

Author contributions: Michael Cahalan: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Amit Patel: Conceptualization; Formal analysis; Writing - original draft; Writing - review and editing; Supervision; Funding acquisition; Project administration; Writing - review and editing; Methodology; Writing - original draft; Writing - review and editing; Formal analysis; Investigation; Methodology; Writing - review and editing; You Kang: Formal analysis; Investigation; Methodology; Writing - review and editing; Jean Chadarevian: Investigation; Methodology; Sunil Gandhi: Resources; Supervision; Funding acquisition; Writing - review and editing; Ian Parker: Resources; Methodology; Writing - review and editing; Ian Smith: Formal analysis; Investigation; Writing - review and editing; Hansang Cho: Resources; Formal analysis; Supervision; Funding acquisition; Investigation; Methodology; Writing - review and editing; Stefano Sensi: Resources; Supervision; Funding acquisition; Methodology; Shivashankar Othy: Conceptualization; Resources; Formal analysis; Supervision; Funding acquisition; Investigation; Methodology; Writing - original draft; Project administration; Writing - review and editing; Mathew Blurton-Jones: Conceptualization; Resources; Supervision; Funding acquisition; Investigation; Methodology; Writing - original draft; Project administration; Writing - review and editing; Michael Cahalan: Conceptualization; Resources; Supervision; Funding acquisition; Methodology; Writing - original draft; Project administration; Writing - review and editing

Funding:

HHS | National Institutes of Health (NIH): Michael D Cahalan, R01 NS14609; HHS | National Institutes of Health (NIH): Michael D Cahalan, R01 AI121945; HHS | National Institutes of Health (NIH): Mathew Blurton-Jones, R01 AG048099; HHS | National Institutes of Health (NIH): Mathew Blurton-Jones, R01 AG056303; HHS | National Institutes of Health (NIH): Mathew Blurton-Jones, R01 AG055524; HHS | National Institutes of Health (NIH): Mathew Blurton-Jones, core AG066519; HHS | National Institutes of Health (NIH): Shivashankar Othy, U01 AI160397; HHS | National Institutes of Health (NIH): Amanda McQuade, T32 NS082174; HHS | National Institutes of Health (NIH): Sunil Gandhi, RF1DA048813 The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Data Availability:

RNA sequencing data referenced in Figure 1- figure supplement 2 is available through Gene Expression Omnibus: GSE157652.

N/A

Ethics:

Human Subjects: Yes Ethics Statement: Human iPSC lines were generated by the University of California Alzheimer's Disease Research Center (UCI ADRC) stem cell core. Subject fibroblasts were collected under approved Institutional Review Boards (IRB) and human Stem Cell Research Oversight (hSCRO) committee protocols. Informed consent was received for all participants. Clinical Trial: No Animal Subjects: No

1 **TREM2 regulates purinergic receptor-mediated calcium signaling and motility in**
2 **human iPSC-derived microglia**

3 Amit Jairaman^{1†}, Amanda McQuade^{2,3,4†}, Alberto Granzotto^{2,5,6}, You Jung Kang⁷, Jean Paul Chadarevian²,
4 Sunil Gandhi², Ian Parker^{1,2}, Ian Smith², Hansang Cho⁸, Stefano L. Sensi^{5,6}, Shivashankar Othy^{1,9}, Mathew
5 Burton-Jones^{2,3,4,9*}, Michael Cahalan^{1,9*}

6 **Affiliations:**

7 ¹ Department of Physiology & Biophysics, University of California, Irvine, CA 92697-4561, USA

8 ² Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA

9 ³ Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA

10 ⁴ UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA
11 92697, USA

12 ⁵ Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara,
13 Chieti 66100, Italy

14 ⁶ Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), University "G. d'Annunzio" of
15 Chieti-Pescara, Chieti 66100, Italy

16 ⁷ Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering
17 and Science, University of North Carolina, Charlotte, NC 28223, USA

18 ⁸ Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro,
19 Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea

20 ⁹ Institute for Immunology, University of California, Irvine, CA 92697, USA

21

22 [†] Equal contributions

23 * Co-corresponding authors: Michael D. Cahalan (mcahalan@uci.edu), Mathew Burton-Jones

24 (mblurton@uci.edu)

25 Key Words: microglia, motility, Alzheimer's disease, P2Y receptor, Ca²⁺ signaling, store-operated Ca²⁺
26 entry (SOCE), genetically encoded Ca²⁺ indicator, TREM2

27

28 **Abstract**

29 The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key
30 microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2
31 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca^{2+}
32 signaling have been observed in several AD models, we investigated TREM2 regulation of Ca^{2+}
33 signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic
34 deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated
35 Ca^{2+} signals in response to purinergic agonists, such as ADP, that shape microglial injury
36 responses. This ADP hypersensitivity, driven by increased expression of P2Y₁₂ and P2Y₁₃
37 receptors, results in greater release of Ca^{2+} from the endoplasmic reticulum (ER) stores, which
38 triggers sustained Ca^{2+} influx through Orai channels and alters cell motility in TREM2 KO
39 microglia. Using iPSC-microglia expressing the genetically encoded Ca^{2+} probe, Salsa6f, we
40 found that cytosolic Ca^{2+} tunes motility to a greater extent in TREM2 KO microglia. Despite
41 showing greater overall displacement, TREM2 KO microglia exhibit reduced directional
42 chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia
43 was rescued by reducing cytosolic Ca^{2+} using a P2Y₁₂ receptor antagonist. Our results show that
44 loss of TREM2 confers a defect in microglial Ca^{2+} response to purinergic signals, suggesting a
45 window of Ca^{2+} signaling for optimal microglial motility.

46

47 **Main Text**

48 **Introduction**

49 As the primary immune cells of the central nervous system, microglia survey their local
50 environment to maintain homeostasis and respond to local brain injury or abnormal neuronal
51 activity. Microglia are strongly implicated in several neurodevelopmental and
52 neurodegenerative diseases¹⁻⁷, warranting further study of human microglial dynamics.
53 Purinergic metabolites (ATP, ADP, UTP, UDP) in the brain constitute key signals driving
54 microglial activation and chemotaxis, [and are detected by microglial cells over concentrations](#)
55 [ranging from hundreds of nM to \$\mu\$ M](#)⁸⁻¹³. ATP released from both homeostatic and damaged
56 cells is hydrolyzed locally by nucleosidases such as the ectonucleotidase NTPDase1 (CD39) or
57 pyrophosphatase NPP1 to produce ADP¹⁴⁻¹⁶. ADP is then detected by P2Y purinergic receptors
58 on microglia, causing IP₃-dependent Ca²⁺ release from the endoplasmic reticulum (ER) lumen.
59 Ca²⁺ depletion from the ER in turn activates ER STIM1 proteins to translocate proximally to
60 puncta where closely apposed plasma membrane (PM) Orai1 channels are activated. This
61 mechanism underlies store-operated Ca²⁺ entry (SOCE) in many cell types¹⁷, including
62 microglia¹⁸⁻²⁰.

63 Purinergic signaling is central to microglial communication with other brain cell types
64 and has been negatively correlated with the onset of Disease-Associated Microglia (DAM)
65 transcriptional states²¹⁻²⁵. P2Y₁₂ and P2Y₁₃ receptors are highly expressed by microglia and are
66 activated predominantly by ADP^{16,26}. P2Y₁₂ receptors are essential for microglial chemotaxis
67 and have been implicated in the microglial response to cortical injury^{12,27}, NLRP3 inflammasome
68 activation^{28,29}, neuronal hyperactivity and protection^{27,30}, and blood brain barrier

69 maintenance^{31,32}. While purinergic receptors have been broadly identified as markers of
70 microglial homeostasis^{23,26}, mechanisms by which receptor expression may drive or maintain
71 homeostatic microglial states remain incompletely understood.

72 Neuroinflammatory pathologies are often associated with altered Ca²⁺ signaling³³.
73 Microglia, in particular, show altered Ca²⁺ responses in mouse models of Alzheimer's Disease
74 (AD) by mechanisms that are not fully understood³⁴⁻³⁶. Ca²⁺ responses to purinergic metabolites
75 have been extensively studied in cultured murine microglia, acute brain slices, and more
76 recently in anesthetized mice^{8,10,34,37-39}. However, our understanding of how specific patterns
77 of Ca²⁺ signals in microglia correlate with and tune downstream microglial responses such as
78 cell motility or process extension remains incomplete. There is also a paucity of knowledge on
79 how regulators of purinergic Ca²⁺ signals in microglia might play a role in the dysregulation of
80 Ca²⁺ signaling associated with aging and neuroinflammation.

81 TREM2 encodes a cell surface receptor that binds a variety of ligands including various
82 lipids, apolipoprotein E (ApoE), and amyloid- β peptides. Upon ligand binding, TREM2 signals
83 through its adaptor protein DAP12 to activate a host of downstream pathways^{23,40-42}. Loss of
84 TREM2 function is thought to promote a more homeostatic-like state^{23,43,44}. Indeed, microglia
85 lacking TREM2 expression exhibit greatly diminished activation against disease pathology,
86 correlating with increased risk of AD^{23,41,45}. Purinergic receptor hyperexpression has been
87 reported at the transcriptome level across multiple TREM2 loss of function models including
88 human patient mutations^{21-23,25,41,46}. For example, P2Y₁₂ receptor protein expression was found
89 to be elevated in the cortical microglia of *Trem2*^{-/-} mice and in a preclinical mouse model of

90 AD^{47,48}, although the mechanistic link between purinergic receptor expression and TREM2
91 function remains poorly understood.

92 We previously developed methods to generate human induced pluripotent stem cell-
93 derived microglia (iPSC-microglia)^{49–51}, which can be used to model human microglial behavior.
94 While iPSC-microglia are proving increasingly useful to investigate neurodegenerative
95 disorders^{41,52–56}, Ca²⁺ signaling has not yet been extensively profiled in these models. In this
96 study, we compared purinergic Ca²⁺ signaling and motility characteristics in WT and TREM2 KO
97 human iPSC-microglia, and examined the mechanisms that underlie enhanced purinergic Ca²⁺
98 signaling in microglia lacking TREM2. We find that motility is differentially tuned by Ca²⁺ in
99 TREM2 KO cells with consequences for chemotaxis.

100

101 **Results**

102 **Purinergic receptor Ca^{2+} signaling is enhanced in TREM2-knockout human iPSC-microglia**

103 To determine if TREM2 plays a role in microglial Ca^{2+} signaling, we compared cytosolic Ca^{2+}
104 responses to the purinergic agonist ADP in isogenic, CRISPR-modified wild type (WT) and
105 TREM2-knockout (TREM2 KO) human iPSC-microglia. ADP stimulation induced a biphasic Ca^{2+}
106 response – a rapid initial peak followed by a secondary phase of sustained Ca^{2+} elevation lasting
107 several minutes, in line with previous observations in mouse microglia^{57,58}. **Both phases of the**
108 **Ca^{2+} response were significantly elevated in TREM2 KO microglia, raising the possibility that**
109 **augmentation of the initial Ca^{2+} response to ADP in TREM2 KO microglia may be coupled to a**
110 **larger sustained component of Ca^{2+} entry (Figure 1A, B).** These results were corroborated in
111 iPSC-derived microglia cell line expressing the genetically-encoded Ca^{2+} indicator Salsa6f^{59,60}
112 **(Figure 1C, D).** The Salsa6f probe showed the expected increase in the GCaMP6f fluorescence in
113 response to Ca^{2+} elevation without any change in the tdTomato signal, and it did not perturb
114 microglial activation and function **(Figure 1-figure supplement 1A-G).** TREM2 KO microglia also
115 showed exaggerated Ca^{2+} responses to the purinergic agonists ATP and UTP at similar low μM
116 concentrations, although the secondary Ca^{2+} elevations were not as long-lasting as with ADP
117 **(Figure 1E, F and Figure 1-figure supplement 2).**

118

119 **Increased P2Y₁₂ and P2Y₁₃ receptor expression drives increased peak Ca^{2+} in TREM2-KO**
120 **microglia**

121 Given the critical importance of ADP signaling in several aspects of microglial function, we
122 investigated the mechanisms driving higher ADP-evoked Ca^{2+} signals in TREM2 KO microglia by

123 focusing on specific steps in the purinergic Ca^{2+} signaling pathway (**Figure 2A**). The initial Ca^{2+}
124 response to P2Y receptor engagement results from G protein-coupled phospholipase C
125 activation, and IP_3 -mediated ER Ca^{2+} store-release. To test this, we treated cells with ADP in
126 Ca^{2+} -free solution buffered with the Ca^{2+} chelator EGTA to isolate Ca^{2+} signals from store-
127 release and eliminate Ca^{2+} influx across the PM. Both WT and TREM2 KO cells exhibited a single
128 Ca^{2+} peak, with TREM2 KO cells showing significantly higher peak Ca^{2+} response to ADP (**Figure**
129 **2B** and **Figure 2-figure supplement 1A, B**). Moreover, the amplitude of the Ca^{2+} peak was not
130 significantly different in the presence or absence of external Ca^{2+} , strongly suggesting that it is
131 driven primarily by release of Ca^{2+} from intracellular stores even when external Ca^{2+} is present
132 (**Figure 2-figure supplement 1C**). Dose-response curves for the peak Ca^{2+} response showed a
133 steep leftward shift in TREM2 KO cells (**Figure 2C**). The EC_{50} value for WT microglia was 650 nM,
134 whereas TREM2 KO microglia reached their EC_{50} by 15 nM. This stark difference was driven at
135 least in part by a diminished percentage of WT cells responding to ADP at low μM doses (**Figure**
136 **2D**). However, limiting the analysis to cells that showed a Ca^{2+} rise revealed that “responding”
137 TREM2 KO cells still exhibited higher Ca^{2+} responses to ADP than “responding” WT cells (**Figure**
138 **2E**). TREM2 KO microglia are thus significantly more sensitive to ADP than WT cells which may
139 be critical in sensing ADP and in detecting ADP gradients.

140 RNA-sequencing revealed significantly increased transcripts for P2Y_{12} and P2Y_{13}
141 receptors, the main P2Y receptor subtypes in microglia that bind ADP, in TREM2 KO
142 microglia^{49,50} (**Figure 2F**). In comparison, relative mRNA levels of common mediators of Ca^{2+}
143 signaling – including predominant isoforms of IP_3 receptors, SOCE mediators Orai and STIM
144 proteins, and SERCA and PMCA Ca^{2+} pumps – were either similar or modestly reduced in TREM2

145 KO in comparison with WT iPSC-microglia (**Figure 2-figure supplement 1D, E**). We therefore
146 considered the possibility that signal amplification in microglia lacking TREM2 results primarily
147 from increased expression of P2Y₁₂ and P2Y₁₃ receptors. Consistent with this, expression of
148 P2Y₁₂ receptors in the plasma membrane was significantly increased in TREM2 KO cells (**Figure**
149 **2G**). Furthermore, Ca²⁺ responses to ADP in Ca²⁺-free medium were completely abolished
150 following treatment with a combination of P2Y₁₂ and P2Y₁₃ receptor antagonists (PSB 0739 and
151 MRS 2211 respectively) in both WT and TREM2 KO microglia (**Figure 2H**). Treatment of cells
152 with P2Y₁₂ and P2Y₁₃ receptor antagonists separately produced partial inhibition of peak ADP-
153 mediated Ca²⁺ signals, implicating involvement of both receptor subtypes (**Figure 2-figure**
154 **supplement 1F, G**). In summary, deletion of TREM2 results in a larger cytosolic Ca²⁺ peak in
155 response to ADP due to increased expression of P2Y₁₂ and P2Y₁₃ receptors.

156
157 **SOCE through Orai channels mediates the sustained phase of ADP-evoked Ca²⁺ elevation**
158 To probe the basis for the increased sustained component of ADP-evoked Ca²⁺ signal in TREM2
159 KO microglia, we examined SOCE using pharmacological and genetic approaches. Synta66, a
160 reasonably specific inhibitor of Orai channels, significantly reduced the rate of SOCE following
161 Ca²⁺ re-addition after ER store-depletion by the sarco-endoplasmic reticulum Ca²⁺ ATPase
162 (SERCA pump) inhibitor, thapsigargin (TG) in both WT and TREM2 KO microglia (**Figure 3A and**
163 **Figure 3-figure supplement 1A**). Using a similar Ca²⁺ re-addition protocol with ADP, we found
164 significant inhibition of ADP-induced SOCE by Synta66 in both WT and TREM2 KO cells (**Figure**
165 **3B and Figure 3-figure supplement 1B**). The ADP-evoked sustained Ca²⁺ phase in TREM2 KO
166 iPSC-microglia was also blocked by less specific Orai channel inhibitors, Gd³⁺ and 2-APB (**Figure**

167 **3-figure supplement 1C, D).** To further confirm the specific role of Orai1 channels in mediating
168 SOCE, we generated an Orai1 CRISPR-knockout iPSC line. Deletion of Orai1 abrogated SOCE and
169 significantly reduced the sustained Ca^{2+} response to ADP (**Figure 3-figure supplement 1E, F**).
170 These results confirm that Orai1 plays an important role in mediating SOCE and ADP-evoked
171 Ca^{2+} signals in iPSC-microglia.

172 To determine if SOCE is increased in TREM2 KO microglia and contributing to the higher
173 sustained Ca^{2+} response to ADP, we compared the rate of store-operated Ca^{2+} influx after store-
174 depletion with TG, and found that both the rate and amplitude of SOCE were modestly reduced
175 in TREM2 KO cells (**Figure 3C**). In keeping with this, RNA sequencing revealed a modest
176 reduction in STIM1 mRNA expression in TREM2 KO cells, although Orai1 mRNA was similar in
177 WT and TREM2 KO microglia (**Figure 2-figure supplement 1C, D**). We further conclude that the
178 elevated secondary phase of ADP-driven Ca^{2+} signals in TREM2 KO microglia is not primarily due
179 to differences in the expression of STIM and Orai.

180

181 **ADP depletes ER Ca^{2+} stores to a greater extent in TREM2 KO microglia leading to greater
182 SOCE activation**

183 We hypothesized that the exaggerated secondary Ca^{2+} phase in response to ADP in TREM2 KO
184 microglia may be driven by increased ER Ca^{2+} store-release leading to greater SOCE activation.
185 Consistent with this possibility, peak cytosolic Ca^{2+} in response to partial store-depletion with
186 ADP, and after Ca^{2+} re-addition was elevated in TREM2 KO microglia (**Figure 3D**). To examine if
187 the higher magnitude of SOCE in TREM2 KO cells is due to depletion of ER Ca^{2+} stores by ADP,
188 we sequentially treated cells with ADP followed by ionomycin to completely release stores in

189 Ca^{2+} free buffer. While TREM2 KO cells showed greater peak Ca^{2+} with ADP as expected, the
190 ionomycin Ca^{2+} peak – which reflects the residual ER Ca^{2+} pool – was significantly reduced
191 indicating that ADP depletes ER Ca^{2+} stores to a greater extent in TREM2 KO cells (**Figure 3E**).
192 Similar results were obtained when residual ER store-content was depleted using TG instead of
193 ionomycin (**Figure 3- figure supplement 2A, B**). We plotted cytosolic Ca^{2+} levels 5 minutes after
194 addition of varying doses of ADP to indicate the degree of SOCE, as a function of the initial peak
195 Ca^{2+} , a readout of ER store-release (**Figure 3- figure supplement 2C, D**). Both WT and TREM2 KO
196 microglia showed similar linear relationships between SOCE and store-release, further
197 suggesting that SOCE is activated by similar mechanisms in the two cell lines, but is recruited to
198 a greater extent in TREM2 KO cells due to increased ER store-release. We also note that
199 increased sustained Ca^{2+} in TREM2 KO cells is unlikely to be due to differences in Ca^{2+} pump
200 activity based on similar Ca^{2+} clearance rates (**Figure 3- figure supplement 2E, F**), consistent
201 with comparable transcriptomic expression of major SERCA and plasma membrane Ca^{2+} ATPase
202 (PMCA) isoforms in WT and TREM2 KO cells (**Figure 2- figure supplement 1C, D**).

203 Finally, quantification of cumulative cytosolic Ca^{2+} increases after maximally depleting
204 ER stores with ionomycin alone suggested that overall ER store-content is not altered in
205 microglia lacking TREM2 (**Figure 3F**). Comparison of Ca^{2+} responses to IP_3 uncaging also ruled
206 out major differences in the pool of functional IP_3 receptors between WT and TREM2 KO cells
207 (**Figure 3G**), as further substantiated by similar transcriptomic expression of IP_3 receptor type 2
208 (the major IP_3R subtype expressed in iPSC-microglia) in WT and TREM2 KO cells (**Figure 2-figure**
209 **supplement 1C, D**)^{41,49}. In summary, deletion of TREM2 in iPSC-derived microglia leads to
210 upregulation of P2Y_{12} and P2Y_{13} receptors and renders the cells hypersensitive to ADP signaling,

211 consequently leading to greater IP_3 -mediated ER store-depletion and increased coupling to
212 SOCE in response to purinergic metabolites.

213

214 **ADP potentiates cell motility and process extension in human WT iPSC-microglia**

215 ADP is a potent chemoattractant for microglia¹⁰. Analogous to a previous study in fibroblasts⁶¹,
216 we found that ADP treatment alters cell motility and leads to increased rates of scratch wound
217 closure in WT iPSC-microglia (**Figure 4A**). To investigate the cellular mechanism of accelerated
218 wound closure, we used time-lapse imaging to track open-field microglial cell motility (**Figure**
219 **4B**). Mean cell track speed and track displacement (defined as the overall change in position
220 from the origin at a given time) were both increased after application of ADP. On the other
221 hand, average track straightness, [an indicator of how frequently cells change direction](#), was
222 unaltered by ADP (**Figure 4C**). These data suggest that ADP-driven changes in motility in WT
223 iPSC-microglia primarily arise from increases in microglial speed, and not altered turning
224 behavior. ADP-dependent increases in speed were reversed in the presence of P2Y₁₂ (PSB 0739)
225 and P2Y₁₃ (MRS 2211) receptor antagonists, confirming the role of these two purinergic
226 receptors in ADP enhancement of microglial motility (**Figure 4D**). To determine if Ca^{2+} influx
227 regulates ADP-mediated increases in motility, we measured cell migration with ADP in Ca^{2+} -free
228 medium and found that removing extracellular Ca^{2+} significantly decreased cell speed,
229 displacement, and track straightness, suggesting that sustained Ca^{2+} signals are required for
230 maximal increase in motility in response to ADP (**Figure 4E**).

231 In addition, some microglia responded to ADP by extending processes and altering their
232 morphology rather than increasing motility (**Figure 4-figure supplement 1**). Microglia have

233 been observed to extend processes in response to injury and purinergic stimulation in brain
234 slices^{8,12}. Therefore, we compared process complexity before and 30 min after ADP exposure in
235 WT microglia and observed significant increases in both the number of branches per process
236 and total length of these processes (**Figure 4F**). Similar to effects on cell motility, ADP-mediated
237 process extension was inhibited by P2Y₁₂ and P2Y₁₃ receptor antagonists (PSB 0739 and MRS
238 2211 respectively). Furthermore, even before process extension was activated with ADP, cells
239 treated with P2Y antagonists showed significantly fewer and shorter processes, **suggesting that**
240 **baseline purinergic signaling may regulate resting microglial process dynamics**. Altogether,
241 these results demonstrate that **activation of purinergic signaling through P2Y₁₂ and P2Y₁₃**
242 **receptors is required for ADP-driven microglial process extension and motility**.

243
244 **ADP-evoked changes in cell motility and process extension are enhanced in TREM2-KO**
245 **microglia**
246 To characterize differences in motility characteristics between WT and TREM2 KO microglia
247 responding to ADP, we plotted mean squared displacement (MSD) vs time and compared cell
248 track overlays (flower plots) which showed that ADP enhances motility in TREM2 KO cells to a
249 greater extent than in WT microglia (**Figure 5A, B**). Baseline motility characteristics in
250 unstimulated cells, however, were similar in WT and TREM2 KO cells (**Figure 5-figure**
251 **supplement 1A, B**). To further understand the basis of differences in ADP-induced motility
252 between WT and TREM2 KO cells, we analyzed mean track speed, track displacement, and track
253 straightness. Although mean track speeds were similar, TREM2 KO microglia showed greater
254 displacement than WT cells (**Figure 5C, D**), raising the possibility that TREM2 KO cells may turn

255 with lower frequency. Consistent with this, analysis of track straightness revealed that TREM2
256 KO microglia move farther from their origin for the same total distance traveled (**Figure 5E**).
257 Vector autocorrelation, an analysis of directional persistence⁶², further confirmed that WT cells
258 turn more frequently than TREM2 KO microglia in response to ADP (**Figure 5-figure supplement**
259 **1C, D**). To assess if these differences in TREM2 KO cells require sustained Ca^{2+} influx, we
260 analyzed microglial motility in response to ADP stimulation in the absence of extracellular Ca^{2+}
261 (**Figure 5F-J**). Mean-squared displacement (MSD) and cell-track overlay plots showed that
262 motility is constrained when Ca^{2+} is removed from the external bath in both WT and TREM2 KO
263 cells (**Figure 5A, B vs. F, G**). In the absence of extracellular Ca^{2+} , TREM2 KO microglia showed
264 similar mean speed, displacement, and track-straightness as WT cells (**Figure 5C-E vs H-J**). We
265 conclude that increases in microglial motility (mean speed, displacement, and straightness)
266 require sustained Ca^{2+} influx, and that deletion of TREM2 reduces microglial turning in response
267 to ADP.

268 We next analyzed the effects of TREM2 deletion on process-extension in microglia.
269 Treatment with ADP induced a dramatic increase in the number of branches and length of
270 processes extended in both WT and TREM2 KO microglia (**Figure 5K, L**). Comparison of the
271 absolute number of branches and process length after ADP treatment, as well as the relative
272 fold-increase in these parameters from baseline indicated that process extension is not affected
273 in TREM2 KO microglia (**Figure 5K-M, figure 5-figure supplement 2A, B**). We note that the
274 greater fold-change in process extension in TREM2 KO cells can be attributed to the reduced
275 morphological complexity of these cells prior to stimulation. Finally, ADP stimulation in Ca^{2+} -
276 free medium did not induce process extension in WT cells, and only a modest increase in

277 TREM2 KO cells (**Figure 5-figure supplement 2A and B vs C and D**). Together, these results
278 indicate that **sustained Ca^{2+} entry across the PM is required for optimal microglial process**
279 **extension in both WT and TREM2 KO microglia**.

280

281 **Cytosolic Ca^{2+} levels tune motility in TREM2 KO iPSC-microglia**

282 To further characterize the effects of sustained Ca^{2+} signals on microglial motility, we used
283 Salsa6f-expressing iPSC WT and TREM2 KO reporter lines to monitor cytosolic Ca^{2+} and motility
284 simultaneously in individual cells (**Figure 6-figure supplement 1**). To isolate the effects of
285 sustained Ca^{2+} elevations on microglia motility, **and eliminate any contribution from Ca^{2+}**
286 **independent signaling pathways**, we used a protocol that relies on triggering SOCE and varying
287 external Ca^{2+} to maintain cytosolic Ca^{2+} at “low” or “high” levels in the Salsa6f reporter line
288 (**Figure 6A-C**), similar to our previous study in T lymphocytes⁶³. In WT cells, lowering
289 extracellular Ca^{2+} from 2 to 0.2 mM predictably decreased the G/R ratio but did not influence
290 mean track speed, 10-minute track displacement, or track straightness (**Figure 6C, D top**).
291 However, in TREM2 KO microglia, reducing Ca^{2+} to a lower level significantly increased speed,
292 displacement, and track straightness (**Figure 6C, D bottom**). These data suggest that motility
293 characteristics of TREM2 KO microglia are more sensitive to changes in cytoplasmic Ca^{2+} levels
294 than in WT cells. Similar results were obtained upon addition of ADP in this paradigm,
295 suggesting that long-lasting Ca^{2+} elevations may override effects of Ca^{2+} -independent ADP
296 **signaling on cell motility** (**Figure 6-figure supplement 2A**).
297 To further analyze the Ca^{2+} dependence of microglial motility, we plotted Salsa6f G/R
298 Ca^{2+} ratios for each individual cell at every time point against the instantaneous speeds of that

299 cell (**Figure 6E**). These data revealed a stronger dependence of instantaneous speed on Ca^{2+}
300 levels in TREM2 KO microglia (**Figure 6F**). Furthermore, when stratifying cell speed arbitrarily as
301 “fast” ($> 10 \mu\text{m}/\text{min}$) or “slow” ($< 10 \mu\text{m}/\text{min}$), we observe a marked reduction in the
302 percentage of “fast” cells when Ca^{2+} levels are high in TREM2 KO microglia (**Figure 6G**).
303 Interestingly, frame-to-frame cell displacement correlated with cytosolic Ca^{2+} to the same
304 degree in both WT and KO cells (**Figure 6-figure supplement 2B, C**). Together, TREM2 KO
305 human microglia are more sensitive to tuning of motility by cytosolic Ca^{2+} than WT cells.

306

307 **Chemotactic defects in TREM2 KO microglia are rescued by dampening purinergic receptor
308 activity**

309 To assess the physiological significance of TREM2 deletion on microglial motility over longer
310 time scales, we performed a scratch wound assay. At baseline, both WT and TREM2 KO
311 microglia migrated into the cell free area at similar rates, consistent with our previous findings⁴¹
312 (**Figure 7- figure supplement 1**). Addition of ADP to this system accelerated the scratch wound
313 closure rates to the same extent in WT and TREM2 KO. *In vivo*, directed migration of microglia is
314 often driven by gradients of ADP from dying or injured cells^{12,30}. Because no chemical gradient
315 is formed in the scratch wound assay⁶⁴, we studied microglial chemotaxis toward ADP over a
316 stable gradient using two-chamber microfluidic devices. Consistent with previous findings, WT
317 iPSC-microglia directionally migrated up the concentration gradient of ADP resulting in higher
318 numbers of cells within the central chamber^{41,65}. In the absence of a chemotactic cue, this
319 directional migration was lost (**Figure 7A**). This assay revealed a deficit of chemotaxis in TREM2
320 KO microglia (**Figure 7A**), mirroring reports that TREM2 KO microglia are unable to migrate

321 toward amyloid plaques in AD^{40,41,66}. Given that ADP hypersensitivity in TREM2 KO cells is driven
322 by increased expression of P2Y receptors, we examined the effects of dampening P2Y signaling
323 to WT levels. Treatment with the P2Y₁₂ receptor antagonist, PSB 0739, reduced Ca²⁺ responses
324 in TREM2 KO cells and rescued the migration deficit in the chemotaxis assay (**Figure 7B-C**).
325 These results link the increased Ca²⁺ signals and altered motility characteristics evoked by ADP
326 in TREM2 KO cells to microglial chemotaxis toward areas of tissue damage, a vital functional
327 response in microglia.

328

329 **Discussion**

330 This study focuses on two aims: understanding the roles of purinergic signaling in regulating
331 human microglial motility behavior; and elucidating the impact of TREM2 loss of function on
332 this Ca^{2+} signaling pathway. We find that sustained Ca^{2+} influx in response to ADP regulates
333 microglial process extension, motility speed, and turning behavior. A key observation in our
334 study is that microglia lacking TREM2 are highly sensitive to ADP-mediated signaling and show
335 exaggerated cytoplasmic Ca^{2+} responses. Using novel iPSC-microglia lines that express a
336 ratiometric, genetically encoded Ca^{2+} probe, Salsa6f, we found that the motility characteristics
337 of human wild-type and TREM2-knockout microglia are differentially tuned by Ca^{2+} signaling.
338 Informed by these discoveries, we were able to rescue chemotactic deficiencies in TREM2-
339 knockout microglia by dampening purinergic receptor signaling.

340 We provide several lines of evidence to show that hyper-responsiveness to purinergic
341 ADP signaling in TREM2 KO microglia is driven primarily by increased purinergic P2Y₁₂ and P2Y₁₃
342 receptor expression: (1) Ca^{2+} response is completely abrogated in the presence of P2Y₁₂ and
343 P2Y₁₃ receptor inhibitors; (2) RNA-sequencing data shows significant increase in expression of
344 P2Y₁₂ and P2Y₁₃ receptor transcripts but minimal fold-change in other regulators of Ca^{2+}
345 signaling (IP3R, STIM, Orai, SERCA and PMCA); and (3) labelling of surface P2Y₁₂ receptors
346 shows greater PM expression in the TREM2 KOs. Furthermore, functional assays rule out any
347 role for Ca^{2+} clearance mechanisms or any difference in maximal IP₃ and SOCE activity as a
348 cause of increased sustained Ca^{2+} signal in TREM2 KO cells. Mechanistically, this increase in Ca^{2+}
349 signals is driven by enhanced IP₃-mediated ER store-release coupled to SOCE. Indeed, based on
350 the dose-response curves for peak ADP- Ca^{2+} responses in Ca^{2+} free buffer, TREM2 KO cells have

351 an EC₅₀ at least 10-fold lower than WT cells. As a functional consequence, TREM2 KO microglia
352 exhibit a defect in turning behavior, and show greater displacement over time despite moving
353 with similar speeds as the WT cells. The increased frequency in turning in WT microglia (relative
354 to TREM KO cells) reflects greater canceling of the velocity vectors, which take the direction of
355 motility into account. This restricts cell motility to more confined regions, potentially allowing
356 for more frequent path correction. It is important to note that these motility differences with
357 ADP are observed after acute treatment and in the absence of any gradient.

358 Interestingly, deletion of TREM2 had no significant impact on scratch wound closure
359 rates, over a time scale of 24 hours in the presence of a constant concentration of ADP⁶⁷.
360 However, we find in a directional chemotaxis assay towards a gradient of ADP concentration
361 that TREM2 KO cells are unable to migrate as efficiently as WT cells, concordant with previous
362 studies showing reduced migration of TREM2 KO cells towards A β plaques⁴¹. Enhanced ADP
363 signaling likely abolishes the ability of TREM2 KO cells to distinguish gradations of the agonist,
364 and this loss of gradient-sensing results in an inability to perform directed migration. We
365 speculate that increased ADP Ca²⁺ signaling in TREM2 KO cells may result in Ca²⁺ signaling
366 domains that are no longer restricted to the cell region near to the highest ADP concentrations,
367 and disrupt the polarity of key signaling molecules that drive directed cell motility.

368 The amplitude and duration of Ca²⁺ signals shape specificity of downstream cellular
369 responses. Our experiments with ADP in Ca²⁺ free medium revealed that a transient Ca²⁺ signal
370 is insufficient to induce microglial motility in either WT or TREM2 KO cells. Previous studies
371 have shown that mouse microglia with genetic deletion of STIM1 or Orai1 also show defects in
372 cell migration to ATP^{57,68}, likely because diminished SOCE renders them unable to sustain Ca²⁺

373 signals in response to ATP. The dependence of motility on prolonged purinergic Ca^{2+} signals
374 may thus be a general feature of microglia. In contrast, a Ca^{2+} transient can initiate some
375 process extension in TREM2 KO but not in WT microglia, suggesting a threshold for ADP
376 signaling that is reached in KO but not WT cells, and highlighting subtle differences in the Ca^{2+}
377 requirement for motility and process extension in TREM2 KO microglia.

378 To directly monitor Ca^{2+} signaling and motility simultaneously in individual cells, we
379 developed a novel iPSC-microglia cell-line expressing a genetically encoded, ratiometric Ca^{2+}
380 indicator Salsa6f, a GCaMP6f-tdTomato fusion protein. Because Salsa6f allows simultaneous
381 measurement of Ca^{2+} signal and tracking of processes, this Salsa6f iPSC line is likely to be a
382 useful tool to dissect the relationship between Ca^{2+} signaling and the function of various iPSC-
383 derived human cell types including neurons, astrocytes, and microglia. In addition, this line may
384 be readily xenotransplanted for use with human/microglia chimeric models to examine
385 functional Ca^{2+} responses to injury and pathology *in vivo*. Using Salsa6f-expressing microglia, we
386 uncovered critical differences in how Ca^{2+} levels tune motility in WT and TREM2 KO microglia.
387 By tracking instantaneous velocity at the same time as Salsa6f Ca^{2+} ratios in individual cells, we
388 found that TREM2 KO cell motility showed a greater sensitivity to changes in cytosolic Ca^{2+}
389 levels with significantly higher speeds than WT cells at lower Ca^{2+} and a more dramatic
390 reduction in cell speed at high Ca^{2+} levels. [It is possible that high cytosolic \$\text{Ca}^{2+}\$ serves as a](#)
391 [temporary STOP signal in microglia similar to its effects on T cells](#)⁶³; we further speculate that
392 [TREM2 KO cells may be more subject to this effect with ADP, given the higher expression of](#)
393 [P2RY₁₂ and P2Y₁₃ receptors](#). Accordingly, reducing cytosolic Ca^{2+} , resulted in increased mean
394 speed, displacement, and straighter paths for TREM2 KO iPSC-microglia, but had no effect on

395 these motility metrics in WT cells suggesting that TREM2 KO cells may display a greater dynamic
396 range in regulating their motility in response to sustained Ca^{2+} elevations. Consistent with this
397 observation, chemotaxis in TREM2 KO cells was restored by partially inhibiting P2Y₁₂ receptors.
398 In response to neurodegenerative disease, microglia down-regulate P2Y₁₂ receptors^{23,25,31}.
399 Active regulation of purinergic receptor expression is critical for sensing ADP gradients and
400 decreasing motility near the chemotactic source. *In vivo* studies^{21,23,41} suggest that TREM2 KO
401 microglia are unable to down-regulate P2Y receptor expression upon activation, which may
402 lead to the known chemotactic deficits in these cells.

403 The studies presented here provide evidence that reducing purinergic receptor activity
404 may be clinically applicable in Alzheimer's patients with TREM2 loss of function mutations
405^{40,55,69}. Pharmacologically targeting P2Y₁₂ receptors to dampen both the Ca^{2+} dependent (PLC)
406 and independent (DAG) arms of the GPCR signaling pathway may be useful to control microglial
407 activation and motility. However, our results suggest that altering downstream Ca^{2+} flux may be
408 sufficient, and thus, CRAC (Orai1) channel blockers that would specifically inhibit the sustained
409 Ca^{2+} signals without affecting the initial Ca^{2+} transient or the activation of DAG may provide a
410 more targeted approach.

411 Currently, TREM2 activating antibodies are being examined in early stage clinical trials
412 for Alzheimer's disease^{70,71}, making it critically important to understand the broad
413 consequences of TREM2 signaling. Therefore, an understanding of how TREM2 influences
414 responses to purinergic signals and regulates cytosolic Ca^{2+} in human iPSC-microglia is critical.
415 Beyond TREM2, we have found that protective variants in MS4A6A and PLCG2 gene expression

416 also decrease P2Y₁₂ and P2Y₁₃ receptor expression (unpublished data), suggesting this
417 mechanism of microglial activation could be common across several microglial AD risk loci.

418 In summary, deletion of TREM2 renders iPSC-microglia highly sensitive to ADP, leading
419 to prolonged Ca²⁺ influx which increases cell displacement by decreasing cell turning. Despite
420 this, TREM2 KO microglia show a defect in chemotaxis that is likely due to their inability to
421 sense ADP gradients and make appropriate course corrections. Decreasing purinergic signaling
422 in TREM2 KO microglia rescues directional chemotactic migration. We suggest that purinergic
423 modulation or direct modulation of Ca²⁺ signaling could provide novel therapeutic strategies in
424 many AD patient populations, not solely those with reduced TREM2 function.

425
426

427 **Figure Legends**

428

429 **Figure 1: Microglia lacking TREM2 show exaggerated Ca^{2+} responses to purinergic stimulation.**

430 **(A)** Representative red-green channel overlay images of WT (top) and TREM2 KO (bottom) iPSC-
431 microglia loaded with Fluo-4 (green) and Fura-red (red) showing resting cytosolic Ca^{2+} before
432 ADP, and Ca^{2+} levels 15 sec [and 5 min](#) after ADP addition. Scale bar= 20 μm . **(B)** Average traces
433 (left panels) showing changes in cytosolic Ca^{2+} in response to 2.5 μM ADP in 1 mM Ca^{2+} buffer
434 ($n=39\text{-}44$ cells). Baseline-subtracted peak Ca^{2+} response and cytosolic Ca^{2+} levels 5 min after
435 ADP shown on the right ($n=250\text{-}274$ cells, 5 experiments, Mann-Whitney test). **(C-D)** Cytosolic
436 Ca^{2+} response to ADP as in **A** and **B** but in iPSC microglia expressing the GCaMP6f-tdTomato
437 fusion Ca^{2+} probe Salsa6f ($n=41\text{-}53$ cells, 2 independent experiments, Mann-Whitney test).
438 [Images in \(C\) are overlay of GCaMP6f \(green\) and tdTomato \(red\) channel images. Scale bar= 20](#)
439 μm . **(E)** Ca^{2+} responses to 2.5 μM ATP in WT and TREM2 KO iPSC-microglia. Average traces (left
440 panel, $n=63\text{-}71$ cells) and bar-graph summary of peak cytosolic Ca^{2+} and Ca^{2+} after 5 min (right
441 panel, 165-179 cells, 3 experiments, Mann-Whitney test). **(F)** Ca^{2+} responses to 10 μM UTP.
442 Average traces (45-55 cells) and summary of peak cytosolic Ca^{2+} and Ca^{2+} after 5 min (175-269
443 cells, 3 experiments, Mann-Whitney test). Data shown as mean \pm SEM for traces and bar-
444 graphs. *P* values indicated by *** for $P < 0.001$, **** for $P < 0.0001$.

445

446 **Figure 2: Higher sensitivity of TREM2 KO microglia to ADP is driven by increased purinergic**
447 **receptor expression.** **(A)** Schematic highlighting key downstream Ca^{2+} signaling events triggered
448 by ADP. Cytosolic Ca^{2+} response to ADP is determined by functional expression and activity of
449 P2Y₁₂ and P2Y₁₃ receptors, IP₃ receptors, ER-store Ca^{2+} content, and store-operated Ca^{2+} entry
450 (SOCE) regulated by STIM and Orai proteins. **(B)** Representative images (left panel) showing
451 overlay of Fluo-4 (green) and Fura-red (red) channels in WT (top) and TREM2 KO (bottom) iPSC-
452 microglia before and peak Ca^{2+} response after ADP addition in Ca^{2+} free buffer. Scale bar= 20
453 μm . Average trace showing Ca^{2+} response to ADP in Ca^{2+} -free buffer (middle panel, 64-83 cells).
454 Quantification of peak signal (right panel, $n=264\text{-}289$ cells, 4 experiments, Mann-Whitney test).
455 **(C-E)** Dose-response curves showing baseline-subtracted peak Ca^{2+} responses to ADP in Ca^{2+} -

456 free buffer (**C**), percent of “responding” cells (**D**) and peak Ca^{2+} responses only in “responding”
457 cells (**E**). N= 84-474 WT cells and 70-468 TREM2 KO cells, 2-5 experiments. (**F**) RNA normalized
458 read counts of P2Y₁₂ and P2Y₁₃ receptor expression from bulk RNA-sequencing of WT and
459 TREM2 KO iPSC-microglia (n=4, adjusted *P*-values from DESeq2). (**G**) Representative histogram
460 (left panel) showing PM expression of P2Y₁₂ receptor in WT and TREM2 KO microglia. Cells were
461 stained with BV421 labelled anti-human P2Y₁₂ receptor antibody. Isotype control is shown as
462 dashed line. Right panel shows summary of median fluorescence intensity (MFI) of P2Y₁₂
463 receptor-labelled cells (n= 10 samples each, Students t- test). (**H**) Ca^{2+} traces (left panel)
464 showing response to 1 μM ADP in Ca^{2+} -free buffer after 30 min pre-treatment with a
465 combination of P2Y₁₂ receptor antagonist PSB 0739 (10 μM) and P2Y₁₃ receptor antagonist MRS
466 2211 (10 μM). Summary of the peak Ca^{2+} response (right panel, n=40-79 cells, 2 experiments,
467 Mann-Whitney test). Data are mean \pm SEM. *P* values indicated by **** for $P < 0.0001$.

468

469 **Figure 3: Regulation of ADP-evoked SOCE in WT and TREM2 KO microglia.** (**A**) SOCE in WT
470 microglia triggered with thapsigargin (TG, 2 μM) in Ca^{2+} -free buffer followed by re-addition of 1
471 mM Ca^{2+} in the absence (control, grey trace) or presence (red trace) of the Orai channel
472 inhibitor Synta66 (n=34-48 cells). Cells were pretreated with Synta66 (10 μM) for 30 min before
473 imaging. Bar-graph summary of the rate of Ca^{2+} influx (n=80-137 cells, 2 experiments, Mann-
474 Whitney test). (**B**) SOCE evoked by ADP (2.5 μM) in WT microglia (grey trace), using a similar
475 Ca^{2+} addback protocol as in **A**. Red trace shows effect of Synta66 on ADP-evoked SOCE. Right
476 panel shows bar-graph summary of the rate of ADP-triggered Ca^{2+} influx after re-addition of 1
477 mM Ca^{2+} (n=148-155 cells, 2 experiments, Mann-Whitney test). (**C**) Comparison of SOCE evoked
478 with TG (2 μM) in WT and TREM2 KO cells (n=90-129 cells). Bar-graph summaries of ER store-
479 release quantified as area under the curve, rate of SOCE, and peak SOCE (n=187-266 cells, 2
480 experiments, Mann-Whitney test). (**D**) Traces showing ADP-evoked SOCE in WT and TREM2 KO
481 microglia after depleting stores with 100 nM ADP in Ca^{2+} free buffer and re-addition of 1 mM
482 Ca^{2+} (left panel, n=97-114 cells). Comparison of ADP-evoked cytosolic Ca^{2+} peak, peak SOCE and
483 SOCE rate (right panel, n=234-313 cells, 3 experiments, Mann-Whitney test). (**E**) Ionomycin-
484 pulse experiment to measure residual ER Ca^{2+} pool in cells after initial treatment with ADP. WT

485 and TREM2 KO cells were pulsed sequentially with ADP first (200 nM) and subsequently treated
486 with ionomycin (1 μ M) to empty and measure the residual pool of ER Ca^{2+} . Imaging was done
487 entirely in Ca^{2+} -free buffer to prevent Ca^{2+} influx across the PM. Average trace (left panel), Peak
488 ADP Ca^{2+} response (middle panel) and peak ionomycin-induced Ca^{2+} response (right panel)
489 (n=38-60 cells, 3-4 experiments, Mann-Whitney test). (F) Average trace (left, 71-117 cells) and
490 summary of ER store-release after 2 μ M ionomycin treatment in Ca^{2+} free buffer (right, 146-234
491 cells, 2 experiments; ns, non-significant $P > 0.05$, Mann-Whitney test). (G) Same as H but in
492 response to UV IP_3 uncaging (167-200 cells, ns, non-significant $P > 0.05$, nonparametric t-test).
493 Data shown as mean \pm SEM for traces and bar-graphs. Data are mean \pm SEM. P values indicated
494 by ns for non-significant, * for $P < 0.05$ and **** for $P < 0.0001$.

495

496 **Figure 4: Nondirectional ADP exposure increases WT microglial speed and process extension.**
497 (A) Average trace showing closure of scratch wound produced with IncuCyte S3 WoundMaker.
498 iPSC-microglia imaged every 30 min after scratch wound with or without ADP stimulation (n=4
499 wells; 2 images per well). (B) Representative image of WT iPSC-microglia motility 30 min after
500 ADP exposure with cell tracks overlaid (left). Pseudocolored images (center) across time: 0 min
501 (red), 4 min (orange), 8 min (yellow), 12 min (green), 16 min (cyan), 20 min (blue), 24 min
502 (purple), 28 min (magenta). Scale bar= 100 μ m. White boxes zoomed in at right to demonstrate
503 motile (top) and non-motile (bottom) cells. (C) Representative color images (top left) and
504 displacement vectors (bottom left) of WT iPSC-microglia at baseline (no ADP, grey) and 30 min
505 after 2.5 μ M ADP treatment (red). Summary of Mean Speed (μ m/min), Displacement over 10
506 min (μ m/10 min) and Track straightness (track length/track displacement) (414-602 cells, 2
507 experiments). (D) Representative images, displacement vectors, and quantification of WT iPSC-
508 microglia motility for 20 min following ADP addition. Cells were pre-treated with vehicle (grey),
509 MRS 2211 (10 μ M, gold), or PBS 0739 (10 μ M, blue) (180-187 cells, 2 experiments). (E)
510 Representative images, displacement vectors, and quantification of WT iPSC-microglia motility
511 after ADP in 1 mM Ca^{2+} (light grey) or Ca^{2+} -free buffer (dark grey) (401-602 cells, 3
512 experiments). (F) Representative images (left) and process extension (right) of iPSC-microglia
513 (cytoplasmic GFP, grey) before or 30 min after ADP addition. Cells were pre-treated with vehicle

514 (grey), MRS 2211 (10 μ M, gold), or PBS 0739 (10 μ M, blue) (52-163 cells, 3-4 experiments). (C-F)
515 One way ANOVA with Tukey post hoc test. Data shown as mean \pm SEM (A, F) and as violin plots
516 with mean, 25th and 75th percentile (C-E). *P values* indicated by **ns** for non-significant, * for $P <$
517 0.05 , ** for $P < 0.01$, *** for $P < 0.001$ and **** for $P < 0.0001$.

518
519 **Figure 5: ADP-driven process extension and cell displacement are increased in TREM2 KO**
520 **iPSC-microglia. (A-E)** Motility of WT (grey) and TREM2 KO (green) iPSC-microglia over 20 min
521 following ADP addition in 1 mM Ca²⁺-containing buffer. (A) Plots of track displacement in μ m
522 centered from point of origin at (0,0). (B) Mean-squared displacement (MSD) vs time. Mean-cell
523 track speeds (C), total track displacement in 10-min interval (D), and track straightness (E) for
524 130-327 cells, 7 experiments, student's t-test. (F-J). Same as (A-F) but in Ca²⁺-free medium (125-
525 279 cells, 2 experiments, student's t-test). (K) Representative images of GFP-expressing WT
526 (top) and TREM2 KO (bottom) iPSC-microglia, before and 30 min after 2.5 μ M ADP addition. (L)
527 Quantification of total number of branches per cell before and after ADP treatment (left) and
528 paired dot-plots showing fold change in branch number from pre-ADP levels (right). Each data-
529 point represents an imaging field in the paired-plots. (M) Total process length before and after
530 ADP treatment displayed as raw values per cell (left) and as fold change from baseline
531 conditions per imaging field (right). For L and M, n=151-158 cells, WT; 133-167 cells, KO; 9-10
532 imaging fields, 3-4 experiments. One-way ANOVA with multiple comparisons for single-cell
533 data, two-tailed paired t-test for the paired-plots. Data shown as mean \pm SEM (B, G, L, M) and
534 as violin plots with mean, 25th and 75th percentile (C-E, H-J). *P values* indicated by **ns** for non-
535 significant, * for $P < 0.05$, ** for $P < 0.01$ and **** for $P < 0.0001$.

536
537 **Figure 6: Cytosolic Ca²⁺ levels tune microglial motility in TREM2 KO cells. (A)** Schematic of
538 traditional SOCE pathway with store-refilling (left) and protocol for sustaining cytoplasmic Ca²⁺
539 to "low" and "high" levels with 0.2 and 2 mM extracellular Ca²⁺ and using TG to inhibit store-
540 refilling (right). (B) Average SOCE traces in WT Salsa6f iPSC-microglia showing changes in
541 cytoplasmic Ca²⁺ after addition of either 0.2 or 2 mM extracellular Ca²⁺ (n=78-110 cells). (C)
542 Average change in cytoplasmic Ca²⁺ levels in WT and TREM2 KO microglia over 25 min after

543 SOCE activation. **(D)** Comparison of Ca^{2+} levels and microglia motility in WT (top) and TREM2 KO
544 (bottom) microglia. Cytosolic Ca^{2+} levels indicated by instantaneous single-cell G/R Ratio (n=74-
545 158 cells). Mean of instantaneous speeds, track displacement and track straightness calculated
546 as before in Figures 3 and 4. Yellow (0.2 mM Ca, TG), green (2 mM Ca, TG). Students t-test ***
547 p < 0.0001; ** p = 0.0062; * p = 0.432; ns > 0.9999. **(E)** Correlation of instantaneous Ca^{2+} and
548 instantaneous speed in WT and KO cells. Red line denotes 10 $\mu\text{m/sec}$ (cells above this threshold
549 considered “fast-moving”). For WT: p < 0.0001; r = -0.1316; number pairs = 5850. For KO: p <
550 0.0001; r = -0.1433; number pairs = 6063 (Spearman’s correlation). **(F)** Mean speed of cells
551 binned by instantaneous G/R Ca^{2+} ratio (1-way ANOVA **** p < 0.0001). Each data point is
552 calculated for a bin increment of 0.5 G/R ratio. **(G)** Percentage of fast-moving cells quantified as
553 a function of G/R Ca^{2+} ratio. X-axis G/R ratios binned in increments of 0.5 as in **F**. In **E-G**, n=78-
554 100 cells. Data shown as mean \pm SEM (B, F) and as violin plots with mean, 25th and 75th
555 percentile (D). *P values* indicated by ns for non-significant, * for $P < 0.05$, ** for $P < 0.01$ and
556 **** for $P < 0.0001$.

557

558 **Figure 7: Migration deficits in TREM2 KO microglia are rescued by inhibition of purinergic
559 signaling. (A)** Migration towards ADP in a two-chamber microfluidic device. Representative
560 images of RFP expressing microglia that migrated into the central chamber 3 days after 100
561 ng/mL ADP addition. Dotted circle delineates separation of inner and outer chamber. Scale bar
562 = 500 μm . Quantification of microglial migration (right panel). Migrated cell counts are
563 normalized to WT cells treated with ADP (n=3-4 experiments; One-way ANOVA with multiple
564 comparisons). **(B)** Baseline subtracted peak ratiometric Ca^{2+} signal in response to 2.5 μM ADP in
565 1 mM extracellular Ca^{2+} , and in the presence or absence of 10 μM PSB 0739 (44 cells, WT; 39-43
566 cells, KO; representative of 3 independent experiments; One-way ANOVA with multiple
567 comparisons). **(C)** Two-chamber migration to 100 ng/mL ADP with or without 10 μM PSB 0739.
568 Values are normalized to WT cells with ADP (n=3-4 experiments; One-way ANOVA with multiple
569 comparisons). Representative images shown on the left. Scale bar = 500 μm . Data shown as
570 mean \pm SEM. *P values* indicated by ns for non-significant, * for $P < 0.05$, ** for $P < 0.01$ and
571 **** for $P < 0.0001$.

572

573 **Supplementary Figure Legends**

574

575 **Figure 1-figure supplement 1: Validation of Salsa6f transgenic iPSC-microglia. (A)**

576 Representative bright field, green (GCaMP6f), red (tdTomato), and Green/Red channel overlay
577 images of transgenic Salsa6f expressing iPSC-microglia at low (top row) and high (bottom row)
578 cytosolic Ca^{2+} levels. Cells were treated with 2 μM thapsigargin (TG) to deplete stores and
579 evoke store-operated Ca^{2+} entry (SOCE). Images are shown at the end of TG treatment for low
580 Ca^{2+} and at the peak of SOCE for high Ca^{2+} . Scale bar = 20 μm . (B) Trace of average change in
581 fluorescence intensity of tdTomato (red) and GCamp6f (green) over time. [Summary of GCaMP6f](#)
582 and [tdTomato intensities before and after invoking SOCE are shown on the right](#). (C)
583 Ratiometric GCaMP6f/ tdTomato signal (Green/ Red or G/R Ratio) over time calculated from
584 (B). [Summary of G/R Ratio at low and high cytosolic \$\text{Ca}^{2+}\$ \(B-C, n=19 cells, Mann-Whitney test\)](#).
585 (D) Immunofluorescence images showing staining for the microglia-specific marker IBA1 in
586 either resting or activated WT or Salsa6f-transgenic iPSC-microglia (left). Right panel shows
587 quantification of IBA1 protein expression (n=4 wells, 2 independent images per well, t-test).
588 Cells were activated with 100 ng/mL LPS (lipopolysaccharide for 24 hours). (E) Microglia cell
589 counts at final day of differentiation (n=3 wells, t-test). (F) Phagocytosis of synaptosomes in WT
590 non-transgenic (open circle) and Salsa6f-expressing (closed circle) iPSC-microglia. Cytochalasin
591 D (grey, 10 μM) used as negative control to inhibit phagocytosis. Live cultures imaged on
592 IncuCyte S3 (n=4 wells; 4 images per well). (G) Phagocytic load at 24 hr for synaptosomes, beta-
593 amyloid, zymosan A, and *S. aureus* (n=4 wells; 4 images per well; one way ANOVA with Tukey
594 post-hoc test). Data shown as mean \pm SEM for traces and bar-graphs. *P* values indicated by **ns**
595 for non-significant, ******** for $P < 0.0001$.

596

597 **Figure 1-figure supplement 2: Comparison of cytosolic Ca^{2+} signal over time triggered by**
598 **various purinergic agonists. (A)** Representative trace showing changes in cytosolic Ca^{2+} in a
599 single cell to illustrate the scheme for measuring cytosolic Ca^{2+} level 5 min after agonist
600 application. (B) Bar-graph summary of cytosolic Ca^{2+} levels in WT and TREM2 KO iPSC-microglia
601 5 min after application of 2.5 μM ADP (blue), 2.5 μM ATP (red), and 10 μM UTP (yellow).

602 N=165-274 cells pooled from 2-3 experiments. One-way ANOVA with multiple comparisons.

603 Data shown as mean \pm SEM for the bar-graph. *P values* indicated by **** for $P < 0.0001$.

604

605 **Figure 2-figure supplement 1: Role of P2Y₁₂ and P2Y₁₃ receptors in ADP-mediated**
606 **augmentation of store-release in TREM2 KO microglia.** (A) Representative green (GCaMP6f)
607 and red (tdTomato) channel overlay images of WT (top) and TREM2 KO (bottom) iPSC-microglia
608 before and peak Ca^{2+} response after ADP addition in Ca^{2+} -free buffer. Scale bar = 20 μm . (B)
609 Average trace (left panel) showing Ca^{2+} response to 100 nM ADP in Ca^{2+} -free buffer.
610 Quantification of peak signal (right panel, n=46-75 cells, 2 experiments, Mann-Whitney test). (C)
611 Comparison of peak cytosolic Ca^{2+} in response to ADP (2.5 μM ADP) in 1 mM Ca^{2+} or Ca^{2+} -free
612 buffer (n=38-96 cells, ordinary one-way ANOVA with multiple comparisons). (D) Volcano plot of
613 differentially expressed genes from bulk RNA-sequencing of WT and TREM2 KO iPSC-microglia
614 (n=4). Genes for IP3R, STIM1, and ORAI1 are highlighted. (E) RNA normalized read counts for IP₃
615 receptor type 2 (ITPR2), PMCA1 (ATP2B1), SERCA2 (ATP2A2), SERCA3 (ATP2A3), STIM1, and
616 ORAI1 in WT and TREM2 KO iPSC-microglia. Isoforms expressed lower than 10 reads in any
617 sample are not considered expressed and are not shown. Relative expression of P2Y₁₂ and P2Y₁₃
618 receptors are shown for comparison of the relative fold-change between WT and TREM2 KO
619 cells. (F-G) Peak Ca^{2+} response in Ca^{2+} free buffer after treatment with 1 or 10 μM ADP in the
620 presence of P2Y₁₂ receptor antagonist PSB 0739 (F) or P2Y₁₃ receptor antagonist MRS 2211 (G),
621 respectively. Cells were pretreated with 10 μM of PSB 0739 or 10 μM MRS 2211 for 30 min
622 before imaging. (72-128 cells, F; 83-117 cells, G; representative of 3 experiments, Mann-
623 Whitney Test). Data shown as mean \pm SEM for traces and bar-graphs. Data shown as mean \pm
624 SEM for traces and bar-graphs. *P values* indicated by ns for non-significant, ** for $P < 0.01$, ***
625 for $P < 0.001$, **** for $P < 0.0001$.

626

627 **Figure 3-figure supplement 1: Regulation of SOCE in iPSC-microglia.** (A) Average trace showing
628 SOCE triggered in TREM2 KO microglia via emptying ER Ca^{2+} stores with thapsigargin (TG, 2 μM)
629 in Ca^{2+} -free buffer followed by re-addition of 1 mM Ca^{2+} in the absence (control, green trace) or
630 presence (red trace) of the Orai channel inhibitor Synta66. Cells were pretreated with Synta66

631 (10 μ M) for 30 min before experiment. Bar-graph summary of the rate of Ca^{2+} influx after re-
632 addition of 1 mM Ca^{2+} (80-126 cells, Mann-Whitney test). (B) SOCE evoked by ADP (2.5 μ M) in
633 TREM2 KO microglia (green trace), using a similar Ca^{2+} addback protocol. Red trace shows effect
634 of Synta66 on ADP-evoked SOCE. Right panel summarizes the rate of ADP-triggered Ca^{2+} influx
635 after re-addition of 1 mM Ca^{2+} (n= 125- 154 cells, 2 experiments, Mann-Whitney test). (C-D)
636 Cytosolic Ca^{2+} response to ADP in TREM2 KO iPSC-microglia pre-treated with 2-APB (50 μ M) or
637 Gd^{3+} (5 μ M) to block store-operated Ca^{2+} entry (SOCE). Average traces (C), baseline- subtracted
638 initial peak Ca^{2+} responses to ADP (D, left panel), and baseline-subtracted Ca^{2+} after 5 min of
639 ADP addition (D, right panel) are shown (n= 41-74 cells, ordinary one-way ANOVA with multiple
640 comparisons). (E-F) Role of Orai1 in TG- and ADP-evoked SOCE in iPSC-microglia. (E) Comparison
641 of TG-evoked SOCE in WT and Orai1 KO cell showing average traces (left panel) and summary of
642 SOCE rate (right panel; n= 42-54 cells, 3-4 experiments, Mann-Whitney test). (F) ADP-evoked
643 SOCE in WT and Orai1 KO showing average traces (left panel) and summary of SOCE rate (right
644 panel; n= 42-53 cells, 3-4 experiments, Mann-Whitney test). Data shown as mean \pm SEM for
645 traces and bar-graphs. *P* values indicated by ns for non-significant, **** for $P < 0.0001$.

646

647 **Figure 3-figure supplement 2: ADP depletes ER Ca^{2+} stores to a greater extent in TREM2 KO**
648 **microglia.** (A) TG-pulse experiment to measure residual ER Ca^{2+} pool in cells after initial
649 treatment with ADP (1 μ M) and subsequent treatment with thapsigargin (2 μ M). Imaging was
650 done in Ca^{2+} -free buffer to prevent Ca^{2+} influx across the PM. Average trace (left panel), Peak
651 ADP Ca^{2+} response (middle panel) and extent of TG-induced ER store-release measured as area
652 under curve (AUC, right panel) (n=81-108 cells, Mann-Whitney test). (B) Control experiment
653 comparing the ER- Ca^{2+} pool in WT and TREM2 KO microglia after store-depletion with TG, and
654 without any pretreatment with ADP (n=29- 63 cells, Mann-Whitney test). (C-D) Relationship
655 between ADP-induced store-release and SOCE in iPSC-microglia. (C) Representative single-cell
656 trace of Ca^{2+} signal in response to ADP in 1 mM extracellular Ca^{2+} buffer showing the scheme
657 for measuring ER store-release as the initial Ca^{2+} peak and SOCE as cytosolic Ca^{2+} level 5 min
658 after ADP application. (D) Scatter-plot showing correlation of initial ADP-induced Ca^{2+} response
659 (store-release) and cytoplasmic Ca^{2+} after 5 min (SOCE) in WT (grey) and KO (green) cells

660 (n=866-935 cells from multiple imaging runs with a range of ADP doses; in μM : 0.001, 0.1, 0.5,
661 1, 2, 2.5, 5, 10. Comparison of slopes between WT and TREM2 KO: $P = 0.7631$; Extra sum of
662 squares F test). **(E-F)** Comparison of cytosolic Ca^{2+} clearance indicative of PMCA pump activity in
663 WT and TREM2 KO microglia. SOCE was invoked and rate of Ca^{2+} decline was measured after
664 addition of 0 mM Ca^{2+} . **(E)** Average trace showing invoking SOCE with 2 μM TG (left panel).
665 Right panel shows the drop in cytosolic Ca^{2+} following addition of Ca^{2+} free solution as
666 highlighted (pink) in the SOCE trace **(F)** Summary of rate of Ca^{2+} decline after addition of 0 mM
667 Ca^{2+} (n= 8 imaging fields, 142-175 total cells, Mann-Whitney Test). Data shown as mean \pm SEM
668 for traces and bar-graphs. P values indicated by ns for non-significant, ** for $P < 0.01$.
669

670 **Figure 4-figure supplement 1: ADP-mediated process extension in WT iPSC-microglia. (A)**
671 Representative images of a cell (Cell 1) from a time-lapse experiment showing increased
672 branching and extension of processes in GFP-expressing WT iPSC-microglia, at times indicated
673 following addition of 2.5 μM ADP. Bright field DIC images (top row) and GFP images (bottom
674 row) are shown. **(B)** Another example of a cell (Cell 2) showing process extension in the same
675 imaging field. **(C)** A motile cell (Cell 3) in the same imaging field is shown for comparison. Note
676 the lack of displacement in cells that extend their process, and lack of significant process
677 extension in a highly motile cell. Scale bar: 15 μM .
678

679 **Figure 5-figure supplement 1: Motility analysis in WT and TREM2 KO iPSC-microglia. (A)**
680 Summary of microglial mean speeds, displacement over 10 min, and track straightness in open-
681 field migration in the absence of any purinergic stimulation (student's t-test). **(B)** Flower plots
682 show similar displacement from origin for WT (left) and TREM2 KO (right) cells. **(C)** Directional
683 Autocorrelation calculated via DiPer excel macro. Due to lack of directional gradient, directional
684 autocorrelation of motility vectors is expected to drop quickly. Time constants for best-fit single
685 exponential curves are indicated, consistent with increased straightness for TREM2 KO cells
686 treated with ADP. **(D)** Directional autocorrelation of WT (grey) and TREM2 KO (green) iPSC-
687 microglia at baseline (open circles) or after ADP addition (filled circles). Mean autocorrelation
688 values in the first 5 min (left panel, one-way ANOVA) and time (min) until autocorrelation

689 reaches zero (right panel). Data shown as mean \pm SEM for the bar-graph in (D), and as violin
690 plots with mean, 25th and 75th percentile in (A). *P values* indicated by **ns** for non-significant, *
691 for $P < 0.05$, and **** for $P < 0.0001$.

692

693 **Figure 5-figure supplement 2: Comparison of process extension in WT and TREM2 KO**
694 **Microglia.** Branching and process extension in WT and TREM2 KO iPSC-microglia 30 min after
695 addition of ADP in 1 mM (**A, B**) or 0 mM extracellular Ca^{2+} buffer (**C, D**). (**A**) Data displayed as
696 paired-plots showing average branch number per cell in an imaging field (top row) and
697 normalized to pre-ADP values for each imaging field (middle row). Bottom row shows fold
698 change in branching after ADP treatment for WT (grey) and KO (green) iPSC-microglia. (**B**)
699 Changes in process length in the same dataset as **A, B** but with ADP in Ca^{2+} free buffer.
700 n=151-158 cells, WT; 133-167 cells, KO; 9-10 imaging fields, 3-4 experiments. (**C, D**) Same analysis as **A, B** but with ADP in Ca^{2+} free buffer.
701 n=137-143 cells, 8 imaging fields, 2-3 experiments. (**A-D**) p-values calculated by two-tailed
702 paired Students t-test for the paired-plots, and by unpaired t-test when comparing fold-change
703 in WT and KO cells. Data shown as paired plots and as mean \pm SEM for the bar-graphs. *P values*
704 indicated by **ns** for non-significant, * for $P < 0.05$, ** for $P < 0.01$, *** for $P < 0.001$ and **** for
705 $P < 0.0001$.

706

707

708 **Figure 6-figure supplement 1: Tracking cell motility and cytosolic Ca^{2+} using Salsa6f-expressing**
709 **iPSC cell-line.** (**A**) Average change in single cell fluorescence intensity of tdTomato (red trace)
710 and GCaMP6f (green trace) (left Y-axis) in WT Salsa6f microglia over 5 min following ADP
711 treatment, overlaid with corresponding change in cell displacement over time (black trace, right
712 Y-axis) (n=52-79 cells). (**B**) Same as (A) but for cells tracked over a period of 30 min. Data shown
713 as mean \pm SEM for average traces.

714

715 **Figure 6-figure supplement 2: Motility analysis with varying Ca^{2+} .** (**A**) Salsa6f Ca^{2+} ratios and
716 microglia motility in WT (top) and KO (bottom) microglia, with ADP added: yellow (0.2 mM Ca^{2+} ,
717 TG + ADP), green (2 mM Ca^{2+} , TG + ADP). Cytosolic Ca^{2+} levels indicated by instantaneous single-

718 cell G/R Ratio. Mean of instantaneous speeds, 10 min track displacement and track straightness
719 calculated as before. Students t-test **** p < 0.0001; *** p = 0.0001. n=164-393 cells. (B, C)
720 Ca²⁺ dependence of track displacement length in 0.2 mM Ca²⁺ in WT cells (B) and TREM2 KO
721 cells (C). Correlation between instantaneous Ca²⁺ and frame-to-frame displacement (left
722 panels). Each dot represents an individual cell for an individual frame. Dotted red line
723 represents displacement of 200 μm^2 . Mean square of frame-to-frame displacement of cells
724 binned by instantaneous G/R Ca²⁺ ratio (middle panels, 1-way ANOVA **** p < 0.0001). Each
725 data point is calculated for a bin increment of 0.5 G/R ratio. Summary of cells with frame-to-
726 frame square displacement > 200 μm^2 (right panels). WT cells (B) displace less than KO cells (C).
727 For each cell type, larger displacements are correlated with lower G/R Ca²⁺ ratios. Cells which
728 maintain elevated cytoplasmic Ca²⁺ do not displace as far. For WT: p < 0.0001; r = -0.4778;
729 number pairs = 5973. For KO: p < 0.0001; r = -0.3699; number pairs = 5761 (Spearman's
730 correlation). Data shown as mean \pm SEM for bar-graphs (B, C) and as violin plots with mean, 25th
731 and 75th percentile (A). *P* values indicated by ns for non-significant, *** for *P* < 0.001 and ****
732 for *P* < 0.0001.

733

734 **Figure 7-figure supplement 1: TREM2 WT and KO close scratch wound at similar rates.** Scratch
735 closure over 24 hours in WT (grey) and TREM2 KO (green) iPS-microglia with (filled symbols) or
736 without (empty symbols) pre-stimulation of iPSC-microglia with ADP (10 μM , 30 min). N=2
737 wells, 2 images per well. Data shown as mean \pm SEM.

738

739

740

741 **Materials and Methods**

742 **Key Resources Table**

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional Information
Cell line (Human)	WT iPSC-microglia	UCI ADRC iPSC Core	ADRC5	iPSC-derived microglial line
Cell line (Human)	TREM2 KO iPSC microglia	Blurton-Jones lab	ADRC5 Clone 28-18	CRISPR-mediated knockout of TREM2 on the WT iPSC line
Cell line (Human)	WT GFP-expressing iPSC-microglia	Coriell	AICS-0036	iPSC-line with GFP tagged to α tubulin. Originally developed by Dr. Bruce Conklin
Cell line (Human)	TREM2 KO GFP-expressing iPSC-microglia	Blurton-Jones lab	GFP Clone 1	CRISPR-mediated knockout of TREM2 on the WT GFP ⁺ iPSC line
Cell line (Human)	WT RFP-expressing iPSC-microglia	Coriell	AICS-0031-035	iPSC-line with RFP tagged to α tubulin. Originally developed by Dr. Bruce Conklin
Cell line (Human)	TREM2 KO RFP-expressing iPSC-microglia	Blurton-Jones lab	RFP Clone 6	CRISPR-mediated knockout of TREM2 on the WT RFP ⁺ iPSC line
Cell line (Human)	WT Salsa6f-expressing iPSC-microglia	UCI ADRC iPSC Core	ADRC76 Clone 8	iPSC-line expressing a GCaMP6f-tdTomato fusion construct (Salsa6f)
Cell line (Human)	TREM2 KO Salsa6f-expressing iPSC microglia	Blurton-Jones lab	ADRC76 Clone 8 Clone 98	CRISPR-mediated knockout of TREM2 on the WT Salsa6f ⁺ iPSC line
Cell line (Human)	Orai1 KO iPSC microglia	Blurton-Jones lab	ADRC76	CRISPR-mediated knockout of Orai1 on the WT ADRC76 iPSC line
Plasmid Construct (transgene)	Salsa6f	Addgene	Plasmid# 140188	A genetically encoded Calcium Indicator with tdTomato linked to GCaMP6f by a V5 epitope tag.
Other	DMEM/F12, HEPES, no Phenol red	Thermo Fisher Scientific	11038021	Microglia differentiation cell culture medium
Other	TeSR™-E8™	STEMCELL Technologies	05990	Stem cell culture medium
Other	StemDiff Hematopoietic kit	STEMCELL Technologies	05310	

Peptide/ Recombinant protein	Non-essential amino acids	Gibco	11140035	
Peptide/ Recombinant protein	Glutamax	Gibco	35050061	
Peptide/ Recombinant protein (human)	Insulin	Sigma	I2643	
Peptide/ Recombinant protein	B27	Gibco	17504044	
Peptide/ Recombinant protein	N2	Gibco	A1370701	
Peptide/ Recombinant protein	Insulin- transferrin- selenite	Gibco	41400045	
Peptide/ Recombinant protein (human)	IL-34	Peprotech	200-34	
Peptide/ Recombinant protein (human)	TGF β 1	Peprotech	100-21	
Peptide/ Recombinant protein (human)	M-CSF	Peprotech	300-25	
Peptide/ Recombinant protein	CX3CL1	Peprotech	300-31	
Peptide/ Recombinant protein	CD200	Novoprotein	C311	
Peptide/ Recombinant protein	Fibronectin	STEMCELL Technologies	07159	
Other	Matrigel	Corning	356231	
Other	ReLeSR	STEMCELL Technologies	5872	Human pluripotent stem cell selection and passing reagent
Other	Goat Serum	Thermo Fisher Scientific	10000C	
Other	fluorescent beta- amyloid 1-42 (647)	Anaspec	AS64161	
Other	pHrodo tagged zymosan A beads	Thermo Fisher Scientific	P35364	

Other	pHrodo tagged S. Aureus	Thermo Fisher Scientific	A10010	
Other	Human Stem Cell Nucleofector kit 2	Lonza	VPH-5022	
Other	Alt-R CRISPR-Cas9 tracrRNA	IDTDNA	107253	
Other	Alt-R HiFi Cas9 Nuclease	IDTDNA	1081061	
Antibody	Anti-human IBA1	Wako	019-19741	
Antibody	Goat anti-rabbit 555	Thermo Fisher Scientific	A21429	Secondary antibody
Other	Human TruStain FcX	Biolegend	Cat # 422301	Fc Blocking Solution
Antibody	Brilliant Violet 421 antihuman P2RY12	Biolegend	clone 16001E	Primary antibody
Antibody	Brilliant Violet 421 mouse IgG2a	Biolegend	Clone MOPC-173	κ Isotype control
Chemical compound, drug	Fluo-4 AM	Thermo Fisher Scientific	F14201	
Chemical compound, drug	Fura-red AM	Thermo Fisher Scientific	F3021	
Chemical compound, drug	Pluronic F-127	Thermo Fisher Scientific	P3000MP	
Chemical compound, drug	Cal-520 AM	AAT Bioquest	21130	
Chemical compound, drug	Cal-590 AM	AAT Bioquest	20510	
Chemical compound, drug	ci-IP3/PM	SiChem	6210	Caged-inositol triphosphate analog
Chemical compound, drug	Hoeschst	Thermo Fisher Scientific	R37165	
Chemical compound, drug	ADP	Sigma-Aldrich	A2754	
Chemical compound, drug	ATP	Sigma-Aldrich	A9187	
Chemical compound, drug	UTP	Sigma-Aldrich	U1006	
Chemical compound, drug	PSB 0739	Tocris	3983	
Chemical compound, drug	MRS 2211	Tocris	2402	
Chemical compound, drug	Synta66	Sigma-Aldrich	SML1949	Orai channel inhibitor
Chemical compound, drug	2-APB	Sigma-Aldrich	D9754	
Chemical	Gadolinium	Sigma-Aldrich	G7532	

compound, drug				
Chemical compound, drug	EGTA	Sigma-Aldrich	E8145	
Chemical compound, drug	1-thioglycerol	Sigma-Aldrich	M6145	
Chemical compound, drug	CloneR	STEMCELL Technologies	05888	Defined supplement for single-cell cloning of human iPS cells
Chemical compound, drug	Thiazovivin	STEMCELL Technologies	72252	ROCK inhibitor
Other	35mm glass-bottom dish	MatTek	P35G-1.5-14-C	1.5 coverslip, 14mm glass diameter
Other	Incubation perfusion Lid for 35mm dishes	Tokai Hit	LV200-D35FME	Perfusion lid with inlet and outlet
Other	Laser Scanning Confocal Microscope	Olympus	FV3000	Equipped with Resonant Scanner, IX3-ZDC2 Z-drift compensator, 40x silicone oil objective, 20x air objective
Other	Stage Top Incubation System	Tokai Hit	STXG	Temperature and humidity control for FV3000 microscope stage
Other	Nikon Eclipse Ti microscope system	Nikon		Equipped with a 40x oil immersion objective (N.A.: 1.3; Nikon) and an Orca Flash 4.0LT CMOS camera (Hamamatsu)
Other	Chemotaxis Assay Chamber	Hansang Cho Lab		
Other	IncuCyte S3 Live-Cell Analysis System	Sartorius		
Other	Essen Incucyte WoundMaker	Sartorius	4493	
Software, algorithm	GraphPad Prism 9.1.0			Data analysis, statistical analysis
Software, algorithm	Fiji (Image J)			Image analysis
Software, algorithm	Incucyte 2020C			Image acquisition and analysis
Software, algorithm	IMARIS 9.7.0			Cell tracking and image analysis
Software, algorithm	Flika			Image analysis
Software, algorithm	DiPer Excel Macros		PMID: 25033209	Data analysis, directional persistence

743

744 **Generation of iPSCs from human fibroblasts:** Human induced pluripotent stem cell lines were
745 generated by the University of California, Irvine Alzheimer's Disease Research Center (UCI
746 ADRC) Induced Pluripotent Stem Cell Core from subject fibroblasts under approved Institutional
747 Review Boards (IRB) and human Stem Cell Research Oversight (hSCRO) committee protocols.
748 Informed consent was received from all participants who donated fibroblasts. Reprogramming
749 was performed with non-integrating sendai virus in order to avoid integration effects. To
750 validate new iPSC lines, cells were karyotyped by G-banding and tested for sterility.
751 Pluripotency was verified by Pluritest Array Analysis and trilineage in vitro differentiation.
752 Additional GFP- and RFP- α tubulin expressing iPSC lines (AICS-0036 and AICS-0031-035) were
753 purchased from Coriell and originally generated by Dr. Bruce Conklin. iPSCs were grown
754 antibiotic free on Matrigel (Corning) in complete mTeSR1 or TeSR-E8 medium (STEMCELL
755 Technologies) in a humidified incubator (5% CO₂, 37° C). All lines will be available upon request
756 to the corresponding author.

757 **CRISPR-mediated knockout of TREM2 and ORAI1:** Genome editing to delete TREM2 was
758 performed as in McQuade et al. 2020⁴¹. Briefly, iPSCs were nucleofected with
759 Ribonucleoprotein complex targeting the second exon of TREM2 and allowed to recover
760 overnight. Transfected cells were dissociated with pre-warmed Accutase then mechanically
761 plated to 96-well plates for clonal expansion. Genomic DNA from each colony was amplified
762 and sequenced at the cut site. The amplification from promising clones was transformed via
763 TOPO cloning for allelic sequencing. Knockout of TREM2 was validated by western blotting

764 (AF1828, R&D) and HTRF (Cisbio)⁴¹. A similar strategy was used to delete ORAI1 using an RNP
765 complex of Cas9 protein coupled with a guide RNA (5' CGCTGACCACGACTACCCAC)
766 targeting the second exon of ORAI1. All iPSC lines were confirmed to be sterile and exhibiting a
767 normal Karyotype via Microarray-based Comparative Genomic Hybridization (aCGH, Cell Line
768 Genetics).

769 **iPSC-microglia differentiation:** iPSC-microglia were generated as described in^{50,51}. Briefly, iPSCs
770 were directed down a hematopoetic lineage using the STEMdiff Hematopoiesis kit (STEMCELL
771 Technologies). After 10-12 days in culture, CD43+ hematopoteic progenitor cells are transferred
772 into a microglia differentiation medium containing DMEM/F12, 2× insulin-transferrin-selenite,
773 2× B27, 0.5× N2, 1× Glutamax, 1× non-essential amino acids, 400 μM monothioglycerol, and
774 5 μg/mL human insulin. Media was added to cultures every other day and supplemented with
775 100 ng/mL IL-34, 50 ng/mL TGF-β1, and 25 ng/mL M-CSF (Peprotech) for 28 days. In the final 3
776 days of differentiation 100 ng/mL CD200 (Novoprotein) and 100 ng/mL CX3CL1 (Peprotech)
777 were added to culture.

778 **Confocal Laser Scanning Microscopy:** Unless otherwise stated, cells were imaged on an
779 Olympus FV3000 confocal laser scanning inverted microscope equipped with high-speed
780 resonance scanner, IX3-ZDC2 Z-drift compensator, 40x silicone oil objective (NA 1.25) and a
781 Tokai-HIT stage top incubation chamber (STXG) to maintain cells at 37°C. To visualize Salsa6f,
782 488 nm and 561 nm diode lasers were used for sequential excitation of GCaMP6f (0.3% laser
783 power, 450V channel voltage, 494-544nm detector width) and TdTomato (0.05% laser power,
784 450V channel voltage, 580-680nm detector width), respectively. Fluo-4 and Fura-red were both
785 excited using a 488 nm diode laser (0.07% laser power, 500V channel voltage, 494-544nm

786 detector width for Fluo-4; 0.07% laser power, 550V channel voltage, 580-680nm detector for
787 Fura-Red). Two high-sensitivity cooled GaAsP PMTs were used for detection in the green and
788 red channels respectively. GFP was excited using the same settings as GCaMP6f. Other image
789 acquisition parameters unique to Ca^{2+} imaging, microglia process and cell motility analysis are
790 indicated in the respective sections.

791 **Measurement of intracellular Ca^{2+} :**

792 *Cell preparation:* iPSC-microglia were plated on fibronectin-coated (5 $\mu\text{g/mL}$) glass-bottom 35
793 mm dishes (MatTek, P35G-1.5-14-C) overnight at 60 % confluence. Ratiometric Ca^{2+} imaging
794 was done using Fluo-4 AM and Fura-Red AM dyes as described previously⁴¹. Briefly, cells were
795 loaded in microglia differentiation medium with 3 μM Fluo-4 AM and 3 μM Fura-Red AM
796 (Molecular Probes) in the presence of Pluronic Acid F-127 (Molecular Probes) for 30 min at
797 room temperature (RT). Cells were washed with medium to remove excess dye and 1 mM Ca^{2+}
798 Ringer's solution was added to the 35 mm dish before being mounted on the microscope for
799 live cell imaging. We note that iPSC-microglia are sensitive to shear forces and produce brief
800 Ca^{2+} signals in response to solution exchange that are dependent on extracellular Ca^{2+} , and that
801 these are more prominent at 37° C. To minimize these confounding effects, cells were imaged
802 at RT and perfusion was performed gently. Salsa6f-expressing iPSC-microglia were prepared for
803 Ca^{2+} imaging in the same way as conventional microglia, but without the dye loading steps. The
804 following buffers were used for Ca^{2+} imaging: (1) 1 or 2 mM Ca^{2+} Ringer solution comprising 155
805 mM NaCl, 4.5 mM KCl, 1 mM CaCl_2 , 0.5 mM MgCl_2 , 10 mM glucose, and 10 mM HEPES (pH
806 adjusted to 7.4 with NaOH), (2) Ca^{2+} -free Ringer solution containing: 155 mM NaCl, 4.5 mM KCl,

807 1.5 mM MgCl₂, 10 mM glucose, 1 mM EGTA, 10 mM HEPES, pH 7.4. Live cell imaging was
808 performed as described earlier. Cells were treated with ADP as indicated in the results section.
809 *Data acquisition:* Time-lapse images were acquired in a single Z-plane at 512 x 512 pixels (X =
810 318.2 μ m and Y = 318.2 μ m) and at 2-3 sec time intervals using Olympus FV3000 software.
811 Images were time averaged over 3 frames to generate a rolling average and saved as .OIR files.
812 *Data analysis:* Time-lapse videos were exported to Fiji- ImageJ (<https://imagej.net/Fiji>),
813 converted to tiff files (16-bit) and background subtracted. Single-cell analysis was performed by
814 drawing ROIs around individual cells in the field and average pixel intensities in the green and
815 red channels were calculated for each ROI at each time-point. GCaMP6f/ TdTomato (G/R Ratio)
816 and Fluo-4/Fura-Red ratio was then obtained to further generate traces showing single-cell and
817 average changes in cytosolic Ca²⁺ over time. Single-cell ratio values was used to calculate Peak
818 Ca²⁺ signal and responses at specific time points after agonist application as previously
819 reported⁶⁰. Peak Ca²⁺ signal for each cell was baseline subtracted, which was calculated as an
820 average of 10 minimum ratio values before application of agonist. SOCE rate was calculated as
821 $\Delta(\text{Ratio})/\Delta t (\text{sec}^{-1})$ over a 10-sec time frame of maximum initial rise after Ca²⁺ add-back. Area
822 under the curve (AUC) was calculated using the AUC function in GraphPad Prism.

823 **Microglia process extension analysis:**

824 *Data acquisition:* GFP-expressing iPSC-microglia were plated overnight on 35 mm glass bottom
825 dishes at 40-50% confluence. Cells were imaged by excitation of GFP on the confocal
826 microscope at 37° C as described earlier. To study process extension in response to ADP, two
827 sets of GFP images were obtained for each field of view across multiple dishes: before addition
828 of ADP (baseline) and 30 min after application of ADP. Images were acquired as a Z-stack using

829 the Galvo scanner at Nyquist sampling. Adjacent fields of view were combined using the
830 Stitching function of the Olympus FV3000 Software and saved as .OIR files.

831 *Process Analysis:* The basic workflow for microglia process analysis was adapted from Morrison
832 et al, Sci. Rep, 2017 ⁷². Image stacks (.OIR files) were exported to Fiji- Image J and converted
833 into 16-bit Tiff files using the Olympus Viewer Plugin
834 (<https://imagej.net/OlympusImageJPlugin>). Maximum intensity projection (MIP) image from
835 each Z-stack was used for further processing and analysis. MIP images were converted to 8-bit
836 grey scale images, to which a threshold was applied to obtain 8-bit binary images. The same
837 threshold was used for all sets of images, both before and after ADP application. Noise
838 reduction was performed on the binary images using the Process -> Noise -> Unspeckle
839 function. Outlier pixels were eliminated using Process -> Noise -> Outliers function. The binary
840 images were then skeletonized using the Skeletonize2D/3D Plugin for Image J
841 (<https://imagej.net/plugins/skeletonize3d>). Sparingly, manual segmentation was used to
842 separate a single skeleton that was part of two cells touching each other. The Analyze Skeleton
843 Plugin (<https://imagej.net/plugins/analyze-skeleton/>) was then applied to the skeletonized
844 images to obtain parameters related to process length and number of branches for each cell in
845 the imaging field. Processes were considered to be skeletons > 8 μ m. The data was summarized
846 as average process length and number of branches, before and after ADP application for a
847 specific imaging field, normalized to the number of cells in the field which allowed for pairwise
848 comparison. Additionally, single cell data across all experiments were also compared in some
849 instances.

850 **IP₃ uncaging:** Whole-field uncaging of i-IP₃, a poorly metabolized IP₃ analog, was performed as
851 previously described ⁷³ with minor modifications. Briefly, iPSC-microglia were loaded for 20 min
852 at 37° C with either Cal520 AM or Cal590 AM (5 μ M, AAT Bioquest), and the cell permeable,
853 caged i-IP₃ analog ci-IP₃/PM (1 μ M, SiChem) plus 0.1% Pluronic F-127 in Microglia Basal
854 Medium. Cells were washed and incubated in the dark for further 30 min in a HEPES-buffered
855 salt solution (HBSS) whose composition was (in mM): 135 NaCl, 5.4 KCl, 1.0 MgCl₂, 10 HEPES,
856 10 glucose, 2.0 CaCl₂, and pH 7.4. Intracellular Ca²⁺ ($[Ca^{2+}]_i$) changes were imaged by employing
857 a Nikon Eclipse Ti microscope system (Nikon) equipped with a 40x oil immersion objective
858 (N.A.: 1.3; Nikon) and an Orca Flash 4.0LT CMOS camera (Hamamatsu). Cal520 or Cal590 were
859 excited by a 488 or a 560 nm laser light source (Vortran Laser Technologies), respectively. i-IP₃
860 uncaging was achieved by uniformly exposing the imaged cells to a single flash of ultraviolet
861 (UV) light (350-400 nm) from a Xenon arc lamp. UV flash duration, and thus the amount of
862 released i-IP₃, was set by an electronically controlled shutter.

863 Image acquisition was performed by using Nikon NIS (Nikon) software. After conversion
864 to stack tiff files, image sequences were analyzed with Flika, a custom-written Python-based
865 imaging analysis software (<https://flika-org.github.io/>; ⁷⁴). After background subtraction, either
866 Cal520 or Cal590 fluorescence changes of each cell were expressed as $\Delta F/F_0$, where F_0 is the
867 basal fluorescence intensity and ΔF the relative fluorescence change ($F_x - F_0$). Data are reported
868 as superplots ⁷⁵ of at least three independent replicates. Experiments were reproduced with
869 two independent lines. Comparisons were performed by unpaired non-parametric t-test.
870 **Immunocytochemistry:** Cells were fixed with 4 % paraformaldehyde for 7 min and washed 3x
871 with 1X PBS. Blocking was performed at room temp for 1 hr in 5 % Goat Serum, 0.1 % Triton5 X-

872 100. Primary antibodies were added at 1:200 overnight 4° C (IBA1, 019-19741, FUJIFILM Wako).
873 Plates were washed 3x before addition of secondary antibodies (Goat anti-Rabbit 555,
874 ThermoFisher Scientific) and Hoechst (ThermoFisher Scientific). Images were captured on an
875 Olympus FV3000RS confocal microscope with identical laser and detection settings. Images
876 were analyzed with IMARIS 9.7.0 software.

877 **Flow Cytometry** iPSC-derived microglia were seeded on fibronectin-coated 12-well plates at
878 200,000 cells/well. Cells were harvested and centrifuged in FACS tubes at 300 xG for 5 min at 4°
879 C. The cell pellet was subsequently resuspended in FACS buffer (1X PBS + 0.5% FBS). Fc
880 receptors were blocked with a blocking buffer (Bio-legend TruStain FcX in 1X PBS + 10% FCS).
881 Cells were then incubated with Brilliant Violet 421-labelled anti-human P2Y₁₂ receptor antibody
882 (clone S16001E, Biolegend, Cat# 392106) or with IgG2a isotype control antibody (clone MOPC-
883 173, Biolegend, Cat# 400260) for 30 min at 4° C. Cells were washed, pelleted, and then
884 resuspended in FACS buffer. Clone S16001E binds to the extracellular domain of the P2Y₁₂ and
885 permits labeling of plasma membrane P2Y₁₂ receptors. Data were acquired using Novocyte
886 Quanteon flow cytometer (Agilent) and analyzed using FlowJo analysis software (FlowJo v10.8.1
887 LLC Ashland, Oregon).

888 **Scratch wound assay:** Nondirectional motility was analyzed using Essen Incucyte WoundMaker.
889 iPSC-microglia were plated on fibronectin (STEMCELL Technologies) at 90% confluence.
890 Scratches were repeated 4x to remove all cells from the wound area. Scratch wound confluency
891 was imaged every hour until scratch wound was closed (15 hrs). Confluence of cells within the
892 original wound ROI was calculated using IncuCyte 2020C software.

893 **IMARIS Cell Tracking:** For motility assays, iPSC-microglia were tracked using a combination of
894 manual and automatic tracking in IMARIS 9.7.0 software. For videos of GFP lines, cells were
895 tracked using spot identification. For videos of Salsa6f lines, surface tracking was used to
896 determine ratiometric Ca^{2+} fluorescence and motility per cell. In both conditions, tracks were
897 defined by Brownian motion with the maximum distance jump of 4 microns and 10 frame
898 disturbance with no gap filling. Tracks shorter than 3 minutes in length were eliminated from
899 analysis. After automated track formation, tracks underwent manual quality control to
900 eliminate extraneous tracks, merge falsely distinct tracks, and add missed tracks. After export,
901 data was plotted in Prism 9.1.0 or analyzed in excel using DiPer macros for Plot_At-Origin
902 (translation of each trajectory to the origin) and mean squared distance (MSD) $\text{MSD}(t)=4D(t-$
903 $P(1-e^{(-t/P)}))$ where D is the diffusion coefficient, t is time, and P represents directional
904 persistence time (time to cross from persistent directionality to random walk)⁶². From IMARIS,
905 speed was calculated as instantaneous speed of the object ($\mu\text{m/s}$) as the scalar equivalent to
906 object velocity. These values were transformed to $\mu\text{m}/\text{min}$ as this time scale is more relevant
907 for the changes we observed. Mean track speed represents the mean of all instantaneous
908 speeds over the total time of tracking. 10 min displacement is calculated by $(600) * (\text{TDL}/\text{TD})$,
909 where TDL = track displacement length (distance between the first and last cell position)
910 represented as $\text{TDL} = p(n) - p(1)$ for all axes where the vector p is the distance between the first
911 and last object position along the selected axis and TD = track duration represented as $\text{TD} = T(n)$
912 - $T(1)$, where T is the timepoint of the first and final timepoint within the track. Frame-to-frame
913 displacement is calculated as $p(n) - p(n-1)$ for all the different frames in a cell track. Track
914 straightness is defined as TDL/TL where TDL = track displacement as described above and TL =

915 track length representing the total length of displacements within the track $TL = \sum$ from $t=2$ to
916 n of $|p(t)-p(t-1)|$.

917 **Generation of Salsa6f-expressing iPSC lines:** iPSCs were collected following Accutase enzymatic
918 digestion for 3 min at 37° C. 20,000 cells were resuspended in 100 μ L nucleofection buffer from
919 Human Stem Cell Nucleofector™ Kit 2 (Lonza). Salsa6f-AAVS1 SHL plasmid Template (2 μ g;
920 Vector Builder) and RNP complex formed by incubating Alt-R® S.p. HiFi Cas9 Nuclease V3 (50
921 μ g; IDTDNA) was fused with crRNA:tracrRNA (IDTDNA) duplex for 15 min at 23° C. This complex
922 was combined with the cellular suspension and nucleofected using the Amaxa Nucleofector
923 program B-016. To recover, cells were plated in TeSR™-E8™ (STEMCELL Technologies) media
924 with 0.25 μ M Thiazovivin (STEMCELL Technologies) and CloneR™ (STEMCELL Technologies)
925 overnight. The following day, cells were mechanically replated to 96-well plates in TeSR™-E8™
926 media with 0.25 μ M Thiazovivin and CloneR™ supplement for clonal isolation and expansion.
927 Plates were screened visually with a fluorescence microscope to identify TdTomato⁺ clones.
928 Genomic DNA was extracted from positive clones using Extracta DNA prep for PCR (Quantabio)
929 and amplified using Taq PCR Master Mix (Thermo Fisher Scientific) to confirm diallelic
930 integration of the Salsa6f cassette. A clone confirmed with diallelic Salsa6f integration in the
931 AAVS1 SHL was then retargeted as previously described⁴¹ to knock-out Trem2.

932 **Phagocytosis assay:** Phagocytosis of transgenic iPSC-microglia was validated using IncuCyte S3
933 Live-Cell Analysis System (Sartorius) as in McQuade et al. 2020⁴¹. Microglia were plated at 50%
934 confluence 24 hours before substrates were added. Cells were treated with 50 μ g/mL pHrodo
935 tagged human AD synaptosomes (isolated as described in McQuade et al. 2020), 100 ng/mL
936 pHrodo tagged zymosan A beads (Thermo Fisher Scientific), 100 ng/mL pHrodo tagged S.

937 Aureus (Thermo Fisher Scientific), or 2 μ g/mL fluorescent beta-amyloid (Anaspec). Image masks
938 for fluorescence area and phase were generated using IncuCyte 2020C software.

939 **Chemotaxis assay:** iPSC-microglia were loaded into the angular chamber (2-5K cells/device) to
940 test activation and chemotaxis towards the central chamber containing either ADP (100 ng/mL
941 or 234 nM) or vehicle. When noted, PSB 0739 (10 μ M) was added to both the central and
942 angular chamber to inhibit P2Y₁₂ receptors. To characterize motility, we monitored the number
943 of recruited microglia in the central chamber for 4 days under the fully automated Nikon TiE
944 microscope (10 \times magnification; Micro Device Instruments, Avon, MA, USA).

945 **Statistical Analysis**

946 GraphPad Prism (Version 6.01 and 8.2.0) was used to perform statistical tests and generate P
947 values. We used standard designation of P values throughout the Figures (ns, not significant or
948 $P \geq 0.05$; * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$). Traces depicting average
949 changes in cytosolic Ca²⁺ over time are shown as mean \pm SEM (Standard Error of Mean).
950 Accompanying bar-graphs with bars depicting mean \pm SEM (Standard Error of Mean) provide a
951 summary of relevant parameters (Amplitude of Ca²⁺ response, degree of store-release, rate of
952 Ca²⁺ influx etc) as indicated. Details of number of replicates and the specific statistical test used
953 are provided in the individual figure legends.

954

955 **Acknowledgements**

956 The authors would like to thank Dr. Andy Yeromin for the development of Excel macros to
957 analyze IMARIS cell tracking. The authors would also like to thank Morgan Coburn for sharing
958 python scripts that aided in the organization of IMARIS output files. This work was supported by

959 T32 NS082174 and ARCS foundation (A.M.); the European Union's Horizon 2020 research and
960 innovation program under the Marie Skłodowska-Curie grant agreement iMIND – No. 84166
961 (A.G.); NIH R01 NS14609 and AI121945 (M.D.C.); NIH U01 AI160397 (S.O.); NRF
962 2020R1A2C2010285, 2020M3C7A1023941, and NIH AG059236-01A1 (H.C.); NIH AG048099,
963 AG056303, and AG055524 (M.B.J.); RF1DA048813 (M.B.J. and S.G.); UCI Sue & Bill Gross Stem
964 Cell Research Center Seed Grant (S.G.); and a generous gift from the Susan Scott Foundation
965 (M.B.J.). iPSC lines were generated by the UCI-ADRC iPSC cell core funded by NIH AG066519.
966 Experiments using the GFP-expressing iPSC line AICS-0036 were made possible through the
967 Allen Cell Collection, available from Coriell Institute for Medical Research.

968

969 **Declaration of interest:** M.B.J. is a co-inventor of patent application WO/2018/160496, related
970 to the differentiation of pluripotent stem cells into microglia. M.B.J and S.P.G. are co-founders
971 of NovoGlia Inc.

972 **Ethics:** Human iPSC lines were generated by the University of California Alzheimer's Disease
973 Research Center (UCI ADRC) stem cell core. Subject fibroblasts were collected under approved
974 Institutional Review Boards (IRB) and human Stem Cell Research Oversight (hSCRO) committee
975 protocols. Informed consent was received for all participants.

976 **Data Availability:** RNA sequencing data referenced in Figure 1- figure supplement 2 is available
977 through Gene Expression Omnibus: GSE157652. Any additional data presented in this paper will
978 be available from the authors upon request.

979

980

981

982 **References**

- 983 1. Andersen, M. S. *et al.* Heritability Enrichment Implicates Microglia in Parkinson's Disease
984 Pathogenesis. *Annals of Neurology* **89**, 942–951 (2021).
- 985 2. Crotti, A. *et al.* Mutant Huntingtin promotes autonomous microglia activation via myeloid
986 lineage-determining factors. *Nat Neurosci* **17**, 513–521 (2014).
- 987 3. Fahira, A., Li, Z., Liu, N. & Shi, Y. Prediction of causal genes and gene expression analysis
988 of attention-deficit hyperactivity disorder in the different brain region, a comprehensive
989 integrative analysis of ADHD. *Behav Brain Res* **364**, 183–192 (2019).
- 990 4. Jansen, I. E. *et al.* Genome-wide meta-analysis identifies new loci and functional pathways
991 influencing Alzheimer's disease risk. *Nat. Genet.* (2019) doi:10.1038/s41588-018-0311-9.
- 992 5. McQuade, A. & Blurton-Jones, M. Microglia in Alzheimer's disease: Exploring how
993 genetics and phenotype influence risk. *J Mol Biol* **431**, 1805–1817 (2019).
- 994 6. Pimenova, A. A. *et al.* Alzheimer's-associated PU.1 expression levels regulate microglial
995 inflammatory response. *Neurobiol Dis* 105217 (2020) doi:10.1016/j.nbd.2020.105217.
- 996 7. Tan, L. *et al.* Association of GWAS-linked loci with late-onset Alzheimer's disease in a
997 northern Han Chinese population. *Alzheimers Dement* **9**, 546–553 (2013).
- 998 8. Davalos, D. *et al.* ATP mediates rapid microglial response to local brain injury in vivo. *Nat.*
999 *Neurosci.* **8**, 752–758 (2005).
- 1000 9. De Simone, R. *et al.* TGF- β and LPS modulate ADP-induced migration of microglial cells
1001 through P2Y1 and P2Y12 receptor expression. *J. Neurochem.* **115**, 450–459 (2010).
- 1002 10. Honda, S. *et al.* Extracellular ATP or ADP Induce Chemotaxis of Cultured Microglia
1003 through Gi/o-Coupled P2Y Receptors. *J. Neurosci.* **21**, 1975–1982 (2001).

1004 11. Koizumi, S. *et al.* UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis.

1005 *Nature* **446**, 1091–1095 (2007).

1006 12. Haynes, S. E. *et al.* The P2Y12 receptor regulates microglial activation by extracellular

1007 nucleotides. *Nat Neurosci* **9**, 1512–1519 (2006).

1008 13. Yegutkin, G. G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators

1009 of purinergic signalling cascade. *Biochim Biophys Acta* **1783**, 673–694 (2008).

1010 14. Dissing-Olesen, L. *et al.* Activation of neuronal NMDA receptors triggers transient ATP-

1011 mediated microglial process outgrowth. *J Neurosci* **34**, 10511–10527 (2014).

1012 15. Madry, C. & Attwell, D. Receptors, ion channels, and signaling mechanisms underlying

1013 microglial dynamics. *J Biol Chem* **290**, 12443–12450 (2015).

1014 16. Zhang, Y. *et al.* An RNA-Sequencing Transcriptome and Splicing Database of Glia,

1015 Neurons, and Vascular Cells of the Cerebral Cortex. *J. Neurosci.* **34**, 11929–11947 (2014).

1016 17. Prakriya, M. & Lewis, R. S. Store-Operated Calcium Channels. *Physiol Rev* **95**, 1383–1436

1017 (2015).

1018 18. McLarnon, J. G. Microglial Store-operated Calcium Signaling in Health and in Alzheimer's

1019 Disease. *Curr Alzheimer Res* **17**, 1057–1064 (2020).

1020 19. Mizuma, A. *et al.* Microglial Calcium Release-Activated Calcium Channel Inhibition

1021 Improves Outcome from Experimental Traumatic Brain Injury and Microglia-Induced

1022 Neuronal Death. *J Neurotrauma* **36**, 996–1007 (2019).

1023 20. Gilbert, D. F. *et al.* Store-Operated Ca²⁺ Entry (SOCE) and Purinergic Receptor-Mediated

1024 Ca²⁺ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-

1025 Mediated Microglia Activation. *Front Mol Neurosci* **9**, 111 (2016).

1026 21. Hasselmann, J. *et al.* Development of a Chimeric Model to Study and Manipulate Human
1027 Microglia In Vivo. *Neuron* (2019) doi:10.1016/j.neuron.2019.07.002.

1028 22. Keren-Shaul, H. *et al.* A Unique Microglia Type Associated with Restricting Development
1029 of Alzheimer's Disease. *Cell* **0**, (2017).

1030 23. Krasemann, S. *et al.* The TREM2-APOE Pathway Drives the Transcriptional Phenotype of
1031 Dysfunctional Microglia in Neurodegenerative Diseases. *Immunity* **47**, 566-581.e9 (2017).

1032 24. Olah, M. *et al.* Single cell RNA sequencing of human microglia uncovers a subset associated
1033 with Alzheimer's disease. *Nature Communications* **11**, 6129 (2020).

1034 25. Sala Frigerio, C. *et al.* The Major Risk Factors for Alzheimer's Disease: Age, Sex, and
1035 Genes Modulate the Microglia Response to A β Plaques. *Cell Rep* **27**, 1293-1306.e6 (2019).

1036 26. Weisman, G. A., Woods, L. T., Erb, L. & Seye, C. I. P2Y receptors in the mammalian
1037 nervous system: pharmacology, ligands and therapeutic potential. *CNS Neurol Disord Drug*
1038 *Targets* **11**, 722–738 (2012).

1039 27. Cserép, C. *et al.* Microglia monitor and protect neuronal function through specialized
1040 somatic purinergic junctions. *Science* **367**, 528–537 (2020).

1041 28. Suzuki, T. *et al.* Extracellular ADP augments microglial inflammasome and NF- κ B
1042 activation via the P2Y12 receptor. *European Journal of Immunology* **50**, 205–219 (2020).

1043 29. Wu, Y. *et al.* Aberrant expression of long noncoding RNAs in the serum and myocardium of
1044 spontaneous hypertensive rats. *Mol Biol Rep* **46**, 6399–6404 (2019).

1045 30. Eyo, U. B. *et al.* Neuronal hyperactivity recruits microglial processes via neuronal NMDA
1046 receptors and microglial P2Y12 receptors after status epilepticus. *J Neurosci* **34**, 10528–
1047 10540 (2014).

1048 31. Lou, N. *et al.* Purinergic receptor P2RY12-dependent microglial closure of the injured
1049 blood–brain barrier. *PNAS* **113**, 1074–1079 (2016).

1050 32. Bisht, K. *et al.* Capillary-associated microglia regulate vascular structure and function
1051 through PANX1-P2RY12 coupling in mice. *Nat Commun* **12**, 5289 (2021).

1052 33. Leisring, M. A. *et al.* Capacitative calcium entry deficits and elevated luminal calcium
1053 content in mutant presenilin-1 knockin mice. *J Cell Biol* **149**, 793–798 (2000).

1054 34. Brawek, B. *et al.* Impairment of in vivo calcium signaling in amyloid plaque-associated
1055 microglia. *Acta Neuropathol* **127**, 495–505 (2014).

1056 35. Demuro, A., Parker, I. & Stutzmann, G. E. Calcium Signaling and Amyloid Toxicity in
1057 Alzheimer Disease. *J Biol Chem* **285**, 12463–12468 (2010).

1058 36. Mustaly, S., Littlefield, A. & Stutzmann, G. E. Calcium Signaling Deficits in Glia and
1059 Autophagic Pathways Contributing to Neurodegenerative Disease. *Antioxid. Redox Signal.*
1060 (2018) doi:10.1089/ars.2017.7266.

1061 37. Eichhoff, G., Brawek, B. & Garaschuk, O. Microglial calcium signal acts as a rapid sensor of
1062 single neuron damage in vivo. *Biochim Biophys Acta* **1813**, 1014–1024 (2011).

1063 38. Irino, Y., Nakamura, Y., Inoue, K., Kohsaka, S. & Ohsawa, K. Akt activation is involved in
1064 P2Y12 receptor-mediated chemotaxis of microglia. *J Neurosci Res* **86**, 1511–1519 (2008).

1065 39. Milior, G. *et al.* Distinct P2Y Receptors Mediate Extension and Retraction of Microglial
1066 Processes in Epileptic and Peritumoral Human Tissue. *J Neurosci* **40**, 1373–1388 (2020).

1067 40. Cheng-Hathaway, P. J. *et al.* The Trem2 R47H variant confers loss-of-function-like
1068 phenotypes in Alzheimer’s disease. *Mol Neurodegener* **13**, 29 (2018).

1069 41. McQuade, A. *et al.* Gene expression and functional deficits underlie TREM2-knockout
1070 microglia responses in human models of Alzheimer's disease. *Nature Communications* **11**,
1071 5370 (2020).

1072 42. Ulrich, J. D. *et al.* Altered microglial response to A β plaques in APPS1-21 mice
1073 heterozygous for TREM2. *Mol Neurodegener* **9**, 20 (2014).

1074 43. Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide
1075 association studies of Alzheimer's disease. *Lancet Neurol* (2020) doi:10.1016/S1474-
1076 4422(19)30435-1.

1077 44. Karch, C. M. *et al.* Expression of Novel Alzheimer's Disease Risk Genes in Control and
1078 Alzheimer's Disease Brains. *PLOS ONE* **7**, e50976 (2012).

1079 45. Cheng, Q. *et al.* TREM2-activating antibodies abrogate the negative pleiotropic effects of the
1080 Alzheimer's disease variant Trem2R47H on murine myeloid cell function. *J. Biol. Chem.*
1081 **293**, 12620–12633 (2018).

1082 46. Gratuze, M. *et al.* Impact of TREM2^{R47H} variant on tau pathology–induced gliosis and
1083 neurodegeneration. *J Clin Invest* **130**, 4954–4968 (2020).

1084 47. Götzl, J. K. *et al.* Opposite microglial activation stages upon loss of PGRN or TREM2 result
1085 in reduced cerebral glucose metabolism. *EMBO Mol Med* **11**, e9711 (2019).

1086 48. Griciuc, A. *et al.* TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in
1087 Alzheimer's Disease. *Neuron* **103**, 820-835.e7 (2019).

1088 49. Abud, E. M. *et al.* iPSC-Derived Human Microglia-like Cells to Study Neurological
1089 Diseases. *Neuron* **94**, 278-293.e9 (2017).

1090 50. McQuade, A. *et al.* Development and validation of a simplified method to generate human
1091 microglia from pluripotent stem cells. *Molecular Neurodegeneration* **13**, 67 (2018).

1092 51. McQuade, A. & Blurton-Jones, M. Human Induced Pluripotent Stem Cell-Derived Microglia
1093 (hiPSC-Microglia). *Methods Mol Biol* (2021) doi:10.1007/7651_2021_429.

1094 52. Andreone, B. J. *et al.* Alzheimer's-associated PLC γ 2 is a signaling node required for both
1095 TREM2 function and the inflammatory response in human microglia. *Nature Neuroscience*
1096 1–12 (2020) doi:10.1038/s41593-020-0650-6.

1097 53. Cosker, K. *et al.* Microglial signalling pathway deficits associated with the patient derived
1098 R47H TREM2 variants linked to AD indicate inability to activate inflammasome. *Sci Rep*
1099 **11**, 13316 (2021).

1100 54. Konttinen, H. *et al.* PSEN1 Δ E9, APPswe, and APOE4 Confer Disparate Phenotypes in
1101 Human iPSC-Derived Microglia. *Stem Cell Reports* (2019)
1102 doi:10.1016/j.stemcr.2019.08.004.

1103 55. Piers, T. M. *et al.* A locked immunometabolic switch underlies TREM2 R47H loss of
1104 function in human iPSC-derived microglia. *FASEB J.* (2019) doi:10.1096/fj.201902447R.

1105 56. You, Y. *et al.* Human neural cell type-specific extracellular vesicle proteome defines disease-
1106 related molecules associated with activated astrocytes in Alzheimer's disease brain. *J*
1107 *Extracell Vesicles* **11**, e12183 (2022).

1108 57. Michaelis, M., Nieswandt, B., Stegner, D., Eilers, J. & Kraft, R. STIM1, STIM2, and Orai1
1109 regulate store-operated calcium entry and purinergic activation of microglia. *Glia* **63**, 652–
1110 663 (2015).

1111 58. Visentin, S., Nuccio, C. D. & Bellonchi, G. C. Different patterns of Ca^{2+} signals are induced
1112 by low compared to high concentrations of P2Y agonists in microglia. *Purinergic Signal* **2**,
1113 605–617 (2006).

1114 59. Dong, T. X. *et al.* T-cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6f
1115 transgenic reporter mouse. *eLife* **6**, e32417 (2017).

1116 60. Jairaman, A. & Cahalan, M. D. Calcium Imaging in T Lymphocytes: a Protocol for Use with
1117 Genetically Encoded or Chemical Ca²⁺ Indicators. *Bio Protoc* **11**, e4170 (2021).

1118 61. Borges, P. A. *et al.* Adenosine Diphosphate Improves Wound Healing in Diabetic Mice
1119 Through P2Y12 Receptor Activation. *Front. Immunol.* **12**, (2021).

1120 62. Gorelik, R. & Gautreau, A. Quantitative and unbiased analysis of directional persistence in
1121 cell migration. *Nature Protocols* **9**, 1931–1943 (2014).

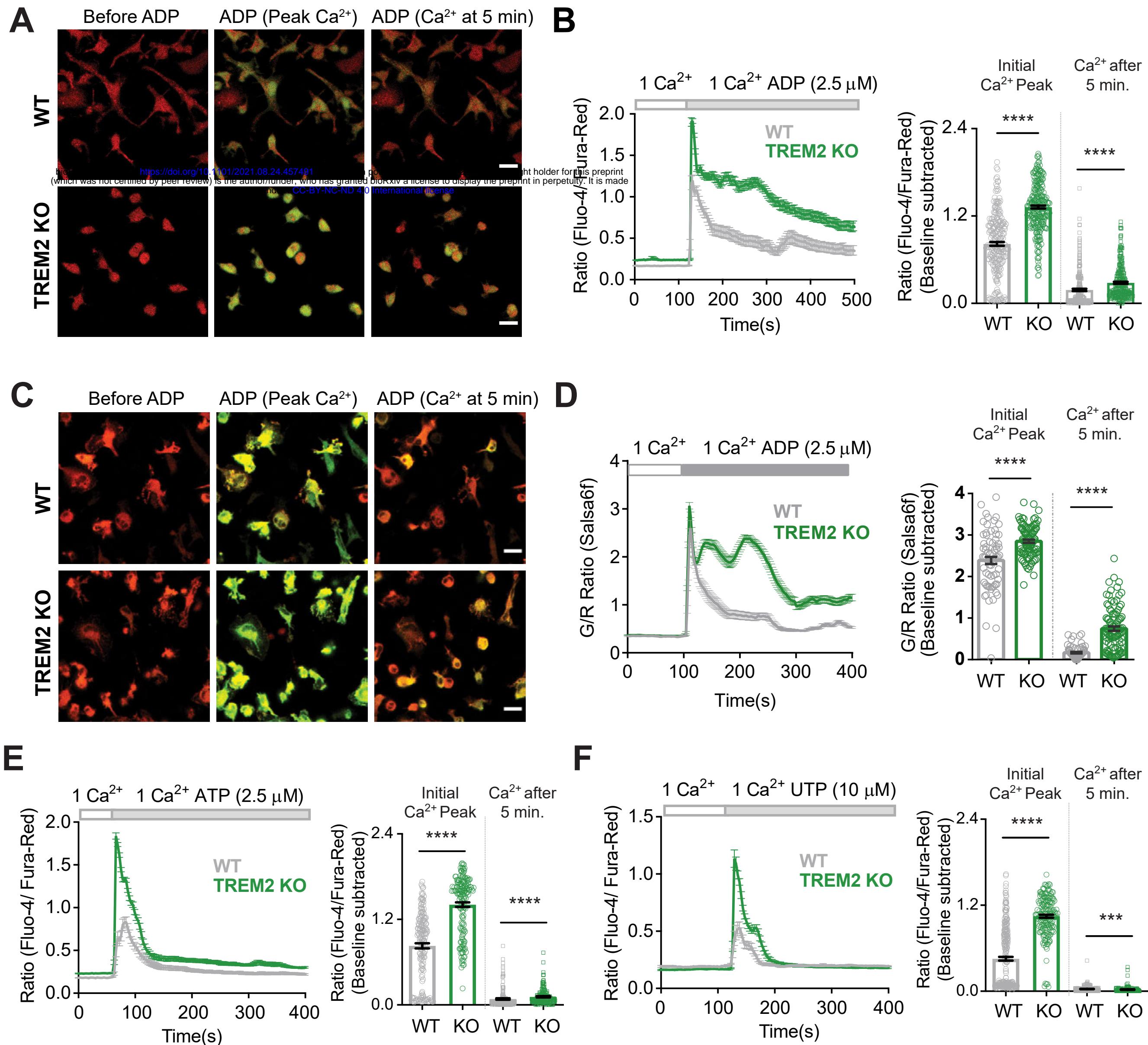
1122 63. Negulescu, P. A., Krasieva, T. B., Khan, A., Kerschbaum, H. H. & Cahalan, M. D. Polarity
1123 of T cell shape, motility, and sensitivity to antigen. *Immunity* **4**, 421–430 (1996).

1124 64. Liang, C.-C., Park, A. Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive
1125 method for analysis of cell migration in vitro. *Nat Protoc* **2**, 329–333 (2007).

1126 65. Park, J. *et al.* A 3D human triculture system modeling neurodegeneration and
1127 neuroinflammation in Alzheimer's disease. *Nat. Neurosci.* **21**, 941–951 (2018).

1128 66. Meilandt, W. J. *et al.* Trem2 deletion reduces late-stage amyloid plaque accumulation,
1129 elevates the A β 42:A β 40 ratio, and exacerbates axonal dystrophy and dendritic spine loss in
1130 the PS2APP Alzheimer's mouse model. *J. Neurosci.* (2020) doi:10.1523/JNEUROSCI.1871-
1131 19.2019.

1132 67. Ilina, O. & Friedl, P. Mechanisms of collective cell migration at a glance. *J Cell Sci* **122**,
1133 3203–3208 (2009).


1134 68. Lim, H. M. *et al.* UDP-Induced Phagocytosis and ATP-Stimulated Chemotactic Migration
1135 Are Impaired in STIM1^{-/-} Microglia In Vitro and In Vivo. *Mediators Inflamm* **2017**,
1136 8158514 (2017).

1137 69. S, P. *et al.* Loss of TREM2 Function Increases Amyloid Seeding but Reduces Plaque-
1138 Associated ApoE. *Nature neuroscience* vol. 22
1139 https://pubmed.ncbi.nlm.nih.gov/30617257/?from_single_result=30617257&expanded_search_query=30617257 (2019).
1140
1141 70. Alector Inc. *A Phase 2 Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to*
1142 *Evaluate the Efficacy and Safety of AL002 in Participants With Early Alzheimer's Disease.*
1143 <https://clinicaltrials.gov/ct2/show/NCT04592874> (2021).
1144 71. Wang, S. *et al.* Anti-human TREM2 induces microglia proliferation and reduces pathology
1145 in an Alzheimer's disease model. *J Exp Med* **217**, (2020).
1146 72. Morrison, H., Young, K., Qureshi, M., Rowe, R. K. & Lifshitz, J. Quantitative microglia
1147 analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. *Sci
1148 Rep* **7**, 13211 (2017).
1149 73. Lock, J. T., Parker, I. & Smith, I. F. Communication of Ca(2+) signals via tunneling
1150 membrane nanotubes is mediated by transmission of inositol trisphosphate through gap
1151 junctions. *Cell Calcium* **60**, 266–272 (2016).
1152 74. Ellefsen, K. L., Settle, B., Parker, I. & Smith, I. F. An algorithm for automated detection,
1153 localization and measurement of local calcium signals from camera-based imaging. *Cell
1154 Calcium* **56**, 147–156 (2014).
1155 75. Lord, S. J., Velle, K. B., Mullins, R. D. & Fritz-Laylin, L. K. SuperPlots: Communicating
1156 reproducibility and variability in cell biology. *J Cell Biol* **219**, (2020).
1157
1158

1159

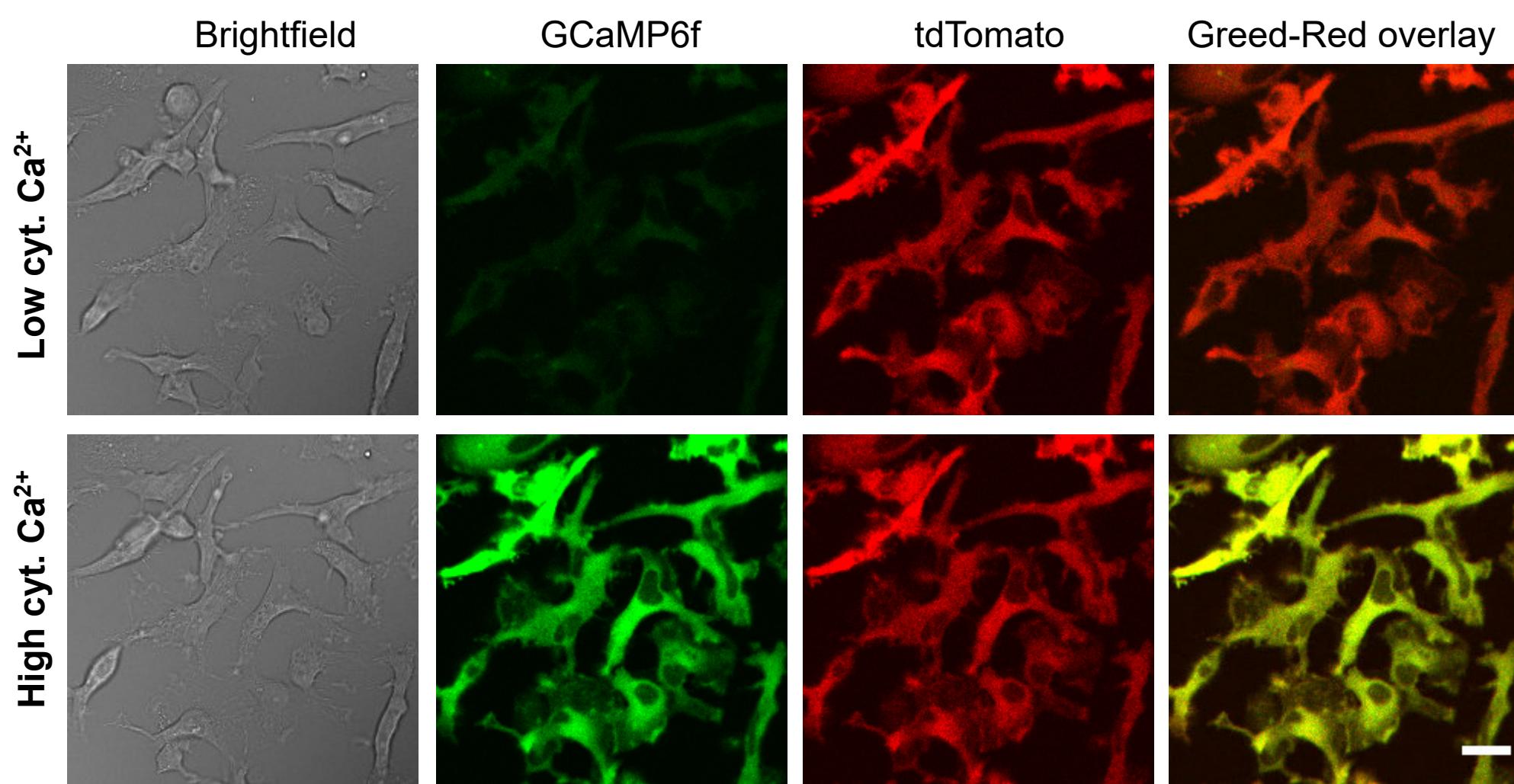

Insert Figures with captions (not complete legends) here for the pdf file.

Figure 1

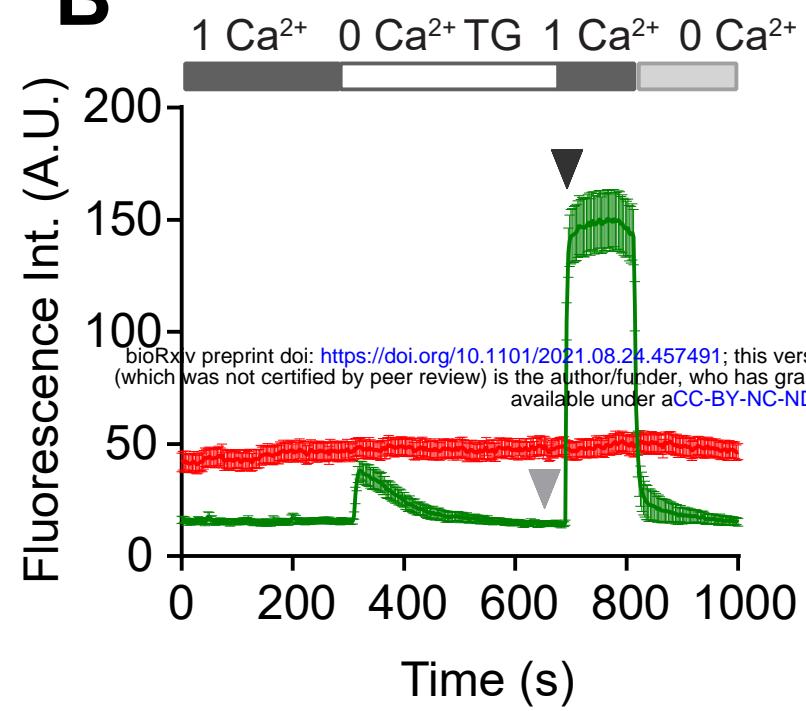
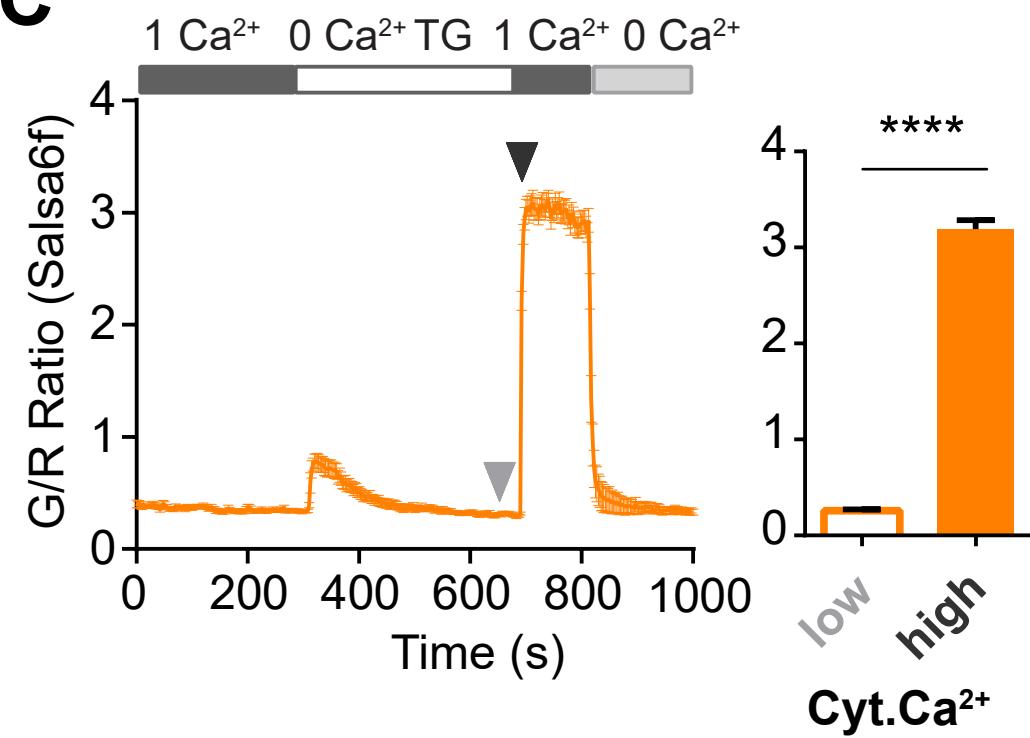
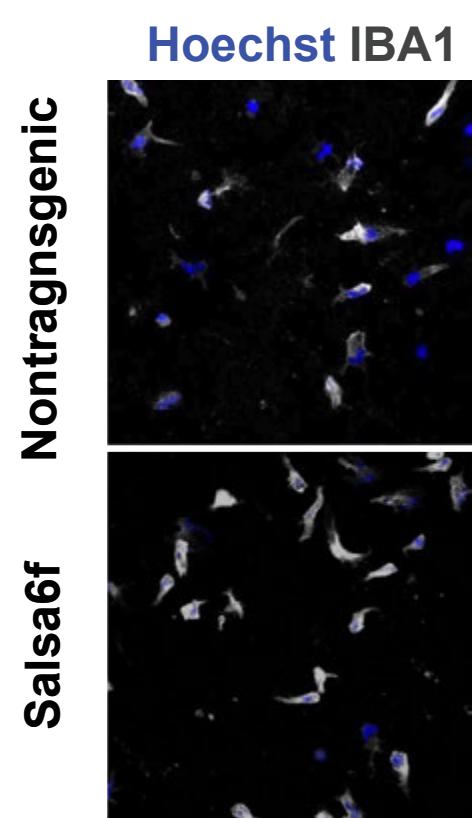


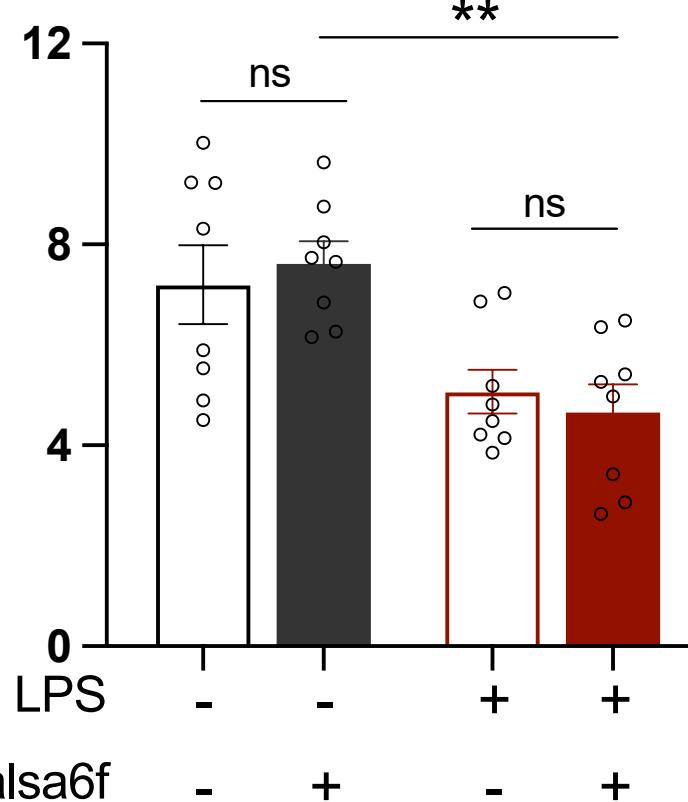
Figure 1-figure supplement 1

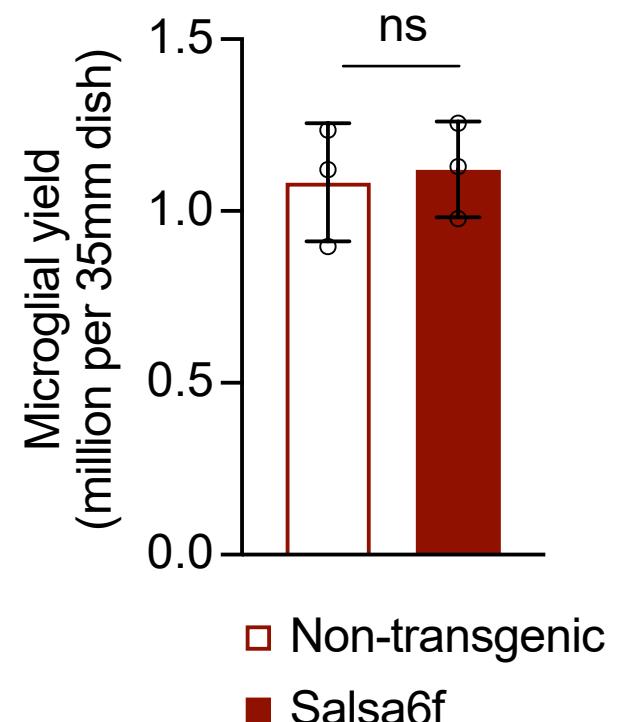
A

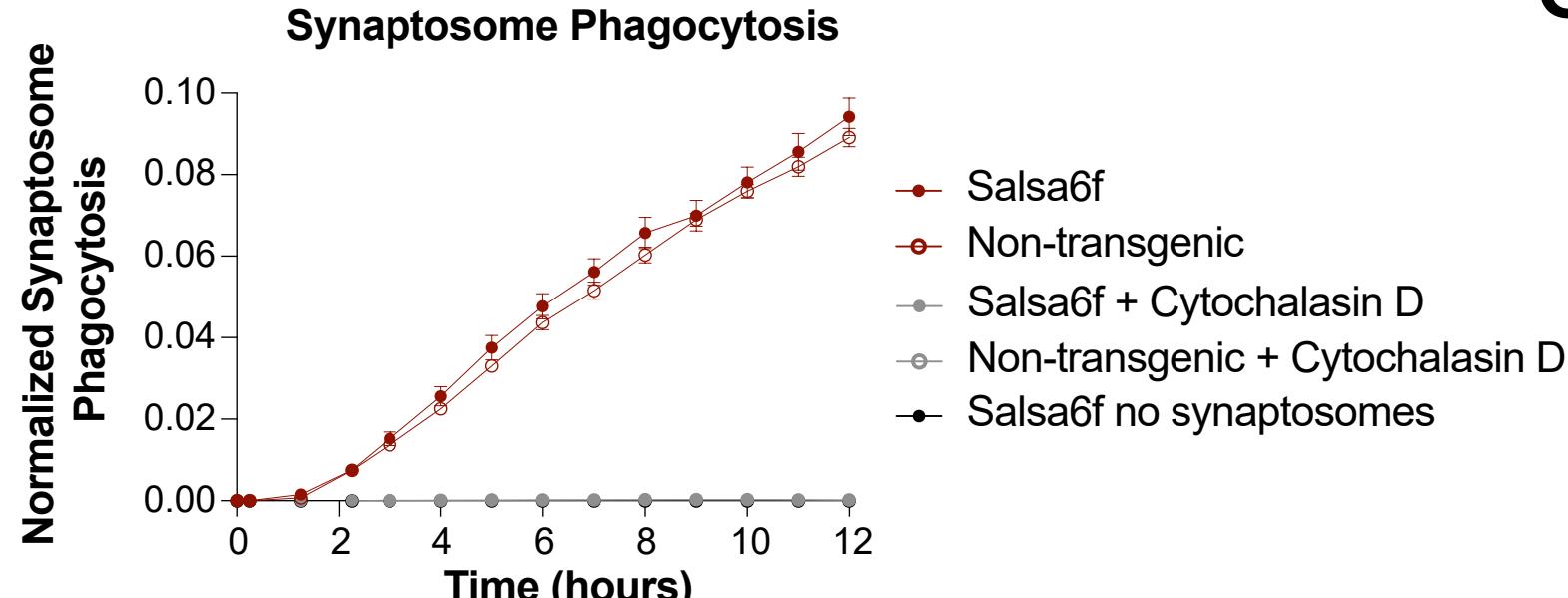

B

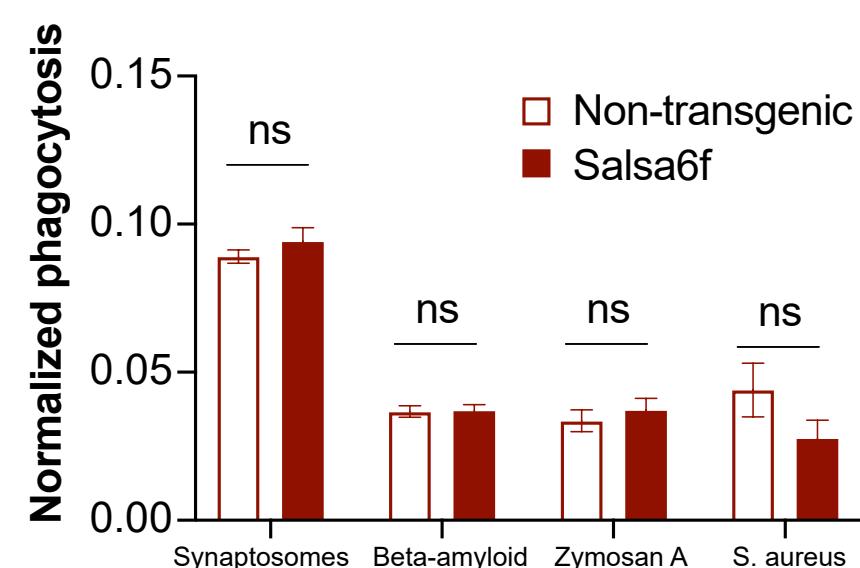

GCaMP6f

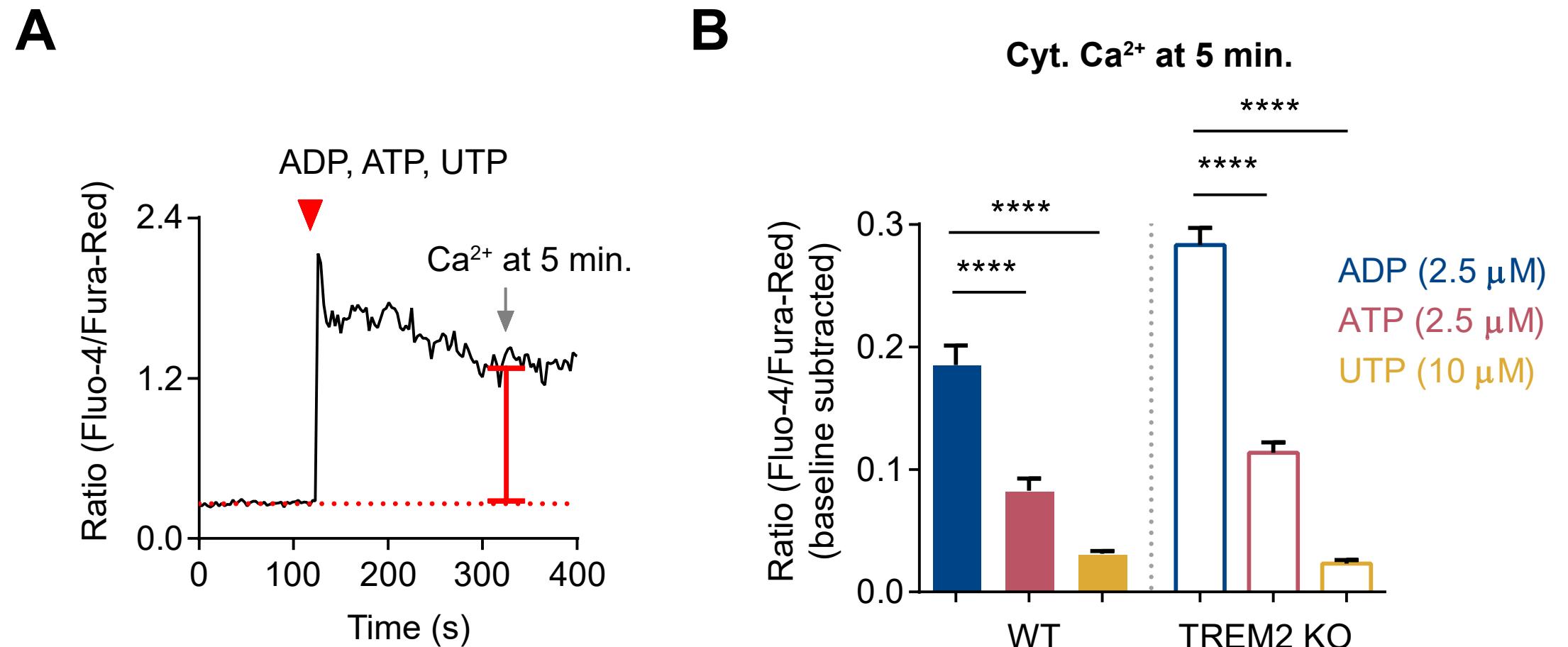
tdTomato


C


D


IBA-1 fluorescence


E


F

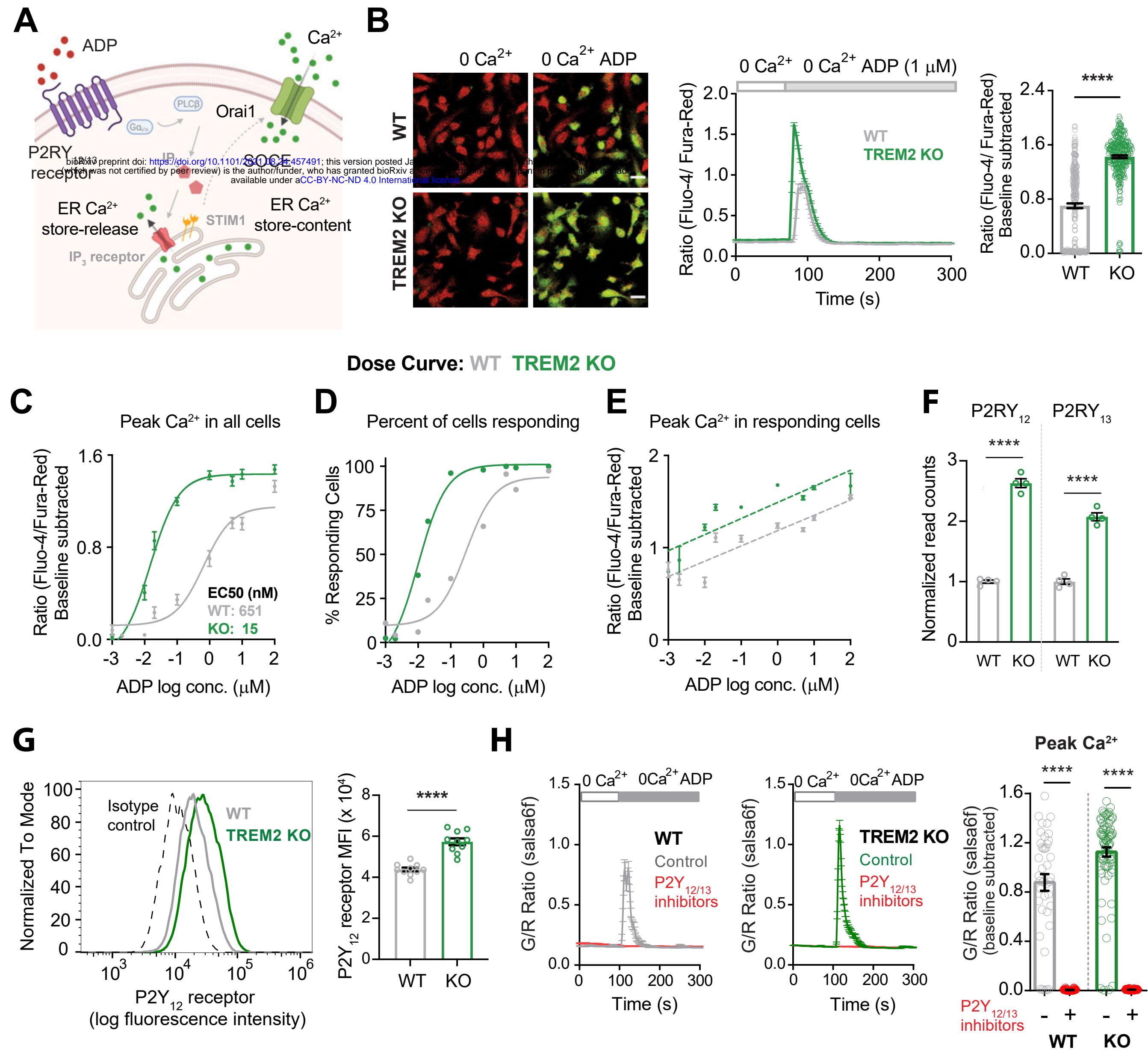

G

Figure 1-figure supplement 2

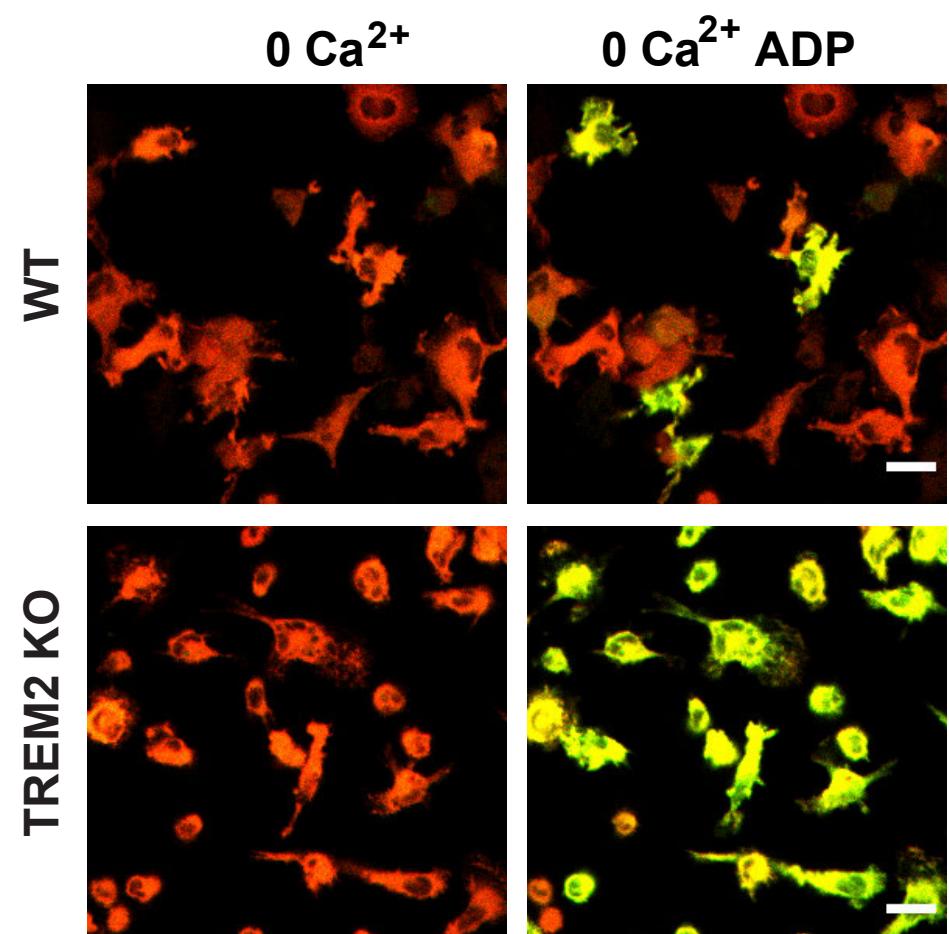


Figure 2

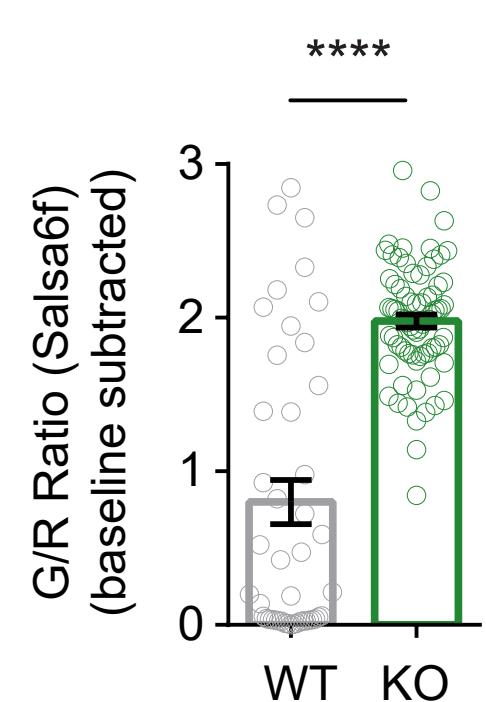
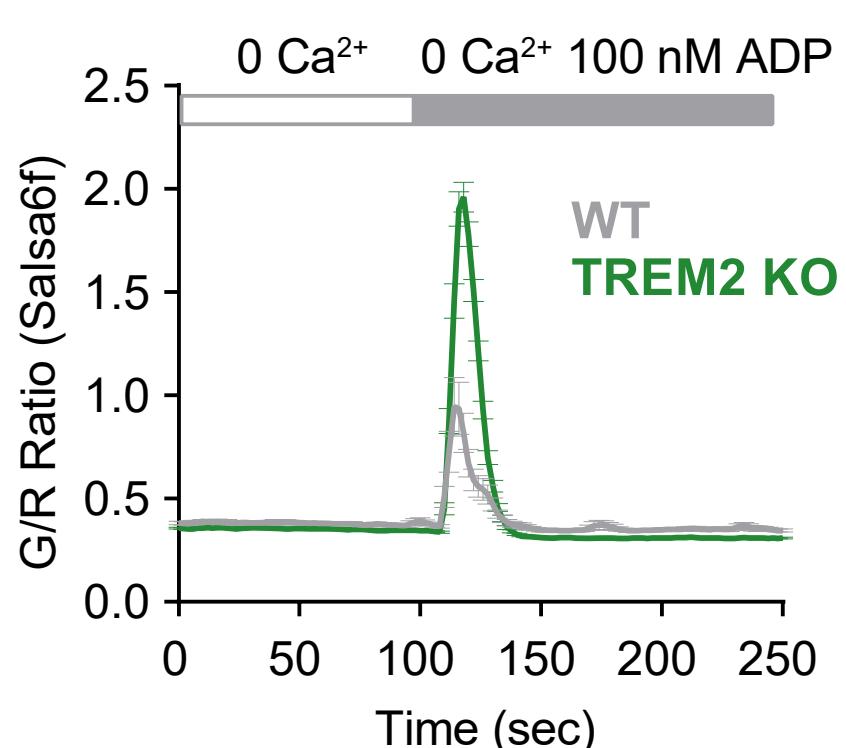
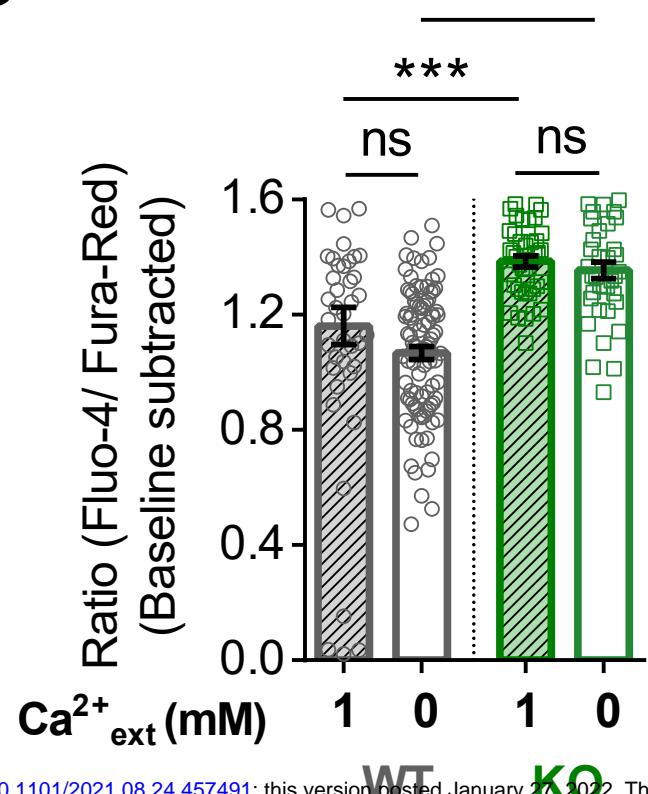
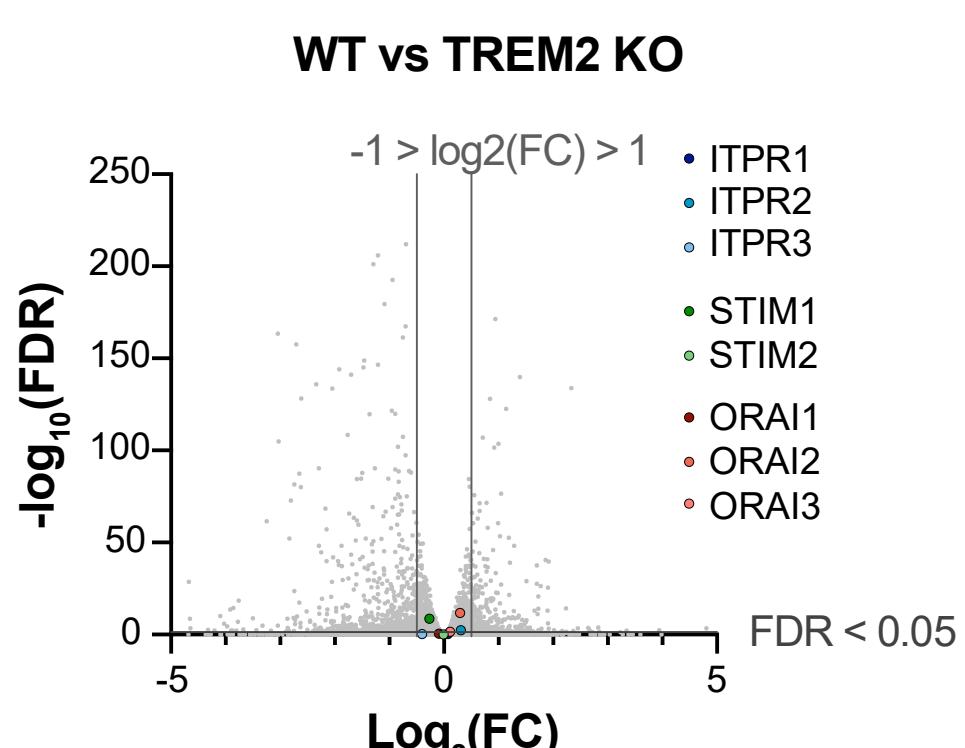
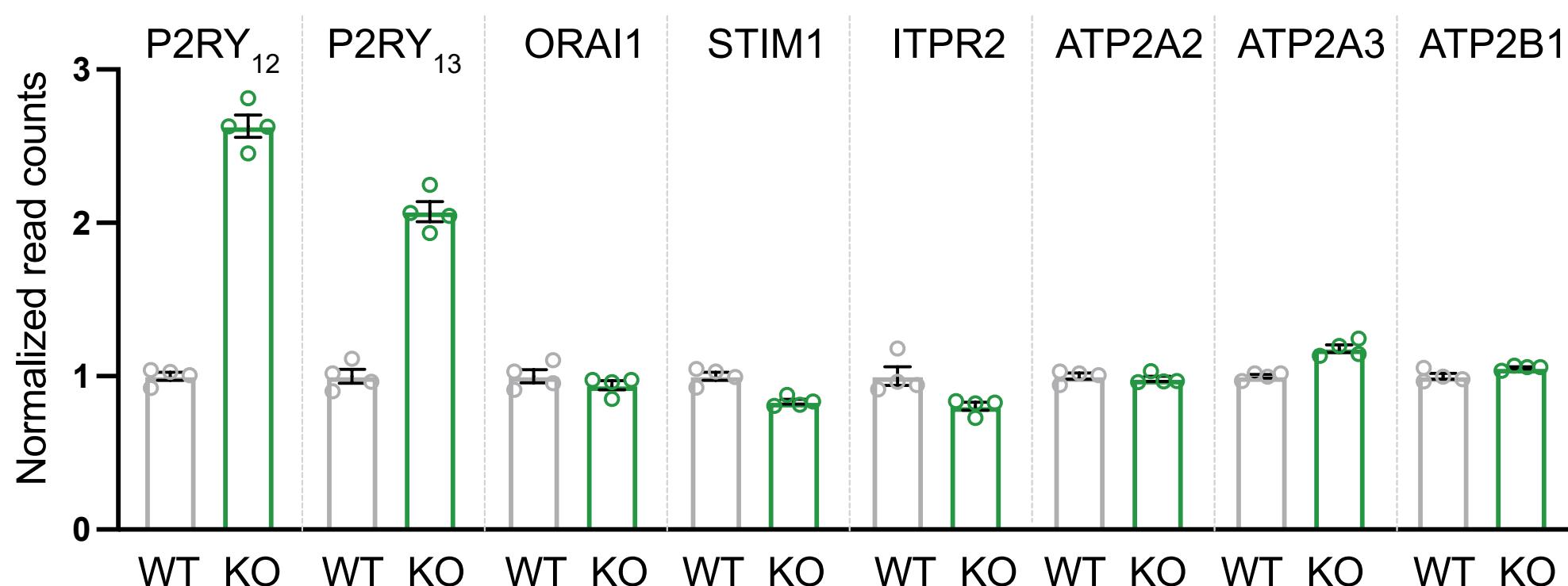



Figure 2-figure supplement 1

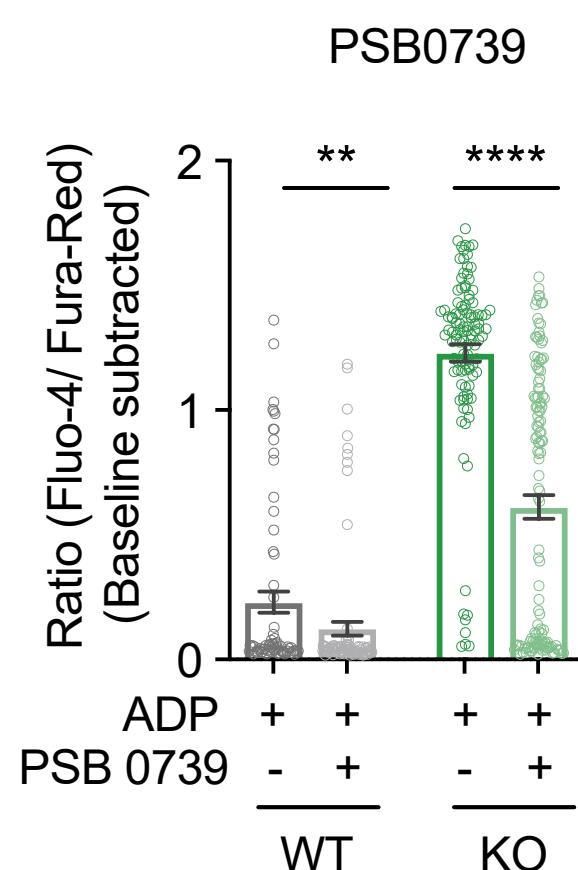

A


B

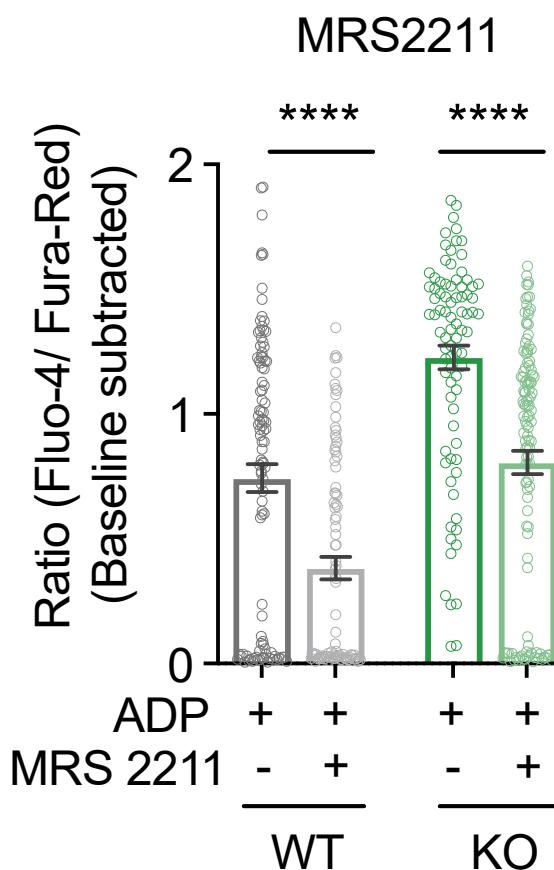
C

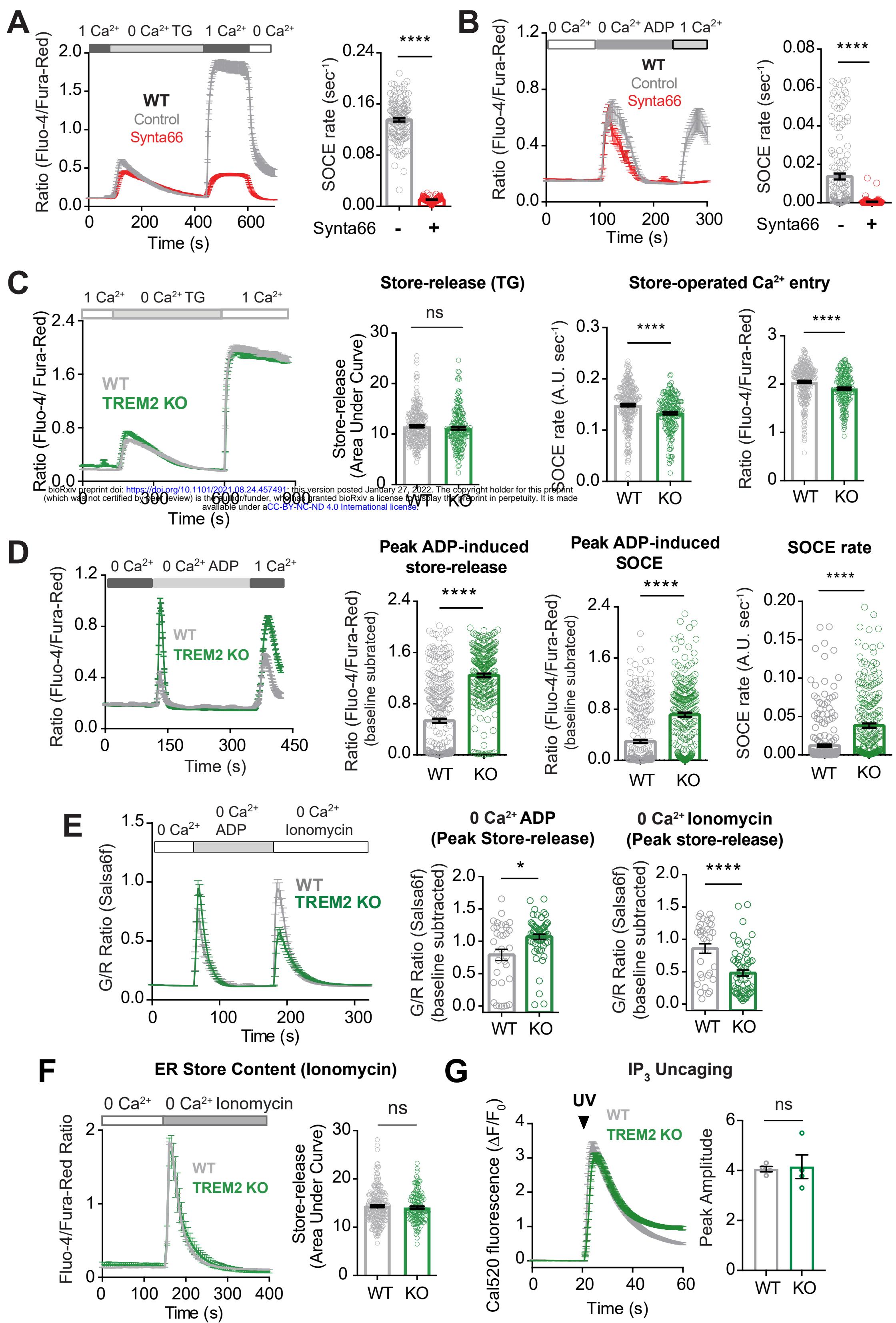


D



bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 24, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


E


F

G

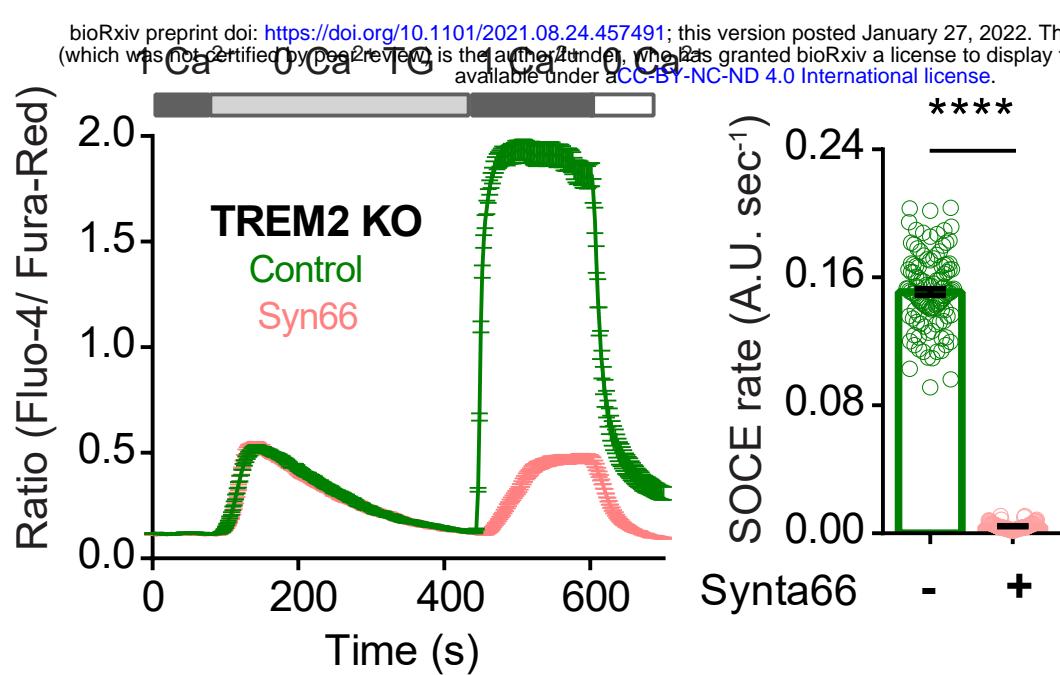


Figure 3

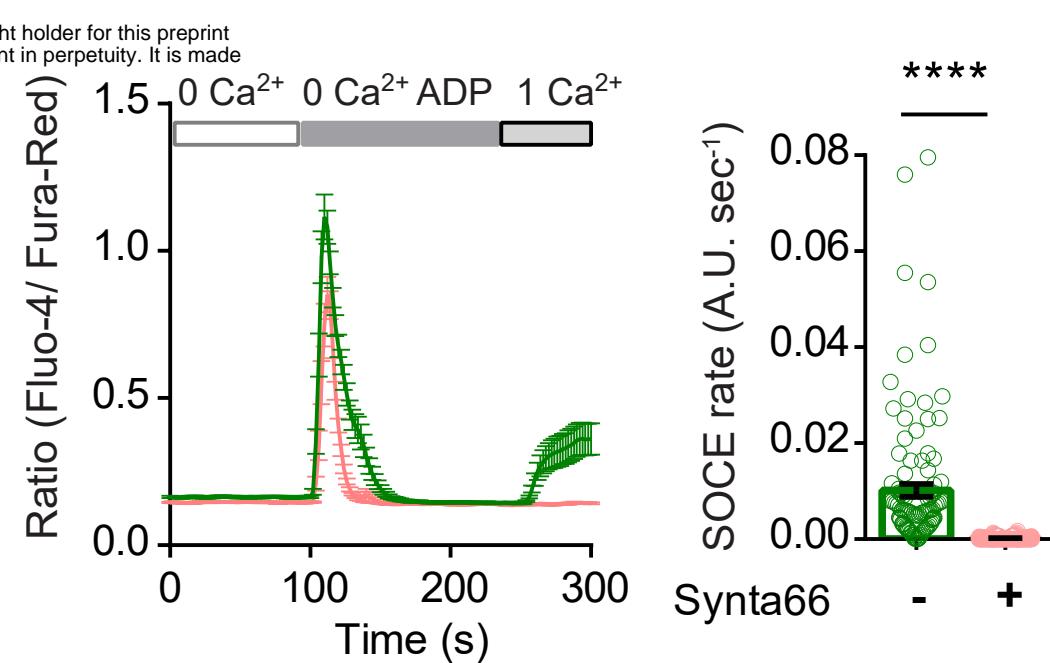
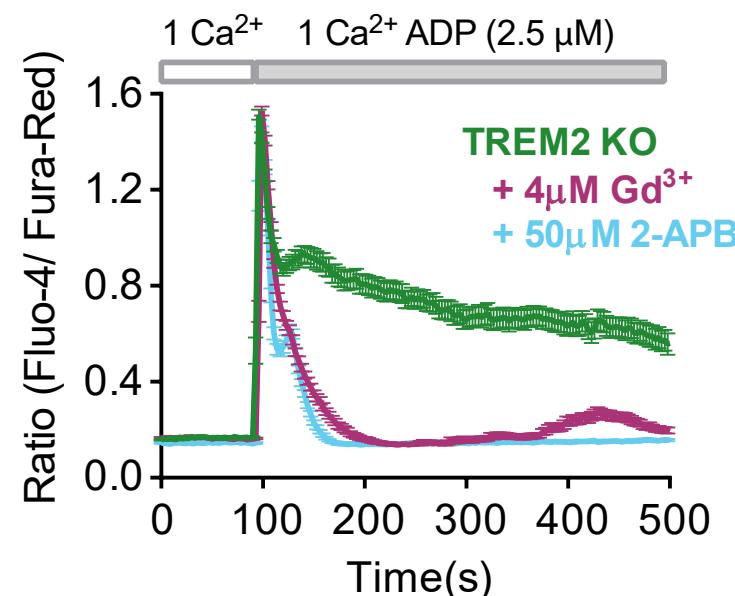
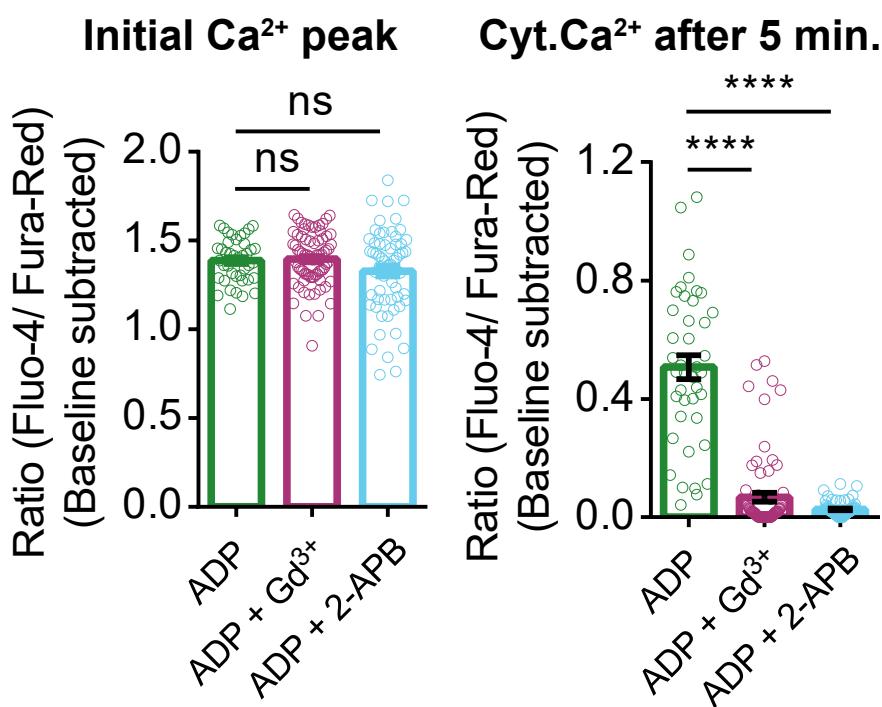
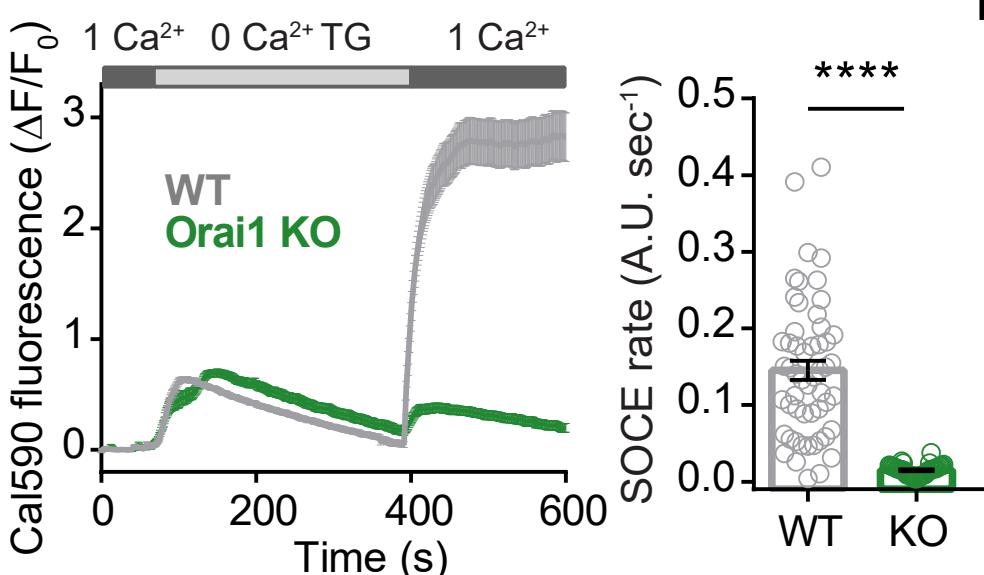
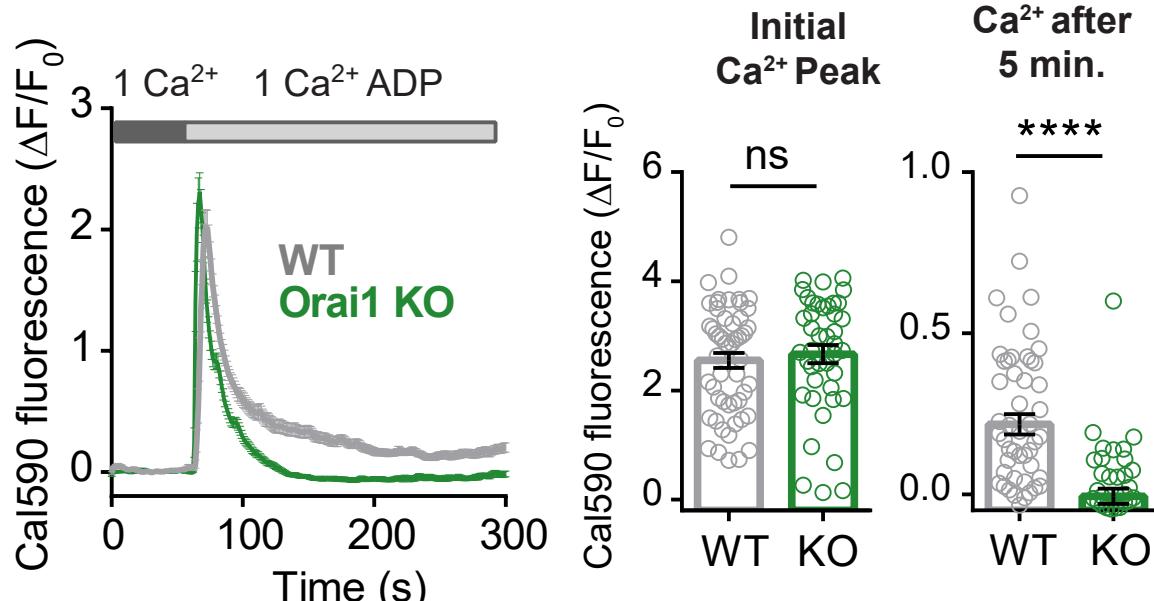


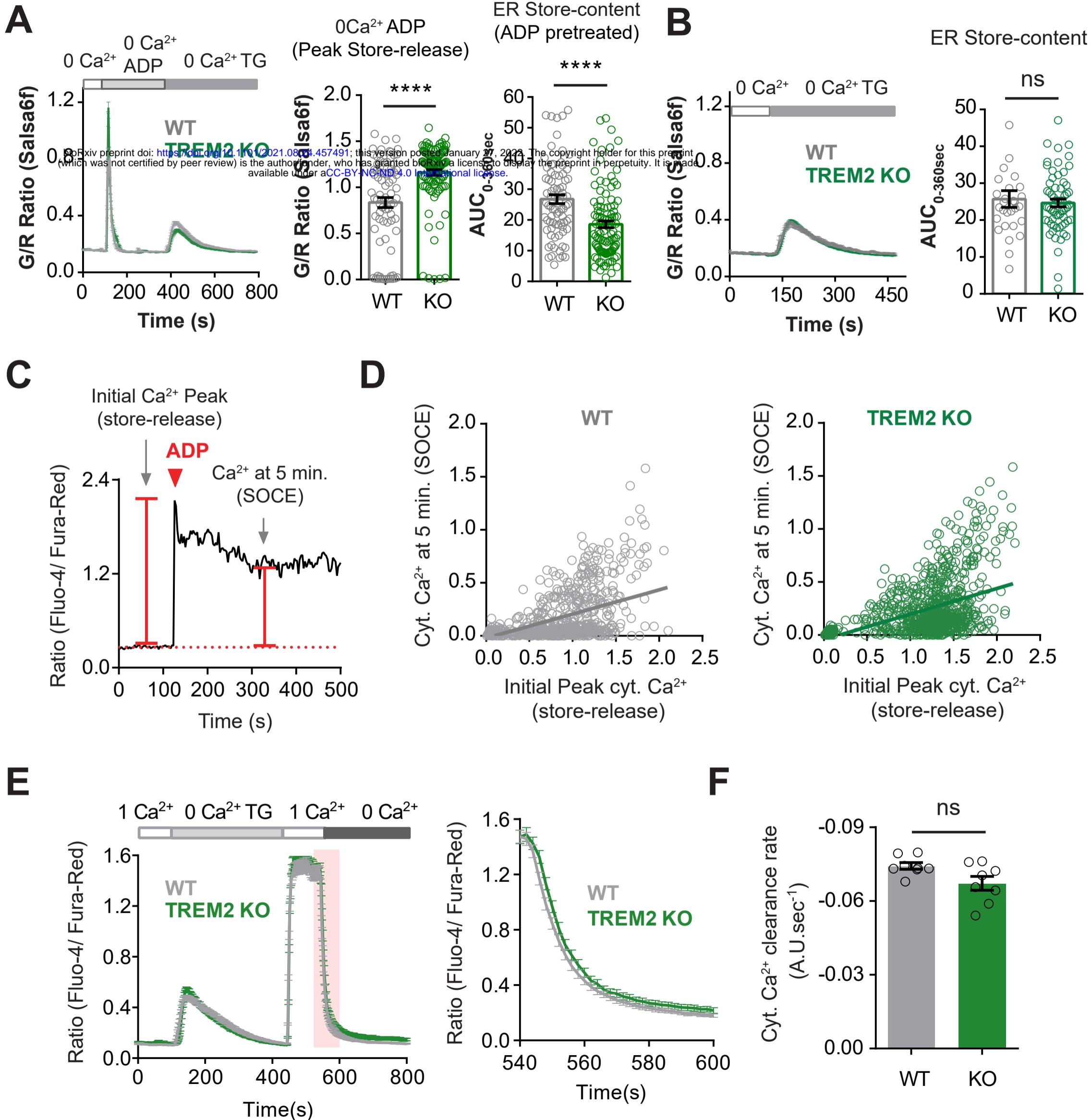
Figure 3-figure supplement 1


A


B


C


D


E

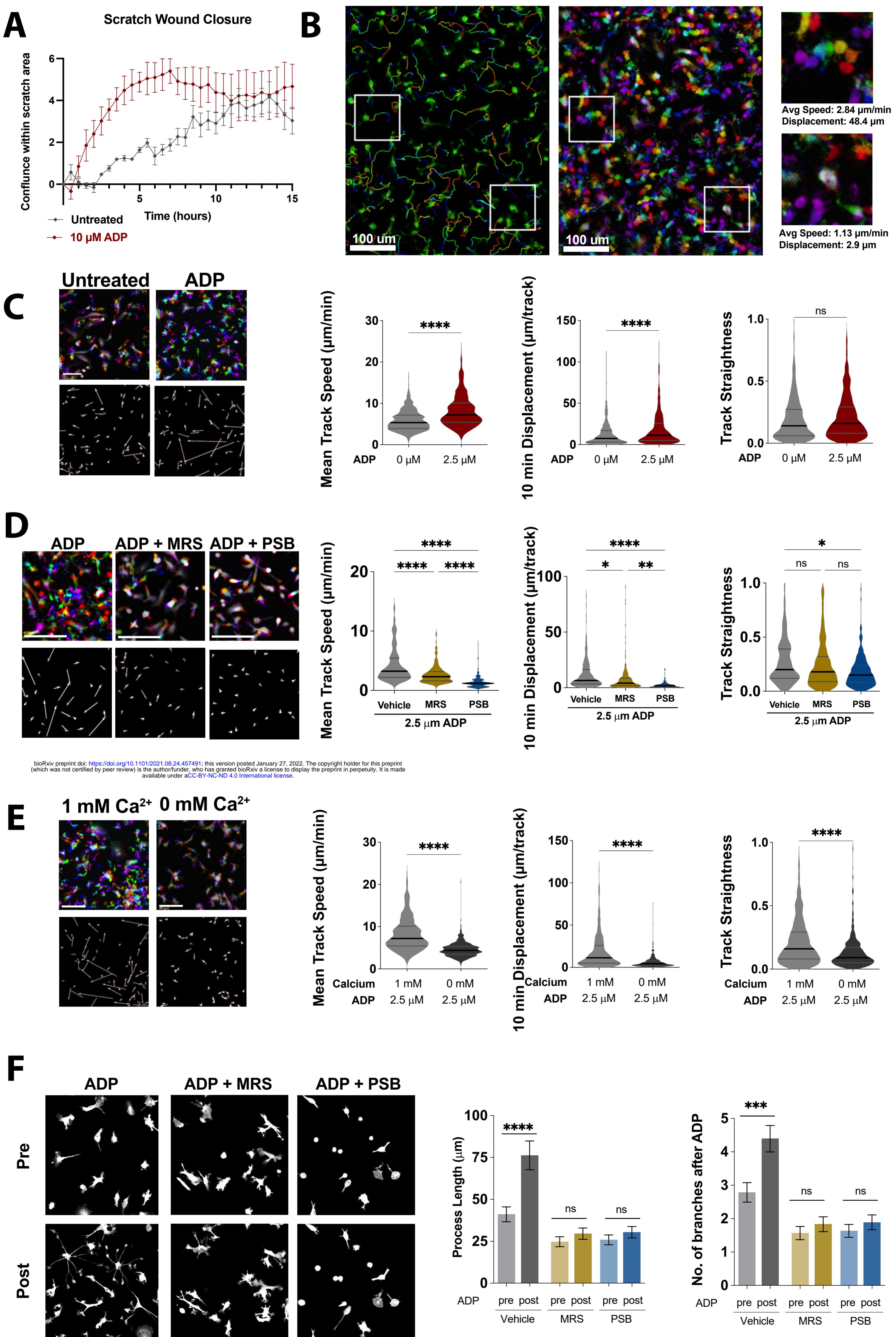
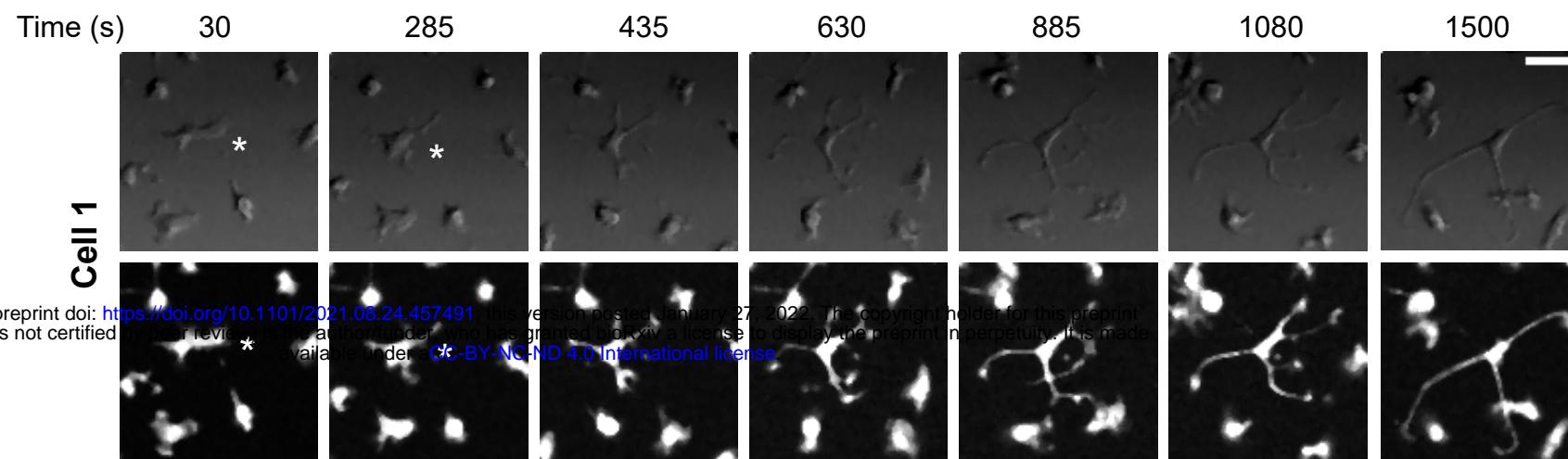
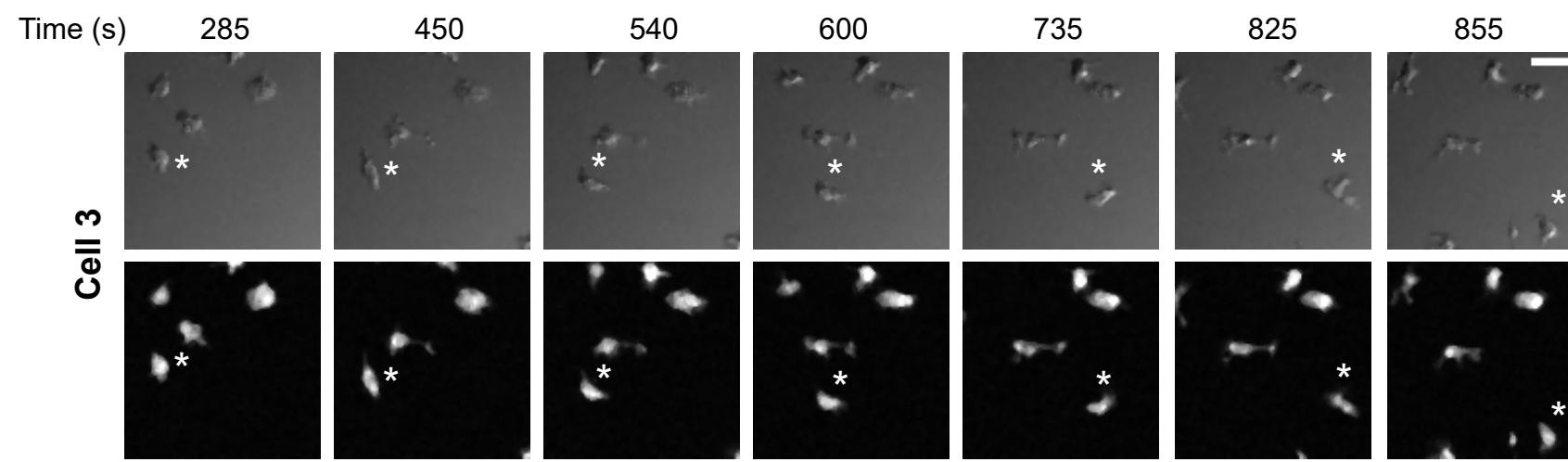

F

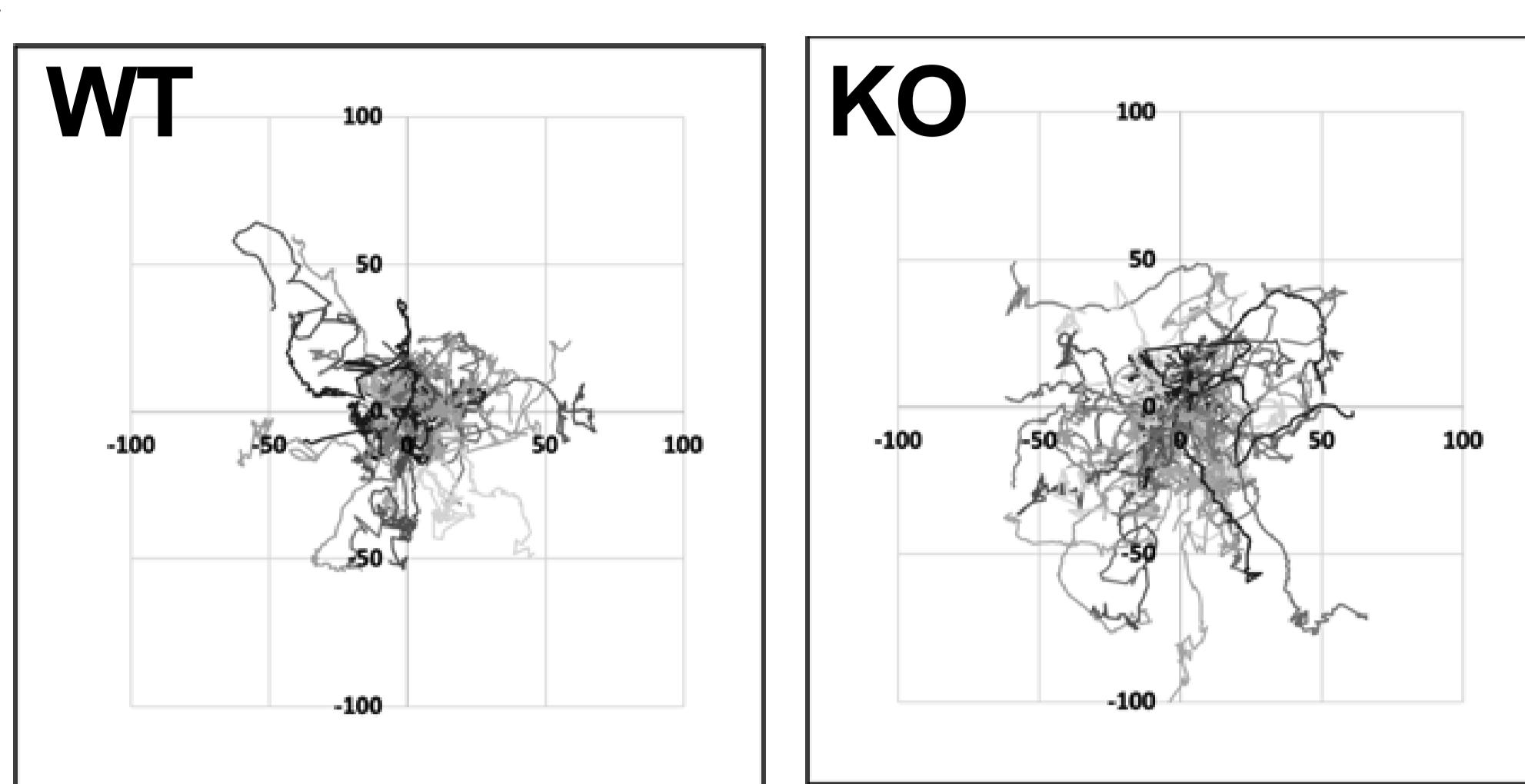
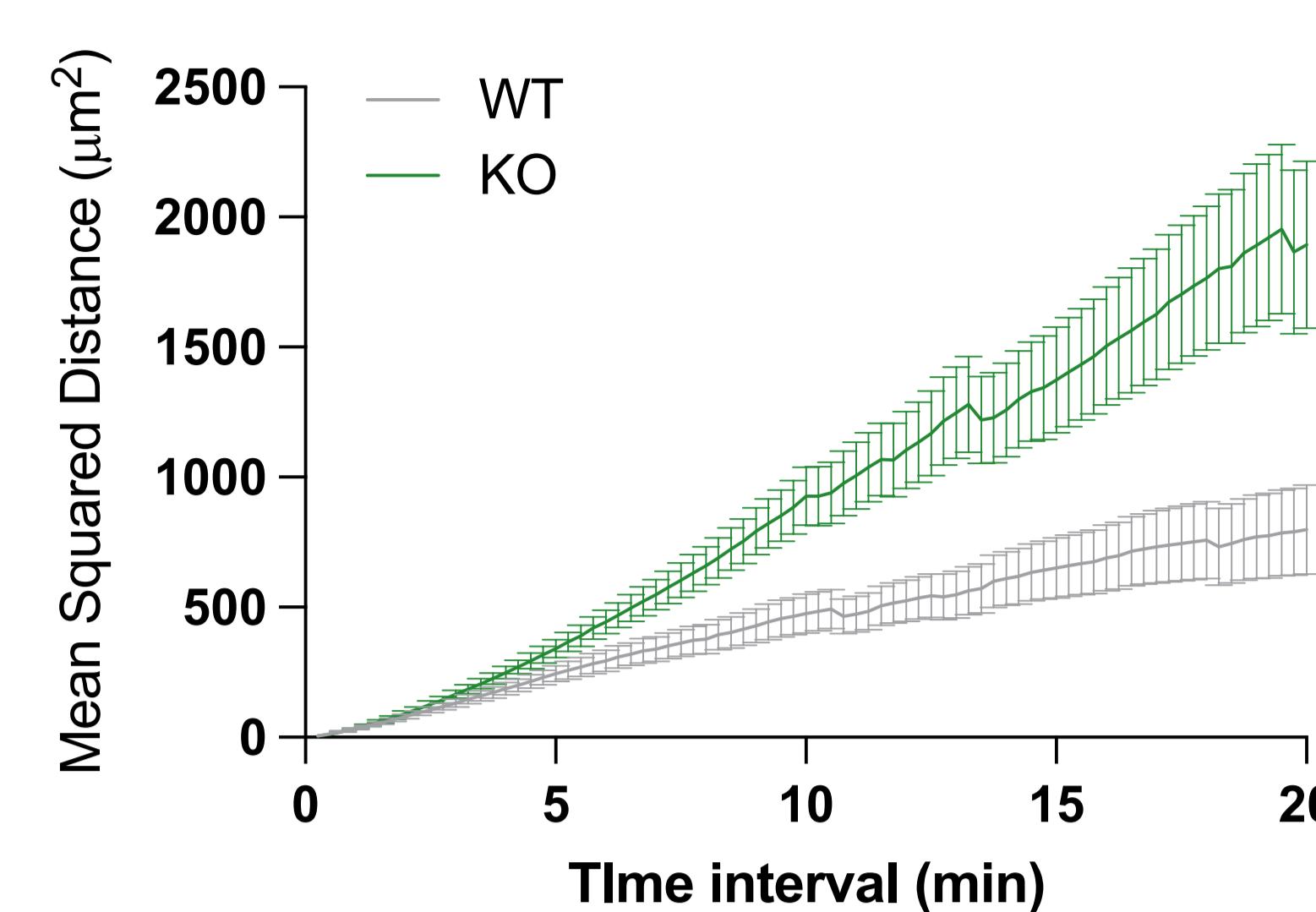
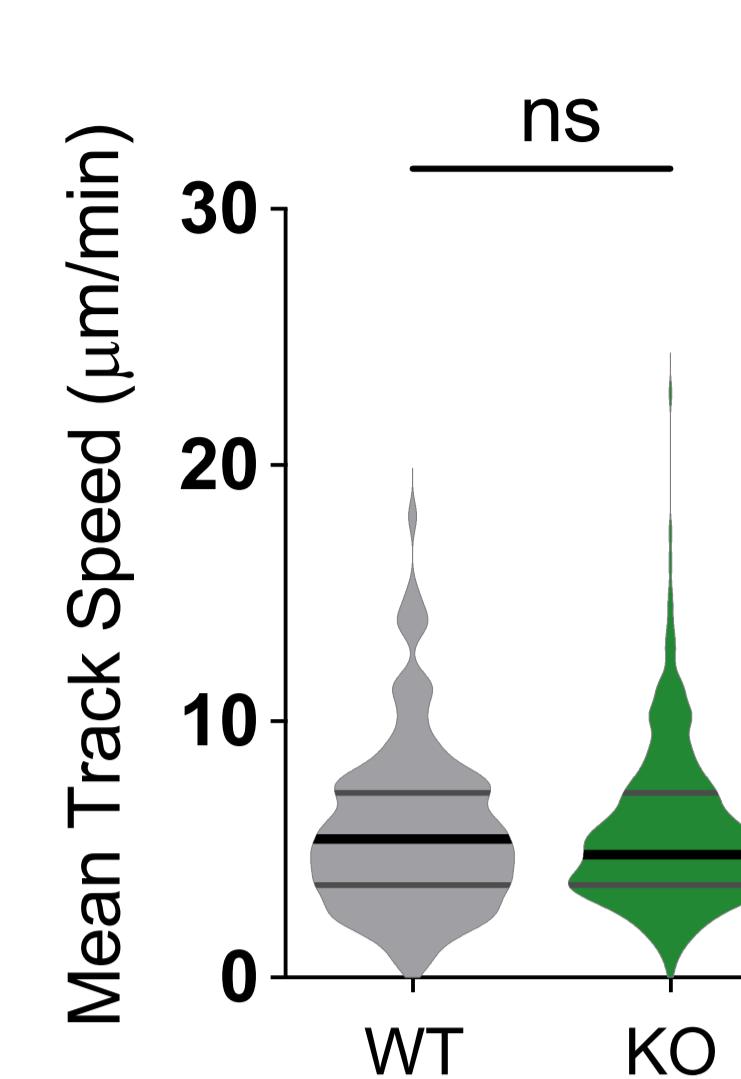
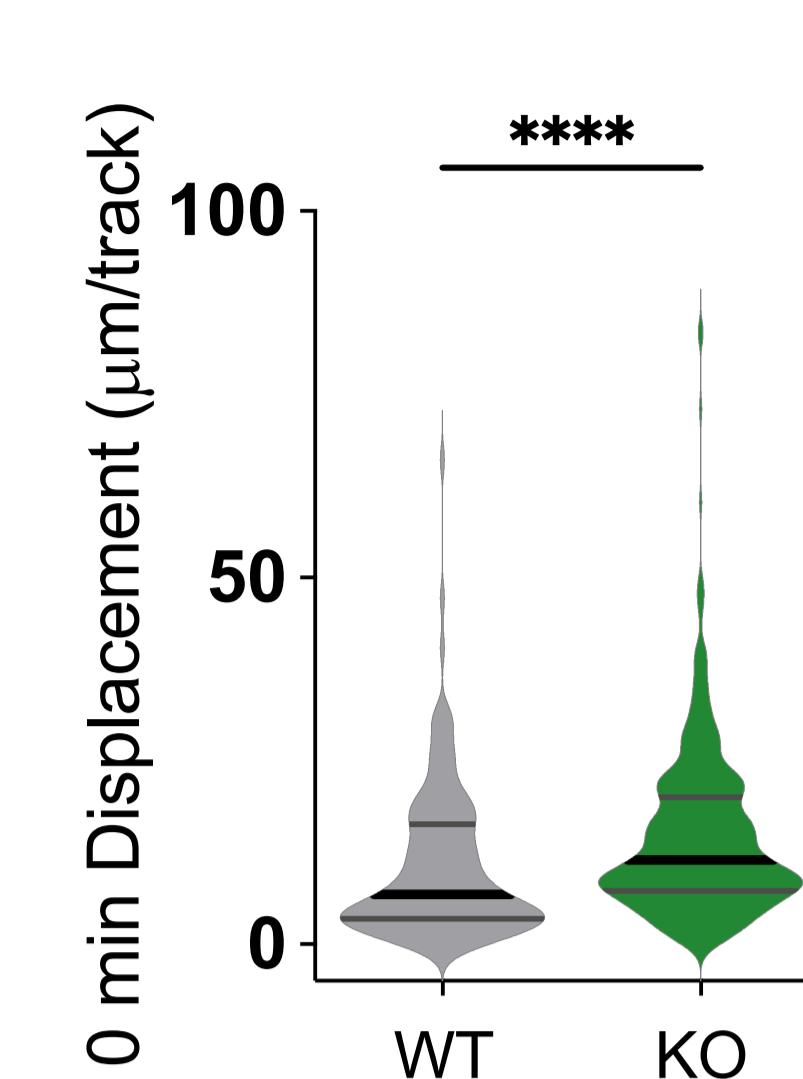
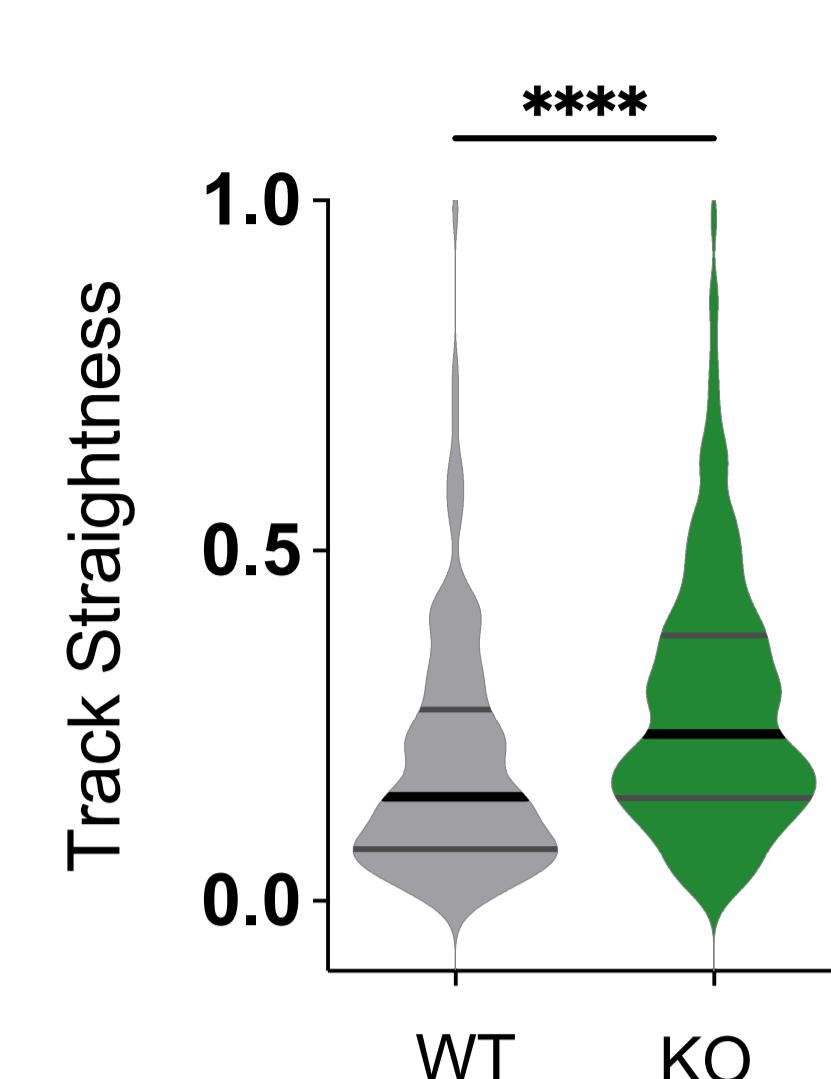
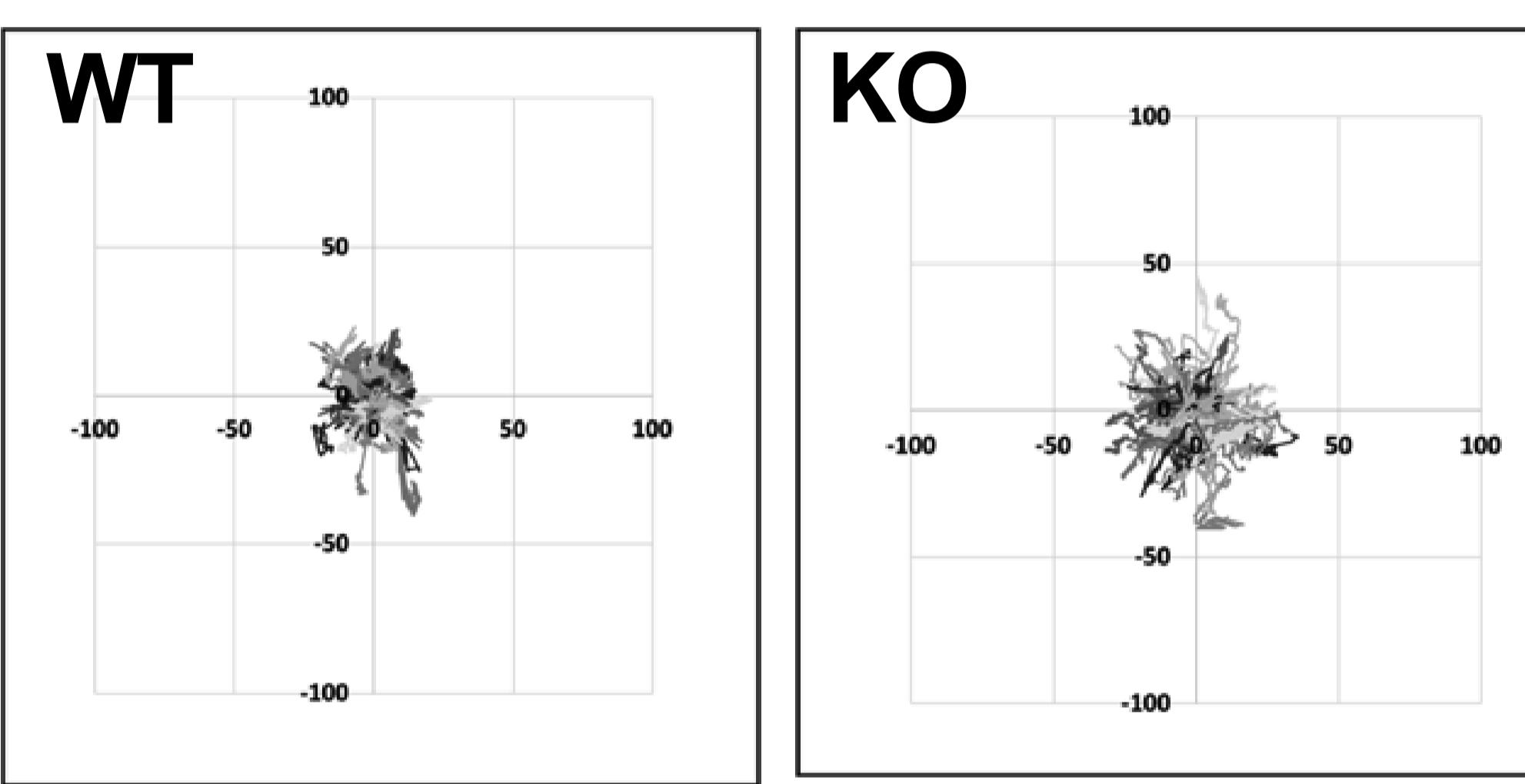
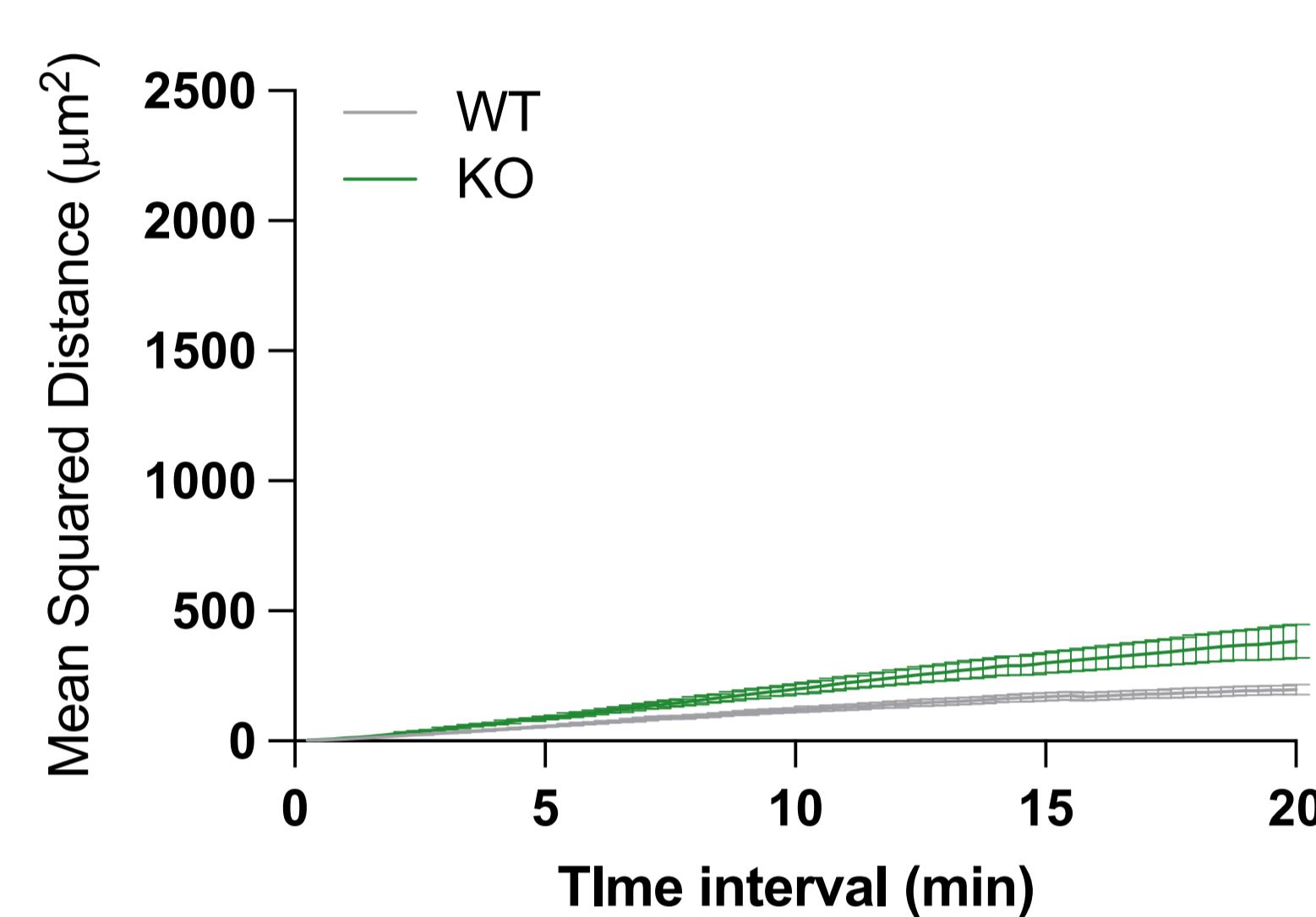
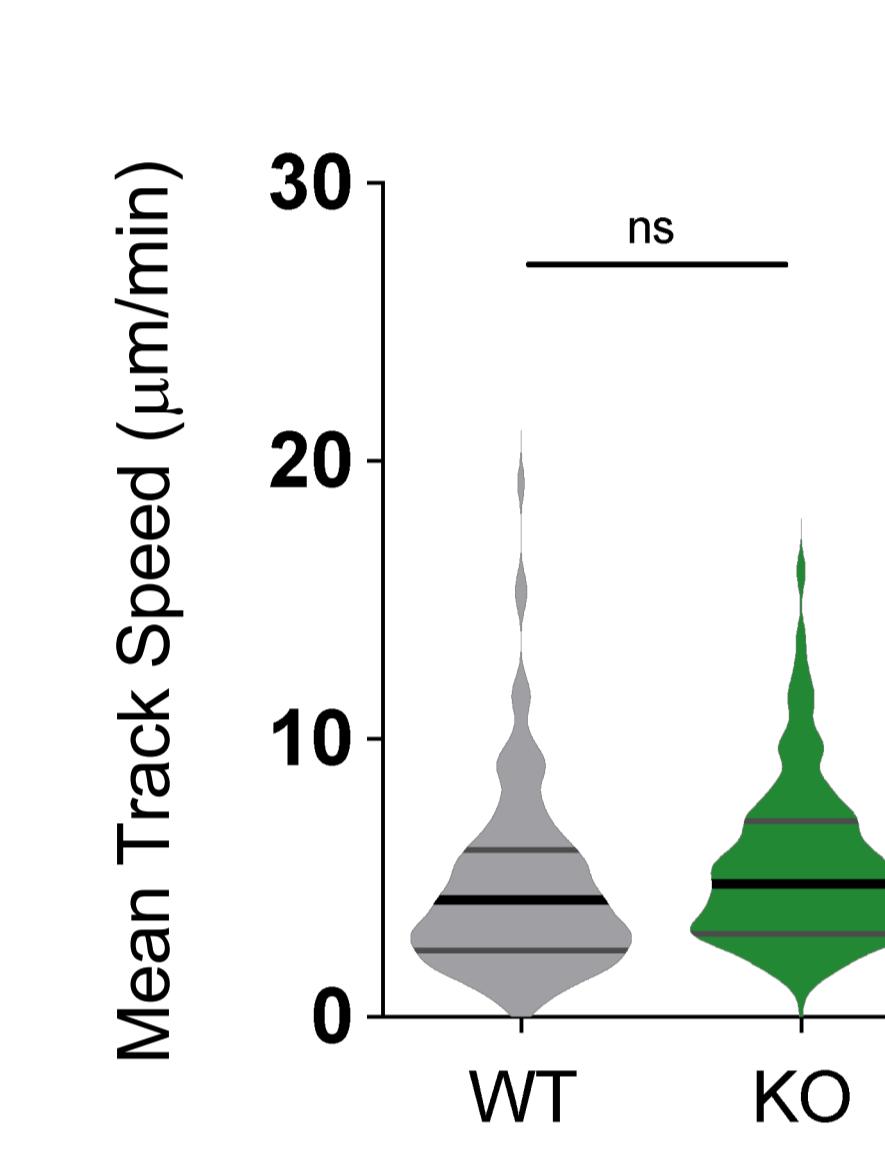
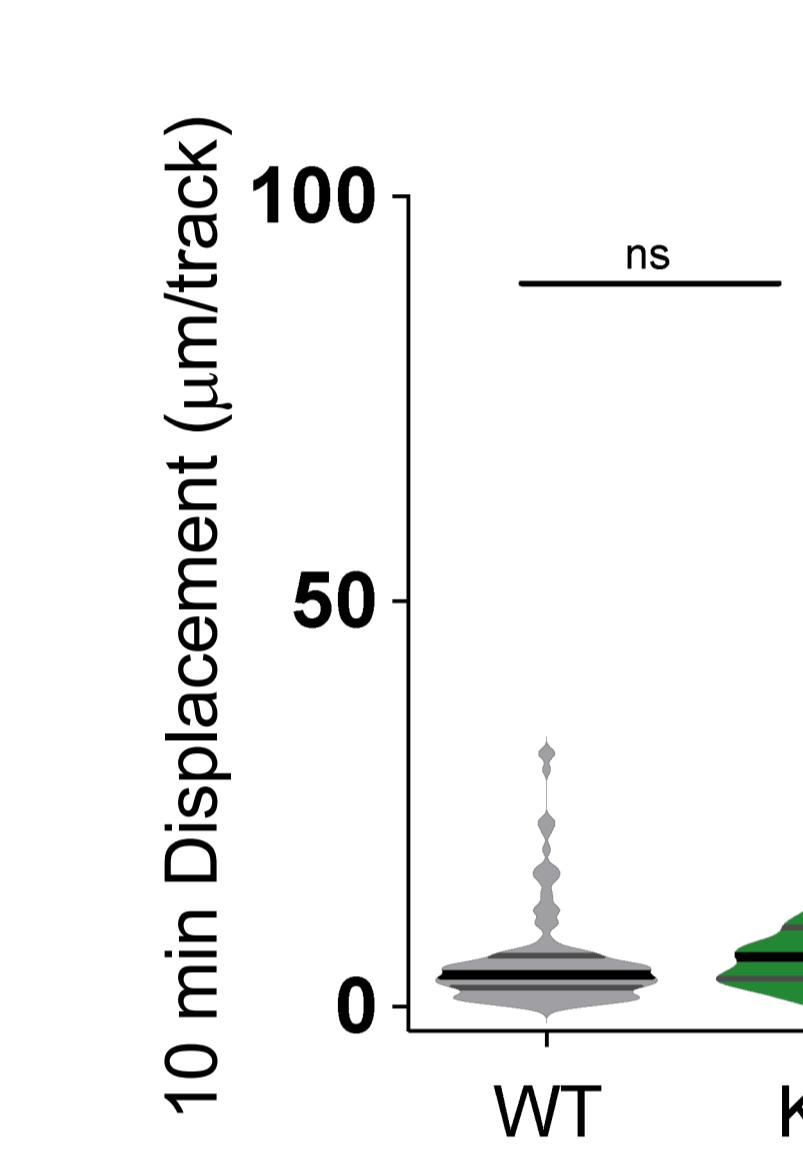
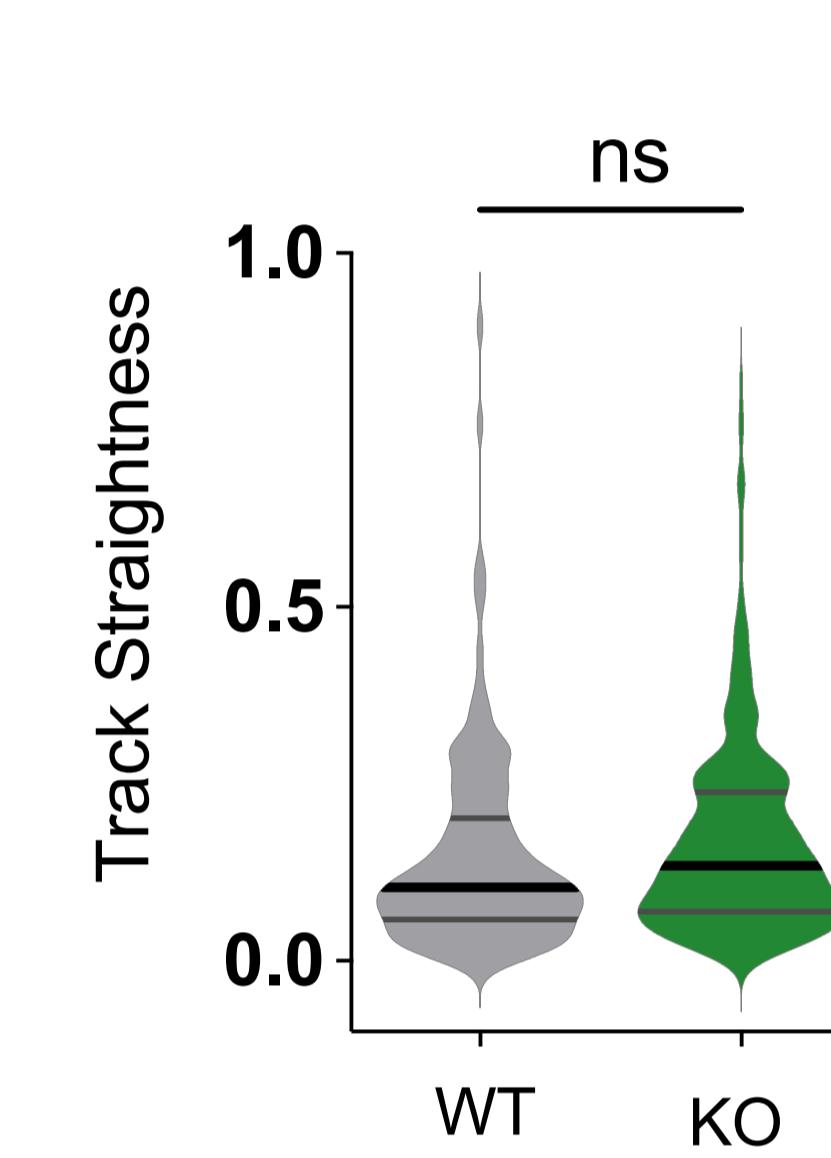
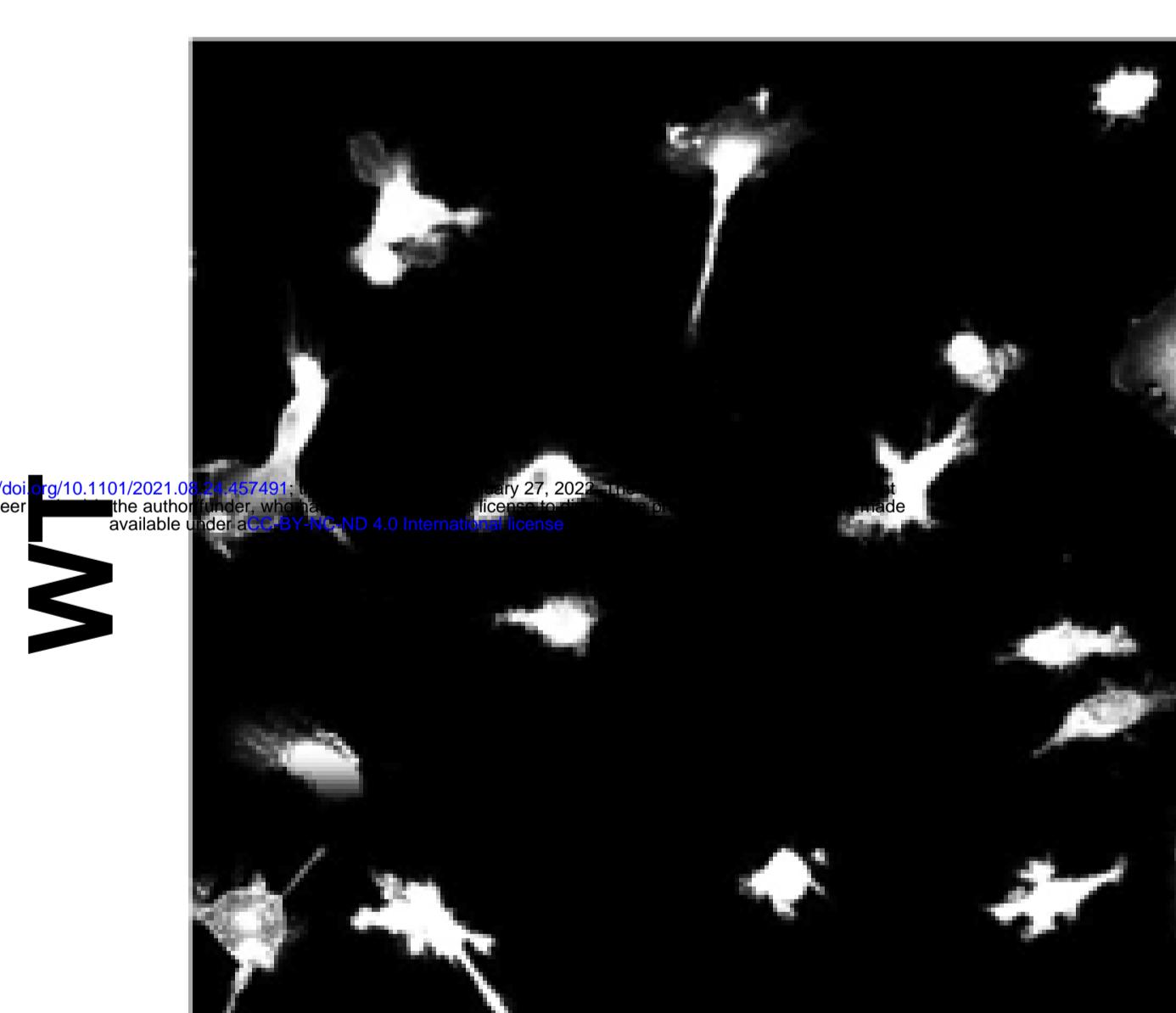
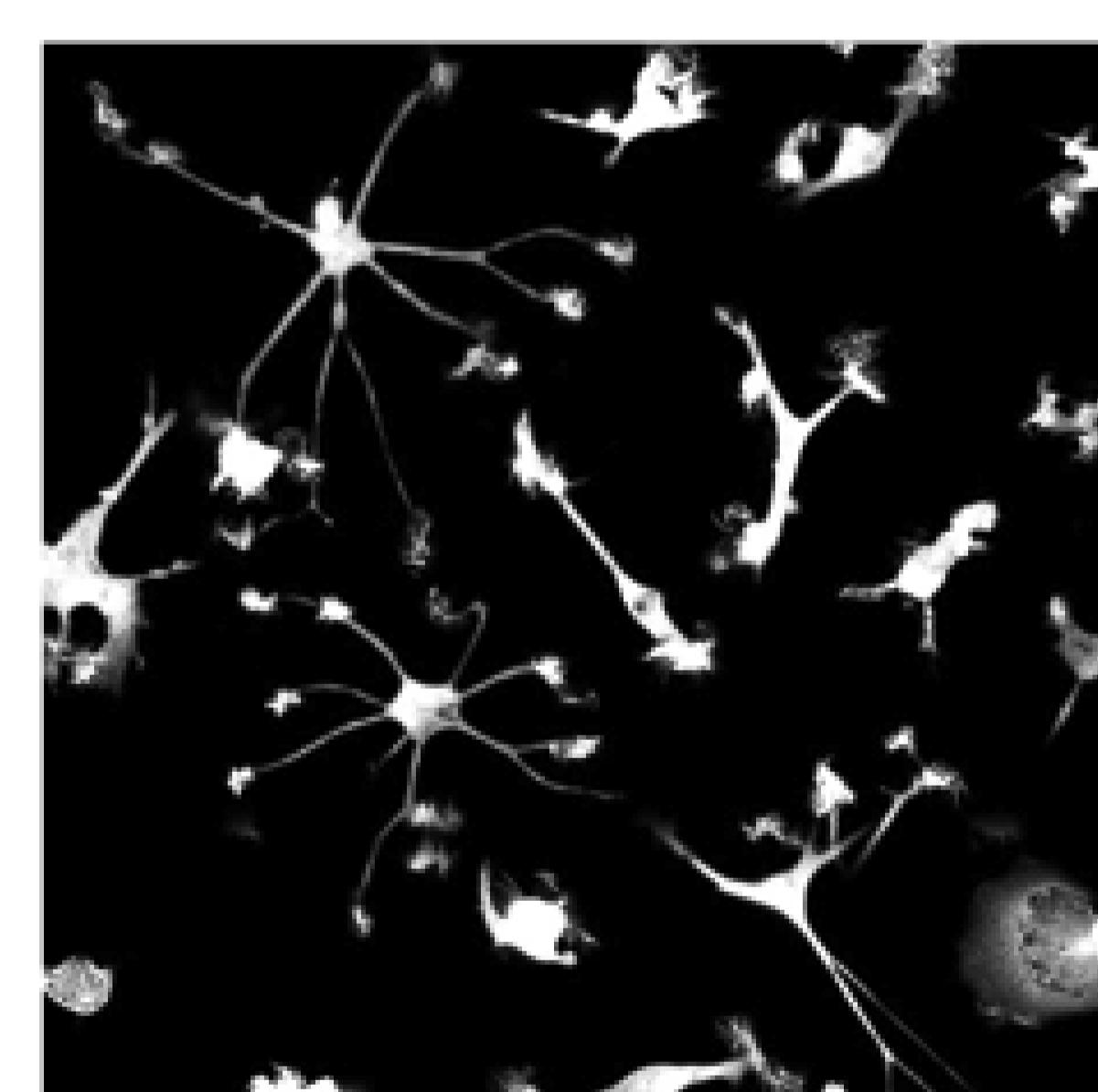
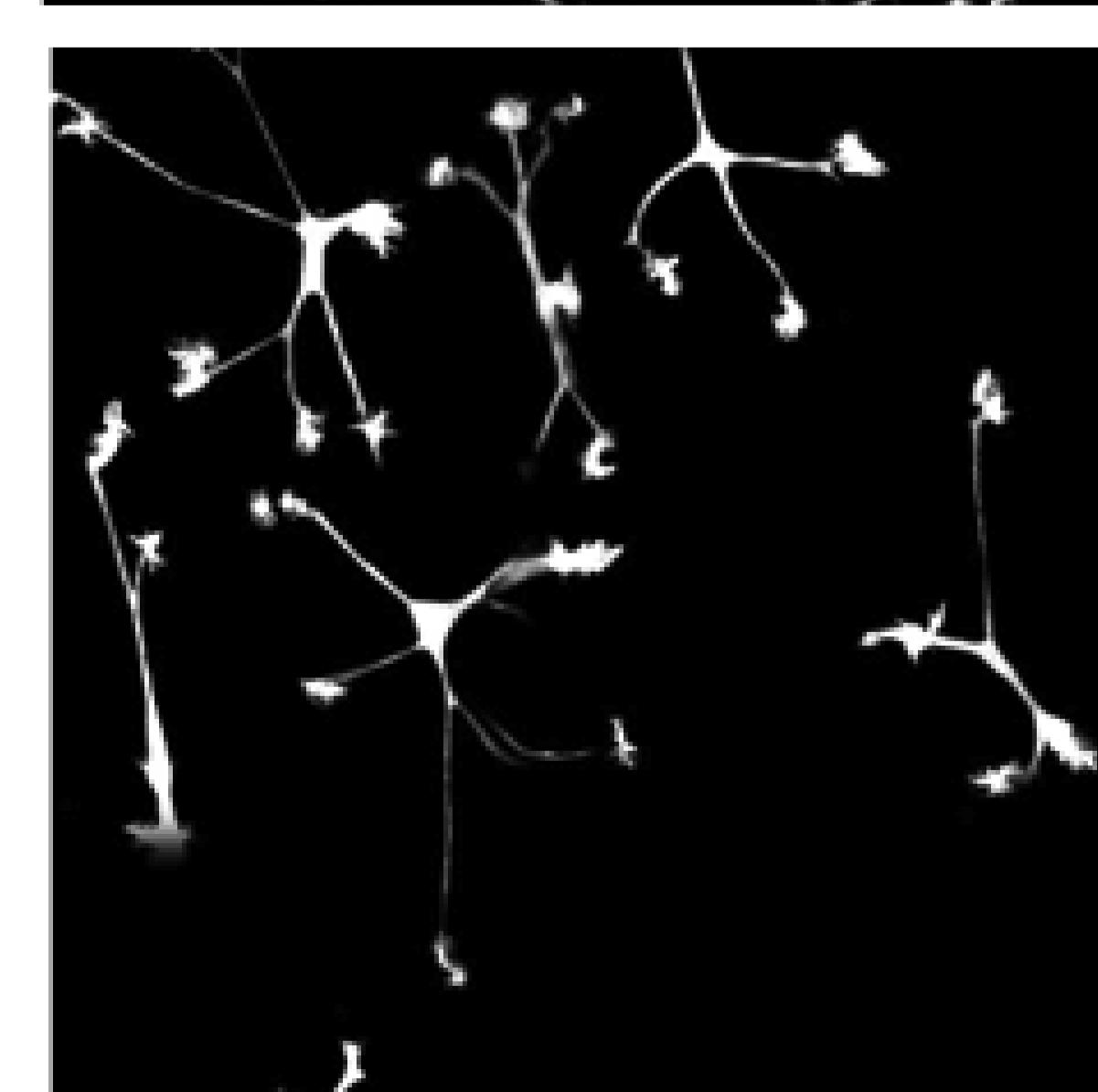
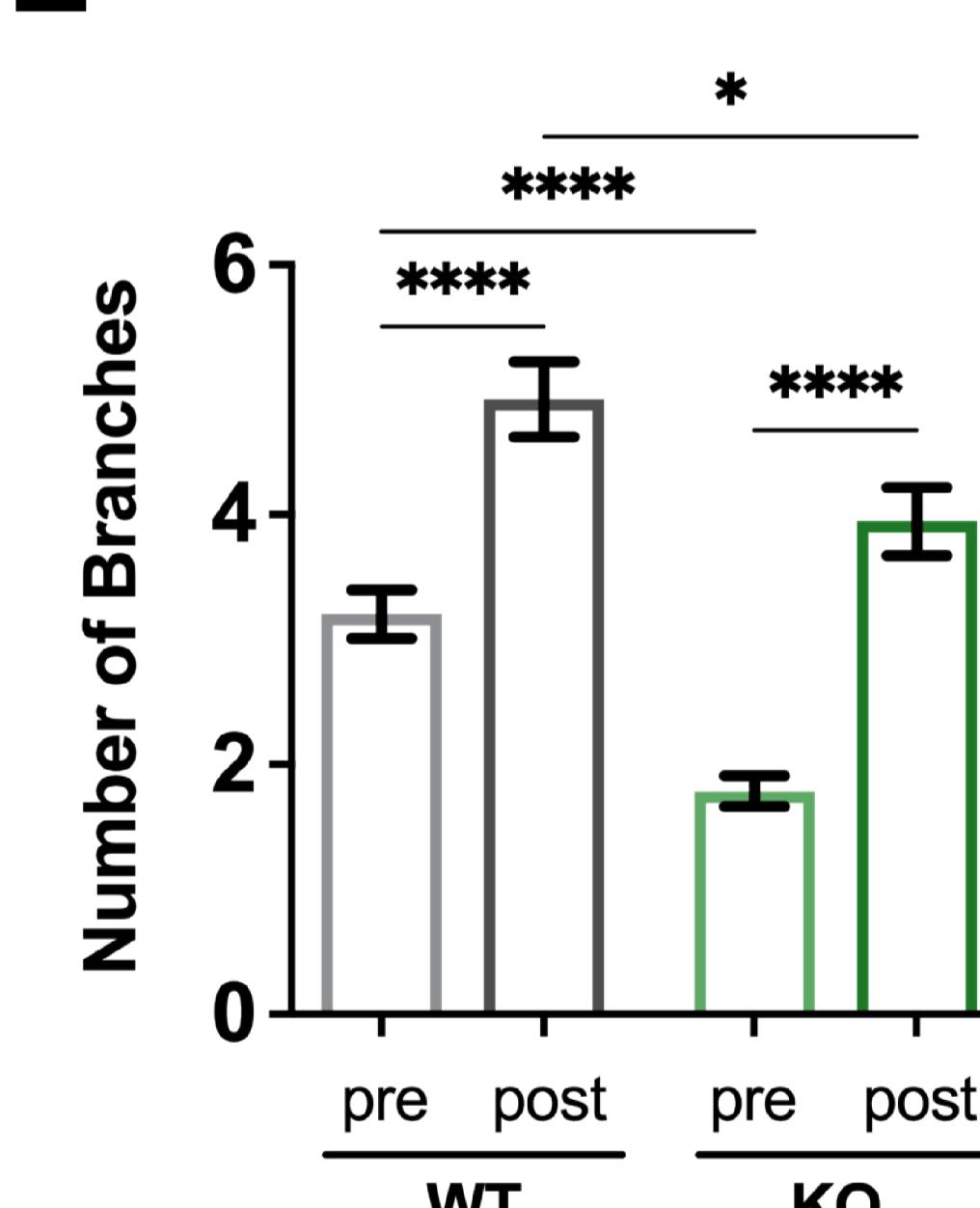
Figure 3-figure supplement 2


Figure 4

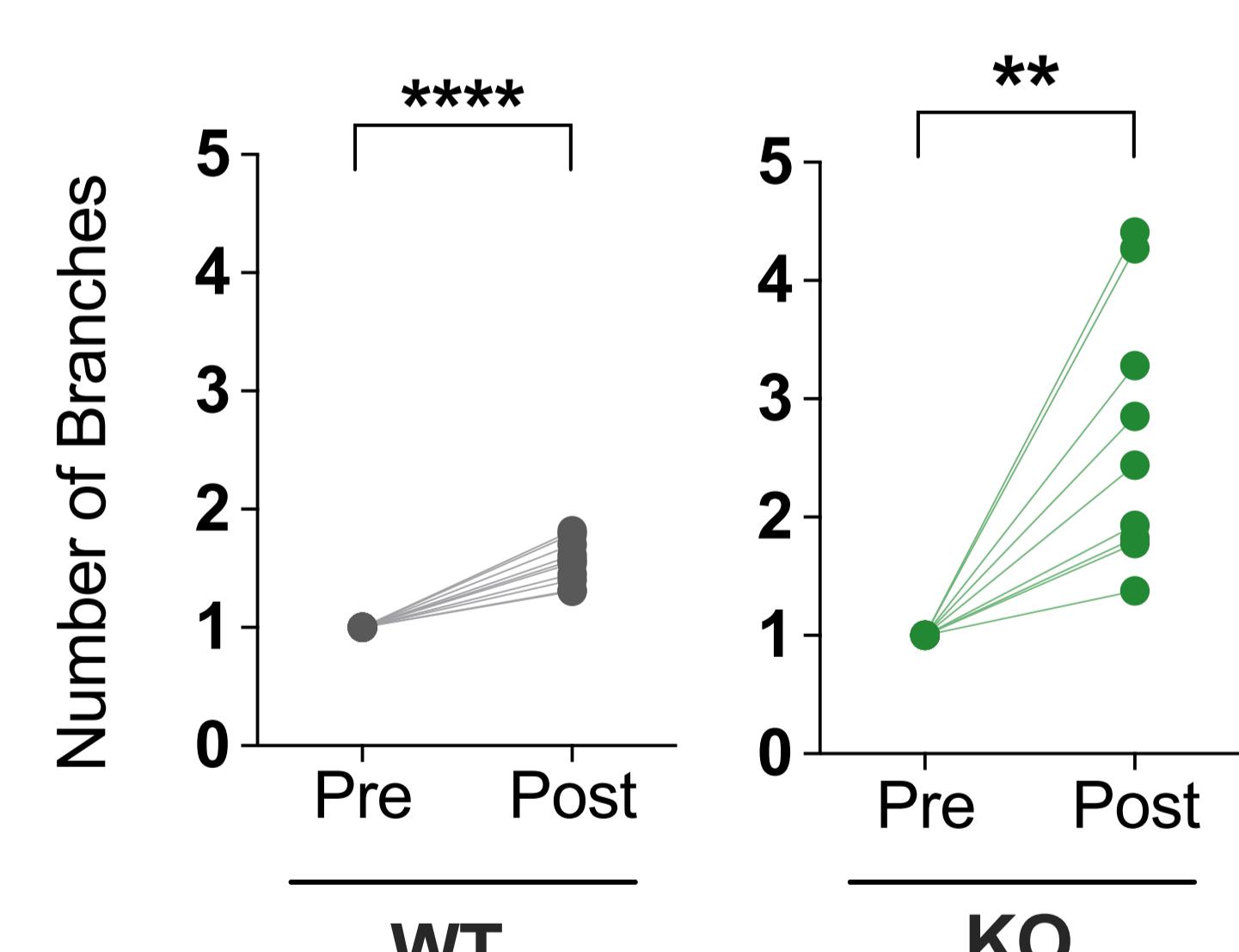
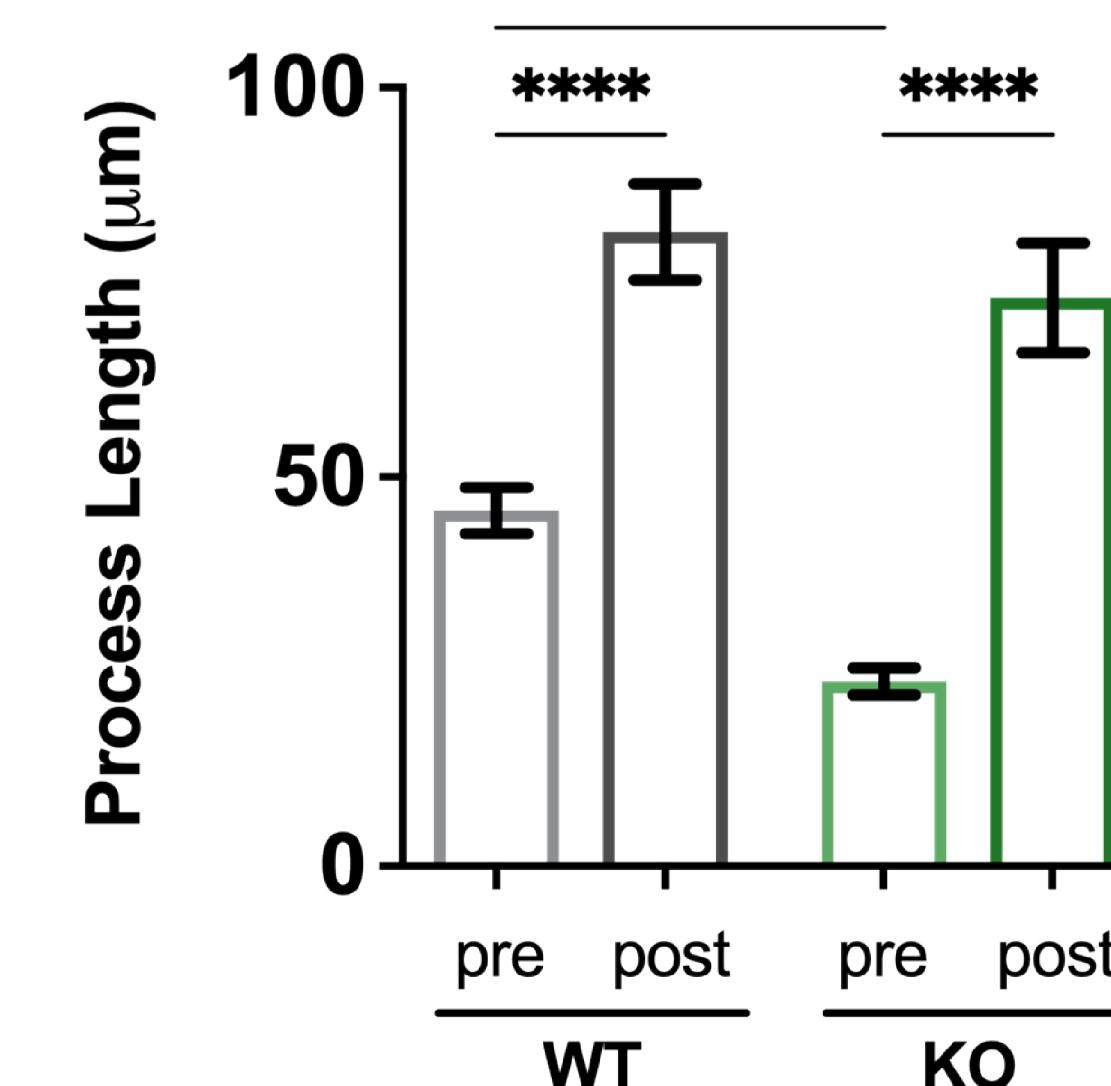

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 4- figure supplement 1


A Post-ADP

B

C

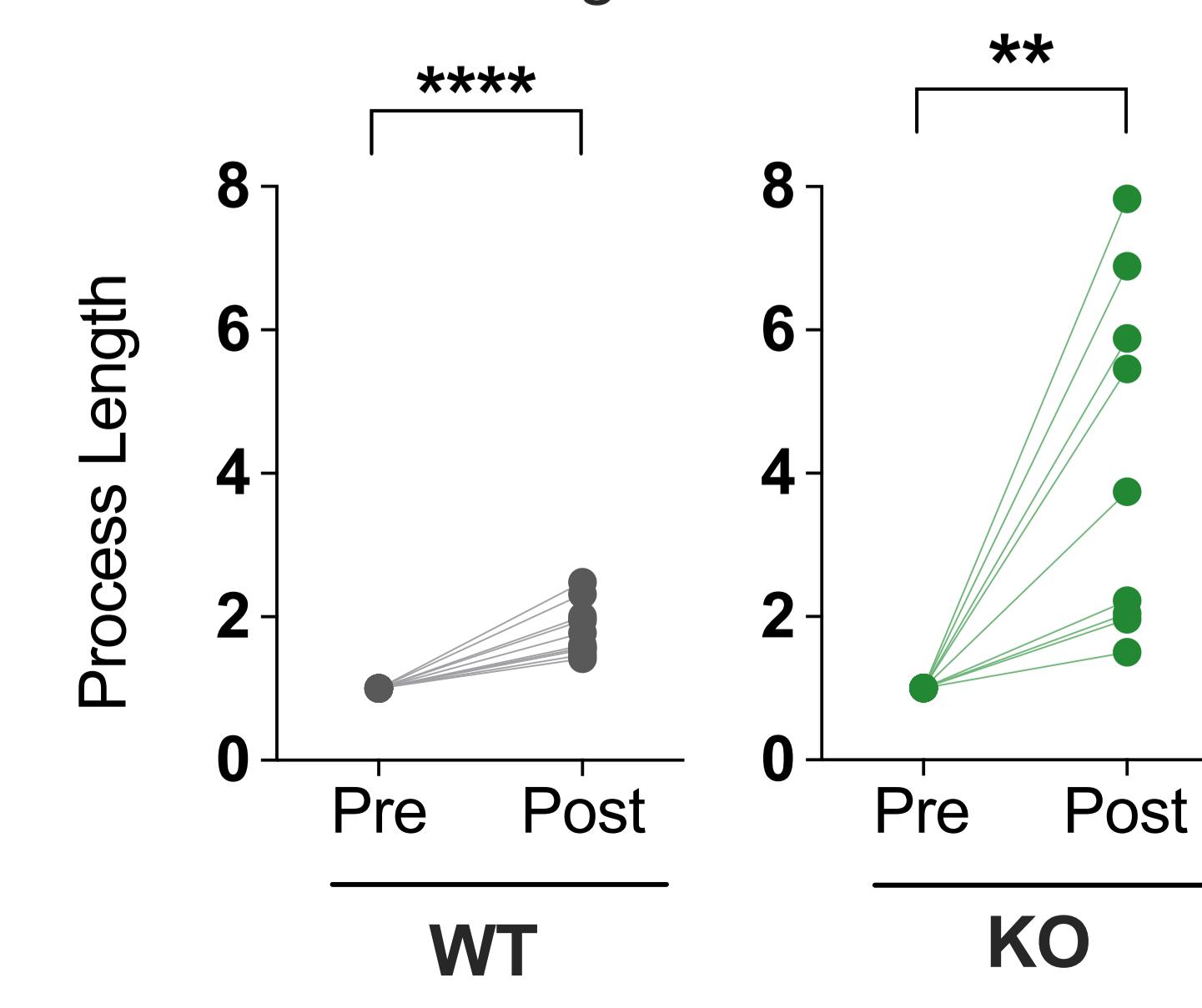
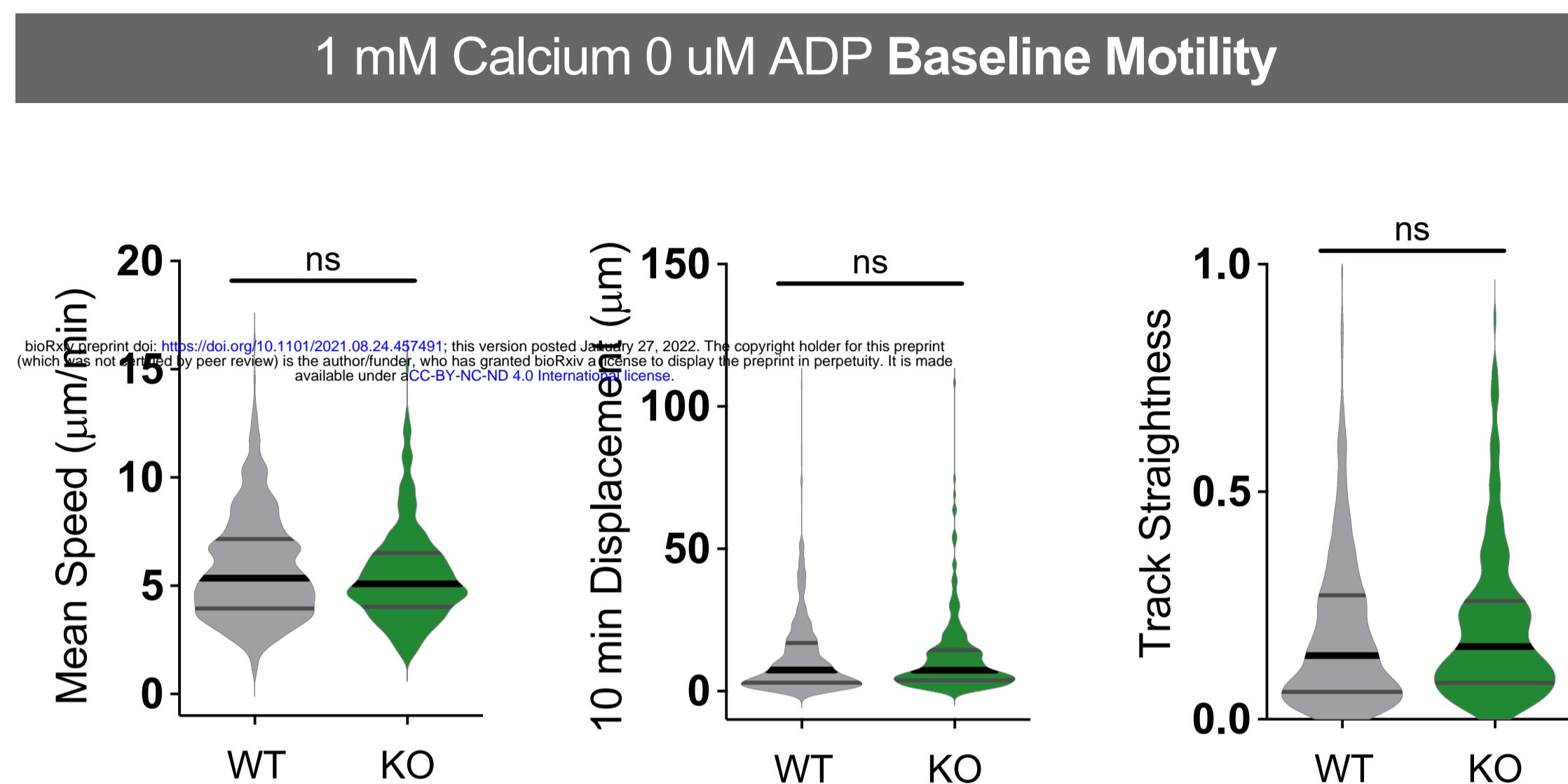


Figure 5**1 mM Calcium 2.5 μ M ADP Motility****A****B****C****D****E****0 mM Calcium 2.5 μ M ADP Motility****F****G****H****I****J****1 mM Calcium 2.5 μ M ADP Process Extension****K****Pre-treatment****Post-ADP****TREM2 KO****L****Branch Complexity**

Fold change from Baseline


M**Process Length**

Fold change from Baseline

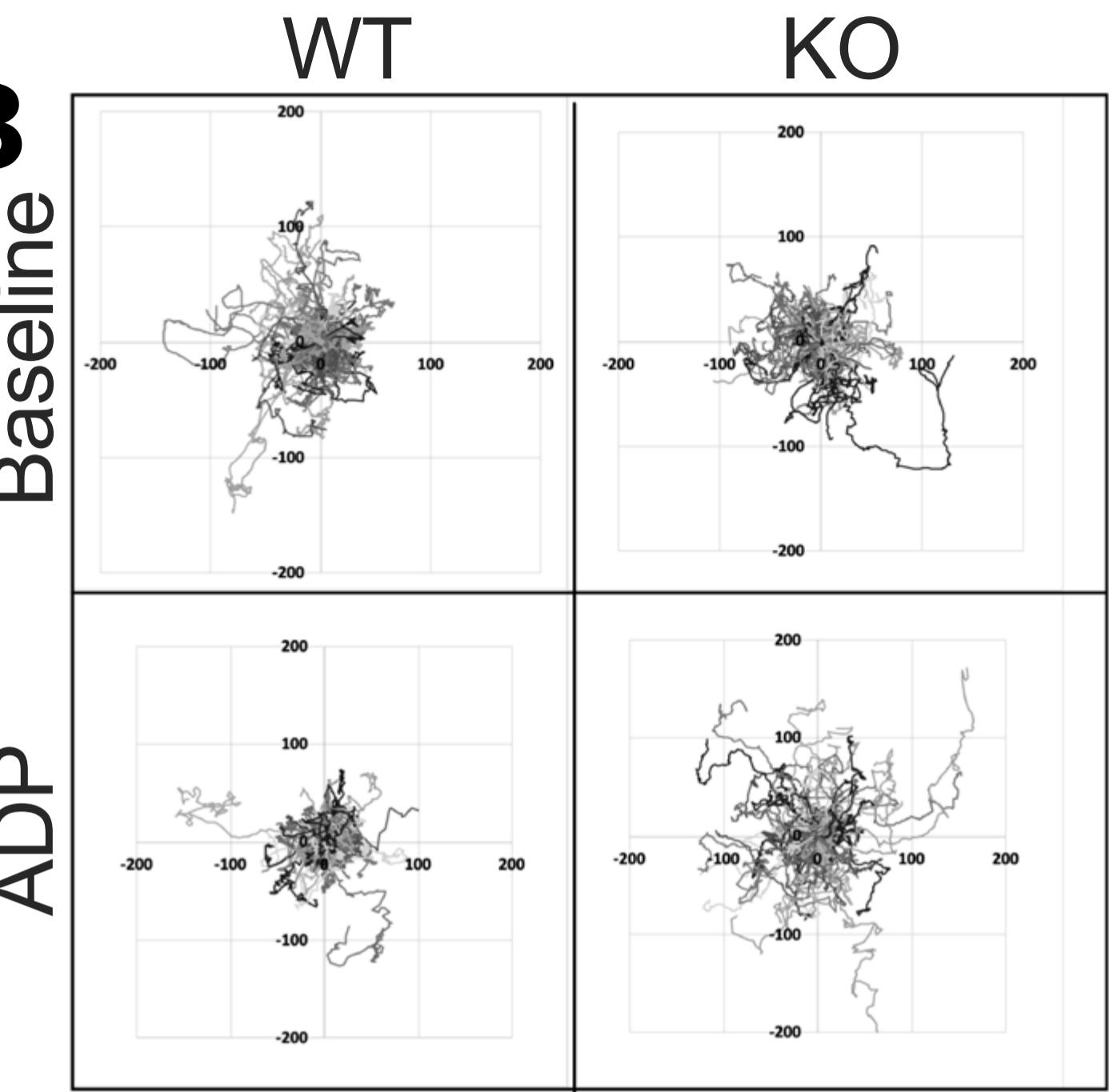
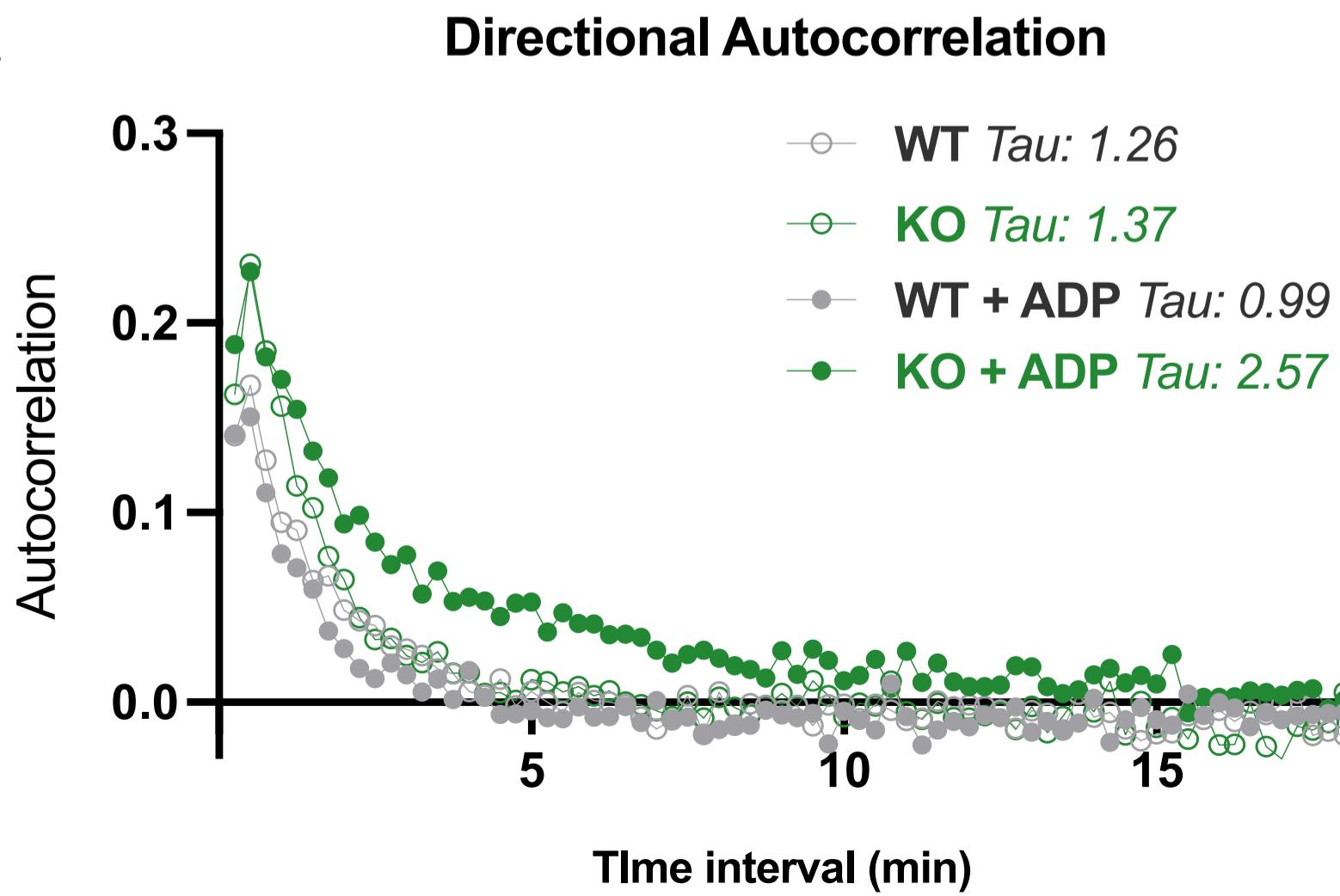
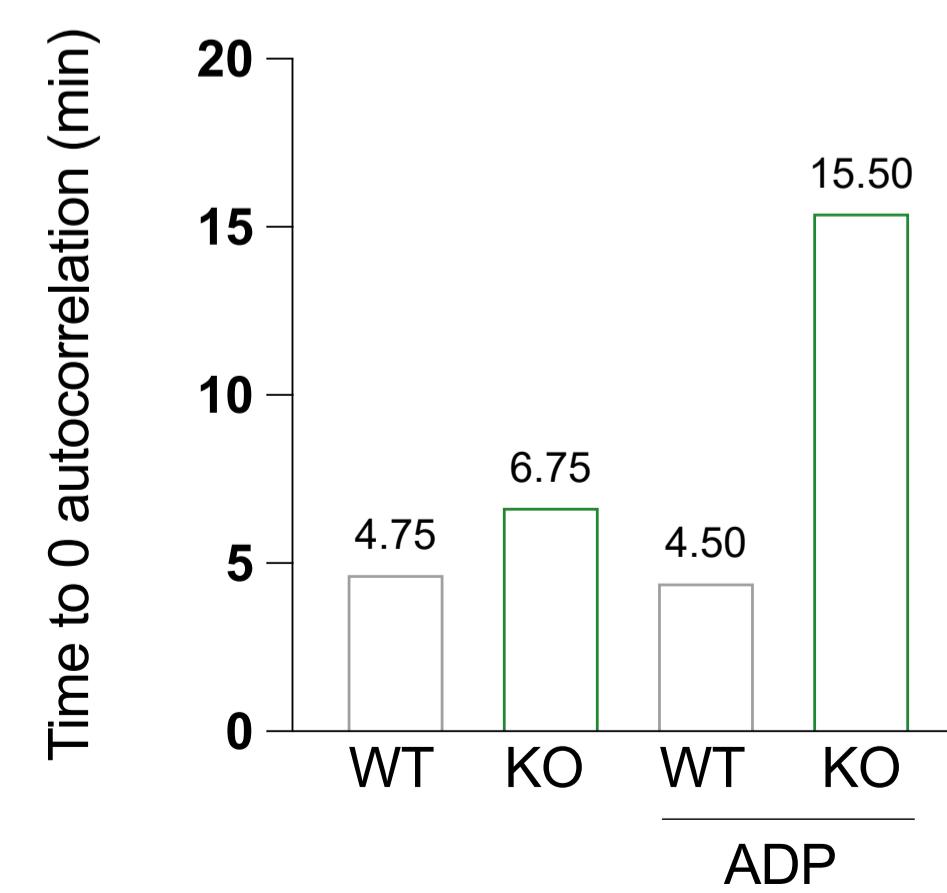
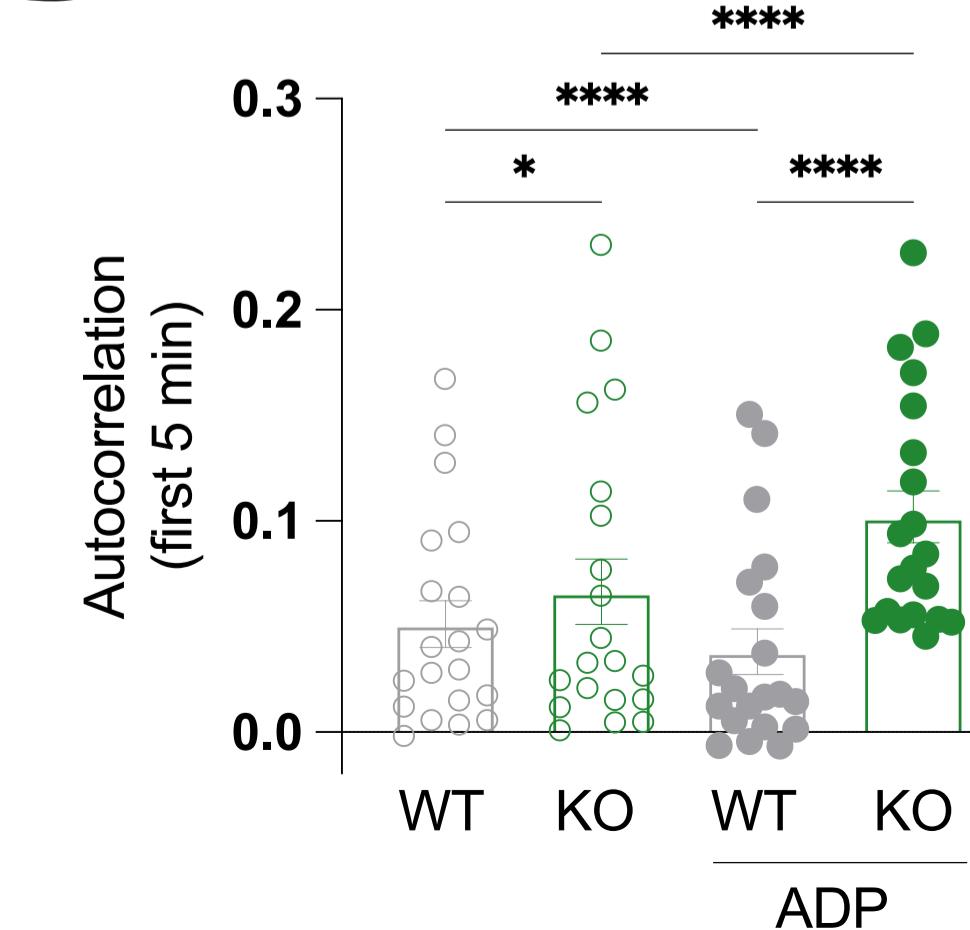


Figure 5-figure supplement 1

A

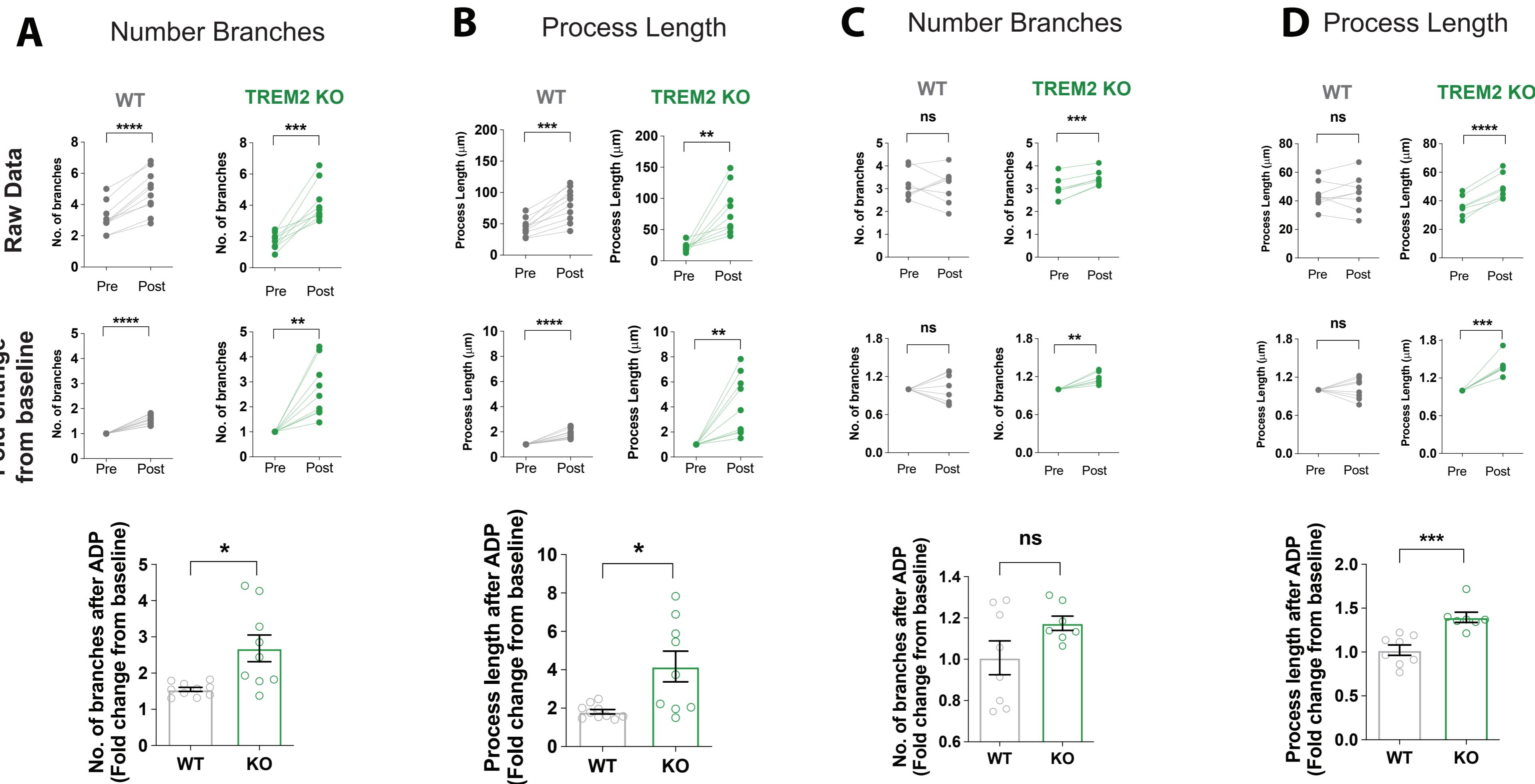


B

Directional Autocorrelation

C



D

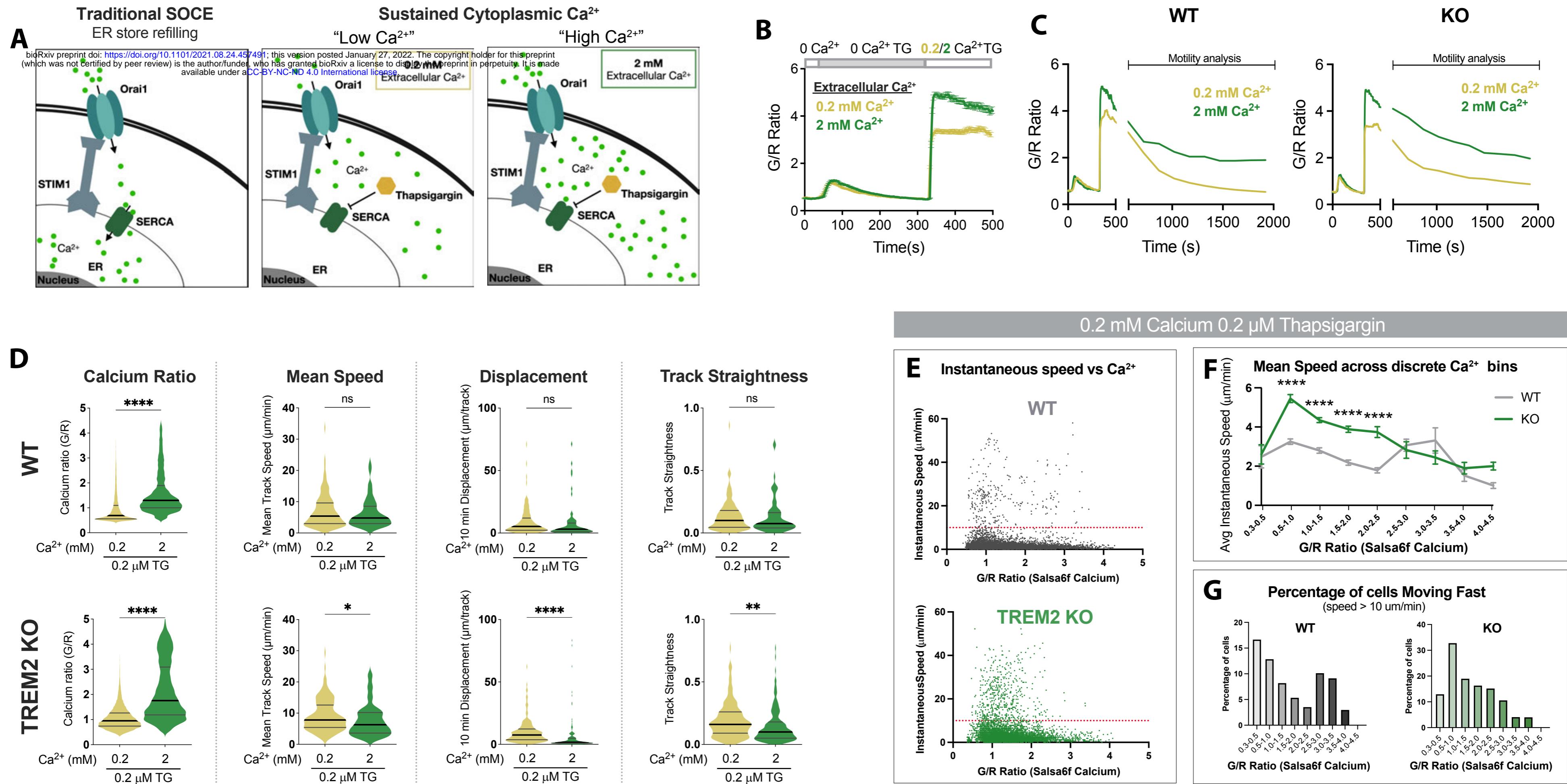
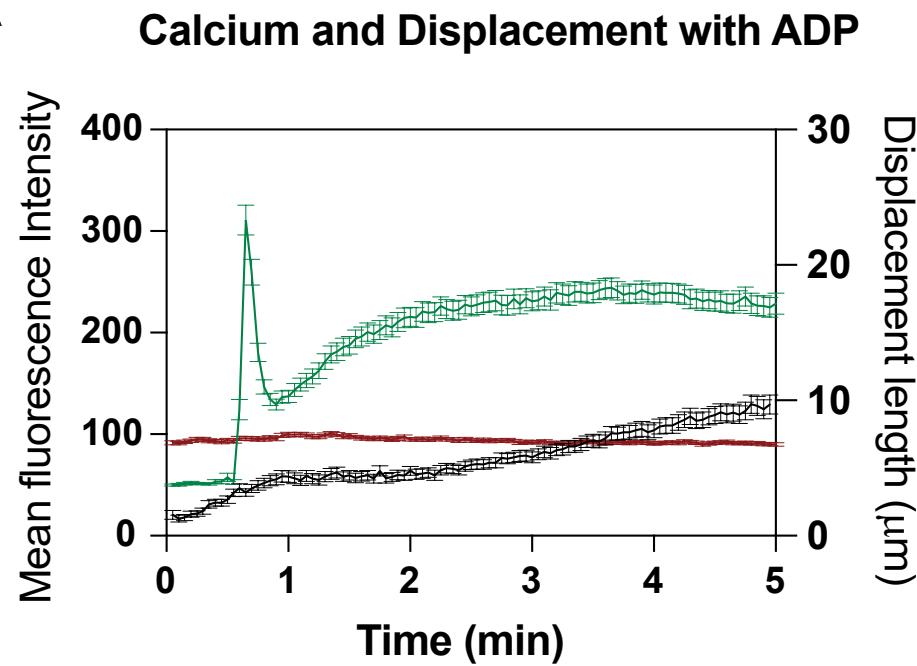
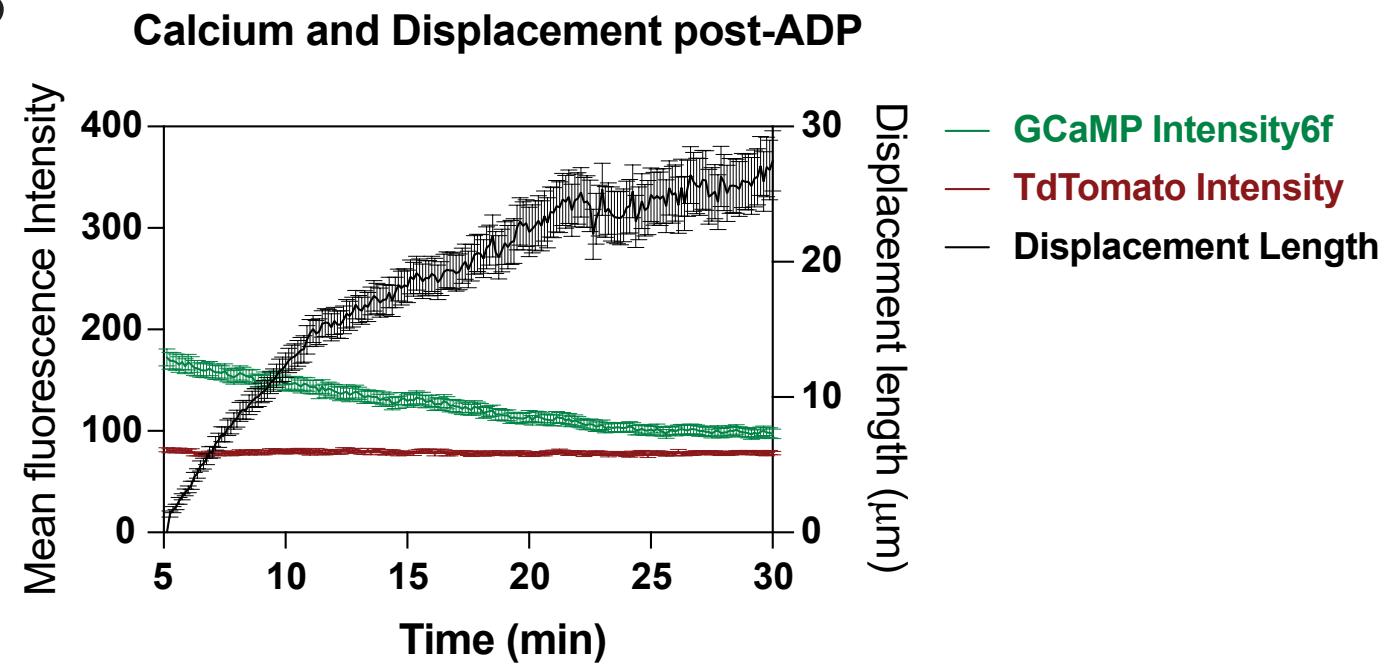


Figure 5-figure supplement 2

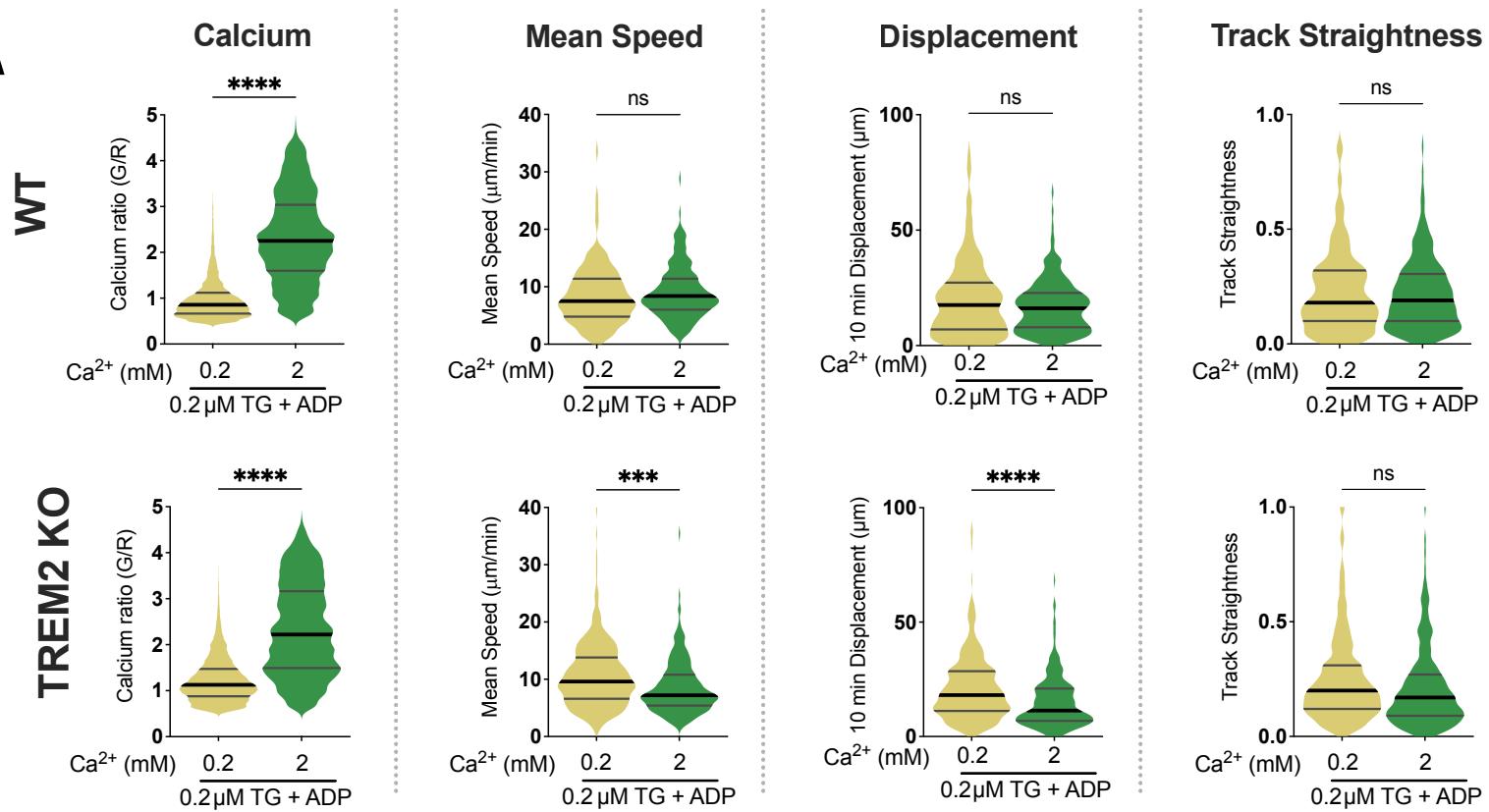
bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Figure 6


Figure 6-figure supplement 1

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A



B

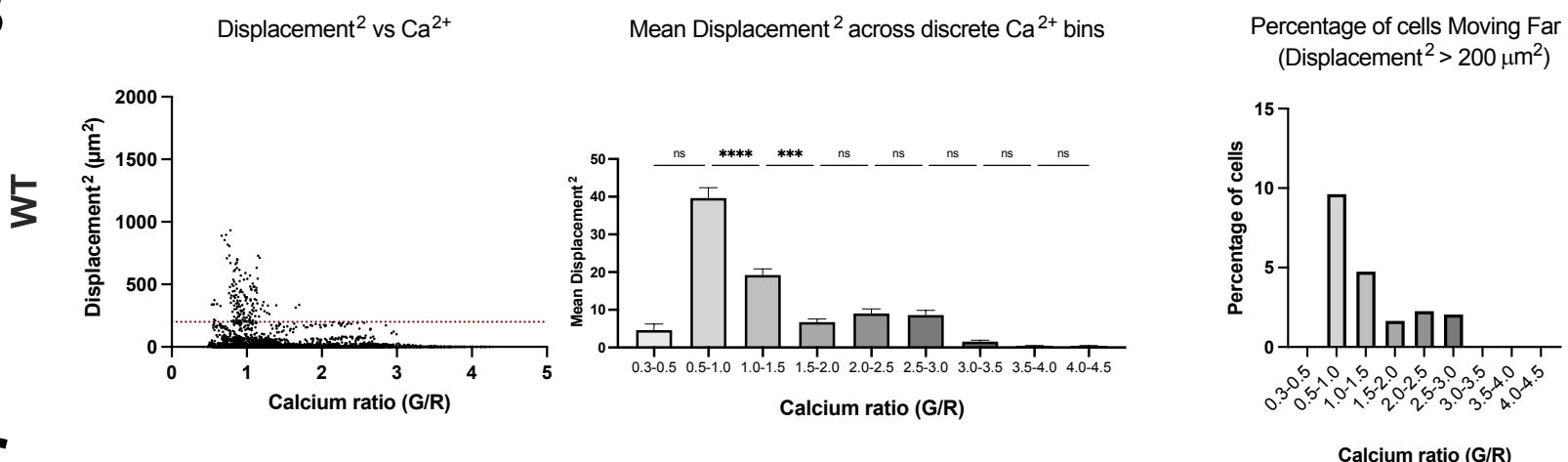
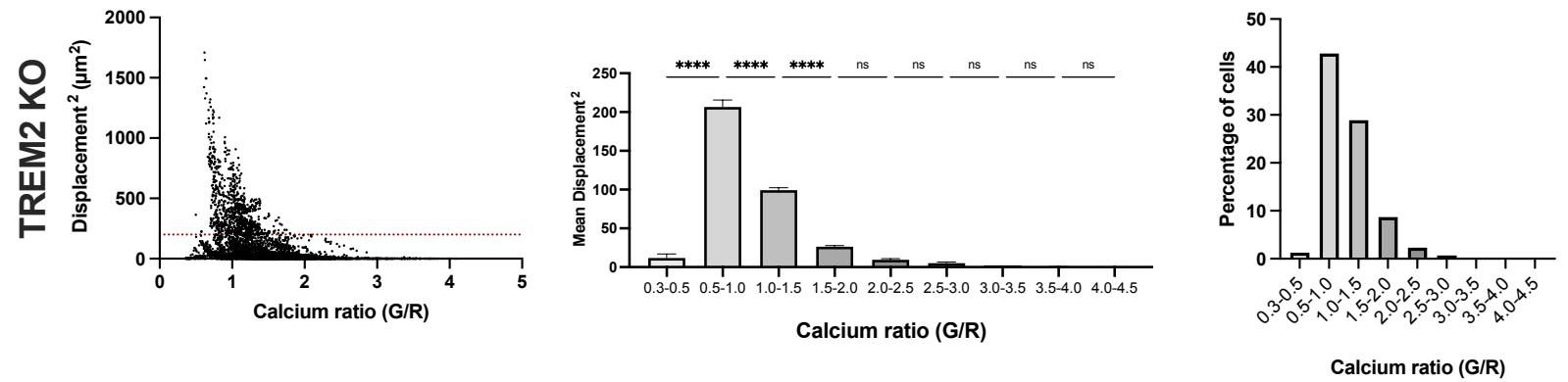
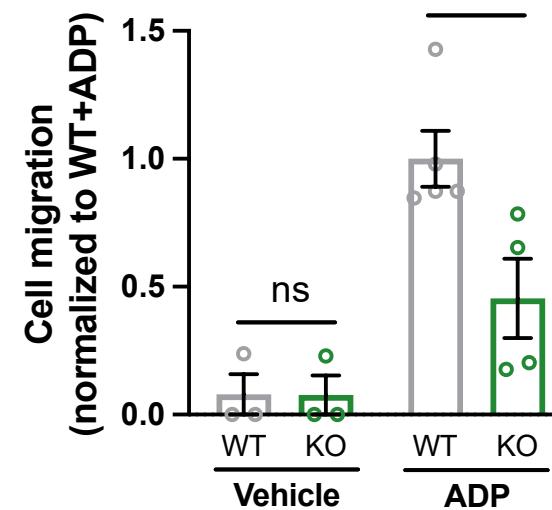
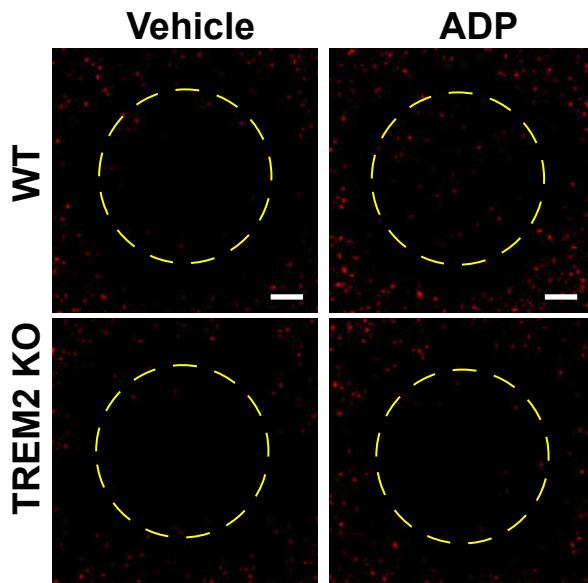
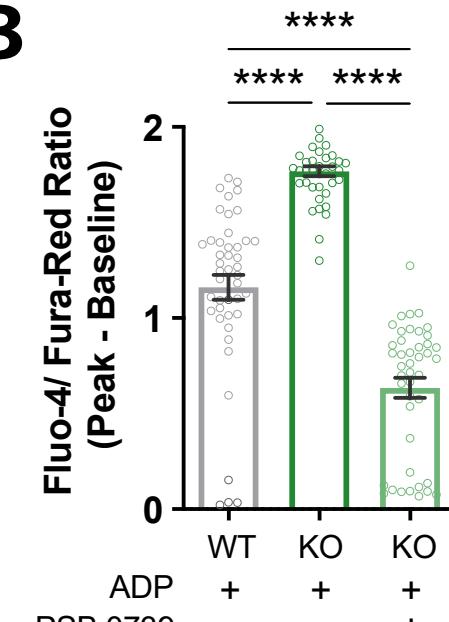
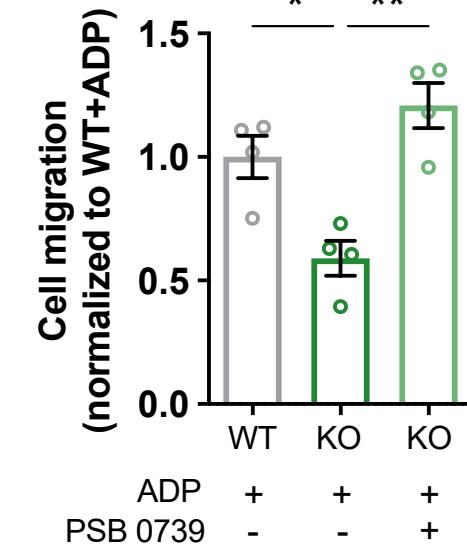
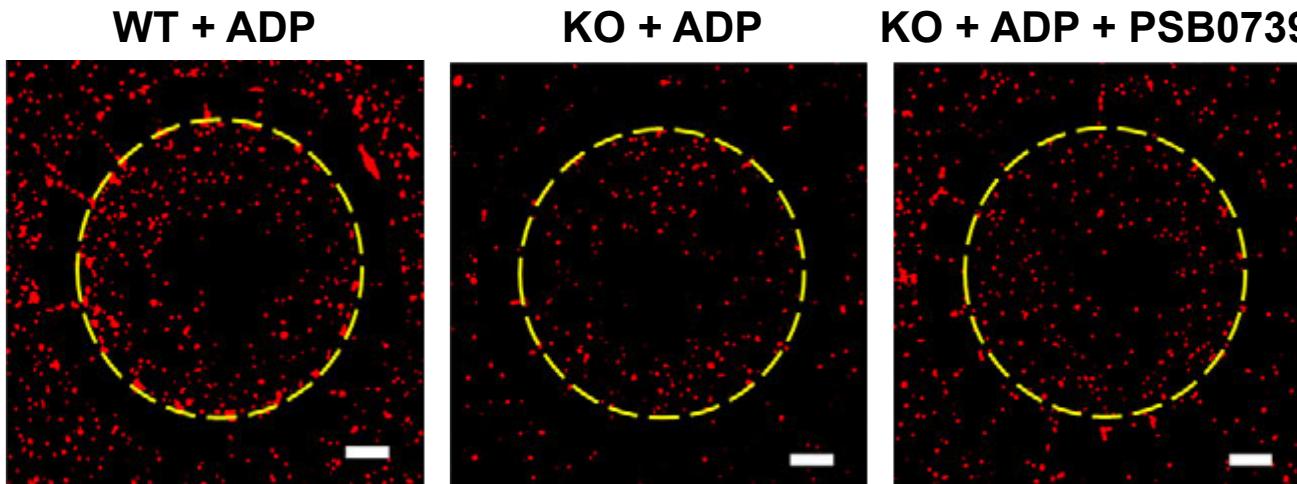


Figure 6-figure supplement 2


A






B

C

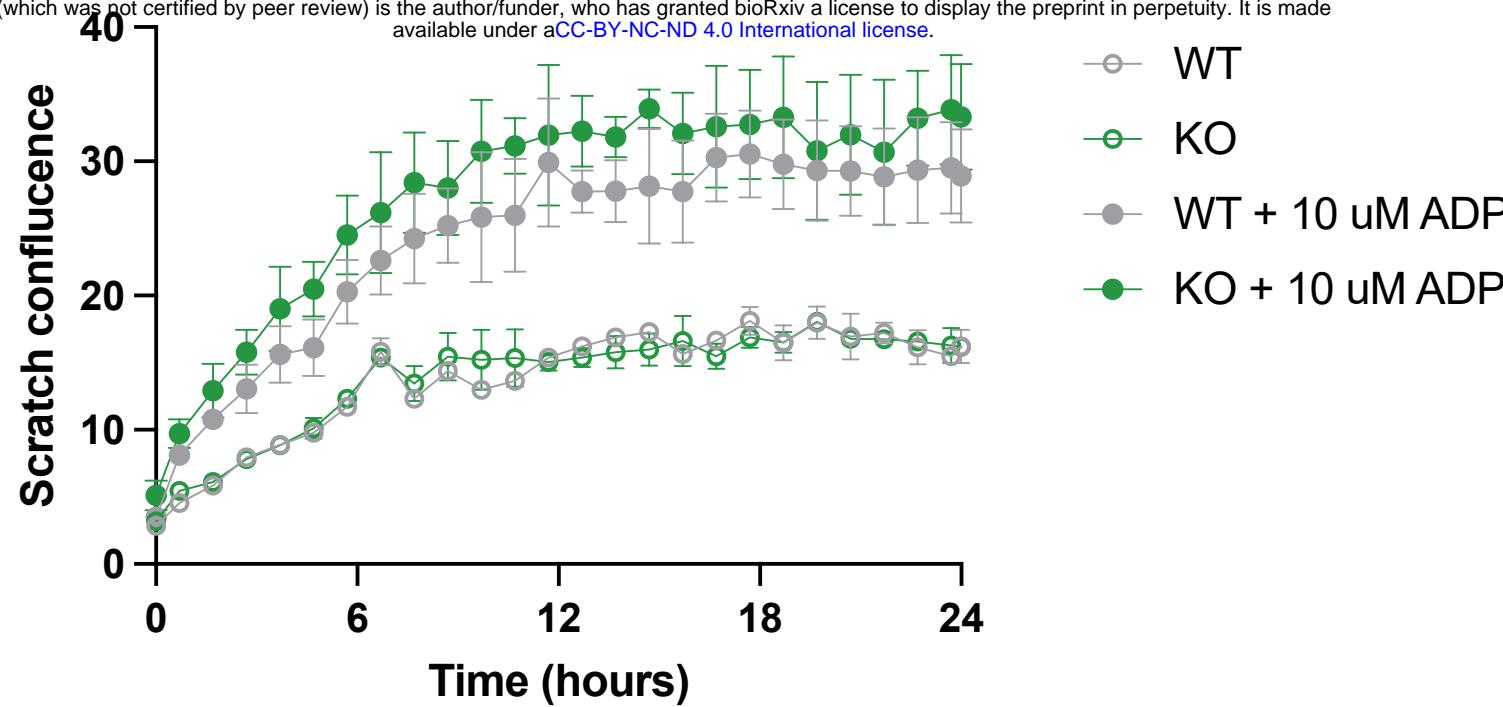


Figure 7

A**B****C**

Figure 7-figure supplement 1

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.24.457491>; this version posted January 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

