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Summary: It has been proposed that the nervous system has the capacity to generate a wide
variety of movements because it re-uses some invariant code. Previous work has identified that
dynamics of neural population activity are similar during different movements, where dynamics
refer to how the instantaneous spatial pattern of population activity changes in time. Here we test
whether invariant dynamics of neural populations are actually used to issue the commands that
direct movement. Using a brain-machine interface that transformed rhesus macaques’ motor
cortex activity into commands for a neuroprosthetic cursor, we discovered that the same
command is issued with different neural activity patterns in different movements. However,
these different patterns were predictable, as we found that the transitions between activity
patterns are governed by the same dynamics across movements. These invariant dynamics are
low-dimensional, and critically, they align with the brain-machine interface, so that they predict
the specific component of neural activity that actually issues the next command. We introduce a
model of optimal feedback control that shows that invariant dynamics can help transform
movement feedback into commands, reducing the input that the neural population needs to
control movement. Altogether our results demonstrate that invariant dynamics drive commands
to control a variety of movements, and show how feedback can be integrated with invariant
dynamics to issue generalizable commands.
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Introduction

Our brain can generate a vast variety of movements. It is believed that the brain would
not have such capacity if it used separate populations of neurons to control each movement.
Thus, it has been proposed that the brain’s capacity to produce different movements relies on re-
using the dynamics of a specific neural population’s activity !, While theoretical work shows
how dynamics emerge from neural activity transmitted through recurrent connectivity'**%, it has
been elusive to identify whether the brain re-uses dynamics to actually control movements.

Recent work on the motor cortex, a region that controls movement through direct
projections to the spinal cord 7 and other motor centers 3'°, has found that population dynamics
are similar across different movements. Specifically, the spatial pattern of population activity at a
given time point (i.e. the instantaneous firing rate of each neuron in the population)
systematically influences what spatial pattern occurs next. Models of dynamics h that are
invariant across movements® can predict the transition from the current population activity

pattern x; to the subsequent pattern x;,q:

Xt+1 = h(x;) + input; + noise; (D
where external input input, and noise noise, are typically unmeasured. Recent work'! has
provided the intuition that invariant dynamics bias neural activity to avoid “tangling” — which is
when the same activity pattern undergoes different transitions in different movements. These

dynamics models have explained features of neural activity that were unexpected from behavior

1714 such as oscillations'?, and have predicted neural activity during different movements on

19,20

single trials '>'8 for single neurons’ spiking '°, for local field potential features , and over

many days '®?!. These models also help predict behavior !6!8:19-22,
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While past work characterized the statistical relationship between invariant dynamics and
behavior, it remains untested if invariant dynamics are actually used to issue commands for
movement. This test requires identifying the causal transformation from neural activity to
command, where the “command” is the instantaneous influence of the nervous system on

movement. This is a long-standing challenge in motor control. While past work has modeled this

23-25 8-10,26-28

transformation™ >, ongoing research reveals its complexity

We addressed this challenge with a brain-machine interface (BMI) 2°32 in which the
transformation from neural activity to command was known exactly and determined by the
experimenter. We trained rhesus monkeys to use motor cortex population activity to move a two-
dimensional computer cursor on a screen through a BMI. The BMI transformed neural activity
into a force-like command to update the cursor’s velocity, analogous to muscular force on the
skeleton. Thus, an individual movement was produced by a series of commands, where each
command acted on the cursor at an instant in time.

We discovered that the same exact command is issued with different neural activity
patterns in different movements. Critically, these different patterns transition according to low-
dimensional, invariant dynamics to patterns that issue the next command, even when the next
command differs across movements. Thus, our results demonstrate that invariant dynamics drive
commands to control different movements.

While past work has presented a view of how dynamics operate in a feedforward manner,
propagating an initial state of activity 2>*** to produce movement, it has been unclear how
feedback?**>7 integrates with invariant dynamics. Given that motor cortex is interconnected to

138—41

larger motor control circuits including cortica and cortico-basal ganglia-thalamic

8,9,42,43

circuits , we introduce a hierarchical model* of optimal feedback control (OFC) in which
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the brain (i.e. larger motor control circuitry) uses feedback to control the motor cortex population
which controls movement*+*¢. Our model reveals that invariant dynamics can help transform
feedback into commands, as they reduce the input that a population needs to issue commands.
Altogether, our results demonstrate that invariant neural dynamics are both used and useful for
issuing commands across different movements.

Results

BMI to study neural population control of movement

We used a BMI*"# to study the dynamics of population activity as it issued commands
for movement of a two-dimensional computer cursor (Fig. 1A). Population activity (20-151
units) was recorded using chronically implanted microwire electrode arrays spanning bilateral
dorsal premotor cortex and primary motor cortex. Each unit’s spiking rate at time t (computed as
the number of spikes in a temporal bin) was stacked into a vector of population activity x;, and
the BMI used a “decoder” given by matrix K to linearly transform population activity into a two-

dimensional command:

command; = Kx; (2)
The command linearly updated the two-dimensional velocity vector of the computer cursor:

velocity, = command; + a*velocity,_; + offset 3)

We note that the BMI was not identical across the two subjects, as neural activity was modeled
with different statistical distributions (Gaussian for Monkey G and a Point Processs*’*® for

Monkey J, see STAR methods — “Neuroprosthetic decoding™).

The decoder was initialized as subjects passively watched cursor movement, calibrated as
subjects used the BMI in closed-loop*® without performing trained overt movement, and then

fixed for the experiment (Fig. 1B). Critically, the decoder was not fit during trained overt

5
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movement, as was done previously'®, so it did not demand neural dynamics associated with overt

movement.

To study control of diverse movements, we trained monkeys to perform two different
tasks (Fig. 1CD). Monkeys performed a center-out task in which they moved the cursor from the
center of the workspace to one of eight radial targets, and they performed an obstacle-avoidance
task in which they avoided an obstacle blocking the straight path to the target. Our tasks elicited
up to 24 conditions of movement (with an average of 16-17 conditions per session), where each
condition is defined as the task performed (“co” = center-out task, “cw” / “ccw” =
clockwise/counterclockwise movement around the obstacle in the obstacle-avoidance task) and

the target achieved (numbered O through 7).

Importantly, the BMI enabled us to identify when neural activity issued the same exact
command in different conditions (Fig. 1EF, Fig. S1). We considered two-dimensional,
continuous-valued commands as the same if they fell within the same discrete bin for analysis.
We categorized commands into 32 bins (8 angular x 4 magnitude) based on percentiles of the

continuous-valued distribution (Fig. S1A; see STAR methods - “Command discretization for

analysis”). On each session, a command (of the 32 discretized bins) was analyzed if it was used
in a condition 15 or more times (Fig. S1B), for more than one condition. Each individual
command was used with regularity during multiple conditions (on average ~7 conditions, Fig.
S1B), within distinct local “subtrajectories” (Fig. 1F, Fig. S1, STAR methods — “Cursor and

command trajectory visualization™).

Using the BMI to test whether invariant dynamics are used to control different movements

The BMI enabled us to test whether the pattern of neural activity systematically

influences the subsequent pattern and command. We can visualize an activity pattern x; as a
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point in high-dimensional activity space, where each neuron’s activity is one dimension, and
visualize the transition between two patterns x; and x;,; as an arrow (Fig. 2A). Then,
dynamics can be visualized as a flow field in activity space. This flow field is invariant because
the predicted transition for a given neural activity pattern (i.e. its arrow) does not change,
regardless of the current command or condition. Because there are more neurons than
dimensions of the command, different activity patterns can issue the same command***° (Fig.
2B), as is believed to be true in the natural motor system?>?**°. The BMI decoder defined the
“decoder space” as the dimensions of neural activity that determine the command and the
“decoder null space” as the orthogonal dimensions which have no consequence on the decoder.
The BMI allowed us to observe the precise temporal order of commands (Fig. 2C) and test
whether activity trajectories followed the flow of invariant dynamics to issue these commands
for movements (Fig. 2D).

The same command is issued by different neural activity patterns in different movements

First, we tested whether the same command is issued by different neural activity patterns
in different movements, as would be expected if the current pattern influences the subsequent
pattern and command (Fig. 3A). We calculated the distance between the average neural activity
for a given command and condition and the average neural activity for the given command
pooled over conditions. We then tested if this distance is larger than expected simply due to the
variability of noisy neural activity. To emulate the scenario in which neural activity for a given
command has the same distribution across conditions, we constructed shuffled datasets where we
identified all observations of neural activity issuing a given command and shuffled their

condition-labels, for all commands (see STAR methods — “Behavior-preserving shuffle of
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activity”). In this scenario, the distance is expected to be greater than zero simply because
average activity is estimated from limited samples and thus is subject to variability.

Overall, neural activity issuing a given command significantly deviated across conditions
relative to the shuffle distribution (Fig. 3B-E). Distances averaged within-session ranged from
10% to 200% larger than shuffle distance (Fig. 3D, S2 for additional distributions). Distances
were significantly larger than shuffle distances for a large fraction of individual (command,
condition) tuples (~30% for Monkey G, ~70% for Monkey J), individual commands (~65% for
G, ~90% for J) when aggregating over conditions, and individual neurons (~40% for G, ~80%
for J) when aggregating over all (command, condition) tuples (Fig. 3E). Further, these deviations
reflected the behavior; the distance between two patterns issuing the same command correlated

with the distance between the command subtrajectories (Fig. SOE-H).

Invariant dynamics predict the different neural activity patterns used to issue the same

command

Given that a command was not issued with the same activity pattern across conditions,
we next constructed a model of invariant dynamics. We used single-trial neural activity x; from

all conditions to estimate dynamics with a linear model (Fig. 4A):

Xes1 = Axp + b (4)
We found that the dynamics A were low-dimensional (~4 dimensions, Fig. 5D, S3B) and
decaying to a fixed point (Fig. S3A,C), contrasting with rotational dynamics observed during
natural motor control 23162251 'See Fig. S3D for an illustration of how decaying invariant
dynamics can control different movements. Notably, a non-linear dynamics model (a recurrent

switching linear dynamical system>?) did not out-perform these simple linear dynamics (Fig.

S5C-F).
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We asked whether invariant dynamics predict the different activity patterns observed to
issue the same command. Concretely, we predicted the activity pattern given the command it

issued and its previous activity (Fig. 4A, see STAR methods — “Invariant dynamics model

predictions’’), combining the dynamics model (Equation 4) with the decoder (Equation 2). This
analyzed whether the model could predict the component of the activity pattern that can vary
when a given command is issued, i.e. the component in the decoder null space. For comparison,
we also computed the prediction of neural activity when only given the command it issued (in
the absence of a dynamics model). Further, we tested whether the invariant dynamics model
generalized to new commands and conditions. Dynamics models were fit on neural activity
specifically excluding individual commands or conditions, and these models were used to predict
the neural activity for the left-out commands or conditions (Fig. 4B, Fig. S4, see STAR methods

— “Invariant dynamics models™).

We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on the
shuffled datasets that preserved the temporal order of commands while shuffling the neural

activity issuing the commands (see STAR methods — “Behavior-preserving shuffle of activity”).

The shuffle dynamics model captured the expected predictability in neural activity due to the

predictability of commands in the performed movements.

On the level of single time points in individual trials, we found that the dynamics model
significantly exceeded shuffle dynamics in predicting the activity pattern issuing a given
command based on the previous pattern. Importantly, it generalized across left-out commands
and conditions (Fig. 4C) and even when much larger subsets of commands and conditions were

left-out (Fig. S4). We confirmed that the result was not driven by neural activity simply
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representing behavioral variables (cursor kinematics, target location, and condition) in addition

to the command (Fig. SSAB), consistent with previous work 3.

The invariant dynamics model also predicted the different average activity patterns for
each command and condition (Fig. 4D-G) significantly better than shuffle dynamics. It predicted
20-40% of the condition-specific component of neural activity (i.e. the difference between
average activity for a (command, condition) and the prediction of that activity based on the

command alone) (Fig. 4F, see STAR methods — “Invariant dynamics model predictions”). The

model predicted neural activity for the vast majority of commands, conditions, and neurons (Fig.

4@G), revealing that dynamics were indeed invariant.

Finally, the dynamics model preserved structure of neural activity across pairs of
conditions (Fig. S6A-D) and predicted that the distance between two activity patterns issuing the
same command would be correlated with the distance between the corresponding command
subtrajectories (Fig. S6E-I). Altogether, these results show that invariant dynamics contribute to
what activity pattern was used to issue a command, generalizing across commands and

conditions.

Invariant dynamics align with the decoder, propagating neural activity to issue the next

command

We next asked whether invariant dynamics were actually used to transition between
commands. Concretely, we used the dynamics model to predict the transition from the current
activity pattern to the next pattern, and then we applied the BMI decoder to this prediction of
next pattern in order to predict the next command (i.e. its continuous value) (Fig. 5A). This tests

whether invariant dynamics predict the component of neural activity in the decoder space, which

10
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actually drives the BMI. The BMI enabled this analysis as it defines the transformation from

neural activity to command which has not been measurable during natural motor control.

We emphasize that invariant dynamics do not have to predict the command, i.e. the
decoder space (Fig. 5B). Low-dimensional dynamics could be misaligned with the decoder such
that they only predict the component of neural activity in the decoder null space. To assess this
possibility, we fit an invariant dynamics model on the component of neural activity in the

decoder null space (“decoder-null dynamics”, see STAR methods — “Invariant dynamics

models”). While this model was restricted to the decoder-null space, it maintained similar
dimensionality and eigenvalues to the full dynamics model (Fig. S3BC).

Both the full dynamics and the decoder-null dynamics model predicted next neural
activity significantly better than shuffle dynamics (Fig. 5C) on the level of single time points in
individual trials. This reveals that invariant dynamics occupied decoder-null dimensions. Given
that the full dynamics model was low-dimensional (Fig. S3B) and predicted ~4 dimensions more
accurately than the rest of neural activity (Fig. 5D), we next tested whether the dynamics aligned
with the decoder. Critically, the full dynamics model predicted the next command (Fig. 5E)
better than shuffle dynamics, while decoder-null dynamics provided absolutely no prediction for
the next command, as expected by construction. The dynamics were invariant, as the full
dynamics model generalized across commands and conditions that were left-out from model
fitting (Fig. SE) and predicted the next command for the majority of (command, condition) tuples
(Fig. 5F). These predictions preserved structure across pairs of conditions, such that invariant
dynamics indicated how similar the next command would be across pairs of conditions (Fig. S6I-

K).

11
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Notably, invariant dynamics could predict the turn that the next command would take
following a given command in a specific condition relative to the average next command
(averaged across conditions for the given current command) (Fig. SGH). Specifically, the
dynamics model predicted whether the turn would be clockwise or counter clockwise (Fig. SH
left) and the angle of turn (Fig SH right) better than shuffle dynamics. Altogether, these results
show that invariant dynamics align with the decoder and are used to transition between

commands.

An OFC model reveals that invariant dynamics reduce the input that a neural population

needs to issue commands based on feedback

We observe that the invariant dynamics model did not perfectly predict transitions
between commands. Throughout movement there were substantial residuals (Fig. S3E-G),
consistent with ongoing movement feedback driving neural activity in addition to invariant
dynamics. However, it has been unclear how the brain can integrate feedback with invariant
dynamics to control movement. Thus, we constructed a model of optimal feedback control

(OFC) that incorporates invariant neural dynamics.

We introduce a hierarchical model in which the brain controls the neural population
which controls movement of the BMI cursor (Fig. 6A, Equation 5). Population activity x; issues
commands for movement and is driven by three terms: invariant dynamics (which we
hypothesize are intrinsic to some connectivity of the neural population), input, and noise. The
brain transforms ongoing cursor state and population activity into the input to the population that
is necessary to achieve successful movement. Concretely, the brain acts as an optimal linear
feedback controller with knowledge of the neural population’s invariant dynamics, the BMI

decoder, and the condition of movement. In this formulation, the brain’s objective was to achieve

12


https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457931,; this version posted May 14, 2023. The copyright holder for this preprint (which

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the target while using the smallest possible input to the population, which minimizes the
communication from the brain to the population. Importantly, this incentivized the OFC model to
optimize input in order to use invariant dynamics to control movement, rather than relying solely
on input to issue commands. Consistent with this formulation, experiments show that thalamic

input into motor cortex is optimized during motor learning>*.

X¢4q1 = Ax; + b + input; + noise; (5)
input, = ftLQR(xt, cursory, condition)
cursor;,; = BMI(cursor, x;)

We simulated the model performing center-out and obstacle-avoidance movements with

the decoders that were used in BMI experiments (see STAR methods — “Optimal feedback

control model and simulation”). In the Full Dynamics Model, the brain computed the minimal

input to a population that followed the invariant dynamics we observed experimentally. In the
No Dynamics Model, the minimal input was computed to a neural population that had no
invariant dynamics (i.e. the A matrix was set to zero). To facilitate comparison, we designed the
models to receive the same noise magnitude and to produce behavior with equal success and
target acquisition time (Fig. 6B).

These simulations revealed that the population required significantly less input in the Full
Dynamics Model than in the No Dynamics Model (Fig. 6C). This effect was erased in the
Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics were
restricted to the decoder-null space. These results show that invariant dynamics that specifically
align with the decoder, as experimentally-observed, can help the brain perform feedback control,
reducing the input that the population needs to issue commands based on feedback.

Finally, we confirmed the principle that feedback control with invariant dynamics makes

use of distinct activity patterns to issue a particular command. As in Fig. 3, we compared the

13
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OFC models’ neural activity against shuffled activity that preserved the temporal order of
commands. The population activity distances for (command, condition) tuples were significantly
larger than shuffle in the Full Dynamics Model but not in the No Dynamics Model (Fig. 6FG).
Further, this effect depended on alignment between invariant dynamics and the decoder, as we
detected no difference between the Decoder-Null Dynamics Model and shuffle (Fig. 6H). Thus,
the OFC model used different neural activity patterns to issue the same command only when the
invariant dynamics were useful for feedback control.
Discussion

Theoretical work shows that recurrent connectivity can give rise to neural population

dynamics for motor control!*>

and endow the brain with the capacity to generate diverse
physical movement®. Experimental work has found that population activity in the motor cortex
follows similar and predictable dynamics across different movements!!'>!¢, But it has been
untested whether dynamics that are invariant across movements are used to actually control
movement, as the transformation from neural activity to motor command has been challenging to

2627 and model** %, Here, we use a BMI to perform that test.

measure
We discovered that different neural activity patterns are used to issue the same command
in different movements. The activity patterns issuing the same command vary systemically
depending on the past pattern, and critically, they transition according to low-dimensional,
invariant dynamics towards activity patterns that causally drive the subsequent command. Our
results’ focus on the command provides a conceptual advance beyond previous work that

12,13,15,16

characterized properties of dynamics during behavior , revealing that invariant dynamics

are actually used to control movement.
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311 Further, it has been unclear how the brain could integrate invariant dynamics with

312 feedback >**737 to control movement. We introduce a hierarchical model** of optimal feedback
313 control, in which the brain uses feedback to control a neural population that controls movement.
314  Optimal control theory reveals that invariant dynamics that are aligned to the decoder can help
315  the brain perform feedback control of movement, reducing the input that a population needs to
316  issue the appropriate commands. The model verified that when invariant dynamics are used for
317  feedback control, the same command is issued with different neural activity patterns across

318 movements. Altogether, these findings form a basis for future studies on what connectivity and
319  neural populations throughout the brain give rise to invariant dynamics, whether the brain sends
320  inputs to a neural population to take advantage of invariant dynamics, and whether invariant
321  dynamics actually drive muscles during physical movement.

322 These results provide strong evidence against one traditional view that the brain reuses
323  the same neural population activity patterns to issue a particular command. This perspective is
324  present in classic studies that describe neurons as representing movement parameters>>->°, It is

28,57-59
2

325  still debated what movement parameters are updated by motor cortex neurons as

61,62

326  population activity encodes movement position %62, distance ®*, velocity 6162, speed ,

327  acceleration %, and direction of movement 4%46% as well as muscle-related parameters such as

55,68-70 71,72 73-75

328  force/torque , muscle synergies , muscle activation , and even activation of motor

329  units?’. Regardless of how commands from motor cortex update physical movement, our
330 findings using a BMI strongly suggest that the motor cortex does not use the same neural activity
331  pattern to issue a specific motor command. Our findings instead support the recent proposal that

211

332 neural activity in motor cortex avoids “tangling”"" while issuing commands.
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We found that invariant dynamics do not perfectly determine the neural population’s next
command. We propose that as the brain sends input to the neural population, it performs
feedback control on the state of the neural population’s invariant dynamics in order to produce
movement. This proposal expands the number of behaviors for which invariant dynamics are
useful. This is because invariant dynamics do not need to define the precise neural
trajectories'>** that produce movement; they only need to provide useful transitions of neural
activity that inputs can harness to control movement. In our data, simple dynamics (decaying
dynamics with different time constants) in a low-dimensional activity space (~4 dimensions)
were used to control many conditions of movement (~20 conditions). We find that invariant
dynamics constrain neural activity in dimensions which do not directly matter for issuing current
commands>’, so that inputs in these dimensions can produce future commands (Fig. 6C). This
mechanism refutes a simplistic interpretation of the minimal intervention principle’® in which
neural activity should only be controlled in the few dimensions which directly drive commands.
This also accords with the finding that motor cortex responses to feedback are initially in the
decoder null space before transitioning to neural activity that issues corrective commands 2*.

There is almost surely a limitation to the behaviors that particular invariant dynamics are
useful for. Motor cortex activity occupies orthogonal dimensions and shows a different influence
on muscle activation during walking and trained forelimb movement 26, and follows different
dynamics for reach and grasp movements ’’. Notably, our finding of decaying dynamics for BMI
control contrasts with rotational dynamics observed during natural arm movement 2131622 Wwe
speculate this could be because controlling the BMI relied more on feedback control than a well-
trained physical movement, because controlling the BMI did not require the temporal structure of

commands needed to control muscles for movement?, and/or because controlling the BMI did not

16
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3. Recent theoretical work shows that

356  involve proprioceptive feedback of physical movemen
357  cortico-basal ganglia-thalamic loops can switch between different cortical dynamics useful for
358  different temporal patterns of commands *°.

359 The use of invariant dynamics to issue commands has implications for how the brain

78,79

360 learns new behavior >", enabling the brain to leverage pre-existing dynamics for initial learning

361 238981 and to develop new dynamics through gradual reinforcement #>%, This learning that

362  modifies dynamics relies on plasticity in cortico-basal ganglia circuits 8-

and permits the brain
363 toreliably access a particular neural activity pattern for a given command and movement *2, even
364  if the same neural activity pattern is not used to issue the same command across different

365 movements.

366 Modeling invariant dynamics can inform the design of new neuroprosthetics that can

367  generalize commands to new behaviors '® and classify entire movement trajectories . We

368  expect that as new behaviors are performed, distinct neural activity patterns will be used to issue
369  the same command, but that invariant dynamics can predict and thus recognize these distinct

370  neural patterns as signal for the BMI rather than noise. In addition, our results inform the design
371  of rehabilitative therapies to restore dynamics following brain injury or stroke to recover

372 movement ¥7#8,

373 Overall, this study put the output of a neural population into focus, revealing how rules
374  for neural dynamics are used to issue commands and produce different movements. This was

375  achieved by studying the brain as it controlled the very neural activity we recorded. BMI 78892,
376  especially combined with technical advances in measuring, modeling, and manipulating activity

377  from defined populations, provides a powerful technique to test emerging hypotheses about how

378  neural circuits generate activity to control behavior.
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Figure 1. BMI to study neural population control of movement.

(A) Schematic of the BMI system.
(B) Schematic of decoder calibration.
(C) Single trials of BMI control.

(D) Average target acquisition time per session.
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412  (E) Example of the same command (black arrow) being issued during single trials of different
413 conditions. The example command was in the -45 degree direction and the smallest magnitude
414  bin of analysis.

415  (F) Left: The average command subtrajectory from -500ms to 500ms. Right: The average

416  position subtrajectory from -500ms to 500ms. See Fig. S1 for analysis of subtrajectories.
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418  Figure 2. Using the BMI to test whether invariant dynamics are used to control different
419 movements.

420  (A) Illustration of invariant dynamics.

421  (B) Multiple neural activity patterns (e.g. white and black square) issue the same command. An
422 illustrative decoder defines the command at time t as the difference between two neurons’

423  instantaneous activity x,(t) — x;(t), symbolized with orange arrows (top right) indicating the
424  command’s magnitude and sign.

425  (C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1
426  (blue) and 2 (green) are driven by the same commands in different temporal orders.
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427 (D) Neural activity that follows invariant dynamics % in order to issue the commands for

428  movement. See Fig. S3D for another example of invariant dynamics (decaying dynamics).
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430  Figure 3. The same command is issued by different neural activity patterns in different
431 movements.
432 (A) The same command (orange upward arrow) is issued in different conditions with different
433  activity patterns (blue, green dots). These patterns deviate from the condition-pooled average
434  activity pattern for the command (black dot).
435  (B) Left: An example neuron’s average firing rate (colored dots) for the example command and
436  conditions from Fig. 1F (position subtrajectories plotted at right legend), as well as the condition-
437  pooled average activity (dashed black line labeled “condition-pool”). The condition-shuffled
438  distributions of average activity are shown with gray boxplots indicating the 2.5, 25" 50% 75%
439  and 97.5" percentiles. Asterisk indicates the distance for the (command, condition, neuron)
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440  exceeded the shuffle distance (p<0.05). 5/9 or 62.5% of the examples were significant. Distance
441  was significantly greater than shuffle distance aggregating over all (command, condition,

442 neuron) tuples: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 pooled
443  over sessions. Right: Population distance normalized to the shuffle mean (colored dots). 7/9 or
444 78% of examples were significant. Fig. S2A shows population distances for all (command,

445  condition) tuples in this session.

446  (C) The distribution of normalized population distances across (command, condition) tuples.
447  Colored ticks indicate distances in (B) right. See Fig. S2BC for additional distance distributions.
448 (D) Normalized population distance averaged across (command, condition) tuples (Monkey G
449  [J]: n=9 [4] sessions). Bars indicate the average across sessions. Population distance was

450  significantly greater than shuffle distances, aggregating over all (command, condition) tuples:
451  Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled over sessions.
452  (E) Left: Fraction of (command, condition) tuples with distance significantly greater than shuffle
453  distance. Middle: Fraction of commands with distance significantly greater than shuffle distance,
454  aggregating over conditions. Right: Fraction of neurons with distance significantly greater than
455  shuffle distance, calculated for each (command, condition) separately and aggregating over all
456  (command, condition) tuples for statistics. Throughout (E): dashed line indicates chance level
457  (fraction equal to 0.05 significantly deviating from shuffle distance) and datapoints are each of 9
458  [4] sessions for monkey G [J]. See Fig. S6E-H for the relationship between population distance

459  and command subtrajectories across pairs of conditions. See Table S1 for statistics details.
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(A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots) that
issue a given command (orange arrow) based on previous activity. See Fig. S6 for predictions of
the relationship between activity patterns across pairs of conditions.

(B) Models were tested on neural activity for a command (Lef?, magenta) or condition (Right,
purple) left-out of training the model. See Fig. S4 for elaboration on invariant dynamics
generalization.

(C) The coefficient of determination (R?) of models predicting neural activity given the
command it issues and previous activity, evaluated on test data not used for model fitting
(Monkey G [J]: n=9 [4] sessions). See Fig. S3 for properties of the models. Inset shows raw R?,
where “shuffle” is the 95" percentile of the shuffle distribution of R?. Main panel shows R?
normalized to shuffle. Full dynamics, command left-out dynamics, and condition left-out
dynamics all predicted neural activity significantly better than shuffle dynamics. For each model:
Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled. Fig.
S5 shows models with behavior variables and non-linear dynamics.

(D) Left. Average activity for the example neuron, command, and conditions from Fig. 3B, left.
Right. Prediction of the activity in Left by the full dynamics model (stars), the shuffle dynamics
model (black boxplot distribution), and the model predicting neural activity only using the
command (gray triangle). 8/9 or 88.9% of these examples were predicted significantly better than
shuffle dynamics. The full dynamics model predicted individual neuron activity better than
shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-

value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).
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(E) Left. Average population activity for the example command and conditions from Fig. 3B
right, visualized along the activity dimension that captured the most variance (the first principal
component, labeled “PC1”, of condition-specific average population activity). Right. Prediction
of activity in Left by the full dynamics model (stars), the shuffle dynamics model (black boxplot
distribution), and the model predicting neural activity only using the command (gray triangle).
9/9 or 100.0% of these examples were predicted with significantly lower error than shuffle
dynamics (prediction was calculated using full population activity, not just PC1). The full
dynamics model predicted population activity with lower error than shuffle dynamics,
aggregating over all (command, condition, neuron) tuples (Monkey G [J]: p-value < 0.001 for
9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

(F) Model R? from predicting the component of average neural activity for a given command that
is specific to a condition, comparing the full dynamics model (dark gray bar and filled dots) with
the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G [J]: n=9 [4]
sessions). The full dynamics model predicted significantly more variance than shuffle dynamics
(Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

(G) Left. Fraction of (command, condition) tuples where full dynamics predicts average
population activity significantly better than shuffle dynamics. Center. Fraction of commands
where full dynamics predicts average population activity significantly better than shuffle
dynamics, calculated for each condition separately and then aggregated over all conditions for
statistics. Right. Fraction of neurons where full dynamics predicts the neuron’s average activity
significantly better than shuffle dynamics, calculated for each (command, condition) separately
and then aggregated over all (command, condition) tuples for statistics. Throughout E: datapoints

are each of 9[4] sessions for Monkey G[J].
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509  See Table S1 for statistics details.
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Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue

the next command.
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(A) A linear dynamics model predicts the transition from current neural activity (colored rings)
to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e. the
component of neural activity in the decoder space).

(B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink
plane), then they do not predict the next command (i.e. the component of neural activity in the
decoder space).

(C) The coefficient of determination (R?) of models predicting next neural activity given current
neural activity, evaluated on test data not used for model fitting (Monkey G [J]: n=9 [4]
sessions). Inset shows raw R?, where “shuffle” is the 95" percentile of the shuffle distribution of
R2. Main panel shows R? normalized to shuffle. All models predicted next neural activity
significantly better than shuffle dynamics. For each model, Monkey G [J]: p-value < 0.001 for
9/9 [4/4] sessions, p-value < 0.001 for sessions pooled.

(D) R? of full model for each neural activity dimension (dynamics eigenvector), sorted by R2.
(E) Same as (C), except prediction of next command given current neural activity (Monkey G
[J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command
significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey
G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s. for
0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command left-out
dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions
pooled.

(F) Analyses of how well the next command is predicted for individual (command, condition)
tuples. The full dynamics model predicted condition-specific next command better than shuffle

dynamics, aggregating over all (command, condition) tuples (Monkey G [J]: p-value < 0.001 for
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9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). Left. Fraction of (command, condition)
tuples where full dynamics predicts the next command significantly better than shuffle dynamics
(Monkey G [J]: n=9 [4] sessions). Right. Fraction of commands where full dynamics predicts the
next command significantly better than shuffle dynamics, calculated for each condition
separately and then aggregated over all conditions for statistics (Monkey G [J]: n=9 [4] sessions).
(G) Visualization of the command angle (/ef?) (i.e. the direction that the command points) for the
example command and conditions (right) from Fig. 3B. For each condition (each row),
visualization shows the average current command angle (first column), the average next
command angle (second column), and the prediction of the average next command angle by the
full dynamics model (third column).

(H) For each (command, condition) tuple, prediction of the angle between the next command and
the condition-pooled average next command. Left. Fraction of (command, condition) tuples for
which the sign of the angle is accurately predicted (positive=turn counterclockwise,
negative=turn clockwise). Full dynamics predictions are significantly more accurate than shuffle
dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled
sessions. Right. Error in predicted angle. Full dynamics predictions are significantly more
accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value <
0.001 for pooled sessions).

See Table S1 for statistics details.
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Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural
population needs to issue commands based on feedback.

(A) A model of optimal feedback control for movement that incorporates invariant neural
dynamics.

(B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and
clockwise (cw) movements to 8 targets resulting in 24 conditions). Top: Full Dynamics Model that
uses invariant dynamics fit on experimental data. Bottom: No Dynamics Model that uses dynamics
matrix A set to 0.

(C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9 [4]
sessions). The population required significantly less input to control movement under the Full
Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black ‘ND’). Un-
normalized data were pooled across sessions and compared with a linear mixed effect (LME)

model between input magnitude and model category with session modeled as random effect
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569  (Monkey G [J]: p-value < 0.001). Individual sessions were analyzed with a Wilcoxon signed-
570  rank test that paired condition across the models (Monkey G [J]: p-value<0.05 for 9/9 [4/4]
571  sessions).

572 (D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in input
573  magnitude between Decoder-null Dynamics (pink ‘D’) and No Dynamics (black ‘ND’) when
574  pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions (Monkey G
575  [J]: p-value<0.05 for 0/9 [0/4] sessions).

576  (E) The same command is issued across conditions in both the Full Dynamics Model and No
577  Dynamics Model. Average position subtrajectories are shown locked to an example command
578  across conditions.

579  (F) Distance between average population activity for a (command, condition) and the average
580  activity for the command pooling across conditions, normalized by the mean distance of the
581  shuffle distribution (gray boxplots showing mean, 0™ percentile, 25, 75® and 95" percentile).
582  Left: data from Full Dynamics Model. Right: data from the No Dynamics Model. Asterisk

583  indicates distance is greater than shuffle (p-value<0.05).

584  (G) Same as (F), but each point is an individual session pooling over (command, condition)
585  tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model were
586  greater than shuffle. Data was pooled over sessions using a LME with session modeled as

587  random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed with a
588  Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No difference was
589  detected in population distances between the No Dynamics Model and shuffle when pooling
590  across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for

591  Monkey G (J) on 0/9 (0/4) sessions).
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592  (H) Same as (G), but for the Decoder-null Dynamics Model (pink ‘D’). No difference was

593  detected in population distances between the Decoder-null Dynamics Model and shuffle when
594 pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05
595  for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected in population distances
596  between the No Dynamics Model and shuffle when pooling across sessions (Monkey G [J]: p-
597  value > 0.05) and on individual sessions (p-value<0.05 for Monkey G(J) on 0/9 (0/4) sessions).

598  See Table S2 for statistics details.
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STAR Methods

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contacts, Rui M. Costa (rc3031@columbia.edu) and Jose M. Carmena
(jcarmena@berkeley.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e Monkey BMI data (binned spike counts, cursor trajectories, condition parameters,
decoder parameters, and task parameters) has been deposited the DANDI Archive at

http://dandiarchive.org/dandiset/000404/draft and is publicly available as of the date of

publication. Accession numbers / DOIs are listed in the key resources table.
e All original code has been deposited at

https://github.com/pkhannal04/bmi_dynamics_code and is publicly available as of the

date of publication. DOIs are listed in the key resources table.
e Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS
All training, surgery, and experimental procedures were conducted in accordance with the NIH
Guide for the Care and Use of Laboratory Animals and were approved by the University of
California, Berkeley Institutional Animal Care and Use Committee (IACUC). Two adult male

rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey J) (Macaca mulatta,
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RRID: NCBITaxon:9544) were used as subjects in this study. Prior to this study, Monkeys G and
J were trained at arm reaching tasks and spike-based 2D neuroprosthetic cursor tasks for 1.5

years. All animals were housed in pairs.

METHOD DETAILS

Electrophysiology and experimental setup

Two male rhesus macaques were bilaterally, chronically implanted with 16 x 8 arrays of
Teflon-coated tungsten microwire electrodes (35 mm in diameter, 500 mm separation between
microwires, 6.5 mm length, Innovative Neurophysiology, Durham, NC) in the upper arm area of
primary motor cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target
areas was performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus
brain . Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5
- 3 mm, guided by stereotactic coordinates.

During behavioral sessions, neural activity was recorded, filtered, and thresholded using the
128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey J) or the
256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey G). Channel
thresholds were manually set at the beginning of each session based on 1-2 min of neural
activity recorded as the animal sat quietly (i.e. not performing a behavioral task). Single-unit and
multi-unit activity were sorted online after setting channel thresholds. Decoder units were
manually selected based on a combination of waveform amplitude, variance, and stability over
time.

Neuroprosthetic decoding

Subjects’ neural activity controlled a two-dimensional (2D) neuroprosthetic cursor in real-
time to perform center-out and obstacle-avoidance tasks. The neuroprosthetic decoder consists of

two models:
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646 1) A cursor dynamics model capturing the physics of the cursor’s position and velocity.
647  2) A neural observation model capturing the statistical relationship between neural activity and the
648  cursor.

649  The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent for the
650  cursor and to correspondingly update the cursor.

651  Decoder algorithm and calibration -- Monkey G

652 Monkey G used a velocity Kalman filter (KF) °** that uses the following models for cursor

653  state c¢; and observed neural activity x; :

654 Ct = ACt_l + Wt' Wt""N(O, W)
655 xt = CCt + qt' qt"’N(O, Q)
656 In the cursor dynamics model, the cursor state ¢, € R> was a 5-by-1 vector

657 [posx, pox,vely,vel,, 1]T, A € R5*> captures the physics of cursor position and velocity, and w,

658 is additive Gaussian noise with covariance W € R>*> capturing cursor state variance that is not
659  explained by A.

660 In the neural observation model, neural observation x, € R was a vector corresponding
661  to spike counts from N units binned at 10 Hz, or 100ms bins. € models a linear relationship
662  between the subjects’ neural activity and intended cursor state. The decoder only modeled the
663  statistical relationship between neural activity and intended cursor velocity, so only the columns
664  corresponding to cursor state velocity and the offset (columns 3-5) in C were non-zero. Q is
665  additive Gaussian noise capturing variation in neural activity that is not explained by Cc;. For

666  Monkey G, 35-151 units were used in the decoder (median 48 units).
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667 In summary, the KF is parameterized by matrices {A € R5*5,W € R>*>,C € RN*5,Q €
668  RN*N} The KF equations used to update the cursor based on observations of neural activity are
669  defined as in %°.

670 The KF parameters were defined as follows. For the cursor dynamics model, the A and W

671  matrices were fixed as in previous studies °°. Specifically, they were:

1 0 01 O O 0 0 00O
01 0 01 O 0 0 00 O
672 A=|(0 0 08 0 0} wW=10 0 7 0 0
0 0 0 08 0 0 0 0 7 0
0 0 O 0 1 0 0 0 0 O

673  where units of cursor position were in cm and cursor velocity in cm/sec.

674 For the neural observation model, the C and Q matrices were initialized from neural and
675  cursor kinematic data collected at the beginning of each experimental session while Monkey G
676  observed 2D cursor movements that moved through either a center-out task or obstacle avoidance
677  task. Maximum likelihood methods were used to fit C and Q.

678 Next, Monkey G performed a “calibration block” where he performed the center-out or
679  obstacle-avoidance task movements as the newly initialized decoder parameters were continuously
680  calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This calibration block
681  was performed in order to arrive at parameters that would enable excellent neuroprosthetic
682  performance. Every 100ms, decoder matrices C and Q were adapted using the recursive maximum
683  likelihood CLDA algorithm #°. Half-life values, defining how quickly C and Q could adapt, were
684  typically 300 sec, and adaptation blocks were performed with a weak, linearly decreasing “assist”
685  (re-defining c, as a weighted linear combination of user-generated c; and optimal c; to drive the
686  cursor to the target). Typical assist values at the start of the block were 90% user-generated, 10%

687  optimal and decayed to 100% user-generated, 0% optimal over the course of the block. Following
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688 CLDA, decoder parameters were fixed. Then the experiment proceeded with Monkey G
689  performing the center-out and obstacle-avoidance tasks.

690  Decoder algorithm -- Monkey J

691 Monkey J used a velocity Point Process Filter (PPF) *’*®. The PPF uses the same cursor
692  dynamics model for cursor state c¢; as the KF above, but uses a different neural observations model

693  (a Point Process model rather than a Gaussian model) for the spiking S}V of each of N neurons:

694 Ct = ACt_l + Wy, Wt~N(0, W)
N
: . j .
69 p(siVIv) = | [yt Ive @))% exp(=25 (el ¢7) 1)
j=1
696 In the neural observations model, neural observation Stj is the j™ neuron’s spiking activity,

697  equal to 1 or 0 depending on whether the j™ neuron spikes in the interval (¢,t + A). We used At
698 = 5ms bins since consecutive spikes rarely occurred within S5ms of each other. For Monkey J, 20
699  or 21 units were used in the decoder (median 20 units). The probability distribution over spiking
700  p(SEN|v,) was a point process with A;(t vy, ¢’) as the j* neuron's instantaneous firing rate at
701 time t. A;(t |vy, ¢’) depended on the intended cursor velocity v, € R? in the two dimensional
702 workspace and the parameters ¢/ for how neuron j encodes velocity. A (t vy, ¢’) was modeled
703 as alog-linear function of velocity:

704 Ai(t vy, @7) = exp(B; + a] vy)

705  where ¢/ parameters consist of a; € R?,B; € R*.

706 In summary, the PPF is parameterized by {4 € R5*>,W € R>*>, N}, The PPF equations
707  used to update the cursor based on observations of neural activity are defined as in *%.

708 The PPF parameters were defined as follows. For the cursor dynamics model, the A and
709 W matrices are defined as:
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1 0 0005 0 O [0 0 0 0 o]
o 1 0o 0005 o 0 0 0 0 0
A=1lo 0 0989 0 ol w=1lo 0 37x105 0 0|
lo 0 0 0989 OJ [o 0 0 3.7 %105 oJ
00 O 0 1 0 0 0 0 0

where units of cursor position were in m and cursor velocity in m/sec.

For the neural observations model, parameters ¢ were initialized from neural and cursor
kinematic data collected at the beginning of each experimental session while Monkey J observed
2D cursor movements that moved through a center-out task. Decoder parameters were adapted
using CLDA and optimal feedback control intention estimation as outlined in *’. Following CLDA,
decoder parameters were fixed. Then the experiment proceeded with Monkey J performing the
center-out and obstacle-avoidance tasks.

Definition of the command for the BMI

We defined the “command” for the BMI as the direct influence of subjects’ neural activity
x; (binned at 100ms) on the cursor. Concretely, in both decoders, the command was a linear
transformation of neural activity that we write as Kx; which updated the cursor velocity.
Command definition -- Monkey G

For Monkey G, the update to the cursor state c; due to cursor dynamics and neural observation
X, can be written as:

¢t = Frepq + Kexy

where F;c;_, is the update in cursor state due to the cursor dynamics process and K;x; is what we
have defined as the command: the update in cursor state due to the current neural observation.
K, € R>™ is the Kalman Gain matrix and F, = (I — K,C)A. In practice K, converges to its steady-
state form K within a matter of seconds °’, and thus F, converges to F = (I — KC)A, so we can

write the above expression in its steady state form:
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¢t = Fceq + Kx¢
In our implementation, the structure of K is such that neural activity x; directly updates cursor
velocity, and velocity integrates to update position. The following technical note explains the
structure of K. Due to the form of the A, W matrices, Rank(K) = 2. In addition, decoder
adaptation imposed the constraint that the intermediate matrix CTQ~1C was of the form al,
where a = mean(diag(CTQ~1C)). Due to this constraint, the rows of K that update the position
of the cursor are equal to the rows of K that update the velocity multiplied by the update
timestep: K(1:2,:) = K(3:4,:) = dt *® (see independent velocity control in the reference). Given
this structure of K, neural activity’s contribution to cursor position is the simple integration of
neural activity’s contribution to velocity over one timestep.

In summary, since Kx; reflects the direct effect of the motor cortex units on the velocity of
the cursor, we term the velocity components of Kx; the “command”. We analyzed the neural spike
counts binned at 100ms that were used online to drive cursor movements with no additional pre-
processing.

Command definition -- Monkey J
For Monkey J the cursor state updates in time as:
¢t = fr(ce—1) + Kexe
where
fe(ce-1) = (Ace—y — Ke®4t=14), K, = P,C
Here f;(c,_4) is the cursor dynamics process and K,x; is the neural command. P, € R5* is the

estimate of cursor state covariance, and C € R>*" captures how neural activity encodes velocity

T
as a matrix where each column is composed of [0, 0, a}”’el, a]y vel B j] for the jth unit.
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753 We define the command for analysis in this study as K, x;, where K, 1s a time-invariant
754  matrix that almost perfectly approximates K;. While the PPF’s K; does not necessarily converge
755  in the same way it does in the KF, for all four analyzed sessions, neural activity mapped through
756  K,s € R?*N could account for 99.6, 99.6, 99.5, and 99.8 percent of the variance of the command
757  respectively (Kyx; = Ko5:X¢). In addition, due to the accuracy of this linear approximation, we also
758  match Monkey J’s timescale of neural activity and commands to that of Monkey G. In order to
759  match timescales across the two animals (Monkey G: 100 ms updates, Monkey J: Sms updates),
760  Monkey J’s commands were aggregated into 100 ms bins by summing K, ¢ x; over 20 consecutive
761  Sms bins to yield the aggregated command over 100ms. Correspondingly, Monkey J’s neural
762  activity was also summed into 100ms bins by summing x; over 20 consecutive Sms bins.

763  Neuroprosthetic tasks

764 Subjects performed movements in a two-dimensional workspace (Monkey J: 24cm x 24cm,
765  Monkey G: 50cm x 28cm) for two neuroprosthetic tasks: a center-out task and an obstacle-
766  avoidance task. We define the movement “condition” as the task performed (“co” = center-out
767  task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle in the obstacle-
768  avoidance task) and the target achieved (numbered 0 through 7). Thus, there were up to 24 different
769  conditions possible (8 center-out conditions, 8 clockwise obstacle-avoidance conditions, 8
770  counterclockwise obstacle-avoidance conditions). In practice, subjects mostly circumvented the
771  obstacles for a given target location consistently in a clockwise or counterclockwise manner (as
772 illustrated in Fig. 1C right) resulting in an average of 16-17 conditions per session.

773  Center-out task:

774 The center-out task required subjects to hold their cursor within a center target (Monkey J:

775  radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of time (Monkey J: hold = 0.25
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776  sec, Monkey G: hold = 0.2 sec) before a go cue signaled the subjects to move their cursor to one
777  of eight peripheral targets uniformly spaced around a circle. Each target was equidistant from the
778  center starting target (Monkey J: distance = 6.5cm, Monkey G: distance = 10cm). Subjects then
779  had to position their cursor within the peripheral target (Monkey J: target radius = 1.2cm, Monkey
780  G: target radius = 1.7cm) for a specified period to time (Monkey J: hold = 0.25, Monkey G: hold
781 = 0.2sec). Failure to acquire the target within a specified window (Monkey J: 3-10 sec, Monkey
782  G: 10 sec) or to hold the cursor within the target for the duration of the hold period resulted in an
783  error. Following successful completion of a target, a juice reward was delivered. Monkey J was
784  required to move his cursor back to the center target to initiate a new trial, and Monkey G’s cursor
785  was automatically reset to the center target to initiate a new trial.

786  Obstacle-avoidance task:

787 Monkey G performed an obstacle-avoidance task with a very similar structure to the center-
788  out task. The only difference was that a square obstacle (side length 2 or 3 cm) would appear in
789  the workspace centered exactly in the middle of the straight line connecting the center target
790  position and peripheral target position. If the cursor entered the obstacle, the trial would end in an
791  error, and the trial was repeated.

792 Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial
793  (not necessarily center) target and another target. On arrival at the initial target, an ellipsoid
794  obstacle appeared on the screen. If the cursor entered the obstacle at any time during the movement
795  to the peripheral target, an error resulted, and the trial was repeated. Target positions and obstacle
796  sizes and positions were selected to vary the amount of obstruction, radius of curvature around the
797  obstacles, and spatial locations of targets. Trials were constructed to include the following

798  conditions: no obstruction, partial obstruction with low-curvature, full obstruction with a long
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799  distance between targets, and full obstruction with a short distance between targets thus requiring
800  ahigh curvature. See *® for further details. In this study, only trials that included partial obstruction
801  or full obstruction were analyzed as “obstacle-avoidance” trials.

802  Number of sessions

803 We analyzed 9 sessions of data from Monkey G and 4 sessions of data from Monkey J where
804  on each session, monkeys performed both the center-out and obstacle-avoidance tasks with the
805  same decoder. Only successful trials were analyzed.

806  Optimal feedback control model and simulation

807 We introduce a model based on optimal feedback control (OFC) for how the brain can use
808 invariant neural population dynamics to control movement based on feedback. From the
809  perspective of the brain trying to control the BMI, we used the model to ask how invariant neural
810  population dynamics affect the brain’s control of movement.

811 Thus, we performed and analyzed simulations of a model in which the brain acts as an
812  optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs to a
813  neural population so that it performs the center-out and obstacle-avoidance tasks (Fig. 6). The
814  feedback controller computed optimal inputs to the neural population based on the current cursor
815  state and current neural population activity. Specifically, the inputs were computed as the solution
816  of an optimization problem that used knowledge of the target and task, decoder, and the neural
817  population’s invariant dynamics. We simulated 20 trials for each of 24 conditions: 8 center-out
818  conditions, 8 clockwise obstacle-avoidance conditions, and 8 counterclockwise obstacle-
819  avoidance conditions. The neural and cursor dynamics processes in the simulation are summarized
820  below:

821  Neural population dynamics with input
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822 In our simulation, the neural activity of N neurons x; € R" is driven by invariant dynamics
823 A € RVN*N that act on previous activity x;_;, an activity offset b € RN, inputs from the feedback

NXN “and noise g,_; € RV:

824  controller u,_, € R" that are transformed by input matrix B € R
825 xt = Axt_l + b + But_l + Or_1
826 The input matrix B was set to be the identity matrix such that each neuron has its own

827  independent input. Each neuron also had its own independent, time-invariant noise (see Noise

828  section below for how the noise level was set).
829 For notational convenience, an offset term was appended to x;: [ﬁt] € RN*1  This enabled

830  incorporating the offset b into the neural dynamics matrix:

=18 2]+ Bl

832  BMI cursor dynamics
833  The cursor update equations for the simulation matched the steady state cursor update equations

834  in the online BMI experiment (see “Definition of the command for the BMI” above):

835 ¢t = Fceq + Kxp 4

836 As in the experiment, cursor state ¢, € RNe where N, = 5 was a vector consisting of two-
837  dimensional position, velocity, and an offset: [posx,poxyvelx,vely, 1]T. K € RNXN was the
838  decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent K, (Monkey J). F €
839  RNe*Ne was set to the decoder’s steady-state cursor dynamics matrix (Monkey G). For Monkey J,
840  F was estimated using the expression for calculating the steady-state cursor dynamics matrix:
841  Foo = (I — KotCost) * A1goms, Where I € RNe*Ne €., € RV*Ne was set using the a, 8 velocity

842  encoding parameters from the point process filter (see above): Coe:(j,:) = [0 0 0.01=%

843  a;j(1) 0.01xq;(2) 0.01= ﬁj]. Values in C,g; were multiplied by 0.01 to adjust for velocities
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844  expressed in units of cm/sec (in the simulation) instead of m/sec (as in PPF). A;oms Was set to the

845  same A used by Monkey G so that the cursor dynamics would be appropriate for 100ms timesteps:

10 01 0 O
01 0 01 O
846 Ajooms =10 0 08 0 O
0 0 0 08 0
0o 0 0 01
847  Joint dynamics of neural activity and cursor
848 The feedback controller sent inputs to the neural population which were optimal considering

849  the task goal, the cursor’s current state, the neural population’s invariant dynamics, and the neural
850  population’s current activity. To solve for the optimal input given all the listed quantities, first, the

851  neural and cursor states are jointly defined. We append the cursor state ¢; to the neural activity

852  state [xlt] to form z, € RN*1*Ne:

Xt A b 0][*t-1 B Ot—1
853 zz=|(1]=]0 1 of| 1 |+ Out_1+[Ol
Ce K 0 Fll¢t-1 0 0
854 In words, this expression defines a linear dynamical system where input u;_; influences only

855  the neural activity x;, x; evolves by invariant dynamics A with offset vector b, and x, drives cursor
856 ¢, through the BMI decoder K. Finally, noise o;_; only influences neural activity x; (see Noise
857  section below for how the noise level was set).

858  OFC to reach a target

859 Our OFC model computes input u; to the neural population such that the activity of the neural
860  population x; drives the cursor to achieve the desired final cursor state (i.e. the target) with minimal
861  magnitude of input u,. Concretely, in the finite horizon LQR model, the optimal control sequence

862  (u;,t=0,1,..T — 1) is computed by minimizing the following cost function:
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T-1
T T
863 ](uO:T—l) = (Z((zt - Ztarg) Q(Zt - Ztarg) + u?Rut)) + (ZT - Ztarg) QT(ZT - Ztarg)
t=0
864 In our model, Q =0 € RWHIFNIX(N+1+Ne) R — | € RN*N ‘and Qr =
0 € RNXN 0 0
865 0 0 € RY 0 € RINH1+NoX(N+1+Ne) - Thys, the final cursor state
0 0 [ x 10% € RNcXNe

866  error is penalized, and the magnitude of the input to the neural population u, is penalized (with
867  setting R as non-zero). Because the magnitude of the input to neural activity is penalized, the
868  controller sends the minimal input to the neural population to produce task behavior. We defined
869  our cost function so that the cursor state during movement before the final cursor state is not
870  penalized, and the neural state is never penalized.

871 The optimal control sequence (u;,t =0,1,..T — 1) is given by u; = Kthr(zt — Ztarg)

872  where feedback gain matrices (Ktl 7 t=0,1,..T — 1) are computed iteratively solving the
873  dynamic Ricatti equation backwards in time. We note that we computed the LQR solution for u;
874  using the dynamics of state error z; — Z;4,4, and that the dynamics of state error for non-zero target

875  states are affine rather than strictly linear.
876  OFC for center-out task

877 Center-out task simulations were run with the initial cursor position in the center of the

878  workspaceatc, = [0,0,0, 0, 1] and the target cursor state at [targetx, target,,vel, = 0,vel, =

879 0, 1]T. Targets were positioned 10cm away from the origin (same target arrangement as Monkey
880  @G). Target cursor velocity was set to zero to enforce that the cursor should stop at the desired target
881 location.

882 Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey

883  J were used (F, K) in simulations. The invariant neural dynamics model parameters (4, b) were
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884  varied depending on the simulated experiment (see below). The horizon for each trial to hit its
885  target state was set to be T = 40 (corresponding to 4 seconds based on the BMI’s timebin of
886  100ms). Constraining each trial to be equal length facilitated comparison of performance across
887  different simulation experiments. We verified that all of our simulated trials completed their tasks
888  successfully.

889  OFC for obstacle-avoidance using a heuristic

890 Obstacle-avoidance task simulations were performed with the same initial and target cursor
891  states as the center-out task, except that the cursor circumvented the obstacle to reach the target in
892  both clockwise and counterclockwise movements. We used a heuristic strategy to direct cursor
893  movements around the obstacle; we defined a waypoint as an intermediate state the cursor had to
894  reach enroute to the final target. The heuristic solution performs optimal control from the start
895  position to the waypoint, and then optimal control from the waypoint to the final target.
896  Importantly, this solution minimizes the amount of input needed to accomplish these goals. We
897  used a heuristic solution because the linear control problem of going from the initial cursor state
898  to the final target cursor state with the constraint of avoiding an obstacle is not a convex
899  optimization problem.

900 Concretely, for the first segment of the movement, a controller with a horizon T=20 directed
901 the cursor to the waypoint, and then a controller with horizon T=20 directed the cursor from the
902  waypoint to the final target (such that the trial length was matched to the center-out task simulation
903  with T=40).

904 The waypoint was defined relative to the obstacle position as follows. First the vector between
905  the center target and the obstacle position was determined (V,ps center)- The Vops center Was then

906  rotated either +90 degrees or -90 degrees corresponding to clockwise and counterclockwise
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907 movements. The waypoint position was a 6¢cm distance in the direction of the rotated vector, from
908 the obstacle center. Finally, the desired velocity vector of the intermediate target was set to be in
909  the direction of Vg center» With a magnitude of 10 cm/s, so that the cursor would be moving in a
910  direction consistent with reaching its final target in the second segment of the movement after the
911  waypoint was reached.

912 To compute the input u, to execute these movements, we defined the state error at each time

913t as Zepror = Ztarg — Zt » Where Zyq,g was the waypoint for the first half of the movement, and

914 Z;4rg was the final target for the second half of the movement. The linear quadratic regulator

915  feedback gain Kthr matrices were computed on the appropriate state error dynamics with the
916  shortened horizon T=20.

917  “Full Dynamics Model” Simulation

918 Simulations of the “Full Dynamics Model” consisted of OFC with the invariant dynamics
919  parameters (4, b) that were fit on experimentally-recorded neural activity from each subject and
920  session (see “Invariant dynamics models” below, under “Quantification and Statistical Analysis”).
921 Kthr was computed using these experimentally-observed (4, b) parameters. The initial state of
922 neural activity (i.e. x; at t=0) was set to the fixed point of the dynamics.

923 “No Dynamics Model” Simulation

924 Simulations of the “No Dynamics Model” consisted of OFC with invariant dynamics
925  parameter A set to zero (A = 0). The experimentally-observed offset b was still used from each
926  subject and session. Kthr was computed using A = 0 and the experimentally-observed b, and thus
927 it was different than in the “Full Dynamics Model.” The initial state of neural activity (i.e. x; at

928  t=0) was set to offset b, the fixed point of dynamics with A = 0.

929  “Decoder-null Dynamics Model” Simulation
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930 Simulations of the “Decoder-null Dynamics Model” consisted of OFC with the
931  experimentally-observed invariant dynamics parameters (4, b) that were restricted to the decoder-
932  null space, i.e. each invariant dynamics model was fit only on the projection of neural activity into

933 the decoder-null space (see “Invariant dynamics models” under “Quantification and Statistical

934  Analysis”). Ktl " was computed using these experimentally-observed decoder-null (4,b)
935  parameters, and thus it was different than in the “Full Dynamics Model.” The initial state of neural
936 activity (i.e. x; at t=0) was set to the fixed point of the decoder-null invariant dynamics.

937 The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”,

938  which consisted of OFC with Kthr computed using A = 0 and the experimentally-observed
939  decoder-null offset b for each subject and session, and thus it was different than in the previously
940  defined models. The initial state of neural activity (i.e. x; at t=0) was set to the decoder-null offset
941 b, the fixed point of dynamics with A = 0.

942  Noise

943 In our OFC model, movement errors arise due to noise in the neural activity, and
944  subsequent neural activity issues commands based on feedback to correct these errors. We used
945  two considerations to choose the noise level for neural activity. First, we sought to add a level of
946  neural noise that was comparable to the neural “signal” needed to perform control in the absence
947  of noise. Second, we wanted to add the same level of noise to the dynamics model (either “Full
948  Dynamics Model” or “Decoder-null Dynamics Model”) and the corresponding “No Dynamics
949  Model,” in order to facilitate comparison.

950 Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each

951  of 24 conditions, and we calculated a, the average variance of a neuron across time and trials.
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952 Then for our noisy simulations of the “No Dynamics Model” and the corresponding
953  dynamics models, Gaussian noise with zero mean and fixed variance a was added to each neuron
954  at each timestep: x; = Ax;_; + Bu;_1 + g,_1, where 0;~N(0, al). Thus, the overall level of
955  added noise (the sum of noise variance over neurons) matched the overall level of signal in the
956  noiseless No Dynamics Model simulation (sum of activity variance over neurons).

957 We note that our main findings (Fig. 6CD, 6GH) held even with different noise levels.
958 QUANTIFICATION AND STATISTICAL ANALYSIS

959  Command discretization for analysis

960 We sought to analyze the occurrence of the same command across different movements.
961  Commands on individual time points were analyzed as the same command if they fell within the
962  same discretized bin of continuous-valued, two-dimensional command space. All commands from
963 rewarded trials in a given experimental session (including both tasks) were aggregated and
964  discretized into 32 bins. Individual commands were assigned to one of 8 angular bins (bin edges
965  were 22.5, 67.5,112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude
966  bins. Angular bins were selected such that the straight line from the center to each of the center-
967  out targets bisected each of the angular bins as has been done in previous work®® (Fig. S1A).
968  Magnitude bin edges were selected as the 23.75", 47.5% 71.25% and 95" percentile of the
969  distribution of command magnitudes for that experimental session. Commands falling between the
970 95" and 100™ percentile of magnitude were not analyzed to prevent very infrequent noisy
971  observations from skewing the bin edges for command magnitude.

972  Conditions that used a command regularly

973 For each session, the number of times each of the 32 (discretized) commands was used in a

974  given condition was tabulated. If the command was used >= 15 times for that condition within a
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975  given session pooling across trials, that condition was counted as using the command regularly
976  and was used in all analyses involving (command, condition) tuples. Commands that were used <
977 15 times were not used in analysis involving (command, condition) tuples. We note that the main
978  results of the study were not affected by this particular selection. Typically, an individual
979  command is used regularly in 5-10 conditions (distribution shown in Fig. STA).

980  Cursor and command trajectory visualization

981  Cursor position subtrajectories

982 To visualize the cursor position trajectories locally around the occurrence of a given
983  command for each condition, we computed the average position “subtrajectory,” which we define
984  as the average trajectory in a window locked to the occurrence of the given command. For each
985  condition, cursor positions from successful trials were aggregated. Cursor position subtrajectories
986  shown in Fig. 1F are from representative session 0 from Monkey G. A matrix of x-axis and y-axis
987  position trajectories was formed by extracting a window of -500ms to 500ms (5 previous samples
988  plus 5 proceeding samples) around each occurrence of the given command in a given condition
989  (total of Ncom-cond Occurrences, yielding a 2 x 11 X Ncom-cond matrix). Averaging over the Ncom-cond
990  observations yielded a condition-specific command-locked average position subtrajectory (size: 2
991  x 11) for each condition. If a command fell in the first 500ms or last 500ms of a trial, its occurrence
992  was not included in the subtrajectory calculation. The position subtrajectories were translated such
993  that the occurrence of the given command was set to (0, 0) in the 2D workspace (Fig. 1F right,
994  Fig. S1C middle).

995  Command subtrajectories

996 To visualize trajectories of commands around the occurrence of a given command for each

997  condition (Fig. 1G, right), we followed the same procedure as described above for cursor position
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998  subtrajectories to tabulate a 2 x 11 X Ncom-cond matrix but with x-axis and y-axis commands instead

999  of positions. We note that this matrix consisted of the continuous, two-dimensional velocity values
1000  ofthe commands. Averaging over the Ncom-cond Observations yielded the average condition-specific
1001  command subtrajectory (size: 2 x 11 array), as shown in Fig. 1F /leff for example conditions.

1002  Matching the condition-pooled distribution

1003 In many analyses, data (e.g. neural activity or a command-locked cursor trajectory) associated
1004  with a command and a specific condition is compared to data that pools across conditions for that
1005  same command (Figs. 3-5). The distribution of the precise continuous value of the command
1006  within the command’s bin may systematically differ between condition-specific and condition-
1007  pooled datasets, which we refer to as ‘within-command-bin differences.” To ensure within-
1008  command-bin differences are not the source of significant differences between condition-specific
1009  and condition-pooled data associated with a command, we developed a procedure to subselect
1010  observations of condition-pooled commands so that the mean of the condition-pooled command
1011  distribution is matched to the mean of the condition-specific command distribution. This procedure
1012 ensures that any differences between the condition-specific quantity and condition-pooled quantity
1013 are not due to ‘within-command-bin differences’. This procedure is performed on all analyses
1014  comparing condition-specific data to a condition-pooled distribution of data. The matching
1015  procedure is as follows:

1016 1. From the condition-specific distribution, compute the command mean Y om—cona (Size:
1017  2x1) and standard deviation 0.,y —cong (Size: 2x1).

1018 2. Compute the deviation of each continuous-valued command observation in the condition-

1019  pooled distribution from the condition-specific distribution.
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1020 a. Use the condition-specific distribution’s parameters to z-score the condition-pooled
1021 distribution’s continuous-valued command observations by subtracting U.om—cona and
1022 dividing by 6.om—cond-

1023 b. Compute the deviation of condition-pooled observations from the condition-specific
1024 distribution as the L2-norm of the z-scored value

1025 c. For indices in the condition-pooled distribution that correspond to data in the condition-
1026 specific distribution, over-write the L2-norm of the z-scored values with zeros. This step
1027 prevents the condition-pooled distribution from dropping datapoints that are in the
1028 condition-specific data, thereby ensuring the condition-pooled distribution contains the
1029 condition-specific data.

1030 3. Remove the 5% of condition-pooled observations with the largest deviations

1031 4. Use a Student’s t-test to assess if the remaining observations in the condition-pooled

1032 distribution are significantly different than the condition-specific distribution for the first and
1033  second dimension of the command (two p-values)

1034 5. If both p-values are > 0.05, then the procedure is complete and the remaining observations
1035 in the condition-pooled distribution are considered the “command-matched condition-pooled
1036  distribution” for a specific command and condition.

1037 6. If either or both p-values are < 0.05, return to step 3 and repeat.

1038  If the condition-pooled distribution cannot be matched to the condition-specific distribution such
1039  that the size of the condition-pooled distribution is larger than the condition-specific distribution,
1040  the particular (command, condition) will not be included in the analysis.

1041 Comparing command subtrajectories
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1042 To assess whether a command is used within significantly different command subtrajectories
1043 in different conditions (Fig. S1 DE), the following analysis is performed for conditions that have
1044  sufficient occurrences of the command (>=15):

1045 1. The condition-specific average command subtrajectory is computed by averaging over
1046 Ncom-cond Single-trial command subtrajectories for the condition, as defined above in “Visualization
1047  of command subtrajectories”.

1048 2. The condition-pooled average command subtrajectory is computed: all the single-trial
1049  command subtrajectories (Ncom) are pooled across trials from all conditions that use the given
1050  command regularly (command occurs >= 15 times in a session) to create a condition-pooled
1051  distribution of single-trial command subtrajectories (a 2 x 11 X Ncom matrix), which is then
1052  averaged to yield the condition-pooled average command subtrajectory (a 2 x 11 matrix).

1053 3.In order to test whether condition-specific average command subtrajectories were
1054  significantly different from the condition-pooled average command subtrajectory, a distribution of
1055  subtrajectories was created by subsampling the condition-pooled distribution to assess expected
1056  variation in subtrajectories due to limited data. Specifically, Ncom-cond single-trial command
1057  subtrajectories were sampled from a condition-pooled distribution of command subtrajectories that
1058  was command-matched to the specific condition (see above, “Matching the condition-pooled
1059  distribution”). These Ncom-cond Samples were then averaged to create a single subtrajectory,
1060  representing a plausible condition-specific average subtrajectory under the view that the condition-
1061  specific subtrajectories are just subsamples of the condition-pooled subtrajectories. This procedure
1062  was repeated 1000 times and used to construct a bootstrapped distribution of 1000 command

1063  subtrajectories.
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1064 4. This distribution was then used to test whether condition-specific subtrajectories deviated
1065 from the condition-pooled subtrajectory more than would be expected by subsampling and
1066  averaging the condition-pooled subtrajectory distribution. Specifically, the true condition-specific
1067  command subtrajectory distance from the condition-pooled command subtrajectory was computed
1068  (L2-norm between condition-specific 2x11 subtrajectory and condition-pooled 2x11 subtrajectory)
1069  and compared to the bootstrapped distribution of distances: (L2-norm between each of the 1000
1070  subsampled averaged 2x11 command subtrajectories and the condition-pooled 2x11 command
1071  subtrajectory). A p-value for each condition-specific command subtrajectory distance was then
1072 derived.

1073 The same analysis is also performed using only the next command following a given command
1074  (Fig. S1 E).

1075  Behavior-preserving shuffle of activity

1076 We shuffled neural activity in a manner that preserved behavior as a control for comparison
1077  against the hypothesis that neural activity follows invariant dynamics beyond the structure of
1078  behavior. Shuffled datasets preserved the timeseries of discretized commands but shuffled the
1079  neural activity that issues these commands. In order to create a shuffle for each animal on each
1080  session, all timebins from all trials from all conditions were collated. The continuous-valued
1081  command at each timebin was labeled with its discretized command bin. For each of the 32
1082  discretized command bins, all timebins corresponding to a particular discretized command bin
1083  were identified. The neural activity in these identified timebins was then randomly permuted. A
1084  complete shuffled dataset was constructed by performing this random permutation for all
1085  discretized command bins. This full procedure was repeated 1000 times to yield 1000 shuffled

1086  datasets.
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1087  Analysis of activity issuing a given command

1088  Condition-specific neural activity distances

1089 For each session, (command, condition) tuples with >= 15 observations were analyzed. For
1090  each of these (command, condition) tuples, we analyzed the distance between condition-specific
1091  average activity and condition-pooled average activity, both for individual neurons and for the
1092 population’s activity vector (Fig. 3B-E).
1093  Analysis of individual neurons for a given (command, condition) tuple, given N neurons:

1094 1. Compute the condition-specific average neural activity (Ucom—cona € RY) as the average
1095  neural activity over all observations of the command in the condition.

1096 2. Compute the condition-pooled average activity (Kcom—poot € RM) as the average neural
1097  activity over observations of the command pooling across conditions. The command-matching
1098  procedure is used to form the condition-pooled dataset to account for within-command-bin
1099  differences (see “Matching the condition-pooled distribution” above).

1100 3. Compute the absolute value of the difference between the condition-specific and condition-
1101 pooled averages: dtcom—cond = abS(Heom-cona - Heom-poot) € RY.

1102 4. Repeat steps 1-3 for each shuffled dataset 7, yielding duspyff—i—com—cona for i = 1: 1000.
1103 5.For each neuron j, compare  dUcom—cona(J)to  the  distribution  of
1104 dpspyff—i—com-cona(j) for i = 1:1000. Distances greater than the 95™ percentile of the shuffled
1105  distribution are deemed to have significantly different neuron j activity for a command-condition.
1106  Analysis of population activity for a given (command, condition) tuple:

1107 To compute population distances, one extra step was performed. We sought to ensure that the
1108  distances we calculated were not trivially due to “within-bin differences” between the condition-

1109  specific and condition-pooled distributions. The first step to ensure this was described above in
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1110 “Matching the condition-pooled distribution”. The second step was to only compute distances in
1111  the dimensions of neural activity that are null to the decoder and do not affect the composition of
1112 the command. Thus, any subtle remaining differences in the distribution of commands would not
1113 influence population distances.

1114 To compute distances in the dimensions of neural activity null to the decoder, we computed

1115  an orthonormal basis of the null space of decoder matrix K € R?*N

using scipy.linalg.null space,
1116  yielding V,,; € RV*N=2. The columns of V correspond to basis vectors spanning the N — 2

1117  dimensional null space. Using V,,,;; we computed: Ucom—cond—nuir = Vautl * Kcom—cond and

1118 Ucom—poot—nutt = Vnuu' * Hcom-poor- We then calculated the population distance metric (L2-

1119  norm), normalized by the square-root of the number of neurons: duy,op-—com-cona =/ YN,
1120 dppop-com-cona € RY. Instep 5, the single value dlpop—com—cona 18 compared to the distribution
1121 of dispyfr-i-pop—com—cona for 1 = 1:1000 to derive a p-value for each (command, condition)
1122 tuple. The fraction of (command, condition) tuples with population activity distances greater than
1123 the 95" percentile of the shuffle data (i.e. significant) is reported in Fig. 3E.

1124 For visualization of distances relative to the shuffle distribution (Fig. 3B-D), we divided the
1125  observed population distance for each (command, condition) tuple by the mean of the
1126  corresponding shuffle distribution. With this normalization, we can visualize the spread of the
1127  shuffle distribution (Fig. 3B, right) and we can interpret a normalized distance of 1 as the expected
1128  distance according to the shuffle distribution.

1129  Activity distances pooling over conditions

1130 To test whether condition-specific neural activity significantly deviated from condition-
1131  pooled neural activity for a given command (Fig. 3E, middle), we aggregated the distance between

1132 condition-specific and condition-pooled average activity over all Ncond conditions in which the
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1133 command was used ( >= 15 occurrences of the command in a condition) . An aggregate command

1134 distance is computed: diyop—com =Ncind2§y=c§"d dlpop-com—j » and an aggregate shuffle
e et e . . _ 1 Ncond
1135  distribution is computed: dpspysr—i-pop—com _Ncondzjzl Alshuff-i-pop—com—j- Then,

1136 dppop-com 1s compared to the distribution of dpspyrr—i—pop—com for i = 1: 1000 to derive a p-
1137  value for each command. The fraction of commands with significant population activity distances
1138  is reported in Fig. 3E, middle.

1139  Single neuron distances

1140 To test whether an individual neuron’s condition-specific activity deviated from condition-
1141  pooled activity (Fig. 3E right), we aggregated the distances between condition-specific and

1142 condition-pooled average activity over the C (command, condition) tuples with at least 15
1143  observations. The aggregated distance for neuron n was computed: du(n) = %Zgzl du.(n)

1144 where du.(n) is the condition-specific absolute difference for the nth neuron and cth (command,

1145  condition) tuple. Then du(n) was compared to the distribution of the aggregated shuffle:
1146 duspyrr—i(n) = %Zgzl AUspyff—i-c(n) for i = 1:1000 to derive a p-value for each neuron. The

1147  fraction of neurons with significant activity distances (p-value<0.05) is reported in Fig. 3E right.
1148  Neural activity distances summary
1149 Single neuron activity distances reported in Fig. S2B (/ef?) are for all (command, condition,

1150  neuron) tuples that had at least 15 observations. We report distances as a z-score of shuffle

(ducom_cond (n)— mean(dugpyff-i,(n) i= 1:1000))
std(dpshyff-i(n),i=1:1000)

1151  distribution: Z;pm—cona(n) =

1152 Single neuron activity distances reported in (Fig. S2B center, right) are for (command,

1153  condition, neuron) tuples that significantly deviated from shuffle. We report raw distances in
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d _ n .
Ucom—cond (M) Flg
Hcom—pool(M)

neuron activity as dllcom—cona () (Fig. S2B, center), and fraction distances as
S2B, right).
Population activity distances reported in Fig. 3BCD and Fig. S2C left are for all (command,

condition) tuples. We report distances in population activity as a fraction of shuffle mean:

dlpop—com—cona/Mmean(dpspyrr—i, i = 1:1000) (Fig. 3BCD), and as a z-score of shuffle

(upop_com_cond— mean(dushuff_i,i=1:1000))
std(dpshyff-i=1:1000)

distribution: Z, oy, com-cona = (Fig. S2C left).

Population activity distances reported in Fig. S2C (center, right) are for (command,
condition) tuples that significantly deviated from shuffle. We report distances in population

activity as a fraction of shuffle mean duy,op—com—cona/mean(duspysr-i, i = 1:1000) (Fig. S2C,

: . .. dlpop—-out— , ,
center) and fraction of condition-pooled activity as W (Fig. S2C, right).
com—poolll,

Invariant dynamics models

In order to test whether invariant dynamics predicts the different neural activity patterns
issuing the same command for different conditions, a linear model was fit for each experimental
session on training data of neural activity from all conditions and assessed on held-out test data.
Neural activity at time ¢, x;, was modeled as a linear function of x;_;:

Xe =Ax;_1+Db
Here A € RV*N modeled invariant dynamics and b € RY was an offset vector that allowed the
model to identify non-zero fixed points of neural dynamics. Ridge regression was used to estimate
the A and b parameters. Prior to any training or testing, data was collated such that all neural
activity in bins from t=2:T in all rewarded trials were paired with neural activity from t=1:(Tw-
1), where Ty is the number of time samples in a trial.

Estimation of Ridge Parameter
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1176 For each experimental session, data collated from all conditions was randomly split into 5
1177  sections, and a Ridge model (sklearn.linear model.Ridge) with a ridge parameter varying from
1178  2.5x107 to 10° was trained using 4 of the 5 sections and tested on the remaining test section. Test
1179  sections were rotated, yielding five estimates of the coefficient of determination (R?) for each ridge
1180  parameter. The ridge parameter yielding the highest cross-validated mean R? was selected for each
1181  experimental session. Ridge regression was used primarily due to a subset of sessions with a very
1182  high number of units (148 and 151 units), thus a high number of parameters needed to be estimated
1183  for the A matrix. Without regularization, these parameters tended to extreme values, and the model
1184  generalized poorly.

1185  Invariant dynamics model: fitting and testing

1186 Once a ridge parameter for a given experimental session was identified, A, b were again
1187  trained using 4/5 of the data. The remaining test data was predicted using the fit A, b. This
1188  procedure was repeated, rotating the training and testing data such that after five iterations, all data
1189  points in the experimental session had been in the test data section for one iteration of model-
1190 fitting. The predictions made on the held-out test data were collated together into a full dataset.
1191  Predictions were then analyzed in subsequent analyses.

1192 Generalization of invariant dynamics

1193 We assessed how well invariant dynamics generalized when certain categories of neural
1194  activity were not included in the training data. Invariant dynamics models were estimated after
1195  excluding neural activity in the following categories (Fig. 4C, Fig. S4, Fig 5CD):

1196 1. Left-out Command: For each command (total of 32 command bins), training data sets were

1197  constructed leaving out neural activity that issued the command (Fig. 4C, Fig. S4, Fig. 5CE).
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1198 2. Left-out Condition: For each condition (consisting of target, task, and clockwise or
1199  counterclockwise movement for obstacle avoidance), training data sets were constructed leaving
1200  out neural activity for the given condition (Fig. 4C, Fig. S4, Fig. 5SCE).

1201 3. Left-out Command Angle: For each command angular bin (total of 8 angular bins), training
1202  data sets were constructed leaving out neural activity that issued commands in the given angular
1203 bin. This corresponds to leaving out neural activity for the 4 command bins that have the given
1204  angular bin but different magnitude bins (Fig. S4B, middle).

1205 4. Left-out Command Magnitude: For each command magnitude bin (total of 4 magnitude
1206  bins), training data sets were constructed leaving out neural activity that issued commands of the
1207  given command magnitude. This corresponds to leaving out neural activity for the 8§ command

1208  bins that have the given magnitude bin but different angle bins (Fig. S4B, right).

1209 5. Left-out Classes of Conditions (Fig. S4G):

1210 a. vertical condition class consisting of conditions with targets located at 90 and 270
1211 degrees for both tasks,

1212 b. horizontal condition class consisting of conditions with targets located at 0 and 180
1213 degrees for both tasks,

1214 c. diagonal 1 condition class consisting of conditions with targets located at 45 and
1215 215 degrees for both tasks, and

1216 d. diagonal 2 condition class consisting of conditions with targets located at 135 and
1217 315 degrees for both tasks.

1218  For each of the listed categories above, many dynamics models were computed — each one
1219  corresponding to the exclusion of one element of the category (i.e. one model per: command left-

1220  out, condition left-out, command angle left-out, command magnitude left-out, and class of
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1221  conditions left-out). Each of the trained models was then used to predict the left-out data.
1222 Predictions were aggregated across all dynamics models resulting in a full dataset of predictions.
1223 The coefficient of determination (R?) of this predicted dataset reflected how well dynamics models
1224 could generalize to types of neural activity that were not observed during training. We note that
1225  Monkey J did not perform all conditions in the “diagonal 2” class, and so was not used in the
1226  analysis predicting excluded “diagonal 2” conditions.

1227  Decoder-null dynamics model

1228 As an additional comparison, we modeled invariant dynamics that lie only within the
1229  decoder-null space (the neural activity subspace that was orthogonal to the decoder such that
1230  variation of neural activity in this space has no effect on the decoder’s output, i.e. commands for
1231  movement).

1232 Our approach was to project spiking activity into the decoder null space, and then fit
1233 invariant dynamics on the projected, decoder-null spiking activity. We first computed an
1234 orthonormal basis of the null space of decoder matrix K € R?*N using scipy.linalg.null space,
1235 yielding V,,; € RY*N=2. The columns of V correspond to basis vectors spanning the N — 2

1236  dimensional null space. We then computed the projection matrix P,,,; € RN*N where P, =

1237 VyuuViE,- Spiking activity was then projected into the null space x[™* = P,,;,x;, where x*! €
1238 RN*1,
1239 Following the above procedure (see “Estimation of Ridge Parameter”), a ridge regression

1240  parameter was selected using projected data x[**!. Decoder-null dynamics model parameters A,
1241 by were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of the x**! dataset.
1242 As before, the training/testing procedure was repeated 5 times such that all data points fell into the

1243  test dataset once. Predictions of test data from all five repetitions were collated into one full dataset
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1244 of predictions. We note that the average of the decoder-space activity across the entire session

1245  gdecoder — % T_, xdecoder where T is the number of bins in an entire session, was added to all
1246  predictions of decoder-null dynamics (X¢4q = ApyuXe + bpyy + X047,

1247  Shuffle dynamics model
1248 The invariant dynamics model was compared to a shuffle dynamics model fit on shuffled

1249  data (see “Behavior-preserving shuffle of activity” above). Following the above procedure (see

1250  “Estimation of Ridge Parameter”), a ridge parameter was selected using shuffled data. Shuffle
1251  dynamics model parameters Asnugre, bsnuie were then fit on 4/5 of the dataset using shuffled data
1252  and then tested on the remaining 1/5 of the dataset using original, unshuffled data.

1253  Invariant dynamics model characterization

1254  Dimensionality and eigenvalues

1255 Once the linear invariant dynamics model’s parameters 4, b were estimated, 4 was analyzed
1256  to assess which modes of dynamics!® were present (Fig. S3). The eigenvalues of 4 were computed.
1257  From each eigenvalue, an oscillation frequency and time decay value were computed using the

1258  following equations:

1259 Frequency = 21/ (2mAt) Hz if A is complex, else frequency = 0 Hz
. -1
1260 Time Decay = D At sec
1261 Modes of dynamics contributing substantially to predicting future neural variance will have

1262  time decays greater than the BMI decoder’s binsize (here, 100ms). 2-4 such dimensions of
1263  dynamics were found across sessions and subjects (Fig. S3).

1264  Invariant dynamics model predictions

1265  Predicting next neural activity: X; 11| X¢, A, b
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1266 In Fig. 5C, we predict next activity x;,, based on current activity x; by taking the expected
1267  value according to our model: E (x;41|x:, A, b) = Ax; + b.

1268 In Fig. 5D, we evaluated this prediction for individual dimensions of neural activity.
1269  We projected the prediction of x;,; onto each eigenvector of the dynamics model A matrix and
1270  evaluated how well that dimension was predicted (via coefficient of determination).

1271 In Fig. S3E, G, we evaluated this prediction across time from the start of trial. The magnitude
1272 (i.e. L2 norm) of the model residual ||x;.; — Ax; + b||, (Fig. S3E) and the coefficient of
1273 determination (R?) (Fig. S3G) are plotted for each time point from trial start, evaluated on held-
1274  out test data pooling across trials.

1275  Predicting next command: command;, 4| x;, 4, b, K

1276 In Fig. SE-H, we predict the next command command;, ; based on current neural activity x;
1277 by taking its expected value according to our model: E(command;,; |x¢ A,b,K) = K(Ax; +
1278  b), where the decoder matrix K maps between neural activity and the command. This amounts to
1279  first predicting next activity based on current activity as above E (x;;1|x, A, b) = Ax; + b and
1280  then applying decoder K.

1281  Predicting activity issuing a given command

1282 In Fig. 4C-G, we predict current activity x; not only with knowledge of previous activity
1283  x;_1, but also with knowledge of the current command command, ( x;| x;_1, 4, b, K, command,).
1284  We modeled x; and x,_; as jointly Gaussian with our dynamics model, and command; is jointly
1285  Gaussian with them since command,; = Kx;. We modify our prediction of x; based on knowledge
1286  of command;: E(x;|x;—1,A4, b, K,command;). Explicitly we conditioned on command;, thereby
1287  ensuring that K * E(x;|x;—1,4, b, K,command; ) = command,. To do this we wrote the joint

1288  distribution of x; and command,:
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< U X (KZ)T)
1289 Kx, N((Ku)’ <1<2 KzkT)

1290  where u = E(x¢|x;-1,A,b) = Ax;_1 + b , and X = cov|[x; — (Ax;_, + b)] is the covariance of
1291  the noise in the dynamics model. Then, the multivariate Gaussian conditional distribution provides
1292 the solution to conditioning on command,:

1293 E(x¢|x¢—1,A, b, K, command,) = Ax;_;+b + ZTKT(KZKT)"(command, — K (Ax,_; + b))
1294  This prediction constrains the prediction of x; to produce the given command command,.

1295 For these predictions, X is estimated following dynamics model fitting and set to the empirical
1296  error covariance between estimates of E (x;) = Ax;_1 + b and true x; in the training data.

1297  Predicting current activity only with command

1298 In Fig. 4C-E, as a comparison to the dynamics prediction (x¢| x;—1,4, b, K, command,), we
1299  predict x; as its expected value (x;| K,command,) based only on the command command; =
1300  Kx, it issues and the decoder matrix K. The same approach was used as above, except with
1301  empirical estimates of u, £ corresponding to the mean and covariance of the neural data instead of

1302  using the neural dynamics model and x;_; to compute u, Z.

T
ol (5 9

1304 This formulation makes the prediction:

1305 E(x;|K, command,) = u + XTKT(KZKT) !(command; — Ku)

1306  Comparing invariant dynamics to shuffle

1307 For the above predictions, we evaluated if invariant dynamics models were more accurate

1308  than shuffle dynamics. A distribution of shuffle dynamics R? values (coefficient of determination)

1309  was generated by computing one R? value per shuffled dataset (see “Behavior-preserving shuffle

1310  of activity” above), where RZ,,, fflei,; corresponds to the R? for shuffle dataset i on session j. For
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1311  each session j, each invariant dynamics model was considered significant if its R?> was greater than
1312 95% of shuffle R? values. To aggregate over S sessions, the R? values for all S sessions were
1313  averaged yielding one Rg,,g value. This averaged value was compared to a distribution of averaged

1314 shuffle R? values. Specifically, for each shuffle i (i=1:1000 shuffled dataset) an averaged R? value
1315 was computed across all S sessions: Rj,g snuffiei = %Zle Réhuffie,ij» yielding a distribution of

1316  averaged shuffle R? values.

1317  Predicting condition-specific activity

1318 The invariant dynamics model was used to predict the condition-specific average activity
1319  for a given command (Ucom—conds 1-€- the average neural activity over all observations of the

1320 command in the condition, see “Analysis of activity issuing a given command” above) (Fig. 4D-

1321  G). The invariant dynamics model prediction (Ucom—cona) Was computed as
1322 E(x¢|xt-1,A,b,K,command;) (see “Predicting activity issuing a given command’ above)
1323 averaged over all observations of neural activity for the given command and condition.

1324 To test if the invariant dynamics prediction was significantly more accurate than the shuffle
1325  dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle dynamics model”
1326  above) prediction, we computed the error as the distance between true (Ueom—cona) and predicted
1327 (Ucom—cona) condition-specific average activity (single neuron error and population distance).
1328  Note that population distances for true and predicted activity were taken only in the dimensions
1329  null to the decoder (see “Condition-specific neural activity deviation”). The invariant dynamics
1330  model was deemed significantly more accurate than shuffle dynamics if the error was less than the
1331 5™ percentile of the distribution of the errors from shuffle dynamics models. We reported the
1332 fraction of (command, condition) tuples that were individually significant relative to shuftle (Fig.

1333 4G, left). We determined whether commands were individually significant relative to shuffle by
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1334  analyzing the average population activity error across conditions (Fig 4G, middle). We determined
1335  whether neurons were individually significant relative to shuffle by analyzing the average single-
1336  neuron error over (command, condition) tuples (Fig 4G, right).

1337  Predicting condition-specific component

1338 The component of neural activity for a given command that was specific to a condition was
1339 calculated as Ueom—cona — E(XEom—cona!|K command,), where Ucom—cona iS neural activity
1340  averaged over observations for the given command and condition, and
1341 E(xt,,—cona|K, command,) is the prediction of neural activity only given the command it issued,
1342  averaged over observations for the (command, condition) tuple (see "Predicting current activity
1343 only with command” above). Thus, peom—cona — E (Xtom—cona|K, command,) estimates the
1344  portion of neural activity that cannot be explained by just knowing the command issued.

1345 We analyzed how well this condition-specific component could be predicted with invariant
1346 dynamics as: Ucgm—cona — E(XLom-conal K, command,) (see “Predicting condition-specific
1347  activity” above for calculation of pUeom_cona)- The variance of  Ucom—cond —
1348 E(xt,m—conalK, command,) explained by peom—cona — E (Xtom—cona|K, command,) is reported
1349  in Fig. 4F.

1350  Predicting condition-specific next command

1351 For each (command, condition) tuple, the average “next command” command .y, —cond
1352  was calculated. For every observation of the given command in the given condition, we took the
1353  command at the time step immediately following the given command and averaged over
1354  observations. We then analyzed how well invariant dynamics predicted this average ‘“next

1355 command” command,,;,_cond, calculated as E(command;,; |x A, b, K) averaged over all

1356  observations of neural activity x; for the given command and condition. The L2-norm of the
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1357 difference command pm-cong — COMMand gm_cong Was computed and compared to the errors
1358  obtained from the shuffled-dynamics predictions. For each (command, condition) tuple, the
1359  dynamics-predicted “next command” was deemed significantly more accurate than shuffle
1360  dynamics if the error was less than the 5 percentile of the distribution of the errors of the shuffled-
1361  dynamics predictions (Fig. 5F, leff). Commands were determined to be individually significant if
1362  the error averaged over conditions was significantly less than the shuffled-dynamics error averaged
1363  over conditions (Fig. 5F, right).

1364  Analysis of predicted command angle

1365 We sought to further analyze whether invariant dynamics predicted the transition from a
1366  given command to different “next commands” in different movements. Thus, we calculated two
1367  additional metrics on the direction of the predicted “next command”, i.e. the angle of the predicted
1368 “next command” command ym—cong With respect to the condition-pooled “next command”
1369  command,m—poor (the average “next command” following a given command when pooling over
1370  conditions).

1371 First, we predicted whether a condition’s “next command” would rotate clockwise or
1372 counterclockwise relative to the condition-pooled “next command.” Specifically, we calculated
1373 whether the sign of the cross-product between command yp,_cong and command om-poot
1374 matched the sign of the cross-product between command .y, —cong and command o —poor- The
1375  fraction of (command, conditions) that were correctly predicted (clockwise vs counterclockwise)
1376  was compared to the fraction of (command, condition) tuples correctly predicted in the shuffle
1377  distribution (Fig. 5H, lef?).

1378 Second, we calculated the absolute error of the angle between the predicted “next

1379  command” and the condition-pooled “next command” for each (command, condition) tuple:
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1380 abs( £ (com’mzndcom_cond, commandom-—poo1)

1381 — Z (command om—cona, COMMandom—poot) )

1382 Explicitly, for each (command, condition) tuple, we calculated the absolute difference between
1383  two angles: 1) the angle between the predicted “next command” and the condition-pooled “next
1384 command” and 2) the angle between the true “next command” and the condition-pooled “next
1385  command”. These errors were then compared to the shuffle distribution (Fig. SH, right).

1386  Estimation of behavior-encoding models

1387 To compare invariant dynamics models to models in which neural activity encodes behavioral
1388  variables in addition to the command, we fit a series of behavior-encoding models (Fig. S5).
1389  Regressors included cursor state (position, velocity), target position (X,y postion in cursor
1390  workspace), and a categorical variable encoding target number (0-7) and task (“‘center-out”,
1391  “clockwise obstacle-avoidance”, or “counter-clockwise obstacle-avoidance™).

1392 Models were fit using Ridge regression following the same procedure described above (see
1393 “Estimation of Ridge Parameter”) was followed with one additional step: prior to estimating the
1394  ridge parameter or fitting the regression, variables were z-scored. Without z-scoring, ridge
1395  regression may favor giving explanatory power to the variables with larger variances, since they
1396  would require smaller weights which ridge regression prefers. Then, as above, models were fit
1397  using 4/5 of the data and then used to predict the held-out 1/5 of data. After 5 rotations of training
1398  and testing data, a full predicted dataset was collated.

1399 We then tested whether invariant neural dynamics improved the prediction of neural activity
1400  beyond behavior-encoding. The coefficient of determination (R?) of the model containing all

1401  regressors except previous neural activity was compared to the R? of the model containing all
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1402 regressors plus previous neural activity (Fig. S5B) using a paired Student’s t-test where session
1403  was paired. One test was done for each monkey.

1404  Analysis between pairs of conditions

1405 We sought to assess whether the invariant dynamics model predicted the relationship between
1406  pairs of conditions for neural activity and behavior (Fig. S6).

1407  Average neural activity for a given command

1408 The invariant dynamics model was used to predict the distance between average neural
1409  activity patterns for the same command across pairs of conditions. Concretely, the predicted
1410  distance was simply the distance between the predicted neural activity pattern for condition 1 and
1411  for condition 2. The correlation between the true distance and the predicted distance was reported
1412 for individual neurons (Fig. S6AC) and population activity (Fig. S6BD). The Wald test
1413  (implemented in scipy.stats.linregress) was used to assess the significance of the correlations on
1414  single sessions. To assess significance pooled over sessions, data points (true distances vs.
1415  dynamics model predicted distances) were aggregated across sessions and assessed for
1416  significance.

1417  Average next command

1418 The invariant dynamics model was used to predict the distance between “next commands”
1419  for the same given command across pairs of conditions. Concretely, the predicted distance was
1420  simply the distance between the predicted “next command” for condition 1 and for condition 2.
1421  The correlation between the true distance and the predicted distance was reported (Fig. S6JK). As
1422 above, the Wald test was used to assess significance of correlations on single sessions and over
1423 pooled sessions.

1424 Correlating neural distance with behavior
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1425 We asked whether neural activity for a given command was more similar across conditions
1426  with more similar command subtrajectories (see “Command subtrajectories”) (Fig. S6E), and
1427  whether invariant dynamics predict this. Specifically, we analyzed whether the distance between
1428  average neural activity across two conditions for a given command correlated to the distance
1429  between command subtrajectories for the same two conditions (Fig. S6, F top, GH left ). Further,
1430  we analyzed whether invariant dynamics predicted this correlation (Fig. S6, F bottom, GH right).
1431  For every command (that was used in more than five conditions) and pair of conditions that used
1432 the command (>=15 observations in each condition in the pair), 1) the distances between condition-
1433 specific average activity were computed and 2) distances between command subtrajectories were
1434  computed. The neural activity distances were correlated with the command subtrajectory distances
1435  (Fig. Se6, F top, GH left ) . To assess whether invariant dynamics made predictions that maintained
1436  this structure, we performed that same analysis with distances between dynamics-predicted
1437  condition-specific average activity across pairs of conditions (Fig. S6, F bottom, GH right).

1438 We assessed the significance of the relationship using a linear mixed effects (LME) model
1439  (statsmodels.formula.api.mixedlm). The LME modeled command as a random effect because the
1440  exact parameters of the increasing linear relationship between command subtrajectories and
1441  population activity may vary depending on command. Individual sessions were assessed for
1442 significance. To assess significance across sessions, data points were aggregated over sessions,
1443 and the LME model used command and session ID as random effects.

1444  Analysis of Optimal Feedback Control Models

1445  Input magnitude
1446 For each simulated trial, we computed the magnitude of input to the neural population as

1447  the L2 norm of the input matrix u, € RN*T (where N is the number of neurons and T = 40 was

72


https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457931,; this version posted May 14, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1448  the horizon and thus movement length). For each of the 24 conditions, we calculated the average
1449  input magnitude over the 20 trials. We compared the magnitude of input used by the Invariant
1450  Dynamics Model and the No Dynamics Model, where the Invariant Dynamics Model was either
1451  the Full Dynamics Model (Fig. 6C) or the Decoder-Null Dynamics Model (Fig. 6D). We analyzed
1452 each individual session with a paired Wilcoxon signed-rank test, where each pair within a session
1453  consisted of one condition (24 conditions total). We aggregated across sessions for each subject
1454  using a linear mixed effect (LME) model between input magnitude and model category (Invariant
1455  Dynamics Model or No Dynamics Model), with session modeled as a random effect.

1456  Simulated activity issuing a given command

1457 In the OFC simulations, we sought to verify if different neural activity patterns were used
1458  to issue the same command across different conditions, applying analyses that we used on
1459  experimental neural data to the OFC simulations. As above, we defined discretized command bins

1460  (see “Command discretization for analysis™) and calculated the average neural activity for each

1461  (command, condition) tuple. For (command, condition) tuples with >=15 observations (example
1462  shown in Fig. 6E), we computed the distance between condition-specific average activity and
1463  condition-pooled average activity by subtracting the activity, projecting into the decoder-null
1464  space, taking the L2 norm, and normalizing by the square root of the number of neurons, as in the

1465  experimental data analysis (see “Analysis of activity issuing a given command”).

1466 We analyzed the distance between condition-specific average activity and condition-
1467  pooled average activity for a given command, comparing each model to its own shuffle distribution

1468  (see “Behavior-preserving shuffle of activity”) (Fig. 6GH). Concretely, for each simulated session,

1469  we calculated the mean of the shuffle distribution of distances for each (command, condition) tuple

1470  and compared these shuffle means (one per (command, condition) tuple) to the observed distances
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1471  from the simulations. We analyzed individual sessions with a Mann-Whitney U test. We
1472  aggregated across sessions for each subject with a LME model between activity distance and data
1473 source (OFC Simulation vs shuffle), with session modeled as a random effect. For visualization of
1474  distances relative to the shuffle distribution (Fig. 6F-H), we divided the observed distance for each
1475  (command, condition) tuple by the mean of the corresponding shuffle distribution (same as in Fig.
1476  3B-D).

1477  Statistics Summary

1478 In many analyses, we assessed whether a quantity calculated for a specific condition was
1479  significantly larger than expected from the distribution of the quantity due to subsampling the
1480  condition-pooled distribution. A p-value was computed by comparing the condition-specific
1481  quantity to the distribution of the quantity computed from subsampling the condition-pooled

1482  distribution. The “behavior-preserving shuffle of activity” and “matching the condition-pooled

1483  distribution” (see above) were used to construct the condition-pooled distribution.

1484 The following is a summary of these analyses:

1485 o Fig. S1D, Quantity: distance between condition-specific average command
1486 subtrajectory and condition-pooled average command subtrajectory, P-value: computed using
1487 behavior-preserving shuffle.

1488 o Fig. S1E, Quantity: distance between condition-specific average next command
1489 and the condition-pooled average next command, P-value: computed using behavior-
1490 preserving shuffle.

1491 o Fig. 3B left, 3E right: Quantity: for a given command, distance between condition-
1492 specific average activity for a neuron and condition-pooled average activity for a neuron, P-
1493 value: behavior-preserving shuffle.

74


https://doi.org/10.1101/2021.08.27.457931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457931,; this version posted May 14, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1494 o Fig. 3B right, 3D, 3E left, middle: Quantity: for a given command, distance between
1495 condition-specific average population activity and condition-pooled average population
1496 activity, P-value: behavior-preserving shuffle.

1497 o Fig. 4G right: Quantity: for a given command, error between the invariant
1498 dynamics’ prediction of condition-specific average activity for a neuron and the true condition-
1499 specific average activity for the neuron. P-value: distribution of prediction errors from shuffle
1500 dynamics (models fit on behavior-preserving shuffle and that made predictions using
1501 unshuffled data).

1502 o Fig. 4G left, middle: Quantity: for a given command, error between the invariant
1503 dynamics’ prediction of condition-specific average population activity and the true condition-
1504 specific average population activity. P-value: distribution of prediction errors from shuffle
1505 dynamics (models fit on behavior-preserving shuffle and that made predictions using
1506 unshuffled data).

1507 o Fig. 5F: Quantity: for a given command, error between the invariant dynamics’
1508 prediction of condition-specific average next command and true condition-specific average
1509 next command. P-value: distribution of prediction errors from shuffle dynamics (models fit on
1510 behavior-preserving shuffle and that made predictions using unshuffled data).

1511 In the above analyses, we also assessed the fraction of condition-specific quantities that

1512  were significantly different from the condition-pooled quantities or significantly predicted
1513  compared to a shuffled distribution (Fig. S1DE, Fig. 3E, Fig. 4G, Fig. 5F, Fig. S4DI, Fig. S6G).
1514 In order to aggregate over all data to determine whether condition-specific quantities were
1515  significantly different from shuftle or significantly predicted within a session relative to shuffle

1516  dynamics, we averaged the condition-specific quantity over the relevant dimensions (command,
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1517  condition, and/or neuron) to yield a single aggregated value for a session. For example in Fig. 3E
1518  right, we take the distance between average activity for a (command, condition, neuron) tuple and
1519  condition-pooled average activity for a (command, neuron) tuple, and we average this distance
1520  over (command, condition) tuples to yield an aggregated value that is used to assess if individual
1521  neurons are significant. We correspondingly averaged the shuffle distribution across all relevant
1522  dimensions (command, condition, and/or neuron). Together this procedure yielded a single
1523  aggregated value that could be compared to a single aggregated distribution to determine session
1524  significance. Finally, when we sought to aggregate over sessions, we took the condition-specific
1525  quantity that was aggregated within a session and averaged it across sessions and again compared
1526 it to a shuffle distribution of this value aggregated over sessions.

1527 When R? was the metric assessed (Fig. 4CF, Fig. 5C-E, Fig. S4BFG), a single R? metric was
1528  computed for each session and compared to the R? distribution from shuffle models. This R? metric
1529  is known as the “coefficient of determination,” and we note that it assesses how well the dynamics-
1530  predicted values (e.g. spike counts) account for the variance of the true values.

1531 In some cases, a linear regression was fit between two quantities (Fig. S6CDGJK) on both
1532 individual sessions and on data pooled over all sessions, and the significance of the fit and
1533 correlation coefficient were both reported. In other cases where random effects such as session or
1534  analyzed command may have influenced the linear regression parameters (Fig. S6FG), a Linear
1535  Mixed Effect (LME) model was used with session and/or command modeled as random effects on
1536  intercept.

1537 In Fig. S5, a paired Student’s t-test was used to compare two models’ R? metric across
1538  sessions.Fig. 6 analyzed simulations of OFC models, not experimentally-recorded data. Fig. 6CD

1539  used a paired Wilcoxon test and a LME to compare input magnitude between a pair of OFC
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1540  models. Fig. 6GH used a Mann-Whitney U test and a LME to compare population distance

1541 between an OFC model and its shuffle distribution.
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