensional activity space (~4 dimensions) 340

were used to control many conditions of movement (~20 conditions). We find that invariant 341

dynamics constrain neural activity in dimensions which do not directly matter for issuing current 342

commands50, so that inputs in these dimensions can produce future commands (Fig. 6C). This 343

mechanism refutes a simplistic interpretation of the minimal intervention principle76 in which 344

neural activity should only be controlled in the few dimensions which directly drive commands. 345

This also accords with the finding that motor cortex responses to feedback are initially in the 346

decoder null space before transitioning to neural activity that issues corrective commands 24. 347

There is almost surely a limitation to the behaviors that particular invariant dynamics are 348

useful for. Motor cortex activity occupies orthogonal dimensions and shows a different influence 349

on muscle activation during walking and trained forelimb movement 26, and follows different 350

dynamics for reach and grasp movements 77. Notably, our finding of decaying dynamics for BMI 351

control contrasts with rotational dynamics observed during natural arm movement 12,13,16,22. We 352

speculate this could be because controlling the BMI relied more on feedback control than a well-353

trained physical movement, because controlling the BMI did not require the temporal structure of 354

commands needed to control muscles for movement2, and/or because controlling the BMI did not 355

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

involve proprioceptive feedback of physical movement35. Recent theoretical work shows that 356

cortico-basal ganglia-thalamic loops can switch between different cortical dynamics useful for 357

different temporal patterns of commands 46. 358

The use of invariant dynamics to issue commands has implications for how the brain 359

learns new behavior 78,79, enabling the brain to leverage pre-existing dynamics for initial learning 360

25,80,81 and to develop new dynamics through gradual reinforcement 82,83. This learning that 361

modifies dynamics relies on plasticity in cortico-basal ganglia circuits 83–85 and permits the brain 362

to reliably access a particular neural activity pattern for a given command and movement 32, even 363

if the same neural activity pattern is not used to issue the same command across different 364

movements. 365

Modeling invariant dynamics can inform the design of new neuroprosthetics that can 366

generalize commands to new behaviors 16 and classify entire movement trajectories 86. We 367

expect that as new behaviors are performed, distinct neural activity patterns will be used to issue 368

the same command, but that invariant dynamics can predict and thus recognize these distinct 369

neural patterns as signal for the BMI rather than noise. In addition, our results inform the design 370

of rehabilitative therapies to restore dynamics following brain injury or stroke to recover 371

movement 87,88. 372

Overall, this study put the output of a neural population into focus, revealing how rules 373

for neural dynamics are used to issue commands and produce different movements. This was 374

achieved by studying the brain as it controlled the very neural activity we recorded. BMI 78,89–92, 375

especially combined with technical advances in measuring, modeling, and manipulating activity 376

from defined populations, provides a powerful technique to test emerging hypotheses about how 377

neural circuits generate activity to control behavior. 378

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

Acknowledgements 379

We thank I. Rodrigues-Vaz, D. Peterka, the Theory Center at the Zuckerman Institute, and I. 380

Papusha for helpful discussions, and the Costa and Carmena labs for their support. 381

Funding 382
NIH NINDS Pathway to Independence Award 383
1K99NS128250-01 (VRA) 384
BRAIN Initiative National Institute of Mental Health postdoctoral fellowship 385
1F32MH118714-01 (VRA) 386
NIH Pathway to Independence Award 387
1K99NS124748-01 (PK) 388
BRAIN Initiative National Institute of Mental Health postdoctoral fellowship 389
1F32MH120891-01 (PK) 390
NINDS/NIH BRAIN Initiative U19 391
NS104649 (RMC) 392
Simons-Emory International Consortium on Motor Control 393
#717104 (RMC) 394
NINDS/NIH R01 395
NS106094 (JMC) 396

 397
Author contributions 398

V.R.A., P.K., R.M.C., and J.M.C. conceived and designed this study. P.K., S.G., and A.L.O. 399

performed the experiments. P.K. and V.R.A. analyzed the data. All authors contributed materials 400

and analysis tools. V.R.A., P.K., R.M.C, and J.M.C. wrote the manuscript. All authors reviewed 401

the manuscript. 402

Declaration of interests 403

Authors declare that they have no competing interests. 404

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Figures and legends 405

 406

Figure 1. BMI to study neural population control of movement. 407

(A) Schematic of the BMI system. 408

(B) Schematic of decoder calibration. 409

(C) Single trials of BMI control. 410

(D) Average target acquisition time per session. 411

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

(E) Example of the same command (black arrow) being issued during single trials of different 412

conditions. The example command was in the -45 degree direction and the smallest magnitude 413

bin of analysis. 414

(F) Left: The average command subtrajectory from -500ms to 500ms. Right: The average 415

position subtrajectory from -500ms to 500ms. See Fig. S1 for analysis of subtrajectories. 416

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

 417

Figure 2. Using the BMI to test whether invariant dynamics are used to control different 418

movements. 419

(A) Illustration of invariant dynamics. 420

(B) Multiple neural activity patterns (e.g. white and black square) issue the same command. An 421

illustrative decoder defines the command at time 𝑡𝑡 as the difference between two neurons’ 422

instantaneous activity 𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡), symbolized with orange arrows (top right) indicating the 423

command’s magnitude and sign. 424

(C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1 425

(blue) and 2 (green) are driven by the same commands in different temporal orders. 426

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

(D) Neural activity that follows invariant dynamics h in order to issue the commands for 427

movement. See Fig. S3D for another example of invariant dynamics (decaying dynamics). 428

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

 429

Figure 3. The same command is issued by different neural activity patterns in different 430

movements. 431

(A) The same command (orange upward arrow) is issued in different conditions with different 432

activity patterns (blue, green dots). These patterns deviate from the condition-pooled average 433

activity pattern for the command (black dot). 434

(B) Left: An example neuron’s average firing rate (colored dots) for the example command and 435

conditions from Fig. 1F (position subtrajectories plotted at right legend), as well as the condition-436

pooled average activity (dashed black line labeled “condition-pool”). The condition-shuffled 437

distributions of average activity are shown with gray boxplots indicating the 2.5th, 25th, 50th, 75th, 438

and 97.5th percentiles. Asterisk indicates the distance for the (command, condition, neuron) 439

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

exceeded the shuffle distance (p<0.05). 5/9 or 62.5% of the examples were significant. Distance 440

was significantly greater than shuffle distance aggregating over all (command, condition, 441

neuron) tuples: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 pooled 442

over sessions. Right: Population distance normalized to the shuffle mean (colored dots). 7/9 or 443

78% of examples were significant. Fig. S2A shows population distances for all (command, 444

condition) tuples in this session. 445

(C) The distribution of normalized population distances across (command, condition) tuples. 446

Colored ticks indicate distances in (B) right. See Fig. S2BC for additional distance distributions. 447

(D) Normalized population distance averaged across (command, condition) tuples (Monkey G 448

[J]: n=9 [4] sessions). Bars indicate the average across sessions. Population distance was 449

significantly greater than shuffle distances, aggregating over all (command, condition) tuples: 450

Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled over sessions. 451

(E) Left: Fraction of (command, condition) tuples with distance significantly greater than shuffle 452

distance. Middle: Fraction of commands with distance significantly greater than shuffle distance, 453

aggregating over conditions. Right: Fraction of neurons with distance significantly greater than 454

shuffle distance, calculated for each (command, condition) separately and aggregating over all 455

(command, condition) tuples for statistics. Throughout (E): dashed line indicates chance level 456

(fraction equal to 0.05 significantly deviating from shuffle distance) and datapoints are each of 9 457

[4] sessions for monkey G [J]. See Fig. S6E-H for the relationship between population distance 458

and command subtrajectories across pairs of conditions. See Table S1 for statistics details. 459

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

 460

Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the 461

same command. 462

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

(A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots) that 463

issue a given command (orange arrow) based on previous activity. See Fig. S6 for predictions of 464

the relationship between activity patterns across pairs of conditions. 465

(B) Models were tested on neural activity for a command (Left, magenta) or condition (Right, 466

purple) left-out of training the model. See Fig. S4 for elaboration on invariant dynamics 467

generalization. 468

(C) The coefficient of determination (R2) of models predicting neural activity given the 469

command it issues and previous activity, evaluated on test data not used for model fitting 470

(Monkey G [J]: n=9 [4] sessions). See Fig. S3 for properties of the models. Inset shows raw R2, 471

where “shuffle” is the 95th percentile of the shuffle distribution of R2. Main panel shows R2 472

normalized to shuffle. Full dynamics, command left-out dynamics, and condition left-out 473

dynamics all predicted neural activity significantly better than shuffle dynamics. For each model: 474

Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. Fig. 475

S5 shows models with behavior variables and non-linear dynamics. 476

(D) Left. Average activity for the example neuron, command, and conditions from Fig. 3B, left. 477

Right. Prediction of the activity in Left by the full dynamics model (stars), the shuffle dynamics 478

model (black boxplot distribution), and the model predicting neural activity only using the 479

command (gray triangle). 8/9 or 88.9% of these examples were predicted significantly better than 480

shuffle dynamics. The full dynamics model predicted individual neuron activity better than 481

shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-482

value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). 483

 484

 485

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

(E) Left. Average population activity for the example command and conditions from Fig. 3B 486

right, visualized along the activity dimension that captured the most variance (the first principal 487

component, labeled “PC1”, of condition-specific average population activity). Right. Prediction 488

of activity in Left by the full dynamics model (stars), the shuffle dynamics model (black boxplot 489

distribution), and the model predicting neural activity only using the command (gray triangle). 490

9/9 or 100.0% of these examples were predicted with significantly lower error than shuffle 491

dynamics (prediction was calculated using full population activity, not just PC1). The full 492

dynamics model predicted population activity with lower error than shuffle dynamics, 493

aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-value < 0.001 for 494

9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). 495

(F) Model R2 from predicting the component of average neural activity for a given command that 496

is specific to a condition, comparing the full dynamics model (dark gray bar and filled dots) with 497

the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G [J]: n=9 [4] 498

sessions). The full dynamics model predicted significantly more variance than shuffle dynamics 499

(Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). 500

(G) Left. Fraction of (command, condition) tuples where full dynamics predicts average 501

population activity significantly better than shuffle dynamics. Center. Fraction of commands 502

where full dynamics predicts average population activity significantly better than shuffle 503

dynamics, calculated for each condition separately and then aggregated over all conditions for 504

statistics. Right. Fraction of neurons where full dynamics predicts the neuron’s average activity 505

significantly better than shuffle dynamics, calculated for each (command, condition) separately 506

and then aggregated over all (command, condition) tuples for statistics. Throughout E: datapoints 507

are each of 9[4] sessions for Monkey G[J]. 508

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

28

See Table S1 for statistics details. 509

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

29

 510

Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue 511

the next command. 512

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

30

(A) A linear dynamics model predicts the transition from current neural activity (colored rings) 513

to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e. the 514

component of neural activity in the decoder space). 515

(B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink 516

plane), then they do not predict the next command (i.e. the component of neural activity in the 517

decoder space). 518

(C) The coefficient of determination (R2) of models predicting next neural activity given current 519

neural activity, evaluated on test data not used for model fitting (Monkey G [J]: n=9 [4] 520

sessions). Inset shows raw R2, where “shuffle” is the 95th percentile of the shuffle distribution of 521

R2. Main panel shows R2 normalized to shuffle. All models predicted next neural activity 522

significantly better than shuffle dynamics. For each model, Monkey G [J]: p-value < 0.001 for 523

9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. 524

(D) R2 of full model for each neural activity dimension (dynamics eigenvector), sorted by R2. 525

(E) Same as (C), except prediction of next command given current neural activity (Monkey G 526

[J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command 527

significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey 528

G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s. for 529

0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command left-out 530

dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions 531

pooled. 532

(F) Analyses of how well the next command is predicted for individual (command, condition) 533

tuples. The full dynamics model predicted condition-specific next command better than shuffle 534

dynamics, aggregating over all (command, condition) tuples (Monkey G [J]: p-value < 0.001 for 535

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

31

9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). Left. Fraction of (command, condition) 536

tuples where full dynamics predicts the next command significantly better than shuffle dynamics 537

(Monkey G [J]: n=9 [4] sessions). Right. Fraction of commands where full dynamics predicts the 538

next command significantly better than shuffle dynamics, calculated for each condition 539

separately and then aggregated over all conditions for statistics (Monkey G [J]: n=9 [4] sessions). 540

(G) Visualization of the command angle (left) (i.e. the direction that the command points) for the 541

example command and conditions (right) from Fig. 3B. For each condition (each row), 542

visualization shows the average current command angle (first column), the average next 543

command angle (second column), and the prediction of the average next command angle by the 544

full dynamics model (third column). 545

(H) For each (command, condition) tuple, prediction of the angle between the next command and 546

the condition-pooled average next command. Left. Fraction of (command, condition) tuples for 547

which the sign of the angle is accurately predicted (positive=turn counterclockwise, 548

negative=turn clockwise). Full dynamics predictions are significantly more accurate than shuffle 549

dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled 550

sessions. Right. Error in predicted angle. Full dynamics predictions are significantly more 551

accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 552

0.001 for pooled sessions). 553

See Table S1 for statistics details. 554

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

32

 555

Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural 556

population needs to issue commands based on feedback. 557

(A) A model of optimal feedback control for movement that incorporates invariant neural 558

dynamics. 559

(B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and 560

clockwise (cw) movements to 8 targets resulting in 24 conditions). Top: Full Dynamics Model that 561

uses invariant dynamics fit on experimental data. Bottom: No Dynamics Model that uses dynamics 562

matrix A set to 0. 563

(C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9 [4] 564

sessions). The population required significantly less input to control movement under the Full 565

Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black ‘ND’). Un-566

normalized data were pooled across sessions and compared with a linear mixed effect (LME) 567

model between input magnitude and model category with session modeled as random effect 568

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

33

(Monkey G [J]: p-value < 0.001). Individual sessions were analyzed with a Wilcoxon signed-569

rank test that paired condition across the models (Monkey G [J]: p-value<0.05 for 9/9 [4/4] 570

sessions). 571

(D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in input 572

magnitude between Decoder-null Dynamics (pink ‘D’) and No Dynamics (black ‘ND’) when 573

pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions (Monkey G 574

[J]: p-value<0.05 for 0/9 [0/4] sessions). 575

(E) The same command is issued across conditions in both the Full Dynamics Model and No 576

Dynamics Model. Average position subtrajectories are shown locked to an example command 577

across conditions. 578

(F) Distance between average population activity for a (command, condition) and the average 579

activity for the command pooling across conditions, normalized by the mean distance of the 580

shuffle distribution (gray boxplots showing mean, 0th percentile, 25th, 75th, and 95th percentile). 581

Left: data from Full Dynamics Model. Right: data from the No Dynamics Model. Asterisk 582

indicates distance is greater than shuffle (p-value<0.05). 583

(G) Same as (F), but each point is an individual session pooling over (command, condition) 584

tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model were 585

greater than shuffle. Data was pooled over sessions using a LME with session modeled as 586

random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed with a 587

Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No difference was 588

detected in population distances between the No Dynamics Model and shuffle when pooling 589

across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for 590

Monkey G (J) on 0/9 (0/4) sessions). 591

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

34

(H) Same as (G), but for the Decoder-null Dynamics Model (pink ‘D’). No difference was 592

detected in population distances between the Decoder-null Dynamics Model and shuffle when 593

pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 594

for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected in population distances 595

between the No Dynamics Model and shuffle when pooling across sessions (Monkey G [J]: p-596

value > 0.05) and on individual sessions (p-value<0.05 for Monkey G(J) on 0/9 (0/4) sessions). 597

See Table S2 for statistics details. 598

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

35

STAR Methods 599

RESOURCE AVAILABILITY 600

Lead contact 601

Further information and requests for resources and reagents should be directed to and will be 602

fulfilled by the lead contacts, Rui M. Costa (rc3031@columbia.edu) and Jose M. Carmena 603

(jcarmena@berkeley.edu). 604

Materials availability 605

This study did not generate new unique reagents. 606

Data and code availability 607

• Monkey BMI data (binned spike counts, cursor trajectories, condition parameters, 608

decoder parameters, and task parameters) has been deposited the DANDI Archive at 609

http://dandiarchive.org/dandiset/000404/draft and is publicly available as of the date of 610

publication. Accession numbers / DOIs are listed in the key resources table. 611

• All original code has been deposited at 612

https://github.com/pkhanna104/bmi_dynamics_code and is publicly available as of the 613

date of publication. DOIs are listed in the key resources table. 614

• Any additional information required to reanalyze the data reported in this paper is 615

available from the lead contact upon request. 616

EXPERIMENTAL MODEL AND SUBJECT DETAILS 617

All training, surgery, and experimental procedures were conducted in accordance with the NIH 618

Guide for the Care and Use of Laboratory Animals and were approved by the University of 619

California, Berkeley Institutional Animal Care and Use Committee (IACUC). Two adult male 620

rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey J) (Macaca mulatta, 621

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

http://dandiarchive.org/dandiset/000404/draft
https://github.com/pkhanna104/bmi_dynamics_code
https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

36

RRID: NCBITaxon:9544) were used as subjects in this study. Prior to this study, Monkeys G and 622

J were trained at arm reaching tasks and spike-based 2D neuroprosthetic cursor tasks for 1.5 623

years. All animals were housed in pairs. 624

METHOD DETAILS 625
Electrophysiology and experimental setup 626

Two male rhesus macaques were bilaterally, chronically implanted with 16 x 8 arrays of 627

Teflon-coated tungsten microwire electrodes (35 mm in diameter, 500 mm separation between 628

microwires, 6.5 mm length, Innovative Neurophysiology, Durham, NC) in the upper arm area of 629

primary motor cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target 630

areas was performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus 631

brain 93. Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5 632

- 3 mm, guided by stereotactic coordinates. 633

During behavioral sessions, neural activity was recorded, filtered, and thresholded using the 634

128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey J) or the 635

256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey G). Channel 636

thresholds were manually set at the beginning of each session based on 1–2 min of neural 637

activity recorded as the animal sat quietly (i.e. not performing a behavioral task). Single-unit and 638

multi-unit activity were sorted online after setting channel thresholds. Decoder units were 639

manually selected based on a combination of waveform amplitude, variance, and stability over 640

time. 641

Neuroprosthetic decoding 642

Subjects’ neural activity controlled a two-dimensional (2D) neuroprosthetic cursor in real-643

time to perform center-out and obstacle-avoidance tasks. The neuroprosthetic decoder consists of 644

two models: 645

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

37

1) A cursor dynamics model capturing the physics of the cursor’s position and velocity. 646

2) A neural observation model capturing the statistical relationship between neural activity and the 647

cursor. 648

The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent for the 649

cursor and to correspondingly update the cursor. 650

Decoder algorithm and calibration -- Monkey G 651

Monkey G used a velocity Kalman filter (KF) 94,95 that uses the following models for cursor 652

state 𝑐𝑐𝑡𝑡 and observed neural activity 𝑥𝑥𝑡𝑡 : 653

𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑡𝑡−1 + 𝑤𝑤𝑡𝑡,𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝑊𝑊) 654

𝑥𝑥𝑡𝑡 = 𝐶𝐶𝑐𝑐𝑡𝑡 + 𝑞𝑞𝑡𝑡, 𝑞𝑞𝑡𝑡~𝑁𝑁(0,𝑄𝑄) 655

In the cursor dynamics model, the cursor state 𝑐𝑐𝑡𝑡 ∈ 𝑅𝑅5 was a 5-by-1 vector 656

�𝑝𝑝𝑝𝑝𝑠𝑠𝑥𝑥,𝑝𝑝𝑝𝑝𝑥𝑥𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥, 𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦, 1�
𝑇𝑇

, 𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5 captures the physics of cursor position and velocity, and 𝑤𝑤𝑡𝑡 657

is additive Gaussian noise with covariance 𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5 capturing cursor state variance that is not 658

explained by 𝐴𝐴. 659

In the neural observation model, neural observation 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁 was a vector corresponding 660

to spike counts from 𝑁𝑁 units binned at 10 Hz, or 100ms bins. 𝐶𝐶 models a linear relationship 661

between the subjects’ neural activity and intended cursor state. The decoder only modeled the 662

statistical relationship between neural activity and intended cursor velocity, so only the columns 663

corresponding to cursor state velocity and the offset (columns 3-5) in 𝐶𝐶 were non-zero. 𝑄𝑄 is 664

additive Gaussian noise capturing variation in neural activity that is not explained by 𝐶𝐶𝑐𝑐𝑡𝑡. For 665

Monkey G, 35-151 units were used in the decoder (median 48 units). 666

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

38

In summary, the KF is parameterized by matrices {𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5,𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5,𝐶𝐶 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁5,𝑄𝑄 ∈667

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁}. The KF equations used to update the cursor based on observations of neural activity are 668

defined as in 95. 669

 The KF parameters were defined as follows. For the cursor dynamics model, the 𝐴𝐴 and 𝑊𝑊 670

matrices were fixed as in previous studies 96. Specifically, they were: 671

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.1
0

0
0.1

0
0

0 0
0 0

0.8
0

0 0
0.8 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
, 𝑊𝑊 =

⎣
⎢
⎢
⎢
⎡
0 0
0 0

0
0

0
0

0
0

0 0
0 0

7
0

0 0
7 0

0 0 0 0 0⎦
⎥
⎥
⎥
⎤
 672

where units of cursor position were in cm and cursor velocity in cm/sec. 673

 For the neural observation model, the 𝐶𝐶 and 𝑄𝑄 matrices were initialized from neural and 674

cursor kinematic data collected at the beginning of each experimental session while Monkey G 675

observed 2D cursor movements that moved through either a center-out task or obstacle avoidance 676

task. Maximum likelihood methods were used to fit 𝐶𝐶 and 𝑄𝑄. 677

Next, Monkey G performed a “calibration block” where he performed the center-out or 678

obstacle-avoidance task movements as the newly initialized decoder parameters were continuously 679

calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This calibration block 680

was performed in order to arrive at parameters that would enable excellent neuroprosthetic 681

performance. Every 100ms, decoder matrices 𝐶𝐶 and 𝑄𝑄 were adapted using the recursive maximum 682

likelihood CLDA algorithm 49. Half-life values, defining how quickly 𝐶𝐶 and 𝑄𝑄 could adapt, were 683

typically 300 sec, and adaptation blocks were performed with a weak, linearly decreasing “assist” 684

(re-defining 𝑐𝑐𝑡𝑡 as a weighted linear combination of user-generated 𝑐𝑐𝑡𝑡 and optimal 𝑐𝑐𝑡𝑡 to drive the 685

cursor to the target). Typical assist values at the start of the block were 90% user-generated, 10% 686

optimal and decayed to 100% user-generated, 0% optimal over the course of the block. Following 687

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

39

CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey G 688

performing the center-out and obstacle-avoidance tasks. 689

Decoder algorithm -- Monkey J 690

Monkey J used a velocity Point Process Filter (PPF) 47,48. The PPF uses the same cursor 691

dynamics model for cursor state 𝑐𝑐𝑡𝑡 as the KF above, but uses a different neural observations model 692

(a Point Process model rather than a Gaussian model) for the spiking 𝑆𝑆𝑡𝑡1:𝑁𝑁 of each of 𝑁𝑁 neurons: 693

𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑡𝑡−1 + 𝑤𝑤𝑡𝑡,𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝑊𝑊) 694

𝑝𝑝(𝑆𝑆𝑡𝑡1:𝑁𝑁|𝑣𝑣𝑡𝑡) = �(𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗)Δ)𝑆𝑆𝑡𝑡
𝑗𝑗
exp (−𝜆𝜆𝑗𝑗(𝑡𝑡|𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗)

𝑁𝑁

𝑗𝑗=1

Δ) 695

In the neural observations model, neural observation 𝑆𝑆𝑡𝑡
𝑗𝑗 is the jth neuron’s spiking activity, 696

equal to 1 or 0 depending on whether the jth neuron spikes in the interval (𝑡𝑡, 𝑡𝑡 + Δ). We used Δ𝑡𝑡 697

= 5ms bins since consecutive spikes rarely occurred within 5ms of each other. For Monkey J, 20 698

or 21 units were used in the decoder (median 20 units). The probability distribution over spiking 699

𝑝𝑝(𝑆𝑆𝑡𝑡1:𝑁𝑁|𝑣𝑣𝑡𝑡) was a point process with 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) as the jth neuron's instantaneous firing rate at 700

time t. 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) depended on the intended cursor velocity 𝑣𝑣𝑡𝑡 ∈ 𝑅𝑅2 in the two dimensional 701

workspace and the parameters 𝜙𝜙𝑗𝑗 for how neuron j encodes velocity. 𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) was modeled 702

as a log-linear function of velocity: 703

𝜆𝜆𝑗𝑗(𝑡𝑡 |𝑣𝑣𝑡𝑡,𝜙𝜙𝑗𝑗) = exp (𝛽𝛽𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑇𝑇𝑣𝑣𝑡𝑡) 704

where 𝜙𝜙𝑗𝑗 parameters consist of 𝛼𝛼𝑗𝑗 ∈ 𝑅𝑅2,𝛽𝛽𝑗𝑗 ∈ 𝑅𝑅1. 705

In summary, the PPF is parameterized by {𝐴𝐴 ∈ 𝑅𝑅5𝑥𝑥5,𝑊𝑊 ∈ 𝑅𝑅5𝑥𝑥5,𝜙𝜙1:𝑁𝑁}. The PPF equations 706

used to update the cursor based on observations of neural activity are defined as in 48. 707

The PPF parameters were defined as follows. For the cursor dynamics model, the 𝐴𝐴 and 708

𝑊𝑊 matrices are defined as: 709

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

40

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.005
0

0
0.005

0
0

0 0
0 0

0.989
0

0 0
0.989 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
, 𝑊𝑊 =

⎣
⎢
⎢
⎢
⎡
0 0
0 0

0
0

0 0
0 0

0 0
0 0

3.7 × 10−5
0

0 0
3.7 × 10−5 0

0 0 0 0 0⎦
⎥
⎥
⎥
⎤
 710

where units of cursor position were in m and cursor velocity in m/sec. 711

 For the neural observations model, parameters 𝜙𝜙1:𝑁𝑁 were initialized from neural and cursor 712

kinematic data collected at the beginning of each experimental session while Monkey J observed 713

2D cursor movements that moved through a center-out task. Decoder parameters were adapted 714

using CLDA and optimal feedback control intention estimation as outlined in 47. Following CLDA, 715

decoder parameters were fixed. Then the experiment proceeded with Monkey J performing the 716

center-out and obstacle-avoidance tasks. 717

Definition of the command for the BMI 718

We defined the “command” for the BMI as the direct influence of subjects’ neural activity 719

𝑥𝑥𝑡𝑡 (binned at 100ms) on the cursor. Concretely, in both decoders, the command was a linear 720

transformation of neural activity that we write as 𝐾𝐾𝐾𝐾𝑡𝑡 which updated the cursor velocity. 721

Command definition -- Monkey G 722

For Monkey G, the update to the cursor state 𝑐𝑐𝑡𝑡 due to cursor dynamics and neural observation 723

𝑥𝑥𝑡𝑡 can be written as: 724

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 725

where 𝐹𝐹𝑡𝑡𝑐𝑐𝑡𝑡−1 is the update in cursor state due to the cursor dynamics process and 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 is what we 726

have defined as the command: the update in cursor state due to the current neural observation. 727

𝐾𝐾𝑡𝑡 ∈ 𝑅𝑅5𝑥𝑥𝑥𝑥 is the Kalman Gain matrix and 𝐹𝐹𝑡𝑡 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡𝐶𝐶)𝐴𝐴. In practice 𝐾𝐾𝑡𝑡 converges to its steady-728

state form 𝐾𝐾 within a matter of seconds 97, and thus 𝐹𝐹𝑡𝑡 converges to 𝐹𝐹 = (𝐼𝐼 − 𝐾𝐾𝐾𝐾)𝐴𝐴, so we can 729

write the above expression in its steady state form: 730

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

41

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝐾𝐾𝑡𝑡 740

In our implementation, the structure of 𝐾𝐾 is such that neural activity 𝑥𝑥𝑡𝑡 directly updates cursor 731

velocity, and velocity integrates to update position. The following technical note explains the 732

structure of 𝐾𝐾. Due to the form of the 𝐴𝐴,𝑊𝑊 matrices, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) = 2. In addition, decoder 733

adaptation imposed the constraint that the intermediate matrix 𝐶𝐶𝑇𝑇𝑄𝑄−1𝐶𝐶 was of the form 𝑎𝑎𝑎𝑎, 734

where 𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝑇𝑇𝑄𝑄−1𝐶𝐶)). Due to this constraint, the rows of 𝐾𝐾 that update the position 735

of the cursor are equal to the rows of 𝐾𝐾 that update the velocity multiplied by the update 736

timestep: 𝐾𝐾(1: 2, ∶) = 𝐾𝐾(3: 4, ∶) ∗ 𝑑𝑑𝑑𝑑 98 (see independent velocity control in the reference). Given 737

this structure of 𝐾𝐾, neural activity’s contribution to cursor position is the simple integration of 738

neural activity’s contribution to velocity over one timestep. 739

In summary, since 𝐾𝐾𝑥𝑥𝑡𝑡 reflects the direct effect of the motor cortex units on the velocity of 741

the cursor, we term the velocity components of 𝐾𝐾𝑥𝑥𝑡𝑡 the “command”. We analyzed the neural spike 742

counts binned at 100ms that were used online to drive cursor movements with no additional pre-743

processing. 744

Command definition -- Monkey J 745

For Monkey J the cursor state updates in time as: 746

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) + 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 747

where 748

𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) = (𝐴𝐴𝑐𝑐𝑡𝑡−1 − 𝐾𝐾𝑡𝑡𝑒𝑒𝐶𝐶𝐶𝐶𝑐𝑐𝑡𝑡−1∆), 𝐾𝐾𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐶𝐶 749

Here 𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡−1) is the cursor dynamics process and 𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 is the neural command. 𝑃𝑃𝑡𝑡 ∈ 𝑅𝑅5𝑥𝑥5 is the 750

estimate of cursor state covariance, and 𝐶𝐶 ∈ 𝑅𝑅5𝑥𝑥𝑥𝑥 captures how neural activity encodes velocity 751

as a matrix where each column is composed of �0, 0,𝛼𝛼𝑗𝑗𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,𝛼𝛼𝑗𝑗
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝛽𝛽𝑗𝑗�

𝑇𝑇
for the jth unit. 752

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

42

We define the command for analysis in this study as 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡, where 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 is a time-invariant 753

matrix that almost perfectly approximates 𝐾𝐾𝑡𝑡. While the PPF’s 𝐾𝐾𝑡𝑡 does not necessarily converge 754

in the same way it does in the KF, for all four analyzed sessions, neural activity mapped through 755

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 ∈ 𝑅𝑅2𝑥𝑥𝑥𝑥 could account for 99.6, 99.6, 99.5, and 99.8 percent of the variance of the command 756

respectively (𝐾𝐾𝑡𝑡𝑥𝑥𝑡𝑡 ≅ 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡). In addition, due to the accuracy of this linear approximation, we also 757

match Monkey J’s timescale of neural activity and commands to that of Monkey G. In order to 758

match timescales across the two animals (Monkey G: 100 ms updates, Monkey J: 5ms updates), 759

Monkey J’s commands were aggregated into 100 ms bins by summing 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡 over 20 consecutive 760

5ms bins to yield the aggregated command over 100ms. Correspondingly, Monkey J’s neural 761

activity was also summed into 100ms bins by summing 𝑥𝑥𝑡𝑡 over 20 consecutive 5ms bins. 762

Neuroprosthetic tasks 763

Subjects performed movements in a two-dimensional workspace (Monkey J: 24cm x 24cm, 764

Monkey G: 50cm x 28cm) for two neuroprosthetic tasks: a center-out task and an obstacle-765

avoidance task. We define the movement “condition” as the task performed (“co” = center-out 766

task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle in the obstacle-767

avoidance task) and the target achieved (numbered 0 through 7). Thus, there were up to 24 different 768

conditions possible (8 center-out conditions, 8 clockwise obstacle-avoidance conditions, 8 769

counterclockwise obstacle-avoidance conditions). In practice, subjects mostly circumvented the 770

obstacles for a given target location consistently in a clockwise or counterclockwise manner (as 771

illustrated in Fig. 1C right) resulting in an average of 16-17 conditions per session. 772

Center-out task: 773

The center-out task required subjects to hold their cursor within a center target (Monkey J: 774

radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of time (Monkey J: hold = 0.25 775

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

43

sec, Monkey G: hold = 0.2 sec) before a go cue signaled the subjects to move their cursor to one 776

of eight peripheral targets uniformly spaced around a circle. Each target was equidistant from the 777

center starting target (Monkey J: distance = 6.5cm, Monkey G: distance = 10cm). Subjects then 778

had to position their cursor within the peripheral target (Monkey J: target radius = 1.2cm, Monkey 779

G: target radius = 1.7cm) for a specified period to time (Monkey J: hold = 0.25, Monkey G: hold 780

= 0.2sec). Failure to acquire the target within a specified window (Monkey J: 3-10 sec, Monkey 781

G: 10 sec) or to hold the cursor within the target for the duration of the hold period resulted in an 782

error. Following successful completion of a target, a juice reward was delivered. Monkey J was 783

required to move his cursor back to the center target to initiate a new trial, and Monkey G’s cursor 784

was automatically reset to the center target to initiate a new trial. 785

Obstacle-avoidance task: 786

Monkey G performed an obstacle-avoidance task with a very similar structure to the center-787

out task. The only difference was that a square obstacle (side length 2 or 3 cm) would appear in 788

the workspace centered exactly in the middle of the straight line connecting the center target 789

position and peripheral target position. If the cursor entered the obstacle, the trial would end in an 790

error, and the trial was repeated. 791

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial 792

(not necessarily center) target and another target. On arrival at the initial target, an ellipsoid 793

obstacle appeared on the screen. If the cursor entered the obstacle at any time during the movement 794

to the peripheral target, an error resulted, and the trial was repeated. Target positions and obstacle 795

sizes and positions were selected to vary the amount of obstruction, radius of curvature around the 796

obstacles, and spatial locations of targets. Trials were constructed to include the following 797

conditions: no obstruction, partial obstruction with low-curvature, full obstruction with a long 798

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

44

distance between targets, and full obstruction with a short distance between targets thus requiring 799

a high curvature. See 48 for further details. In this study, only trials that included partial obstruction 800

or full obstruction were analyzed as “obstacle-avoidance” trials. 801

Number of sessions 802

We analyzed 9 sessions of data from Monkey G and 4 sessions of data from Monkey J where 803

on each session, monkeys performed both the center-out and obstacle-avoidance tasks with the 804

same decoder. Only successful trials were analyzed. 805

Optimal feedback control model and simulation 806

We introduce a model based on optimal feedback control (OFC) for how the brain can use 807

invariant neural population dynamics to control movement based on feedback. From the 808

perspective of the brain trying to control the BMI, we used the model to ask how invariant neural 809

population dynamics affect the brain’s control of movement. 810

Thus, we performed and analyzed simulations of a model in which the brain acts as an 811

optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs to a 812

neural population so that it performs the center-out and obstacle-avoidance tasks (Fig. 6). The 813

feedback controller computed optimal inputs to the neural population based on the current cursor 814

state and current neural population activity. Specifically, the inputs were computed as the solution 815

of an optimization problem that used knowledge of the target and task, decoder, and the neural 816

population’s invariant dynamics. We simulated 20 trials for each of 24 conditions: 8 center-out 817

conditions, 8 clockwise obstacle-avoidance conditions, and 8 counterclockwise obstacle-818

avoidance conditions. The neural and cursor dynamics processes in the simulation are summarized 819

below: 820

Neural population dynamics with input 821

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

45

In our simulation, the neural activity of 𝑁𝑁 neurons 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁 is driven by invariant dynamics 822

𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 that act on previous activity 𝑥𝑥𝑡𝑡−1, an activity offset 𝑏𝑏 ∈ 𝑅𝑅𝑁𝑁, inputs from the feedback 823

controller 𝑢𝑢𝑡𝑡−1 ∈ 𝑅𝑅𝑁𝑁 that are transformed by input matrix 𝐵𝐵 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁, and noise 𝜎𝜎𝑡𝑡−1 ∈ 𝑅𝑅𝑁𝑁: 824

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 + 𝐵𝐵𝑢𝑢𝑡𝑡−1 + 𝜎𝜎𝑡𝑡−1 825

The input matrix 𝐵𝐵 was set to be the identity matrix such that each neuron has its own 826

independent input. Each neuron also had its own independent, time-invariant noise (see Noise 827

section below for how the noise level was set). 828

For notational convenience, an offset term was appended to 𝑥𝑥𝑡𝑡: �
𝑥𝑥𝑡𝑡
1 � ∈ 𝑅𝑅𝑁𝑁+1 . This enabled 829

incorporating the offset 𝑏𝑏 into the neural dynamics matrix: 830

�𝑥𝑥𝑡𝑡1 � = �𝐴𝐴 𝑏𝑏
0 1� �

𝑥𝑥𝑡𝑡−1
1 � + �𝐵𝐵0� 𝑢𝑢𝑡𝑡−1 + �𝜎𝜎𝑡𝑡−10 � 831

BMI cursor dynamics 832

The cursor update equations for the simulation matched the steady state cursor update equations 833

in the online BMI experiment (see “Definition of the command for the BMI” above): 834

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑐𝑐𝑡𝑡−1 + 𝐾𝐾𝑥𝑥𝑡𝑡−1 835

As in the experiment, cursor state 𝑐𝑐𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐 where 𝑁𝑁𝑐𝑐 = 5 was a vector consisting of two-836

dimensional position, velocity, and an offset: �𝑝𝑝𝑝𝑝𝑠𝑠𝑥𝑥,𝑝𝑝𝑝𝑝𝑥𝑥𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥,𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦, 1�
𝑇𝑇

. 𝐾𝐾 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁 was the 837

decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 (Monkey J). 𝐹𝐹 ∈838

𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 was set to the decoder’s steady-state cursor dynamics matrix (Monkey G). For Monkey J, 839

𝐹𝐹 was estimated using the expression for calculating the steady-state cursor dynamics matrix: 840

𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = (𝐼𝐼 − 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 𝐴𝐴100𝑚𝑚𝑚𝑚, where 𝐼𝐼 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐𝑥𝑥𝑁𝑁𝑐𝑐 ,𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐 was set using the 𝛼𝛼,𝛽𝛽 velocity 841

encoding parameters from the point process filter (see above): 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗, ∶) = �0 0 0.01 ∗842

𝛼𝛼𝑗𝑗(1) 0.01 ∗ 𝛼𝛼𝑗𝑗(2) 0.01 ∗ 𝛽𝛽𝑗𝑗�. Values in 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 were multiplied by 0.01 to adjust for velocities 843

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

46

expressed in units of cm/sec (in the simulation) instead of m/sec (as in PPF). 𝐴𝐴100𝑚𝑚𝑚𝑚 was set to the 844

same 𝐴𝐴 used by Monkey G so that the cursor dynamics would be appropriate for 100ms timesteps: 845

𝐴𝐴100𝑚𝑚𝑚𝑚 =

⎣
⎢
⎢
⎢
⎡
1 0
0 1

0.1
0

0
0.1

0
0

0 0
0 0

0.8
0

0 0
0.8 0

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎤
 846

Joint dynamics of neural activity and cursor 847

The feedback controller sent inputs to the neural population which were optimal considering 848

the task goal, the cursor’s current state, the neural population’s invariant dynamics, and the neural 849

population’s current activity. To solve for the optimal input given all the listed quantities, first, the 850

neural and cursor states are jointly defined. We append the cursor state 𝑐𝑐𝑡𝑡 to the neural activity 851

state �𝑥𝑥𝑡𝑡1 � to form 𝑧𝑧𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁+1+𝑁𝑁𝑐𝑐: 852

𝑧𝑧𝑡𝑡 = �
𝑥𝑥𝑡𝑡
1
𝑐𝑐𝑡𝑡
� = �

𝐴𝐴 𝑏𝑏 0
0 1 0
𝐾𝐾 0 𝐹𝐹

� �
𝑥𝑥𝑡𝑡−1

1
𝑐𝑐𝑡𝑡−1

� + �
𝐵𝐵
0
0
� 𝑢𝑢𝑡𝑡−1 + �

𝜎𝜎𝑡𝑡−1
0
0
� 853

In words, this expression defines a linear dynamical system where input 𝑢𝑢𝑡𝑡−1 influences only 854

the neural activity 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡 evolves by invariant dynamics 𝐴𝐴 with offset vector 𝑏𝑏, and 𝑥𝑥𝑡𝑡 drives cursor 855

𝑐𝑐𝑡𝑡 through the BMI decoder 𝐾𝐾. Finally, noise 𝜎𝜎𝑡𝑡−1 only influences neural activity 𝑥𝑥𝑡𝑡 (see Noise 856

section below for how the noise level was set). 857

OFC to reach a target 858

Our OFC model computes input 𝑢𝑢𝑡𝑡 to the neural population such that the activity of the neural 859

population 𝑥𝑥𝑡𝑡 drives the cursor to achieve the desired final cursor state (i.e. the target) with minimal 860

magnitude of input 𝑢𝑢𝑡𝑡. Concretely, in the finite horizon LQR model, the optimal control sequence 861

(𝑢𝑢𝑡𝑡 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) is computed by minimizing the following cost function: 862

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

47

𝐽𝐽(𝑢𝑢0:𝑇𝑇−1) = (��(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑇𝑇
𝑄𝑄(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝑢𝑢𝑡𝑡𝑇𝑇𝑅𝑅𝑢𝑢𝑡𝑡))

𝑇𝑇−1

𝑡𝑡=0

+ �𝑧𝑧𝑇𝑇 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑇𝑇
𝑄𝑄𝑇𝑇(𝑧𝑧𝑇𝑇 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 863

In our model, 𝑄𝑄 = 0 ∈ 𝑅𝑅(𝑁𝑁+1+𝑁𝑁𝑐𝑐)×(𝑁𝑁+1+𝑁𝑁𝑐𝑐),𝑅𝑅 = 𝐼𝐼 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 , and 𝑄𝑄𝑇𝑇 =864

 �
0 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 0 0

0 0 ∈ 𝑅𝑅1 0
0 0 𝐼𝐼 ∗ 102 ∈ 𝑅𝑅𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

� ∈ 𝑅𝑅(𝑁𝑁+1+𝑁𝑁𝑐𝑐)×(𝑁𝑁+1+𝑁𝑁𝑐𝑐). Thus, the final cursor state 865

error is penalized, and the magnitude of the input to the neural population 𝑢𝑢𝑡𝑡 is penalized (with 866

setting 𝑅𝑅 as non-zero). Because the magnitude of the input to neural activity is penalized, the 867

controller sends the minimal input to the neural population to produce task behavior. We defined 868

our cost function so that the cursor state during movement before the final cursor state is not 869

penalized, and the neural state is never penalized. 870

The optimal control sequence (𝑢𝑢𝑡𝑡 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) is given by 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 871

where feedback gain matrices (𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑡𝑡 = 0, 1, …𝑇𝑇 − 1) are computed iteratively solving the 872

dynamic Ricatti equation backwards in time. We note that we computed the LQR solution for 𝑢𝑢𝑡𝑡 873

using the dynamics of state error 𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and that the dynamics of state error for non-zero target 874

states are affine rather than strictly linear. 875

OFC for center-out task 876

Center-out task simulations were run with the initial cursor position in the center of the 877

workspace at 𝑐𝑐0 = [0, 0, 0, 0, 1] and the target cursor state at �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦, 𝑣𝑣𝑣𝑣𝑙𝑙𝑥𝑥 = 0, 𝑣𝑣𝑣𝑣𝑙𝑙𝑦𝑦 =878

0, 1�
𝑇𝑇
. Targets were positioned 10cm away from the origin (same target arrangement as Monkey 879

G). Target cursor velocity was set to zero to enforce that the cursor should stop at the desired target 880

location. 881

Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey 882

J were used (𝐹𝐹,𝐾𝐾) in simulations. The invariant neural dynamics model parameters (𝐴𝐴, 𝑏𝑏) were 883

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

48

varied depending on the simulated experiment (see below). The horizon for each trial to hit its 884

target state was set to be 𝑇𝑇 = 40 (corresponding to 4 seconds based on the BMI’s timebin of 885

100ms). Constraining each trial to be equal length facilitated comparison of performance across 886

different simulation experiments. We verified that all of our simulated trials completed their tasks 887

successfully. 888

OFC for obstacle-avoidance using a heuristic 889

Obstacle-avoidance task simulations were performed with the same initial and target cursor 890

states as the center-out task, except that the cursor circumvented the obstacle to reach the target in 891

both clockwise and counterclockwise movements. We used a heuristic strategy to direct cursor 892

movements around the obstacle; we defined a waypoint as an intermediate state the cursor had to 893

reach enroute to the final target. The heuristic solution performs optimal control from the start 894

position to the waypoint, and then optimal control from the waypoint to the final target. 895

Importantly, this solution minimizes the amount of input needed to accomplish these goals. We 896

used a heuristic solution because the linear control problem of going from the initial cursor state 897

to the final target cursor state with the constraint of avoiding an obstacle is not a convex 898

optimization problem. 899

Concretely, for the first segment of the movement, a controller with a horizon T=20 directed 900

the cursor to the waypoint, and then a controller with horizon T=20 directed the cursor from the 901

waypoint to the final target (such that the trial length was matched to the center-out task simulation 902

with T=40). 903

The waypoint was defined relative to the obstacle position as follows. First the vector between 904

the center target and the obstacle position was determined (𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). The 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was then 905

rotated either +90 degrees or -90 degrees corresponding to clockwise and counterclockwise 906

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

49

movements. The waypoint position was a 6cm distance in the direction of the rotated vector, from 907

the obstacle center. Finally, the desired velocity vector of the intermediate target was set to be in 908

the direction of 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, with a magnitude of 10 cm/s, so that the cursor would be moving in a 909

direction consistent with reaching its final target in the second segment of the movement after the 910

waypoint was reached. 911

To compute the input 𝑢𝑢𝑡𝑡 to execute these movements, we defined the state error at each time 912

𝑡𝑡 as 𝑧𝑧𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑡𝑡 , where 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was the waypoint for the first half of the movement, and 913

𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was the final target for the second half of the movement. The linear quadratic regulator 914

feedback gain 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 matrices were computed on the appropriate state error dynamics with the 915

shortened horizon T=20. 916

“Full Dynamics Model” Simulation 917

Simulations of the “Full Dynamics Model” consisted of OFC with the invariant dynamics 918

parameters (𝐴𝐴, 𝑏𝑏) that were fit on experimentally-recorded neural activity from each subject and 919

session (see “Invariant dynamics models” below, under “Quantification and Statistical Analysis”). 920

𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using these experimentally-observed (𝐴𝐴, 𝑏𝑏) parameters. The initial state of 921

neural activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the fixed point of the dynamics. 922

“No Dynamics Model” Simulation 923

Simulations of the “No Dynamics Model” consisted of OFC with invariant dynamics 924

parameter 𝐴𝐴 set to zero (𝐴𝐴 = 0). The experimentally-observed offset 𝑏𝑏 was still used from each 925

subject and session. 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using 𝐴𝐴 = 0 and the experimentally-observed 𝑏𝑏, and thus 926

it was different than in the “Full Dynamics Model.” The initial state of neural activity (i.e. 𝑥𝑥𝑡𝑡 at 927

t=0) was set to offset 𝑏𝑏, the fixed point of dynamics with 𝐴𝐴 = 0. 928

“Decoder-null Dynamics Model” Simulation 929

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

50

Simulations of the “Decoder-null Dynamics Model” consisted of OFC with the 930

experimentally-observed invariant dynamics parameters (𝐴𝐴, 𝑏𝑏) that were restricted to the decoder-931

null space, i.e. each invariant dynamics model was fit only on the projection of neural activity into 932

the decoder-null space (see “Invariant dynamics models” under “Quantification and Statistical 933

Analysis”). 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 was computed using these experimentally-observed decoder-null (𝐴𝐴, 𝑏𝑏) 934

parameters, and thus it was different than in the “Full Dynamics Model.” The initial state of neural 935

activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the fixed point of the decoder-null invariant dynamics. 936

The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”, 937

which consisted of OFC with 𝐾𝐾𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 computed using 𝐴𝐴 = 0 and the experimentally-observed 938

decoder-null offset 𝑏𝑏 for each subject and session, and thus it was different than in the previously 939

defined models. The initial state of neural activity (i.e. 𝑥𝑥𝑡𝑡 at t=0) was set to the decoder-null offset 940

𝑏𝑏, the fixed point of dynamics with 𝐴𝐴 = 0. 941

Noise 942

In our OFC model, movement errors arise due to noise in the neural activity, and 943

subsequent neural activity issues commands based on feedback to correct these errors. We used 944

two considerations to choose the noise level for neural activity. First, we sought to add a level of 945

neural noise that was comparable to the neural “signal” needed to perform control in the absence 946

of noise. Second, we wanted to add the same level of noise to the dynamics model (either “Full 947

Dynamics Model” or “Decoder-null Dynamics Model”) and the corresponding “No Dynamics 948

Model,” in order to facilitate comparison. 949

Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each 950

of 24 conditions, and we calculated 𝑎𝑎, the average variance of a neuron across time and trials. 951

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

51

Then for our noisy simulations of the “No Dynamics Model” and the corresponding 952

dynamics models, Gaussian noise with zero mean and fixed variance 𝑎𝑎 was added to each neuron 953

at each timestep: 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑢𝑢𝑡𝑡−1 + 𝜎𝜎𝑡𝑡−1, where 𝜎𝜎𝑡𝑡~𝑁𝑁(0,𝑎𝑎𝑎𝑎). Thus, the overall level of 954

added noise (the sum of noise variance over neurons) matched the overall level of signal in the 955

noiseless No Dynamics Model simulation (sum of activity variance over neurons). 956

We note that our main findings (Fig. 6CD, 6GH) held even with different noise levels. 957

QUANTIFICATION AND STATISTICAL ANALYSIS 958

Command discretization for analysis 959

We sought to analyze the occurrence of the same command across different movements. 960

Commands on individual time points were analyzed as the same command if they fell within the 961

same discretized bin of continuous-valued, two-dimensional command space. All commands from 962

rewarded trials in a given experimental session (including both tasks) were aggregated and 963

discretized into 32 bins. Individual commands were assigned to one of 8 angular bins (bin edges 964

were 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude 965

bins. Angular bins were selected such that the straight line from the center to each of the center-966

out targets bisected each of the angular bins as has been done in previous work50 (Fig. S1A). 967

Magnitude bin edges were selected as the 23.75th, 47.5th, 71.25th, and 95th percentile of the 968

distribution of command magnitudes for that experimental session. Commands falling between the 969

95th and 100th percentile of magnitude were not analyzed to prevent very infrequent noisy 970

observations from skewing the bin edges for command magnitude. 971

Conditions that used a command regularly 972

For each session, the number of times each of the 32 (discretized) commands was used in a 973

given condition was tabulated. If the command was used >= 15 times for that condition within a 974

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

52

given session pooling across trials, that condition was counted as using the command regularly 975

and was used in all analyses involving (command, condition) tuples. Commands that were used < 976

15 times were not used in analysis involving (command, condition) tuples. We note that the main 977

results of the study were not affected by this particular selection. Typically, an individual 978

command is used regularly in 5-10 conditions (distribution shown in Fig. S1A). 979

Cursor and command trajectory visualization 980

Cursor position subtrajectories 981

To visualize the cursor position trajectories locally around the occurrence of a given 982

command for each condition, we computed the average position “subtrajectory,” which we define 983

as the average trajectory in a window locked to the occurrence of the given command. For each 984

condition, cursor positions from successful trials were aggregated. Cursor position subtrajectories 985

shown in Fig. 1F are from representative session 0 from Monkey G. A matrix of x-axis and y-axis 986

position trajectories was formed by extracting a window of -500ms to 500ms (5 previous samples 987

plus 5 proceeding samples) around each occurrence of the given command in a given condition 988

(total of Ncom-cond occurrences, yielding a 2 x 11 x Ncom-cond matrix). Averaging over the Ncom-cond 989

observations yielded a condition-specific command-locked average position subtrajectory (size: 2 990

x 11) for each condition. If a command fell in the first 500ms or last 500ms of a trial, its occurrence 991

was not included in the subtrajectory calculation. The position subtrajectories were translated such 992

that the occurrence of the given command was set to (0, 0) in the 2D workspace (Fig. 1F right, 993

Fig. S1C middle). 994

Command subtrajectories 995

To visualize trajectories of commands around the occurrence of a given command for each 996

condition (Fig. 1G, right), we followed the same procedure as described above for cursor position 997

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

53

subtrajectories to tabulate a 2 x 11 x Ncom-cond matrix but with x-axis and y-axis commands instead 998

of positions. We note that this matrix consisted of the continuous, two-dimensional velocity values 999

of the commands. Averaging over the Ncom-cond observations yielded the average condition-specific 1000

command subtrajectory (size: 2 x 11 array), as shown in Fig. 1F left for example conditions. 1001

Matching the condition-pooled distribution 1002

In many analyses, data (e.g. neural activity or a command-locked cursor trajectory) associated 1003

with a command and a specific condition is compared to data that pools across conditions for that 1004

same command (Figs. 3-5). The distribution of the precise continuous value of the command 1005

within the command’s bin may systematically differ between condition-specific and condition-1006

pooled datasets, which we refer to as ‘within-command-bin differences.’ To ensure within-1007

command-bin differences are not the source of significant differences between condition-specific 1008

and condition-pooled data associated with a command, we developed a procedure to subselect 1009

observations of condition-pooled commands so that the mean of the condition-pooled command 1010

distribution is matched to the mean of the condition-specific command distribution. This procedure 1011

ensures that any differences between the condition-specific quantity and condition-pooled quantity 1012

are not due to ‘within-command-bin differences’. This procedure is performed on all analyses 1013

comparing condition-specific data to a condition-pooled distribution of data. The matching 1014

procedure is as follows: 1015

1. From the condition-specific distribution, compute the command mean 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (size: 1016

2x1) and standard deviation 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (size: 2x1). 1017

2. Compute the deviation of each continuous-valued command observation in the condition-1018

pooled distribution from the condition-specific distribution. 1019

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

54

a. Use the condition-specific distribution’s parameters to z-score the condition-pooled 1020

distribution’s continuous-valued command observations by subtracting 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 1021

dividing by 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 1022

b. Compute the deviation of condition-pooled observations from the condition-specific 1023

distribution as the L2-norm of the z-scored value 1024

c. For indices in the condition-pooled distribution that correspond to data in the condition-1025

specific distribution, over-write the L2-norm of the z-scored values with zeros. This step 1026

prevents the condition-pooled distribution from dropping datapoints that are in the 1027

condition-specific data, thereby ensuring the condition-pooled distribution contains the 1028

condition-specific data. 1029

3. Remove the 5% of condition-pooled observations with the largest deviations 1030

4. Use a Student’s t-test to assess if the remaining observations in the condition-pooled 1031

distribution are significantly different than the condition-specific distribution for the first and 1032

second dimension of the command (two p-values) 1033

5. If both p-values are > 0.05, then the procedure is complete and the remaining observations 1034

in the condition-pooled distribution are considered the “command-matched condition-pooled 1035

distribution” for a specific command and condition. 1036

6. If either or both p-values are < 0.05, return to step 3 and repeat. 1037

If the condition-pooled distribution cannot be matched to the condition-specific distribution such 1038

that the size of the condition-pooled distribution is larger than the condition-specific distribution, 1039

the particular (command, condition) will not be included in the analysis. 1040

Comparing command subtrajectories 1041

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

55

To assess whether a command is used within significantly different command subtrajectories 1042

in different conditions (Fig. S1 DE), the following analysis is performed for conditions that have 1043

sufficient occurrences of the command (>=15): 1044

1. The condition-specific average command subtrajectory is computed by averaging over 1045

Ncom-cond single-trial command subtrajectories for the condition, as defined above in “Visualization 1046

of command subtrajectories”. 1047

2. The condition-pooled average command subtrajectory is computed: all the single-trial 1048

command subtrajectories (Ncom) are pooled across trials from all conditions that use the given 1049

command regularly (command occurs >= 15 times in a session) to create a condition-pooled 1050

distribution of single-trial command subtrajectories (a 2 x 11 x Ncom matrix), which is then 1051

averaged to yield the condition-pooled average command subtrajectory (a 2 x 11 matrix). 1052

3. In order to test whether condition-specific average command subtrajectories were 1053

significantly different from the condition-pooled average command subtrajectory, a distribution of 1054

subtrajectories was created by subsampling the condition-pooled distribution to assess expected 1055

variation in subtrajectories due to limited data. Specifically, Ncom-cond single-trial command 1056

subtrajectories were sampled from a condition-pooled distribution of command subtrajectories that 1057

was command-matched to the specific condition (see above, “Matching the condition-pooled 1058

distribution”). These Ncom-cond samples were then averaged to create a single subtrajectory, 1059

representing a plausible condition-specific average subtrajectory under the view that the condition-1060

specific subtrajectories are just subsamples of the condition-pooled subtrajectories. This procedure 1061

was repeated 1000 times and used to construct a bootstrapped distribution of 1000 command 1062

subtrajectories. 1063

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

56

4. This distribution was then used to test whether condition-specific subtrajectories deviated 1064

from the condition-pooled subtrajectory more than would be expected by subsampling and 1065

averaging the condition-pooled subtrajectory distribution. Specifically, the true condition-specific 1066

command subtrajectory distance from the condition-pooled command subtrajectory was computed 1067

(L2-norm between condition-specific 2x11 subtrajectory and condition-pooled 2x11 subtrajectory) 1068

and compared to the bootstrapped distribution of distances: (L2-norm between each of the 1000 1069

subsampled averaged 2x11 command subtrajectories and the condition-pooled 2x11 command 1070

subtrajectory). A p-value for each condition-specific command subtrajectory distance was then 1071

derived. 1072

The same analysis is also performed using only the next command following a given command 1073

(Fig. S1 E). 1074

Behavior-preserving shuffle of activity 1075

We shuffled neural activity in a manner that preserved behavior as a control for comparison 1076

against the hypothesis that neural activity follows invariant dynamics beyond the structure of 1077

behavior. Shuffled datasets preserved the timeseries of discretized commands but shuffled the 1078

neural activity that issues these commands. In order to create a shuffle for each animal on each 1079

session, all timebins from all trials from all conditions were collated. The continuous-valued 1080

command at each timebin was labeled with its discretized command bin. For each of the 32 1081

discretized command bins, all timebins corresponding to a particular discretized command bin 1082

were identified. The neural activity in these identified timebins was then randomly permuted. A 1083

complete shuffled dataset was constructed by performing this random permutation for all 1084

discretized command bins. This full procedure was repeated 1000 times to yield 1000 shuffled 1085

datasets. 1086

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

57

Analysis of activity issuing a given command 1087

Condition-specific neural activity distances 1088

For each session, (command, condition) tuples with >= 15 observations were analyzed. For 1089

each of these (command, condition) tuples, we analyzed the distance between condition-specific 1090

average activity and condition-pooled average activity, both for individual neurons and for the 1091

population’s activity vector (Fig. 3B-E). 1092

Analysis of individual neurons for a given (command, condition) tuple, given 𝑁𝑁 neurons: 1093

1. Compute the condition-specific average neural activity (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑁𝑁) as the average 1094

neural activity over all observations of the command in the condition. 1095

2. Compute the condition-pooled average activity (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑅𝑅𝑁𝑁) as the average neural 1096

activity over observations of the command pooling across conditions. The command-matching 1097

procedure is used to form the condition-pooled dataset to account for within-command-bin 1098

differences (see “Matching the condition-pooled distribution” above). 1099

3. Compute the absolute value of the difference between the condition-specific and condition-1100

pooled averages: 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 - 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∈ 𝑅𝑅𝑁𝑁 . 1101

4. Repeat steps 1-3 for each shuffled dataset i, yielding 𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for 𝑖𝑖 = 1: 1000. 1102

5. For each neuron j, compare 𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗) to the distribution of 1103

𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗) for i = 1:1000. Distances greater than the 95th percentile of the shuffled 1104

distribution are deemed to have significantly different neuron j activity for a command-condition. 1105

Analysis of population activity for a given (command, condition) tuple: 1106

To compute population distances, one extra step was performed. We sought to ensure that the 1107

distances we calculated were not trivially due to “within-bin differences” between the condition-1108

specific and condition-pooled distributions. The first step to ensure this was described above in 1109

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

58

“Matching the condition-pooled distribution”. The second step was to only compute distances in 1110

the dimensions of neural activity that are null to the decoder and do not affect the composition of 1111

the command. Thus, any subtle remaining differences in the distribution of commands would not 1112

influence population distances. 1113

To compute distances in the dimensions of neural activity null to the decoder, we computed 1114

an orthonormal basis of the null space of decoder matrix 𝐾𝐾 ∈ 𝑅𝑅2𝑥𝑥𝑥𝑥 using scipy.linalg.null_space, 1115

yielding 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁−2. The columns of 𝑉𝑉 correspond to basis vectors spanning the 𝑁𝑁 − 2 1116

dimensional null space. Using 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 we computed: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙 = 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ ∗ 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 1117

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ ∗ 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. We then calculated the population distance metric (L2-1118

norm), normalized by the square-root of the number of neurons: 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =/√𝑁𝑁2 ,1119

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅1. In step 5, the single value 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is compared to the distribution 1120

of 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for i = 1:1000 to derive a p-value for each (command, condition) 1121

tuple. The fraction of (command, condition) tuples with population activity distances greater than 1122

the 95th percentile of the shuffle data (i.e. significant) is reported in Fig. 3E. 1123

For visualization of distances relative to the shuffle distribution (Fig. 3B-D), we divided the 1124

observed population distance for each (command, condition) tuple by the mean of the 1125

corresponding shuffle distribution. With this normalization, we can visualize the spread of the 1126

shuffle distribution (Fig. 3B, right) and we can interpret a normalized distance of 1 as the expected 1127

distance according to the shuffle distribution. 1128

Activity distances pooling over conditions 1129

To test whether condition-specific neural activity significantly deviated from condition-1130

pooled neural activity for a given command (Fig. 3E, middle), we aggregated the distance between 1131

condition-specific and condition-pooled average activity over all 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 conditions in which the 1132

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

59

command was used (>= 15 occurrences of the command in a condition) . An aggregate command 1133

distance is computed: 𝑑𝑑𝜇𝜇𝑝𝑝𝑜𝑜𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∑ 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑗𝑗=1 , and an aggregate shuffle 1134

distribution is computed: 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∑ 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑗𝑗=1 . Then, 1135

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 is compared to the distribution of 𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 for 𝑖𝑖 = 1: 1000 to derive a p-1136

value for each command. The fraction of commands with significant population activity distances 1137

is reported in Fig. 3E, middle. 1138

Single neuron distances 1139

To test whether an individual neuron’s condition-specific activity deviated from condition-1140

pooled activity (Fig. 3E right), we aggregated the distances between condition-specific and 1141

condition-pooled average activity over the 𝐶𝐶 (command, condition) tuples with at least 15 1142

observations. The aggregated distance for neuron 𝑛𝑛 was computed: 𝑑𝑑𝑑𝑑(𝑛𝑛) = 1
𝐶𝐶
∑ 𝑑𝑑𝜇𝜇𝑐𝑐(𝑛𝑛)𝐶𝐶
𝑐𝑐=1 1143

where 𝑑𝑑𝑑𝑑𝑐𝑐(𝑛𝑛) is the condition-specific absolute difference for the 𝑛𝑛th neuron and 𝑐𝑐th (command, 1144

condition) tuple. Then 𝑑𝑑𝑑𝑑(𝑛𝑛) was compared to the distribution of the aggregated shuffle: 1145

𝑑𝑑𝑑𝑑𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖(𝑛𝑛) = 1
𝐶𝐶
∑ 𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖−𝑐𝑐(𝑛𝑛)𝐶𝐶
𝑐𝑐=1 for 𝑖𝑖 = 1: 1000 to derive a p-value for each neuron. The 1146

fraction of neurons with significant activity distances (p-value<0.05) is reported in Fig. 3E right. 1147

Neural activity distances summary 1148

Single neuron activity distances reported in Fig. S2B (left) are for all (command, condition, 1149

neuron) tuples that had at least 15 observations. We report distances as a z-score of shuffle 1150

distribution: 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) =
�𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)− 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,(𝑛𝑛) 𝑖𝑖=1:1000��

𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖(𝑛𝑛),𝑖𝑖=1:1000�
 . 1151

Single neuron activity distances reported in (Fig. S2B center, right) are for (command, 1152

condition, neuron) tuples that significantly deviated from shuffle. We report raw distances in 1153

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

60

neuron activity as 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) (Fig. S2B, center), and fraction distances as 𝑑𝑑𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)

 (Fig. 1154

S2B, right). 1155

Population activity distances reported in Fig. 3BCD and Fig. S2C left are for all (command, 1156

condition) tuples. We report distances in population activity as a fraction of shuffle mean: 1157

𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖, 𝑖𝑖 = 1: 1000) (Fig. 3BCD), and as a z-score of shuffle 1158

distribution: 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
�𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐− 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,𝑖𝑖=1:1000��

𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖,𝑖𝑖=1:1000�
 (Fig. S2C left). 1159

Population activity distances reported in Fig. S2C (center, right) are for (command, 1160

condition) tuples that significantly deviated from shuffle. We report distances in population 1161

activity as a fraction of shuffle mean 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝜇𝜇𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖, 𝑖𝑖 = 1: 1000) (Fig. S2C, 1162

center) and fraction of condition-pooled activity as 𝑑𝑑𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2

 (Fig. S2C, right). 1163

Invariant dynamics models 1164

In order to test whether invariant dynamics predicts the different neural activity patterns 1165

issuing the same command for different conditions, a linear model was fit for each experimental 1166

session on training data of neural activity from all conditions and assessed on held-out test data. 1167

Neural activity at time t, 𝑥𝑥𝑡𝑡, was modeled as a linear function of 𝑥𝑥𝑡𝑡−1: 1168

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 1169

Here 𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 modeled invariant dynamics and 𝑏𝑏 ∈ 𝑅𝑅𝑁𝑁 was an offset vector that allowed the 1170

model to identify non-zero fixed points of neural dynamics. Ridge regression was used to estimate 1171

the 𝐴𝐴 and 𝑏𝑏 parameters. Prior to any training or testing, data was collated such that all neural 1172

activity in bins from t=2:Ttrl in all rewarded trials were paired with neural activity from t=1:(Ttrl-1173

1), where Ttrl is the number of time samples in a trial. 1174

Estimation of Ridge Parameter 1175

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

61

For each experimental session, data collated from all conditions was randomly split into 5 1176

sections, and a Ridge model (sklearn.linear_model.Ridge) with a ridge parameter varying from 1177

2.5x10-5 to 106 was trained using 4 of the 5 sections and tested on the remaining test section. Test 1178

sections were rotated, yielding five estimates of the coefficient of determination (R2) for each ridge 1179

parameter. The ridge parameter yielding the highest cross-validated mean R2 was selected for each 1180

experimental session. Ridge regression was used primarily due to a subset of sessions with a very 1181

high number of units (148 and 151 units), thus a high number of parameters needed to be estimated 1182

for the 𝐴𝐴 matrix. Without regularization, these parameters tended to extreme values, and the model 1183

generalized poorly. 1184

Invariant dynamics model: fitting and testing 1185

Once a ridge parameter for a given experimental session was identified, 𝐴𝐴, 𝑏𝑏 were again 1186

trained using 4/5 of the data. The remaining test data was predicted using the fit 𝐴𝐴, 𝑏𝑏. This 1187

procedure was repeated, rotating the training and testing data such that after five iterations, all data 1188

points in the experimental session had been in the test data section for one iteration of model-1189

fitting. The predictions made on the held-out test data were collated together into a full dataset. 1190

Predictions were then analyzed in subsequent analyses. 1191

Generalization of invariant dynamics 1192

We assessed how well invariant dynamics generalized when certain categories of neural 1193

activity were not included in the training data. Invariant dynamics models were estimated after 1194

excluding neural activity in the following categories (Fig. 4C, Fig. S4, Fig 5CD): 1195

1. Left-out Command: For each command (total of 32 command bins), training data sets were 1196

constructed leaving out neural activity that issued the command (Fig. 4C, Fig. S4, Fig. 5CE). 1197

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

62

2. Left-out Condition: For each condition (consisting of target, task, and clockwise or 1198

counterclockwise movement for obstacle avoidance), training data sets were constructed leaving 1199

out neural activity for the given condition (Fig. 4C, Fig. S4, Fig. 5CE). 1200

3. Left-out Command Angle: For each command angular bin (total of 8 angular bins), training 1201

data sets were constructed leaving out neural activity that issued commands in the given angular 1202

bin. This corresponds to leaving out neural activity for the 4 command bins that have the given 1203

angular bin but different magnitude bins (Fig. S4B, middle). 1204

4. Left-out Command Magnitude: For each command magnitude bin (total of 4 magnitude 1205

bins), training data sets were constructed leaving out neural activity that issued commands of the 1206

given command magnitude. This corresponds to leaving out neural activity for the 8 command 1207

bins that have the given magnitude bin but different angle bins (Fig. S4B, right). 1208

5. Left-out Classes of Conditions (Fig. S4G): 1209

a. vertical condition class consisting of conditions with targets located at 90 and 270 1210

degrees for both tasks, 1211

b. horizontal condition class consisting of conditions with targets located at 0 and 180 1212

degrees for both tasks, 1213

c. diagonal 1 condition class consisting of conditions with targets located at 45 and 1214

215 degrees for both tasks, and 1215

d. diagonal 2 condition class consisting of conditions with targets located at 135 and 1216

315 degrees for both tasks. 1217

For each of the listed categories above, many dynamics models were computed – each one 1218

corresponding to the exclusion of one element of the category (i.e. one model per: command left-1219

out, condition left-out, command angle left-out, command magnitude left-out, and class of 1220

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

63

conditions left-out). Each of the trained models was then used to predict the left-out data. 1221

Predictions were aggregated across all dynamics models resulting in a full dataset of predictions. 1222

The coefficient of determination (R2) of this predicted dataset reflected how well dynamics models 1223

could generalize to types of neural activity that were not observed during training. We note that 1224

Monkey J did not perform all conditions in the “diagonal 2” class, and so was not used in the 1225

analysis predicting excluded “diagonal 2” conditions. 1226

Decoder-null dynamics model 1227

 As an additional comparison, we modeled invariant dynamics that lie only within the 1228

decoder-null space (the neural activity subspace that was orthogonal to the decoder such that 1229

variation of neural activity in this space has no effect on the decoder’s output, i.e. commands for 1230

movement). 1231

Our approach was to project spiking activity into the decoder null space, and then fit 1232

invariant dynamics on the projected, decoder-null spiking activity. We first computed an 1233

orthonormal basis of the null space of decoder matrix 𝐾𝐾 ∈ 𝑅𝑅2𝑥𝑥𝑁𝑁 using scipy.linalg.null_space, 1234

yielding 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁−2. The columns of 𝑉𝑉 correspond to basis vectors spanning the 𝑁𝑁 − 2 1235

dimensional null space. We then computed the projection matrix 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 where 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =1236

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇 . Spiking activity was then projected into the null space 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑡𝑡, where 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈1237

𝑅𝑅𝑁𝑁𝑁𝑁1. 1238

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge regression 1239

parameter was selected using projected data 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. Decoder-null dynamics model parameters Anull, 1240

bnull were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of the 𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 dataset. 1241

As before, the training/testing procedure was repeated 5 times such that all data points fell into the 1242

test dataset once. Predictions of test data from all five repetitions were collated into one full dataset 1243

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

64

of predictions. We note that the average of the decoder-space activity across the entire session 1244

𝑥𝑥�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑇𝑇
∑ 𝑥𝑥𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇
𝑡𝑡=1 , where 𝑇𝑇 is the number of bins in an entire session, was added to all 1245

predictions of decoder-null dynamics (𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑥𝑥�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). 1246

Shuffle dynamics model 1247

 The invariant dynamics model was compared to a shuffle dynamics model fit on shuffled 1248

data (see “Behavior-preserving shuffle of activity” above). Following the above procedure (see 1249

“Estimation of Ridge Parameter”), a ridge parameter was selected using shuffled data. Shuffle 1250

dynamics model parameters Ashuffle, bshuffle were then fit on 4/5 of the dataset using shuffled data 1251

and then tested on the remaining 1/5 of the dataset using original, unshuffled data. 1252

Invariant dynamics model characterization 1253

Dimensionality and eigenvalues 1254

Once the linear invariant dynamics model’s parameters A, b were estimated, A was analyzed 1255

to assess which modes of dynamics16 were present (Fig. S3). The eigenvalues of A were computed. 1256

From each eigenvalue, an oscillation frequency and time decay value were computed using the 1257

following equations: 1258

Frequency = ∠𝜆𝜆/(2𝜋𝜋∆𝑡𝑡) Hz if 𝜆𝜆 is complex, else frequency = 0 Hz 1259

Time Decay = −1
ln (|𝜆𝜆|)

Δ𝑡𝑡 sec 1260

Modes of dynamics contributing substantially to predicting future neural variance will have 1261

time decays greater than the BMI decoder’s binsize (here, 100ms). 2-4 such dimensions of 1262

dynamics were found across sessions and subjects (Fig. S3). 1263

Invariant dynamics model predictions 1264

Predicting next neural activity: 𝑥𝑥𝑡𝑡+1| 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏 1265

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

65

In Fig. 5C, we predict next activity 𝑥𝑥𝑡𝑡+1 based on current activity 𝑥𝑥𝑡𝑡 by taking the expected 1266

value according to our model: 𝐸𝐸(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏) = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏. 1267

In Fig. 5D, we evaluated this prediction for individual dimensions of neural activity. 1268

We projected the prediction of 𝑥𝑥𝑡𝑡+1 onto each eigenvector of the dynamics model 𝐴𝐴 matrix and 1269

evaluated how well that dimension was predicted (via coefficient of determination). 1270

In Fig. S3E, G, we evaluated this prediction across time from the start of trial. The magnitude 1271

(i.e. L2 norm) of the model residual ‖𝑥𝑥𝑡𝑡+1 − 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏‖2 (Fig. S3E) and the coefficient of 1272

determination (R2) (Fig. S3G) are plotted for each time point from trial start, evaluated on held-1273

out test data pooling across trials. 1274

Predicting next command: command𝑡𝑡+1| 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾 1275

In Fig. 5E-H, we predict the next command command𝑡𝑡+1 based on current neural activity 𝑥𝑥𝑡𝑡 1276

by taking its expected value according to our model: 𝐸𝐸(command𝑡𝑡+1 | 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾) = 𝐾𝐾(𝐴𝐴𝑥𝑥𝑡𝑡 +1277

𝑏𝑏), where the decoder matrix K maps between neural activity and the command. This amounts to 1278

first predicting next activity based on current activity as above 𝐸𝐸(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏) = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝑏𝑏 and 1279

then applying decoder K. 1280

Predicting activity issuing a given command 1281

In Fig. 4C-G, we predict current activity 𝑥𝑥𝑡𝑡 not only with knowledge of previous activity 1282

𝑥𝑥𝑡𝑡−1, but also with knowledge of the current command command𝑡𝑡 (𝑥𝑥𝑡𝑡| 𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡). 1283

We modeled 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡−1 as jointly Gaussian with our dynamics model, and command𝑡𝑡 is jointly 1284

Gaussian with them since command𝑡𝑡 = 𝐾𝐾𝐾𝐾𝑡𝑡. We modify our prediction of 𝑥𝑥𝑡𝑡 based on knowledge 1285

of command𝑡𝑡: 𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡). Explicitly we conditioned on command𝑡𝑡, thereby 1286

ensuring that 𝐾𝐾 ∗ 𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡) = command𝑡𝑡. To do this we wrote the joint 1287

distribution of 𝑥𝑥𝑡𝑡 and command𝑡𝑡: 1288

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

66

𝑥𝑥𝑡𝑡
𝐾𝐾𝑥𝑥𝑡𝑡~ 𝑁𝑁(�

𝜇𝜇
𝐾𝐾𝐾𝐾� , � Σ (𝐾𝐾Σ)𝑇𝑇

𝐾𝐾Σ 𝐾𝐾Σ𝐾𝐾𝑇𝑇�) 1289

where 𝜇𝜇 = 𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏) = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏 , and Σ = 𝑐𝑐𝑐𝑐𝑐𝑐[𝑥𝑥𝑡𝑡 − (𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑏𝑏)] is the covariance of 1290

the noise in the dynamics model. Then, the multivariate Gaussian conditional distribution provides 1291

the solution to conditioning on command𝑡𝑡: 1292

𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏, K, command𝑡𝑡) = 𝐴𝐴𝑥𝑥𝑡𝑡−1+𝑏𝑏 + Σ𝑇𝑇𝐾𝐾𝑇𝑇(𝐾𝐾Σ𝐾𝐾𝑇𝑇)−1(command𝑡𝑡 − 𝐾𝐾(𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝑏𝑏)) 1293

This prediction constrains the prediction of 𝑥𝑥𝑡𝑡 to produce the given command command𝑡𝑡. 1294

For these predictions, Σ is estimated following dynamics model fitting and set to the empirical 1295

error covariance between estimates of 𝐸𝐸(𝑥𝑥𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝑏𝑏 and true 𝑥𝑥𝑡𝑡 in the training data. 1296

Predicting current activity only with command 1297

In Fig. 4C-E, as a comparison to the dynamics prediction (𝑥𝑥𝑡𝑡| 𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡), we 1298

predict 𝑥𝑥𝑡𝑡 as its expected value (𝑥𝑥𝑡𝑡| 𝐾𝐾, command𝑡𝑡) based only on the command command𝑡𝑡 =1299

𝐾𝐾𝐾𝐾𝑡𝑡 it issues and the decoder matrix 𝐾𝐾. The same approach was used as above, except with 1300

empirical estimates of 𝜇𝜇, Σ corresponding to the mean and covariance of the neural data instead of 1301

using the neural dynamics model and 𝑥𝑥𝑡𝑡−1 to compute 𝜇𝜇, Σ. 1302

𝑥𝑥𝑡𝑡
𝐾𝐾𝑥𝑥𝑡𝑡~ 𝑁𝑁(�

𝜇𝜇
𝐾𝐾𝐾𝐾� , � Σ (𝐾𝐾Σ)𝑇𝑇

𝐾𝐾Σ 𝐾𝐾Σ𝐾𝐾𝑇𝑇�) 1303

This formulation makes the prediction: 1304

𝐸𝐸(𝑥𝑥𝑡𝑡|K, command𝑡𝑡) = 𝜇𝜇 + Σ𝑇𝑇𝐾𝐾𝑇𝑇(𝐾𝐾Σ𝐾𝐾𝑇𝑇)−1(command𝑡𝑡 − 𝐾𝐾𝐾𝐾) 1305

Comparing invariant dynamics to shuffle 1306

For the above predictions, we evaluated if invariant dynamics models were more accurate 1307

than shuffle dynamics. A distribution of shuffle dynamics R2 values (coefficient of determination) 1308

was generated by computing one R2 value per shuffled dataset (see “Behavior-preserving shuffle 1309

of activity” above), where 𝑅𝑅𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑗𝑗
2 corresponds to the 𝑅𝑅2 for shuffle dataset 𝑖𝑖 on session 𝑗𝑗. For 1310

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

67

each session 𝑗𝑗, each invariant dynamics model was considered significant if its R2 was greater than 1311

95% of shuffle R2 values. To aggregate over 𝑆𝑆 sessions, the R2 values for all 𝑆𝑆 sessions were 1312

averaged yielding one 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 value. This averaged value was compared to a distribution of averaged 1313

shuffle R2 values. Specifically, for each shuffle 𝑖𝑖 (i=1:1000 shuffled dataset) an averaged R2 value 1314

was computed across all 𝑆𝑆 sessions: 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖
2 = 1

𝑆𝑆
∑ 𝑅𝑅𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑗𝑗

2𝑆𝑆
𝑗𝑗=1 , yielding a distribution of 1315

averaged shuffle R2 values. 1316

Predicting condition-specific activity 1317

The invariant dynamics model was used to predict the condition-specific average activity 1318

for a given command (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, i.e. the average neural activity over all observations of the 1319

command in the condition, see “Analysis of activity issuing a given command” above) (Fig. 4D-1320

G). The invariant dynamics model prediction (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�) was computed as 1321

𝐸𝐸(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝐴𝐴, 𝑏𝑏,𝐾𝐾, command𝑡𝑡) (see “Predicting activity issuing a given command” above) 1322

averaged over all observations of neural activity for the given command and condition. 1323

To test if the invariant dynamics prediction was significantly more accurate than the shuffle 1324

dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle dynamics model” 1325

above) prediction, we computed the error as the distance between true (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and predicted 1326

 (𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�) condition-specific average activity (single neuron error and population distance). 1327

Note that population distances for true and predicted activity were taken only in the dimensions 1328

null to the decoder (see “Condition-specific neural activity deviation”). The invariant dynamics 1329

model was deemed significantly more accurate than shuffle dynamics if the error was less than the 1330

5th percentile of the distribution of the errors from shuffle dynamics models. We reported the 1331

fraction of (command, condition) tuples that were individually significant relative to shuffle (Fig. 1332

4G, left). We determined whether commands were individually significant relative to shuffle by 1333

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

68

analyzing the average population activity error across conditions (Fig 4G, middle). We determined 1334

whether neurons were individually significant relative to shuffle by analyzing the average single-1335

neuron error over (command, condition) tuples (Fig 4G, right). 1336

Predicting condition-specific component 1337

The component of neural activity for a given command that was specific to a condition was 1338

calculated as 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 |K, command𝑡𝑡), where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is neural activity 1339

averaged over observations for the given command and condition, and 1340

𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) is the prediction of neural activity only given the command it issued, 1341

averaged over observations for the (command, condition) tuple (see "Predicting current activity 1342

only with command” above). Thus, 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) estimates the 1343

portion of neural activity that cannot be explained by just knowing the command issued. 1344

We analyzed how well this condition-specific component could be predicted with invariant 1345

dynamics as: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� − 𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) (see “Predicting condition-specific 1346

activity” above for calculation of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�). The variance of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −1347

𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 |K, command𝑡𝑡) explained by 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� −𝐸𝐸(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡 |K, command𝑡𝑡) is reported 1348

in Fig. 4F. 1349

Predicting condition-specific next command 1350

For each (command, condition) tuple, the average “next command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1351

was calculated. For every observation of the given command in the given condition, we took the 1352

command at the time step immediately following the given command and averaged over 1353

observations. We then analyzed how well invariant dynamics predicted this average “next 1354

command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� , calculated as 𝐸𝐸(command𝑡𝑡+1 | 𝑥𝑥𝑡𝑡,𝐴𝐴, 𝑏𝑏,𝐾𝐾) averaged over all 1355

observations of neural activity 𝑥𝑥𝑡𝑡 for the given command and condition. The L2-norm of the 1356

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

69

difference command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� was computed and compared to the errors 1357

obtained from the shuffled-dynamics predictions. For each (command, condition) tuple, the 1358

dynamics-predicted “next command” was deemed significantly more accurate than shuffle 1359

dynamics if the error was less than the 5th percentile of the distribution of the errors of the shuffled-1360

dynamics predictions (Fig. 5F, left). Commands were determined to be individually significant if 1361

the error averaged over conditions was significantly less than the shuffled-dynamics error averaged 1362

over conditions (Fig. 5F, right). 1363

Analysis of predicted command angle 1364

 We sought to further analyze whether invariant dynamics predicted the transition from a 1365

given command to different “next commands” in different movements. Thus, we calculated two 1366

additional metrics on the direction of the predicted “next command”, i.e. the angle of the predicted 1367

“next command” command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� with respect to the condition-pooled “next command” 1368

command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (the average “next command” following a given command when pooling over 1369

conditions). 1370

First, we predicted whether a condition’s “next command” would rotate clockwise or 1371

counterclockwise relative to the condition-pooled “next command.” Specifically, we calculated 1372

whether the sign of the cross-product between command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� and command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1373

matched the sign of the cross-product between command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The 1374

fraction of (command, conditions) that were correctly predicted (clockwise vs counterclockwise) 1375

was compared to the fraction of (command, condition) tuples correctly predicted in the shuffle 1376

distribution (Fig. 5H, left). 1377

 Second, we calculated the absolute error of the angle between the predicted “next 1378

command” and the condition-pooled “next command” for each (command, condition) tuple: 1379

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

70

abs(∠ (command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,� command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)1380

−∠ (command𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, command𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)) 1381

Explicitly, for each (command, condition) tuple, we calculated the absolute difference between 1382

two angles: 1) the angle between the predicted “next command” and the condition-pooled “next 1383

command” and 2) the angle between the true “next command” and the condition-pooled “next 1384

command”. These errors were then compared to the shuffle distribution (Fig. 5H, right). 1385

Estimation of behavior-encoding models 1386

To compare invariant dynamics models to models in which neural activity encodes behavioral 1387

variables in addition to the command, we fit a series of behavior-encoding models (Fig. S5). 1388

Regressors included cursor state (position, velocity), target position (x,y postion in cursor 1389

workspace), and a categorical variable encoding target number (0-7) and task (“center-out”, 1390

“clockwise obstacle-avoidance”, or “counter-clockwise obstacle-avoidance”). 1391

Models were fit using Ridge regression following the same procedure described above (see 1392

“Estimation of Ridge Parameter”) was followed with one additional step: prior to estimating the 1393

ridge parameter or fitting the regression, variables were z-scored. Without z-scoring, ridge 1394

regression may favor giving explanatory power to the variables with larger variances, since they 1395

would require smaller weights which ridge regression prefers. Then, as above, models were fit 1396

using 4/5 of the data and then used to predict the held-out 1/5 of data. After 5 rotations of training 1397

and testing data, a full predicted dataset was collated. 1398

We then tested whether invariant neural dynamics improved the prediction of neural activity 1399

beyond behavior-encoding. The coefficient of determination (R2) of the model containing all 1400

regressors except previous neural activity was compared to the R2 of the model containing all 1401

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

71

regressors plus previous neural activity (Fig. S5B) using a paired Student’s t-test where session 1402

was paired. One test was done for each monkey. 1403

Analysis between pairs of conditions 1404

We sought to assess whether the invariant dynamics model predicted the relationship between 1405

pairs of conditions for neural activity and behavior (Fig. S6). 1406

Average neural activity for a given command 1407

The invariant dynamics model was used to predict the distance between average neural 1408

activity patterns for the same command across pairs of conditions. Concretely, the predicted 1409

distance was simply the distance between the predicted neural activity pattern for condition 1 and 1410

for condition 2. The correlation between the true distance and the predicted distance was reported 1411

for individual neurons (Fig. S6AC) and population activity (Fig. S6BD). The Wald test 1412

(implemented in scipy.stats.linregress) was used to assess the significance of the correlations on 1413

single sessions. To assess significance pooled over sessions, data points (true distances vs. 1414

dynamics model predicted distances) were aggregated across sessions and assessed for 1415

significance. 1416

Average next command 1417

The invariant dynamics model was used to predict the distance between “next commands” 1418

for the same given command across pairs of conditions. Concretely, the predicted distance was 1419

simply the distance between the predicted “next command” for condition 1 and for condition 2. 1420

The correlation between the true distance and the predicted distance was reported (Fig. S6JK). As 1421

above, the Wald test was used to assess significance of correlations on single sessions and over 1422

pooled sessions. 1423

Correlating neural distance with behavior 1424

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

72

We asked whether neural activity for a given command was more similar across conditions 1425

with more similar command subtrajectories (see “Command subtrajectories”) (Fig. S6E), and 1426

whether invariant dynamics predict this. Specifically, we analyzed whether the distance between 1427

average neural activity across two conditions for a given command correlated to the distance 1428

between command subtrajectories for the same two conditions (Fig. S6, F top, GH left). Further, 1429

we analyzed whether invariant dynamics predicted this correlation (Fig. S6, F bottom, GH right). 1430

For every command (that was used in more than five conditions) and pair of conditions that used 1431

the command (>=15 observations in each condition in the pair), 1) the distances between condition-1432

specific average activity were computed and 2) distances between command subtrajectories were 1433

computed. The neural activity distances were correlated with the command subtrajectory distances 1434

(Fig. S6, F top, GH left) . To assess whether invariant dynamics made predictions that maintained 1435

this structure, we performed that same analysis with distances between dynamics-predicted 1436

condition-specific average activity across pairs of conditions (Fig. S6, F bottom, GH right). 1437

We assessed the significance of the relationship using a linear mixed effects (LME) model 1438

(statsmodels.formula.api.mixedlm). The LME modeled command as a random effect because the 1439

exact parameters of the increasing linear relationship between command subtrajectories and 1440

population activity may vary depending on command. Individual sessions were assessed for 1441

significance. To assess significance across sessions, data points were aggregated over sessions, 1442

and the LME model used command and session ID as random effects. 1443

Analysis of Optimal Feedback Control Models 1444

Input magnitude 1445

For each simulated trial, we computed the magnitude of input to the neural population as 1446

the L2 norm of the input matrix 𝑢𝑢𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁×𝑇𝑇 (where 𝑁𝑁 is the number of neurons and 𝑇𝑇 = 40 was 1447

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

73

the horizon and thus movement length). For each of the 24 conditions, we calculated the average 1448

input magnitude over the 20 trials. We compared the magnitude of input used by the Invariant 1449

Dynamics Model and the No Dynamics Model, where the Invariant Dynamics Model was either 1450

the Full Dynamics Model (Fig. 6C) or the Decoder-Null Dynamics Model (Fig. 6D). We analyzed 1451

each individual session with a paired Wilcoxon signed-rank test, where each pair within a session 1452

consisted of one condition (24 conditions total). We aggregated across sessions for each subject 1453

using a linear mixed effect (LME) model between input magnitude and model category (Invariant 1454

Dynamics Model or No Dynamics Model), with session modeled as a random effect. 1455

Simulated activity issuing a given command 1456

In the OFC simulations, we sought to verify if different neural activity patterns were used 1457

to issue the same command across different conditions, applying analyses that we used on 1458

experimental neural data to the OFC simulations. As above, we defined discretized command bins 1459

(see “Command discretization for analysis”) and calculated the average neural activity for each 1460

(command, condition) tuple. For (command, condition) tuples with >=15 observations (example 1461

shown in Fig. 6E), we computed the distance between condition-specific average activity and 1462

condition-pooled average activity by subtracting the activity, projecting into the decoder-null 1463

space, taking the L2 norm, and normalizing by the square root of the number of neurons, as in the 1464

experimental data analysis (see “Analysis of activity issuing a given command”). 1465

We analyzed the distance between condition-specific average activity and condition-1466

pooled average activity for a given command, comparing each model to its own shuffle distribution 1467

(see “Behavior-preserving shuffle of activity”) (Fig. 6GH). Concretely, for each simulated session, 1468

we calculated the mean of the shuffle distribution of distances for each (command, condition) tuple 1469

and compared these shuffle means (one per (command, condition) tuple) to the observed distances 1470

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

74

from the simulations. We analyzed individual sessions with a Mann-Whitney U test. We 1471

aggregated across sessions for each subject with a LME model between activity distance and data 1472

source (OFC Simulation vs shuffle), with session modeled as a random effect. For visualization of 1473

distances relative to the shuffle distribution (Fig. 6F-H), we divided the observed distance for each 1474

(command, condition) tuple by the mean of the corresponding shuffle distribution (same as in Fig. 1475

3B-D). 1476

Statistics Summary 1477

In many analyses, we assessed whether a quantity calculated for a specific condition was 1478

significantly larger than expected from the distribution of the quantity due to subsampling the 1479

condition-pooled distribution. A p-value was computed by comparing the condition-specific 1480

quantity to the distribution of the quantity computed from subsampling the condition-pooled 1481

distribution. The “behavior-preserving shuffle of activity” and “matching the condition-pooled 1482

distribution” (see above) were used to construct the condition-pooled distribution. 1483

The following is a summary of these analyses: 1484

• Fig. S1D, Quantity: distance between condition-specific average command 1485

subtrajectory and condition-pooled average command subtrajectory, P-value: computed using 1486

behavior-preserving shuffle. 1487

• Fig. S1E, Quantity: distance between condition-specific average next command 1488

and the condition-pooled average next command, P-value: computed using behavior-1489

preserving shuffle. 1490

• Fig. 3B left, 3E right: Quantity: for a given command, distance between condition-1491

specific average activity for a neuron and condition-pooled average activity for a neuron, P-1492

value: behavior-preserving shuffle. 1493

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

75

• Fig. 3B right, 3D, 3E left, middle: Quantity: for a given command, distance between 1494

condition-specific average population activity and condition-pooled average population 1495

activity, P-value: behavior-preserving shuffle. 1496

• Fig. 4G right: Quantity: for a given command, error between the invariant 1497

dynamics’ prediction of condition-specific average activity for a neuron and the true condition-1498

specific average activity for the neuron. P-value: distribution of prediction errors from shuffle 1499

dynamics (models fit on behavior-preserving shuffle and that made predictions using 1500

unshuffled data). 1501

• Fig. 4G left, middle: Quantity: for a given command, error between the invariant 1502

dynamics’ prediction of condition-specific average population activity and the true condition-1503

specific average population activity. P-value: distribution of prediction errors from shuffle 1504

dynamics (models fit on behavior-preserving shuffle and that made predictions using 1505

unshuffled data). 1506

• Fig. 5F: Quantity: for a given command, error between the invariant dynamics’ 1507

prediction of condition-specific average next command and true condition-specific average 1508

next command. P-value: distribution of prediction errors from shuffle dynamics (models fit on 1509

behavior-preserving shuffle and that made predictions using unshuffled data). 1510

 In the above analyses, we also assessed the fraction of condition-specific quantities that 1511

were significantly different from the condition-pooled quantities or significantly predicted 1512

compared to a shuffled distribution (Fig. S1DE, Fig. 3E, Fig. 4G, Fig. 5F, Fig. S4DI, Fig. S6G). 1513

In order to aggregate over all data to determine whether condition-specific quantities were 1514

significantly different from shuffle or significantly predicted within a session relative to shuffle 1515

dynamics, we averaged the condition-specific quantity over the relevant dimensions (command, 1516

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

76

condition, and/or neuron) to yield a single aggregated value for a session. For example in Fig. 3E 1517

right, we take the distance between average activity for a (command, condition, neuron) tuple and 1518

condition-pooled average activity for a (command, neuron) tuple, and we average this distance 1519

over (command, condition) tuples to yield an aggregated value that is used to assess if individual 1520

neurons are significant. We correspondingly averaged the shuffle distribution across all relevant 1521

dimensions (command, condition, and/or neuron). Together this procedure yielded a single 1522

aggregated value that could be compared to a single aggregated distribution to determine session 1523

significance. Finally, when we sought to aggregate over sessions, we took the condition-specific 1524

quantity that was aggregated within a session and averaged it across sessions and again compared 1525

it to a shuffle distribution of this value aggregated over sessions. 1526

When R2 was the metric assessed (Fig. 4CF, Fig. 5C-E, Fig. S4BFG), a single R2 metric was 1527

computed for each session and compared to the R2 distribution from shuffle models. This R2 metric 1528

is known as the “coefficient of determination,” and we note that it assesses how well the dynamics-1529

predicted values (e.g. spike counts) account for the variance of the true values. 1530

In some cases, a linear regression was fit between two quantities (Fig. S6CDGJK) on both 1531

individual sessions and on data pooled over all sessions, and the significance of the fit and 1532

correlation coefficient were both reported. In other cases where random effects such as session or 1533

analyzed command may have influenced the linear regression parameters (Fig. S6FG), a Linear 1534

Mixed Effect (LME) model was used with session and/or command modeled as random effects on 1535

intercept. 1536

In Fig. S5, a paired Student’s t-test was used to compare two models’ R2 metric across 1537

sessions.Fig. 6 analyzed simulations of OFC models, not experimentally-recorded data. Fig. 6CD 1538

used a paired Wilcoxon test and a LME to compare input magnitude between a pair of OFC 1539

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

77

models. Fig. 6GH used a Mann-Whitney U test and a LME to compare population distance 1540

between an OFC model and its shuffle distribution. 1541

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

78

References 1542
1. Rokni, U., and Sompolinsky, H. (2012). How the brain generates movement. Neural 1543

Comput. 24, 289–331. 1544
2. Churchland, M.M., and Cunningham, J.P. (2014). A Dynamical Basis Set for Generating 1545

Reaches. Cold Spring Harb. Symp. Quant. Biol. 79, 67–80. 1546
3. Shenoy, K. V, Sahani, M., and Churchland, M.M. (2013). Cortical Control of Arm 1547

Movements: A Dynamical Systems Perspective. Annu. Rev. Neurosci. 36, 337–359. 1548
4. Hennequin, G., Vogels, T.P., and Gerstner, W. (2014). Optimal control of transient 1549

dynamics in balanced networks supports generation of complex movements. Neuron 82, 1550
1394–1406. 1551

5. Sussillo, D., Churchland, M.M., Kaufman, M.T., and Shenoy, K. V (2015). A neural 1552
network that finds a naturalistic solution for the production of muscle activity. Nat. 1553
Neurosci. 18, 1025–33. 1554

6. Mastrogiuseppe, F., and Ostojic, S. (2018). Linking Connectivity, Dynamics, and 1555
Computations in Low-Rank Recurrent Neural Networks. Neuron 99, 609-623.e29. 1556

7. Porter, R., and Lemon, R. (1995). Corticospinal Function and Voluntary Movement 1557
(Oxford University Press). 1558

8. Nelson, A., Abdelmesih, B., and Costa, R.M. (2021). Corticospinal populations broadcast 1559
complex motor signals to coordinated spinal and striatal circuits. Nat. Neurosci. 24, 1721–1560
1732. 1561

9. Arber, S., and Costa, R.M. (2018). Connecting neuronal circuits for movement. Science 1562
(80-.). 360, 1403–1404. 1563

10. Arber, S., and Costa, R.M. (2022). Networking brainstem and basal ganglia circuits for 1564
movement. Nat. Rev. Neurosci. 1565

11. Russo, A.A., Bittner, S.R., Perkins, S.M., Seely, J.S., London, B.M., Lara, A.H., Miri, A., 1566
Marshall, N.J., Kohn, A., Jessell, T.M., et al. (2018). Motor Cortex Embeds Muscle-like 1567
Commands in an Untangled Population Response. Neuron 97, 953-966.e8. 1568

12. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, 1569
S.I., and Shenoy, K. V (2012). Neural population dynamics during reaching. Nature 487, 1570
51–56. 1571

13. Michaels, J.A., Dann, B., and Scherberger, H. (2016). Neural Population Dynamics during 1572
Reaching Are Better Explained by a Dynamical System than Representational Tuning. 1573
PLoS Comput. Biol. 12. 1574

14. Liang, K.-F., and Kao, J.C. (2020). Deep Learning Neural Encoders for Motor Cortex. 1575
IEEE Trans. Biomed. Eng. 67, 2145–2158. 1576

15. Truccolo, W., Hochberg, L.R., and Donoghue, J.P. (2010). Collective dynamics in human 1577
and monkey sensorimotor cortex: Predicting single neuron spikes. Nat. Neurosci. 13, 105–1578
111. 1579

16. Kao, J.C., Nuyujukian, P., Ryu, S.I., Churchland, M.M., Cunningham, J.P., and Shenoy, 1580
K. V. (2015). Single-trial dynamics of motor cortex and their applications to brain-1581
machine interfaces. Nat. Commun. 6, 7759. 1582

17. Kao, J.C., Ryu, S.I., and Shenoy, K. V. (2017). Leveraging neural dynamics to extend 1583
functional lifetime of brain-machine interfaces. Sci. Rep. 7, 7395. 1584

18. Pandarinath, C., O’Shea, D.J., Collins, J., Jozefowicz, R., Stavisky, S.D., Kao, J.C., 1585
Trautmann, E.M., Kaufman, M.T., Ryu, S.I., Hochberg, L.R., et al. (2018). Inferring 1586
single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 1587

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

79

805–815. 1588
19. Abbaspourazad, H., Choudhury, M., Wong, Y.T., Pesaran, B., and Shanechi, M.M. 1589

(2021). Multiscale low-dimensional motor cortical state dynamics predict naturalistic 1590
reach-and-grasp behavior. Nat. Commun. 12, 607. 1591

20. Gallego-Carracedo, C., Perich, M.G., Chowdhury, R.H., Miller, L.E., and Gallego, J.Á. 1592
(2022). Local field potentials reflect cortical population dynamics in a region-specific and 1593
frequency-dependent manner. Elife 11, e73155. 1594

21. Gallego, J.A., Perich, M.G., Chowdhury, R.H., Solla, S.A., and Miller, L.E. (2020). Long-1595
term stability of cortical population dynamics underlying consistent behavior. Nat. 1596
Neurosci. 23, 260–270. 1597

22. Sani, O.G., Abbaspourazad, H., Wong, Y.T., Pesaran, B., and Shanechi, M.M. (2021). 1598
Modeling behaviorally relevant neural dynamics enabled by preferential subspace 1599
identification. Nat. Neurosci. 24, 140–149. 1600

23. Kaufman, M.T., Churchland, M.M., Ryu, S.I., and Shenoy, K. V (2014). Cortical activity 1601
in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–8. 1602

24. Stavisky, S.D., Kao, J.C., Ryu, S.I., and Shenoy, K. V. (2017). Motor Cortical Visuomotor 1603
Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural 1604
State Space Dimensions. Neuron, 1–14. 1605

25. Perich, M.G., Gallego, J.A., and Miller, L.E. (2018). A Neural Population Mechanism for 1606
Rapid Learning. Neuron 100, 964-976.e7. 1607

26. Miri, A., Warriner, C.L., Seely, J.S., Elsayed, G.F., Cunningham, J.P., Churchland, M.M., 1608
and Jessell, T.M. (2017). Behaviorally Selective Engagement of Short-Latency Effector 1609
Pathways by Motor Cortex. Neuron 95, 683-696.e11. 1610

27. Marshall, N.J., Glaser, J.I., Trautmann, E.M., Amematsro, E.A., Perkins, S.M., Shadlen, 1611
M.N., Abbott, L.F., Cunningham, J.P., and Churchland, M.M. (2022). Flexible neural 1612
control of motor units. Nat. Neurosci. 25, 1492–1504. 1613

28. Schieber, M.H. (2004). Motor Control: Basic Units of Cortical Output? Curr. Biol. 14, 1614
R353–R354. 1615

29. Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B. (2002). Direct cortical control of 3D 1616
neuroprosthetic devices. Science (80-.). 296, 1829–1832. 1617

30. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., and Donoghue, J.P. 1618
(2002). Instant neural control of a movement signal. Nature 416, 141–2. 1619

31. Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, 1620
D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L. (2003). Learning to control a 1621
brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, 193–208. 1622

32. Ganguly, K., and Carmena, J.M. (2009). Emergence of a stable cortical map for 1623
neuroprosthetic control. PLoS Biol. 7. 1624

33. Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and Cunningham, J.P. 1625
(2016). Reorganization between preparatory and movement population responses in motor 1626
cortex. Nat. Commun., 13239. 1627

34. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.I., and Shenoy, K. V. 1628
(2010). Cortical Preparatory Activity: Representation of Movement or First Cog in a 1629
Dynamical Machine? Neuron 68, 387–400. 1630

35. Kalidindi, H.T., Cross, K.P., Lillicrap, T.P., Omrani, M., Falotico, E., Sabes, P.N., and 1631
Scott, S.H. (2021). Rotational dynamics in motor cortex are consistent with a feedback 1632
controller. Elife 10, e67256. 1633

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

80

36. Pruszynski, J.A., Kurtzer, I., Nashed, J.Y., Omrani, M., Brouwer, B., and Scott, S.H. 1634
(2011). Primary motor cortex underlies multi-joint integration for fast feedback control. 1635
Nature 478, 387–390. 1636

37. Bollu, T., Ito, B.S., Whitehead, S.C., Kardon, B., Redd, J., Liu, M.H., and Goldberg, J.H. 1637
(2021). Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 1638
594, 82–87. 1639

38. Veuthey, T.L., Derosier, K., Kondapavulur, S., and Ganguly, K. (2020). Single-trial cross-1640
area neural population dynamics during long-term skill learning. Nat. Commun. 11, 4057. 1641

39. Rizzolatti, G., and Luppino, G. (2001). The cortical motor system. Neuron 31, 889–901. 1642
40. Dum, R.P., and Strick, P.L. (2005). Frontal Lobe Inputs to the Digit Representations of the 1643

Motor Areas on the Lateral Surface of the Hemisphere. J. Neurosci. 25, 1375–1386. 1644
41. Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P., 1645

Caldejon, S., Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and 1646
thalamic connectivity. Nature 575, 195–202. 1647

42. Athalye, V.R., Carmena, J.M., and Costa, R.M. (2020). Neural reinforcement: re-entering 1648
and refining neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60. 1649

43. Sauerbrei, B.A., Guo, J.-Z., Cohen, J.D., Mischiati, M., Guo, W., Kabra, M., Verma, N., 1650
Mensh, B., Branson, K., and Hantman, A.W. (2020). Cortical pattern generation during 1651
dexterous movement is input-driven. Nature 577, 386–391. 1652

44. Merel, J., Botvinick, M., and Wayne, G. (2019). Hierarchical motor control in mammals 1653
and machines. Nat. Commun. 10, 5489. 1654

45. Kao, T.-C., Sadabadi, M.S., and Hennequin, G. (2021). Optimal anticipatory control as a 1655
theory of motor preparation: A thalamo-cortical circuit model. Neuron 109, 1567-1656
1581.e12. 1657

46. Logiaco, L., Abbott, L.F., and Escola, S. (2021). Thalamic control of cortical dynamics in 1658
a model of flexible motor sequencing. Cell Rep. 35, 109090. 1659

47. Shanechi, M.M., Orsborn, A.L., and Carmena, J.M. (2016). Robust Brain-Machine 1660
Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process 1661
Filtering. PLoS Comput. Biol. 12, e1004730. 1662

48. Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M., 1663
Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L., et al. (2017). Rapid 1664
control and feedback rates enhance neuroprosthetic control. Nat. Commun. 8, 13825. 1665

49. Dangi, S., Gowda, S., Moorman, H.G., Orsborn, A.L., So, K., Shanechi, M.M., and 1666
Carmena, J.M. (2014). Continuous closed-loop decoder adaptation with a recursive 1667
maximum likelihood algorithm allows for rapid performance acquisition in brain-machine 1668
interfaces. Neural Comput. 26, 1811–1839. 1669

50. Hennig, J.A., Golub, M.D., Lund, P.J., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.I., 1670
Tyler-Kabara, E.C., Batista, A.P., Yu, B.M., et al. (2018). Constraints on neural 1671
redundancy. Elife 7, 1–34. 1672

51. Elsayed, G.F., and Cunningham, J.P. (2017). Structure in neural population recordings: 1673
An expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318. 1674

52. Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., and Paninski, L. (2017). 1675
Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. In 1676
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 1677
Proceedings of Machine Learning Research., A. Singh and J. Zhu, eds. (PMLR), pp. 914–1678
922. 1679

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

81

53. Stavisky, S.D., Kao, J.C., Nuyujukian, P., Pandarinath, C., Blabe, C., Ryu, S.I., Hochberg, 1680
L.R., Henderson, J.M., and Shenoy, K. V. (2018). Brain-machine interface cursor position 1681
only weakly affects monkey and human motor cortical activity in the absence of arm 1682
movements. Sci. Rep. 8, 1–19. 1683

54. Biane, J.S., Takashima, Y., Scanziani, M., Conner, J.M., and Tuszynski, M.H. (2016). 1684
Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during 1685
Adult Motor Learning. Neuron 89, 1173–1179. 1686

55. Evarts, E. V (1968). Relation of pyramidal tract activity to force exerted during voluntary 1687
movement. J. Neurophysiol. 31, 14–27. 1688

56. Kalaska, J.F. (2009). From intention to action: motor cortex and the control of reaching 1689
movements. Adv. Exp. Med. Biol. 629, 139–178. 1690

57. Fetz, E.E. (1992). Are movement parameters recognizably coded in the activity of single 1691
neurons? Behav. Brain Sci. 15, 679–690. 1692

58. Reimer, J., and Hatsopoulos, N.G. (2009). The problem of parametric neural coding in the 1693
motor system. Adv. Exp. Med. Biol. 629, 243–259. 1694

59. Omrani, M., Kaufman, M.T., Hatsopoulos, N.G., and Cheney, P.D. (2017). Perspectives 1695
on classical controversies about the motor cortex. J. Neurophysiol. 118, 1828–1848. 1696

60. Georgopoulos, A.P., Caminiti, R., and Kalaska, J.F. (1984). Static spatial effects in motor 1697
cortex and area 5: Quantitative relations in a two-dimensional space. Exp. Brain Res. 54, 1698
446–454. 1699

61. Wang, W., Chan, S.S., Heldman, D.A., and Moran, D.W. (2007). Motor cortical 1700
representation of position and velocity during reaching. J. Neurophysiol. 97, 4258–4270. 1701

62. Paninski, L., Fellows, M.R., Hatsopoulos, N.G., and Donoghue, J.P. (2004). 1702
Spatiotemporal Tuning of Motor Cortical Neurons for Hand Position and Velocity. J. 1703
Neurophysiol. 91, 515–532. 1704

63. Fu, Q.-G., Suarez, J.I., and Ebner, T.J. (1993). Neuronal Specification of Direction and 1705
Distance During Reaching Movements in the Superior Precentral Premotor Area and 1706
Primary Motor Cortex of Monkeys. J. Neurophysiol. 70. 1707

64. Moran, D.W., and Schwartz, A.B. (1999). Motor cortical representation of speed and 1708
direction during reaching. J. Neurophysiol. 82, 2676–2692. 1709

65. Flament, D., and Hore, J. (1988). Relations of motor cortex neural discharge to kinematics 1710
of passive and active elbow movements in the monkey. J. Neurophysiol. 60, 1268–1284. 1711

66. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1982). On the relations 1712
between the direction of two-dimensional arm movements and cell discharge in primate 1713
motor cortex. J. Neurosci. 2, 1527–1537. 1714

67. Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986). Neuronal population 1715
coding of movement direction. Science (80-.). 233, 1416–9. 1716

68. Sergio, L.E., Hamel-pâquet, C., and Kalaska, J.F. (2005). Motor Cortex Neural Correlates 1717
of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks 1718
Motor Cortex Neural Correlates of Output Kinematics and Kinetics During Isometric-1719
Force and Arm-Reaching Tasks. J. Neurophysiol. 94, 2353–2378. 1720

69. Cheney, P.D., and Fetz, E.E. (1980). Functional classes of primate corticomotoneuronal 1721
cells and their relation to active force. J. Neurophysiol. 44, 773–791. 1722

70. Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., and Grossberg, S. (2008). 1723
Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response 1724
Is Modulated by Limb Biomechanics. Neuron 58, 414–428. 1725

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

82

71. Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., and Bizzi, E. (2015). Representation 1726
of muscle synergies in the primate brain. J. Neurosci. 35, 12615–12624. 1727

72. Holdefer, R.N., and Miller, L.E. (2002). Primary motor cortical neurons encode functional 1728
muscle synergies. Exp. Brain Res. 146, 233–243. 1729

73. Fetz, E.E., and Cheney, P.D. (1980). Postspike facilitation of forelimb muscle activity by 1730
primate corticomotoneuronal cells. J. Neurophysiol. 44, 751–772. 1731

74. Schieber, M.H., and Rivlis, G. (2007). Partial reconstruction of muscle activity from a 1732
pruned network of diverse motor cortex neurons. J. Neurophysiol. 97, 70–82. 1733

75. Morrow, M.M., and Miller, L.E. (2003). Prediction of muscle activity by populations of 1734
sequentially recorded primary motor cortex neurons. J. Neurophysiol. 89, 2279–2288. 1735

76. Todorov, E., and Jordan, M.I. (2002). Optimal feedback control as a theory of motor 1736
coordination. Nat Neurosci 5, 1226–35. 1737

77. Suresh, A.K., Goodman, J.M., Okorokova, E. V, Kaufman, M., Hatsopoulos, N.G., and 1738
Bensmaia, S.J. (2020). Neural population dynamics in motor cortex are different for reach 1739
and grasp. Elife 9. 1740

78. Athalye, V.R., Carmena, J.M., and Costa, R.M. (2020). Neural reinforcement: re-entering 1741
and refining neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60, 1742
145–154. 1743

79. Mannella, F., and Baldassarre, G. (2015). Selection of cortical dynamics for motor 1744
behaviour by the basal ganglia. Biol. Cybern. 109, 575–595. 1745

80. Vyas, S., Even-Chen, N., Stavisky, S.D., Ryu, S.I., Nuyujukian, P., and Shenoy, K. V. 1746
(2018). Neural Population Dynamics Underlying Motor Learning Transfer. Neuron 97, 1747
1177-1186.e3. 1748

81. Sadtler, P.T., Quick, K.M., Golub, M.D., Chase, S.M., Ryu, S.I., Tyler-Kabara, E.C., Yu, 1749
B.M., and Batista, A.P. (2014). Neural constraints on learning. Nature 512, 423–426. 1750

82. Athalye, V.R., Ganguly, K., Costa, R.M., and Carmena, J.M. (2017). Emergence of 1751
Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control. 1752
Neuron 93, 955–970. 1753

83. Athalye, V.R., Santos, F.J., Carmena, J.M., and Costa, R.M. (2018). Evidence for a neural 1754
law of effect. Science (80-.). 359, 1024–1029. 1755

84. Koralek, A.C., Jin, X., Long II, J.D., Costa, R.M., and Carmena, J.M. (2012). 1756
Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 1757
483, 331–335. 1758

85. Neely, R.M., Koralek, A.C., Athalye, V.R., Costa, R.M., and Carmena, J.M. (2018). 1759
Volitional Modulation of Primary Visual Cortex Activity Requires the Basal Ganglia. 1760
Neuron 97, 1356–1368. 1761

86. Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., and Shenoy, K. V (2021). 1762
High-performance brain-to-text communication via handwriting. Nature 593, 249–254. 1763

87. Khanna, P., Totten, D., Novik, L., Roberts, J., Morecraft, R.J., and Ganguly, K. (2021). 1764
Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 1765
184, 912-930.e20. 1766

88. Ramanathan, D.S., Guo, L., Gulati, T., Davidson, G., Hishinuma, A.K., Won, S.-J., 1767
Knight, R.T., Chang, E.F., Swanson, R.A., and Ganguly, K. (2018). Low-frequency 1768
cortical activity is a neuromodulatory target that tracks recovery after stroke. Nat. Med. 1769
24, 1257–1267. 1770

89. Shenoy, K., and Carmena, J. (2014). Combining decoder design and neural adaptation in 1771

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

83

brain-machine interfaces. Neuron 84, 665–680. 1772
90. Golub, M.D., Chase, S.M., Batista, A.P., and Yu, B.M. (2016). Brain-computer interfaces 1773

for dissecting cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 1774
37, 53–58. 1775

91. Orsborn, A.L., and Pesaran, B. (2017). Parsing learning in networks using brain-machine 1776
interfaces. Curr. Opin. Neurobiol. 46, 76–83. 1777

92. Moxon, K.A., and Foffani, G. (2015). Brain-Machine Interfaces beyond Neuroprosthetics. 1778
Neuron 86, 55–67. 1779

93. Paxinos, G., Huang, X.-F., and Toga, A.W. (2013). The Rhesus Monkey Brain in 1780
Stereotaxic Coordinates. 1781

94. Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., 1782
Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I., et al. (2012). A high-1783
performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1784
1752–1757. 1785

95. Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., and Black, M.J. (2006). Bayesian 1786
Population Decoding of Motor Cortical Activity Using a Kalman Filter. Neural Comput. 1787
18, 80–118. 1788

96. Dangi, S., Orsborn, A.L., Moorman, H.G., and Carmena, J.M. (2013). Design and 1789
Analysis of Closed-Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces. 1790
Neural Comput. 25, 1693–1731. 1791

97. Malik, W.Q., Truccolo, W., Brown, E.N., and Hochberg, L.R. (2011). Efficient decoding 1792
with steady-state kalman filter in neural interface systems. IEEE Trans. Neural Syst. 1793
Rehabil. Eng. 19, 25–34. 1794

98. Gowda, S., Orsborn, A.L., Overduin, S.A., Moorman, H.G., and Carmena, J.M. (2014). 1795
Designing dynamical properties of brain-machine interfaces to optimize task-specific 1796
performance. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 911–920. 1797

 1798

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2021.08.27.457931doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Invariant neural dynamics drive commands to control different movements

