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ABSTRACT 1 

We analyzed whole genome and RNA sequencing data from 2,733 African American and Hispanic/Latino 2 

children to explore ancestry- and heterozygosity-related differences in the genetic architecture of whole blood 3 

gene expression. We found that heritability of gene expression significantly increases with greater proportion 4 

of African genetic ancestry and decreases with higher levels of Indigenous American ancestry, consistent with 5 

a relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the 6 

prevalence of statistically significant ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% 7 

in African ancestry and 8% for Indigenous American ancestry segments. Most of the anc-eQTLs (89%) were 8 

driven by population differences in allele frequency, demonstrating the importance of measuring gene 9 

expression across multiple populations. Transcriptome-wide association analyses of multi-ancestry summary 10 

statistics for 28 traits identified 79% more gene-trait pairs using models trained in our admixed population than 11 

models trained in GTEx. Our study highlights the importance of large and ancestrally diverse genomic studies 12 

for enabling new discoveries of complex trait architecture and reducing disparities.  13 
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INTRODUCTION 14 

Gene expression has been extensively studied as a trait affected by genetic variation in humans1. Expression 15 

quantitative trait loci (eQTLs) have been identified in most genes2–4 and extensive analyses across multiple 16 

tissues have demonstrated both tissue-specific and shared eQTLs2. Genome-wide association studies 17 

(GWAS) tend to identify loci that are enriched for eQTLs5. Colocalization of eQTLs with GWAS has become 18 

an important element of identifying causal genes and investigating the biology underlying genetic susceptibility 19 

to disease6. More recently, transcriptome-wide association studies (TWAS) have been developed to 20 

systematically leverage eQTL data by imputing transcriptomic profiles in external datasets, which has led to 21 

the discovery of trait-associated genes that were often missed by GWAS7,8. 22 

GWAS have identified thousands of loci for hundreds of diseases and disease-related phenotypes in human 23 

populations9. However, non-European ancestry populations are significantly under-represented in GWAS10,11 24 

and in studies of gene expression and eQTLs. We and others have shown that gene expression prediction 25 

models trained in predominantly European ancestry reference datasets, such as the Genotype-Tissue 26 

Expression (GTEx) project2, have substantially lower accuracy to predict gene expression levels when applied 27 

to populations of non-European ancestry3,12,13. The importance of having ancestry-matched training datasets 28 

for prediction accuracy is also reflected by the limited cross-population portability of other multi-SNP prediction 29 

models, such as polygenic risk scores (PRS)14–16. Therefore, the limited diversity in genetic association studies 30 

and reference datasets is a major obstacle for applying existing integrative genomic studies to non-European 31 

populations. 32 

To address this gap, we leveraged whole genome and RNA sequencing data from 2,733 African American and 33 

Latino children from the Genes-environments and Admixture in Latino Americans (GALA II) study and the 34 

Study of African Americans, Asthma, Genes, and Environments (SAGE) to characterize the genetic 35 

architecture of whole blood eQTLs. The diversity within the GALA II/SAGE population enabled us to evaluate 36 

how genetic ancestry relates to the heritability of gene expression, and systematically quantify the prevalence 37 

of ancestry-specific eQTLs. Lastly, we developed a powerful set of TWAS models from these datasets to 38 

facilitate genetic association analyses in multi-ancestry populations. 39 

RESULTS 40 

Demographic characteristics of GALA II and SAGE participants 41 

We analyzed data from a total of 2,733 participants from the GALA II and SAGE asthma case-control studies, 42 

including 757 self-identified African Americans (AA), 893 Puerto Ricans (PR), 784 Mexican Americans (MX), 43 

and 299 other Latinos (LA) who did not self-identify as Mexican American or Puerto Rican (Table 1, Table S1). 44 

All four grandparents of each study participant also identified as Latino for GALA II or African American for 45 

SAGE. The median age of the participants varied from 13.2 (PR) to 16.0 (AA) years old. About 50% of the 46 

participants were female and 45% (MX) to 62% (PR) had physician-diagnosed asthma. For each participant 47 
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we estimated genome-wide genetic ancestry (global ancestry) proportions, visualized in Figure 1. Median 48 

global African ancestry was highest in AA (82.6%), followed by PR (19.7%), and lowest in MX (3.5%). 49 

Variability in gene expression accounted by common genetic variation increases with African ancestry 50 

We compared the heritability (h2) and genetic variance (VG) of whole blood gene expression across self-51 

identified race/ethnicity groups (AA, PR, MX) and populations defined based on genetic ancestry. There was 52 

a positive association between increasing proportion of African ancestry and variability of gene expression 53 

attributed to common genetic variation (minor allele frequency [MAF] ≥0.01) within the cis-region (see 54 

Methods). Across 17,657 genes, cis-heritability (Figure 2A) was significantly higher in AA (median h2=0.097) 55 

compared to PR (h2=0.072; Wilcoxon rank sum test: p=2.2×10-50) and MX (h2=0.059; p=3.3×10-134), as well as 56 

PR compared to MX (p=2.2×10-25). Genetic variance (Figure 2B) of whole blood transcript levels in AA (median 57 

VG=0.022) was higher than in PR (VG=0.018, p=4.0×10-19) and in MX (VG=0.013, p=5.6×10-135). Results 58 

remained unchanged when sample size was fixed to n=600 in all populations (Figure S1), with higher heritability 59 

and genetic variance in AA (h2=0.098; VG=0.022) compared to PR (h2=0.072; VG=0.017) and MX (h2=0.062; 60 

VG=0.012).  61 

Next, we compared the distribution of h2 (Figure 2C) and VG (Figure 2D) between participants grouped based 62 

on proportions of global genetic ancestry (Table S3). Among participants with >50% African ancestry (AFRhigh, 63 

n=721) cis-heritability (h2=0.098) and genetic variance (VG=0.022) were higher than in n=1011 participants with 64 

<10% global African ancestry (AFRlow:  h2=0.060, PWilcoxon=9.6×10-126; VG=0.013, PWilcoxon=7.6×10-106). Among 65 

individuals with >50% Indigenous American (IAM) ancestry (IAMhigh, n=610), cis-heritability (h2=0.059) and 66 

genetic variance (VG=0.012) were lower than in subjects with <10% IAM ancestry (IAMlow: h2=0.084, p=3.1×10-67 

103; VG=0.020, PWilcoxon=3.1×10-158). To further characterize these findings, we partitioned h2 and VG by coarse 68 

MAF bins (Figure S2). Although h2 and VG remained higher in AFRhigh compared to AFRlow, the magnitude of 69 

this difference was more pronounced in the 0.01≤ MAF ≤ 0.10 bin (h2: 0.032 vs. 0.013, PWilcoxon=1.8×10-310) 70 

than for variants with MAF>0.10 (h2: 0.038 vs. 0.027, PWilcoxon=2.2×10-55). Larger differences in h2 and VG 71 

among 0.01≤ MAF ≤ 0.10 variants were also observed for IAMhigh and IAMlow.  72 

We also investigated the impact of ancestry at the locus level, defined as the number of alleles (0, 1 or 2) 73 

derived from each ancestral population at the transcription start site (Table S4). For each gene, individuals with 74 

homozygous local African ancestry (AFR/AFR) were compared to those with heterozygous local African and 75 

European ancestry (AFR/EUR). Heritability was significantly higher in AFR/AFR homozygotes (h2=0.096) 76 

compared to AFR/EUR (h2=0.084, PWilcoxon=1.4×10-14), and lower in IAM/IAM (h2=0.055) compared to IAM/EUR 77 

(h2=0.064, p=1.6×10-7; Figure 2E). Compared to global ancestry, the magnitude of differences in VG was 78 

attenuated, but remained statistically significant for AFR (VG=0.020 vs. VG=0.019, p=2.0×10-7) and IAM 79 

(VG=0.010 vs. VG=0.012, p=1.62×10-8; Figure 2F; Table S4). Results were also consistent for VG comparisons 80 

within race/ethnicity groups for AFR (AA: PWilcoxon=5.7×10-5; PR: PWilcoxon=2.0×10-7) and IAM (MX: p=2.0×10-7) 81 

(Table S4). 82 
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As a parallel approach to evaluating heritability, we applied LDAK (Linkage Disequilibrium Adjusted Kinships), 83 

which assumes that SNP-specific variance is inversely proportional not only to MAF, but also to LD tagging17. 84 

Estimates obtained using LDAK-Thin and GCTA were nearly identical for self-identified groups (AA: h2=0.094; 85 

PR: h2=0.071; MX: h2=0.059) and across strata based on global genetic ancestry (AFRhigh: h2=0.104; AFRlow: 86 

h2=0.066, IAMhigh: h2=0.062; IAMlow h2=0.093), suggesting that our results were not sensitive to the 87 

assumptions of the GCTA model (Table S5). 88 

Lastly, we tabulated the number of heritable genes for which global and/or local ancestry was significantly 89 

associated (FDR<0.05) with transcript levels (Figure S3). Global AFR ancestry was associated with the 90 

expression of 326 (2.4%) and 589 (4.5%) of heritable genes in AA and PR, respectively (Table S6). 91 

Associations with local, but not global, AFR ancestry were more common (8.9% in AA; 10.9% in PR), and 92 

relatively few genes were associated with both measures of ancestry (1.5% in AA and 2.5% in PR). Among 93 

genes associated with both global and local AFR ancestry in AA, global AFR ancestry explained 1.8% of 94 

variation in gene expression, while local AA accounted for 3.8% (Figure S3). Local IAM ancestry was 95 

associated with the expression of 9.8% of genes in MX, compared to 2.8% for global IAM ancestry. Among 96 

genes associated with both, local IAM ancestry accounted for 3.5% variation in transcript abundance, while 97 

global IAM ancestry accounted for 1.8%. 98 

Assessment of ancestry-specific eQTLs 99 

We next sought to understand patterns of cis-eQTLs in the admixed GALA/SAGE study participants. A total of 100 

19,567 genes with at least one cis-eQTL (eGenes) were found in the pooled sample. The largest number of 101 

eGenes was detected in AA (n=17,336), followed by PR (n=16,975), and MX (n=15,938) participants (Table 102 

S7, Figure S4). In analyses stratified by global genetic ancestry the number of eGenes was similar in AFRhigh 103 

(n=17,123) and AFRlow (n=17,146) groups (Table S7). When sample size was fixed to n=600 for all ancestry 104 

groups (Table S7), the highest number of eGenes (n=16,100) was observed in AFRhigh, followed by IAMlow 105 

(n=14,866), IAMhigh (n=14,419), and AFRlow (n=14,344). The number of LD-independent (r2<0.10) cis-eQTLs 106 

per gene was significantly higher in AFRhigh than AFRlow (PWilcoxon=2.7×10-246), with 63% of genes having more 107 

independent cis-eQTLs in AFRhigh compared to AFRlow (Figure S5). Conversely, the number of independent 108 

cis-eQTLs detected in IAMhigh was lower than in IAMlow (PWilcoxon=2.8×10-33). 109 

To characterize ancestry-related differences in the genetic regulation of gene expression, we developed a 110 

three-tier framework for identifying ancestry-specific eQTLs, which we refer to as anc-eQTLs (see Methods; 111 

Figure 3A; Table S8-S9). For heritable protein-coding genes, we first compared the overlap in 95% credible 112 

sets of cis-eQTLs identified in participants with >50% global ancestry (AFRhigh; IAMhigh) and those with <10% 113 

of the same global ancestry (AFRlow; IAMlow). For genes with non-overlapping 95% credible sets, we 114 

distinguished between population differences in MAF (Tier 1) and LD (Tier 2). For genes with overlapping 95% 115 

credible sets, eQTLs were further examined for evidence of effect size heterogeneity between ancestry groups 116 

(Tier 3).  117 
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Tier 1 anc-eQTLs (ancestry-specific enrichment) were common (MAF ≥ 0.01) only in individuals with >50% 118 

AFR or IAM ancestry and were thus considered to be the most ancestry specific. Over 28% (n=2,695) of genes 119 

contained at least one Tier 1 AFRhigh anc-eQTL, while 7% (n=562) of genes contained a Tier 1 IAMhigh anc-120 

eQTL (Table S9). A representative example of a Tier 1 AFRhigh anc-eQTL is rs3211938 (CD36), which has 121 

MAF=0.077 in AFRhigh and MAF=0.0020 in AFRlow, (Figure 3B). This variant been linked to high density 122 

lipoprotein (HDL) cholesterol levels in several multi-ancestry GWAS that included African Americans18–20. 123 

Tier 2 anc-eQTLs (ancestry-specific LD patterning) had MAF ≥ 0.01 in both high (>50%) and low (<10%) global 124 

ancestry groups and were further interrogated using PESCA21 to account for population-specific LD patterns. 125 

There were 109 genes (1.1%) that contained eQTLs with a posterior probability (PP) >0.80 of being specific to 126 

AFRhigh and 33 genes (0.4%) matching the same criteria for IAMhigh (Table S9). For instance, two lead eQTLs 127 

with non-overlapping credible sets were detected for TRAPPC6A in AFRhigh (rs12460041) and AFRlow 128 

(rs7247764) groups (Figure 3D-3F). These variants were in low LD (r2=0.10 in AFRhigh and r2=0.13 in AFRlow) 129 

and PESCA analysis confirmed that rs12460041 was specific to AFRhigh (PP>0.80). 130 

Over 50% of heritable protein-coding genes (AFR: n=5,058; IAM: n=5,355) had overlapping 95% credible sets 131 

of eQTLs between high and low ancestry groups. Among these shared signals, there was a small proportion 132 

of eQTLs that exhibited significant effect size heterogeneity (Tier 3, ancestry-related heterogeneity: 2.0% for 133 

AFRhigh; 1.0% for IAMhigh). For instance, rs34247110 and rs3734618 were included in 95% credible sets for 134 

KCNK17 in AFRhigh and AFRlow with significantly different effect sizes (Cochran’s Q p-value=1.8×10-10) in each 135 

population (Figure 3C). One of these variants, rs34246110, was associated with type 2 diabetes in two 136 

independent studies performed in Japanese and multi-ancestry (European, African American, Hispanic and 137 

Asian) populations22,23. The detection of this variant in multiple populations is consistent with Tier 3 variants 138 

denoting eQTL signals that are shared between ancestries but may have different magnitudes of effect.  139 

The prevalence of any Tier 1, 2, or 3 anc-eQTL was 30% (n=2,961) for AFR ancestry and 8% (n=679) for IAM 140 

ancestry. Overall, 3,333 genes had anc-eQTLs for either ancestry. The remaining genes (AFR: n=6,648; IAM: 141 

n=7,836) did not contain eQTLs with ancestry-related differences in MAF, LD, or effect size as outlined above. 142 

Increasing the global ancestry cut-off to >70% did not have an appreciable impact on anc-eQTLs in AFRhigh 143 

(28.1% overall; 27.3% for Tier 1), but substantially decreased the number of anc-eQTLs in IAMhigh (3.3% 144 

overall; 3.3% Tier 1), likely due to a greater reduction in sample size in this group (n=212 vs. n=610; Table 145 

S10). Considering all protein-coding genes (n=13,535) without filtering based on heritability, the prevalence of 146 

anc-eQTLs is 22% for AFRhigh, 5% for IAMhigh, and 25% overall. The observation that anc-eQTLs were more 147 

common in participants with >50% global AFR ancestry aligns with the higher h2 and VG in this population, as 148 

well as a greater number of LD-independent cis-eQTLs in AFRhigh compared to AFRlow (Figure S5). Among 149 

genes with Tier 1 and Tier 2 anc-eQTLs, 83% had higher h2 estimates in AFRhigh than in AFRlow, while this was 150 

observed in 57% of genes without any ancestry-specific eQTLs 57% (Figure S6).  151 
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Despite the limited representation of subjects from diverse ancestries in studies from the NHGRI-EBI GWAS 152 

catalog24, we detected 70 unique anc-eQTLs associated with 84 phenotypes (Table S11). Most of these were 153 

Tier 3 anc-eQTLs (59%) that mapped to blood cell traits, lipids, and blood protein levels. To further explore the 154 

relevance of the eQTLs identified in our analysis to other complex traits, we performed colocalization with 155 

summary statistics for 28 traits from the multi-ancestry PAGE study20 (see Methods). We identified 78 eQTL-156 

trait pairs (85 eGene-trait pairs) with strong evidence of a shared genetic, defined as PP4>0.80, 16 of which 157 

were anc-eQTLs (Table S12). One compelling example is rs7200153, AFRhigh Tier 1 anc-eQTL for the 158 

haptoglobin (HP) gene, which colocalized with total cholesterol (PP4=0.997; Figure S7). Fine-mapping limited 159 

the 95% credible set to two variants in high LD (r2=0.75): rs7200153 (PPSNP=0.519) and rs5471 (PPSNP=0.481). 160 

Although rs7200153 had a slightly higher PPSNP, rs5471 is likely to be the true causal variant given its proximity 161 

to the HP promoter, stronger effect of HP expression, and experimental data demonstrating decreased 162 

transcriptional activity for rs5471-C in West African populations25–27. Prior studies have identified HP as having 163 

an effect on cholesterol and the association of rs5471 is well supported by multi-ancestry genetic association 164 

studies19,28,29.  165 

Although our primary assessment of ancestry-specific eQTLs focused on variants in cis, we also performed 166 

trans-eQTL analyses that identified 33 trans-eGenes in AA, 52 trans-eGenes in PR, and 51 trans-eGenes in 167 

MX subjects (see Methods; Table S13). Analyses stratified by genetic ancestry detected 36 independent (LD 168 

r2<0.10) trans-eQTLs and 31 eGenes, 26 of which (24 eGenes) were found in AFRhigh but not in AFRlow. Fewer 169 

independent signals were detected in participants with >50% Indigenous American ancestry (26 trans-eQTLs), 170 

of which 23 trans-eQTLs were not detected in the IAMlow group. 171 

Gene expression prediction models from admixed populations increase power for gene discovery 172 

We generated gene expression imputation models from GALA II and SAGE following the PrediXcan approach7. 173 

We used the pooled population (n=2,733) to generate models with significant prediction (see Methods) for 174 

11,830 heritable genes with mean cross-validation (CV) R2=0.157 (Table S13, Figure S8). We also generated 175 

population-specific models for African Americans (10,090 genes, CV R2=0.180), Puerto Ricans (9,611 genes, 176 

CV R2=0.163), and Mexican Americans (9,084 genes, CV R2=0.167). In sensitivity analyses that adjusted for 177 

local ancestry (Table S14), we did not observe gains in predictive performance (AA: CV R2=0.177; PR: CV 178 

R2=0.154; MX: CV R2=0.159). 179 

Validation of GALA/SAGE TWAS models and comparison with GTEx v8 was performed in the Study of Asthma 180 

Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE)30, an independent adult 181 

population of 598 African Americans (Figure S9). Validation accuracy was proportional to the degree of 182 

alignment in ancestry between training and testing study samples. For 5,254 genes with TWAS models 183 

available in GALA/SAGE and GTEx, median correlation between genetically predicted and observed transcript 184 

levels in SAPPHIRE was highest for pooled (Pearson’s r = 0.086) and AA (Pearson’s r = 0.083) models and 185 

lowest for GTEx (Pearson’s r = 0.049).  186 
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To evaluate the potential of TWAS models generated in the pooled GALA II and SAGE population (hereafter 187 

referred to as GALA/SAGE models) to improve gene discovery in admixed populations, we applied our models 188 

to GWAS summary statistics for 28 traits from the multi-ancestry Population Architecture using Genomics and 189 

Epidemiology (PAGE) study20 and conducted parallel analyses using TWAS models based on GTEx v82,7 and 190 

the Multi-Ethnic Study of Atherosclerosis (MESA)3. GTEx v8 whole blood models are based on 670 subjects 191 

of predominantly European ancestry (85%)2. MESA models impute monocyte gene expression3 based on a 192 

sample of African American and Hispanic/Latino individuals (MESAAFHI: n=585). As such, populations included 193 

in MESA and PAGE more closely resemble the ancestry composition of our GALA/SAGE populations. 194 

The number of genes with available TWAS models was 39% to 82% higher in GALA/SAGE compared to GTEx 195 

(n=7,249) and MESAAFHI (n=5,555). Restricting to 3,143 genes shared across all three models, CV R2 was 196 

significantly higher in GALA/SAGE compared to GTEx (PWilcoxon=4.6×10-159) and MESAAFHI (PWilcoxon=1.1×10-197 

64), which is expected based on the large sample size of GALA/SAGE (Figure 4A). TWAS models generated 198 

in GALA/SAGE AA (n=757) attained higher CV R2 than GTEx (PWilcoxon=2.2×10-103), which had a comparable 199 

training sample size (n=670), and MESAAFA models (p=6.2×10-43) trained in 233 individuals (Figure 4B).  200 

Association results across 28 PAGE traits demonstrate that TWAS using GALA/SAGE pooled models identified 201 

a larger number of significant gene-trait pairs (n=380, FDR<0.05), followed by MESAAFHI (n=303), and GTEx 202 

(n=268), with only 30 genes (35 gene-trait pairs) significant in all three analyses (Figure 4C). GALA/SAGE 203 

models yielded a larger number of associated genes than MESA in 80% of analyses (binomial test: p=0.012) 204 

and 79% compared to GTEx (binomial test: p=0.019). Of the 330 genes with FDR<0.05 in GALA/SAGE, 143 205 

(43%) were not present in GTEx and 199 (60%) were not present in MESAAFHI. For genes that were significant 206 

in at least one TWAS, z-scores in GALA/SAGE were highly correlated with GTEx (Figure 4C; r =0.74, p=3.5×10-207 

64) and MESAAFHI (Figure 4D; r = 0.55, p=8.5×10-27), suggesting that most genes have concordant effects even 208 

if they fail to achieve statistical significance in both analyses. Despite the higher correlation with GTEx z-scores, 209 

we observed a higher proportion of gene-trait pairs with FDR<0.05 in GALA/SAGE but not even nominally 210 

associated (PTWAS<0.05) in GTEx (33%), compared to 18% in MESAAFHI. 211 

HDL cholesterol exhibited one of the largest differences in TWAS associations, with over 60% more significant 212 

genes identified using GALA/SAGE models (n=29) than GTEx predictions (n=11; Figure 4C). TWAS models 213 

for several associated genes, including those with established effects on cholesterol transport and metabolism, 214 

like CETP, were not available in GTEx. The top HDL-associated gene, CD36 (z-score= -10.52, PTWAS=6.9×10-215 

26) had Tier 1 AFRhigh anc-eQTLs (rs3211938) that were not present at an appreciable frequency in populations 216 

with low African ancestry (MAF in European = 1.3×10-4). The difference in MAF may explain why CD36 was 217 

not detected using GTEx (z-score=0.057, PTWAS=0.95), even though all 43 variants from the GTEx model were 218 

available in PAGE summary statistics. In addition to HDL cholesterol levels, CD36 expression was also 219 

associated with levels of C-reactive protein (z-score= 5.30, PTWAS=1.1×10-7). 220 
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Although GALA/SAGE multi-ancestry TWAS models showed robust performance, in some cases population-221 

specific models may be preferred to achieve better concordance in ancestry between the training and testing 222 

populations. For instance, benign neutropenia is a well-described phenomenon in persons of African ancestry 223 

and is almost entirely attributed to variation in the 1q23.2 region. Applying GALA/SAGE AA models to a meta-224 

analysis of 13,476 African Ancestry individuals31 identified 139 genes (FDR<0.05), including ACKR1 225 

(PTWAS=1.5×10-234), the atypical chemokine receptor gene that is the basis of the Duffy blood group system 226 

(Figure 5B). This causal gene was missed by GTEx and MESAAFA, which detected 100 and 55 genes at 227 

FDR<0.05, respectively. TWAS using GALA/SAGE AA also detected 7 genes that were not previously reported 228 

in GWAS: CREB5 (PTWAS=1.5×10-14), DARS (PTWAS=2.9×10-8), CD36 (PTWAS=1.1×10-5), PPT2 (PTWAS=1.3×10-229 

5), SSH2 (PTWAS=4.7×10-5), TOMM5 (PTWAS=2.9×10-4), and ARF6 (PTWAS=3.4×10-4).  230 

Next, we applied GALA/SAGE AA and GTEx models to summary statistics for 22 blood-based biomarkers and 231 

quantitative traits from the UK Biobank (UKB). Ancestry-matched TWAS of UKB AFR (median GWAS n=6,190) 232 

identified 56 gene-trait associations (FDR<0.05), whereas ancestry-discordant analyses using GTEx detected 233 

92% fewer statistically significant associations, with only 5 genes (Figure S10). TWAS z-scores for associated 234 

genes from the two analyses were modesty correlated (r=0.37, 95% CI: -0.01 – 0.66). TWAS in UKB EUR 235 

(median GWAS n=400,223) also illustrated the advantage of ancestry-matched analyses, but the difference 236 

was less dramatic, with a 15% decrease in the number of genes that reached FDR<0.05 using GALA/SAGE 237 

AA models, and strong correlation between z-scores (r=0.77, 95% CI: 0.76-0.78). With the exception of 238 

hemoglobin, where GTEx yielded 1196 genes and AA models detected 326, the number of TWAS-significant 239 

findings per trait was comparable. Concordance between significant associations across the 22 traits was 28%, 240 

ranging from 1306 (32.7%) genes for height to 108 (7.6%) genes for hemoglobin.  241 

DISCUSSION 242 

Our comprehensive analysis in a large, multi-racial/multi-ethnic population elucidated the role of genetic 243 

ancestry in shaping the genetic architecture of whole blood gene expression that may be applicable to other 244 

complex traits. We found that cis-heritability of gene expression increased with higher proportion of global 245 

African ancestry, and that in admixed populations with intermediate global ancestry, cis-heritability was also 246 

highest in individuals with predominantly local African ancestry. Parallel analyses of Indigenous American 247 

Ancestry revealed an inverse relationship – with genetic variance and cis-heritability decreasing in individuals 248 

with higher levels of Indigenous American compared to European ancestry. The consistency across analyses 249 

of global and local ancestry within self-identified race/ethnicity groups (African Americans or Puerto Ricans) 250 

and the pooled GALA/SAGE population suggests that confounding by social or environmental factors is an 251 

unlikely explanation for these results. The same pattern was observed for genetic variance, which further 252 

supports that differences in heritability between ancestry groups do not simply reflect differences in the relative 253 

contribution of environmental factors. 254 
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To our knowledge, this relationship between ancestry and heritability has not been previously demonstrated 255 

for whole blood gene expression, particularly using WGS data in a sufficiently large and diverse population. 256 

Our findings are consistent with the overall pattern of heterozygosity in African and Indigenous American 257 

populations. Sub-Saharan African populations consistently show the highest heterozygosity since the 258 

ancestors of all other populations passed through a bottleneck during their migration out of Africa32,33. 259 

Indigenous American populations have passed through additional bottlenecks34,35. With every bottleneck event 260 

there is a loss of variation and a concomitant loss of heterozygosity36. Therefore, greater genetic control of 261 

gene expression in African ancestry populations may be a function of higher heterozygosity resulting in more 262 

segregating functional variants in the cis-region37. This interpretation is also supported by the higher number 263 

of LD-independent cis-eQTLs, overall and per-gene, in AFRhigh compared to AFRlow and groups. 264 

A second major finding of our work is that over 30% of heritable protein-coding genes have ancestry-specific 265 

eQTLs, most of which are Tier 1 variants that are rare (MAF < 0.01) or even non-polymorphic in another 266 

population. The prevalence of the Tier 1 class remained stable when the global ancestry cut-off was increased 267 

from 50% to 70% for AFRhigh and IAMhigh groups. Our findings align with a recent plasma proteome analysis of 268 

the Atherosclerosis Risk in Communities (ARIC) study, which found that nearly 33% of pQTLs identified in a 269 

large sample of African Americans (n=1871) were nonexistent or rare in the 1000 Genomes EUR population38. 270 

Tier 2 anc-eQTLs are an interesting class of variants that are present at a sufficient frequency (MAF>0.01) in 271 

both ancestry groups, but do not belong to the same gene-specific credible set. Tier 2 eQTLs could arise due 272 

to differences in environmental effects on gene expression, gene-by-gene and gene-by-environment 273 

interactions, or multiple causal variants at the same locus that are in different degrees of LD with each other. 274 

Among eQTL signals that were shared between ancestry groups effect size heterogeneity was rare. The Tier 275 

3 class of eQTLs was effectively eliminated when AFRhigh and IAMhigh were defined using 70% as the global 276 

ancestry cut-off, suggesting that heterogeneity in allelic effects is not a major determinant of ancestry-related 277 

eQTL differences. However, comparisons of marginal effect sizes are challenging and confounded by 278 

differences in sampling error, particularly when there is an imbalance in sample size between populations. 279 

Therefore, we may have underestimated ancestry-related heterogeneity in eQTL effects. 280 

Our third major finding relates to the importance of comprehensively accounting for genetic determinants of 281 

trait variation in multi-ethnic populations, as illustrated in our TWAS results for 28 traits from the PAGE study. 282 

TWAS models trained in the racially/ethnically and ancestrally diverse GALA/SAGE study identified 283 

significantly more trait-associated genes than both GTEx and MESA. When applied to admixed populations, 284 

GALA/SAGE imputation models benefit from having more similar allele frequency profiles to the target 285 

datasets, such as PAGE, as well as more accurate modeling of LD. This is consistent with the findings of 286 

Geoffroy et al.13 using GTEx and MESA models, as well as other observations12,13 that ancestry-matched 287 

models improve power for gene discovery in admixed populations. Over 40% of significantly associated TWAS 288 

genes detected using GALA/SAGE models were not available in GTEx, which underscores how biologically 289 

meaningful associations may be overlooked in studies that exclusively rely on European ancestry-based 290 
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predictions. The top two HDL cholesterol-associated genes, CETP in 16q13 and CD36 in 7q21, with 291 

established effects on lipid metabolism19,39–41, were not detected in TWAS using GTEx due differences in 292 

eQTLs. The finding for CD36 is compelling since this gene was associated with multiple phenotypes and 293 

contains Tier 1 anc-eQTLs that are specific to individuals with >50% African ancestry, consistent with earlier 294 

findings that evolutionary pressures have elevated genetic divergence at this locus42,43. CD36 encodes a 295 

transmembrane protein that binds many ligands, including collagen, thrombospondin, and long-chain fatty 296 

acids, and also serves as a negative regulator of angiogenesis44. Beyond lipid metabolism, the main functions 297 

of CD36 involve mediating the adherence of erythrocytes infected with Plasmodium falciparum, the parasite 298 

that causes severe malaria45,46. 299 

However, the most striking example of ancestry-specific genetic architecture in our TWAS involves the Duffy 300 

antigen receptor gene (ACKR1) on 1q23.2, which is responsible for persistently lower white blood cell and 301 

neutrophil counts in populations of predominantly African ancestry47,48. Common African-derived alleles at this 302 

locus confer a selective advantage against Plasmodium vivax malaria and are extremely rare in European 303 

ancestry populations. Expression of ACKR1 could not be imputed using GTEx or MESA, but this causal gene 304 

was captured by the pooled and AA-specific GALA/SAGE TWAS models. We also replicated PSMD3 in 305 

17q2149, which was previously identified in African Americans, and several genes that were discovered in 306 

European ancestry populations (CREB5, SSH2, and PPT2)50. Ancestry-matched TWAS models identified 11 307 

genes associated with neutrophil counts outside of the Duffy locus, including novel genes that have not 308 

previously been linked to hematologic traits: DARS1 in 2q31.1 modulates reactivity to mosquito antigens51, 309 

while TOMM5 has been implicated in lipoprotein phospholipase A2 activity52. 310 

Our TWAS in UKB illustrated that while ancestry-matched training and testing populations are clearly optimal, 311 

there is also evidence that transcriptome prediction models developed in African Americans may have better 312 

cross-population portability than models based on predominantly European ancestry samples such as GTEx. 313 

Across 22 blood-based biomarkers and traits, the loss of signal was less dramatic in ancestry-discordant 314 

analyses that applied models trained in GALA/SAGE African Americans to GWAS summary statistics from 315 

UKB EUR subjects than the reverse (15% vs. 92% fewer statistically significant findings). The correlation of 316 

TWAS z-scores from ancestry-matched and ancestry-discordant analyses was also lower in UKB AFR than 317 

UKB EUR. Similar asymmetric performance has been demonstrated for proteome-wide models in ARIC37, 318 

where predicted R2 standardized by cis-h2 was higher for AA models applied to EU than for EU modes in AA. 319 

We hypothesize that greater genetic diversity of African ancestry populations allows for a more comprehensive 320 

set of genetic predictors of transcript levels to be captured by the TWAS models, whereas only a fraction of 321 

these variants may be present in populations that underwent additional bottlenecks. Taken together, these 322 

findings highlight the value of genetic prediction models trained in ancestrally diverse populations as a resource 323 

for identifying trait-associated genes in important biological pathways and advancing research in admixed 324 

populations.  325 
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PAGE TWAS z-scores were highly correlated across transcriptome models, although the magnitude of 326 

correlation with GALA/SAGE was higher for GTEx than MESAAFHI results, which may partly reflect the lack of 327 

neutrophils present in monocyte gene expression in MESAAFHI compared to whole blood in GALA/SAGE and 328 

GTEx2. Furthermore, both GALA/SAGE and GTEx conducted whole-genome sequencing, whereas MESA 329 

TWAS models are based on imputed genotype data. However, when comparing GALA/SAGE and MESA there 330 

were few instances where a gene was significantly associated based on one model and null using another or 331 

associated in both analyses with opposite directions of effect, suggesting that similarity in ancestry may partly 332 

compensate for differences in cell type. While our study population is comprised of participants under 21 years 333 

of age, TWAS of biomarkers and chronic conditions in adults from PAGE and UKB identified more associated 334 

genes than adult-derived prediction models. This implies that the power gained from ancestry-matched models 335 

trained in an adequately sized population may outweigh differences in age. 336 

Given that the genetic architecture of complex traits is, to a variable degree, mirrored by the genetics of gene 337 

expression53, higher heritability in individuals with at least 50% global African ancestry implies that genetic 338 

prediction of complex traits should be at least as accurate, if not more effective, in these populations. However, 339 

for most complex traits the performance of polygenic prediction models in admixed and predominantly African 340 

ancestry individuals lags significantly behind other populations15, particularly those of European ancestry, likely 341 

due to insufficient sample size and underrepresentation in discovery studies. This is also supported by 342 

simulation-based studies and accumulating results from well-powered analyses of diverse cohorts37,54,55. While 343 

these results argue for ancestry-specific estimates of heritability, and the importance of context in heritability 344 

estimation, it is important to note that there continues to be a preponderance of relevant ancestry-specific 345 

eQTLs across diverse populations. It continues to be important to study and engage with diverse populations 346 

across the globe, rather than continue to focus on single-population studies and predictive models. 347 

The substantial prevalence of ancestry-specific eQTLs driven by allele frequency differences also implies that 348 

analytic approaches alone will yield limited improvements in the cross-population portability of genetic 349 

prediction models, including TWAS and polygenic risk scores. For instance, fine-mapping methods that 350 

account for differential LD tagging to identify causal variants will recover some deficits in prediction 351 

performance but will not compensate for unobserved risk variants. Our results reinforce the conclusion that 352 

developing truly generalizable genetic prediction models requires capturing the full spectrum of genetic 353 

variation across human populations. As such, access to sufficiently large ancestrally diverse populations 354 

remains the main rate-limiting step. 355 

In evaluating the contributions of our work, several limitations should be acknowledged. Our study was limited 356 

to whole blood and similar analyses of ancestry-specific effects should be performed for other tissues. 357 

However, whole blood is one of the most clinically-informative and commonly-collected samples, and for over 358 

60% of genes whole blood transcriptomes significantly capture expression levels in other tissues56. Thus, our 359 

observations regarding the genetic architecture of whole blood eQTLs in admixed populations with African and 360 
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Indigenous American ancestry are likely generalizable to other tissues. Our approach for classifying ancestry-361 

specific eQTLs may result in an underestimation of the number of these loci. We assumed that each gene had 362 

one causal eQTL locus and focused all comparisons on the corresponding 95% credible set. This assumption 363 

is likely violated for genes with multiple independent eQTLs, which would limit our ability to assess the ancestry-364 

specificity of all signals. We believe this is a conservative assumption that would lead us to potentially miss 365 

some ancestry-specific eQTLs. Detection of our Tier 2 anc-eQTLs by PESCA relies on having regions that are 366 

approximately LD independent in both populations to estimate the proportion of causal variants. This estimate 367 

may be biased if there is residual LD between regions, which is a challenge in admixed populations with longer-368 

range LD. Lastly, our comparison of TWAS models may be slightly biased against GTEx in European ancestry 369 

TWAS since we did not apply MASHR models, which predict a larger number of genes using fine-mapped 370 

eQTLs57. We chose to compare with elastic net GTEx models because GALA/SAGE TWAS models were 371 

developed using the same analytic pipeline.  372 

Although there is evidence that accounting for local ancestry increases power for discovery in cis-eQTL 373 

mapping58,59, adjustment for local ancestry as a covariate did not improve the predictive performance of TWAS 374 

models. Previous work by Gay et al. reported that local ancestry explains at least 7% of the variance in residual 375 

expression for 1% of expressed genes in 117 admixed individuals from GTEx 58. In GALA II/SAGE, we found 376 

that local ancestry was a significant predictor of transcript levels for at least 10% of heritable genes, explaining 377 

between 2.1% (in 893 Puerto Ricans) and 5.1% (in 757 African Americans) of residual variance. Consistent 378 

with Gay et al., we observed that local ancestry explains a larger proportion of variance in gene expression 379 

corrected for global ancestry. However, it is possible that the lack of improvement in the TWAS context may 380 

be due to overadjustment as local ancestry may serve as a proxy for information already captured by 381 

population-specific genetic variants, or because of how local ancestry was modelled in our analyses. 382 

Despite these limitations, our study leveraged a uniquely large and diverse sample of 2,733 African American 383 

and Latino participants to explore the interplay between genetic ancestry and regulation of gene expression. 384 

Our approach to evaluating the degree of specificity of whole blood eQTLs to African or Indigenous American 385 

ancestry revealed that such effects are mostly driven by allele frequency differences between populations. Tier 386 

1 anc-eQTLs reach a frequency of at least 1% only in predominantly African or Indigenous American ancestry 387 

populations and affect the expression of a large fraction of protein-coding genes, which has implications for 388 

detecting functional genetic variants and evaluating their role in disease susceptibility. In addition, we provide 389 

genetic prediction models of whole blood transcriptomes that cover a greater number of genes than similar 390 

resources developed in European ancestry populations and facilitate more powerful TWAS when applied to 391 

studies of admixed individuals and multi-ancestry GWAS meta-analyses. In summary, our study highlights the 392 

need for larger genomic studies in globally representative populations for characterizing the genetic basis of 393 

complex traits and ensuring equitable translation of precision medicine efforts. 394 

 395 
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METHODS 396 

Study population 397 

This study examined African American, Puerto Rican and Mexican American children between 8-21 years of 398 

age with or without physician-diagnosed asthma from the Genes-environments and Admixture in Latino 399 

Americans II (GALA II) study and the Study of African Americans, Asthma, Genes & Environments (SAGE). 400 

The inclusion and exclusion criteria are previously described in detail60,61. Briefly, participants were eligible if 401 

they were 8-21 years of age and identified all four grandparents as Latino for GALA II or African American for 402 

SAGE. Study exclusion criteria included the following: 1) any smoking within one year of the recruitment date; 403 

2) 10 or more pack-years of smoking; 3) pregnancy in the third trimester; 4) history of lung diseases other than 404 

asthma (for cases) or chronic illness (for cases and controls). 405 

The local institutional review board from the University of California San Francisco Human Research Protection 406 

Program approved the studies (IRB# 10-02877 for SAGE and 10-00889 for GALA II). All subjects and their 407 

legal guardians provided written informed consent. 408 

Whole genome sequencing data and processing 409 

Genomic DNA samples extracted from whole blood were sequenced as part of the Trans-Omics for Precision 410 

Medicine (TOPMed) whole genome sequencing (WGS) program62 and the Centers for Common Disease 411 

Genomes of the Genome Sequencing Program. WGS was performed at the New York Genome Center and 412 

Northwest Genomics Center on a HiSeq X system (Illumina, San Diego, CA) using a paired-end read length of 413 

150 base pairs (bp), with a minimum of 30x mean genome coverage. DNA sample handling, quality control, 414 

library construction, clustering, and sequencing, read processing and sequence data quality control are 415 

previously described in detail62. All samples were jointly genotyped by the TOPMed Informatics Research 416 

Center. Variant calls were obtained from TOPMed data freeze 8 VCF files generated based on the GRCh38 417 

assembly. Variants with a minimum read depth of 10 (DP10) were used for analysis unless otherwise stated. 418 

RNA sequencing data generation and processing 419 

Total RNA was isolated from PAXgene tube using MagMaxTM for Stabilized Blood Tubes RNA Isolation Kit 420 

(Applied Biosystem, P/N 4452306). Globin depletion was performed using GLOBINcleasrTM Human (Thermo 421 

Fisher Scientific, cat. no. AM1980). RNA integrity and yield were assessed using an Agilent 2100 Bioanalyzer 422 

(Agilent Technologies, Santa Clara, CA, USA).  423 

Total RNA was quantified using the Quant-iT™ RiboGreen® RNA Assay Kit and normalized to 5ng/ul. An 424 

aliquot of 300ng for each sample was transferred into library preparation which was an automated variant of 425 

the Illumina TruSeq™ Stranded mRNA Sample Preparation Kit. This method preserves strand orientation of 426 

the RNA transcript. It uses oligo dT beads to select mRNA from the total RNA sample. It is followed by heat 427 

fragmentation and cDNA synthesis from the RNA template. The resultant cDNA then goes through library 428 

preparation (end repair, base ‘A’ addition, adapter ligation, and enrichment) using Broad-designed indexed 429 
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adapters substituted in for multiplexing. After enrichment the libraries were quantified with qPCR using the 430 

KAPA Library Quantification Kit for Illumina Sequencing Platforms and then pooled equimolarly. The entire 431 

process is in 96-well format and all pipetting is done by either Agilent Bravo or Hamilton Starlet. 432 

Pooled libraries were normalized to 2nM and denatured using 0.1 N NaOH prior to sequencing. Flowcell cluster 433 

amplification and sequencing were performed according to the manufacturer’s protocols using the HiSeq 4000. 434 

Each run was a 101bp paired-end with an eight-base index barcode read. Each sample was targeted to 50M 435 

reads. Data was analyzed using the Broad Picard Pipeline which includes de-multiplexing and data 436 

aggregation. 437 

RNA-seq reads were further processed using the TOPMed RNA-seq pipeline for Year 3 and Phase 5 RNA-438 

seq data (supplementary file 2 obtained from https://topmed.nhlbi.nih.gov/sites/default/ 439 

files/TOPMed_RNAseq_pipeline_COREyr3.pdf). Count-level data were generated using GRCh38 human 440 

reference genome and GENCODE 30 for transcript annotation. Count-level quality control (QC) and 441 

normalization were performed following the Genotype-Tissue Expression (GTEx) project v8 protocol 442 

(https://gtexportal.org/home/methods). Sample-level QC included removal of RNA samples with RIN < 6, 443 

genetically related samples (equal or more related than third degree relative), and sex-discordant samples 444 

based on reported sex and their XIST and RPS4Y1 gene expression profiles. Count distribution outliers were 445 

detected as follows: (i) Raw counts were normalized using the trimmed mean of M values (TMM) method in 446 

edgeR63 as described in GTEx v8 protocol. (ii) The log2 transformed normalized counts at the 25th percentile 447 

of every sample were identified (countq25). (iii) The 25th percentile (Q25) of countq25 was calculated. (iv) 448 

Samples were removed if their countq25 was lower than -4 as defined by visual inspection. 449 

To account for hidden confounding factors such as batch effects, technical and biological variation in the 450 

sample preparation, and sequencing and/or data processing procedures, latent factors were estimated using 451 

the Probabilistic Estimation of Expression Residuals (PEER) method64. Optimization was performed according 452 

to approach adopted by GTEx with the goal to maximized eQTL discovery65. A total of 50 (for AA, PR, MX, 453 

pooled samples) and 60 (for AFRhigh, AFRlow, IAMhigh, IAMlow) PEER factors were selected for downstream 454 

analyses (Figure S11).  455 

Estimation of global and local genetic ancestry 456 

Genetic principal components (PCs), global and local ancestry, and kinship estimation on genetic relatedness 457 

were computed using biallelic single nucleotide polymorphisms (SNPs) with a PASS flag from TOPMed freeze 458 

8 DP10 data as described previously66,67. Briefly, genotype data from European, African, and Indigenous 459 

American (IAM) ancestral populations were used as the reference panels for global and local ancestry 460 

estimation assuming three ancestral populations.  461 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2022. ; https://doi.org/10.1101/2021.08.19.456901doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

Reference genotypes for European (HapMap CEU) and African (HapMap YRI) ancestries were obtained from 462 

the Axiom® Genotype Data Set (https://www.thermofisher.com/us/en/home/life-science/microarray-463 

analysis/microarray-data-analysis/microarray-analysis-sample-data/axiom-genotype-data-set.). The CEU 464 

populations were recruited from Utah residents with Northern and Western European ancestry from the CEPH 465 

collection. The YRI populations were recruited from Yoruba in Ibadan, Nigeria. The Axiom® Genome-Wide 466 

LAT 1 array was used to generate the Indigenous American (IAM) ancestry reference genotypes from 71 467 

Indigenous Americans (14 Zapotec, 2 Mixe and 11 Mixtec from Oaxaca, 44 Nahua from Central Mexico)68,69. 468 

ADMIXTURE was used with the reference genotypes in a supervised analysis assuming three ancestral 469 

populations. Global ancestry was estimated by ADMIXTURE70 in supervised while local ancestry was 470 

estimated by RFMIX version 2 with default settings71. Throughout this study, local ancestry of a gene was 471 

defined as the number of ancestral alleles (0, 1, or 2) at the transcription start site.  472 

Comparative analyses were performed based on two different sample grouping strategies, by self-identified 473 

race/ethnicity or by global ancestry. Self-identified race/ethnicity included four groups – African Americans 474 

(AA), Puerto Ricans (PR), Mexican Americans (MX), and the pooling of AA, PR, MX and other Latinos (pooled). 475 

For groups defined by global ancestry, samples were grouped into high (> 50%, AFRhigh or IAMhigh) or low (< 476 

10%, AFRlow or IAMlow) global African or Indigenous American ancestry. The sample size for each group is 477 

shown in Table S1. 478 

Cis-heritability of gene expression 479 

The genetic region of cis-gene regulation was defined by 1MB region flanking each side of the transcription 480 

start site (cis-region). Cis-heritability (h2) of gene expression was estimated using unconstrained GREML72 481 

analysis (--reml-no-constrain), and estimation was restricted to common autosomal variants (MAF ≥ 0.01). 482 

Inverse-normalized gene expression was regressed on PEER factors, and the residuals were used as the 483 

phenotype for GREML analysis. Sex and asthma case-control status was used as categorical covariates, while 484 

age at blood draw and the first 5 genetic PCs were used as quantitative covariates. Cis-heritability was 485 

estimated separately for each self-identified race/ethnicity group (AA, PR, MX and pooled) and groupings 486 

based on global (AFRhigh, AFRlow, IAMhigh and IAMlow) and local ancestry (described below). Differences in the 487 

distribution of h2 and genetic variance (VG) between groups were tested using two-sided Wilcoxon tests. 488 

Parallel analyses were also conducted for Indigenous American ancestry (IAM/IAM vs. EUR/EUR and IAM/IAM 489 

vs. IAM/EUR). 490 

The following sensitivity analyses were conducted using GCTA: i) using the same sample size in each self-491 

identified group (n=600) and (ii) partitioning heritability and genetic variance by two minor allele frequency bins 492 

(0.01-0.1, 0.1-0.5). We also estimated heritability using the LDAK-Thin model73, following the recommended 493 

GRM processing. Thinning of duplicate SNPs was performed using the arguments “--window-prune .98 --494 

window-kb 100”. The direct method was applied to calculate kinship using the thinned data and lastly, 495 

generalized restricted maximum likelihood (REML) was used to estimate heritability. 496 
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Association of global and local ancestry with gene expression 497 

Methods from Gay et al (2020)58 was modified to identify genes associated with global and local ancestry 498 

(Figure S1). In step 1, inversed normalized gene expression was regressed on age, sex and asthma status 499 

(model 0). In step 2, the residuals from model 0 were regressed on global ancestry (model 1). In step 3, the 500 

residuals from model 1 were regressed on local ancestry (model 2) to identify genes that are associated with 501 

local ancestry. A false discovery rate (FDR) of 0.05 was applied to step 2 and 3 separately to identify genes 502 

that were significantly associated with global and/or local ancestry. Step 1 to step 3 were run separately for 503 

African and Indigenous American ancestry. For heritable genes that were associated with global and/or local 504 

ancestry, a joint model of regressing global and local ancestry from residuals from model 0 was also examined 505 

to assess the percentage of variance of gene expression explained by global and/or local ancestry. 506 

Identification of eGenes, cis-eQTLs and ancestry-specific cis-eQTLs 507 

Raw gene counts were processed and eQTLs were identified using FastQTL74 according to the GTEx v8 508 

pipeline (https://github.com/broadinstitute/gtex-pipeline). Age, sex, asthma status, first 5 genetic ancestry PCs, 509 

and PEER factors were used as covariates for FastQTL analysis. To account for multiple testing across all 510 

tested genes, the Benjamini & Hochberg correction was applied to the beta-approximated p-values from the 511 

permutation step of FastQTL. For each gene with a significant beta-approximated p-value at the false discovery 512 

rate < 0.05, a nominal p-value threshold was estimated using the beta-approximated p-value. Cis-eQTLs were 513 

defined as genetic variants that have nominal p-values less than the nominal p-value threshold of the 514 

corresponding gene. eGenes were defined as genes with at least one eQTL. To summarize the number of 515 

independent cis-eQTLs in each ancestry group, LD clumping was performed using PLINK (--clump-kb 1000 --516 

clump-r2 0.1) using gene-specific p-value thresholds. 517 

Trans-eQTLs were identified using the same protocol as in GTEx v82. Trans-eQTLs were defined as eQTLs 518 

that were not located on the same chromosome as the gene. Only protein-coding and lincRNA genes and 519 

SNPs on autosomes were included in the analyses. Briefly, linear regression on expression of gene was 520 

performed in PLINK2 (version v2.00a3LM released 28 Mar 2020) using SNPs with MAF ≥ 0.05 and the same 521 

covariates as cis-eQTL discovery. Gene and variant mappability data (GRCh38 and GENCODE v26) were 522 

downloaded from Saha and Battle75 for the following filtering steps: (i) keep gene-variant pairs that passed a 523 

p–value threshold of 1x10-5
, (ii) keep genes with mappability ≥ 0.8, (iii) remove SNPs with mappability < 1, and 524 

(iv) remove a trans-eQTL candidate if genes within 1MB of the SNP candidate cross-mapped with the trans-525 

eGene candidate. The Benjamini-Hochberg procedure was applied to control for FDR at the 0.05 level using 526 

the smallest p-value (multiplied by 10-6) from each gene. An additional filtering step was applied for the AFRhigh 527 

and IAMhigh groups. For AFRhigh, all trans-eQTLs detected in AFRlow were removed and the resulting trans-528 

eQTL were referred to as filtered AFRhigh trans-eQTLs. Similarity, for IAMhigh groups, all trans-eQTLs detected 529 

in IAMlow groups were removed and the resulting trans-eQTL were referred to as filtered IAMhigh trans-eQTLs. 530 

Filtered AFRhigh trans-eQTL were checked for presence of filtered IAMhigh trans-eQTLs, and vice versa. LD 531 
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clumping was performed using PLINK (v1.90b6.26 --clump-kb 1000 --clump-r2 0.1 --clump-p1 0.00000005 --532 

clump-p2 1) to group trans-eQTLs into independent signals. 533 

Ancestry-specific eQTL (anc-eQTL) mapping was performed in participants stratified by high and low global 534 

African and Indigenous American ancestry (see “Grouping samples by self-identified race/ethnicity or global 535 

ancestry”). We developed a framework to identify anc-eQTLs by focusing on the lead eQTL signal for each 536 

gene and comparing fine-mapped 95% credible sets between high (>50%) and low (<10%) global ancestry 537 

groups (AFRhigh vs AFRlow; IAMhigh vs IAMlow). Sensitivity analyses were conducted using >70% as the cut-off 538 

for AFRhigh and IAMhigh groups. Anc-eQTLs were classified into three tiers as described below, based on 539 

population differences in allele frequency, linkage disequilibrium (LD), and effect size (Figure 3A). For every 540 

protein-coding and heritable eGene (GCTA h2 LRT p-value <0.05), the lead eQTL signal was identified using 541 

CAVIAR76 assuming one causal locus (c=1). The 95% credible set of eQTLs in the high and low global ancestry 542 

group were compared to determine if there was any overlap. Variants from non-overlapping 95% credible sets 543 

were further classified as Tier 1 anc-eQTLs based on allele frequency differences or Tier 2 after additional fine-544 

mapping using PESCA21. For genes with overlapping 95% credible sets, Tier 3 anc-eQTLs were detected 545 

based on effect size heterogeneity.  546 

eQTLs identified in AFRhigh or IAMhigh high group that were common (MAF ≥0.01) in the high group but rare 547 

(MAF<0.01) or monomorphic in the AFRlow or IAMlow group were classified as Tier 1. If the eQTLs were detected 548 

at MAF≥0.01 in both the high and low ancestry groups, they were further fine-mapped using PESCA21, which 549 

tests for differential effect sizes while accounting for LD between eQTLs. Pre-processing for the PESCA 550 

analyses involved LD pruning at r2 >0.95. All eQTL pairs with r2 >0.95 were identified in both the high and low 551 

groups and only those pairs common to both groups were removed. For each eQTL, PESCA estimated three 552 

posterior probabilities: specific to the AFRhigh or IAMhigh group (PPhigh), specific to the AFRlow or IAMlow group 553 

(PPlow), or shared between the two groups (PPshared). Tier 2 anc-eQTLs were selected based on the following 554 

criteria: i) all variants in the credible set had (PPhigh > PPlow) and (PPhigh > PPshared) and ii) PPhigh > 0.8. Tier 3 555 

class was based on evidence of significant heterogeneity in eQTL effect size, defined as Cochran’s Q p-value 556 

< 0.05/nGene, where nGene was the number of genes tested. Since we assume the 95% credible set 557 

corresponds to a single lead eQTL signal, all eQTLs in the credible set were required to have a significant 558 

heterogeneous effect size to be classified as Tier 3 anc-eQTLs. 559 

To systematically assess the overlap in eQTL signals identified in our study and trait-associated loci, we 560 

colocalized eQTL summary statistics with GWAS results from PAGE. Colocalization was performed using 561 

COLOC77 within a LD window of 2 MB centered on the eQTL with the lowest GWAS p-value. For each eQTL-562 

trait pair, the posterior probably of a shared causal signal (PP4) >0.80 was interpreted as strong evidence of 563 

colocalization.  564 
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Development of gene prediction models and transcriptome-wide association analyses 565 

Gene prediction models for cis-gene expression were generated using common variants and elastic net 566 

modeling implemented in the PredictDB v7 pipeline (https://github.com/hakyimlab/ 567 

PredictDB_Pipeline_GTEx_v7). Models were filtered by nested cross validation (CV) prediction performance 568 

and heritability p-value (rho_avg > 0.1, zscore_pval <0.05 and GCTA h2 p-value < 0.05). Sensitivity analyses 569 

were performed by generating gene prediction models that included the number of ancestral alleles as 570 

covariates to account for local ancestry in the cis-region. In AA, one covariate indicating the count of African 571 

ancestral allele was used while in PR, MX, and pooled, two additional covariates indicating the number of 572 

European and Indigenous American ancestral alleles were used. 573 

Out-of-sample validation of the gene expression prediction models were done using 598 individuals from the 574 

African American asthma cohort, Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-575 

Ethnicity (SAPPHIRE)30. Predicted gene expression from SAPPHIRE genotypes was generated using the 576 

predict function from MetaXcan. Genotypes of SAPPHIRE samples were generated by whole genome 577 

sequencing through the TOPMed program and were processed the same way as GALA II and SAGE. RNA-578 

seq data from SAPPHIRE were generated as previously described78 and were normalized using TMM in 579 

edgeR. Predicted and normalized gene expression data were compared to generate correlation R2. 580 

To assess the performance of the resulting GALA/SAGE models we conducted transcriptome-wide association 581 

studies (TWAS) of 28 traits using GWAS summary statistics from the Population Architecture using Genomics 582 

and Epidemiology (PAGE) Consortium study by Wojcik et al20. Analyses were performed using S-PrediXcan 583 

with whole blood gene prediction models from GALA II and SAGE (GALA/SAGE models), GTEx v8, and 584 

monocyte gene expression models from the Multi-Ethnic Study of Atherosclerosis (MESA) study3. In the UK 585 

Biobank we conducted TWAS of 22 blood-based biomarkers and quantitative traits using GALA/SAGE models 586 

generated in African Americans (GALA/SAGE AA) and GTEx v8 whole blood. Each set of TWAS models was 587 

applied to publicly available GWAS summary statistics (Pan-UKB team: https://pan.ukbb.broadinstitute.org) 588 

from participants of predominantly European ancestry (UKB EUR) and African ancestry (UKB AFR). Ancestry 589 

assignment in UKB was based on a random forest classifier trained on the merged 1000 Genomes and Human 590 

Genome Diversity Project (HGDP) reference populations. The classifier was applied to UK Biobank participants 591 

projected into the 1000G and HGDP principal components.  592 

Data availability 593 

TOPMed WGS and RNA-seq data from GALA II and SAGE are available on dbGaP under accession number 594 

phs000920.v4.p2 and phs000921.v4.p1, respectively. TOPMed WGS data from SAPPHIRE are available 595 

under the dbGaP accession number phs001467.v1.p1. Summary statistics for cis- and trans-eQTLs, as well 596 

as TWAS models developed using data from GALA II and SAGE participants have been posted in the following 597 

public repository DOI: 10.5281/zenodo.6622368  598 
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Table 1: Study Participants. Demographic characteristics of 2,733 participants from the Genes-
environments and Admixture in Latino Americans (GALA II) and the Study of African Americans, 
Asthma, Genes, and Environments (SAGE) included in the present analysis. 
 

 Self-identified Race/Ethnicity 
Pooled 

  African 
American Puerto Rican Mexican Other Latino 

  N  (%) N (%) N  (%) N  (%) N  (%) 

Sex            

Female  405 (53.5) 451  (50.5) 427  (54.5) 158 (52.8) 1,441 (52.7) 

Asthma status            
Case  433 (57.2) 549 (61.5) 351  (44.8) 156  (52.2) 1489 (54.5) 

Recruitment center            

SF Bay Area  757  (100) 0 (0) 348 (44.4) 109  (36.5) 1214 (44.4) 

Chicago  0 (0) 31 (3.5) 247  (31.5) 52  (17.4) 330 (12.1) 
Puerto Rico  0 (0) 837 (93.7) 0  (0) 8  (2.7) 845 (30.9) 

New York City  0 (0) 22 (2.5) 36 (4.6) 86  (28.8) 144 (5.3) 

Houston  0 (0) 3 (0.3) 153 (19.5) 44 (14.7) 200 (7.3) 

 Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) 

Age (years)  16.0 (6.6) 13.2 (4.8) 13.8  (6.5) 13.7  (5.7) 14.0 (6.3) 

Genetic ancestry (%)           

African 82.6 (9.4) 19.7  (13.3) 3.5  (2.7) 8.3  (14.8) 17.5 (61.8) 
Indigenous American 0.3  (0.9) 9.9  (3.6) 55.3  (23.2) 42.3  (43.2) 10.7 (45.2) 

European 16.5  (9.5) 69.5 (13.6) 40.3 (21.9) 45.9  (20.8) 44.2 (43.8) 

Total 757  893  784  299  2733  

  

Abbreviations 
IQR Interquartile range 
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Table S1: Sample size overview. The total number of individuals with WGS and RNA-seq data that 
were included in analyses based on self-identified race/ethnicity and genetic ancestry. 
 
Group Sample Size 
Self-identified race/ethnicity  

African American 757 
Puerto Rican 893 
Mexican American 784 
Other Latinos 299 
Pooled (Total) 2,733 

Global genetic ancestry  

AFRhigh (AFR > 50%) 721 
AFRlow (AFR < 10%) 1,011 
IAMhigh (IAM > 50%) 610 
IAMlow (IAM < 10%) 1,257 

 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
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Table S2: Cis-heritability (h2) and genetic variance (VG) of gene expression stratified by self-
identified race/ethnicity. GCTA analyses were restricted to common variants (MAF >= 0.01) in 
each population within 1MB flanking regions of the transcription start site. Estimates of h2 and VG are 
summarized across the intersection of genes (nGene) with GCTA results available in all populations.  
 

  AA (n=757) PR (n=893) MX (n=784) Pooled (n=2733) 
nGene 17,657 17,657 17,657 17,657 
h2     

mean 0.170 0.142 0.130 0.148 
median 0.111 0.080 0.066 0.087 

IQR 0.039-0.252 0.026-0.204 0.019-0.184 0.030-0.211 
VG     

mean 0.059 0.052 0.044 0.054 
median 0.025 0.020 0.014 0.020 

IQR 0.006-0.073 0.005-0.060 0.003-0.047 0.006-0.062 
Mean global ancestry proportion  

AFR 0.80 0.22 0.04 0.32 
IAM 0.01 0.10 0.57 0.24 
Wilcoxon p-value of h2 comparison between groups  
AA - 1.7x10-69 1.8x10-160 1.9x10-34 
PR = - 3.1x10-24 2.1x10-10 
MX = = - 1.8x10-64 
Wilcoxon p-value of VG comparison between groups  

AA - 4.3x10-23 2.3x10-148 - 
PR - - 2.0x10-62 - 
MX - - - - 

 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S3: Cis-heritability (h2) and genetic variance (VG) of gene expression stratified by global 
genetic ancestry. GCTA analyses were restricted to common variants (MAF >= 0.01) in each 
population within 1MB flanking regions of the transcription start site. Individuals were stratified based 
on proportion. Individuals with >50% global genetic African ancestry (AFRhigh) were compared to 
those with <10% (AFRlow). Individuals with >50% global genetic Indigenous American ancestry 
(IAMhigh) were compared to those with <10% (IAMlow). Estimates of h2 and VG are summarized across 
the intersection of genes (nGene) with GCTA results available in all genetic ancestry groups.   
 

  AFRhigh (n=721) AFRlow (n=1011) IAMhigh (n=610) IAMlow (n=1257) 
nGene 18,725 18,725 18,725 18,725 
h2     

mean 0.167 0.129 0.123 0.152 
median 0.107 0.065 0.062 0.091 

IQR 0.037-0.247 0.019-0.182 0.016-0.176 0.031-0.221 
VG     

mean 0.058 0.046 0.041 0.055 
median 0.024 0.014 0.013 0.022 

IQR 0.006-0.072 0.003-0.048 0.002-0.045 0.006-0.066 
Mean global ancestry proportion 

AFR 0.82 0.04 0.04 0.58 
IAM 0.01 0.54 0.67 0.04 

Wilcoxon p-value of h2 comparison between groups  
AFRhigh - 4.2x10-140 - - 
IAMhigh - - - 5.8x10-120 

Wilcoxon p-value of VG comparison between groups 
AFRhigh - 8.0x10-114 - - 
IAMhigh - - - 8.3x10-173 

 
 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S4: Comparison of VG stratified by local genetic ancestry. GCTA analyses were restricted 
to common variants (MAF >= 0.01) in each population within 1MB flanking regions of the transcription 
start site. For each gene, individuals were classified into local ancestry groups, L1 and L2, based on 
the ancestry at the transcription start site. The number of genes (nGene) for which GCTA models 
successfully converged and produced reliable estimates is reported for each analysis. Genes were 
not filtered based on heritability.  
 

Group 
Local ancestry Mean h2 Mean VG nGene Sample 

size 
Wilcoxon 
p-value 

L1 L2 L1 L2 L1 L2    

Pooled AFR/AFR AFR/EUR 0.153 0.142 0.053 0.049 17,866 516 2.0x10-7 

AA AFR/AFR AFR/EUR 0.143 0.137 0.041 0.039 19,224 202 5.7x10-5 

PR AFR/EUR EUR/EUR 0.129 0.108 0.041 0.033 18,570 242 1.4x10-28 

Pooled IAM/IAM IAM/EUR 0.108 0.119 0.033 0.038 10,566 359 1.6x10-8 

MX IAM/IAM IAM/EUR 0.101 0.117 0.029 0.035 18,194 262 7.7x10-11 
 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S5: Cis-heritability (h2) estimated using LDAK-Thin. Analyses were restricted to common 
variants (MAF >= 0.01) in each population within 1MB flanking regions of the transcription start site.  
 

  AA (n=757) PR (n=893) MX (n=784) Pooled (n=2733) 
nGene 18,261 18,261 18,261 18,261 
h2     

mean 0.157 0.136 0.125 0.146 
median 0.094 0.071 0.059 0.081 

IQR 0.029-0.234 0.020-0.194 0.016-0.176 0.024-0.213 
Mean global ancestry proportion 
AFR 0.80 0.22 0.04 0.32 
IAM 0.01 0.10 0.57 0.24 
Wilcoxon p-value of h2 comparison between groups 
AA - 2.60x10-43 1.80x10-104 3.00x10-9 
PR - - 1.90x10-16 2.70x10-17 
MX - - - 6.10x10-65 

  AFRhigh (n=721) AFRlow (n=1011) IAMhigh (n=610) IAMlow (n=1257) 

nGene 18475 18475 18475 18475 
h2     

mean 0.166 0.132 0.125 0.157 
median 0.104 0.066 0.062 0.093 

IQR 0.035-0.246 0.020-0.187 0.017-0.179 0.032-0.229 
Mean global ancestry proportion 
AFR 0.82 0.04 0.04 0.58 
IAM 0.01 0.54 0.67 0.04 
Wilcoxon p-value of h2 comparison between groups 
AFRhigh - 1.9x10-117   

IAMhigh - 1.0x10-122   
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Table S6: Number of heritable genes significantly associated with global and local ancestry. 
Analyses were restricted to heritable and autosomal genes with local ancestry estimates, and 
populations with sufficient variability for a given ancestry comparison. The number of association 
genes is tabulated for all combinations of global and local ancestry associations. For example, group 
AFRG=Y.L=Y (global ancestry=Y and local ancestry=Y) includes genes that are associated with both 
global and local African ancestry at FDR < 0.05 level. 
 

Ancestry 
Associations 

FDR < 0.05? AA (n=757) PR (n=893) MX (n=784) 

Global Local nGene % nGene % nGene % 

AF
R

 

AFRG=Y:L=Y Y Y 204 1.5 334 2.5 - - 

AFRG=Y:L=N Y N 326 2.4 589 4.5 - - 

AFRG=N:L=Y N Y 1,201 8.9 1,443 10.9 - - 

AFRG=N:L=N N N 11,833 87.2 10,856 82.1 - - 

IA
M

 

IAMG=Y:L=Y Y Y - - - - 389 3.1 

IAMG=Y:L=N Y N - - - - 353 2.8 

IAMG=N:L=Y N Y - - - - 1,228 9.8 

IAMG=N:L=N N N - - - - 10,559 84.3 

No. of heritable autosomal genes 13,596 - 13,260 - 12,562 - 

No. of genes analyzed 13,564 - 13,222 - 12,529 - 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S7: eQTLs and eGenes identified from each population. Results of FastQTL analyses 
conducted in GALA II / SAGE participants grouped based on self-identified race/ethnicity and genetic 
ancestry.  
 

Populations Sample 
size 

Number of 
eQTLs 

Number of 
eQTL-gene pairs Number of eGenes 

Self-identified groups    
AA 757 2,448,802 4,399,353 17,336 
PR 893 2,970,694 6,032,429 16,975 
MX 784 2,333,522 5,232,074 15,938 

Genetic ancestry groups    
AFRhigh 721 2,389,968 4,260,212 17,123 
AFRlow 1,011 2,736,501 6,601,500 17,146 
IAMhigh 610 1,979,263 4,180,137 14,579 
IAMlow 1,257 3,334,768 6,831,948 18,297 

Pooled (Total) 2,733 4,984,220 13,402,207 19,567 

Genetic ancestry groups (equal sample size)   

AFRhigh 

600 

1,975,039 3,339,661 16,110 
AFRlow 1,888,196 3,880,554 14,344 
IAMhigh 1,953,964 4,104,553 14,419 
IAMlow 1,707,612 2,841,161 14,866 

Pooled 2400 3,432,115 7,442,079 18,620 

 

Abbreviations 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
AFR African ancestry 
IAM Indigenous American ancestry 
AFRhigh Individuals with >50% global AFR ancestry 
AFRlow Individuals with <10% global AFR ancestry 
IAMhigh Individuals with >50% global IAM ancestry 
IAMlow Individuals with <10% global IAM ancestry 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S8: Gene pre-filtering for ancestry-specific eQTL analysis. Significant cis-heritability, 
statistical significance of heritability estimates was determined using LRT p-value provided by GCTA. 
A total of 9609 and 8515 genes were used as the input to the ancestry-specific eQTL filtering pipeline. 
 
  AFR IAM 
Input number of genes 20,135 20,135 
Protein coding genes (autosomal) 13,535 13,535 
Significant cis-heritability in high group (LRT p < 0.05) 10,225 8,889 
eGene in high ancestry group (>50% AFR or IAM) 10,077 8,594 

95% credible sets generated using CAVIAR in both high 
and low (<10% AFR or IAM) ancestry group 9,609 8,515 

 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
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Table S9: Classification of ancestry-specific eQTLs (anc-eQTLs) using 50% global ancestry 
cutoff. Analyses were restricted to heritable genes described in Table S8. Comparisons were 
conducted using >50% as the cut-off for AFRhigh and IAMhigh groups. Tier 1 represents the most 
ancestry-specific eQTL class, followed by Tier 2 anc-eQTLs. Tier 3 eQTLs were detected within 
overlapping 95% credible sets that are shared between ancestry groups and represent the least 
ancestry-specific class. 
 

  AFRhigh (n=721) vs. AFRlow (n=1011) IAMhigh (n=610) vs. IAMlow (n=1251) 

  nGene % Gene-eQTL pairs 
AFRhigh nGene % Gene-eQTL pairs 

IAMhigh 

Genes analyzed 9,609 100 3,020,690 8,515 100 3,015,261 

No overlap in 95% 
credible set1,2 4,551 47.4 1,257,678 3,160 37.1 938,278 

Tier 1 2,695 28.0 41,102 562 6.6 3,938 

PESCA input 2,921 30.4 41,632 2,999 35.2 98,149 

Tier 2 109 1.1 112 33 0.4 36 

Overlapping 95% 
credible set3 5,058 52.6 1,763,012 5,355 62.9 2,076,983 

Tier 3 196 2.0 894 88 1.0 420 

Union of Tiers 1-3 2,961 30.8 42,108 679 8.0 4,394 

 
1 Tier 1 eQTLs includes variants that are rare (MAF<0.01) or monomorphic in the low ancestry (<10%) group 
2 Tier 2 eQTLs were identified using fine-mapping using PESCA and include variants with posterior 

probability (PPhigh)>0.80 of being specific to AFRhigh or IAMhigh and have PPhigh>PPlow 
3 Tier 3 eQTLs show effect size heterogeneity based on Cochran’s Q test (PQ<0.05/number of genes tested) 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
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Table S10: Classification of ancestry-specific eQTLs (anc-eQTLs) using 70% global ancestry 
as cutoff. Analyses were restricted to heritable genes described in Table S8. Comparisons were 
conducted using >70% as the cut-off for AFRhigh and IAMhigh groups. Tier 1 represents the most 
ancestry-specific eQTL class, followed by Tier 2 anc-eQTLs. Tier 3 eQTLs were detected within 
overlapping 95% credible sets that are shared between ancestry groups and represent the least 
ancestry-specific class. 
 

  AFRHigh (n=653) vs. AFRLow (n=1011) IAMHigh (n=212) vs. IAMLow (n=1251) 

  nGene % Gene-eQTL 
pairs AFRhigh nGene % Gene-eQTL 

pairs IAMhigh 

Genes analyzed 9,267 100 2,653,736 4,587 100 783,676 

No overlap in 95% 
credible set1,2 4,405 45.8 1,116,628 1,726 20.3 204,927 

Tier 1 2,620 27.3 39,300 280 3.3 2,263 

Tier 2 111 1.2 111 5 0.1 5 

Overlapping 95% 
credible set3 4,862 50.6 1,537,018 2,861 33.6 578,749 

Tier 3 1 <0.001 1 0 0 0 

Union of Tiers 1-3 2,701 28.1 39,412 284 3.3 2,268 

 
1 Tier 1 eQTLs includes variants that are rare (MAF<0.01) or monomorphic in the low ancestry (<10%) group 
2 Tier 2 eQTLs were identified using fine-mapping using PESCA and include variants with posterior 

probability (PPhigh)>0.80 of being specific to AFRhigh or IAMhigh and have PPhigh>PPlow 
3 Tier 3 eQTLs show effect size heterogeneity based on Cochran’s Q test (PQ<0.05/number of genes tested) 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
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Table S13: Trans-eQTL discovery in GALA II/SAGE studies. Independent trans-eQTLs were 
identified using LD clumping (within 1000 kb windows and LD r2<0.1) was performed on trans-eQTLs 
for each gene. AFRhigh/IAMhigh groups, individuals with global AFR/IAM ancestry >50%. 
 
Populations Sample Size Trans-eQTLs Independent trans-eQTLs  eGenes 
AA 757 329 39 33 
PR 893 956 67 52 
MX 784 1,168 62 51 
Pooled 2,733 9,864 647 414 
AFRhigh 721 

283 36 31 
Filtered1 149 26 24 

IAMhigh 610 
691 26 22 

Filtered2 350 23 20 

 
1 All trans-eQTLs detected in AFRlow group were removed 
2 All trans-eQTLs detected in IAMlow group were removed 

 

Abbreviations 
AFR African ancestry 
IAM Indigenous American ancestry 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S14: TWAS model performance. Cross-validation (CV) R2 of gene expression prediction 
models generated by PredictDB. Heritability, CV R2, and VG are summarized across the final set of 
genes included in the TWAS models. 
 
 Number of Genes 

h2 CV R2 VG 
Population Input1 Pass2 Final3 

AA 15,012 10,782 10,090 0.246 0.180 0.077 
PR 14,756 10,039 9,611 0.212 0.163 0.071 
MX 14,893 9,665 9,084 0.205 0.167 0.062 
Pooled 14,900 11,943 11,830 0.186 0.157 0.061 

 
1 The total number of gene models generated from PredictDB 
2 Number of genes that passed the preliminary filters of CV correlation (rho_avg) > 0.1 and correlation z-

score p-value < 0.05 for the correlation between predicted and measured gene expression values 
3 Number of genes with h2 p-value < 0.05, the total number of genes with valid TWAS models 

 

Abbreviations 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Table S14: Comparison of TWAS model performance with local ancestry (LA) adjustment. 
Cross-validation R2 of gene expression prediction models with and without local ancestry adjustment. 
Comparisons were restricted to heritable genes with valid TWAS models. 
 

Population 
Valid TWAS Models CV R2 

Original LA-adjusted Intersection Original LA-adjusted 

AA 10,090 9,848 9,701 0.186 0.177 
PR 9,611 9,090 8,959 0.173 0.156 
MX 9,084 8,582 8,475 0.177 0.161 
Pooled 11,830 11,588 11,497 0.161 0.154 

 

Abbreviations 
AA African Americans 
PR Puerto Ricans 
MX Mexican Americans 
Pooled Analysis includes AA, PR, MX, and other Latinos 
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Figure 1. Study Overview.  

 

This study included TOPMed whole genome sequencing and whole transcriptome data generated from whole blood 
samples of SAGE African American and GALA II Latino individuals (n=2,733). We compared elements of the genetic 
architecture gene expression, such as and cis-heritability and genetic variance, across participant groups defined 
by self-identified race/ethnicity and genetic ancestry. Next, we developed genetic prediction models of whole blood 
transcriptome levels and performed comparative transcriptome-wide association studies (TWAS) using GWAS 
summary statistics generated from the PAGE study and the UK Biobank.   
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Figure 2. Comparison of cis-heritability (h2) and genetic component of transcriptome variance (VG) by self-
identified race/ethnicity and genetic ancestry groups.  

 
Analyses stratified by self-identified race/ethnicity (A-B) and genetic ancestry comparing individuals with >50% 
global ancestry (High) to participants with <10% of the same ancestry (Low) (C-D). Local ancestry at the 
transcriptional start site of each gene was used to compare subjects with 100% (AFR/AFR or IAM/IAM) to 50% 
(AFR/EUR or IAM/EUR) local ancestry (E-F). Median values of h2 or VG and two-sided Wilcoxon p-values are 
annotated.  

0.078

0.097 0.0590.072

p = 3.3 × 10�134

p = 2.2 × 10�50

p = 2.2 × 10�25

Pooled Self-identified Groups

Total (n=2733) AA (n=757) PR (n=893) MX (n=784)

0.00

0.25

0.50

0.75

1.00

h2

A)

0.019

0.022 0.0130.018

p = 5.6 × 10�135

p = 4.9 × 10�19

p = 2.3 × 10�60

Pooled Self-identified Groups

Total (n=2733) AA (n=757) PR (n=893) MX (n=784)

0.00

0.25

0.50

0.75

1.00

V
G

B)

p = 9.6 × 10�126

0.098 0.060

p = 3.1 × 10�103

0.059 0.084

AFR Ancestry IAM Ancestry

High (n=721) vs. Low (n=1011) High (n=610) vs. Low (n=1257)

0.00

0.25

0.50

0.75

1.00

h2

C)

p = 7.6 × 10�106

0.022 0.013

p = 4.5 × 10�158

0.012 0.020

AFR Ancestry IAM Ancestry

High (n=721) vs. Low (n=1011) High (n=610) vs. Low (n=1257)

0.00

0.25

0.50

0.75

1.00

V
G

D)

0.096 0.084

p = 1.4 × 10�14

0.055 0.064

p = 1.6 × 10�7

Local AFR Ancestry Local IAM Ancestry

AFR/AFR vs. AFR/EUR (n=516) IAM/IAM vs. IAM/EUR (n=359)

0.00

0.25

0.50

0.75

1.00

h2

E)

0.020 0.019

p = 2 × 10�7

0.010 0.012

p = 1.6 × 10�8

Local AFR Ancestry Local IAM Ancestry

AFR/AFR vs. AFR/EUR (n=516) IAM/IAM vs. IAM/EUR (n=359)

0.00

0.25

0.50

0.75

1.00

V
G

F)



 

Figure 3. Identification of ancestry-specific eQTLs (anc-eQTLs).  
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A) Decision tree for the identification of anc-eQTLs. Number of genes remaining after each step is indicated 
alongside each branch. B) An example of a Tier 1 AFRhigh anc-eQTL (rs3211938) for CD36. C) An example of Tier 
3 AFRhigh anc-eQTLs (rs34247110 and rs3734618) for KCNK17. Both eQTLs from the 95% credible set had 
significantly different effect sizes in AFRhigh and AFRlow populations. D-G) An example of a Tier 2 AFRhigh anc-eQTL 
(rs12460041) for TRAPPC6A. CAVIAR detected different lead eQTLs with non-overlapping credible sets in AFRhigh 
(D) and AFRlow (E) groups. In each panel variants are colored based on LD r2 with respect to index variant (diamond) 
and eQTLs are denoted by filled circles. F) The lead eQTL in AFRhigh (rs12460041) had a posterior probability 
(PP)=0 in AFRlow. G) Fine-mapping using PESCA confirmed rs12460041 as a Tier 2 anc-eQTL with PP>0.80 in 
AFRhigh.  
 
  



 

Figure 4. Transcriptome imputation model performance and TWAS results in PAGE.  
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Internal cross-validation R2 values for each model were compared for overlapping genes using a two-sided 
Wilcoxon test. GTEx v8 whole blood TWAS models were compared to models trained in A) pooled African American 
and Hispanic/Latino samples and B) African Americans only from GALA/SAGE and MESA, respectively. C) 
Summary of TWAS results for 28 traits in PAGE. Correlation between TWAS z-scores from analyses using 
GALA/SAGE pooled models and z-scores using D) GTEx and E) MESA for the union of genes that achieved 
FDR<0.05 using either prediction model. Genes highlighted in orange had FDR<0.05 using GALA/SAGE models 
but did not reach nominal significance (TWAS p-value>0.05) using GTEx or MESA models.  



 

Figure 5. Transcriptome-wide association study (TWAS) results for selected traits.  

 
TWAS of HDL in A) used GWAS summary statistics from the multi-ancestry PAGE study (N=33,063). TWAS of 
neutrophil counts in B) used summary statistics from a GWAS meta-analysis of African ancestry individuals 
(N=13,476) by Chen et al. Associated genes (FDR<0.05) are highlighted as circles with a black border and labeled, 
except for chromosome 1 for neutrophil counts due to the large number of associations. Significantly associated 
genes for which expression levels could not be predicted using GTEx v8 elastic net models are indicated in red. 



 

Figure S1: Comparison of cis-heritability (h2) and genetic component of transcriptome variance (VG) in a 
fixed sample size. Within each self-identified race/ethnicity group, individuals were down-sampled to n=600 for all 
analyses. Median values of h2 or VG and two-sided Wilcoxon p-values are annotated. 
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Figure S2: Comparison of cis-heritability (h2) and genetic component of transcriptome variance (VG) by 
genetic ancestry groups and minor allele frequency (MAF). Analyses stratified by genetic ancestry compared 
individuals with ≥50% global ancestry (High) to participants with <10% of the same ancestry (Low) within each MAF 
bin. Median values of h2 or VG and two-sided Wilcoxon p-values are annotated. 
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Figure S3: Association of global and local ancestry with gene expression levels. Stepwise local regression 
was used to identify genes for which global and/or local ancestry had a significant (FDR<0.05) effect on transcript 
levels. For genes with significant global and/or local ancestry associations, the variance in transcript levels 
accounted for by African and Indigenous American ancestry. In each panel, inset plots visualize the 0-15% range 
on the y-axis, without outliers while the full range percentage variance explained are shown in the top panel. Red 
box highlights the zoomed region as shown in the bottom panel. 
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Figure S4: Overlap of eGenes between self-identified race/ethnicity groups 

 

  



 

Figure S5: Comparison of independent cis-eQTLs. Sample size was fixed to n=600 for eQTL mapping analyses 
in each ancestry group. Independent cis-eQTLs were identified by performing LD-based clumping (r2<0.10) of 
statistically significant results within each ancestry group. Differences in the distribution of independent cis-eQTLs 
per gene between AFRhigh and AFRlow A) and IAMhigh and IAMlow B) ancestry groups were tested using a two-sided 
Wilcoxon test. Pie charts visualize the proportion of genes with a greater number of cis-eQTLs in AFRhigh compared 
to AFRlow C) and IAMhigh compared to IAMlow D). 
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Figure S6: Scatter plots comparing h2 and VG by African ancestry. Estimates of h2 and VG for each gene are 
compared for individuals with ≥50% global African ancestry (AFRHigh) to participants with <10% AFR ancestry 
(AFRLow). Genes containing ancestry-specific eQTLs are are highlighted. The proportion of genes falling off the 
diagonal, with higher h2 or VG in AFRHigh than AFRLow, is visualized and compared using a two-sided binomial test. 

 

  

 

  



 

Figure S7: Colocalization of haptoglobin (HP) expression and total cholesterol. We observed strong evidence 
of colocalization, with posterior probability (PP)=0.997, between GALA/SAGE eQTLs for HP and GWAS summary 
statistics from PAGE for total cholesterol. The 95% credible set contained two variants: rs7200153 (PPSNP=0.519) 
and rs5471 (PPSNP=0.481). Each plot shows variants colored based on LD with respect to rs7200153, which had 
the lowest GWAS p-value in PAGE.  
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Figure S8: Cross validation R2 of gene prediction models generated from PredictDB. Cross validation (CV) 
R2 of each gene expression prediction model is represented by a red dot. Cis-heritability of the gene, represented 
as black dot with 95% confidence interval in grey, was shown to indicate upper bound of CV R2. Genes are sorted 
in ascending order of h2. 
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Figure S9: Out of sample validation of TWAS models in the SAPPHIRE. Admixture plots for the SAPPHIRE 
validation study and each of the training samples used to develop the TWAS models are shown in panel A). 
Validation results are shown for the subset of genes (n=5254) that were available in GTEx and GALA/SAGE models. 
Correlation between the predicted and measured gene expression levels is summarized in panel B) and the full 
distribution of correlation coefficients is shown in C). 
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Figure S10: Summary of TWAS results in UK Biobank (UKB). Comparative TWAS analyses in UKB were 
conducted using GTEx v8 whole blood models and GALA/SAGE models trained in African Americans (AA). Number 
of associated genes in ancestry matched and ancestry discordant analyses is summarized in for UKB European 
(EUR) ancestry subjects in A) and UKB African (AFR) ancestry subjects in B). Correlation between the z-scores for 
statistically significant findings in UKB EUR C) and UKB AFR D) are shown for genes that were present in both 
models. Genes highlighted in orange had FDR<0.05 using ancestry-matched models but did not reach nominal 
significance (TWAS p-value>0.05) using ancestry discordant models. 
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Figure S11: Distribution of global genetic ancestry in GALA/SAGE participants. 
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Figure S12: Selection of PEER factors for downstream analysis. Each panel visualizes the number of eQTLs 
and eGenes identified using different number of PEER factors included as covariates. Vertical dashed lines indicate 
the number of PEER factors selected for the final analysis with the goal of maximizing eQTL discovery. 
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