

1 Invariant neural dynamics drive commands to control different movements

2
3 Vivek R. Athalye^{1†}, Preeya Khanna^{2†}, Suraj Gowda⁴, Amy L. Orsborn³, Rui M. Costa^{1*‡}, and
4 Jose M. Carmena^{4,5,6*‡}

5 ¹ Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology,
6 Columbia University; New York, NY, USA

7 ² Department of Neurology, University of California, San Francisco; San Francisco, CA,
8 USA

9 ³ Departments of Bioengineering, Electrical and Computer Engineering, University of
10 Washington, Seattle; Seattle, WA, USA

11 ⁴ Department of Electrical Engineering and Computer Sciences, University of California,
12 Berkeley; Berkeley, CA, USA

13 ⁵ Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA, USA

14 ⁶ UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California,
15 Berkeley; Berkeley, CA, USA

16 [†]These authors contributed equally to this work.

17 [‡]Senior author

18 *Corresponding author. Email: rc3031@columbia.edu (RMC); jcarmena@berkeley.edu
19 (JMC)

20
21 **Summary:** It has been proposed that the nervous system has the capacity to generate a wide
22 variety of movements because it re-uses some invariant code. Previous work has identified that
23 dynamics of neural population activity are similar during different movements, where dynamics
24 refer to how the instantaneous spatial pattern of population activity changes in time. Here we test
25 whether invariant dynamics of neural populations are actually used to issue the commands that
26 direct movement. Using a brain-machine interface that transformed rhesus macaques' motor
27 cortex activity into commands for a neuroprosthetic cursor, we discovered that the same
28 command is issued with different neural activity patterns in different movements. However,
29 these different patterns were predictable, as we found that the transitions between activity
30 patterns are governed by the same dynamics across movements. These invariant dynamics are
31 low-dimensional, and critically, they align with the brain-machine interface, so that they predict
32 the specific component of neural activity that actually issues the next command. We introduce a
33 model of optimal feedback control that shows that invariant dynamics can help transform
34 movement feedback into commands, reducing the input that the neural population needs to
35 control movement. Altogether our results demonstrate that invariant dynamics drive commands
36 to control a variety of movements, and show how feedback can be integrated with invariant
37 dynamics to issue generalizable commands.

38

39 **Keywords:** neural population dynamics, motor cortex, motor control, brain-machine interfaces,
40 neuroprosthetics, optimal feedback control, motor commands, movement representations,
41 dynamical systems

42 Introduction

43 Our brain can generate a vast variety of movements. It is believed that the brain would
44 not have such capacity if it used separate populations of neurons to control each movement.
45 Thus, it has been proposed that the brain's capacity to produce different movements relies on re-
46 using the dynamics of a specific neural population's activity¹⁻³. While theoretical work shows
47 how dynamics emerge from neural activity transmitted through recurrent connectivity^{1,4-6}, it has
48 been elusive to identify whether the brain re-uses dynamics to actually control movements.

49 Recent work on the motor cortex, a region that controls movement through direct
50 projections to the spinal cord⁷ and other motor centers⁸⁻¹⁰, has found that population dynamics
51 are similar across different movements. Specifically, the spatial pattern of population activity at a
52 given time point (i.e. the instantaneous firing rate of each neuron in the population)
53 systematically influences what spatial pattern occurs next. Models of dynamics h that are
54 invariant across movements³ can predict the transition from the current population activity
55 pattern x_t to the subsequent pattern x_{t+1} :

$$56 \quad x_{t+1} = h(x_t) + \text{input}_t + \text{noise}_t \quad (1)$$

57 where external input input_t and noise noise_t are typically unmeasured. Recent work¹¹ has
58 provided the intuition that invariant dynamics bias neural activity to avoid “tangling” – which is
59 when the same activity pattern undergoes different transitions in different movements. These
60 dynamics models have explained features of neural activity that were unexpected from behavior
61¹¹⁻¹⁴ such as oscillations¹², and have predicted neural activity during different movements on
62 single trials¹⁵⁻¹⁸, for single neurons' spiking¹⁵, for local field potential features^{19,20}, and over
63 many days^{18,21}. These models also help predict behavior^{16,18,19,22}.

64 While past work characterized the statistical relationship between invariant dynamics and
65 behavior, it remains untested if invariant dynamics are actually used to issue commands for
66 movement. This test requires identifying the causal transformation from neural activity to
67 command, where the “command” is the instantaneous influence of the nervous system on
68 movement. This is a long-standing challenge in motor control. While past work has modeled this
69 transformation^{23–25}, ongoing research reveals its complexity^{8–10,26–28}.

70 We addressed this challenge with a brain-machine interface (BMI)^{29–32} in which the
71 transformation from neural activity to command was known exactly and determined by the
72 experimenter. We trained rhesus monkeys to use motor cortex population activity to move a two-
73 dimensional computer cursor on a screen through a BMI. The BMI transformed neural activity
74 into a force-like command to update the cursor’s velocity, analogous to muscular force on the
75 skeleton. Thus, an individual movement was produced by a series of commands, where each
76 command acted on the cursor at an instant in time.

77 We discovered that the same exact command is issued with different neural activity
78 patterns in different movements. Critically, these different patterns transition according to low-
79 dimensional, invariant dynamics to patterns that issue the next command, even when the next
80 command differs across movements. Thus, our results demonstrate that invariant dynamics drive
81 commands to control different movements.

82 While past work has presented a view of how dynamics operate in a feedforward manner,
83 propagating an initial state of activity^{23,33,34} to produce movement, it has been unclear how
84 feedback^{24,35–37} integrates with invariant dynamics. Given that motor cortex is interconnected to
85 larger motor control circuits including cortical^{38–41} and cortico-basal ganglia-thalamic
86 circuits^{8,9,42,43}, we introduce a hierarchical model⁴⁴ of optimal feedback control (OFC) in which

87 the brain (i.e. larger motor control circuitry) uses feedback to control the motor cortex population
88 which controls movement^{45,46}. Our model reveals that invariant dynamics can help transform
89 feedback into commands, as they reduce the input that a population needs to issue commands.
90 Altogether, our results demonstrate that invariant neural dynamics are both used and useful for
91 issuing commands across different movements.

92 **Results**

93 **BMI to study neural population control of movement**

94 We used a BMI⁴⁷⁻⁴⁹ to study the dynamics of population activity as it issued commands
95 for movement of a two-dimensional computer cursor (Fig. 1A). Population activity (20-151
96 units) was recorded using chronically implanted microwire electrode arrays spanning bilateral
97 dorsal premotor cortex and primary motor cortex. Each unit's spiking rate at time t (computed as
98 the number of spikes in a temporal bin) was stacked into a vector of population activity x_t , and
99 the BMI used a “decoder” given by matrix K to linearly transform population activity into a two-
100 dimensional command:

$$101 \quad \text{command}_t = Kx_t \quad (2)$$

102 The command linearly updated the two-dimensional velocity vector of the computer cursor:

$$103 \quad \text{velocity}_t = \text{command}_t + \alpha * \text{velocity}_{t-1} + \text{offset} \quad (3)$$

104 We note that the BMI was not identical across the two subjects, as neural activity was modeled
105 with different statistical distributions (Gaussian for Monkey G and a Point Process^{47,48} for
106 Monkey J, see STAR methods – “Neuroprosthetic decoding”).

107 The decoder was initialized as subjects passively watched cursor movement, calibrated as
108 subjects used the BMI in closed-loop⁴⁹ without performing trained overt movement, and then
109 fixed for the experiment (Fig. 1B). Critically, the decoder was not fit during trained overt

110 movement, as was done previously¹⁶, so it did not demand neural dynamics associated with overt
111 movement.

112 To study control of diverse movements, we trained monkeys to perform two different
113 tasks (Fig. 1CD). Monkeys performed a center-out task in which they moved the cursor from the
114 center of the workspace to one of eight radial targets, and they performed an obstacle-avoidance
115 task in which they avoided an obstacle blocking the straight path to the target. Our tasks elicited
116 up to 24 conditions of movement (with an average of 16-17 conditions per session), where each
117 condition is defined as the task performed (“co” = center-out task, “cw” / “ccw” =
118 clockwise/counterclockwise movement around the obstacle in the obstacle-avoidance task) and
119 the target achieved (numbered 0 through 7).

120 Importantly, the BMI enabled us to identify when neural activity issued the same exact
121 command in different conditions (Fig. 1EF, Fig. S1). We considered two-dimensional,
122 continuous-valued commands as the same if they fell within the same discrete bin for analysis.
123 We categorized commands into 32 bins (8 angular x 4 magnitude) based on percentiles of the
124 continuous-valued distribution (Fig. S1A; see STAR methods - “Command discretization for
125 analysis”). On each session, a command (of the 32 discretized bins) was analyzed if it was used
126 in a condition 15 or more times (Fig. S1B), for more than one condition. Each individual
127 command was used with regularity during multiple conditions (on average ~7 conditions, Fig.
128 S1B), within distinct local “subtrajectories” (Fig. 1F, Fig. S1, STAR methods – “Cursor and
129 command trajectory visualization”).

130 **Using the BMI to test whether invariant dynamics are used to control different movements**

131 The BMI enabled us to test whether the pattern of neural activity systematically
132 influences the subsequent pattern and command. We can visualize an activity pattern x_t as a

133 point in high-dimensional activity space, where each neuron's activity is one dimension, and
134 visualize the transition between two patterns x_t and x_{t+1} as an arrow (Fig. 2A). Then,
135 dynamics can be visualized as a flow field in activity space. This flow field is invariant because
136 the predicted transition for a given neural activity pattern (i.e. its arrow) does not change,
137 regardless of the current command or condition. Because there are more neurons than
138 dimensions of the command, different activity patterns can issue the same command^{24,50} (Fig.
139 2B), as is believed to be true in the natural motor system^{23,24,50}. The BMI decoder defined the
140 “decoder space” as the dimensions of neural activity that determine the command and the
141 “decoder null space” as the orthogonal dimensions which have no consequence on the decoder.
142 The BMI allowed us to observe the precise temporal order of commands (Fig. 2C) and test
143 whether activity trajectories followed the flow of invariant dynamics to issue these commands
144 for movements (Fig. 2D).

145 **The same command is issued by different neural activity patterns in different movements**

146 First, we tested whether the same command is issued by different neural activity patterns
147 in different movements, as would be expected if the current pattern influences the subsequent
148 pattern and command (Fig. 3A). We calculated the distance between the average neural activity
149 for a given command and condition and the average neural activity for the given command
150 pooled over conditions. We then tested if this distance is larger than expected simply due to the
151 variability of noisy neural activity. To emulate the scenario in which neural activity for a given
152 command has the same distribution across conditions, we constructed shuffled datasets where we
153 identified all observations of neural activity issuing a given command and shuffled their
154 condition-labels, for all commands (see STAR methods – “Behavior-preserving shuffle of

155 activity”). In this scenario, the distance is expected to be greater than zero simply because
156 average activity is estimated from limited samples and thus is subject to variability.

157 Overall, neural activity issuing a given command significantly deviated across conditions
158 relative to the shuffle distribution (Fig. 3B-E). Distances averaged within-session ranged from
159 10% to 200% larger than shuffle distance (Fig. 3D, S2 for additional distributions). Distances
160 were significantly larger than shuffle distances for a large fraction of individual (command,
161 condition) tuples (~30% for Monkey G, ~70% for Monkey J), individual commands (~65% for
162 G, ~90% for J) when aggregating over conditions, and individual neurons (~40% for G, ~80%
163 for J) when aggregating over all (command, condition) tuples (Fig. 3E). Further, these deviations
164 reflected the behavior; the distance between two patterns issuing the same command correlated
165 with the distance between the command subtrajectories (Fig. S6E-H).

166 **Invariant dynamics predict the different neural activity patterns used to issue the same
167 command**

168 Given that a command was not issued with the same activity pattern across conditions,
169 we next constructed a model of invariant dynamics. We used single-trial neural activity x_t from
170 all conditions to estimate dynamics with a linear model (Fig. 4A):

$$171 \quad x_{t+1} = Ax_t + b \quad (4)$$

172 We found that the dynamics A were low-dimensional (~4 dimensions, Fig. 5D, S3B) and
173 decaying to a fixed point (Fig. S3A,C), contrasting with rotational dynamics observed during
174 natural motor control^{12,13,16,22,51}. See Fig. S3D for an illustration of how decaying invariant
175 dynamics can control different movements. Notably, a non-linear dynamics model (a recurrent
176 switching linear dynamical system⁵²) did not out-perform these simple linear dynamics (Fig.
177 S5C-F).

178 We asked whether invariant dynamics predict the different activity patterns observed to
179 issue the same command. Concretely, we predicted the activity pattern given the command it
180 issued and its previous activity (Fig. 4A, see STAR methods – “Invariant dynamics model
181 predictions”), combining the dynamics model (Equation 4) with the decoder (Equation 2). This
182 analyzed whether the model could predict the component of the activity pattern that can vary
183 when a given command is issued, i.e. the component in the decoder null space. For comparison,
184 we also computed the prediction of neural activity when only given the command it issued (in
185 the absence of a dynamics model). Further, we tested whether the invariant dynamics model
186 generalized to new commands and conditions. Dynamics models were fit on neural activity
187 specifically excluding individual commands or conditions, and these models were used to predict
188 the neural activity for the left-out commands or conditions (Fig. 4B, Fig. S4, see STAR methods
189 – “Invariant dynamics models”).

190 We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on the
191 shuffled datasets that preserved the temporal order of commands while shuffling the neural
192 activity issuing the commands (see STAR methods – “Behavior-preserving shuffle of activity”).
193 The shuffle dynamics model captured the expected predictability in neural activity due to the
194 predictability of commands in the performed movements.

195 On the level of single time points in individual trials, we found that the dynamics model
196 significantly exceeded shuffle dynamics in predicting the activity pattern issuing a given
197 command based on the previous pattern. Importantly, it generalized across left-out commands
198 and conditions (Fig. 4C) and even when much larger subsets of commands and conditions were
199 left-out (Fig. S4). We confirmed that the result was not driven by neural activity simply

200 representing behavioral variables (cursor kinematics, target location, and condition) in addition
201 to the command (Fig. S5AB), consistent with previous work⁵³.

202 The invariant dynamics model also predicted the different average activity patterns for
203 each command and condition (Fig. 4D-G) significantly better than shuffle dynamics. It predicted
204 20-40% of the condition-specific component of neural activity (i.e. the difference between
205 average activity for a (command, condition) and the prediction of that activity based on the
206 command alone) (Fig. 4F, see STAR methods – “Invariant dynamics model predictions”). The
207 model predicted neural activity for the vast majority of commands, conditions, and neurons (Fig.
208 4G), revealing that dynamics were indeed invariant.

209 Finally, the dynamics model preserved structure of neural activity across pairs of
210 conditions (Fig. S6A-D) and predicted that the distance between two activity patterns issuing the
211 same command would be correlated with the distance between the corresponding command
212 subtrajectories (Fig. S6E-I). Altogether, these results show that invariant dynamics contribute to
213 what activity pattern was used to issue a command, generalizing across commands and
214 conditions.

215 **Invariant dynamics align with the decoder, propagating neural activity to issue the next
216 command**

217 We next asked whether invariant dynamics were actually used to transition between
218 commands. Concretely, we used the dynamics model to predict the transition from the current
219 activity pattern to the next pattern, and then we applied the BMI decoder to this prediction of
220 next pattern in order to predict the next command (i.e. its continuous value) (Fig. 5A). This tests
221 whether invariant dynamics predict the component of neural activity in the decoder space, which

222 actually drives the BMI. The BMI enabled this analysis as it defines the transformation from
223 neural activity to command which has not been measurable during natural motor control.

224 We emphasize that invariant dynamics do not have to predict the command, i.e. the
225 decoder space (Fig. 5B). Low-dimensional dynamics could be misaligned with the decoder such
226 that they only predict the component of neural activity in the decoder null space. To assess this
227 possibility, we fit an invariant dynamics model on the component of neural activity in the
228 decoder null space (“decoder-null dynamics”, see STAR methods – “Invariant dynamics
229 models”). While this model was restricted to the decoder-null space, it maintained similar
230 dimensionality and eigenvalues to the full dynamics model (Fig. S3BC).

231 Both the full dynamics and the decoder-null dynamics model predicted next neural
232 activity significantly better than shuffle dynamics (Fig. 5C) on the level of single time points in
233 individual trials. This reveals that invariant dynamics occupied decoder-null dimensions. Given
234 that the full dynamics model was low-dimensional (Fig. S3B) and predicted ~4 dimensions more
235 accurately than the rest of neural activity (Fig. 5D), we next tested whether the dynamics aligned
236 with the decoder. Critically, the full dynamics model predicted the next command (Fig. 5E)
237 better than shuffle dynamics, while decoder-null dynamics provided absolutely no prediction for
238 the next command, as expected by construction. The dynamics were invariant, as the full
239 dynamics model generalized across commands and conditions that were left-out from model
240 fitting (Fig. 5E) and predicted the next command for the majority of (command, condition) tuples
241 (Fig. 5F). These predictions preserved structure across pairs of conditions, such that invariant
242 dynamics indicated how similar the next command would be across pairs of conditions (Fig. S6I-
243 K).

244 Notably, invariant dynamics could predict the turn that the next command would take
245 following a given command in a specific condition relative to the average next command
246 (averaged across conditions for the given current command) (Fig. 5GH). Specifically, the
247 dynamics model predicted whether the turn would be clockwise or counter clockwise (Fig. 5H
248 *left*) and the angle of turn (Fig 5H *right*) better than shuffle dynamics. Altogether, these results
249 show that invariant dynamics align with the decoder and are used to transition between
250 commands.

251 **An OFC model reveals that invariant dynamics reduce the input that a neural population
252 needs to issue commands based on feedback**

253 We observe that the invariant dynamics model did not perfectly predict transitions
254 between commands. Throughout movement there were substantial residuals (Fig. S3E-G),
255 consistent with ongoing movement feedback driving neural activity in addition to invariant
256 dynamics. However, it has been unclear how the brain can integrate feedback with invariant
257 dynamics to control movement. Thus, we constructed a model of optimal feedback control
258 (OFC) that incorporates invariant neural dynamics.

259 We introduce a hierarchical model in which the brain controls the neural population
260 which controls movement of the BMI cursor (Fig. 6A, Equation 5). Population activity x_t issues
261 commands for movement and is driven by three terms: invariant dynamics (which we
262 hypothesize are intrinsic to some connectivity of the neural population), input, and noise. The
263 brain transforms ongoing cursor state and population activity into the input to the population that
264 is necessary to achieve successful movement. Concretely, the brain acts as an optimal linear
265 feedback controller with knowledge of the neural population's invariant dynamics, the BMI
266 decoder, and the condition of movement. In this formulation, the brain's objective was to achieve

267 the target while using the smallest possible input to the population, which minimizes the
268 communication from the brain to the population. Importantly, this incentivized the OFC model to
269 optimize input in order to use invariant dynamics to control movement, rather than relying solely
270 on input to issue commands. Consistent with this formulation, experiments show that thalamic
271 input into motor cortex is optimized during motor learning⁵⁴.

$$\begin{aligned} x_{t+1} &= Ax_t + b + \text{input}_t + \text{noise}_t & (5) \\ 272 \quad \text{input}_t &= f_t^{\text{LQR}}(x_t, \text{cursor}_t, \text{condition}) \\ &\quad \text{cursor}_{t+1} = \text{BMI}(\text{cursor}_t, x_t) \end{aligned}$$

273 We simulated the model performing center-out and obstacle-avoidance movements with
274 the decoders that were used in BMI experiments (see STAR methods – “Optimal feedback
275 control model and simulation”). In the Full Dynamics Model, the brain computed the minimal
276 input to a population that followed the invariant dynamics we observed experimentally. In the
277 No Dynamics Model, the minimal input was computed to a neural population that had no
278 invariant dynamics (i.e. the A matrix was set to zero). To facilitate comparison, we designed the
279 models to receive the same noise magnitude and to produce behavior with equal success and
280 target acquisition time (Fig. 6B).

281 These simulations revealed that the population required significantly less input in the Full
282 Dynamics Model than in the No Dynamics Model (Fig. 6C). This effect was erased in the
283 Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics were
284 restricted to the decoder-null space. These results show that invariant dynamics that specifically
285 align with the decoder, as experimentally-observed, can help the brain perform feedback control,
286 reducing the input that the population needs to issue commands based on feedback.

287 Finally, we confirmed the principle that feedback control with invariant dynamics makes
288 use of distinct activity patterns to issue a particular command. As in Fig. 3, we compared the

289 OFC models' neural activity against shuffled activity that preserved the temporal order of
290 commands. The population activity distances for (command, condition) tuples were significantly
291 larger than shuffle in the Full Dynamics Model but not in the No Dynamics Model (Fig. 6FG).
292 Further, this effect depended on alignment between invariant dynamics and the decoder, as we
293 detected no difference between the Decoder-Null Dynamics Model and shuffle (Fig. 6H). Thus,
294 the OFC model used different neural activity patterns to issue the same command only when the
295 invariant dynamics were useful for feedback control.

296 **Discussion**

297 Theoretical work shows that recurrent connectivity can give rise to neural population
298 dynamics for motor control^{1,4,5} and endow the brain with the capacity to generate diverse
299 physical movement³. Experimental work has found that population activity in the motor cortex
300 follows similar and predictable dynamics across different movements^{11,12,16}. But it has been
301 untested whether dynamics that are invariant across movements are used to actually control
302 movement, as the transformation from neural activity to motor command has been challenging to
303 measure^{26,27} and model^{23–25}. Here, we use a BMI to perform that test.

304 We discovered that different neural activity patterns are used to issue the same command
305 in different movements. The activity patterns issuing the same command vary systemically
306 depending on the past pattern, and critically, they transition according to low-dimensional,
307 invariant dynamics towards activity patterns that causally drive the subsequent command. Our
308 results' focus on the command provides a conceptual advance beyond previous work that
309 characterized properties of dynamics during behavior^{12,13,15,16}, revealing that invariant dynamics
310 are actually used to control movement.

311 Further, it has been unclear how the brain could integrate invariant dynamics with
312 feedback^{24,35–37} to control movement. We introduce a hierarchical model⁴⁴ of optimal feedback
313 control, in which the brain uses feedback to control a neural population that controls movement.
314 Optimal control theory reveals that invariant dynamics that are aligned to the decoder can help
315 the brain perform feedback control of movement, reducing the input that a population needs to
316 issue the appropriate commands. The model verified that when invariant dynamics are used for
317 feedback control, the same command is issued with different neural activity patterns across
318 movements. Altogether, these findings form a basis for future studies on what connectivity and
319 neural populations throughout the brain give rise to invariant dynamics, whether the brain sends
320 inputs to a neural population to take advantage of invariant dynamics, and whether invariant
321 dynamics actually drive muscles during physical movement.

322 These results provide strong evidence against one traditional view that the brain reuses
323 the same neural population activity patterns to issue a particular command. This perspective is
324 present in classic studies that describe neurons as representing movement parameters^{55,56}. It is
325 still debated what movement parameters are updated by motor cortex neurons^{28,57–59}, as
326 population activity encodes movement position^{60–62}, distance⁶³, velocity^{61,62}, speed⁶⁴,
327 acceleration⁶⁵, and direction of movement^{64,66–68}, as well as muscle-related parameters such as
328 force/torque^{55,68–70}, muscle synergies^{71,72}, muscle activation^{73–75}, and even activation of motor
329 units²⁷. Regardless of how commands from motor cortex update physical movement, our
330 findings using a BMI strongly suggest that the motor cortex does not use the same neural activity
331 pattern to issue a specific motor command. Our findings instead support the recent proposal that
332 neural activity in motor cortex avoids “tangling”¹¹ while issuing commands.

333 We found that invariant dynamics do not perfectly determine the neural population's next
334 command. We propose that as the brain sends input to the neural population, it performs
335 feedback control on the state of the neural population's invariant dynamics in order to produce
336 movement. This proposal expands the number of behaviors for which invariant dynamics are
337 useful. This is because invariant dynamics do not need to define the precise neural
338 trajectories^{12,34} that produce movement; they only need to provide useful transitions of neural
339 activity that inputs can harness to control movement. In our data, simple dynamics (decaying
340 dynamics with different time constants) in a low-dimensional activity space (~4 dimensions)
341 were used to control many conditions of movement (~20 conditions). We find that invariant
342 dynamics constrain neural activity in dimensions which do not directly matter for issuing current
343 commands⁵⁰, so that inputs in these dimensions can produce future commands (Fig. 6C). This
344 mechanism refutes a simplistic interpretation of the minimal intervention principle⁷⁶ in which
345 neural activity should only be controlled in the few dimensions which directly drive commands.
346 This also accords with the finding that motor cortex responses to feedback are initially in the
347 decoder null space before transitioning to neural activity that issues corrective commands²⁴.

348 There is almost surely a limitation to the behaviors that particular invariant dynamics are
349 useful for. Motor cortex activity occupies orthogonal dimensions and shows a different influence
350 on muscle activation during walking and trained forelimb movement²⁶, and follows different
351 dynamics for reach and grasp movements⁷⁷. Notably, our finding of decaying dynamics for BMI
352 control contrasts with rotational dynamics observed during natural arm movement^{12,13,16,22}. We
353 speculate this could be because controlling the BMI relied more on feedback control than a well-
354 trained physical movement, because controlling the BMI did not require the temporal structure of
355 commands needed to control muscles for movement², and/or because controlling the BMI did not

356 involve proprioceptive feedback of physical movement³⁵. Recent theoretical work shows that
357 cortico-basal ganglia-thalamic loops can switch between different cortical dynamics useful for
358 different temporal patterns of commands⁴⁶.

359 The use of invariant dynamics to issue commands has implications for how the brain
360 learns new behavior^{78,79}, enabling the brain to leverage pre-existing dynamics for initial learning
361^{25,80,81} and to develop new dynamics through gradual reinforcement^{82,83}. This learning that
362 modifies dynamics relies on plasticity in cortico-basal ganglia circuits⁸³⁻⁸⁵ and permits the brain
363 to reliably access a particular neural activity pattern for a given command and movement³², even
364 if the same neural activity pattern is not used to issue the same command across different
365 movements.

366 Modeling invariant dynamics can inform the design of new neuroprosthetics that can
367 generalize commands to new behaviors¹⁶ and classify entire movement trajectories⁸⁶. We
368 expect that as new behaviors are performed, distinct neural activity patterns will be used to issue
369 the same command, but that invariant dynamics can predict and thus recognize these distinct
370 neural patterns as signal for the BMI rather than noise. In addition, our results inform the design
371 of rehabilitative therapies to restore dynamics following brain injury or stroke to recover
372 movement^{87,88}.

373 Overall, this study put the output of a neural population into focus, revealing how rules
374 for neural dynamics are used to issue commands and produce different movements. This was
375 achieved by studying the brain as it controlled the very neural activity we recorded. BMI^{78,89-92},
376 especially combined with technical advances in measuring, modeling, and manipulating activity
377 from defined populations, provides a powerful technique to test emerging hypotheses about how
378 neural circuits generate activity to control behavior.

379 **Acknowledgements**

380 We thank I. Rodrigues-Vaz, D. Peterka, the Theory Center at the Zuckerman Institute, and I.
381 Papusha for helpful discussions, and the Costa and Carmena labs for their support.

382 **Funding**

383 NIH NINDS Pathway to Independence Award
384 1K99NS128250-01 (VRA)
385 BRAIN Initiative National Institute of Mental Health postdoctoral fellowship
386 1F32MH118714-01 (VRA)
387 NIH Pathway to Independence Award
388 1K99NS124748-01 (PK)
389 BRAIN Initiative National Institute of Mental Health postdoctoral fellowship
390 1F32MH120891-01 (PK)
391 NINDS/NIH BRAIN Initiative U19
392 NS104649 (RMC)
393 Simons-Emory International Consortium on Motor Control
394 #717104 (RMC)
395 NINDS/NIH R01
396 NS106094 (JMC)

397

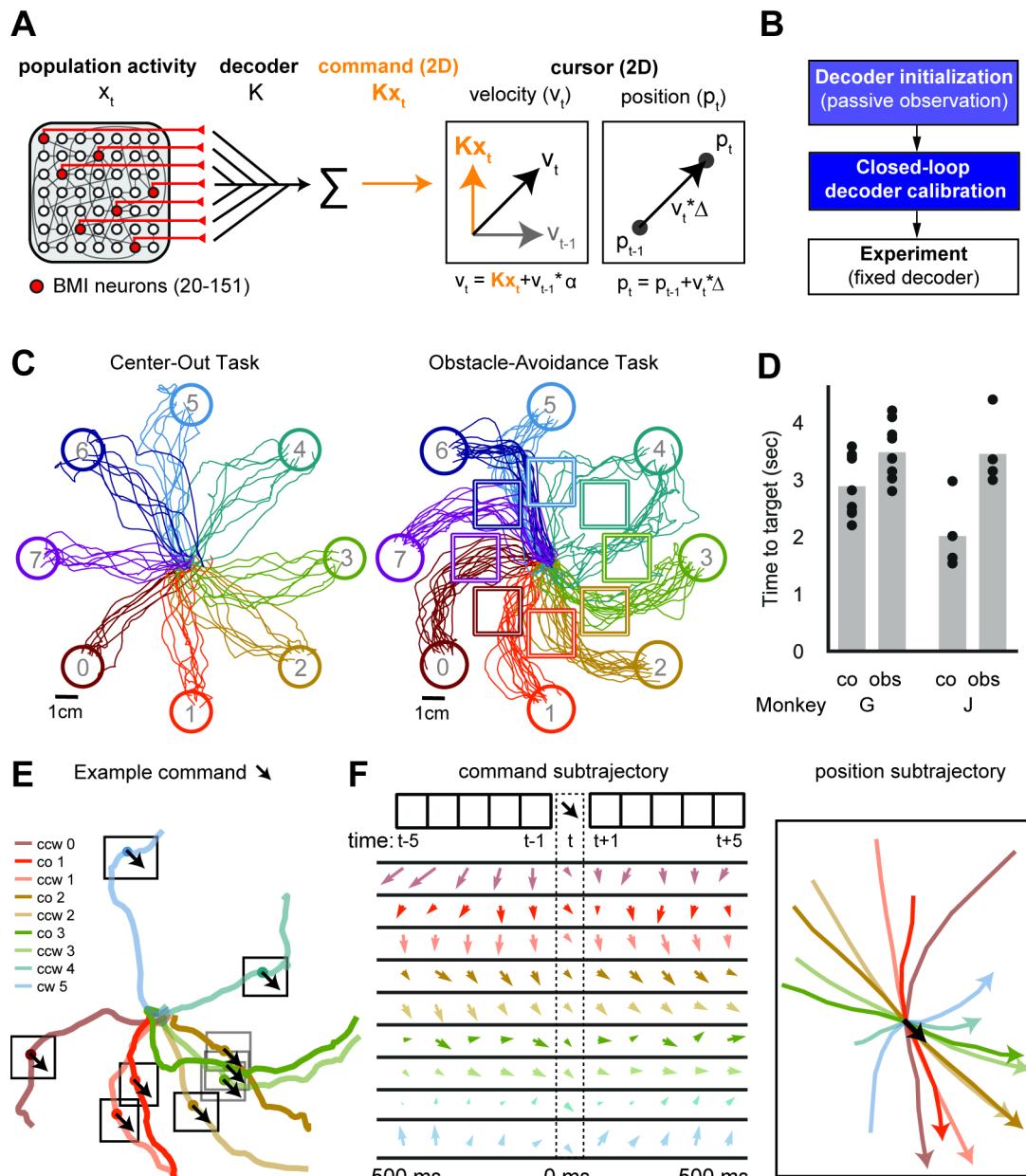
398 **Author contributions**

399 V.R.A., P.K., R.M.C., and J.M.C. conceived and designed this study. P.K., S.G., and A.L.O.
400 performed the experiments. P.K. and V.R.A. analyzed the data. All authors contributed materials
401 and analysis tools. V.R.A., P.K., R.M.C, and J.M.C. wrote the manuscript. All authors reviewed
402 the manuscript.

403 **Declaration of interests**

404 Authors declare that they have no competing interests.

405 **Figures and legends**



406

407 **Figure 1. BMI to study neural population control of movement.**

408 (A) Schematic of the BMI system.

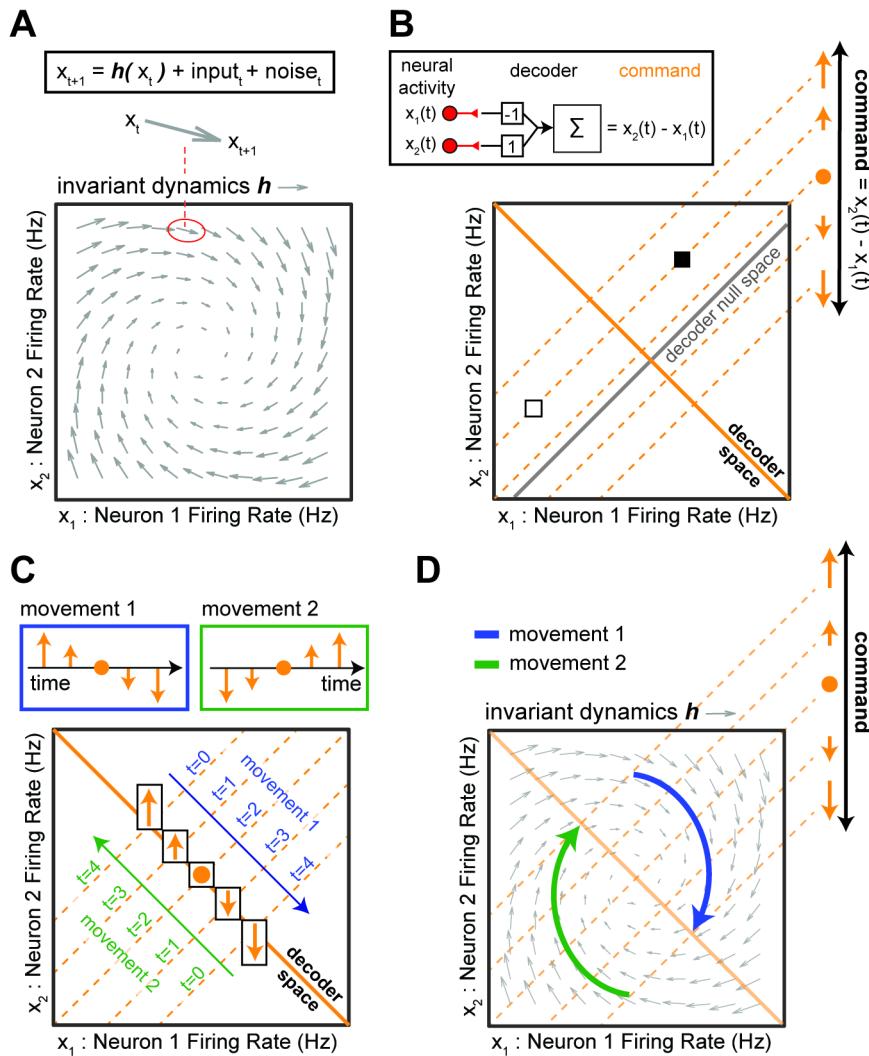
409 (B) Schematic of decoder calibration.

410 (C) Single trials of BMI control.

411 (D) Average target acquisition time per session.

412 (E) Example of the same command (black arrow) being issued during single trials of different
413 conditions. The example command was in the -45 degree direction and the smallest magnitude
414 bin of analysis.

415 (F) *Left*: The average command subtrajectory from -500ms to 500ms. *Right*: The average
416 position subtrajectory from -500ms to 500ms. See Fig. S1 for analysis of subtrajectories.



417

418 **Figure 2. Using the BMI to test whether invariant dynamics are used to control different**
 419 **movements.**

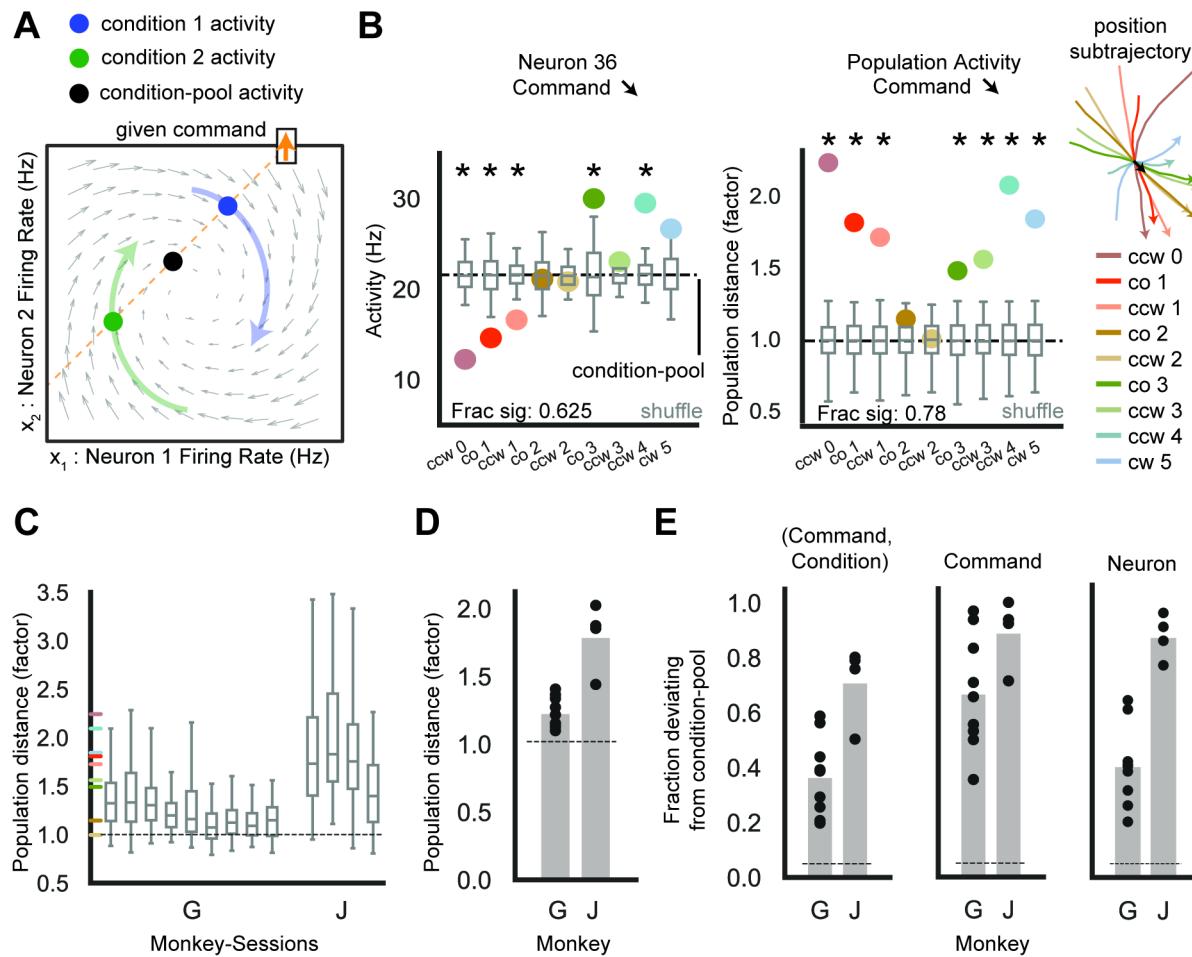
420 (A) Illustration of invariant dynamics.

421 (B) Multiple neural activity patterns (e.g. white and black square) issue the same command. An
 422 illustrative decoder defines the command at time t as the difference between two neurons'
 423 instantaneous activity $x_2(t) - x_1(t)$, symbolized with orange arrows (top right) indicating the
 424 command's magnitude and sign.

425 (C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1

426 (blue) and 2 (green) are driven by the same commands in different temporal orders.

427 (D) Neural activity that follows invariant dynamics h in order to issue the commands for
428 movement. See Fig. S3D for another example of invariant dynamics (decaying dynamics).

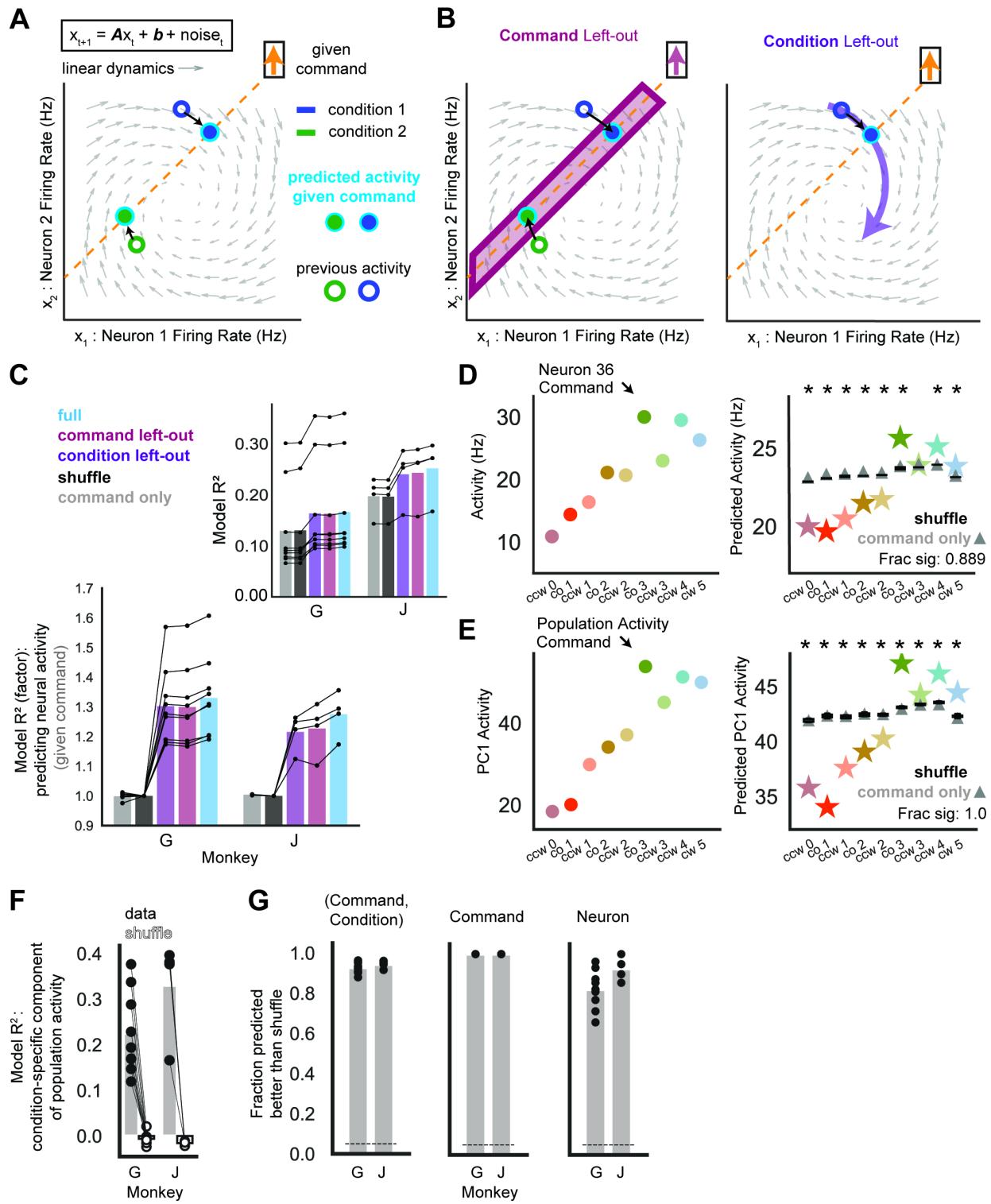


440 exceeded the shuffle distance ($p < 0.05$). 5/9 or 62.5% of the examples were significant. Distance
441 was significantly greater than shuffle distance aggregating over all (command, condition,
442 neuron) tuples: Monkey G [J]: p -value < 0.001 for 9/9 [4/4] sessions, p -value < 0.001 pooled
443 over sessions. *Right*: Population distance normalized to the shuffle mean (colored dots). 7/9 or
444 78% of examples were significant. Fig. S2A shows population distances for all (command,
445 condition) tuples in this session.

446 (C) The distribution of normalized population distances across (command, condition) tuples.
447 Colored ticks indicate distances in (B) *right*. See Fig. S2BC for additional distance distributions.

448 (D) Normalized population distance averaged across (command, condition) tuples (Monkey G
449 [J]: $n=9$ [4] sessions). Bars indicate the average across sessions. Population distance was
450 significantly greater than shuffle distances, aggregating over all (command, condition) tuples:
451 Monkey G [J]: p -value < 0.001 for 9/9 [4/4] sessions, p -value < 0.001 for pooled over sessions.

452 (E) *Left*: Fraction of (command, condition) tuples with distance significantly greater than shuffle
453 distance. *Middle*: Fraction of commands with distance significantly greater than shuffle distance,
454 aggregating over conditions. *Right*: Fraction of neurons with distance significantly greater than
455 shuffle distance, calculated for each (command, condition) separately and aggregating over all
456 (command, condition) tuples for statistics. Throughout (E): dashed line indicates chance level
457 (fraction equal to 0.05 significantly deviating from shuffle distance) and datapoints are each of 9
458 [4] sessions for monkey G [J]. See Fig. S6E-H for the relationship between population distance
459 and command subtrajectories across pairs of conditions. See Table S1 for statistics details.



460

461 **Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the**
 462 **same command.**

463 (A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots) that
464 issue a given command (orange arrow) based on previous activity. See Fig. S6 for predictions of
465 the relationship between activity patterns across pairs of conditions.

466 (B) Models were tested on neural activity for a command (*Left*, magenta) or condition (*Right*,
467 purple) left-out of training the model. See Fig. S4 for elaboration on invariant dynamics
468 generalization.

469 (C) The coefficient of determination (R^2) of models predicting neural activity given the
470 command it issues and previous activity, evaluated on test data not used for model fitting
471 (Monkey G [J]: n=9 [4] sessions). See Fig. S3 for properties of the models. Inset shows raw R^2 ,
472 where “shuffle” is the 95th percentile of the shuffle distribution of R^2 . Main panel shows R^2
473 normalized to shuffle. Full dynamics, command left-out dynamics, and condition left-out
474 dynamics all predicted neural activity significantly better than shuffle dynamics. For each model:
475 Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. Fig.
476 S5 shows models with behavior variables and non-linear dynamics.

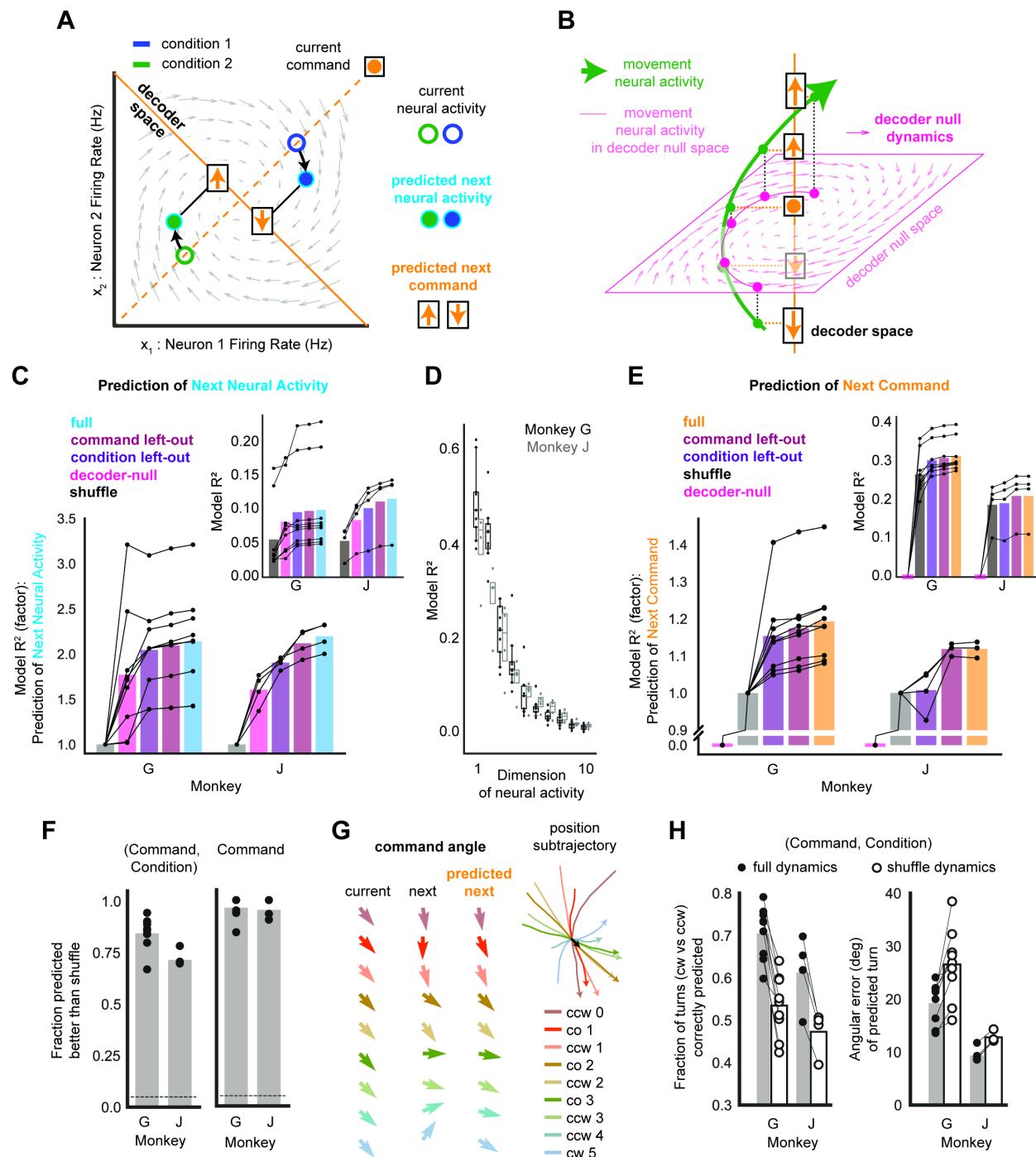
477 (D) *Left*. Average activity for the example neuron, command, and conditions from Fig. 3B, left.
478 *Right*. Prediction of the activity in *Left* by the full dynamics model (stars), the shuffle dynamics
479 model (black boxplot distribution), and the model predicting neural activity only using the
480 command (gray triangle). 8/9 or 88.9% of these examples were predicted significantly better than
481 shuffle dynamics. The full dynamics model predicted individual neuron activity better than
482 shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-
483 value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

484

485

486 (E) *Left*. Average population activity for the example command and conditions from Fig. 3B
487 right, visualized along the activity dimension that captured the most variance (the first principal
488 component, labeled “PC1”, of condition-specific average population activity). *Right*. Prediction
489 of activity in *Left* by the full dynamics model (stars), the shuffle dynamics model (black boxplot
490 distribution), and the model predicting neural activity only using the command (gray triangle).
491 9/9 or 100.0% of these examples were predicted with significantly lower error than shuffle
492 dynamics (prediction was calculated using full population activity, not just PC1). The full
493 dynamics model predicted population activity with lower error than shuffle dynamics,
494 aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-value < 0.001 for
495 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).
496 (F) Model R^2 from predicting the component of average neural activity for a given command that
497 is specific to a condition, comparing the full dynamics model (dark gray bar and filled dots) with
498 the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G [J]: n=9 [4]
499 sessions). The full dynamics model predicted significantly more variance than shuffle dynamics
500 (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).
501 (G) *Left*. Fraction of (command, condition) tuples where full dynamics predicts average
502 population activity significantly better than shuffle dynamics. *Center*. Fraction of commands
503 where full dynamics predicts average population activity significantly better than shuffle
504 dynamics, calculated for each condition separately and then aggregated over all conditions for
505 statistics. *Right*. Fraction of neurons where full dynamics predicts the neuron’s average activity
506 significantly better than shuffle dynamics, calculated for each (command, condition) separately
507 and then aggregated over all (command, condition) tuples for statistics. Throughout E: datapoints
508 are each of 9[4] sessions for Monkey G[J].

509 See Table S1 for statistics details.



510

511 **Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue
512 the next command.**

513 (A) A linear dynamics model predicts the transition from current neural activity (colored rings)
514 to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e. the
515 component of neural activity in the decoder space).

516 (B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink
517 plane), then they do not predict the next command (i.e. the component of neural activity in the
518 decoder space).

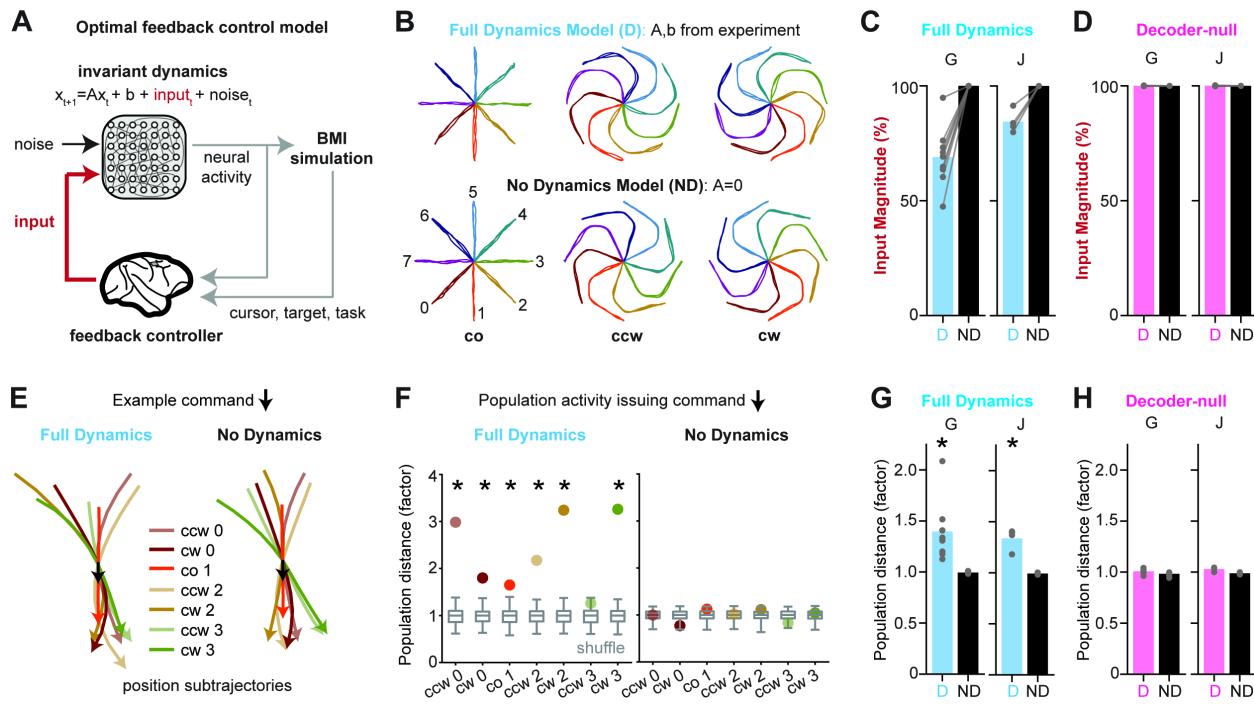
519 (C) The coefficient of determination (R^2) of models predicting next neural activity given current
520 neural activity, evaluated on test data not used for model fitting (Monkey G [J]: n=9 [4]
521 sessions). Inset shows raw R^2 , where “shuffle” is the 95th percentile of the shuffle distribution of
522 R^2 . Main panel shows R^2 normalized to shuffle. All models predicted next neural activity
523 significantly better than shuffle dynamics. For each model, Monkey G [J]: p-value < 0.001 for
524 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled.

525 (D) R^2 of full model for each neural activity dimension (dynamics eigenvector), sorted by R^2 .

526 (E) Same as (C), except prediction of next command given current neural activity (Monkey G
527 [J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command
528 significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey
529 G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s. for
530 0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command left-out
531 dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions
532 pooled.

533 (F) Analyses of how well the next command is predicted for individual (command, condition)
534 tuples. The full dynamics model predicted condition-specific next command better than shuffle
535 dynamics, aggregating over all (command, condition) tuples (Monkey G [J]: p-value < 0.001 for

536 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). *Left*. Fraction of (command, condition)
537 tuples where full dynamics predicts the next command significantly better than shuffle dynamics
538 (Monkey G [J]: n=9 [4] sessions). *Right*. Fraction of commands where full dynamics predicts the
539 next command significantly better than shuffle dynamics, calculated for each condition
540 separately and then aggregated over all conditions for statistics (Monkey G [J]: n=9 [4] sessions).
541 (G) Visualization of the command angle (*left*) (i.e. the direction that the command points) for the
542 example command and conditions (*right*) from Fig. 3B. For each condition (each row),
543 visualization shows the average current command angle (first column), the average next
544 command angle (second column), and the prediction of the average next command angle by the
545 full dynamics model (third column).
546 (H) For each (command, condition) tuple, prediction of the angle between the next command and
547 the condition-pooled average next command. *Left*. Fraction of (command, condition) tuples for
548 which the sign of the angle is accurately predicted (positive=turn counterclockwise,
549 negative=turn clockwise). Full dynamics predictions are significantly more accurate than shuffle
550 dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled
551 sessions. *Right*. Error in predicted angle. Full dynamics predictions are significantly more
552 accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value <
553 0.001 for pooled sessions).
554 See Table S1 for statistics details.



555

556 **Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural
 557 population needs to issue commands based on feedback.**

558 (A) A model of optimal feedback control for movement that incorporates invariant neural
 559 dynamics.

560 (B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and
 561 clockwise (cw) movements to 8 targets resulting in 24 conditions). *Top*: Full Dynamics Model that
 562 uses invariant dynamics fit on experimental data. *Bottom*: No Dynamics Model that uses dynamics
 563 matrix A set to 0.

564 (C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9 [4]
 565 sessions). The population required significantly less input to control movement under the Full
 566 Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black ‘ND’). Un-
 567 normalized data were pooled across sessions and compared with a linear mixed effect (LME)
 568 model between input magnitude and model category with session modeled as random effect

569 (Monkey G [J]: p-value < 0.001). Individual sessions were analyzed with a Wilcoxon signed-
570 rank test that paired condition across the models (Monkey G [J]: p-value<0.05 for 9/9 [4/4]
571 sessions).

572 (D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in input
573 magnitude between Decoder-null Dynamics (pink 'D') and No Dynamics (black 'ND') when
574 pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions (Monkey G
575 [J]: p-value<0.05 for 0/9 [0/4] sessions).

576 (E) The same command is issued across conditions in both the Full Dynamics Model and No
577 Dynamics Model. Average position subtrajectories are shown locked to an example command
578 across conditions.

579 (F) Distance between average population activity for a (command, condition) and the average
580 activity for the command pooling across conditions, normalized by the mean distance of the
581 shuffle distribution (gray boxplots showing mean, 0th percentile, 25th, 75th, and 95th percentile).
582 *Left:* data from Full Dynamics Model. *Right:* data from the No Dynamics Model. Asterisk
583 indicates distance is greater than shuffle (p-value<0.05).

584 (G) Same as (F), but each point is an individual session pooling over (command, condition)
585 tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model were
586 greater than shuffle. Data was pooled over sessions using a LME with session modeled as
587 random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed with a
588 Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No difference was
589 detected in population distances between the No Dynamics Model and shuffle when pooling
590 across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for
591 Monkey G (J) on 0/9 (0/4) sessions).

592 (H) Same as (G), but for the Decoder-null Dynamics Model (pink 'D'). No difference was
593 detected in population distances between the Decoder-null Dynamics Model and shuffle when
594 pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05
595 for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected in population distances
596 between the No Dynamics Model and shuffle when pooling across sessions (Monkey G [J]: p-
597 value > 0.05) and on individual sessions (p-value<0.05 for Monkey G(J) on 0/9 (0/4) sessions).
598 See Table S2 for statistics details.

599 **STAR Methods**

600 **RESOURCE AVAILABILITY**

601 Lead contact

602 Further information and requests for resources and reagents should be directed to and will be
603 fulfilled by the lead contacts, Rui M. Costa (rc3031@columbia.edu) and Jose M. Carmena
604 (jcarmena@berkeley.edu).

605 Materials availability

606 This study did not generate new unique reagents.

607 Data and code availability

608 • Monkey BMI data (binned spike counts, cursor trajectories, condition parameters,
609 decoder parameters, and task parameters) has been deposited the DANDI Archive at
610 <http://dandiarchive.org/dandiset/000404/draft> and is publicly available as of the date of
611 publication. Accession numbers / DOIs are listed in the key resources table.

612 • All original code has been deposited at
613 https://github.com/pkhanna104/bmi_dynamics_code and is publicly available as of the
614 date of publication. DOIs are listed in the key resources table.

615 • Any additional information required to reanalyze the data reported in this paper is
616 available from the lead contact upon request.

617 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

618 All training, surgery, and experimental procedures were conducted in accordance with the NIH
619 Guide for the Care and Use of Laboratory Animals and were approved by the University of
620 California, Berkeley Institutional Animal Care and Use Committee (IACUC). Two adult male
621 rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey J) (Macaca mulatta,

622 RRID: NCBITaxon:9544) were used as subjects in this study. Prior to this study, Monkeys G and
623 J were trained at arm reaching tasks and spike-based 2D neuroprosthetic cursor tasks for 1.5
624 years. All animals were housed in pairs.

625 **METHOD DETAILS**

626 Electrophysiology and experimental setup

627 Two male rhesus macaques were bilaterally, chronically implanted with 16 x 8 arrays of
628 Teflon-coated tungsten microwire electrodes (35 mm in diameter, 500 mm separation between
629 microwires, 6.5 mm length, Innovative Neurophysiology, Durham, NC) in the upper arm area of
630 primary motor cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target
631 areas was performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus
632 brain ⁹³. Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5
633 - 3 mm, guided by stereotactic coordinates.

634 During behavioral sessions, neural activity was recorded, filtered, and thresholded using the
635 128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey J) or the
636 256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey G). Channel
637 thresholds were manually set at the beginning of each session based on 1–2 min of neural
638 activity recorded as the animal sat quietly (i.e. not performing a behavioral task). Single-unit and
639 multi-unit activity were sorted online after setting channel thresholds. Decoder units were
640 manually selected based on a combination of waveform amplitude, variance, and stability over
641 time.

642 Neuroprosthetic decoding

643 Subjects' neural activity controlled a two-dimensional (2D) neuroprosthetic cursor in real-
644 time to perform center-out and obstacle-avoidance tasks. The neuroprosthetic decoder consists of
645 two models:

646 1) A cursor dynamics model capturing the physics of the cursor's position and velocity.

647 2) A neural observation model capturing the statistical relationship between neural activity and the
648 cursor.

649 The neuroprosthetic decoder combines the models optimally to estimate the subjects' intent for the
650 cursor and to correspondingly update the cursor.

651 *Decoder algorithm and calibration -- Monkey G*

652 Monkey G used a velocity Kalman filter (KF)^{94,95} that uses the following models for cursor
653 state c_t and observed neural activity x_t :

654
$$c_t = Ac_{t-1} + w_t, w_t \sim N(0, W)$$

655
$$x_t = Cc_t + q_t, q_t \sim N(0, Q)$$

656 In the cursor dynamics model, the cursor state $c_t \in R^5$ was a 5-by-1 vector
657 $[pos_x, pos_y, vel_x, vel_y, 1]^T$, $A \in R^{5 \times 5}$ captures the physics of cursor position and velocity, and w_t
658 is additive Gaussian noise with covariance $W \in R^{5 \times 5}$ capturing cursor state variance that is not
659 explained by A .

660 In the neural observation model, neural observation $x_t \in R^N$ was a vector corresponding
661 to spike counts from N units binned at 10 Hz, or 100ms bins. C models a linear relationship
662 between the subjects' neural activity and intended cursor state. The decoder only modeled the
663 statistical relationship between neural activity and intended cursor velocity, so only the columns
664 corresponding to cursor state velocity and the offset (columns 3-5) in C were non-zero. Q is
665 additive Gaussian noise capturing variation in neural activity that is not explained by Cc_t . For
666 Monkey G, 35-151 units were used in the decoder (median 48 units).

667 In summary, the KF is parameterized by matrices $\{A \in R^{5x5}, W \in R^{5x5}, C \in R^{Nx5}, Q \in$
668 $R^{NxN}\}$. The KF equations used to update the cursor based on observations of neural activity are
669 defined as in ⁹⁵.

670 The KF parameters were defined as follows. For the cursor dynamics model, the A and W
671 matrices were fixed as in previous studies ⁹⁶. Specifically, they were:

$$672 A = \begin{bmatrix} 1 & 0 & 0.1 & 0 & 0 \\ 0 & 1 & 0 & 0.1 & 0 \\ 0 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad W = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

673 where units of cursor position were in cm and cursor velocity in cm/sec.

674 For the neural observation model, the C and Q matrices were initialized from neural and
675 cursor kinematic data collected at the beginning of each experimental session while Monkey G
676 observed 2D cursor movements that moved through either a center-out task or obstacle avoidance
677 task. Maximum likelihood methods were used to fit C and Q .

678 Next, Monkey G performed a “calibration block” where he performed the center-out or
679 obstacle-avoidance task movements as the newly initialized decoder parameters were continuously
680 calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This calibration block
681 was performed in order to arrive at parameters that would enable excellent neuroprosthetic
682 performance. Every 100ms, decoder matrices C and Q were adapted using the recursive maximum
683 likelihood CLDA algorithm ⁴⁹. Half-life values, defining how quickly C and Q could adapt, were
684 typically 300 sec, and adaptation blocks were performed with a weak, linearly decreasing “assist”
685 (re-defining c_t as a weighted linear combination of user-generated c_t and optimal c_t to drive the
686 cursor to the target). Typical assist values at the start of the block were 90% user-generated, 10%
687 optimal and decayed to 100% user-generated, 0% optimal over the course of the block. Following

688 CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey G
689 performing the center-out and obstacle-avoidance tasks.

690 *Decoder algorithm -- Monkey J*

691 Monkey J used a velocity Point Process Filter (PPF) ^{47,48}. The PPF uses the same cursor
692 dynamics model for cursor state c_t as the KF above, but uses a different neural observations model
693 (a Point Process model rather than a Gaussian model) for the spiking $S_t^{1:N}$ of each of N neurons:

694
$$c_t = Ac_{t-1} + w_t, w_t \sim N(0, W)$$

695
$$p(S_t^{1:N} | v_t) = \prod_{j=1}^N (\lambda_j(t | v_t, \phi^j) \Delta)^{s_t^j} \exp(-\lambda_j(t | v_t, \phi^j) \Delta)$$

696 In the neural observations model, neural observation S_t^j is the j^{th} neuron's spiking activity,
697 equal to 1 or 0 depending on whether the j^{th} neuron spikes in the interval $(t, t + \Delta)$. We used Δt
698 = 5ms bins since consecutive spikes rarely occurred within 5ms of each other. For Monkey J, 20
699 or 21 units were used in the decoder (median 20 units). The probability distribution over spiking
700 $p(S_t^{1:N} | v_t)$ was a point process with $\lambda_j(t | v_t, \phi^j)$ as the j^{th} neuron's instantaneous firing rate at
701 time t . $\lambda_j(t | v_t, \phi^j)$ depended on the intended cursor velocity $v_t \in R^2$ in the two dimensional
702 workspace and the parameters ϕ^j for how neuron j encodes velocity. $\lambda_j(t | v_t, \phi^j)$ was modeled
703 as a log-linear function of velocity:

704
$$\lambda_j(t | v_t, \phi^j) = \exp(\beta_j + \alpha_j^T v_t)$$

705 where ϕ^j parameters consist of $\alpha_j \in R^2, \beta_j \in R^1$.

706 In summary, the PPF is parameterized by $\{A \in R^{5 \times 5}, W \in R^{5 \times 5}, \phi^{1:N}\}$. The PPF equations
707 used to update the cursor based on observations of neural activity are defined as in ⁴⁸.

708 The PPF parameters were defined as follows. For the cursor dynamics model, the A and
709 W matrices are defined as:

710
$$A = \begin{bmatrix} 1 & 0 & 0.005 & 0 & 0 \\ 0 & 1 & 0 & 0.005 & 0 \\ 0 & 0 & 0.989 & 0 & 0 \\ 0 & 0 & 0 & 0.989 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad W = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3.7 \times 10^{-5} & 0 & 0 \\ 0 & 0 & 0 & 3.7 \times 10^{-5} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

711 where units of cursor position were in m and cursor velocity in m/sec.

712 For the neural observations model, parameters $\phi^{1:N}$ were initialized from neural and cursor
 713 kinematic data collected at the beginning of each experimental session while Monkey J observed
 714 2D cursor movements that moved through a center-out task. Decoder parameters were adapted
 715 using CLDA and optimal feedback control intention estimation as outlined in⁴⁷. Following CLDA,
 716 decoder parameters were fixed. Then the experiment proceeded with Monkey J performing the
 717 center-out and obstacle-avoidance tasks.

718 Definition of the command for the BMI

719 We defined the “command” for the BMI as the direct influence of subjects’ neural activity
 720 x_t (binned at 100ms) on the cursor. Concretely, in both decoders, the command was a linear
 721 transformation of neural activity that we write as Kx_t which updated the cursor velocity.

722 *Command definition -- Monkey G*

723 For Monkey G, the update to the cursor state c_t due to cursor dynamics and neural observation
 724 x_t can be written as:

725
$$c_t = F_t c_{t-1} + K_t x_t$$

726 where $F_t c_{t-1}$ is the update in cursor state due to the cursor dynamics process and $K_t x_t$ is what we
 727 have defined as the command: the update in cursor state due to the current neural observation.
 728 $K_t \in R^{5 \times n}$ is the Kalman Gain matrix and $F_t = (I - K_t C)A$. In practice K_t converges to its steady-
 729 state form K within a matter of seconds⁹⁷, and thus F_t converges to $F = (I - KC)A$, so we can
 730 write the above expression in its steady state form:

740 $c_t = Fc_{t-1} + Kx_t$

731 In our implementation, the structure of K is such that neural activity x_t directly updates cursor
732 velocity, and velocity integrates to update position. The following technical note explains the
733 structure of K . Due to the form of the A, W matrices, $\text{Rank}(K) = 2$. In addition, decoder
734 adaptation imposed the constraint that the intermediate matrix $C^T Q^{-1} C$ was of the form aI ,
735 where $a = \text{mean}(\text{diag}(C^T Q^{-1} C))$. Due to this constraint, the rows of K that update the position
736 of the cursor are equal to the rows of K that update the velocity multiplied by the update
737 timestep: $K(1:2,:) = K(3:4,:)*dt^{98}$ (see independent velocity control in the reference). Given
738 this structure of K , neural activity's contribution to cursor position is the simple integration of
739 neural activity's contribution to velocity over one timestep.

741 In summary, since Kx_t reflects the direct effect of the motor cortex units on the velocity of
742 the cursor, we term the velocity components of Kx_t the “command”. We analyzed the neural spike
743 counts binned at 100ms that were used online to drive cursor movements with no additional pre-
744 processing.

745 *Command definition -- Monkey J*

746 For Monkey J the cursor state updates in time as:

747 $c_t = f_t(c_{t-1}) + K_t x_t$

748 where

749 $f_t(c_{t-1}) = (Ac_{t-1} - K_t e^{CAc_{t-1}} \Delta), \quad K_t = P_t C$

750 Here $f_t(c_{t-1})$ is the cursor dynamics process and $K_t x_t$ is the neural command. $P_t \in R^{5x5}$ is the
751 estimate of cursor state covariance, and $C \in R^{5xN}$ captures how neural activity encodes velocity
752 as a matrix where each column is composed of $[0, 0, \alpha_j^{xvel}, \alpha_j^{yvel}, \beta_j]^T$ for the j th unit.

753 We define the command for analysis in this study as $K_{est}x_t$, where K_{est} is a time-invariant
754 matrix that almost perfectly approximates K_t . While the PPF's K_t does not necessarily converge
755 in the same way it does in the KF, for all four analyzed sessions, neural activity mapped through
756 $K_{est} \in R^{2 \times N}$ could account for 99.6, 99.6, 99.5, and 99.8 percent of the variance of the command
757 respectively ($K_t x_t \cong K_{est} x_t$). In addition, due to the accuracy of this linear approximation, we also
758 match Monkey J's timescale of neural activity and commands to that of Monkey G. In order to
759 match timescales across the two animals (Monkey G: 100 ms updates, Monkey J: 5ms updates),
760 Monkey J's commands were aggregated into 100 ms bins by summing $K_{est}x_t$ over 20 consecutive
761 5ms bins to yield the aggregated command over 100ms. Correspondingly, Monkey J's neural
762 activity was also summed into 100ms bins by summing x_t over 20 consecutive 5ms bins.

763 Neuroprosthetic tasks

764 Subjects performed movements in a two-dimensional workspace (Monkey J: 24cm x 24cm,
765 Monkey G: 50cm x 28cm) for two neuroprosthetic tasks: a center-out task and an obstacle-
766 avoidance task. We define the movement “condition” as the task performed (“co” = center-out
767 task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle in the obstacle-
768 avoidance task) and the target achieved (numbered 0 through 7). Thus, there were up to 24 different
769 conditions possible (8 center-out conditions, 8 clockwise obstacle-avoidance conditions, 8
770 counterclockwise obstacle-avoidance conditions). In practice, subjects mostly circumvented the
771 obstacles for a given target location consistently in a clockwise or counterclockwise manner (as
772 illustrated in Fig. 1C right) resulting in an average of 16-17 conditions per session.

773 *Center-out task:*

774 The center-out task required subjects to hold their cursor within a center target (Monkey J:
775 radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of time (Monkey J: hold = 0.25

776 sec, Monkey G: hold = 0.2 sec) before a go cue signaled the subjects to move their cursor to one
777 of eight peripheral targets uniformly spaced around a circle. Each target was equidistant from the
778 center starting target (Monkey J: distance = 6.5cm, Monkey G: distance = 10cm). Subjects then
779 had to position their cursor within the peripheral target (Monkey J: target radius = 1.2cm, Monkey
780 G: target radius = 1.7cm) for a specified period of time (Monkey J: hold = 0.25, Monkey G: hold
781 = 0.2sec). Failure to acquire the target within a specified window (Monkey J: 3-10 sec, Monkey
782 G: 10 sec) or to hold the cursor within the target for the duration of the hold period resulted in an
783 error. Following successful completion of a target, a juice reward was delivered. Monkey J was
784 required to move his cursor back to the center target to initiate a new trial, and Monkey G's cursor
785 was automatically reset to the center target to initiate a new trial.

786 *Obstacle-avoidance task:*

787 Monkey G performed an obstacle-avoidance task with a very similar structure to the center-
788 out task. The only difference was that a square obstacle (side length 2 or 3 cm) would appear in
789 the workspace centered exactly in the middle of the straight line connecting the center target
790 position and peripheral target position. If the cursor entered the obstacle, the trial would end in an
791 error, and the trial was repeated.

792 Monkey J's obstacle-avoidance task required a point-to-point movement between an initial
793 (not necessarily center) target and another target. On arrival at the initial target, an ellipsoid
794 obstacle appeared on the screen. If the cursor entered the obstacle at any time during the movement
795 to the peripheral target, an error resulted, and the trial was repeated. Target positions and obstacle
796 sizes and positions were selected to vary the amount of obstruction, radius of curvature around the
797 obstacles, and spatial locations of targets. Trials were constructed to include the following
798 conditions: no obstruction, partial obstruction with low-curvature, full obstruction with a long

799 distance between targets, and full obstruction with a short distance between targets thus requiring
800 a high curvature. See ⁴⁸ for further details. In this study, only trials that included partial obstruction
801 or full obstruction were analyzed as “obstacle-avoidance” trials.

802 *Number of sessions*

803 We analyzed 9 sessions of data from Monkey G and 4 sessions of data from Monkey J where
804 on each session, monkeys performed both the center-out and obstacle-avoidance tasks with the
805 same decoder. Only successful trials were analyzed.

806 Optimal feedback control model and simulation

807 We introduce a model based on optimal feedback control (OFC) for how the brain can use
808 invariant neural population dynamics to control movement based on feedback. From the
809 perspective of the brain trying to control the BMI, we used the model to ask how invariant neural
810 population dynamics affect the brain’s control of movement.

811 Thus, we performed and analyzed simulations of a model in which the brain acts as an
812 optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs to a
813 neural population so that it performs the center-out and obstacle-avoidance tasks (Fig. 6). The
814 feedback controller computed optimal inputs to the neural population based on the current cursor
815 state and current neural population activity. Specifically, the inputs were computed as the solution
816 of an optimization problem that used knowledge of the target and task, decoder, and the neural
817 population’s invariant dynamics. We simulated 20 trials for each of 24 conditions: 8 center-out
818 conditions, 8 clockwise obstacle-avoidance conditions, and 8 counterclockwise obstacle-
819 avoidance conditions. The neural and cursor dynamics processes in the simulation are summarized
820 below:

821 *Neural population dynamics with input*

822 In our simulation, the neural activity of N neurons $x_t \in R^N$ is driven by invariant dynamics
823 $A \in R^{N \times N}$ that act on previous activity x_{t-1} , an activity offset $b \in R^N$, inputs from the feedback
824 controller $u_{t-1} \in R^N$ that are transformed by input matrix $B \in R^{N \times N}$, and noise $\sigma_{t-1} \in R^N$:

825
$$x_t = Ax_{t-1} + b + Bu_{t-1} + \sigma_{t-1}$$

826 The input matrix B was set to be the identity matrix such that each neuron has its own
827 independent input. Each neuron also had its own independent, time-invariant noise (see *Noise*
828 section below for how the noise level was set).

829 For notational convenience, an offset term was appended to x_t : $\begin{bmatrix} x_t \\ 1 \end{bmatrix} \in R^{N+1}$. This enabled
830 incorporating the offset b into the neural dynamics matrix:

831
$$\begin{bmatrix} x_t \\ 1 \end{bmatrix} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_{t-1} + \begin{bmatrix} \sigma_{t-1} \\ 0 \end{bmatrix}$$

832 *BMI cursor dynamics*

833 The cursor update equations for the simulation matched the steady state cursor update equations
834 in the online BMI experiment (see “Definition of the command for the BMI” above):

835
$$c_t = F c_{t-1} + K x_{t-1}$$

836 As in the experiment, cursor state $c_t \in R^{N_c}$ where $N_c = 5$ was a vector consisting of two-
837 dimensional position, velocity, and an offset: $[pos_x, pos_y, vel_x, vel_y, 1]^T$. $K \in R^{N_c \times N}$ was the
838 decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent K_{est} (Monkey J). $F \in$
839 $R^{N_c \times N_c}$ was set to the decoder’s steady-state cursor dynamics matrix (Monkey G). For Monkey J,
840 F was estimated using the expression for calculating the steady-state cursor dynamics matrix:
841 $F_{est} = (I - K_{est} C_{est}) * A_{100ms}$, where $I \in R^{N_c \times N_c}$, $C_{est} \in R^{N_c \times N_c}$ was set using the α, β velocity
842 encoding parameters from the point process filter (see above): $C_{est}(j, :) = [0 \ 0 \ 0.01 *$
843 $\alpha_j(1) \ 0.01 * \alpha_j(2) \ 0.01 * \beta_j]$. Values in C_{est} were multiplied by 0.01 to adjust for velocities

844 expressed in units of cm/sec (in the simulation) instead of m/sec (as in PPF). A_{100ms} was set to the
 845 same A used by Monkey G so that the cursor dynamics would be appropriate for 100ms timesteps:

$$846 \quad A_{100ms} = \begin{bmatrix} 1 & 0 & 0.1 & 0 & 0 \\ 0 & 1 & 0 & 0.1 & 0 \\ 0 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

847 *Joint dynamics of neural activity and cursor*

848 The feedback controller sent inputs to the neural population which were optimal considering
 849 the task goal, the cursor's current state, the neural population's invariant dynamics, and the neural
 850 population's current activity. To solve for the optimal input given all the listed quantities, first, the
 851 neural and cursor states are jointly defined. We append the cursor state c_t to the neural activity
 852 state $\begin{bmatrix} x_t \\ 1 \end{bmatrix}$ to form $z_t \in R^{N+1+N_c}$:

$$853 \quad z_t = \begin{bmatrix} x_t \\ 1 \\ c_t \end{bmatrix} = \begin{bmatrix} A & b & 0 \\ 0 & 1 & 0 \\ K & 0 & F \end{bmatrix} \begin{bmatrix} x_{t-1} \\ 1 \\ c_{t-1} \end{bmatrix} + \begin{bmatrix} B \\ 0 \\ 0 \end{bmatrix} u_{t-1} + \begin{bmatrix} \sigma_{t-1} \\ 0 \\ 0 \end{bmatrix}$$

854 In words, this expression defines a linear dynamical system where input u_{t-1} influences only
 855 the neural activity x_t , x_t evolves by invariant dynamics A with offset vector b , and x_t drives cursor
 856 c_t through the BMI decoder K . Finally, noise σ_{t-1} only influences neural activity x_t (see *Noise*
 857 section below for how the noise level was set).

858 *OFC to reach a target*

859 Our OFC model computes input u_t to the neural population such that the activity of the neural
 860 population x_t drives the cursor to achieve the desired final cursor state (i.e. the target) with minimal
 861 magnitude of input u_t . Concretely, in the finite horizon LQR model, the optimal control sequence
 862 ($u_t, t = 0, 1, \dots, T - 1$) is computed by minimizing the following cost function:

863
$$J(u_{0:T-1}) = \left(\sum_{t=0}^{T-1} \left((z_t - z_{targ})^T Q (z_t - z_{targ}) + u_t^T R u_t \right) + (z_T - z_{targ})^T Q_T (z_T - z_{targ}) \right)$$

864 In our model, $Q = 0 \in R^{(N+1+N_c) \times (N+1+N_c)}$, $R = I \in R^{N \times N}$, and $Q_T =$

865
$$\begin{bmatrix} 0 \in R^{N \times N} & 0 & 0 \\ 0 & 0 \in R^1 & 0 \\ 0 & 0 & I * 10^2 \in R^{N_c \times N_c} \end{bmatrix} \in R^{(N+1+N_c) \times (N+1+N_c)}$$
. Thus, the final cursor state

866 error is penalized, and the magnitude of the input to the neural population u_t is penalized (with
 867 setting R as non-zero). Because the magnitude of the input to neural activity is penalized, the
 868 controller sends the minimal input to the neural population to produce task behavior. We defined
 869 our cost function so that the cursor state during movement before the final cursor state is not
 870 penalized, and the neural state is never penalized.

871 The optimal control sequence $(u_t, t = 0, 1, \dots, T-1)$ is given by $u_t = K_t^{lqr} (z_t - z_{targ})$
 872 where feedback gain matrices $(K_t^{lqr}, t = 0, 1, \dots, T-1)$ are computed iteratively solving the
 873 dynamic Riccati equation backwards in time. We note that we computed the LQR solution for u_t
 874 using the dynamics of state error $z_t - z_{targ}$, and that the dynamics of state error for non-zero target
 875 states are affine rather than strictly linear.

876 *OFC for center-out task*

877 Center-out task simulations were run with the initial cursor position in the center of the
 878 workspace at $c_0 = [0, 0, 0, 0, 1]$ and the target cursor state at $[target_x, target_y, vel_x = 0, vel_y =$
 879 $0, 1]^T$. Targets were positioned 10cm away from the origin (same target arrangement as Monkey
 880 G). Target cursor velocity was set to zero to enforce that the cursor should stop at the desired target
 881 location.

882 Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey
 883 J were used (F, K) in simulations. The invariant neural dynamics model parameters (A, b) were

884 varied depending on the simulated experiment (see below). The horizon for each trial to hit its
885 target state was set to be $T = 40$ (corresponding to 4 seconds based on the BMI's timebin of
886 100ms). Constraining each trial to be equal length facilitated comparison of performance across
887 different simulation experiments. We verified that all of our simulated trials completed their tasks
888 successfully.

889 *OFC for obstacle-avoidance using a heuristic*

890 Obstacle-avoidance task simulations were performed with the same initial and target cursor
891 states as the center-out task, except that the cursor circumvented the obstacle to reach the target in
892 both clockwise and counterclockwise movements. We used a heuristic strategy to direct cursor
893 movements around the obstacle; we defined a waypoint as an intermediate state the cursor had to
894 reach enroute to the final target. The heuristic solution performs optimal control from the start
895 position to the waypoint, and then optimal control from the waypoint to the final target.
896 Importantly, this solution minimizes the amount of input needed to accomplish these goals. We
897 used a heuristic solution because the linear control problem of going from the initial cursor state
898 to the final target cursor state with the constraint of avoiding an obstacle is not a convex
899 optimization problem.

900 Concretely, for the first segment of the movement, a controller with a horizon $T=20$ directed
901 the cursor to the waypoint, and then a controller with horizon $T=20$ directed the cursor from the
902 waypoint to the final target (such that the trial length was matched to the center-out task simulation
903 with $T=40$).

904 The waypoint was defined relative to the obstacle position as follows. First the vector between
905 the center target and the obstacle position was determined ($v_{obs,center}$). The $v_{obs,center}$ was then
906 rotated either +90 degrees or -90 degrees corresponding to clockwise and counterclockwise

907 movements. The waypoint position was a 6cm distance in the direction of the rotated vector, from
908 the obstacle center. Finally, the desired velocity vector of the intermediate target was set to be in
909 the direction of $v_{obs,center}$, with a magnitude of 10 cm/s, so that the cursor would be moving in a
910 direction consistent with reaching its final target in the second segment of the movement after the
911 waypoint was reached.

912 To compute the input u_t to execute these movements, we defined the state error at each time
913 t as $z_{error} = z_{targ} - z_t$, where z_{targ} was the waypoint for the first half of the movement, and
914 z_{targ} was the final target for the second half of the movement. The linear quadratic regulator
915 feedback gain K_t^{lqr} matrices were computed on the appropriate state error dynamics with the
916 shortened horizon $T=20$.

917 *“Full Dynamics Model” Simulation*

918 Simulations of the “Full Dynamics Model” consisted of OFC with the invariant dynamics
919 parameters (A, b) that were fit on experimentally-recorded neural activity from each subject and
920 session (see “Invariant dynamics models” below, under “Quantification and Statistical Analysis”).

921 K_t^{lqr} was computed using these experimentally-observed (A, b) parameters. The initial state of
922 neural activity (i.e. x_t at $t=0$) was set to the fixed point of the dynamics.

923 *“No Dynamics Model” Simulation*

924 Simulations of the “No Dynamics Model” consisted of OFC with invariant dynamics
925 parameter A set to zero ($A = 0$). The experimentally-observed offset b was still used from each
926 subject and session. K_t^{lqr} was computed using $A = 0$ and the experimentally-observed b , and thus
927 it was different than in the “Full Dynamics Model.” The initial state of neural activity (i.e. x_t at
928 $t=0$) was set to offset b , the fixed point of dynamics with $A = 0$.

929 *“Decoder-null Dynamics Model” Simulation*

930 Simulations of the “Decoder-null Dynamics Model” consisted of OFC with the
931 experimentally-observed invariant dynamics parameters (A, b) that were restricted to the decoder-
932 null space, i.e. each invariant dynamics model was fit only on the projection of neural activity into
933 the decoder-null space (see “Invariant dynamics models” under “Quantification and Statistical
934 Analysis”). K_t^{lqr} was computed using these experimentally-observed decoder-null (A, b)
935 parameters, and thus it was different than in the “Full Dynamics Model.” The initial state of neural
936 activity (i.e. x_t at t=0) was set to the fixed point of the decoder-null invariant dynamics.

937 The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”,
938 which consisted of OFC with K_t^{lqr} computed using $A = 0$ and the experimentally-observed
939 decoder-null offset b for each subject and session, and thus it was different than in the previously
940 defined models. The initial state of neural activity (i.e. x_t at t=0) was set to the decoder-null offset
941 b , the fixed point of dynamics with $A = 0$.

942 *Noise*

943 In our OFC model, movement errors arise due to noise in the neural activity, and
944 subsequent neural activity issues commands based on feedback to correct these errors. We used
945 two considerations to choose the noise level for neural activity. First, we sought to add a level of
946 neural noise that was comparable to the neural “signal” needed to perform control in the absence
947 of noise. Second, we wanted to add the same level of noise to the dynamics model (either “Full
948 Dynamics Model” or “Decoder-null Dynamics Model”) and the corresponding “No Dynamics
949 Model,” in order to facilitate comparison.

950 Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each
951 of 24 conditions, and we calculated a , the average variance of a neuron across time and trials.

952 Then for our noisy simulations of the “No Dynamics Model” and the corresponding
953 dynamics models, Gaussian noise with zero mean and fixed variance a was added to each neuron
954 at each timestep: $x_t = Ax_{t-1} + Bu_{t-1} + \sigma_t$, where $\sigma_t \sim N(0, aI)$. Thus, the overall level of
955 added noise (the sum of noise variance over neurons) matched the overall level of signal in the
956 noiseless No Dynamics Model simulation (sum of activity variance over neurons).

957 We note that our main findings (Fig. 6CD, 6GH) held even with different noise levels.

958 **QUANTIFICATION AND STATISTICAL ANALYSIS**

959 Command discretization for analysis

960 We sought to analyze the occurrence of the same command across different movements.
961 Commands on individual time points were analyzed as the same command if they fell within the
962 same discretized bin of continuous-valued, two-dimensional command space. All commands from
963 rewarded trials in a given experimental session (including both tasks) were aggregated and
964 discretized into 32 bins. Individual commands were assigned to one of 8 angular bins (bin edges
965 were 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude
966 bins. Angular bins were selected such that the straight line from the center to each of the center-
967 out targets bisected each of the angular bins as has been done in previous work⁵⁰ (Fig. S1A).
968 Magnitude bin edges were selected as the 23.75th, 47.5th, 71.25th, and 95th percentile of the
969 distribution of command magnitudes for that experimental session. Commands falling between the
970 95th and 100th percentile of magnitude were not analyzed to prevent very infrequent noisy
971 observations from skewing the bin edges for command magnitude.

972 *Conditions that used a command regularly*

973 For each session, the number of times each of the 32 (discretized) commands was used in a
974 given condition was tabulated. If the command was used ≥ 15 times for that condition within a

975 given session pooling across trials, that condition was counted as using the command regularly
976 and was used in all analyses involving (command, condition) tuples. Commands that were used <
977 15 times were not used in analysis involving (command, condition) tuples. We note that the main
978 results of the study were not affected by this particular selection. Typically, an individual
979 command is used regularly in 5-10 conditions (distribution shown in Fig. S1A).

980 Cursor and command trajectory visualization

981 *Cursor position subtrajectories*

982 To visualize the cursor position trajectories locally around the occurrence of a given
983 command for each condition, we computed the average position “subtrajectory,” which we define
984 as the average trajectory in a window locked to the occurrence of the given command. For each
985 condition, cursor positions from successful trials were aggregated. Cursor position subtrajectories
986 shown in Fig. 1F are from representative session 0 from Monkey G. A matrix of x-axis and y-axis
987 position trajectories was formed by extracting a window of -500ms to 500ms (5 previous samples
988 plus 5 proceeding samples) around each occurrence of the given command in a given condition
989 (total of $N_{com-cond}$ occurrences, yielding a $2 \times 11 \times N_{com-cond}$ matrix). Averaging over the $N_{com-cond}$
990 observations yielded a condition-specific command-locked average position subtrajectory (size: 2
991 $\times 11$) for each condition. If a command fell in the first 500ms or last 500ms of a trial, its occurrence
992 was not included in the subtrajectory calculation. The position subtrajectories were translated such
993 that the occurrence of the given command was set to (0, 0) in the 2D workspace (Fig. 1F *right*,
994 Fig. S1C *middle*).

995 *Command subtrajectories*

996 To visualize trajectories of commands around the occurrence of a given command for each
997 condition (Fig. 1G, *right*), we followed the same procedure as described above for cursor position

998 subtrajectories to tabulate a $2 \times 11 \times N_{com-cond}$ matrix but with x-axis and y-axis commands instead
999 of positions. We note that this matrix consisted of the continuous, two-dimensional velocity values
1000 of the commands. Averaging over the $N_{com-cond}$ observations yielded the average condition-specific
1001 command subtrajectory (size: 2×11 array), as shown in Fig. 1F *left* for example conditions.

1002 Matching the condition-pooled distribution

1003 In many analyses, data (e.g. neural activity or a command-locked cursor trajectory) associated
1004 with a command and a specific condition is compared to data that pools across conditions for that
1005 same command (Figs. 3-5). The distribution of the precise continuous value of the command
1006 within the command's bin may systematically differ between condition-specific and condition-
1007 pooled datasets, which we refer to as 'within-command-bin differences.' To ensure within-
1008 command-bin differences are not the source of significant differences between condition-specific
1009 and condition-pooled data associated with a command, we developed a procedure to subselect
1010 observations of condition-pooled commands so that the mean of the condition-pooled command
1011 distribution is matched to the mean of the condition-specific command distribution. This procedure
1012 ensures that any differences between the condition-specific quantity and condition-pooled quantity
1013 are not due to 'within-command-bin differences'. This procedure is performed on all analyses
1014 comparing condition-specific data to a condition-pooled distribution of data. The matching
1015 procedure is as follows:

1016 1. From the condition-specific distribution, compute the command mean $\mu_{com-cond}$ (size:
1017 2×1) and standard deviation $\sigma_{com-cond}$ (size: 2×1).

1018 2. Compute the deviation of each continuous-valued command observation in the condition-
1019 pooled distribution from the condition-specific distribution.

1020 a. Use the condition-specific distribution's parameters to z-score the condition-pooled
1021 distribution's continuous-valued command observations by subtracting $\mu_{com-cond}$ and
1022 dividing by $\sigma_{com-cond}$.

1023 b. Compute the deviation of condition-pooled observations from the condition-specific
1024 distribution as the L2-norm of the z-scored value

1025 c. For indices in the condition-pooled distribution that correspond to data in the condition-
1026 specific distribution, over-write the L2-norm of the z-scored values with zeros. This step
1027 prevents the condition-pooled distribution from dropping datapoints that are in the
1028 condition-specific data, thereby ensuring the condition-pooled distribution contains the
1029 condition-specific data.

1030 3. Remove the 5% of condition-pooled observations with the largest deviations

1031 4. Use a Student's t-test to assess if the remaining observations in the condition-pooled
1032 distribution are significantly different than the condition-specific distribution for the first and
1033 second dimension of the command (two p-values)

1034 5. If both p-values are > 0.05 , then the procedure is complete and the remaining observations
1035 in the condition-pooled distribution are considered the "command-matched condition-pooled
1036 distribution" for a specific command and condition.

1037 6. If either or both p-values are < 0.05 , return to step 3 and repeat.

1038 If the condition-pooled distribution cannot be matched to the condition-specific distribution such
1039 that the size of the condition-pooled distribution is larger than the condition-specific distribution,
1040 the particular (command, condition) will not be included in the analysis.

1041 Comparing command subtrajectories

1042 To assess whether a command is used within significantly different command subtrajectories
1043 in different conditions (Fig. S1 DE), the following analysis is performed for conditions that have
1044 sufficient occurrences of the command (≥ 15):

1045 1. The condition-specific average command subtrajectory is computed by averaging over
1046 $N_{com-cond}$ single-trial command subtrajectories for the condition, as defined above in “*Visualization*
1047 of command subtrajectories”.

1048 2. The condition-pooled average command subtrajectory is computed: all the single-trial
1049 command subtrajectories (N_{com}) are pooled across trials from all conditions that use the given
1050 command regularly (command occurs ≥ 15 times in a session) to create a condition-pooled
1051 distribution of single-trial command subtrajectories (a $2 \times 11 \times N_{com}$ matrix), which is then
1052 averaged to yield the condition-pooled average command subtrajectory (a 2×11 matrix).

1053 3. In order to test whether condition-specific average command subtrajectories were
1054 significantly different from the condition-pooled average command subtrajectory, a distribution of
1055 subtrajectories was created by subsampling the condition-pooled distribution to assess expected
1056 variation in subtrajectories due to limited data. Specifically, $N_{com-cond}$ single-trial command
1057 subtrajectories were sampled from a condition-pooled distribution of command subtrajectories that
1058 was command-matched to the specific condition (see above, “Matching the condition-pooled
1059 distribution”). These $N_{com-cond}$ samples were then averaged to create a single subtrajectory,
1060 representing a plausible condition-specific average subtrajectory under the view that the condition-
1061 specific subtrajectories are just subsamples of the condition-pooled subtrajectories. This procedure
1062 was repeated 1000 times and used to construct a bootstrapped distribution of 1000 command
1063 subtrajectories.

1064 4. This distribution was then used to test whether condition-specific subtrajectories deviated
1065 from the condition-pooled subtrajectory more than would be expected by subsampling and
1066 averaging the condition-pooled subtrajectory distribution. Specifically, the true condition-specific
1067 command subtrajectory distance from the condition-pooled command subtrajectory was computed
1068 (L2-norm between condition-specific 2x11 subtrajectory and condition-pooled 2x11 subtrajectory)
1069 and compared to the bootstrapped distribution of distances: (L2-norm between each of the 1000
1070 subsampled averaged 2x11 command subtrajectories and the condition-pooled 2x11 command
1071 subtrajectory). A p-value for each condition-specific command subtrajectory distance was then
1072 derived.

1073 The same analysis is also performed using only the next command following a given command
1074 (Fig. S1 E).

1075 Behavior-preserving shuffle of activity

1076 We shuffled neural activity in a manner that preserved behavior as a control for comparison
1077 against the hypothesis that neural activity follows invariant dynamics beyond the structure of
1078 behavior. Shuffled datasets preserved the timeseries of discretized commands but shuffled the
1079 neural activity that issues these commands. In order to create a shuffle for each animal on each
1080 session, all timebins from all trials from all conditions were collated. The continuous-valued
1081 command at each timebin was labeled with its discretized command bin. For each of the 32
1082 discretized command bins, all timebins corresponding to a particular discretized command bin
1083 were identified. The neural activity in these identified timebins was then randomly permuted. A
1084 complete shuffled dataset was constructed by performing this random permutation for all
1085 discretized command bins. This full procedure was repeated 1000 times to yield 1000 shuffled
1086 datasets.

1087 Analysis of activity issuing a given command

1088 *Condition-specific neural activity distances*

1089 For each session, (command, condition) tuples with ≥ 15 observations were analyzed. For
1090 each of these (command, condition) tuples, we analyzed the distance between condition-specific
1091 average activity and condition-pooled average activity, both for individual neurons and for the
1092 population's activity vector (Fig. 3B-E).

1093 Analysis of individual neurons for a given (command, condition) tuple, given N neurons:

1094 1. Compute the condition-specific average neural activity ($\mu_{com-cond} \in R^N$) as the average
1095 neural activity over all observations of the command in the condition.

1096 2. Compute the condition-pooled average activity ($\mu_{com-pool} \in R^N$) as the average neural
1097 activity over observations of the command pooling across conditions. The command-matching
1098 procedure is used to form the condition-pooled dataset to account for within-command-bin
1099 differences (see “Matching the condition-pooled distribution” above).

1100 3. Compute the absolute value of the difference between the condition-specific and condition-
1101 pooled averages: $d\mu_{com-cond} = abs(\mu_{com-cond} - \mu_{com-pool}) \in R^N$.

1102 4. Repeat steps 1-3 for each shuffled dataset i , yielding $d\mu_{shuff-i-com-cond}$ for $i = 1:1000$.

1103 5. For each neuron j , compare $d\mu_{com-cond}(j)$ to the distribution of
1104 $d\mu_{shuff-i-com-cond}(j)$ for $i = 1:1000$. Distances greater than the 95th percentile of the shuffled
1105 distribution are deemed to have significantly different neuron j activity for a command-condition.

1106 Analysis of population activity for a given (command, condition) tuple:

1107 To compute population distances, one extra step was performed. We sought to ensure that the
1108 distances we calculated were not trivially due to “within-bin differences” between the condition-
1109 specific and condition-pooled distributions. The first step to ensure this was described above in

1110 “Matching the condition-pooled distribution”. The second step was to only compute distances in
1111 the dimensions of neural activity that are null to the decoder and do not affect the composition of
1112 the command. Thus, any subtle remaining differences in the distribution of commands would not
1113 influence population distances.

1114 To compute distances in the dimensions of neural activity null to the decoder, we computed
1115 an orthonormal basis of the null space of decoder matrix $K \in R^{2 \times N}$ using `scipy.linalg.null_space`,
1116 yielding $V_{null} \in R^{N \times N-2}$. The columns of V correspond to basis vectors spanning the $N - 2$
1117 dimensional null space. Using V_{null} we computed: $\mu_{com-cond-null} = V_{null}' * \mu_{com-cond}$ and
1118 $\mu_{com-pool-null} = V_{null}' * \mu_{com-pool}$. We then calculated the population distance metric (L2-
1119 norm), normalized by the square-root of the number of neurons: $d\mu_{pop-com-cond} = \sqrt{2}/\sqrt{N}$,
1120 $d\mu_{pop-com-cond} \in R^1$. In step 5, the single value $d\mu_{pop-com-cond}$ is compared to the distribution
1121 of $d\mu_{shuff-i-pop-com-cond}$ for $i = 1:1000$ to derive a p-value for each (command, condition)
1122 tuple. The fraction of (command, condition) tuples with population activity distances greater than
1123 the 95th percentile of the shuffle data (i.e. significant) is reported in Fig. 3E.

1124 For visualization of distances relative to the shuffle distribution (Fig. 3B-D), we divided the
1125 observed population distance for each (command, condition) tuple by the mean of the
1126 corresponding shuffle distribution. With this normalization, we can visualize the spread of the
1127 shuffle distribution (Fig. 3B, *right*) and we can interpret a normalized distance of 1 as the expected
1128 distance according to the shuffle distribution.

1129 *Activity distances pooling over conditions*

1130 To test whether condition-specific neural activity significantly deviated from condition-
1131 pooled neural activity for a given command (Fig. 3E, *middle*), we aggregated the distance between
1132 condition-specific and condition-pooled average activity over all N_{cond} conditions in which the

1133 command was used (≥ 15 occurrences of the command in a condition). An aggregate command
1134 distance is computed: $d\mu_{pop-com} = \frac{1}{N_{cond}} \sum_{j=1}^{N_{cond}} d\mu_{pop-com-j}$, and an aggregate shuffle
1135 distribution is computed: $d\mu_{shuff-i-pop-com} = \frac{1}{N_{cond}} \sum_{j=1}^{N_{cond}} d\mu_{shuff-i-pop-com-j}$. Then,
1136 $d\mu_{pop-com}$ is compared to the distribution of $d\mu_{shuff-i-pop-com}$ for $i = 1:1000$ to derive a p-
1137 value for each command. The fraction of commands with significant population activity distances
1138 is reported in Fig. 3E, *middle*.

1139 *Single neuron distances*

1140 To test whether an individual neuron's condition-specific activity deviated from condition-
1141 pooled activity (Fig. 3E *right*), we aggregated the distances between condition-specific and
1142 condition-pooled average activity over the C (command, condition) tuples with at least 15
1143 observations. The aggregated distance for neuron n was computed: $d\mu(n) = \frac{1}{C} \sum_{c=1}^C d\mu_c(n)$
1144 where $d\mu_c(n)$ is the condition-specific absolute difference for the n th neuron and c th (command,
1145 condition) tuple. Then $d\mu(n)$ was compared to the distribution of the aggregated shuffle:
1146 $d\mu_{shuff-i}(n) = \frac{1}{C} \sum_{c=1}^C d\mu_{shuff-i-c}(n)$ for $i = 1:1000$ to derive a p-value for each neuron. The
1147 fraction of neurons with significant activity distances (p-value < 0.05) is reported in Fig. 3E *right*.

1148 *Neural activity distances summary*

1149 Single neuron activity distances reported in Fig. S2B (*left*) are for all (command, condition,
1150 neuron) tuples that had at least 15 observations. We report distances as a z-score of shuffle
1151 distribution: $z_{com-cond}(n) = \frac{(d\mu_{com-cond}(n) - \text{mean}(d\mu_{shuff-i}(n), i=1:1000))}{\text{std}(d\mu_{shuff-i}(n), i=1:1000)}$.

1152 Single neuron activity distances reported in (Fig. S2B *center, right*) are for (command,
1153 condition, neuron) tuples that significantly deviated from shuffle. We report raw distances in

1154 neuron activity as $d\mu_{com-cond}(n)$ (Fig. S2B, *center*), and fraction distances as $\frac{d\mu_{com-cond}(n)}{\mu_{com-pool}(n)}$ (Fig.

1155 S2B, *right*).

1156 Population activity distances reported in Fig. 3BCD and Fig. S2C *left* are for all (command,
1157 condition) tuples. We report distances in population activity as a fraction of shuffle mean:
1158 $d\mu_{pop-com-cond}/\text{mean}(d\mu_{shuff-i}, i = 1: 1000)$ (Fig. 3BCD), and as a z-score of shuffle

1159 distribution: $z_{pop-com-cond} = \frac{(\mu_{pop-com-cond} - \text{mean}(d\mu_{shuff-i}, i = 1: 1000))}{\text{std}(d\mu_{shuff-i}, i = 1: 1000)}$ (Fig. S2C *left*).

1160 Population activity distances reported in Fig. S2C (*center, right*) are for (command,
1161 condition) tuples that significantly deviated from shuffle. We report distances in population
1162 activity as a fraction of shuffle mean $d\mu_{pop-com-cond}/\text{mean}(d\mu_{shuff-i}, i = 1: 1000)$ (Fig. S2C,
1163 *center*) and fraction of condition-pooled activity as $\frac{d\mu_{pop-out-cond}}{\|\mu_{com-pool}\|_2}$ (Fig. S2C, *right*).

1164 Invariant dynamics models

1165 In order to test whether invariant dynamics predicts the different neural activity patterns
1166 issuing the same command for different conditions, a linear model was fit for each experimental
1167 session on training data of neural activity from all conditions and assessed on held-out test data.
1168 Neural activity at time t , x_t , was modeled as a linear function of x_{t-1} :

1169
$$x_t = Ax_{t-1} + b$$

1170 Here $A \in R^{NxN}$ modeled invariant dynamics and $b \in R^N$ was an offset vector that allowed the
1171 model to identify non-zero fixed points of neural dynamics. Ridge regression was used to estimate
1172 the A and b parameters. Prior to any training or testing, data was collated such that all neural
1173 activity in bins from $t=2:T_{\text{trl}}$ in all rewarded trials were paired with neural activity from $t=1:(T_{\text{trl}}-1)$,
1174 where T_{trl} is the number of time samples in a trial.

1175 *Estimation of Ridge Parameter*

1176 For each experimental session, data collated from all conditions was randomly split into 5
1177 sections, and a Ridge model (`sklearn.linear_model.Ridge`) with a ridge parameter varying from
1178 2.5×10^{-5} to 10^6 was trained using 4 of the 5 sections and tested on the remaining test section. Test
1179 sections were rotated, yielding five estimates of the coefficient of determination (R^2) for each ridge
1180 parameter. The ridge parameter yielding the highest cross-validated mean R^2 was selected for each
1181 experimental session. Ridge regression was used primarily due to a subset of sessions with a very
1182 high number of units (148 and 151 units), thus a high number of parameters needed to be estimated
1183 for the A matrix. Without regularization, these parameters tended to extreme values, and the model
1184 generalized poorly.

1185 *Invariant dynamics model: fitting and testing*

1186 Once a ridge parameter for a given experimental session was identified, A, b were again
1187 trained using 4/5 of the data. The remaining test data was predicted using the fit A, b . This
1188 procedure was repeated, rotating the training and testing data such that after five iterations, all data
1189 points in the experimental session had been in the test data section for one iteration of model-
1190 fitting. The predictions made on the held-out test data were collated together into a full dataset.
1191 Predictions were then analyzed in subsequent analyses.

1192 *Generalization of invariant dynamics*

1193 We assessed how well invariant dynamics generalized when certain categories of neural
1194 activity were not included in the training data. Invariant dynamics models were estimated after
1195 excluding neural activity in the following categories (Fig. 4C, Fig. S4, Fig 5CD):

1196 1. Left-out Command: For each command (total of 32 command bins), training data sets were
1197 constructed leaving out neural activity that issued the command (Fig. 4C, Fig. S4, Fig. 5CE).

1198 2. Left-out Condition: For each condition (consisting of target, task, and clockwise or
1199 counterclockwise movement for obstacle avoidance), training data sets were constructed leaving
1200 out neural activity for the given condition (Fig. 4C, Fig. S4, Fig. 5CE).

1201 3. Left-out Command Angle: For each command angular bin (total of 8 angular bins), training
1202 data sets were constructed leaving out neural activity that issued commands in the given angular
1203 bin. This corresponds to leaving out neural activity for the 4 command bins that have the given
1204 angular bin but different magnitude bins (Fig. S4B, middle).

1205 4. Left-out Command Magnitude: For each command magnitude bin (total of 4 magnitude
1206 bins), training data sets were constructed leaving out neural activity that issued commands of the
1207 given command magnitude. This corresponds to leaving out neural activity for the 8 command
1208 bins that have the given magnitude bin but different angle bins (Fig. S4B, right).

1209 5. Left-out Classes of Conditions (Fig. S4G):

1210 a. vertical condition class consisting of conditions with targets located at 90 and 270
1211 degrees for both tasks,

1212 b. horizontal condition class consisting of conditions with targets located at 0 and 180
1213 degrees for both tasks,

1214 c. diagonal 1 condition class consisting of conditions with targets located at 45 and
1215 215 degrees for both tasks, and

1216 d. diagonal 2 condition class consisting of conditions with targets located at 135 and
1217 315 degrees for both tasks.

1218 For each of the listed categories above, many dynamics models were computed – each one
1219 corresponding to the exclusion of one element of the category (i.e. one model per: command left-
1220 out, condition left-out, command angle left-out, command magnitude left-out, and class of

1221 conditions left-out). Each of the trained models was then used to predict the left-out data.
1222 Predictions were aggregated across all dynamics models resulting in a full dataset of predictions.
1223 The coefficient of determination (R^2) of this predicted dataset reflected how well dynamics models
1224 could generalize to types of neural activity that were not observed during training. We note that
1225 Monkey J did not perform all conditions in the “diagonal 2” class, and so was not used in the
1226 analysis predicting excluded “diagonal 2” conditions.

1227 *Decoder-null dynamics model*

1228 As an additional comparison, we modeled invariant dynamics that lie only within the
1229 decoder-null space (the neural activity subspace that was orthogonal to the decoder such that
1230 variation of neural activity in this space has no effect on the decoder’s output, i.e. commands for
1231 movement).

1232 Our approach was to project spiking activity into the decoder null space, and then fit
1233 invariant dynamics on the projected, decoder-null spiking activity. We first computed an
1234 orthonormal basis of the null space of decoder matrix $K \in R^{2xN}$ using `scipy.linalg.null_space`,
1235 yielding $V_{null} \in R^{NxN-2}$. The columns of V correspond to basis vectors spanning the $N - 2$
1236 dimensional null space. We then computed the projection matrix $P_{null} \in R^{NxN}$ where $P_{null} =$
1237 $V_{null}V_{null}^T$. Spiking activity was then projected into the null space $x_t^{null} = P_{null}x_t$, where $x_t^{null} \in$
1238 R^{Nx1} .

1239 Following the above procedure (see “*Estimation of Ridge Parameter*”), a ridge regression
1240 parameter was selected using projected data x_t^{null} . Decoder-null dynamics model parameters A_{null} ,
1241 b_{null} were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of the x_t^{null} dataset.
1242 As before, the training/testing procedure was repeated 5 times such that all data points fell into the
1243 test dataset once. Predictions of test data from all five repetitions were collated into one full dataset

1244 of predictions. We note that the average of the decoder-space activity across the entire session

1245 $\hat{x}^{decoder} = \frac{1}{T} \sum_{t=1}^T x_t^{decoder}$, where T is the number of bins in an entire session, was added to all

1246 predictions of decoder-null dynamics ($x_{t+1} = A_{null}x_t + b_{null} + \hat{x}^{decoder}$).

1247 *Shuffle dynamics model*

1248 The invariant dynamics model was compared to a shuffle dynamics model fit on shuffled

1249 data (see “Behavior-preserving shuffle of activity” above). Following the above procedure (see

1250 “*Estimation of Ridge Parameter*”), a ridge parameter was selected using shuffled data. Shuffle

1251 dynamics model parameters $A_{shuffle}$, $b_{shuffle}$ were then fit on 4/5 of the dataset using shuffled data

1252 and then tested on the remaining 1/5 of the dataset using original, unshuffled data.

1253 Invariant dynamics model characterization

1254 *Dimensionality and eigenvalues*

1255 Once the linear invariant dynamics model’s parameters A , b were estimated, A was analyzed

1256 to assess which modes of dynamics¹⁶ were present (Fig. S3). The eigenvalues of A were computed.

1257 From each eigenvalue, an oscillation frequency and time decay value were computed using the

1258 following equations:

1259 Frequency = $\angle\lambda/(2\pi\Delta t)$ Hz if λ is complex, else frequency = 0 Hz

1260 Time Decay = $\frac{-1}{\ln(|\lambda|)} \Delta t$ sec

1261 Modes of dynamics contributing substantially to predicting future neural variance will have

1262 time decays greater than the BMI decoder’s binsize (here, 100ms). 2-4 such dimensions of

1263 dynamics were found across sessions and subjects (Fig. S3).

1264 Invariant dynamics model predictions

1265 *Predicting next neural activity: $x_{t+1} | x_t, A, b$*

1266 In Fig. 5C, we predict next activity x_{t+1} based on current activity x_t by taking the expected
1267 value according to our model: $E(x_{t+1}|x_t, A, b) = Ax_t + b$.

1268 In Fig. 5D, we evaluated this prediction for individual dimensions of neural activity.
1269 We projected the prediction of x_{t+1} onto each eigenvector of the dynamics model A matrix and
1270 evaluated how well that dimension was predicted (via coefficient of determination).

1271 In Fig. S3E, G, we evaluated this prediction across time from the start of trial. The magnitude
1272 (i.e. L2 norm) of the model residual $\|x_{t+1} - Ax_t + b\|_2$ (Fig. S3E) and the coefficient of
1273 determination (R^2) (Fig. S3G) are plotted for each time point from trial start, evaluated on held-
1274 out test data pooling across trials.

1275 *Predicting next command: $\text{command}_{t+1} | x_t, A, b, K$*

1276 In Fig. 5E-H, we predict the next command command_{t+1} based on current neural activity x_t
1277 by taking its expected value according to our model: $E(\text{command}_{t+1} | x_t, A, b, K) = K(Ax_t +$
1278 $b)$, where the decoder matrix K maps between neural activity and the command. This amounts to
1279 first predicting next activity based on current activity as above $E(x_{t+1}|x_t, A, b) = Ax_t + b$ and
1280 then applying decoder K .

1281 *Predicting activity issuing a given command*

1282 In Fig. 4C-G, we predict current activity x_t not only with knowledge of previous activity
1283 x_{t-1} , but also with knowledge of the current command command_t ($x_t | x_{t-1}, A, b, K, \text{command}_t$).
1284 We modeled x_t and x_{t-1} as jointly Gaussian with our dynamics model, and command_t is jointly
1285 Gaussian with them since $\text{command}_t = Kx_t$. We modify our prediction of x_t based on knowledge
1286 of command_t : $E(x_t | x_{t-1}, A, b, K, \text{command}_t)$. Explicitly we conditioned on command_t , thereby
1287 ensuring that $K * E(x_t | x_{t-1}, A, b, K, \text{command}_t) = \text{command}_t$. To do this we wrote the joint
1288 distribution of x_t and command_t :

1289
$$\frac{x_t}{Kx_t} \sim N\left(\begin{pmatrix} \mu \\ K\mu \end{pmatrix}, \begin{pmatrix} \Sigma & (K\Sigma)^T \\ K\Sigma & K\Sigma K^T \end{pmatrix}\right)$$

1290 where $\mu = E(x_t | x_{t-1}, A, b) = Ax_{t-1} + b$, and $\Sigma = cov[x_t - (Ax_{t-1} + b)]$ is the covariance of
1291 the noise in the dynamics model. Then, the multivariate Gaussian conditional distribution provides
1292 the solution to conditioning on command_t:

1293
$$E(x_t | x_{t-1}, A, b, K, \text{command}_t) = Ax_{t-1} + b + \Sigma^T K^T (K\Sigma K^T)^{-1} (\text{command}_t - K(Ax_{t-1} + b))$$

1294 This prediction constrains the prediction of x_t to produce the given command command_t.

1295 For these predictions, Σ is estimated following dynamics model fitting and set to the empirical
1296 error covariance between estimates of $E(x_t) = Ax_{t-1} + b$ and true x_t in the training data.

1297 *Predicting current activity only with command*

1298 In Fig. 4C-E, as a comparison to the dynamics prediction $(x_t | x_{t-1}, A, b, K, \text{command}_t)$, we
1299 predict x_t as its expected value $(x_t | K, \text{command}_t)$ based only on the command command_t =
1300 Kx_t it issues and the decoder matrix K . The same approach was used as above, except with
1301 empirical estimates of μ, Σ corresponding to the mean and covariance of the neural data instead of
1302 using the neural dynamics model and x_{t-1} to compute μ, Σ .

1303
$$\frac{x_t}{Kx_t} \sim N\left(\begin{pmatrix} \mu \\ K\mu \end{pmatrix}, \begin{pmatrix} \Sigma & (K\Sigma)^T \\ K\Sigma & K\Sigma K^T \end{pmatrix}\right)$$

1304 This formulation makes the prediction:

1305
$$E(x_t | K, \text{command}_t) = \mu + \Sigma^T K^T (K\Sigma K^T)^{-1} (\text{command}_t - K\mu)$$

1306 *Comparing invariant dynamics to shuffle*

1307 For the above predictions, we evaluated if invariant dynamics models were more accurate
1308 than shuffle dynamics. A distribution of shuffle dynamics R^2 values (coefficient of determination)
1309 was generated by computing one R^2 value per shuffled dataset (see “Behavior-preserving shuffle
1310 of activity” above), where $R_{\text{shuffle},i,j}^2$ corresponds to the R^2 for shuffle dataset i on session j . For

1311 each session j , each invariant dynamics model was considered significant if its R^2 was greater than
1312 95% of shuffle R^2 values. To aggregate over S sessions, the R^2 values for all S sessions were
1313 averaged yielding one R_{avg}^2 value. This averaged value was compared to a distribution of averaged
1314 shuffle R^2 values. Specifically, for each shuffle i ($i=1:1000$ shuffled dataset) an averaged R^2 value
1315 was computed across all S sessions: $R_{avg,shuffle,i}^2 = \frac{1}{S} \sum_{j=1}^S R_{shuffle,i,j}^2$, yielding a distribution of
1316 averaged shuffle R^2 values.

1317 *Predicting condition-specific activity*

1318 The invariant dynamics model was used to predict the condition-specific average activity
1319 for a given command ($\mu_{com-cond}$, i.e. the average neural activity over all observations of the
1320 command in the condition, see “Analysis of activity issuing a given command” above) (Fig. 4D-
1321 G). The invariant dynamics model prediction ($\widehat{\mu_{com-cond}}$) was computed as
1322 $E(x_t | x_{t-1}, A, b, K, \text{command}_t)$ (see “*Predicting activity issuing a given command*” above)
1323 averaged over all observations of neural activity for the given command and condition.

1324 To test if the invariant dynamics prediction was significantly more accurate than the shuffle
1325 dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle dynamics model”
1326 above) prediction, we computed the error as the distance between true ($\mu_{com-cond}$) and predicted
1327 ($\widehat{\mu_{com-cond}}$) condition-specific average activity (single neuron error and population distance).
1328 Note that population distances for true and predicted activity were taken only in the dimensions
1329 null to the decoder (see “*Condition-specific neural activity deviation*”). The invariant dynamics
1330 model was deemed significantly more accurate than shuffle dynamics if the error was less than the
1331 5th percentile of the distribution of the errors from shuffle dynamics models. We reported the
1332 fraction of (command, condition) tuples that were individually significant relative to shuffle (Fig.
1333 4G, left). We determined whether commands were individually significant relative to shuffle by

1334 analyzing the average population activity error across conditions (Fig 4G, middle). We determined
1335 whether neurons were individually significant relative to shuffle by analyzing the average single-
1336 neuron error over (command, condition) tuples (Fig 4G, right).

1337 *Predicting condition-specific component*

1338 The component of neural activity for a given command that was specific to a condition was
1339 calculated as $\mu_{com-cond} - E(x_{com-cond}^t | K, \text{command}_t)$, where $\mu_{com-cond}$ is neural activity
1340 averaged over observations for the given command and condition, and
1341 $E(x_{com-cond}^t | K, \text{command}_t)$ is the prediction of neural activity only given the command it issued,
1342 averaged over observations for the (command, condition) tuple (see "*Predicting current activity*
1343 *only with command*" above). Thus, $\mu_{com-cond} - E(x_{com-cond}^t | K, \text{command}_t)$ estimates the
1344 portion of neural activity that cannot be explained by just knowing the command issued.

1345 We analyzed how well this condition-specific component could be predicted with invariant
1346 dynamics as: $\widehat{\mu_{com-cond}} - E(x_{com-cond}^t | K, \text{command}_t)$ (see "*Predicting condition-specific*
1347 *activity*" above for calculation of $\widehat{\mu_{com-cond}}$). The variance of $\mu_{com-cond} -$
1348 $E(x_{com-cond}^t | K, \text{command}_t)$ explained by $\widehat{\mu_{com-cond}} - E(x_{com-cond}^t | K, \text{command}_t)$ is reported
1349 in Fig. 4F.

1350 *Predicting condition-specific next command*

1351 For each (command, condition) tuple, the average "next command" command_{com-cond}
1352 was calculated. For every observation of the given command in the given condition, we took the
1353 command at the time step immediately following the given command and averaged over
1354 observations. We then analyzed how well invariant dynamics predicted this average "next
1355 command" command_{com-cond}, calculated as $E(\text{command}_{t+1} | x_t, A, b, K)$ averaged over all
1356 observations of neural activity x_t for the given command and condition. The L2-norm of the

1357 difference command $_{com-cond}$ – command $\widehat{_{com-cond}}$ was computed and compared to the errors
1358 obtained from the shuffled-dynamics predictions. For each (command, condition) tuple, the
1359 dynamics-predicted “next command” was deemed significantly more accurate than shuffle
1360 dynamics if the error was less than the 5th percentile of the distribution of the errors of the shuffled-
1361 dynamics predictions (Fig. 5F, *left*). Commands were determined to be individually significant if
1362 the error averaged over conditions was significantly less than the shuffled-dynamics error averaged
1363 over conditions (Fig. 5F, *right*).

1364 *Analysis of predicted command angle*

1365 We sought to further analyze whether invariant dynamics predicted the transition from a
1366 given command to different “next commands” in different movements. Thus, we calculated two
1367 additional metrics on the direction of the predicted “next command”, i.e. the angle of the predicted
1368 “next command” command $\widehat{_{com-cond}}$ with respect to the condition-pooled “next command”
1369 command $_{com-pool}$ (the average “next command” following a given command when pooling over
1370 conditions).

1371 First, we predicted whether a condition’s “next command” would rotate clockwise or
1372 counterclockwise relative to the condition-pooled “next command.” Specifically, we calculated
1373 whether the sign of the cross-product between command $\widehat{_{com-cond}}$ and command $_{com-pool}$
1374 matched the sign of the cross-product between command $_{com-cond}$ and command $_{com-pool}$. The
1375 fraction of (command, conditions) that were correctly predicted (clockwise vs counterclockwise)
1376 was compared to the fraction of (command, condition) tuples correctly predicted in the shuffle
1377 distribution (Fig. 5H, *left*).

1378 Second, we calculated the absolute error of the angle between the predicted “next
1379 command” and the condition-pooled “next command” for each (command, condition) tuple:

1380 $\text{abs}(\angle(\widehat{\text{command}}_{\text{com-cond}}, \text{command}_{\text{com-pool}})$

1381 $\quad - \angle(\text{command}_{\text{com-cond}}, \text{command}_{\text{com-pool}}))$

1382 Explicitly, for each (command, condition) tuple, we calculated the absolute difference between
1383 two angles: 1) the angle between the predicted “next command” and the condition-pooled “next
1384 command” and 2) the angle between the true “next command” and the condition-pooled “next
1385 command”. These errors were then compared to the shuffle distribution (Fig. 5H, *right*).

1386 Estimation of behavior-encoding models

1387 To compare invariant dynamics models to models in which neural activity encodes behavioral
1388 variables in addition to the command, we fit a series of behavior-encoding models (Fig. S5).
1389 Regressors included cursor state (position, velocity), target position (x,y position in cursor
1390 workspace), and a categorical variable encoding target number (0-7) and task (“center-out”,
1391 “clockwise obstacle-avoidance”, or “counter-clockwise obstacle-avoidance”).

1392 Models were fit using Ridge regression following the same procedure described above (see
1393 “*Estimation of Ridge Parameter*”) was followed with one additional step: prior to estimating the
1394 ridge parameter or fitting the regression, variables were z-scored. Without z-scoring, ridge
1395 regression may favor giving explanatory power to the variables with larger variances, since they
1396 would require smaller weights which ridge regression prefers. Then, as above, models were fit
1397 using 4/5 of the data and then used to predict the held-out 1/5 of data. After 5 rotations of training
1398 and testing data, a full predicted dataset was collated.

1399 We then tested whether invariant neural dynamics improved the prediction of neural activity
1400 beyond behavior-encoding. The coefficient of determination (R^2) of the model containing all
1401 regressors except previous neural activity was compared to the R^2 of the model containing all

1402 regressors plus previous neural activity (Fig. S5B) using a paired Student's t-test where session
1403 was paired. One test was done for each monkey.

1404 Analysis between pairs of conditions

1405 We sought to assess whether the invariant dynamics model predicted the relationship between
1406 pairs of conditions for neural activity and behavior (Fig. S6).

1407 *Average neural activity for a given command*

1408 The invariant dynamics model was used to predict the distance between average neural
1409 activity patterns for the same command across pairs of conditions. Concretely, the predicted
1410 distance was simply the distance between the predicted neural activity pattern for condition 1 and
1411 for condition 2. The correlation between the true distance and the predicted distance was reported
1412 for individual neurons (Fig. S6AC) and population activity (Fig. S6BD). The Wald test
1413 (implemented in `scipy.stats.linregress`) was used to assess the significance of the correlations on
1414 single sessions. To assess significance pooled over sessions, data points (true distances vs.
1415 dynamics model predicted distances) were aggregated across sessions and assessed for
1416 significance.

1417 *Average next command*

1418 The invariant dynamics model was used to predict the distance between “next commands”
1419 for the same given command across pairs of conditions. Concretely, the predicted distance was
1420 simply the distance between the predicted “next command” for condition 1 and for condition 2.
1421 The correlation between the true distance and the predicted distance was reported (Fig. S6JK). As
1422 above, the Wald test was used to assess significance of correlations on single sessions and over
1423 pooled sessions.

1424 *Correlating neural distance with behavior*

1425 We asked whether neural activity for a given command was more similar across conditions
1426 with more similar command subtrajectories (see “*Command subtrajectories*”) (Fig. S6E), and
1427 whether invariant dynamics predict this. Specifically, we analyzed whether the distance between
1428 average neural activity across two conditions for a given command correlated to the distance
1429 between command subtrajectories for the same two conditions (Fig. S6, F *top*, GH *left*). Further,
1430 we analyzed whether invariant dynamics predicted this correlation (Fig. S6, F *bottom*, GH *right*).
1431 For every command (that was used in more than five conditions) and pair of conditions that used
1432 the command (≥ 15 observations in each condition in the pair), 1) the distances between condition-
1433 specific average activity were computed and 2) distances between command subtrajectories were
1434 computed. The neural activity distances were correlated with the command subtrajectory distances
1435 (Fig. S6, F *top*, GH *left*). To assess whether invariant dynamics made predictions that maintained
1436 this structure, we performed that same analysis with distances between dynamics-predicted
1437 condition-specific average activity across pairs of conditions (Fig. S6, F *bottom*, GH *right*).

1438 We assessed the significance of the relationship using a linear mixed effects (LME) model
1439 (`statsmodels.formula.api.mixedlm`). The LME modeled command as a random effect because the
1440 exact parameters of the increasing linear relationship between command subtrajectories and
1441 population activity may vary depending on command. Individual sessions were assessed for
1442 significance. To assess significance across sessions, data points were aggregated over sessions,
1443 and the LME model used command and session ID as random effects.

1444 Analysis of Optimal Feedback Control Models

1445 *Input magnitude*

1446 For each simulated trial, we computed the magnitude of input to the neural population as
1447 the L2 norm of the input matrix $u_t \in R^{N \times T}$ (where N is the number of neurons and $T = 40$ was

1448 the horizon and thus movement length). For each of the 24 conditions, we calculated the average
1449 input magnitude over the 20 trials. We compared the magnitude of input used by the Invariant
1450 Dynamics Model and the No Dynamics Model, where the Invariant Dynamics Model was either
1451 the Full Dynamics Model (Fig. 6C) or the Decoder-Null Dynamics Model (Fig. 6D). We analyzed
1452 each individual session with a paired Wilcoxon signed-rank test, where each pair within a session
1453 consisted of one condition (24 conditions total). We aggregated across sessions for each subject
1454 using a linear mixed effect (LME) model between input magnitude and model category (Invariant
1455 Dynamics Model or No Dynamics Model), with session modeled as a random effect.

1456 *Simulated activity issuing a given command*

1457 In the OFC simulations, we sought to verify if different neural activity patterns were used
1458 to issue the same command across different conditions, applying analyses that we used on
1459 experimental neural data to the OFC simulations. As above, we defined discretized command bins
1460 (see “Command discretization for analysis”) and calculated the average neural activity for each
1461 (command, condition) tuple. For (command, condition) tuples with ≥ 15 observations (example
1462 shown in Fig. 6E), we computed the distance between condition-specific average activity and
1463 condition-pooled average activity by subtracting the activity, projecting into the decoder-null
1464 space, taking the L2 norm, and normalizing by the square root of the number of neurons, as in the
1465 experimental data analysis (see “Analysis of activity issuing a given command”).

1466 We analyzed the distance between condition-specific average activity and condition-
1467 pooled average activity for a given command, comparing each model to its own shuffle distribution
1468 (see “Behavior-preserving shuffle of activity”) (Fig. 6GH). Concretely, for each simulated session,
1469 we calculated the mean of the shuffle distribution of distances for each (command, condition) tuple
1470 and compared these shuffle means (one per (command, condition) tuple) to the observed distances

1471 from the simulations. We analyzed individual sessions with a Mann-Whitney U test. We
1472 aggregated across sessions for each subject with a LME model between activity distance and data
1473 source (OFC Simulation vs shuffle), with session modeled as a random effect. For visualization of
1474 distances relative to the shuffle distribution (Fig. 6F-H), we divided the observed distance for each
1475 (command, condition) tuple by the mean of the corresponding shuffle distribution (same as in Fig.
1476 3B-D).

1477 Statistics Summary

1478 In many analyses, we assessed whether a quantity calculated for a specific condition was
1479 significantly larger than expected from the distribution of the quantity due to subsampling the
1480 condition-pooled distribution. A p-value was computed by comparing the condition-specific
1481 quantity to the distribution of the quantity computed from subsampling the condition-pooled
1482 distribution. The “behavior-preserving shuffle of activity” and “matching the condition-pooled
1483 distribution” (see above) were used to construct the condition-pooled distribution.

1484 The following is a summary of these analyses:

- 1485 • Fig. S1D, Quantity: distance between condition-specific average command
1486 subtrajectory and condition-pooled average command subtrajectory, P-value: computed using
1487 behavior-preserving shuffle.
- 1488 • Fig. S1E, Quantity: distance between condition-specific average next command
1489 and the condition-pooled average next command, P-value: computed using behavior-
1490 preserving shuffle.
- 1491 • Fig. 3B *left*, 3E *right*: Quantity: for a given command, distance between condition-
1492 specific average activity for a neuron and condition-pooled average activity for a neuron, P-
1493 value: behavior-preserving shuffle.

1494 • Fig. 3B *right*, 3D, 3E *left, middle*: Quantity: for a given command, distance between
1495 condition-specific average population activity and condition-pooled average population
1496 activity, P-value: behavior-preserving shuffle.

1497 • Fig. 4G *right*: Quantity: for a given command, error between the invariant
1498 dynamics' prediction of condition-specific average activity for a neuron and the true condition-
1499 specific average activity for the neuron. P-value: distribution of prediction errors from shuffle
1500 dynamics (models fit on behavior-preserving shuffle and that made predictions using
1501 unshuffled data).

1502 • Fig. 4G *left, middle*: Quantity: for a given command, error between the invariant
1503 dynamics' prediction of condition-specific average population activity and the true condition-
1504 specific average population activity. P-value: distribution of prediction errors from shuffle
1505 dynamics (models fit on behavior-preserving shuffle and that made predictions using
1506 unshuffled data).

1507 • Fig. 5F: Quantity: for a given command, error between the invariant dynamics'
1508 prediction of condition-specific average next command and true condition-specific average
1509 next command. P-value: distribution of prediction errors from shuffle dynamics (models fit on
1510 behavior-preserving shuffle and that made predictions using unshuffled data).

1511 In the above analyses, we also assessed the fraction of condition-specific quantities that
1512 were significantly different from the condition-pooled quantities or significantly predicted
1513 compared to a shuffled distribution (Fig. S1DE, Fig. 3E, Fig. 4G, Fig. 5F, Fig. S4DI, Fig. S6G).
1514 In order to aggregate over all data to determine whether condition-specific quantities were
1515 significantly different from shuffle or significantly predicted within a session relative to shuffle
1516 dynamics, we averaged the condition-specific quantity over the relevant dimensions (command,

1517 condition, and/or neuron) to yield a single aggregated value for a session. For example in Fig. 3E
1518 *right*, we take the distance between average activity for a (command, condition, neuron) tuple and
1519 condition-pooled average activity for a (command, neuron) tuple, and we average this distance
1520 over (command, condition) tuples to yield an aggregated value that is used to assess if individual
1521 neurons are significant. We correspondingly averaged the shuffle distribution across all relevant
1522 dimensions (command, condition, and/or neuron). Together this procedure yielded a single
1523 aggregated value that could be compared to a single aggregated distribution to determine session
1524 significance. Finally, when we sought to aggregate over sessions, we took the condition-specific
1525 quantity that was aggregated within a session and averaged it across sessions and again compared
1526 it to a shuffle distribution of this value aggregated over sessions.

1527 When R^2 was the metric assessed (Fig. 4CF, Fig. 5C-E, Fig. S4BFG), a single R^2 metric was
1528 computed for each session and compared to the R^2 distribution from shuffle models. This R^2 metric
1529 is known as the “coefficient of determination,” and we note that it assesses how well the dynamics-
1530 predicted values (e.g. spike counts) account for the variance of the true values.

1531 In some cases, a linear regression was fit between two quantities (Fig. S6CDGJK) on both
1532 individual sessions and on data pooled over all sessions, and the significance of the fit and
1533 correlation coefficient were both reported. In other cases where random effects such as session or
1534 analyzed command may have influenced the linear regression parameters (Fig. S6FG), a Linear
1535 Mixed Effect (LME) model was used with session and/or command modeled as random effects on
1536 intercept.

1537 In Fig. S5, a paired Student’s t-test was used to compare two models’ R^2 metric across
1538 sessions. Fig. 6 analyzed simulations of OFC models, not experimentally-recorded data. Fig. 6CD
1539 used a paired Wilcoxon test and a LME to compare input magnitude between a pair of OFC

1540 models. Fig. 6GH used a Mann-Whitney U test and a LME to compare population distance
1541 between an OFC model and its shuffle distribution.

1542 **References**

1. Rokni, U., and Sompolinsky, H. (2012). How the brain generates movement. *Neural Comput.* *24*, 289–331.
2. Churchland, M.M., and Cunningham, J.P. (2014). A Dynamical Basis Set for Generating Reaches. *Cold Spring Harb. Symp. Quant. Biol.* *79*, 67–80.
3. Shenoy, K. V., Sahani, M., and Churchland, M.M. (2013). Cortical Control of Arm Movements: A Dynamical Systems Perspective. *Annu. Rev. Neurosci.* *36*, 337–359.
4. Hennequin, G., Vogels, T.P., and Gerstner, W. (2014). Optimal control of transient dynamics in balanced networks supports generation of complex movements. *Neuron* *82*, 1394–1406.
5. Sussillo, D., Churchland, M.M., Kaufman, M.T., and Shenoy, K. V (2015). A neural network that finds a naturalistic solution for the production of muscle activity. *Nat. Neurosci.* *18*, 1025–33.
6. Mastrogiosseppe, F., and Ostoic, S. (2018). Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks. *Neuron* *99*, 609-623.e29.
7. Porter, R., and Lemon, R. (1995). *Corticospinal Function and Voluntary Movement* (Oxford University Press).
8. Nelson, A., Abdelmesih, B., and Costa, R.M. (2021). Corticospinal populations broadcast complex motor signals to coordinated spinal and striatal circuits. *Nat. Neurosci.* *24*, 1721–1732.
9. Arber, S., and Costa, R.M. (2018). Connecting neuronal circuits for movement. *Science* (80-.). *360*, 1403–1404.
10. Arber, S., and Costa, R.M. (2022). Networking brainstem and basal ganglia circuits for movement. *Nat. Rev. Neurosci.*
11. Russo, A.A., Bittner, S.R., Perkins, S.M., Seely, J.S., London, B.M., Lara, A.H., Miri, A., Marshall, N.J., Kohn, A., Jessell, T.M., et al. (2018). Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response. *Neuron* *97*, 953-966.e8.
12. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., and Shenoy, K. V (2012). Neural population dynamics during reaching. *Nature* *487*, 51–56.
13. Michaels, J.A., Dann, B., and Scherberger, H. (2016). Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning. *PLoS Comput. Biol.* *12*.
14. Liang, K.-F., and Kao, J.C. (2020). Deep Learning Neural Encoders for Motor Cortex. *IEEE Trans. Biomed. Eng.* *67*, 2145–2158.
15. Truccolo, W., Hochberg, L.R., and Donoghue, J.P. (2010). Collective dynamics in human and monkey sensorimotor cortex: Predicting single neuron spikes. *Nat. Neurosci.* *13*, 105–111.
16. Kao, J.C., Nuyujukian, P., Ryu, S.I., Churchland, M.M., Cunningham, J.P., and Shenoy, K. V. (2015). Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. *Nat. Commun.* *6*, 7759.
17. Kao, J.C., Ryu, S.I., and Shenoy, K. V. (2017). Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces. *Sci. Rep.* *7*, 7395.
18. Pandarinath, C., O'Shea, D.J., Collins, J., Jozefowicz, R., Stavisky, S.D., Kao, J.C., Trautmann, E.M., Kaufman, M.T., Ryu, S.I., Hochberg, L.R., et al. (2018). Inferring single-trial neural population dynamics using sequential auto-encoders. *Nat. Methods* *15*,

1588 805–815.

1589 19. Abbaspourazad, H., Choudhury, M., Wong, Y.T., Pesaran, B., and Shanechi, M.M.
1590 (2021). Multiscale low-dimensional motor cortical state dynamics predict naturalistic
1591 reach-and-grasp behavior. *Nat. Commun.* *12*, 607.

1592 20. Gallego-Carracedo, C., Perich, M.G., Chowdhury, R.H., Miller, L.E., and Gallego, J.Á.
1593 (2022). Local field potentials reflect cortical population dynamics in a region-specific and
1594 frequency-dependent manner. *Elife* *11*, e73155.

1595 21. Gallego, J.A., Perich, M.G., Chowdhury, R.H., Solla, S.A., and Miller, L.E. (2020). Long-
1596 term stability of cortical population dynamics underlying consistent behavior. *Nat.*
1597 *Neurosci.* *23*, 260–270.

1598 22. Sani, O.G., Abbaspourazad, H., Wong, Y.T., Pesaran, B., and Shanechi, M.M. (2021).
1599 Modeling behaviorally relevant neural dynamics enabled by preferential subspace
1600 identification. *Nat. Neurosci.* *24*, 140–149.

1601 23. Kaufman, M.T., Churchland, M.M., Ryu, S.I., and Shenoy, K. V (2014). Cortical activity
1602 in the null space: permitting preparation without movement. *Nat. Neurosci.* *17*, 440–8.

1603 24. Stavisky, S.D., Kao, J.C., Ryu, S.I., and Shenoy, K. V. (2017). Motor Cortical Visuomotor
1604 Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural
1605 State Space Dimensions. *Neuron*, 1–14.

1606 25. Perich, M.G., Gallego, J.A., and Miller, L.E. (2018). A Neural Population Mechanism for
1607 Rapid Learning. *Neuron* *100*, 964-976.e7.

1608 26. Miri, A., Warriner, C.L., Seely, J.S., Elsayed, G.F., Cunningham, J.P., Churchland, M.M.,
1609 and Jessell, T.M. (2017). Behaviorally Selective Engagement of Short-Latency Effector
1610 Pathways by Motor Cortex. *Neuron* *95*, 683-696.e11.

1611 27. Marshall, N.J., Glaser, J.I., Trautmann, E.M., Amematsro, E.A., Perkins, S.M., Shadlen,
1612 M.N., Abbott, L.F., Cunningham, J.P., and Churchland, M.M. (2022). Flexible neural
1613 control of motor units. *Nat. Neurosci.* *25*, 1492–1504.

1614 28. Schieber, M.H. (2004). Motor Control: Basic Units of Cortical Output? *Curr. Biol.* *14*,
1615 R353–R354.

1616 29. Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B. (2002). Direct cortical control of 3D
1617 neuroprosthetic devices. *Science* (80-.). *296*, 1829–1832.

1618 30. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., and Donoghue, J.P.
1619 (2002). Instant neural control of a movement signal. *Nature* *416*, 141–2.

1620 31. Carmena, J.M., Lebedev, M.A., Crist, R.E., O'Doherty, J.E., Santucci, D.M., Dimitrov,
1621 D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L. (2003). Learning to control a
1622 brain-machine interface for reaching and grasping by primates. *PLoS Biol.* *1*, 193–208.

1623 32. Ganguly, K., and Carmena, J.M. (2009). Emergence of a stable cortical map for
1624 neuroprosthetic control. *PLoS Biol.* *7*.

1625 33. Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and Cunningham, J.P.
1626 (2016). Reorganization between preparatory and movement population responses in motor
1627 cortex. *Nat. Commun.*, 13239.

1628 34. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.I., and Shenoy, K. V.
1629 (2010). Cortical Preparatory Activity: Representation of Movement or First Cog in a
1630 Dynamical Machine? *Neuron* *68*, 387–400.

1631 35. Kalidindi, H.T., Cross, K.P., Lillicrap, T.P., Omrani, M., Falotico, E., Sabes, P.N., and
1632 Scott, S.H. (2021). Rotational dynamics in motor cortex are consistent with a feedback
1633 controller. *Elife* *10*, e67256.

1634 36. Pruszynski, J.A., Kurtzer, I., Nashed, J.Y., Omrani, M., Brouwer, B., and Scott, S.H.
1635 (2011). Primary motor cortex underlies multi-joint integration for fast feedback control.
1636 *Nature* *478*, 387–390.

1637 37. Bollu, T., Ito, B.S., Whitehead, S.C., Kardon, B., Redd, J., Liu, M.H., and Goldberg, J.H.
1638 (2021). Cortex-dependent corrections as the tongue reaches for and misses targets. *Nature*
1639 *594*, 82–87.

1640 38. Veuthey, T.L., Derosier, K., Kondapavulur, S., and Ganguly, K. (2020). Single-trial cross-
1641 area neural population dynamics during long-term skill learning. *Nat. Commun.* *11*, 4057.

1642 39. Rizzolatti, G., and Luppino, G. (2001). The cortical motor system. *Neuron* *31*, 889–901.

1643 40. Dum, R.P., and Strick, P.L. (2005). Frontal Lobe Inputs to the Digit Representations of the
1644 Motor Areas on the Lateral Surface of the Hemisphere. *J. Neurosci.* *25*, 1375–1386.

1645 41. Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P.,
1646 Caldejon, S., Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and
1647 thalamic connectivity. *Nature* *575*, 195–202.

1648 42. Athalye, V.R., Carmena, J.M., and Costa, R.M. (2020). Neural reinforcement: re-entering
1649 and refining neural dynamics leading to desirable outcomes. *Curr. Opin. Neurobiol.* *60*.

1650 43. Sauerbrei, B.A., Guo, J.-Z., Cohen, J.D., Mischiati, M., Guo, W., Kabra, M., Verma, N.,
1651 Mensh, B., Branson, K., and Hantman, A.W. (2020). Cortical pattern generation during
1652 dexterous movement is input-driven. *Nature* *577*, 386–391.

1653 44. Merel, J., Botvinick, M., and Wayne, G. (2019). Hierarchical motor control in mammals
1654 and machines. *Nat. Commun.* *10*, 5489.

1655 45. Kao, T.-C., Sadabadi, M.S., and Hennequin, G. (2021). Optimal anticipatory control as a
1656 theory of motor preparation: A thalamo-cortical circuit model. *Neuron* *109*, 1567–
1657 1581.e12.

1658 46. Logiaco, L., Abbott, L.F., and Escola, S. (2021). Thalamic control of cortical dynamics in
1659 a model of flexible motor sequencing. *Cell Rep.* *35*, 109090.

1660 47. Shanechi, M.M., Orsborn, A.L., and Carmena, J.M. (2016). Robust Brain-Machine
1661 Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process
1662 Filtering. *PLoS Comput. Biol.* *12*, e1004730.

1663 48. Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.,
1664 Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L., et al. (2017). Rapid
1665 control and feedback rates enhance neuroprosthetic control. *Nat. Commun.* *8*, 13825.

1666 49. Dangi, S., Gowda, S., Moorman, H.G., Orsborn, A.L., So, K., Shanechi, M.M., and
1667 Carmena, J.M. (2014). Continuous closed-loop decoder adaptation with a recursive
1668 maximum likelihood algorithm allows for rapid performance acquisition in brain-machine
1669 interfaces. *Neural Comput.* *26*, 1811–1839.

1670 50. Hennig, J.A., Golub, M.D., Lund, P.J., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.I.,
1671 Tyler-Kabara, E.C., Batista, A.P., Yu, B.M., et al. (2018). Constraints on neural
1672 redundancy. *Elife* *7*, 1–34.

1673 51. Elsayed, G.F., and Cunningham, J.P. (2017). Structure in neural population recordings:
1674 An expected byproduct of simpler phenomena? *Nat. Neurosci.* *20*, 1310–1318.

1675 52. Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., and Paninski, L. (2017).
1676 Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. In
1677 Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
1678 Proceedings of Machine Learning Research., A. Singh and J. Zhu, eds. (PMLR), pp. 914–
1679 922.

1680 53. Stavisky, S.D., Kao, J.C., Nuyujukian, P., Pandarinath, C., Blabe, C., Ryu, S.I., Hochberg, L.R., Henderson, J.M., and Shenoy, K. V. (2018). Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements. *Sci. Rep.* *8*, 1–19.

1681 54. Biane, J.S., Takashima, Y., Scanziani, M., Conner, J.M., and Tuszyński, M.H. (2016). Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning. *Neuron* *89*, 1173–1179.

1682 55. Evarts, E. V (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. *J. Neurophysiol.* *31*, 14–27.

1683 56. Kalaska, J.F. (2009). From intention to action: motor cortex and the control of reaching movements. *Adv. Exp. Med. Biol.* *629*, 139–178.

1684 57. Fetz, E.E. (1992). Are movement parameters recognizably coded in the activity of single neurons? *Behav. Brain Sci.* *15*, 679–690.

1685 58. Reimer, J., and Hatsopoulos, N.G. (2009). The problem of parametric neural coding in the motor system. *Adv. Exp. Med. Biol.* *629*, 243–259.

1686 59. Omrani, M., Kaufman, M.T., Hatsopoulos, N.G., and Cheney, P.D. (2017). Perspectives on classical controversies about the motor cortex. *J. Neurophysiol.* *118*, 1828–1848.

1687 60. Georgopoulos, A.P., Caminiti, R., and Kalaska, J.F. (1984). Static spatial effects in motor cortex and area 5: Quantitative relations in a two-dimensional space. *Exp. Brain Res.* *54*, 446–454.

1688 61. Wang, W., Chan, S.S., Heldman, D.A., and Moran, D.W. (2007). Motor cortical representation of position and velocity during reaching. *J. Neurophysiol.* *97*, 4258–4270.

1689 62. Paninski, L., Fellows, M.R., Hatsopoulos, N.G., and Donoghue, J.P. (2004). Spatiotemporal Tuning of Motor Cortical Neurons for Hand Position and Velocity. *J. Neurophysiol.* *91*, 515–532.

1690 63. Fu, Q.-G., Suarez, J.I., and Ebner, T.J. (1993). Neuronal Specification of Direction and Distance During Reaching Movements in the Superior Precentral Premotor Area and Primary Motor Cortex of Monkeys. *J. Neurophysiol.* *70*.

1691 64. Moran, D.W., and Schwartz, A.B. (1999). Motor cortical representation of speed and direction during reaching. *J. Neurophysiol.* *82*, 2676–2692.

1692 65. Flament, D., and Hore, J. (1988). Relations of motor cortex neural discharge to kinematics of passive and active elbow movements in the monkey. *J. Neurophysiol.* *60*, 1268–1284.

1693 66. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. *J. Neurosci.* *2*, 1527–1537.

1694 67. Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986). Neuronal population coding of movement direction. *Science* (80-.). *233*, 1416–9.

1695 68. Sergio, L.E., Hamel-pâquet, C., and Kalaska, J.F. (2005). Motor Cortex Neural Correlates of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks Motor Cortex Neural Correlates of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks. *J. Neurophysiol.* *94*, 2353–2378.

1696 69. Cheney, P.D., and Fetz, E.E. (1980). Functional classes of primate corticomotoneuronal cells and their relation to active force. *J. Neurophysiol.* *44*, 773–791.

1697 70. Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., and Grossberg, S. (2008). Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb Biomechanics. *Neuron* *58*, 414–428.

1726 71. Overduin, S.A., d'Avella, A., Roh, J., Carmena, J.M., and Bizzi, E. (2015). Representation
1727 of muscle synergies in the primate brain. *J. Neurosci.* *35*, 12615–12624.

1728 72. Holdefer, R.N., and Miller, L.E. (2002). Primary motor cortical neurons encode functional
1729 muscle synergies. *Exp. Brain Res.* *146*, 233–243.

1730 73. Fetz, E.E., and Cheney, P.D. (1980). Postspike facilitation of forelimb muscle activity by
1731 primate corticomotoneuronal cells. *J. Neurophysiol.* *44*, 751–772.

1732 74. Schieber, M.H., and Rivlis, G. (2007). Partial reconstruction of muscle activity from a
1733 pruned network of diverse motor cortex neurons. *J. Neurophysiol.* *97*, 70–82.

1734 75. Morrow, M.M., and Miller, L.E. (2003). Prediction of muscle activity by populations of
1735 sequentially recorded primary motor cortex neurons. *J. Neurophysiol.* *89*, 2279–2288.

1736 76. Todorov, E., and Jordan, M.I. (2002). Optimal feedback control as a theory of motor
1737 coordination. *Nat Neurosci* *5*, 1226–35.

1738 77. Suresh, A.K., Goodman, J.M., Okorokova, E. V, Kaufman, M., Hatsopoulos, N.G., and
1739 Bensmaia, S.J. (2020). Neural population dynamics in motor cortex are different for reach
1740 and grasp. *Elife* *9*.

1741 78. Athalye, V.R., Carmena, J.M., and Costa, R.M. (2020). Neural reinforcement: re-entering
1742 and refining neural dynamics leading to desirable outcomes. *Curr. Opin. Neurobiol.* *60*,
1743 145–154.

1744 79. Mannella, F., and Baldassarre, G. (2015). Selection of cortical dynamics for motor
1745 behaviour by the basal ganglia. *Biol. Cybern.* *109*, 575–595.

1746 80. Vyas, S., Even-Chen, N., Stavisky, S.D., Ryu, S.I., Nuyujukian, P., and Shenoy, K. V.
1747 (2018). Neural Population Dynamics Underlying Motor Learning Transfer. *Neuron* *97*,
1748 1177–1186.e3.

1749 81. Sadtler, P.T., Quick, K.M., Golub, M.D., Chase, S.M., Ryu, S.I., Tyler-Kabara, E.C., Yu,
1750 B.M., and Batista, A.P. (2014). Neural constraints on learning. *Nature* *512*, 423–426.

1751 82. Athalye, V.R., Ganguly, K., Costa, R.M., and Carmena, J.M. (2017). Emergence of
1752 Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
1753 *Neuron* *93*, 955–970.

1754 83. Athalye, V.R., Santos, F.J., Carmena, J.M., and Costa, R.M. (2018). Evidence for a neural
1755 law of effect. *Science* (80-). *359*, 1024–1029.

1756 84. Koralek, A.C., Jin, X., Long II, J.D., Costa, R.M., and Carmena, J.M. (2012).
1757 Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. *Nature*
1758 *483*, 331–335.

1759 85. Neely, R.M., Koralek, A.C., Athalye, V.R., Costa, R.M., and Carmena, J.M. (2018).
1760 Volitional Modulation of Primary Visual Cortex Activity Requires the Basal Ganglia.
1761 *Neuron* *97*, 1356–1368.

1762 86. Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., and Shenoy, K. V (2021).
1763 High-performance brain-to-text communication via handwriting. *Nature* *593*, 249–254.

1764 87. Khanna, P., Totten, D., Novik, L., Roberts, J., Morecraft, R.J., and Ganguly, K. (2021).
1765 Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. *Cell*
1766 *184*, 912–930.e20.

1767 88. Ramanathan, D.S., Guo, L., Gulati, T., Davidson, G., Hishinuma, A.K., Won, S.-J.,
1768 Knight, R.T., Chang, E.F., Swanson, R.A., and Ganguly, K. (2018). Low-frequency
1769 cortical activity is a neuromodulatory target that tracks recovery after stroke. *Nat. Med.*
1770 *24*, 1257–1267.

1771 89. Shenoy, K., and Carmena, J. (2014). Combining decoder design and neural adaptation in

1772 brain-machine interfaces. *Neuron* *84*, 665–680.

1773 90. Golub, M.D., Chase, S.M., Batista, A.P., and Yu, B.M. (2016). Brain-computer interfaces
1774 for dissecting cognitive processes underlying sensorimotor control. *Curr. Opin. Neurobiol.*
1775 *37*, 53–58.

1776 91. Orsborn, A.L., and Pesaran, B. (2017). Parsing learning in networks using brain-machine
1777 interfaces. *Curr. Opin. Neurobiol.* *46*, 76–83.

1778 92. Moxon, K.A., and Foffani, G. (2015). Brain-Machine Interfaces beyond Neuroprosthetics.
1779 *Neuron* *86*, 55–67.

1780 93. Paxinos, G., Huang, X.-F., and Toga, A.W. (2013). The Rhesus Monkey Brain in
1781 Stereotaxic Coordinates.

1782 94. Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M.,
1783 Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I., et al. (2012). A high-
1784 performance neural prosthesis enabled by control algorithm design. *Nat. Neurosci.* *15*,
1785 1752–1757.

1786 95. Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., and Black, M.J. (2006). Bayesian
1787 Population Decoding of Motor Cortical Activity Using a Kalman Filter. *Neural Comput.*
1788 *18*, 80–118.

1789 96. Dangi, S., Orsborn, A.L., Moorman, H.G., and Carmena, J.M. (2013). Design and
1790 Analysis of Closed-Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces.
1791 *Neural Comput.* *25*, 1693–1731.

1792 97. Malik, W.Q., Truccolo, W., Brown, E.N., and Hochberg, L.R. (2011). Efficient decoding
1793 with steady-state kalman filter in neural interface systems. *IEEE Trans. Neural Syst.*
1794 *Rehabil. Eng.* *19*, 25–34.

1795 98. Gowda, S., Orsborn, A.L., Overduin, S.A., Moorman, H.G., and Carmena, J.M. (2014).
1796 Designing dynamical properties of brain-machine interfaces to optimize task-specific
1797 performance. *IEEE Trans. Neural Syst. Rehabil. Eng.* *22*, 911–920.

1798