

1 **Host ecology regulates interspecies recombination in bacteria of the genus**
2 ***Campylobacter***

3
4 Evangelos Mourkas¹, Koji Yahara², Sion C. Bayliss¹, Jessica K. Calland¹, Håkan Johansson³,
5 Leonardos Mageiros¹, Zilia Y. Muñoz-Ramirez⁴, Grant Futcher¹, Guillaume Méric^{1#},
6 Matthew D. Hitchings⁵, Santiago Sandoval-Motta⁴, Javier Torres⁴, Keith A. Jolley⁶, Martin
7 C. J. Maiden⁶, Patrik Ellström⁷, Jonas Waldenström³, Ben Pascoe^{1,8}, Samuel K. Sheppard^{1,6*}

8
9 ¹The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2
10 7AY, UK; ²Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, 162-
11 8640, Japan; ³Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, 391
12 82, Sweden; ⁴Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del
13 Seguro Social; ⁵Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP,
14 UK; ⁶Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; ⁷Department of
15 Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden; ⁸Faculty of Veterinary
16 Medicine, Chiang Mai University, Chiang Mai 50100, Thailand

17

18

19 *Corresponding authors: Samuel K. Sheppard; s.k.sheppard@bath.ac.uk

20

21 [#]Present address: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75
22 Commercial Rd, Melbourne 3004, Victoria, Australia; Department of Infectious Diseases, Central Clinical
23 School, Monash University, Melbourne, Victoria 3004, Australia.

24

25 Keywords: *Campylobacter*, genus, species, niche, adaptation, host, evolution.

26

27 Running title: Comparative genomics of the *Campylobacter* genus

28

29 **Abstract**

30 Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to
31 transfer to another. This has potential to rapidly promote new adaptive trajectories such as
32 zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align
33 in barriers to recombination within a given time frame. Chief among these barriers is the
34 physical separation of species with distinct ecologies in separate niches. Within the genus
35 *Campylobacter* there are species with divergent ecologies, from rarely isolated single host
36 specialists to multi-host generalist species that are among the most common global causes of
37 human bacterial gastroenteritis. Here, by characterising these contrasting ecologies, we can
38 quantify HGT among sympatric and allopatric species in natural populations. Analysing
39 recipient and donor population ancestry among genomes from 30 *Campylobacter* species we
40 show that cohabitation in the same host can lead to a 6-fold increase in HGT between species.
41 This accounts for up to 30% of all SNPs within a given species and identifies highly
42 recombinogenic genes with functions including host adaptation and antimicrobial resistance.
43 As described in some animal and plant species, ecological factors are a major evolutionary
44 force for speciation in bacteria and changes to the host landscape can promote partial
45 convergence of distinct species through HGT.

46

47

48 **Introduction**

49 It is well established that bacteria do not conform to a strict clonal model of reproduction but
50 engage in regular horizontal gene transfer (HGT) [1]. This lateral exchange of DNA can
51 confer new functionality on recipient genomes, potentially promoting novel adaptive
52 trajectories such as colonization of a new host or the emergence of pathogenicity [2]. In some
53 cases, gene flow can occur at such magnitude, even between different species [3, 4], that one
54 may question why disparate lineages do not merge and why distinct bacterial species exist at
55 all [5]. An answer to this lies in considering the successive processes that enable genes from
56 one strain to establish in an entirely new genetic background.

57

58 The probability of HGT is governed by the interaction of multiple factors, including exposure
59 to DNA, the susceptibility of the recipient genome to DNA uptake, and the impact of
60 recombined DNA on the recipient strain. These factors can be broadly defined in three
61 functional phases and HGT can only occur when gaps align in each successive ecological,
62 mechanistic and adaptive barriers within a given time frame (Figure 1). In the first phase, the
63 quantity of DNA available to recipient strains is determined by ecological factors such as the
64 distribution, prevalence and interactions of donor and recipient bacteria, as well as the
65 capacity for free DNA to be disseminated among species/strains. In the second phase, there
66 are mechanistic barriers to HGT imposed by the homology dependence of recombination [6]
67 or other factors promoting DNA specificity - such as restriction-modification, CRISPR
68 interference or antiphage systems [7–11] - that can act as a defence against the uptake of
69 foreign DNA (mechanistic barriers) [12, 13]. Finally, the effect that HGT has on the fitness of
70 the recipient cell in a given selective environment (adaptive barrier) will determine if the
71 recombinant genotype survives for subsequent generations [2, 14].

72

73 Understanding how ecology maintains, and potentially confines, distinct strains and species
74 has become increasingly important in the light of global challenges such as the emergence
75 and spread of zoonotic pathogens [15]. A typical approach to investigating this is to consider
76 spillover of particular strains or clones from one host to another (clonal transmission). This is
77 an important phenomenon and may be influenced by anthropogenic change, such as habitat
78 encroachment or agricultural intensification [16]. However, in many cases, important
79 phenotypes, including antimicrobial resistance (AMR) [17–19], can be conferred by
80 relatively few genes. In such cases, it may be important to consider how cohabiting strains
81 and species can potentially draw genes from a common pangenome pool [20–23] and how

82 genes, rather than clones, can transition between segregated populations (gene pool
83 transmission). To investigate the impact of ecological segregation (ecological barriers) on this
84 gene pool transmission, in natural populations, requires quantification of HGT among
85 sympatric and allopatric bacteria.

86

87 Species within the genus *Campylobacter* are an ideal subject for considering how ecology
88 influences the maintenance of genetically distinct species for several reasons. First,
89 *Campylobacter* are a common component of the commensal gut microbiota of reptiles [24,
90 25], birds [26, 27] and mammals [28] but, being microaerophilic, do not survive well outside
91 of the host. This creates island populations that have some degree of ecological isolation.
92 Second, because at least 12 species have been identified as human pathogens [29] and *C.*
93 *jejuni* and *C. coli* among the most common global causes of bacterial gastroenteritis [30],
94 large numbers of isolate genomes have been sequenced from potential reservoir hosts as part
95 of public health source tracking programs [31, 32]. Third, within the genus there are species
96 and strains that inhabit one or multiple hosts (ecological specialists and generalists [16, 26,
97 33–37]). As a single host can simultaneously carry multiple lineages [38], possibly occupying
98 different sub-niches within that host [39], there is potential to compare allopatric and
99 sympatric populations. Finally, high magnitude interspecies admixture (introgression)
100 between *C. jejuni* and *C. coli* isolated from agricultural animals suggests that host ecology
101 plays a role in the maintenance of species [40–43].

102

103 Here, we quantify HGT among 600 genomes from 30 *Campylobacter* species using a
104 ‘chromosome painting’ approach [44–46] to characterize shared ancestry among donor and
105 recipient populations. Specifically, we investigate the role of ecological barriers to
106 interspecies gene flow. By identifying recombining species pairs within the same and
107 different hosts we can describe interactions where co-localization enhances gene flow,
108 quantify the impact of ecological barriers in these populations and distinguish highly
109 recombinogenic genes that are found in multiple genetic backgrounds. This provides
110 information about the evolutionary forces that gave rise to species and the extent to which
111 ecological barriers maintain them as discrete entities.

112

113 **Results**

114 **Host restricted and host generalist *Campylobacter* species**

115 Isolate genomes were taken from publicly available databases to represent diversity within
116 the genus *Campylobacter*, including environmental isolates from the closely related
117 *Arcobacter* and *Sulfurospirillum* species to provide phylogenetic context within the
118 *Campylobacteraceae* family (Figure 2a–figure supplement 1). In total, there were 631
119 isolates from 30 different *Campylobacter* species (Figure 2a) and 64 different sources,
120 isolated from 31 different countries between 1964 and 2016 (Supplementary File 1). Among
121 the isolates, 361 were *C. jejuni* and *C. coli* and could be classified according to 31 Clonal
122 Complexes (CCs) based upon sharing four or more alleles at seven housekeeping genes
123 defined by multi-locus sequence typing (MLST) (Supplementary File 1) [47] and were
124 representative of known diversity in both species [16, 33]. The obligate human commensal
125 and pathogen *C. concisus* (n=106 isolates), comprised 2 genomospecies (GSI, n=32 and
126 GSII, n=74), as previously described [48] (Supplementary File 1). The collection also
127 included 52 *C. fetus* isolate genomes, including 3 subspecies: *C. fetus* subsp. *fetus* (n=8), *C.*
128 *fetus* subsp. *venerealis* (n=23) and *C. fetus* subsp. *testudinum* (n=21) (Supplementary File 1)
129 [49]. Two clades were observed in *C. lari* (Figure 2a–figure supplement 2) which could
130 correspond to previously described subspecies based on 16S rRNA sequencing [50].

131

132 A maximum-likelihood phylogeny of the *Campylobacter* genus was reconstructed on a gene-
133 by-gene concatenated sequence alignment of 820 gene families shared by >95% of all
134 isolates, with a core genome of 903,753 base pairs (Figure 2a). The phylogeny included
135 species which appear to be restricted to one host or environment, including *C. iguanorium*
136 [51] and *C. geochelonis* [52] (reptiles), *C. lanienae* [53] (pigs), *C. hepaticus* [54] (chicken
137 liver), *C. lari* group [55] (marine birds and environment) and *C. pinnipediorum* [56] (seals)
138 species, most of which were discovered recently (Figure 2a–figure supplement 3). There was
139 no evidence that phylogeography was reflected in the observed population structure for
140 *Campylobacter* isolates from multiple hosts and countries. (Figure 2–figure supplement 4).
141 This is unsurprising as it is well known that host associated genetic variation transcends
142 phylogeographic structuring in *Campylobacter* [35]. While some low-level local gene flow
143 can be identified within a given country [57], this is vastly outweighed by recombination
144 within particular host niches [36], particularly in small isolate collections such as those for
145 some of the species in this study.

146

147 Host restricted species had lower diversity possibly linked to low sample numbers, with *C.*
148 *hepaticus* having the lowest diversity (Figure 2–figure supplement 2) with 8/10 genomes

149 associated with isolates from the same outbreak [54]. For other species there was evidence of
150 a broad host range (ecological generalists) (Figure 2b). For example, highly structured *C.*
151 *jejuni* and *C. coli* isolates were sampled from seven and six host sources respectively (Figure
152 2–figure supplements 2-3, Supplementary File 1). For *C. fetus* there was distinct separation
153 between mammal-associated *C. fetus* subsp *fetus* and *C. fetus* subsp *venerealis* and reptile-
154 associated *C. fetus* subsp *testudinum* (Figure 2–figure supplement 2) as previously described
155 [49]. Unsurprisingly, a large proportion of the isolates in this study were from humans, likely
156 reflecting intensive sampling. *C. jejuni* (27.52%; n=60/218), *C. coli* (14.68%; n=32/218) and
157 *C. concisus* (44.5%; n=97/218) were all common among human clinical samples. However,
158 less common species were also present, with nearly half of all *Campylobacter* species
159 (44.83%, n=13/29) isolated from humans at least once (Figure 2b, Supplementary File 1).
160 Agricultural animals were also a common source accounting for more than 1/3 of the isolates
161 (38.35%; 242/631), with 10/30 *Campylobacter* species isolated from more than one source
162 (Figure 2b, Supplementary File 1).

163

164 **Evidence of interspecies recombination in the core and accessory genome**

165 Genome size varied between 1.40 and 2.51 Mb (Figure 3–figure supplement 1) (mean 1.73)
166 and the number of genes (per isolate) ranged from 1,293 to 2,170 (mean 1,675) (Figure 3a–
167 figure supplement 2). The pangenome for the genus comprised 15,649 unique genes, found in
168 at least one of the 631 isolates (Figure 3b–source data 1), with 820 genes (5.24 % of the
169 pangenome) shared by >95% of all isolates (core genome), across 30 species (Figure 3b–
170 source data 1). We excluded species with fewer than 3 isolates in subsequent analysis. For the
171 remaining 15 species the core genome ranged in size from 1,116 genes in *C. lari* to 1,700 in
172 *C. geochelonis* (Figure 3a right panel–source data 1). Differences were also noted in the size
173 of accessory genomes, with *C. concisus* (mean: 981 genes), *C. hyointestinalis* (mean: 946
174 genes), *C. showae* (mean: 1,160 genes), *C. geochelonis* (mean: 1,021 genes) and *C. fetus*
175 (mean: 912 genes) containing the highest average number of accessory genes (Figure 3a left
176 panel–source data 1). Functional annotation of all 14,829 accessory genes showed that 71%
177 (10,561) encoded hypothetical proteins of unknown function due to the lack of homology
178 with well-characterized genes (Figure 3–figure supplement 3) [58]. Remaining genes were
179 related to metabolism, DNA modification, transporters, virulence, inner
180 membrane/periplasmic, adhesion, regulators, metal transport and antimicrobial resistance
181 (Figure 3–figure supplement 3).

182

183 To further understand genetic differentiation within and between species, we generated
184 genus-wide similarity matrices for the core and accessory genomes (Figure 3c-d–source data
185 1). For the core genome, pairwise average nucleotide identity (ANI) was calculated for
186 shared genes in all possible genome pairs (Figure 3c–source data 1) using FastANI [59]. On
187 average, isolates of the same species shared >95% similarity (Figure 3c–source data 1), with
188 decreasing genetic similarity (between 85% and 90%) over greater phylogenetic distances.
189 The number of core genome SNPs ranged from 983 to 230,264 for the 15 *Campylobacter*
190 species with ≥ 3 isolates in our dataset, with *C. coli* and *C. concisus* having the greatest mean
191 SNP numbers (Figure 3–figure supplement 4a) indicating considerable diversity within these
192 species. In contrast *C. hepaticus* and *C. geochelonis* had low mean SNP numbers with 986
193 and 4,310, respectively. This is likely related to low sample numbers with isolates either
194 sampled in close proximity [52] or from a single outbreak [54].

195

196 The core genome similarity matrix provided initial evidence of interspecies gene flow
197 (introgression). This can be observed as elevated nucleotide identity between *C. jejuni* and
198 clade 1 *C. coli* (Figure 3c–source data 1), consistent with previous studies [40, 42, 43].
199 Further evidence of introgression came from pairwise ANI comparison of genus-wide core
200 genes, in all isolates of the 15 major *Campylobacter* species, to the *C. jejuni* genome (Figure
201 3–figure supplement 4b). In the absence of gene flow, isolates from the two species should
202 have an approximately unimodal ANI distribution reflecting accumulation of mutations
203 throughout the genome. This was largely the case but for some species, low nucleotide
204 divergence suggested recent recombination with *C. jejuni*. There was also evidence of
205 interspecies accessory genome recombination. Presence/absence patterns in the accessory
206 genome matrix show considerable accessory gene sharing among several species that was
207 inconsistent with the phylogeny (Figure 3d–source data 1). This is well illustrated in *C.*
208 *lanienae* where much of the accessory genome was shared with other *Campylobacter* species
209 (Figure 3d–source data 1).

210

211 **Enhanced interspecies recombination among cohabiting species.**

212 For *Campylobacter* inhabiting different host species there is a physical barrier to HGT.
213 However, when there is niche overlap, interspecies recombination can occur, for example
214 between *C. jejuni* and *C. coli* inhabiting livestock [33, 40, 42]. To understand the extent to
215 which inhabiting different hosts impedes interspecies gene flow we quantified recombination

216 among *Campylobacter* species where isolates originated from same host (x_1, y) and different
217 hosts (x_2, y) (Figure 4a).

218

219 ChromoPainterV2 software was used to infer tracts of DNA donated from multiple donor
220 groups, belonging to the same CC but isolated from different hosts to recipient groups
221 (Materials and Methods). Among 27 combinations of multiple donor groups and recipient
222 groups, overall, there were more recombining SNPs within hosts than between hosts (Figure
223 4b) and for 10/27 species pairs there was evidence of enhanced within species recombination
224 ($x_1 \rightarrow y > x_2 \rightarrow y$; Figure 4c). To assess the robustness of the analysis we included the effect of
225 randomization and repeated the analysis by assigning random hosts for every strain (Figure
226 4—figure supplement 1). In the 10 pair species comparisons where $x_1 \rightarrow y > x_2 \rightarrow y$, we detected
227 174,594 within-host recombining SNPs (mapped to 473 genes; 28.8% of NCTC11168 genes)
228 and 109,564 between-host recombining SNPs (mapped to 395 genes; 24.05% of NCTC11168
229 genes). From the 473 within-host recombining genes, 45 genes contained the highest number
230 ($>95^{\text{th}}$ percentile) of recombining SNPs (Figure 4—figure supplements 2–3, Supplementary
231 File 2). These genes have diverse inferred functions including metabolism, cell wall
232 biogenesis, DNA modification, transcription, and translation (Supplementary File 2).

233

234 Interspecies recombination was observed for isolates sampled from chickens between
235 generalist lineages CC21 and CC45 (donors; *C. jejuni*) and generalist CC828 (recipient; *C.
236 coli*). These lineages appear to have high recombination to mutation (r/m) ratio as inferred by
237 ClonalFrameML (Supplementary File 3). DNA from generalist *C. jejuni* CC45 was
238 introduced into three *Campylobacter* species, including *C. hepaticus* (chicken), *C. concisus*
239 GSI and GSII (clinical) and *C. ureolyticus* (clinical) (Figure 4c—figure supplement 2–3,
240 Supplementary File 4). Clonal complex 45 had the highest r/m ratio from all other lineages or
241 species involved in the comparisons (Supplementary File 3). There was increased
242 recombination in genomes sampled from cattle between *C. jejuni* CC61 (donor; *C. jejuni*) and
243 *C. fetus* and *C. hyoilectinalis* (recipients) with 71.75% of all within-host recombining SNPs
244 from all 10 comparisons detected in these two pairs (Figure 4c—figure supplement 2–3,
245 Supplementary File 4). Agricultural associated *C. jejuni* CC61 and *C. fetus* subsp. *venerealis*
246 involved in these comparisons were among the lineages and subspecies with the highest r/m
247 ratios (Supplementary File 3). The cattle-associated CC61 has previously been described as
248 highly recombinant, and has been associated with rapid clonal expansion and adaptation in
249 cattle [16].

250

251 **The within-host mobilome**

252 Bacteria inhabiting the same niche may benefit from functionality conferred by similar gene
253 combinations. Recombination can promote the dissemination of adaptive genetic elements
254 among different bacterial species. Therefore, we postulated that the genes that recombine
255 most among species (>95th percentile) will include those that are potentially beneficial in
256 multiple genetic backgrounds. To investigate this, we quantified mobility within the genome
257 identifying recombining SNPs found in more than one species comparison (Figure 5a). These
258 SNPs mapped to 337 genes (20.52% of the NCTC11168 genes; 2.15% of the pangenome)
259 (Figure 5a, Supplementary File 5). We found that 32 of those genes (9.49%) have also been
260 found on plasmids (Supplementary File 5). A total of 16 genes showed elevated within-host
261 interspecies recombination in more than five species pairs (Figure 5c, Supplementary File 5).
262 Genes included *cmeA* and *cmeB* which are part of the predominant efflux pump CmeABC
263 system in *Campylobacter*. Sequence variation in the drug-binding pocket of the *cmeB* gene
264 has been linked to increased efflux function leading to resistance to multiple drugs [60].
265 Many of the same antimicrobial classes are used in human and veterinary medicine and this
266 may be linked to selection for AMR *Campylobacter*, that are commonly isolated from
267 livestock [61]. To investigate this further, we compared the genomes of all 631 isolates in our
268 dataset to 8,762 known antibiotic resistance genes from the Comprehensive Antibiotic
269 Resistance Database (CARD) [62], ResFinder [63] and the National Center for
270 Biotechnology Information (NCBI) databases. Homology (>75%) was found for 42 AMR
271 determinants associated with multi-drug efflux pumps, aminoglycosides, tetracyclines and β -
272 lactams (Figure 5b–figure supplement 1–source data 1). Species that contained >40% isolates
273 from livestock, including *C. jejuni*, *C. coli*, *C. lanienae*, *C. hepaticus*, *C. hyoilestinalis* and
274 *C. fetus* contained far more AMR determinants (Figure 5d–figure supplement 1–source data
275 1). AMR genes are often collocated in the genome [64] and our analysis revealed several
276 gene clusters (Figure 5–figure supplement 2) that have been described in previous studies
277 [64, 65]. These findings are consistent with HGT-mediated circulation of AMR genes among
278 different *Campylobacter* species and support hypotheses that ecology drives gene pool
279 transmission [2, 64].

280

281 *Campylobacter* host transmission and virulence have been linked with biofilm formation and
282 changes into surface polysaccharides [66, 67]. The *carB* gene showed elevated within-host
283 interspecies recombination in eight species pair comparisons (Figure 5c, Supplementary File

284 5). This gene encodes a carbamoylphosphate synthase that has been associated with
285 biosynthesis of substrates for many polysaccharides and is known to contain transposon
286 insertion sites upstream of its genomic position [67]. Other genes with elevated within-host
287 interspecies transfer (>7 species pairs) included *typA* (Figure 5c, Supplementary File 5), a
288 translator regulator for GTPase and *gltX* (Figure 5c), a *glutamate-tRNA ligase*, promoting
289 survival under stress conditions [68, 69]. Other genes included *gidA* and *hydB* associated with
290 virulence [70] and hydrogenase enzyme activity (respiratory pathway in *C. concisus*, 69),
291 respectively. By considering genes that overcome barriers to interspecies recombination and
292 establish in multiple new genetic backgrounds, it may be possible to infer important
293 phenotypes that allow bacteria to adapt to different hosts and environments.

294

295 **Discussion**

296 Phylogenetic reconstruction of the genus *Campylobacter* revealed a highly structured
297 population. Distinct core genome clustering largely supported known classification for
298 species, subspecies (*C. fetus*, [49]), genomospecies (*C. concisus*, [48]) and clades (*C. coli*
299 [42]). Also consistent with previous studies, certain species are principally associated with a
300 specific host niche. For example, *C. fetus subsp testudinum*, *C. iguanorium*, *C. geochelonis*
301 were only sampled from reptile species, and *C. pinnipediorum* was only sampled from seals.
302 However, for several species there was clear evidence for host generalism, including *C.*
303 *jejuni*, *C. coli* and *C. lari*, all of which were sampled from multiple hosts [26, 72]. It is clear
304 that the hosts with the greatest diversity of *Campylobacter* species were agricultural animals
305 (and humans) (Figure 2–figure supplement 3). While this undoubtedly reflects oversampling
306 of these sources to some extent, the cohabitation of species in the same host niche potentially
307 provides opportunities for interspecies HGT.

308

309 Initial evidence of interspecies gene flow came from comparison of average nucleotide
310 identity (ANI) and the accessory genome gene presence/absence for all isolates. In each case,
311 patterns of genetic similarity largely mirrored the phylogeny. However, consistent with
312 previous studies [40], there was clear evidence of elevated homologous and non-homologous
313 recombination between some species. For example, core genome ANI was higher between *C.*
314 *jejuni* and *C. coli* clade 1, compared to other *C. coli* clades (Figure 3c–source data 1). The
315 evidence for non-homologous gene sharing was even more striking with accessory genome
316 sharing across considerable genetic distances (Figure 3d–source data 1), exemplified by *C.*
317 *lanienae* which shares accessory genes with most other *Campylobacter* species.

318

319 To quantify the extent to which ecological barriers influenced interspecies gene flow, it was
320 necessary to focus on donor-recipient species pairs where there was evidence of elevated
321 HGT in the same (sympatry) compared to different (allopatry) hosts. Perhaps unsurprisingly,
322 this was not the case for all species comparisons. Interacting factors could lead to genetic
323 isolation even when species inhabit the same host. First, rather than being a single niche, the
324 host represents a collection of subniches with varying degrees of differentiation. For example,
325 gut-associated bacteria in the same intestinal tract have been shown to occupy different
326 microniches [73] and more striking segregation may be expected between *C. hepaticus*
327 inhabits the liver in poultry [54] and gut-dwelling *C. jejuni* and *C. coli* in the same host.
328 Second, there is potential for the resident microbiota to influence the colonization potential of
329 different *Campylobacter* species and therefore the opportunity for genetic exchange, for
330 example through succession [74] and inhibition of transient species by residents, as seen in
331 some other bacteria [75–77] in humans.

332

333 Continued exposition of the microecology of subniches is important but for 10 species
334 comparisons there was clear evidence of enhanced within-host gene flow allowing
335 quantitative analysis of ecological barriers to gene flow. Specifically, there was on average a
336 3-fold increase in recombination among species pairs inhabiting the same host. In some
337 cases, this was greater, with 5-6 times more recombination among cohabiting species *C.*
338 *jejuni* and *C. hyoilealis/C. fetus* in cattle. In absolute terms, this equates to
339 approximately 30% of all recorded SNPs in the recipient species being the result of
340 introgression. To place this in context, if greater than half (51%) of the recorded SNPs
341 resulted from interspecies recombination then the forces of species convergence would be
342 greater than those that maintain distinct species. If maintained over time, these relative rates
343 could lead to progressive genetic convergence unless countered by strong genome-wide
344 natural selection against introgressed DNA.

345

346 Quantitative SNP-based comparisons clearly ignore one very important factor. Specifically,
347 that recombined genes that do not reduce the fitness of the recipient genome (provide an
348 adaptive advantage) will remain in the population while others will be purged through natural
349 selection. Therefore, by identifying genomic hotspots of recombination and the putative
350 function of genes that recombine between species it is possible to understand more about
351 micro-niche segregation and the host adapted gene pool. Of the 35 genes with evidence of

352 enhanced within host HGT in ≥ 5 species pairs, several were linked to functions associated
353 with proliferation in, and exploitation of, the host. For example, the *carB* gene, encoding the
354 large subunit of carbamoylphosphatase associated with polysaccharide biosynthesis,
355 recombined in eight cohabiting species pairs and is potentially linked to enhanced virulence
356 and growth [67]. In addition, other highly mobile genes, including *typA* and *gltX* are
357 associated with survival and proliferation in stress conditions [68, 69], and *hydB* is linked to
358 NiFe hydrogenase and nickel uptake that is essential for the survival of *C. jejuni* in the gut of
359 birds and mammals [78].

360

361 Some genes showed evidence of elevated recombination in a specific host species. For
362 example, the *glmS* and *napA* genes in cohabiting *Campylobacter* species in cattle. In many
363 bacteria, analogs of *glmS* have multiple downstream integration specific sites (Tn7) [79]
364 which may explain the mobility of this gene. Explaining the mobility of *napA* is less straight
365 forward, but this gene is known to encode a nitrate reductase in *Campylobacter* [80] in
366 microaerobic conditions which may be ecologically significant as the accumulation of nitrate
367 in slurry, straw and drainage water can be potentially toxic to livestock mammals [81].

368

369 Factors such as host physiology, diet, and metabolism undoubtedly impose selection
370 pressures upon resident bacteria and the horizontal acquisition of genes provides a possible
371 vehicle for adaptation. However, the widespread use of antimicrobials by humans, pets and
372 livestock production [82, 83], provides another major ecological barrier to niche colonization.
373 We found that *gyrA* was among the most recombinogenic genes in *Campylobacter* in
374 chickens. This is important as a single mutation in this gene is known to confer resistance to
375 ciprofloxacin [84]. While the rising trend in fluoroquinolones resistance in *Campylobacter*
376 from humans and livestock [85] may result from spontaneous independent mutations, it is
377 likely that it is accelerated by HGT. However, there is currently no clear evidence for the
378 transfer of resistant versions of *gyrA*. Interspecies recombination of AMR genes has been
379 observed between *C. jejuni* and *C. coli* isolates from multiple sources including livestock,
380 human and sewage [64]. Consistent with this, we found AMR genes present in strains from
381 12 *Campylobacter* species in multiple hosts (Figure 5—figure supplement 2). In some cases,
382 strains from phylogenetically closely related species (*C. fetus* and *C. hyoilectinalis*) isolated
383 from cattle, shared the same AMR gene cluster (*tet44* and *ant(6)-Ib*) described before in *C.*
384 *fetus* subsp. *fetus* [65], indicating the circulation of colocalized AMR genes among related
385 species and host niche gene pools. Strikingly, the efflux pump genes *cmeA* and *cmeB*,

386 associated with multidrug resistance (MDR) were highly mobile among *Campylobacter*
387 species with evidence of elevated within host interspecies recombination in >7 species pairs.
388 Furthermore, the *gltX* gene, which when phosphorylated by protein kinases promotes MDR
389 [69], was also among the most introgressed genes. While a deeper understanding of gene
390 interactions, epistasis and epigenetics would be needed to prove that the lateral acquisition of
391 AMR genes promotes niche adaptation, these data do suggest that HGT may facilitate
392 colonization of antimicrobial-rich host environments, potentially favouring the spread of
393 genes into multiple genetic backgrounds.

394

395 In conclusion, we show that species within the genus *Campylobacter* include those that are
396 host restricted as well as host generalists. When species cohabit in the same host, ecological
397 barriers to recombination can be perforated leading to considerable introgression between
398 species. While the magnitude of introgression varies, potentially reflecting microniche
399 structure with the host, there is clear evidence that ecology is important in maintaining
400 genetically distinct species. This parallels evolution in some interbreeding eukaryotes, such
401 as Darwin's Finches, where fluctuating environmental conditions can change the selection
402 pressures acting on species inhabiting distinct niches, potentially favouring hybrids [86, 87].
403 Consistent with this, the host landscape is changing for *Campylobacter*, with intensively
404 reared livestock now constituting 60-70% of bird and mammal biomass on earth respectively
405 [88]. This creates opportunities for species to be brought together in new adaptive landscapes
406 and for genes to be tested from multiple genetic backgrounds. By understanding the ecology
407 of niche segregation and the genetics of bacterial adaptation we can hope to improve
408 strategies and interventions to reduce the risk of zoonotic transmission and the spread of
409 problematic genes among species.

410

411 **Materials & Methods**

412 **Isolate genomes**

413 A total of 631 *Campylobacter*, 17 *Arcobacter*, seven *Sulfurospirillum* and five *Helicobacter*
414 genomes were assembled from previously published datasets (Supplementary File 1). Isolates
415 were sampled from clinical cases of campylobacteriosis and faeces of chickens, ruminants,
416 wild birds, wild mammals, pets and environmental sources. Genomes and related metadata
417 were uploaded and archived in the BIGS database [89]. Quality control was performed based
418 on the genome size, number of contigs, N50 and N95 contig length using the integrated tools
419 in BIGS database. All assembled contigs were further screened for contamination and

420 completeness using CheckM [90] (Supplementary File 1). All assembled genomes can be
421 downloaded from FigShare (doi: 10.6084/m9.figshare.15061017). Comparative genomics
422 analyses focused on the *Campylobacter* genomes representing 30 species including: *C. avium*
423 (n=1); *C. coli* (n=143); *C. concisus* (n=106); *C. corgagiensis* (n=1); *C. cuniculorum* (n=2); *C.*
424 *curvus* (n=2); *C. fetus* (n=52); *C. geochelonis* (n=3); *C. gracilis* (n=2); *C. helveticus* (n=1); *C.*
425 *hepaticus* (n=10); *C. hominis* (n=1); *C. hyoilectinalis* (n=16); *C. iguanorium* (n=3); *C.*
426 *insulaenigrae* (n=1); *C. jejuni* (n=218); *C. lanienae* (n=26); *C. lari* (n=13); *C. mucosalis*
427 (n=1); *C. ornithocola* (n=1); *C. peloridis* (n=1); *C. pinnipediorum* (n=9); *C. rectus* (n=1); *C.*
428 *showae* (n=3); *C. sputorum* (n=1); *C. subantarcticus* (n=3); *C. upsaliensis* (n=3); *C.*
429 *ureolyticus* (n=4); *C. volucris* (n=2); *Campylobacter* sp (n=1) (Supplementary File 1).
430 Genomes belonging to *C. jejuni* and *C. coli* species were selected to represent a wide range of
431 hosts, sequence types, and clonal complexes and reflect the known population structure for
432 these two species. For other *Campylobacter* species, all genomes that were publicly available
433 at the time of this study were included in the analysis. (Supplementary File 1).

434

435 **Pangenome characterization and phylogenetic analysis**

436 Sequence data were analysed using PIRATE, a fast and scalable pangenomics tool which
437 allows for orthologue gene clustering in divergent bacterial species [91]. Genomes were
438 annotated in Prokka [92], using a genus database comprising well annotated *C. jejuni* strains
439 NCTC11168, 81116, 81-176 and M1, and plasmids pTet and pVir in addition to the already
440 existing databases used by Prokka [92]. Briefly, annotated genomes were used as input for
441 PIRATE. Non-redundant representative sequences were produced using CD-HIT and the
442 longest sequence was used as a reference for sequence similarity interrogation using
443 BLAST/DIAMOND. Gene orthologues were defined as “gene families” and were clustered
444 in different MCL thresholds, from 10 to 98 % sequence identity (10, 20, 30, 40, 50, 60, 70,
445 80, 90, 95, 98). Higher MCL thresholds were used to identify allelic variation within different
446 loci. An inflation value of 4 was used to increase the granularity of MCL clustering between
447 gene families. BLAST high-scoring pairs with a reciprocal minimum length of 90% of the
448 query/subject sequence were excluded from MCL clustering to reduce the number of spurious
449 associations between distantly related or conserved genes [93]. This information was used to
450 generate gene presence/absence and allelic variation matrices. A core gene-by-gene multiple
451 sequence alignment [89] was generated using MAFFT [94] comprising genes shared >95% of
452 isolates. Phylogenetic trees, based on core gene-by-gene alignments, were reconstructed

453 using the maximum-likelihood algorithm implemented in RAxML v8.2.11 [95] with
454 GTRGAMMA as substitution model.

455

456 **Quantifying core and accessory genome variation**

457 The degree of genetic differentiation between species was investigated gene-by-gene as in
458 previous studies [40, 96] by calculating the average nucleotide identity (ANI) of all 631
459 *Campylobacter* genomes using FastANI v.1.0 [59]. The analysis generated a lower triangular
460 matrix with the lowest ANI value at 75% (as computed by FastANI). A comparable gene
461 presence/absence matrix was produced using PIRATE and was further used to generate a
462 heatmap of accessory genome similarity based upon gene presence or absence. Subsequently,
463 all *Campylobacter* genomes were screened for the presence of antimicrobial resistance genes
464 against the CARD [62], ResFinder [63] and NCBI databases. All *Campylobacter* genomes
465 were further screened for the presence of phage, conjugative elements and plasmid DNA
466 using publicly available online databases to investigate the effect of other transfer
467 mechanisms. First, we used the PHAge Search Tool Enhanced Release (PHASTER) [97] to
468 identify and annotate prophage sequences within our genomes. A total of 86% (254/297) of
469 the genomes used in chromosome painting were found to have DNA sequence of phage
470 origin. Second, we used Iceberg 2.0 [98] for the detection of integrative and conjugative
471 elements, identifying 32 ICEs in 19% (56/297) of the genomes used in the chromosome
472 painting analysis. Finally, we used MOB-suite software for clustering, reconstruction and
473 typing of plasmids from draft assemblies [99, 100]. A positive hit was defined when a gene
474 had >75% nucleotide identity over >50% of the sequence length showing that 32 genes
475 identified in the recombination analysis have also been located on plasmids. A gene
476 presence/absence matrix for every antimicrobial resistance gene was generated for every
477 genome. Genomes carrying AMR genes were screened to characterize the location of
478 adjacent genes using SnapGene software (GSL Biotech; available at snapgene.com), as
479 previously described [64]. The number of core SNPs was identified using SNP-sites (v2.3.2)
480 [101].

481

482 **Inference of recombination**

483 Each combination of a recipient group and multiple donor groups (belonging to the same CC
484 but isolated from different hosts) was selected to compare the extent of interspecies
485 recombination into the recipient genomes. Each donor group consisted of 8 isolates to avoid
486 the influence of difference in sample size on estimation of the extent of interspecies

487 recombination. Each recipient group included at least 4 isolates. We excluded *C. jejuni* and
488 *C. coli* clade 1 genomes isolated from seals and water, as these most likely represent spillover
489 events and not true host segregated populations. Briefly, we conducted a pairwise genome
490 alignment between reference genome NCTC11168 and one of the strains included in the
491 donor-recipient analysis using progressiveMauve [102]. This enabled the construction of
492 positional homology alignments for all genomes regardless gene content and genome
493 rearrangements, which were then combined into a multiple whole-genome alignment, as
494 previously described [103]. ChromoPainterV2 software was used to calculate the amount of
495 DNA sequence that is donated from a donor to a recipient group [45]. Briefly, for each donor-
496 recipient pair, SNPs in which >90% recipient individuals had recombined with the donor
497 group were considered in the analysis. These SNPs were mapped to genomic regions and
498 specific genes were identified. A total of 258,444 (96.83%) recombining SNPs mapped to
499 558 genes of the NCTC11168 reference strain with >90% probability of copying from a
500 donor to a recipient strain. Genes containing the highest number of recombining SNPs were
501 considered for subsequent analyses (>95th percentile) (Supplementary File 2).
502 ClonalFrameML[104] was used to infer the relative number of substitutions introduced by
503 recombination (*r*) and mutation (*m*) as the ratio *r/m* as previously described [16].

504

505 **Data availability**

506 Genomes sequenced as part of other studies are archived on the Short Read Archive
507 associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755,
508 PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879,
509 PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Additional genomes
510 were also downloaded from NCBI [105] and pubMLST (<http://pubmlst.org/campylobacter>).
511 Contiguous assemblies of all genome sequences compared are available at the public data
512 repository Figshare (doi: 10.6084/m9.figshare.15061017) and individual project and
513 accession numbers can be found in Supplementary File 1.

514

515 **References**

- 516 1. Smith JM, Dowson CG, Spratt BG. Localized sex in bacteria. *Nature* 1991; **349**: 29–
517 31.
- 518 2. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host
519 adaptation. *Nat Rev Genet* 2018; **19**: 549–565.
- 520 3. Shapiro BJ, Leducq J-B, Mallet J. What Is Speciation? *PLOS Genet* 2016; **12**:

521 e1005860.

522 4. Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. *Genome Res*
523 2009; **19**: 744–756.

524 5. Doolittle WF, Papke RT. Genomics and the bacterial species problem. *Genome Biol*
525 2006; **7**: 116.

526 6. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial
527 speciation. *Science* 2007; **315**: 476–80.

528 7. Budroni S, Siena E, Hotopp JCD, Seib KL, Serruto D, Nofroni C, et al. *Neisseria*
529 *meningitidis* is structured in clades associated with restriction modification systems
530 that modulate homologous recombination. *Proc Natl Acad Sci* 2011; **108**: 4494–4499.

531 8. Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by
532 restriction-modification systems. *Proc Natl Acad Sci* 2016; **113**: 5658–5663.

533 9. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic
534 discovery of antiphage defense systems in the microbial pangenome. *Science* (80-)
535 2018; **359**: eaar4120.

536 10. Nandi T, Holden MTG, Didelot X, Mehershahi K, Boddey JA, Beacham I, et al.
537 *Burkholderia pseudomallei* sequencing identifies genomic clades with distinct
538 recombination, accessory, and epigenetic profiles. *Genome Res* 2015; **25**: 129–141.

539 11. Marraffini LA, Sontheimer EJ. CRISPR Interference Limits Horizontal Gene Transfer
540 in Staphylococci by Targeting DNA. *Science* (80-) 2008; **322**: 1843–1845.

541 12. Thomas CM, Nielsen KM. Mechanisms of, and Barriers to, Horizontal Gene Transfer
542 between Bacteria. *Nat Rev Microbiol* 2005; **3**: 711–721.

543 13. Eggleston AK, Mitchell AH, West SC. In Vitro Reconstitution of the Late Steps of
544 Genetic Recombination in *E. coli*. *Cell* 1997; **89**: 607–617.

545 14. Zhu P, van der Ende A, Falush D, Brieske N, Morelli G, Linz B, et al. Fit genotypes
546 and escape variants of subgroup III *Neisseria meningitidis* during three pandemics of
547 epidemic meningitis. *Proc Natl Acad Sci* 2001; **98**: 5234–5239.

548 15. Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry BW, Castoe TA, et al. Evolutionary
549 origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19
550 pandemic. *Nat Microbiol* 2020; **5**: 1408–1417.

551 16. Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B, Mageiros L, et al. Agricultural
552 intensification and the evolution of host specialism in the enteric pathogen
553 *Campylobacter jejuni*. *Proc Natl Acad Sci* 2020; **117**: 11018–11028.

554 17. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New

555 18. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. *J Med Microbiol*
556 2013; **62**: 499–513.

557 19. Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, et al. Horizontal
558 antimicrobial resistance transfer drives epidemics of multiple *Shigella* species. *Nat
559 Commun* 2018; **9**: 1462.

560 20. Young JPW. Bacteria Are Smartphones and Mobile Genes Are Apps. *Trends
561 Microbiol* 2016; **24**: 931–932.

562 21. McInerney JO, Whelan FJ, Domingo-Sananes MR, McNally A, O’Connell MJ.
563 Pangenomes and Selection: The Public Goods Hypothesis. *The Pangenome*. 2020.
564 Springer International Publishing, Cham, pp 151–167.

565 22. Vos M, Eyre-Walker A. Are pangenomes adaptive or not? *Nat Microbiol* 2017; **2**:
566 1576.

567 23. Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation.
568 *Proc Natl Acad Sci* 2011; **108**: 10863–10870.

569 24. Giacomelli M, Piccirillo A. Pet reptiles as potential reservoir of *Campylobacter*
570 species with zoonotic potential: TABLE 1: *Vet Rec* 2014; **174**: 479.2–479.

571 25. Fitzgerald C, Tu Z chao, Patrick M, Stiles T, Lawson AJ, Santovenia M, et al.
572 *Campylobacter fetus* subsp. *testudinum* subsp. nov., isolated from humans and reptiles.
573 *Int J Syst Evol Microbiol* 2014; **64**: 2944–2948.

574 26. Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashurst-Smith C, Olsen B, et
575 al. Marked host specificity and lack of phylogeographic population structure of
576 *Campylobacter jejuni* in wild birds. *Mol Ecol* 2013; **22**: 1463–1472.

577 27. Atterby C, Mourkas E, Méric G, Pascoe B, Wang H, Waldenström J, et al. The
578 Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in
579 *Campylobacter jejuni* Strains From Three Bird Species. *Front Microbiol* 2018; **9**.

580 28. Leatherbarrow AJH, Griffiths R, Hart CA, Kemp R, Williams NJ, Diggle PJ, et al.
581 *Campylobacter lari*: genotype and antibiotic resistance of isolates from cattle, wildlife
582 and water in an area of mixed dairy farmland in the United Kingdom. *Environ
583 Microbiol* 2007; **9**: 1772–1779.

584 29. Man SM. The clinical importance of emerging *Campylobacter* species. *Nat Rev
585 Gastroenterol Hepatol* 2011; **8**: 669–685.

586 30. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of

589 *Campylobacter* Infection. *Clin Microbiol Rev* 2015; **28**: 687–720.

590 31. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, Gormley FJ, et al.

591 *Campylobacter* genotypes from food animals, environmental sources and clinical

592 disease in Scotland 2005/6. *Int J Food Microbiol* 2009; **134**: 96–103.

593 32. Sheppard SK, Dallas JF, Strachan NJC, MacRae M, McCarthy ND, Wilson DJ, et al.

594 *Campylobacter* genotyping to determine the source of human infection. *Clin Infect Dis*

595 2009; **48**: 1072–8.

596 33. Sheppard SK, Colles FM, McCarthy ND, Strachan NJC, Ogden ID, Forbes KJ, et al.

597 Niche segregation and genetic structure of *Campylobacter jejuni* populations from

598 wild and agricultural host species. *Mol Ecol* 2011; **20**: 3484–90.

599 34. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ, Sheppard SK. Rapid host

600 switching in generalist *Campylobacter* strains erodes the signal for tracing human

601 infections. *ISME J* 2016; **10**: 721–729.

602 35. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A, et al. Host

603 Association of *Campylobacter* Genotypes Transcends Geographic Variation. *Appl*

604 *Environ Microbiol* 2010; **76**: 5269–5277.

605 36. Sheppard SK, Cheng L, Méric G, de Haan CPA, Llarena A-K, Marttinen P, et al.

606 Cryptic ecology among host generalist *Campylobacter jejuni* in domestic animals. *Mol*

607 *Ecol* 2014; **23**: 2442–2451.

608 37. Woodcock DJ, Krusche P, Strachan NJC, Forbes KJ, Cohan FM, Méric G, et al.

609 Genomic plasticity and rapid host switching can promote the evolution of generalism:

610 a case study in the zoonotic pathogen *Campylobacter*. *Sci Rep* 2017; **7**: 9650.

611 38. Colles FM, Dingle KE, Cody AJ, Maiden MCJ. Comparison of *Campylobacter*

612 Populations in Wild Geese with Those in Starlings and Free-Range Poultry on the

613 Same Farm. *Appl Environ Microbiol* 2008; **74**: 3583–3590.

614 39. Colles FM, McCarthy ND, Bliss CM, Layton R, Maiden MCJ. The long-term

615 dynamics of *Campylobacter* colonizing a free-range broiler breeder flock: an

616 observational study. *Environ Microbiol* 2015; **17**: 938–946.

617 40. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B, Meric G, et al. Progressive

618 genome-wide introgression in agricultural *Campylobacter coli*. *Mol Ecol* 2013; **22**:

619 1051–64.

620 41. Taylor AJ, Méric G, Yahara K, Pascoe B, Mageiros L, Mourkas E, et al. Cross-species

621 evolutionary rewiring in the enteric bacterium *Campylobacter*; *bioRxiv* 2021;

622 2021.03.15.435406.

623 42. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of *Campylobacter*
624 Species: Implications for Bacterial Evolution. *Science* (80-) 2008; **320**: 237–239.

625 43. Sheppard SK, McCarthy ND, Jolley KA, Maiden MCJ. Introgression in the genus
626 *Campylobacter*: generation and spread of mosaic alleles. *Microbiology* 2011; **157**:
627 1066–1074.

628 44. Thorell K, Yahara K, Berthenet E, Lawson DJ, Mikhail J, Kato I, et al. Rapid
629 evolution of distinct *Helicobacter pylori* subpopulations in the Americas. *PLOS Genet*
630 2017; **13**: e1006730.

631 45. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of Population Structure using
632 Dense Haplotype Data. *PLoS Genet* 2012; **8**: e1002453.

633 46. Yahara K, Furuta Y, Oshima K, Yoshida M, Azuma T, Hattori M, et al. Chromosome
634 Painting In Silico in a Bacterial Species Reveals Fine Population Structure. *Mol Biol*
635 *Evol* 2013; **30**: 1454–1464.

636 47. Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, et al. Multilocus
637 sequence typing system for *Campylobacter jejuni*. *J Clin Microbiol* 2001; **39**: 14–23.

638 48. Kirk KF, Méric G, Nielsen HL, Pascoe B, Sheppard SK, Thorlacius-Ussing O, et al.
639 Molecular epidemiology and comparative genomics of *Campylobacter concisus* strains
640 from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. *Sci Rep*
641 2018; **8**: 1902.

642 49. Iraola G, Forster SC, Kumar N, Lehours P, Bekal S, García-Peña FJ, et al. Distinct
643 *Campylobacter fetus* lineages adapted as livestock pathogens and human pathobionts
644 in the intestinal microbiota. *Nat Commun* 2017; **8**: 1367.

645 50. Debruyne L, On SLW, De Brandt E, Vandamme P. Novel *Campylobacter lari*-like
646 bacteria from humans and molluscs: description of *Campylobacter peloridis* sp. nov.,
647 *Campylobacter lari* subsp. *concheus* subsp. nov. and *Campylobacter lari* subsp. *lari*
648 subsp. nov. *Int J Syst Evol Microbiol* 2009; **59**: 1126–32.

649 51. Gilbert MJ, Kik M, Miller WG, Duim B, Wagenaar JA. *Campylobacter iguaniorum*
650 sp. nov., isolated from reptiles. *Int J Syst Evol Microbiol* 2015; **65**: 975–982.

651 52. Piccirillo A, Niero G, Calleros L, Pérez R, Naya H, Iraola G. *Campylobacter*
652 *geochelonis* sp. nov. isolated from the western Hermann's tortoise (*Testudo hermanni*
653 *hermanni*). *Int J Syst Evol Microbiol* 2016; **66**: 3468–3476.

654 53. Logan JMJ, Burnens A, Linton D, Lawson AJ, Stanley J. *Campylobacter lanienae* sp.
655 nov., a new species isolated from workers in an abattoir. *Int J Syst Evol Microbiol*
656 2000; **50**: 865–872.

657 54. Van TTH, Elshagmani E, Gor MC, Scott PC, Moore RJ. *Campylobacter hepaticus* sp.
658 nov., isolated from chickens with spotty liver disease. *Int J Syst Evol Microbiol* 2016;
659 **66**: 4518–4524.

660 55. Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL, Huynh S, et al. Comparative
661 genomics of the *Campylobacter lari* group. *Genome Biol Evol* 2014; **6**: 3252–66.

662 56. Gilbert MJ, Miller WG, Leger JS, Chapman MH, Timmerman AJ, Duim B, et al.
663 *Campylobacter pinnipediorum* sp. nov., isolated from pinnipeds, comprising
664 *Campylobacter pinnipediorum* subsp. *pinnipediorum* subsp. nov. and *Campylobacter*
665 *pinnipediorum* subsp. *caledonicus* subsp. nov. *Int J Syst Evol Microbiol* 2017; **67**:
666 1961–1968.

667 57. Pascoe B, Méric G, Yahara K, Wimalarathna H, Murray S, Hitchings MD, et al. Local
668 genes for local bacteria: Evidence of allopatry in the genomes of transatlantic
669 *Campylobacter* populations. *Mol Ecol* 2017; **26**: 4497–4508.

670 58. Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, et al.
671 Domestication of *Campylobacter jejuni* NCTC 11168. *Microb genomics* 2019; **5**.

672 59. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput
673 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat*
674 *Commun* 2018; **9**: 5114.

675 60. Yao H, Shen Z, Wang Y, Deng F, Liu D, Naren G, et al. Emergence of a Potent
676 Multidrug Efflux Pump Variant That Enhances *Campylobacter* Resistance to Multiple
677 Antibiotics. *MBio* 2016; **7**: 1–11.

678 61. Livermore DM. Introduction: the challenge of multiresistance. *Int J Antimicrob Agents*
679 2007; **29**: S1–S7.

680 62. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017:
681 expansion and model-centric curation of the comprehensive antibiotic resistance
682 database. *Nucleic Acids Res* 2017; **45**: D566–D573.

683 63. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al.
684 Identification of acquired antimicrobial resistance genes. *J Antimicrob Chemother*
685 2012; **67**: 2640–2644.

686 64. Mourkas E, Florez Cuadrado D, Pascoe B, Calland JK, Bayliss SC, Mageiros L, et al.
687 Gene pool transmission of multidrug resistance among *Campylobacter* from livestock,
688 sewage and human disease. *Environ Microbiol* 2019; **21**: 4597–4613.

689 65. Abril C, Brodard I, Perreten V. Two Novel Antibiotic Resistance Genes, tet(44) and
690 ant(6)-Ib, Are Located within a Transferable Pathogenicity Island in *Campylobacter*

691 *fetus* subsp. *fetus*. *Antimicrob Agents Chemother* 2010; **54**: 3052–3055.

692 66. Szymanski CM, Logan SM, Linton D, Wren BW. *Campylobacter* – a tale of two
693 protein glycosylation systems. *Trends Microbiol* 2003; **11**: 233–238.

694 67. McLennan MK, Ringoir DD, Frirdich E, Svensson SL, Wells DH, Jarrell H, et al.
695 *Campylobacter jejuni* Biofilms Up-Regulated in the Absence of the Stringent
696 Response Utilize a Calcofluor White-Reactive Polysaccharide. *J Bacteriol* 2008; **190**:
697 1097–1107.

698 68. Margus T, Remm M, Tenson T. Phylogenetic distribution of translational GTPases in
699 bacteria. *BMC Genomics* 2007; **8**: 1–18.

700 69. Semanjski M, Germain E, Bratl K, Kiessling A, Gerdes K, Macek B. The kinases
701 HipA and HipA7 phosphorylate different substrate pools in *Escherichia coli* to
702 promote multidrug tolerance. *Sci Signal* 2018; **11**.

703 70. Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA. Deletion of gene
704 encoding methyltransferase (*gidB*) confers high-level antimicrobial resistance in
705 *Salmonella*. *J Antibiot (Tokyo)* 2012; **65**: 185–192.

706 71. Benoit SL, Maier RJ. Site-directed mutagenesis of *Campylobacter concisus* respiratory
707 genes provides insight into the pathogen’s growth requirements. *Sci Rep* 2018; **8**:
708 14203.

709 72. Cody AJ, McCarthy ND, Bray JE, Wimalarathna HML, Colles FM, Jansen van
710 Rensburg MJ, et al. Wild bird-associated *Campylobacter jejuni* isolates are a
711 consistent source of human disease, in Oxfordshire, United Kingdom. *Environ
712 Microbiol Rep* 2015; **7**: 782–788.

713 73. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of
714 jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA
715 gene libraries and terminal restriction fragment length polymorphism. *J Med Microbiol*
716 2005; **54**: 1093–1101.

717 74. Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of
718 the intestinal bacterial community of the maturing broiler chicken. *Appl Environ
719 Microbiol* 2003; **69**: 6816–24.

720 75. Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like
721 will to like: abundances of closely related species can predict susceptibility to
722 intestinal colonization by pathogenic and commensal bacteria. *PLoS Pathog* 2010; **6**:
723 e1000711.

724 76. van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. Microbial

725 diversity determines the invasion of soil by a bacterial pathogen. *Proc Natl Acad Sci U*
726 *SA* 2012; **109**: 1159–64.

727 77. Nowrouzian FL, Wold AE, Adlerberth I. *Escherichia coli* strains belonging to
728 phylogenetic group B2 have superior capacity to persist in the intestinal microflora of
729 infants. *J Infect Dis* 2005; **191**: 1078–83.

730 78. Howlett RM, Hughes BM, Hitchcock A, Kelly DJ. Hydrogenase activity in the
731 foodborne pathogen *Campylobacter jejuni* depends upon a novel ABC-type nickel
732 transporter (NikZYXWV) and is SlyD-independent. *Microbiology* 2012; **158**: 1645–
733 1655.

734 79. Choi K-H. Applications of Transposon-Based Gene Delivery System in Bacteria. *J*
735 *Microbiol Biotechnol* 2009; **19**: 217–28.

736 80. Pittman MS, Elvers KT, Lee L, Jones MA, Poole RK, Park SF, et al. Growth of
737 *Campylobacter jejuni* on nitrate and nitrite: electron transport to NapA and NrfA via
738 NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative
739 stress. *Mol Microbiol* 2007; **63**: 575–590.

740 81. Alexander J, Benford D, Cockburn A, Cravedi J, Dogliotti E, Domenico A Di, et al.
741 Nitrite as undesirable substances in animal feed □ Scientific Opinion of the Panel on
742 Contaminants in the Food Chain. *EFSA J* 2009; **7**: 1–47.

743 82. Teuber M. Veterinary use and antibiotic resistance. *Curr Opin Microbiol* 2001; **4**:
744 493–499.

745 83. Price LB, Koch BJ, Hungate BA. Ominous projections for global antibiotic use in
746 food-animal production. *Proc Natl Acad Sci U S A* 2015; **112**: 5554–5.

747 84. Luo N, Sahin O, Lin J, Michel LO, Zhang Q. In Vivo Selection of *Campylobacter*
748 Isolates with High Levels of Fluoroquinolone Resistance Associated with *gyrA*
749 Mutations and the Function of the CmeABC Efflux Pump. *Antimicrob Agents*
750 *Chemother* 2003; **47**: 390–394.

751 85. Sproston EL, Wimalarathna HML, Sheppard SK. Trends in fluoroquinolone resistance
752 in *Campylobacter*. *Microb Genomics* 2018; **4**: 1–8.

753 86. Mallet J. Hybrid speciation. *Nature* 2007; **446**: 279–283.

754 87. Grant PR, Grant BR. Hybridization of Bird Species. *Science (80-)* 1992; **256**: 193–
755 197.

756 88. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. *Proc Natl Acad*
757 *Sci* 2018; **115**: 6506–6511.

758 89. Sheppard SK, Jolley KA, Maiden MCJ. A Gene-By-Gene Approach to Bacterial

759 Population Genomics: Whole Genome MLST of *Campylobacter*. *Genes (Basel)* 2012; 760 **3**: 261–277.

761 90. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing 762 the quality of microbial genomes recovered from isolates, single cells, and 763 metagenomes. *Genome Res* 2015; **25**: 1043–1055.

764 91. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and 765 scalable pangenomics toolbox for clustering diverged orthologues in bacteria. 766 *Gigascience* 2019; **8**: 1–9.

767 92. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014; **30**: 768 2068–2069.

769 93. Sahl JW, Caporaso JG, Rasko DA, Keim P. The large-scale blast score ratio (LS-BSR) 770 pipeline: a method to rapidly compare genetic content between bacterial genomes. 771 *PeerJ* 2014; **2**: e332.

772 94. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast 773 Fourier transform. *Nucleic Acids Res* 2002; **30**: 3059–3066.

774 95. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 775 large phylogenies. *Bioinformatics* 2014; **30**: 1312–1313.

776 96. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of 777 relatedness between the *Salmonella* Paratyphi A and Typhi genomes: convergence or 778 divergence by homologous recombination? *Genome Res* 2007; **17**: 61–8.

779 97. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, 780 faster version of the PHAST phage search tool. *Nucleic Acids Res* 2016; **44**: W16– 781 W21.

782 98. Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of 783 bacterial integrative and conjugative elements. *Nucleic Acids Res* 2019; **47**: D660– 784 D665.

785 99. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and 786 typing of plasmids from draft assemblies. *Microb genomics* 2018; **4**.

787 100. Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based 788 plasmid typing and its utility to prediction of host range and epidemiological 789 surveillance. *Microb Genomics* 2020; **6**: 1–12.

790 101. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: 791 rapid efficient extraction of SNPs from multi-FASTA alignments. *Microb Genomics* 792 2016; **2**: e000056.

793 102. Darling AE, Mau B, Perna NT. progressiveMauve: Multiple Genome Alignment with
794 Gene Gain, Loss and Rearrangement. *PLoS One* 2010; **5**: e11147.

795 103. Yahara K, Nakayama S, Shimuta K, Lee K, Morita M, Kawahata T, et al. Genomic
796 surveillance of *Neisseria gonorrhoeae* to investigate the distribution and evolution of
797 antimicrobial-resistance determinants and lineages. *Microb Genomics* 2018; **4**: 1–3.

798 104. Didelot X, Wilson DJ. ClonalFrameML: Efficient Inference of Recombination in
799 Whole Bacterial Genomes. *PLOS Comput Biol* 2015; **11**: e1004041.

800 105. NCBI Resource Coordinators. Database resources of the National Center for
801 Biotechnology Information. *Nucleic Acids Res* 2016; **44**: D7–D19.

802

803 **Acknowledgements**

804 This work was supported by Wellcome Trust grants 088786/C/09/Z and Medical Research
805 Council (MRC) grants MR/M501608/1 and MR/L015080/1 awarded to S.K.S. The
806 computational calculations were performed at the Human Genome Center at the Institute of
807 Medical Science (University of Tokyo) and at the National Institute of Genetics.

808

809 **Competing interests**

810 The authors declare no competing interests.

811

812 **Figure legends**

813 **Figure 1. Barriers to horizontal gene transfer in bacteria.** A series of barriers must be
814 surmounted for DNA to transmit from one species to another. These are broadly defined in
815 three categories. At a given time, alignment of holes in successive barriers is necessary for
816 HGT to occur. Here we focus on ecological barriers that are influenced by multiple factors
817 that reflect the physical isolation of bacteria in separate niches.

818

819 **Figure 2. Population structure and host ecology in the genus *Campylobacter*.** **a**,
820 Phylogenetic tree of 631 *Campylobacter* isolates from 30 species reconstructed using a gene-
821 by-gene concatenated alignment of 820 core genes (shared by >95% of isolates) and an
822 approximation of the maximum-likelihood algorithm (ML) implemented in RAxML. The
823 species name is indicated adjacent to the associated sequence cluster. The scale bar indicates
824 the estimated number of substitutions per site. **b**, Isolation source of *Campylobacter* species
825 with $n \geq 3$ isolates.

826

827 **Figure 3. Core and accessory genome variation in the genus *Campylobacter*.** **a**, Overall
828 distribution of the total number of accessory genes (left) and core genes (right) per isolate for
829 each *Campylobacter* species (where $n \geq 3$ isolates). The number of accessory genes is shown
830 as boxplots (min to max). **b**, Venn diagram of pangenomes among different *Campylobacter*
831 species ($n \geq 9$). The number of core genes shared by all species is illustrated in the center. **c**,
832 Pairwise average nucleotide identity comparison calculated for all 631 *Campylobacter*
833 isolates based upon 820 core genes shared by >95% of isolates. ANI values <75% are not
834 calculated by FastANI [59]. **d**, Pairwise accessory genome similarity based upon gene
835 presence or absence at 2,168 non-core loci. The heatmaps coloring ranges from yellow
836 (minimum) to red (maximum). The matrices are ordered according to the phylogenetic tree
837 presented in figure 2a. Different colours correspond to *Campylobacter* species with ≥ 3
838 isolates.

839

840 **Figure 4. Elevated within-host interspecies recombination and donor-recipient**
841 **comparisons.** **a**, A hypothesis depicting the relationships between *Campylobacter* species, *C.*
842 *jejuni* (x_1, x_2) and *C. coli* (y), when found in the same or in different hosts. **b**, Number of
843 recombining SNPs within and between host as inferred by chromosome painting analysis for
844 all donor recipient species comparisons. The error bar represents the standard error of the
845 mean (SEM). **c**, The figure shows the number of donated SNPs in 10 donor-recipient pair
846 species comparisons. The proportion (%) of recombining SNPs with >90% probability of
847 copying from a donor to a recipient genome is illustrated in the y axis. All donor groups are
848 shows in the x axis. All coloured boxes correspond to comparison where donors and
849 recipients are found in the same host.

850

851 **Figure 5. The mobilome of the *Campylobacter* genus.** **a**, The graph illustrates the
852 proportion of recombining genes in 10 different species comparisons. The number of species
853 pairs in which the gene was found to recombine is shown on the x axis and the number of
854 genes in each category is given on the y axis and. The exact number of genes found in each
855 group comparison is shown on the top of each box. **b**, Number of *Campylobacter* species
856 harbouring AMR genes that belong to efflux pumps and four different antibiotic classes
857 which are shown on the x axis. **c**, The circos plot indicates the 16 genes involved in
858 recombination in >5 donor-recipient pair species comparisons. Gene matches are indicated by
859 joining lines, coloured differently for each gene. Gene names are shown around the perimeter
860 for each *Campylobacter* species. **d**, The circos plot indicates the sharing of AMR genes

861 associated with efflux pumps and four antibiotic classes among *Campylobacter* species.
862 Presence of at least one gene (not necessarily the same gene) conferring resistance to a
863 specific antibiotic class is indicated by joining lines, coloured differently for each drug class.
864 Efflux pumps (i), β -lactams (ii), tetracyclines (iii), aminoglycosides (iv) and lincosamides (v)
865 are shown around the perimeter for each *Campylobacter* species.

866

867 **Figure 2–figure supplement 1. Population structure of the *Campylobacteraceae* family.**

868 Phylogenetic tree of 506 isolates that belong to the *Campylobacteraceae* family with
869 *Helicobacter pylori* used as an outgroup. Different colors correspond to main species with
870 number of isolates greater than three. The Tree was reconstructed using a gene-by-gene
871 concatenated alignment of 799 core genes shared by >95% by all isolates and an
872 approximation of the maximum-likelihood algorithm (ML) implemented in RAxML. The
873 scale bar indicates the estimated number of substitutions per site.

874

875 **Figure 2–figure supplement 2.** Core genome species trees. Single-species trees for nine
876 *Campylobacter* species with >4 isolates demonstrating the diversity for among species. The
877 scale bars indicate the estimated number of substitutions per site. (*) The scale for the tree
878 corresponding to *C. hepaticus* is 10 times smaller than the rest.

879

880 **Figure 2–figure supplement 3. Overview of host-associations of *Campylobacter* species.**
881 Abundance and diversity of 631 *Campylobacter* isolates in each host and environment.
882 Different colours correspond to main species with number of isolates \geq three. The number of
883 isolates is shown on the y axis while the various isolation sources on the x axis.

884

885 **Figure 2–figure supplement 4.** Core genome species trees. Single-species trees for *C. jejuni*,
886 *C. coli* and *C. fetus* species which contain isolates from multiple hosts and countries. The
887 scale bars indicate the estimated number of substitutions per site.

888

889 **Figure 3–figure supplement 1. Genome size variation of the *Campylobacter* genus.** The
890 frequency distribution of the genome size of all *Campylobacter* genomes used in this study is
891 shown as a histogram. The number of genomes is shown on the y axis while the genome size
892 (in bp) on the x axis.

893

894 **Figure 3-figure supplement 2. Gene variation in the genus *Campylobacter*.** Overall
895 distribution of the total number of genes per isolate for each *Campylobacter* species (where
896 $n \geq 3$ isolates). The number of genes is shown as boxplots (min to max).

897

898 **Figure 3-figure supplement 3. Accessory gene function in all main *Campylobacter***
899 **species.** The different gene functions are depicted on the y axis, while the number of shared
900 accessory genes on the x axis. Different colours corresponding to different *Campylobacter*
901 species.

902

903 **Figure 3-figure supplement 4. Core genome allelic variation and the effect of**
904 **recombination.** **a**, Number of SNPs per genome of the main *Campylobacter* species (where
905 $n \geq 3$ isolates) in the core genome alignment. The horizontal line in each plot represents the
906 mean value while the upper and lower lines the standard deviation. **b**, Average nucleotide
907 identity for pairwise comparisons of 820 core genes for 605 genomes of 15 main
908 *Campylobacter* species. Different colours corresponding to different *Campylobacter* species.

909

910 **Figure 4-figure supplement 1.** Probability of the recipient genomes sharing DNA with each
911 donor groups is illustrated as box whiskers (white) for every donor-recipient comparison for
912 all 10 pairs that supported our hypothesis. The analysis where the host data were randomized
913 across all isolates is illustrated as box whiskers (red). The probability of copying DNA from a
914 donor to a recipient genome is shown on the y axis. The midline in the box whiskers indicates
915 the mean and the error bars the standard deviation.

916

917 **Figure 4-figure supplement 2. Genome position of genes containing recombining SNPs.**
918 Genes and their corresponding number of recombining SNPs, inferred by Chromosome
919 Painting analysis for all 10 species comparisons, and mapped to the NCTC11168 reference
920 genome. Genes from within-host (red) and between-host (white) pair comparisons are shown
921 for each comparison. Donors are isolates from chicken (triangle), cattle (square), wild bird
922 (cross), pig (star), clinical (circle) and water (snowflake) samples. The dashed line indicates
923 the 95th percentile for every individual group comparison.

924

925 **Figure 4-figure supplement 3.** Genes ranked in ascending order of the number of
926 recombining SNPs they contain as inferred by Chromosome Painting analysis for all ten
927 species comparisons. Genes from within-host (red) and between-host (white) are shown for

928 each comparison. Donors are isolates from chicken (triangle), cattle (square), wild bird
929 (cross), pig (star), clinical (circle) and water (snowflake) samples.

930

931 **Figure 5-figure supplement 1.** Presence of antimicrobial resistance genes in the
932 *Campylobacter* genus. The phylogenetic tree was reconstructed using a gene-by-gene
933 concatenated alignment of 820 core and soft-core genes and an approximation of the
934 maximum-likelihood algorithm (ML) implemented in RAxML. The designated colour
935 scheme was used for each species in the first column. The second column indicates whether
936 the strain is isolated from an agricultural animal (grey). Remaining columns indicate presence
937 of AMR genes (black). The scale represents the number of substitutions per site.

938

939 **Figure 5-figure supplement 2. Genetic organization of AMR genes in *Campylobacter*.**
940 The presence of each AMR gene, highlighted in different colours, is shown for representative
941 genomes from *C. jejuni*, *C. coli*, *C. lanienae*, *C. hyoilestinalis* and *C. fetus subspecies fetus*
942 sampled from different agricultural animals. The number of isolate genomes containing each
943 genomic arrangement is indicated in parenthesis.

944

945 **Supplementary File 1. Isolate information about the genomes used in this study.**

946

947 **Supplementary File 2. Within-host highly (>95th percentile) recombining genes.**

948

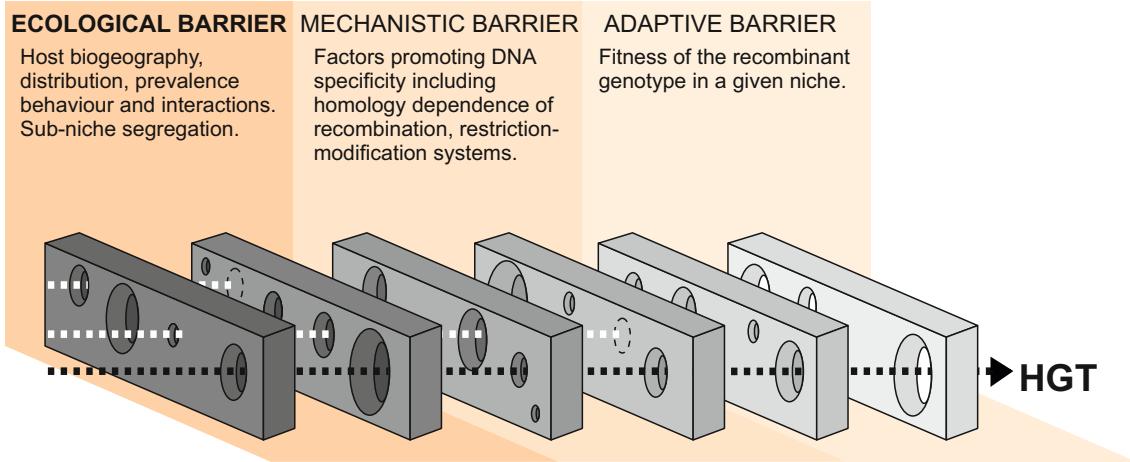
949 **Supplementary File 3. Recombination parameters as calculated by ClonalFrameML.**

950

951 **Supplementary File 4. Quantifying recombination between co-habiting species using**
952 **ChromoPainter.**

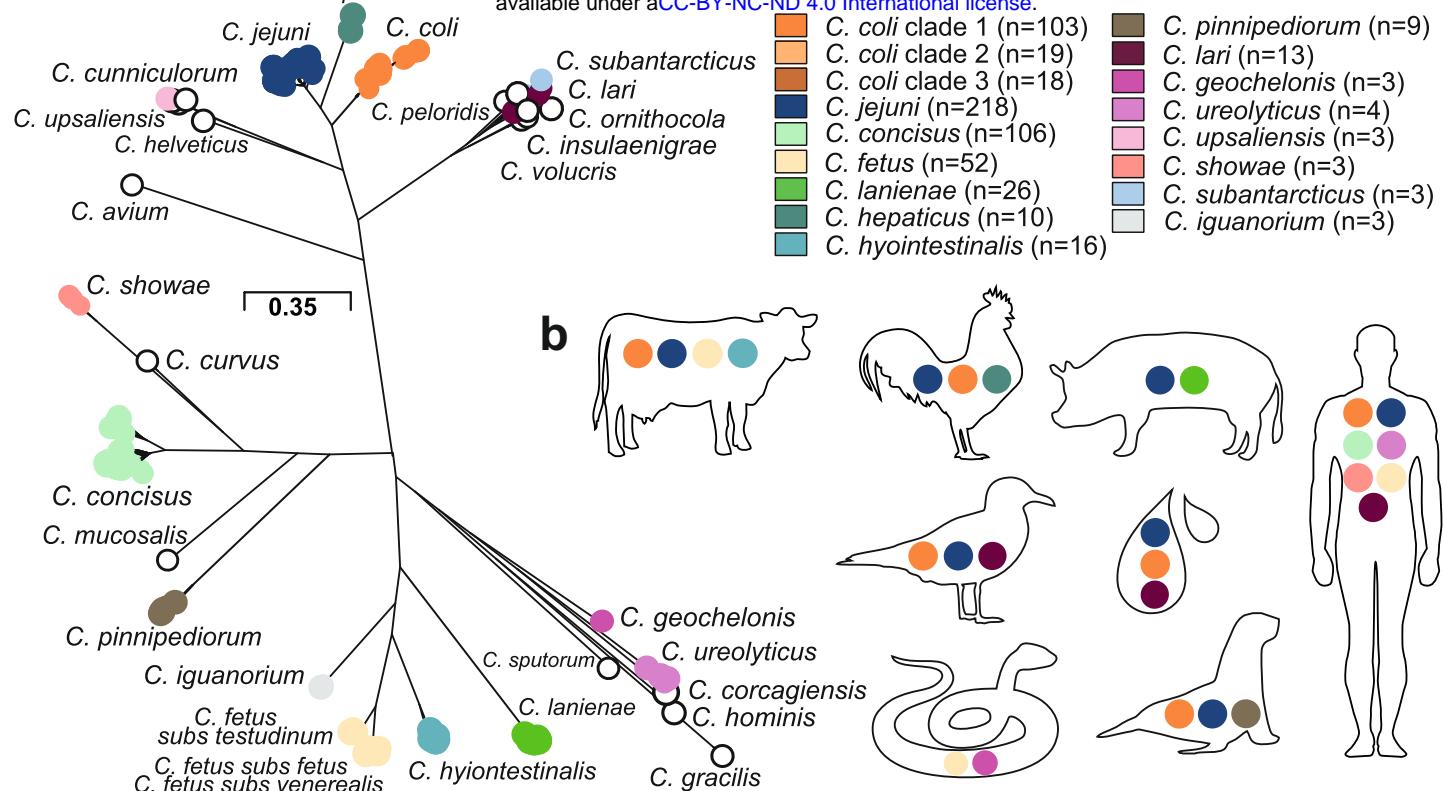
953

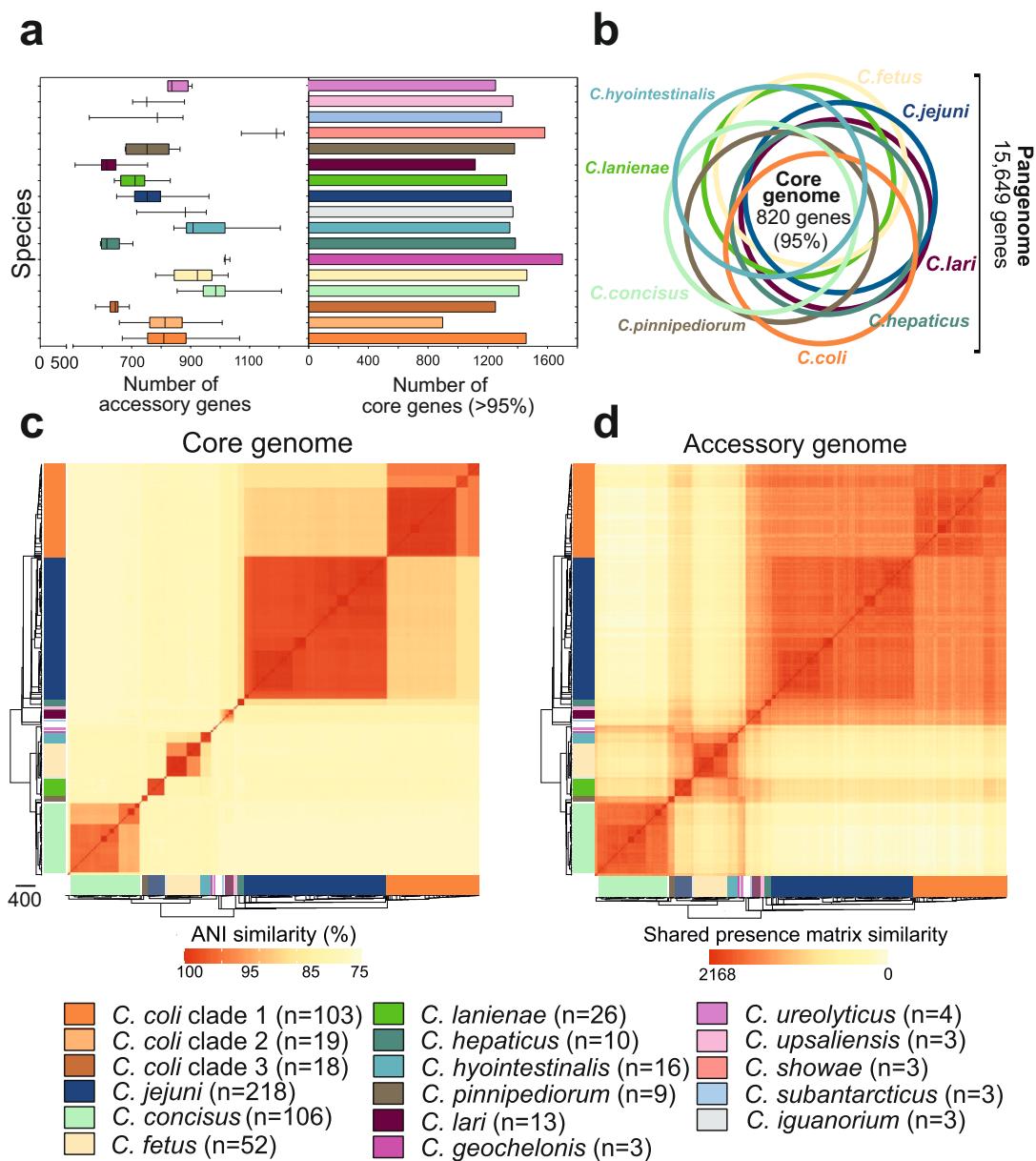
954 **Supplementary File 5. Genes involved in interspecies recombination in 10 species**
955 **comparisons.**


956

957 **Figure 3-source data 1. This file contains the numerical values on which the graphs in**
958 **Figure 3 are based.**

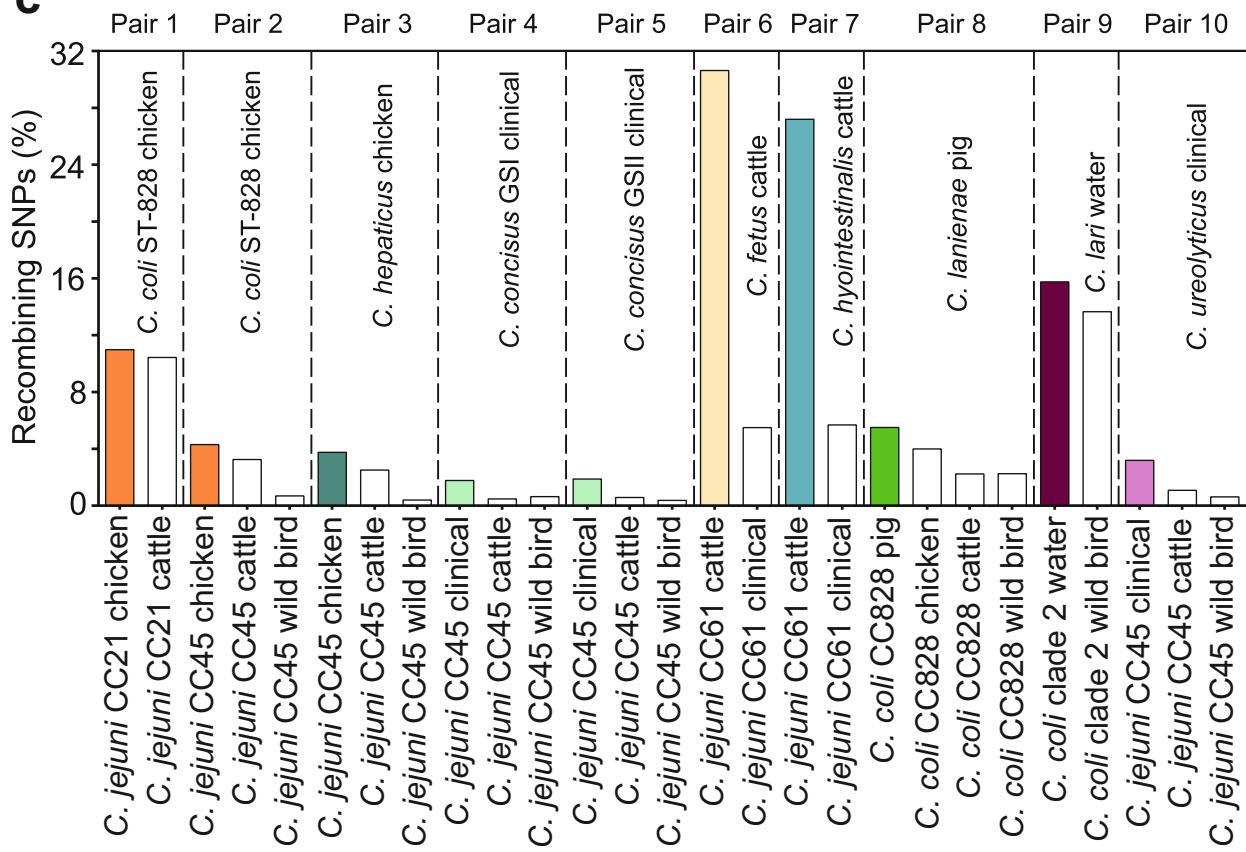
959

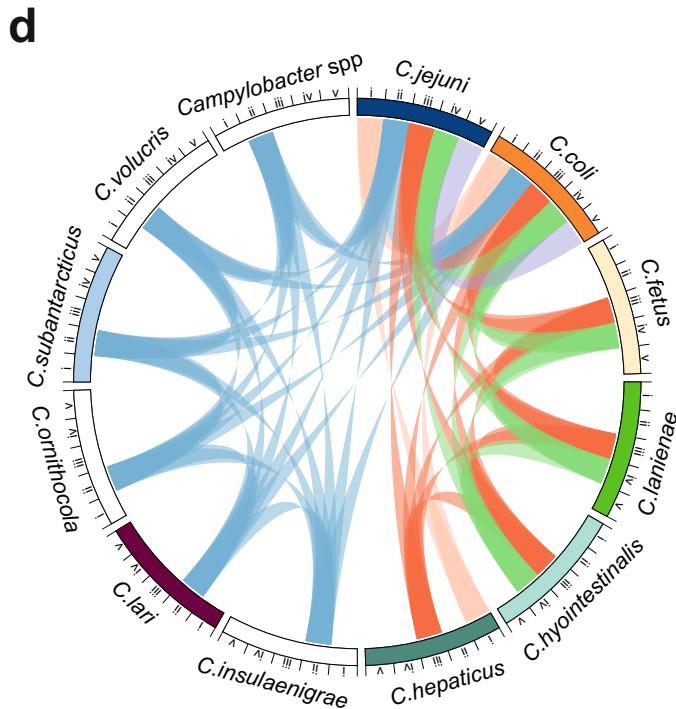
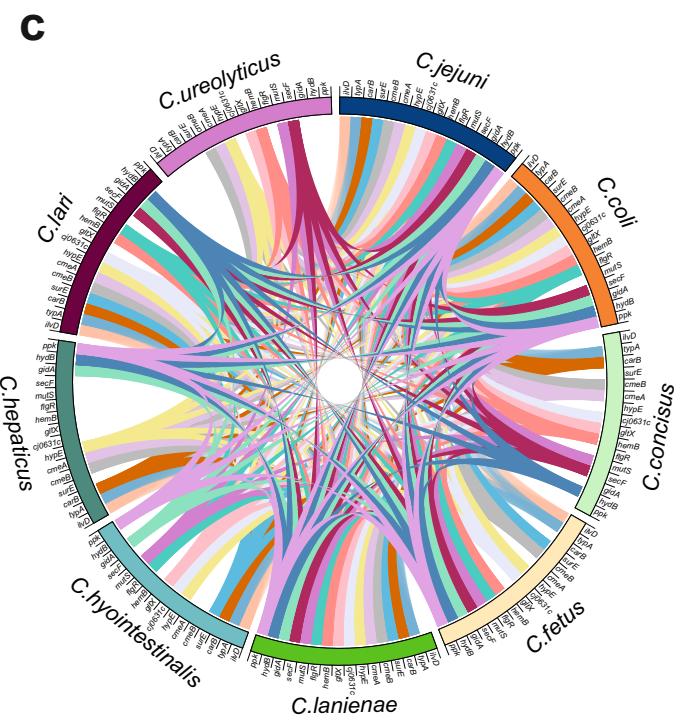
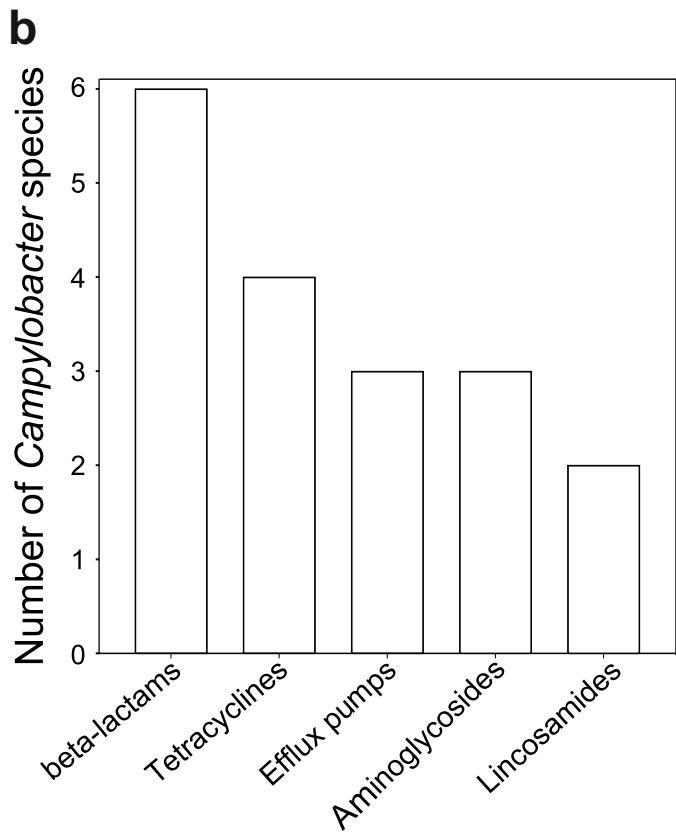
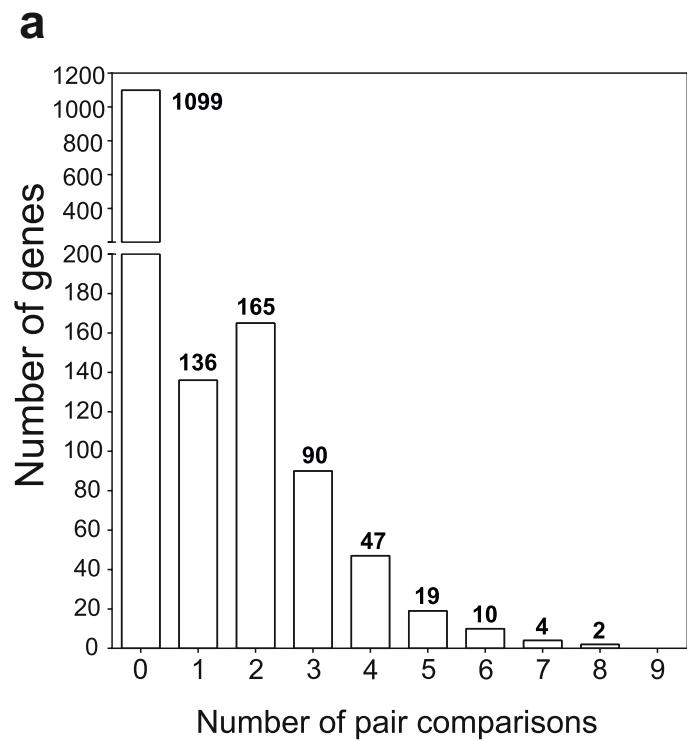

960 **Figure 5-source data 1. This file contains the numerical values on which the graphs in**
961 **Figure 5b-d are based.**


962

a

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457495>; this version posted February 25, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



a

c

