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ABSTRACT

We analyzed whole genome and RNA sequencing data from 2,733 African American and Hispanic/Latino
children to explore ancestry- and heterozygosity-related differences in the genetic architecture of whole blood
gene expression. We found that heritability of gene expression significantly increases with greater proportion
of African genetic ancestry and decreases with higher levels of Indigenous American ancestry, consistent with
a relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the
prevalence of statistically significant ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30%
in African ancestry and 8% for Indigenous American ancestry segments. Most of the anc-eQTLs (89%) were
driven by population differences in allele frequency, demonstrating the importance of measuring gene
expression across multiple populations. Transcriptome-wide association analyses of multi-ancestry summary
statistics for 28 traits identified 79% more gene-trait pairs using models trained in our admixed population than
models trained in GTEX. Our study highlights the importance of large and ancestrally diverse genomic studies

for enabling new discoveries of complex trait architecture and reducing disparities.
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INTRODUCTION

Gene expression has been extensively studied as a trait affected by genetic variation in humans!. Expression
quantitative trait loci (eQTLs) have been identified in most genes?®* and extensive analyses across multiple
tissues have demonstrated both tissue-specific and shared eQTLs?. Genome-wide association studies
(GWAS) tend to identify loci that are enriched for eQTLs®. Colocalization of eQTLs with GWAS has become
an important element of identifying causal genes and investigating the biology underlying genetic susceptibility
to disease®. More recently, transcriptome-wide association studies (TWAS) have been developed to
systematically leverage eQTL data by imputing transcriptomic profiles in external datasets, which has led to

the discovery of trait-associated genes that were often missed by GWAS"#,

GWAS have identified thousands of loci for hundreds of diseases and disease-related phenotypes in human
populations®. However, non-European ancestry populations are significantly under-represented in GWAS!9:11
and in studies of gene expression and eQTLs. We and others have shown that gene expression prediction
models trained in predominantly European ancestry reference datasets, such as the Genotype-Tissue
Expression (GTEX) project?, have substantially lower accuracy to predict gene expression levels when applied
to populations of non-European ancestry®12.13, The importance of having ancestry-matched training datasets
for prediction accuracy is also reflected by the limited cross-population portability of other multi-SNP prediction
models, such as polygenic risk scores (PRS)'4%6. Therefore, the limited diversity in genetic association studies
and reference datasets is a major obstacle for applying existing integrative genomic studies to non-European

populations.

To address this gap, we leveraged whole genome and RNA sequencing data from 2,733 African American and
Latino children from the Genes-environments and Admixture in Latino Americans (GALA Il) study and the
Study of African Americans, Asthma, Genes, and Environments (SAGE) to characterize the genetic
architecture of whole blood eQTLs. The diversity within the GALA [I/SAGE population enabled us to evaluate
how genetic ancestry relates to the heritability of gene expression, and systematically quantify the prevalence
of ancestry-specific eQTLs. Lastly, we developed a powerful set of TWAS models from these datasets to

facilitate genetic association analyses in multi-ancestry populations.

RESULTS

Demographic characteristics of GALA Il and SAGE participants

We analyzed data from a total of 2,733 participants from the GALA Il and SAGE asthma case-control studies,
including 757 self-identified African Americans (AA), 893 Puerto Ricans (PR), 784 Mexican Americans (MX),
and 299 other Latinos (LA) who did not self-identify as Mexican American or Puerto Rican (Table 1, Table S1).
All four grandparents of each study participant also identified as Latino for GALA Il or African American for
SAGE. The median age of the participants varied from 13.2 (PR) to 16.0 (AA) years old. About 50% of the

participants were female and 45% (MX) to 62% (PR) had physician-diagnosed asthma. For each participant
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we estimated genome-wide genetic ancestry (global ancestry) proportions, visualized in Figure 1. Median
global African ancestry was highest in AA (82.6%), followed by PR (19.7%), and lowest in MX (3.5%).

Variability in gene expression accounted by common genetic variation increases with African ancestry
We compared the heritability (h?) and genetic variance (Vg) of whole blood gene expression across self-
identified race/ethnicity groups (AA, PR, MX) and populations defined based on genetic ancestry. There was
a positive association between increasing proportion of African ancestry and variability of gene expression
attributed to common genetic variation (minor allele frequency [MAF] =0.01) within the cis-region (see
Methods). Across 17,657 genes, cis-heritability (Figure 2A) was significantly higher in AA (median h?=0.097)
compared to PR (h?=0.072; Wilcoxon rank sum test: p=2.2x10°°) and MX (h?=0.059; p=3.3x10134), as well as
PR compared to MX (p=2.2x102%). Genetic variance (Figure 2B) of whole blood transcript levels in AA (median
Vs=0.022) was higher than in PR (Vs=0.018, p=4.0x10'°) and in MX (Vs=0.013, p=5.6x101%%). Results
remained unchanged when sample size was fixed to n=600 in all populations (Figure S1), with higher heritability
and genetic variance in AA (h?=0.098; V=0.022) compared to PR (h?=0.072; V=0.017) and MX (h?=0.062;
V=0.012).

Next, we compared the distribution of h? (Figure 2C) and V¢ (Figure 2D) between participants grouped based
on proportions of global genetic ancestry (Table S3). Among participants with >50% African ancestry (AFRunign,
n=721) cis-heritability (h?=0.098) and genetic variance (Vs=0.022) were higher than in n=1011 participants with
<10% global African ancestry (AFRpw: h?=0.060, Pwicoxon=9.6%10126; V5=0.013, Pwiicoxon=7.6%1071%). Among
individuals with >50% Indigenous American (IAM) ancestry (IAMnigh, N=610), cis-heritability (h?=0.059) and
genetic variance (Vs=0.012) were lower than in subjects with <10% IAM ancestry (IAMiow: h2=0.084, p=3.1x10
103; \/5=0.020, Pwilcoxon=3.1x101%8). To further characterize these findings, we partitioned h? and Vg by coarse
MAF bins (Figure S2). Although h? and Vs remained higher in AFRhigh compared to AFRiow, the magnitude of
this difference was more pronounced in the 0.01< MAF < 0.10 bin (h?: 0.032 vs. 0.013, Pwicoxon=1.8%10310)
than for variants with MAF>0.10 (h%: 0.038 vs. 0.027, Pwiicoxon=2.2%x10%). Larger differences in h? and Vg

among 0.01< MAF < 0.10 variants were also observed for |AMnigh and |AMow.

We also investigated the impact of ancestry at the locus level, defined as the number of alleles (0, 1 or 2)
derived from each ancestral population at the transcription start site (Table S4). For each gene, individuals with
homozygous local African ancestry (AFR/AFR) were compared to those with heterozygous local African and
European ancestry (AFR/EUR). Heritability was significantly higher in AFR/AFR homozygotes (h?=0.096)
compared to AFR/EUR (h?=0.084, Pwiicoxon=1.4x10"14), and lower in IAM/IAM (h?=0.055) compared to IAM/EUR
(h?=0.064, p=1.6x107; Figure 2E). Compared to global ancestry, the magnitude of differences in Vg was
attenuated, but remained statistically significant for AFR (Vs=0.020 vs. V=0.019, p=2.0x10") and IAM
(V6=0.010 vs. Vs=0.012, p=1.62x108; Figure 2F; Table S4). Results were also consistent for Ve comparisons
within race/ethnicity groups for AFR (AA: Pwiicoxon=5.7%10°; PR: Pwilcoxon=2.0x107) and IAM (MX: p=2.0x107)
(Table S4).
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As a parallel approach to evaluating heritability, we applied LDAK (Linkage Disequilibrium Adjusted Kinships),
which assumes that SNP-specific variance is inversely proportional not only to MAF, but also to LD tagging'’.
Estimates obtained using LDAK-Thin and GCTA were nearly identical for self-identified groups (AA: h?=0.094;
PR: h?=0.071; MX: h?=0.059) and across strata based on global genetic ancestry (AFRnigh: h>=0.104; AFRIlow:
h?=0.066, IAMhign: h?=0.062; IAMiw h?=0.093), suggesting that our results were not sensitive to the
assumptions of the GCTA model (Table S5).

Lastly, we tabulated the number of heritable genes for which global and/or local ancestry was significantly
associated (FDR<0.05) with transcript levels (Figure S3). Global AFR ancestry was associated with the
expression of 326 (2.4%) and 589 (4.5%) of heritable genes in AA and PR, respectively (Table S6).
Associations with local, but not global, AFR ancestry were more common (8.9% in AA; 10.9% in PR), and
relatively few genes were associated with both measures of ancestry (1.5% in AA and 2.5% in PR). Among
genes associated with both global and local AFR ancestry in AA, global AFR ancestry explained 1.8% of
variation in gene expression, while local AA accounted for 3.8% (Figure S3). Local IAM ancestry was
associated with the expression of 9.8% of genes in MX, compared to 2.8% for global IAM ancestry. Among
genes associated with both, local IAM ancestry accounted for 3.5% variation in transcript abundance, while

global IAM ancestry accounted for 1.8%.

Assessment of ancestry-specific eQTLs

We next sought to understand patterns of cis-eQTLs in the admixed GALA/SAGE study participants. A total of
19,567 genes with at least one cis-eQTL (eGenes) were found in the pooled sample. The largest number of
eGenes was detected in AA (n=17,336), followed by PR (n=16,975), and MX (n=15,938) participants (Table
S7, Figure S4). In analyses stratified by global genetic ancestry the number of eGenes was similar in AFRnigh
(n=17,123) and AFRow (N=17,146) groups (Table S7). When sample size was fixed to n=600 for all ancestry
groups (Table S7), the highest number of eGenes (n=16,100) was observed in AFRnign, followed by IAMow
(n=14,866), |IAMhigh (N=14,419), and AFRow (n=14,344). The number of LD-independent (r’<0.10) cis-eQTLs
per gene was significantly higher in AFRnigh than AFRiow (Pwicoxon=2.7%10246), with 63% of genes having more
independent cis-eQTLs in AFRnhigh compared to AFRow (Figure S5). Conversely, the number of independent

cis-eQTLs detected in IAMhigh was lower than in IAMiow (Pwilcoxon=2.8%10733).

To characterize ancestry-related differences in the genetic regulation of gene expression, we developed a
three-tier framework for identifying ancestry-specific eQTLs, which we refer to as anc-eQTLs (see Methods;
Figure 3A; Table S8-S9). For heritable protein-coding genes, we first compared the overlap in 95% credible
sets of cis-eQTLs identified in participants with >50% global ancestry (AFRnigh; IAMnign) and those with <10%
of the same global ancestry (AFRiow; IAMiow). For genes with non-overlapping 95% credible sets, we
distinguished between population differences in MAF (Tier 1) and LD (Tier 2). For genes with overlapping 95%
credible sets, eQTLs were further examined for evidence of effect size heterogeneity between ancestry groups
(Tier 3).
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Tier 1 anc-eQTLs (ancestry-specific enrichment) were common (MAF = 0.01) only in individuals with >50%
AFR or IAM ancestry and were thus considered to be the most ancestry specific. Over 28% (n=2,695) of genes
contained at least one Tier 1 AFRngh anc-eQTL, while 7% (n=562) of genes contained a Tier 1 IAMnigh anc-
eQTL (Table S9). A representative example of a Tier 1 AFRnigh anc-eQTL is rs3211938 (CD36), which has
MAF=0.077 in AFRnigh and MAF=0.0020 in AFRiow, (Figure 3B). This variant been linked to high density

lipoprotein (HDL) cholesterol levels in several multi-ancestry GWAS that included African Americans8-2°,

Tier 2 anc-eQTLs (ancestry-specific LD patterning) had MAF = 0.01 in both high (>50%) and low (<10%) global
ancestry groups and were further interrogated using PESCA?! to account for population-specific LD patterns.
There were 109 genes (1.1%) that contained eQTLs with a posterior probability (PP) >0.80 of being specific to
AFRnigh and 33 genes (0.4%) matching the same criteria for IAMnigh (Table S9). For instance, two lead eQTLs
with non-overlapping credible sets were detected for TRAPPC6A in AFRngh (rs12460041) and AFRiow
(rs7247764) groups (Figure 3D-3F). These variants were in low LD (r?=0.10 in AFRhigh and r>=0.13 in AFRow)
and PESCA analysis confirmed that rs12460041 was specific to AFRnign (PP>0.80).

Over 50% of heritable protein-coding genes (AFR: n=5,058; IAM: n=5,355) had overlapping 95% credible sets
of eQTLs between high and low ancestry groups. Among these shared signals, there was a small proportion
of eQTLs that exhibited significant effect size heterogeneity (Tier 3, ancestry-related heterogeneity: 2.0% for
AFRhigh; 1.0% for IAMnign). For instance, rs34247110 and rs3734618 were included in 95% credible sets for
KCNK17 in AFRnigh and AFRow With significantly different effect sizes (Cochran’s Q p-value=1.8x101°) in each
population (Figure 3C). One of these variants, rs34246110, was associated with type 2 diabetes in two
independent studies performed in Japanese and multi-ancestry (European, African American, Hispanic and
Asian) populations??23, The detection of this variant in multiple populations is consistent with Tier 3 variants

denoting eQTL signals that are shared between ancestries but may have different magnitudes of effect.

The prevalence of any Tier 1, 2, or 3 anc-eQTL was 30% (n=2,961) for AFR ancestry and 8% (n=679) for IAM
ancestry. Overall, 3,333 genes had anc-eQTLs for either ancestry. The remaining genes (AFR: n=6,648; IAM:
n=7,836) did not contain eQTLs with ancestry-related differences in MAF, LD, or effect size as outlined above.
Increasing the global ancestry cut-off to >70% did not have an appreciable impact on anc-eQTLs in AFRhigh
(28.1% overall; 27.3% for Tier 1), but substantially decreased the number of anc-eQTLs in I1AMnigh (3.3%
overall; 3.3% Tier 1), likely due to a greater reduction in sample size in this group (n=212 vs. n=610; Table
S10). Considering all protein-coding genes (n=13,535) without filtering based on heritability, the prevalence of
anc-eQTLs is 22% for AFRnigh, 5% for IAMnigh, and 25% overall. The observation that anc-eQTLs were more
common in participants with >50% global AFR ancestry aligns with the higher h? and Vg in this population, as
well as a greater number of LD-independent cis-eQTLs in AFRnigh compared to AFRjow (Figure S5). Among
genes with Tier 1 and Tier 2 anc-eQTLs, 83% had higher h? estimates in AFRpigh than in AFRow, While this was

observed in 57% of genes without any ancestry-specific eQTLs 57% (Figure S6).
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Despite the limited representation of subjects from diverse ancestries in studies from the NHGRI-EBI GWAS
catalog?*, we detected 70 unique anc-eQTLs associated with 84 phenotypes (Table S11). Most of these were
Tier 3 anc-eQTLs (59%) that mapped to blood cell traits, lipids, and blood protein levels. To further explore the
relevance of the eQTLs identified in our analysis to other complex traits, we performed colocalization with
summary statistics for 28 traits from the multi-ancestry PAGE study?° (see Methods). We identified 78 eQTL-
trait pairs (85 eGene-trait pairs) with strong evidence of a shared genetic, defined as PP4>0.80, 16 of which
were anc-eQTLs (Table S12). One compelling example is rs7200153, AFRnigh Tier 1 anc-eQTL for the
haptoglobin (HP) gene, which colocalized with total cholesterol (PP4=0.997; Figure S7). Fine-mapping limited
the 95% credible set to two variants in high LD (r>=0.75): rs7200153 (PPsne=0.519) and rs5471 (PPsnp=0.481).
Although rs7200153 had a slightly higher PPsnp, rs5471 is likely to be the true causal variant given its proximity
to the HP promoter, stronger effect of HP expression, and experimental data demonstrating decreased
transcriptional activity for rs5471-C in West African populations?>27. Prior studies have identified HP as having
an effect on cholesterol and the association of rs5471 is well supported by multi-ancestry genetic association

studies19.28.29,

Although our primary assessment of ancestry-specific eQTLs focused on variants in cis, we also performed
trans-eQTL analyses that identified 33 trans-eGenes in AA, 52 trans-eGenes in PR, and 51 trans-eGenes in
MX subjects (see Methods; Table S13). Analyses stratified by genetic ancestry detected 36 independent (LD
r’<0.10) trans-eQTLs and 31 eGenes, 26 of which (24 eGenes) were found in AFRhigh but not in AFRqw. Fewer
independent signals were detected in participants with >50% Indigenous American ancestry (26 trans-eQTLS),

of which 23 trans-eQTLs were not detected in the IAMiow group.

Gene expression prediction models from admixed populations increase power for gene discovery

We generated gene expression imputation models from GALA Il and SAGE following the PrediXcan approach’.
We used the pooled population (n=2,733) to generate models with significant prediction (see Methods) for
11,830 heritable genes with mean cross-validation (CV) R?=0.157 (Table S13, Figure S8). We also generated
population-specific models for African Americans (10,090 genes, CV R?=0.180), Puerto Ricans (9,611 genes,
CV R?=0.163), and Mexican Americans (9,084 genes, CV R?=0.167). In sensitivity analyses that adjusted for
local ancestry (Table S14), we did not observe gains in predictive performance (AA: CV R?=0.177; PR: CV
R?=0.154; MX: CV R?=0.159).

Validation of GALA/SAGE TWAS models and comparison with GTEx v8 was performed in the Study of Asthma
Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE)%?, an independent adult
population of 598 African Americans (Figure S9). Validation accuracy was proportional to the degree of
alignment in ancestry between training and testing study samples. For 5,254 genes with TWAS models
available in GALA/SAGE and GTEXx, median correlation between genetically predicted and observed transcript
levels in SAPPHIRE was highest for pooled (Pearson’s r = 0.086) and AA (Pearson’s r = 0.083) models and
lowest for GTEx (Pearson’s r = 0.049).
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To evaluate the potential of TWAS models generated in the pooled GALA Il and SAGE population (hereafter
referred to as GALA/SAGE models) to improve gene discovery in admixed populations, we applied our models
to GWAS summary statistics for 28 traits from the multi-ancestry Population Architecture using Genomics and
Epidemiology (PAGE) study?® and conducted parallel analyses using TWAS models based on GTEx v827 and
the Multi-Ethnic Study of Atherosclerosis (MESA)3. GTEx v8 whole blood models are based on 670 subjects
of predominantly European ancestry (85%)?. MESA models impute monocyte gene expression® based on a
sample of African American and Hispanic/Latino individuals (MESAarni: N=585). As such, populations included

in MESA and PAGE more closely resemble the ancestry composition of our GALA/SAGE populations.

The number of genes with available TWAS models was 39% to 82% higher in GALA/SAGE compared to GTEX
(n=7,249) and MESAarn (N=5,555). Restricting to 3,143 genes shared across all three models, CV R? was
significantly higher in GALA/SAGE compared to GTEX (Pwilcoxon=4.6%101%%) and MESAarni (Pwicoxon=1.1x10"
64), which is expected based on the large sample size of GALA/SAGE (Figure 4A). TWAS models generated
in GALA/SAGE AA (n=757) attained higher CV R? than GTEX (Pwicoxon=2.2%107193), which had a comparable
training sample size (n=670), and MESAara models (p=6.2x103) trained in 233 individuals (Figure 4B).

Association results across 28 PAGE traits demonstrate that TWAS using GALA/SAGE pooled models identified
a larger number of significant gene-trait pairs (n=380, FDR<0.05), followed by MESAar1 (n=303), and GTEX
(n=268), with only 30 genes (35 gene-trait pairs) significant in all three analyses (Figure 4C). GALA/SAGE
models yielded a larger number of associated genes than MESA in 80% of analyses (binomial test: p=0.012)
and 79% compared to GTEXx (binomial test: p=0.019). Of the 330 genes with FDR<0.05 in GALA/SAGE, 143
(43%) were not present in GTEx and 199 (60%) were not present in MESAaeni. For genes that were significant
in at least one TWAS, z-scores in GALA/SAGE were highly correlated with GTEX (Figure 4C; r=0.74, p=3.5x10"
64) and MESAarni (Figure 4D; r = 0.55, p=8.5x10?7), suggesting that most genes have concordant effects even
if they fail to achieve statistical significance in both analyses. Despite the higher correlation with GTEX z-scores,
we observed a higher proportion of gene-trait pairs with FDR<0.05 in GALA/SAGE but not even nominally
associated (Ptwas<0.05) in GTEXx (33%), compared to 18% in MESAaFH!.

HDL cholesterol exhibited one of the largest differences in TWAS associations, with over 60% more significant
genes identified using GALA/SAGE models (n=29) than GTEX predictions (n=11; Figure 4C). TWAS models
for several associated genes, including those with established effects on cholesterol transport and metabolism,
like CETP, were not available in GTEXx. The top HDL-associated gene, CD36 (z-score= -10.52, Prwas=6.9x10
26) had Tier 1 AFRnigh anc-eQTLs (rs3211938) that were not present at an appreciable frequency in populations
with low African ancestry (MAF in European = 1.3x10%). The difference in MAF may explain why CD36 was
not detected using GTEXx (z-score=0.057, Ptwas=0.95), even though all 43 variants from the GTEx model were
available in PAGE summary statistics. In addition to HDL cholesterol levels, CD36 expression was also

associated with levels of C-reactive protein (z-score= 5.30, Prwas=1.1x107).
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Although GALA/SAGE multi-ancestry TWAS models showed robust performance, in some cases population-
specific models may be preferred to achieve better concordance in ancestry between the training and testing
populations. For instance, benign neutropenia is a well-described phenomenon in persons of African ancestry
and is almost entirely attributed to variation in the 1g23.2 region. Applying GALA/SAGE AA models to a meta-
analysis of 13,476 African Ancestry individuals®' identified 139 genes (FDR<O0.05), including ACKR1
(Prwas=1.5x1023%), the atypical chemokine receptor gene that is the basis of the Duffy blood group system
(Figure 5B). This causal gene was missed by GTEx and MESAara, Which detected 100 and 55 genes at
FDR<0.05, respectively. TWAS using GALA/SAGE AA also detected 7 genes that were not previously reported
in GWAS: CREBS5 (Prwas=1.5%x1014), DARS (Prwas=2.9x108), CD36 (Ptwas=1.1x105), PPT2 (Ptwas=1.3x10-
5), SSH2 (Prwas=4.7x105), TOMM5 (Ptwas=2.9x104), and ARF6 (Ptwas=3.4x10"4).

Next, we applied GALA/SAGE AA and GTEx models to summary statistics for 22 blood-based biomarkers and
guantitative traits from the UK Biobank (UKB). Ancestry-matched TWAS of UKB AFR (median GWAS n=6,190)
identified 56 gene-trait associations (FDR<0.05), whereas ancestry-discordant analyses using GTEXx detected
92% fewer statistically significant associations, with only 5 genes (Figure S10). TWAS z-scores for associated
genes from the two analyses were modesty correlated (r=0.37, 95% CI: -0.01 — 0.66). TWAS in UKB EUR
(median GWAS n=400,223) also illustrated the advantage of ancestry-matched analyses, but the difference
was less dramatic, with a 15% decrease in the number of genes that reached FDR<0.05 using GALA/SAGE
AA models, and strong correlation between z-scores (r=0.77, 95% CI: 0.76-0.78). With the exception of
hemoglobin, where GTEX yielded 1196 genes and AA models detected 326, the number of TWAS-significant
findings per trait was comparable. Concordance between significant associations across the 22 traits was 28%,

ranging from 1306 (32.7%) genes for height to 108 (7.6%) genes for hemoglobin.

DISCUSSION

Our comprehensive analysis in a large, multi-racial/multi-ethnic population elucidated the role of genetic
ancestry in shaping the genetic architecture of whole blood gene expression that may be applicable to other
complex traits. We found that cis-heritability of gene expression increased with higher proportion of global
African ancestry, and that in admixed populations with intermediate global ancestry, cis-heritability was also
highest in individuals with predominantly local African ancestry. Parallel analyses of Indigenous American
Ancestry revealed an inverse relationship — with genetic variance and cis-heritability decreasing in individuals
with higher levels of Indigenous American compared to European ancestry. The consistency across analyses
of global and local ancestry within self-identified race/ethnicity groups (African Americans or Puerto Ricans)
and the pooled GALA/SAGE population suggests that confounding by social or environmental factors is an
unlikely explanation for these results. The same pattern was observed for genetic variance, which further
supports that differences in heritability between ancestry groups do not simply reflect differences in the relative

contribution of environmental factors.
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To our knowledge, this relationship between ancestry and heritability has not been previously demonstrated
for whole blood gene expression, particularly using WGS data in a sufficiently large and diverse population.
Our findings are consistent with the overall pattern of heterozygosity in African and Indigenous American
populations. Sub-Saharan African populations consistently show the highest heterozygosity since the
ancestors of all other populations passed through a bottleneck during their migration out of Africa3?33,
Indigenous American populations have passed through additional bottlenecks3435. With every bottleneck event
there is a loss of variation and a concomitant loss of heterozygosity3¢. Therefore, greater genetic control of
gene expression in African ancestry populations may be a function of higher heterozygosity resulting in more
segregating functional variants in the cis-region®’. This interpretation is also supported by the higher number

of LD-independent cis-eQTLs, overall and per-gene, in AFRnigh compared to AFRjow and groups.

A second major finding of our work is that over 30% of heritable protein-coding genes have ancestry-specific
eQTLs, most of which are Tier 1 variants that are rare (MAF < 0.01) or even non-polymorphic in another
population. The prevalence of the Tier 1 class remained stable when the global ancestry cut-off was increased
from 50% to 70% for AFRnigh and 1AMnigh groups. Our findings align with a recent plasma proteome analysis of
the Atherosclerosis Risk in Communities (ARIC) study, which found that nearly 33% of pQTLs identified in a
large sample of African Americans (n=1871) were nonexistent or rare in the 1000 Genomes EUR population2,
Tier 2 anc-eQTLs are an interesting class of variants that are present at a sufficient frequency (MAF>0.01) in
both ancestry groups, but do not belong to the same gene-specific credible set. Tier 2 eQTLs could arise due
to differences in environmental effects on gene expression, gene-by-gene and gene-by-environment
interactions, or multiple causal variants at the same locus that are in different degrees of LD with each other.
Among eQTL signals that were shared between ancestry groups effect size heterogeneity was rare. The Tier
3 class of eQTLs was effectively eliminated when AFRnhigh and IAMnigh were defined using 70% as the global
ancestry cut-off, suggesting that heterogeneity in allelic effects is not a major determinant of ancestry-related
eQTL differences. However, comparisons of marginal effect sizes are challenging and confounded by
differences in sampling error, particularly when there is an imbalance in sample size between populations.

Therefore, we may have underestimated ancestry-related heterogeneity in eQTL effects.

Our third major finding relates to the importance of comprehensively accounting for genetic determinants of
trait variation in multi-ethnic populations, as illustrated in our TWAS results for 28 traits from the PAGE study.
TWAS models trained in the racially/ethnically and ancestrally diverse GALA/SAGE study identified
significantly more trait-associated genes than both GTEx and MESA. When applied to admixed populations,
GALA/SAGE imputation models benefit from having more similar allele frequency profiles to the target
datasets, such as PAGE, as well as more accurate modeling of LD. This is consistent with the findings of
Geoffroy et al.’® using GTEx and MESA models, as well as other observations'?13 that ancestry-matched
models improve power for gene discovery in admixed populations. Over 40% of significantly associated TWAS
genes detected using GALA/SAGE models were not available in GTEXx, which underscores how biologically

meaningful associations may be overlooked in studies that exclusively rely on European ancestry-based
10
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predictions. The top two HDL cholesterol-associated genes, CETP in 16g13 and CD36 in 7921, with
established effects on lipid metabolism®3%-41 were not detected in TWAS using GTEx due differences in
eQTLs. The finding for CD36 is compelling since this gene was associated with multiple phenotypes and
contains Tier 1 anc-eQTLs that are specific to individuals with >50% African ancestry, consistent with earlier
findings that evolutionary pressures have elevated genetic divergence at this locus*?#3. CD36 encodes a
transmembrane protein that binds many ligands, including collagen, thrombospondin, and long-chain fatty
acids, and also serves as a negative regulator of angiogenesis**. Beyond lipid metabolism, the main functions
of CD36 involve mediating the adherence of erythrocytes infected with Plasmodium falciparum, the parasite

that causes severe malaria®>4.

However, the most striking example of ancestry-specific genetic architecture in our TWAS involves the Duffy
antigen receptor gene (ACKR1) on 1g23.2, which is responsible for persistently lower white blood cell and
neutrophil counts in populations of predominantly African ancestry*”#8, Common African-derived alleles at this
locus confer a selective advantage against Plasmodium vivax malaria and are extremely rare in European
ancestry populations. Expression of ACKR1 could not be imputed using GTEx or MESA, but this causal gene
was captured by the pooled and AA-specific GALA/SAGE TWAS models. We also replicated PSMD3 in
17g214°, which was previously identified in African Americans, and several genes that were discovered in
European ancestry populations (CREB5, SSH2, and PPT2)%. Ancestry-matched TWAS models identified 11
genes associated with neutrophil counts outside of the Duffy locus, including novel genes that have not
previously been linked to hematologic traits: DARS1 in 2g31.1 modulates reactivity to mosquito antigens®?,

while TOMMS5 has been implicated in lipoprotein phospholipase A2 activity>2.

Our TWAS in UKB illustrated that while ancestry-matched training and testing populations are clearly optimal,
there is also evidence that transcriptome prediction models developed in African Americans may have better
cross-population portability than models based on predominantly European ancestry samples such as GTEX.
Across 22 blood-based biomarkers and traits, the loss of signal was less dramatic in ancestry-discordant
analyses that applied models trained in GALA/SAGE African Americans to GWAS summary statistics from
UKB EUR subjects than the reverse (15% vs. 92% fewer statistically significant findings). The correlation of
TWAS z-scores from ancestry-matched and ancestry-discordant analyses was also lower in UKB AFR than
UKB EUR. Similar asymmetric performance has been demonstrated for proteome-wide models in ARIC?,
where predicted R? standardized by cis-h? was higher for AA models applied to EU than for EU modes in AA.
We hypothesize that greater genetic diversity of African ancestry populations allows for a more comprehensive
set of genetic predictors of transcript levels to be captured by the TWAS models, whereas only a fraction of
these variants may be present in populations that underwent additional bottlenecks. Taken together, these
findings highlight the value of genetic prediction models trained in ancestrally diverse populations as a resource
for identifying trait-associated genes in important biological pathways and advancing research in admixed

populations.

11
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PAGE TWAS z-scores were highly correlated across transcriptome models, although the magnitude of
correlation with GALA/SAGE was higher for GTEx than MESAarni results, which may partly reflect the lack of
neutrophils present in monocyte gene expression in MESAarn compared to whole blood in GALA/SAGE and
GTEX2. Furthermore, both GALA/SAGE and GTEx conducted whole-genome sequencing, whereas MESA
TWAS models are based on imputed genotype data. However, when comparing GALA/SAGE and MESA there
were few instances where a gene was significantly associated based on one model and null using another or
associated in both analyses with opposite directions of effect, suggesting that similarity in ancestry may partly
compensate for differences in cell type. While our study population is comprised of participants under 21 years
of age, TWAS of biomarkers and chronic conditions in adults from PAGE and UKB identified more associated
genes than adult-derived prediction models. This implies that the power gained from ancestry-matched models

trained in an adequately sized population may outweigh differences in age.

Given that the genetic architecture of complex traits is, to a variable degree, mirrored by the genetics of gene
expression®3, higher heritability in individuals with at least 50% global African ancestry implies that genetic
prediction of complex traits should be at least as accurate, if not more effective, in these populations. However,
for most complex traits the performance of polygenic prediction models in admixed and predominantly African
ancestry individuals lags significantly behind other populations'®, particularly those of European ancestry, likely
due to insufficient sample size and underrepresentation in discovery studies. This is also supported by
simulation-based studies and accumulating results from well-powered analyses of diverse cohorts37:545, While
these results argue for ancestry-specific estimates of heritability, and the importance of context in heritability
estimation, it is important to note that there continues to be a preponderance of relevant ancestry-specific
eQTLs across diverse populations. It continues to be important to study and engage with diverse populations

across the globe, rather than continue to focus on single-population studies and predictive models.

The substantial prevalence of ancestry-specific eQTLs driven by allele frequency differences also implies that
analytic approaches alone will yield limited improvements in the cross-population portability of genetic
prediction models, including TWAS and polygenic risk scores. For instance, fine-mapping methods that
account for differential LD tagging to identify causal variants will recover some deficits in prediction
performance but will not compensate for unobserved risk variants. Our results reinforce the conclusion that
developing truly generalizable genetic prediction models requires capturing the full spectrum of genetic
variation across human populations. As such, access to sufficiently large ancestrally diverse populations

remains the main rate-limiting step.

In evaluating the contributions of our work, several limitations should be acknowledged. Our study was limited
to whole blood and similar analyses of ancestry-specific effects should be performed for other tissues.
However, whole blood is one of the most clinically-informative and commonly-collected samples, and for over
60% of genes whole blood transcriptomes significantly capture expression levels in other tissues®®. Thus, our

observations regarding the genetic architecture of whole blood eQTLs in admixed populations with African and
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Indigenous American ancestry are likely generalizable to other tissues. Our approach for classifying ancestry-
specific eQTLs may result in an underestimation of the number of these loci. We assumed that each gene had
one causal eQTL locus and focused all comparisons on the corresponding 95% credible set. This assumption
is likely violated for genes with multiple independent eQTLs, which would limit our ability to assess the ancestry-
specificity of all signals. We believe this is a conservative assumption that would lead us to potentially miss
some ancestry-specific eQTLs. Detection of our Tier 2 anc-eQTLs by PESCA relies on having regions that are
approximately LD independent in both populations to estimate the proportion of causal variants. This estimate
may be biased if there is residual LD between regions, which is a challenge in admixed populations with longer-
range LD. Lastly, our comparison of TWAS models may be slightly biased against GTEx in European ancestry
TWAS since we did not apply MASHR models, which predict a larger number of genes using fine-mapped
eQTLs®”. We chose to compare with elastic net GTEx models because GALA/SAGE TWAS models were

developed using the same analytic pipeline.

Although there is evidence that accounting for local ancestry increases power for discovery in cis-eQTL
mapping®8>°, adjustment for local ancestry as a covariate did not improve the predictive performance of TWAS
models. Previous work by Gay et al. reported that local ancestry explains at least 7% of the variance in residual
expression for 1% of expressed genes in 117 admixed individuals from GTEx °8. In GALA II/SAGE, we found
that local ancestry was a significant predictor of transcript levels for at least 10% of heritable genes, explaining
between 2.1% (in 893 Puerto Ricans) and 5.1% (in 757 African Americans) of residual variance. Consistent
with Gay et al., we observed that local ancestry explains a larger proportion of variance in gene expression
corrected for global ancestry. However, it is possible that the lack of improvement in the TWAS context may
be due to overadjustment as local ancestry may serve as a proxy for information already captured by

population-specific genetic variants, or because of how local ancestry was modelled in our analyses.

Despite these limitations, our study leveraged a uniquely large and diverse sample of 2,733 African American
and Latino participants to explore the interplay between genetic ancestry and regulation of gene expression.
Our approach to evaluating the degree of specificity of whole blood eQTLs to African or Indigenous American
ancestry revealed that such effects are mostly driven by allele frequency differences between populations. Tier
1 anc-eQTLs reach a frequency of at least 1% only in predominantly African or Indigenous American ancestry
populations and affect the expression of a large fraction of protein-coding genes, which has implications for
detecting functional genetic variants and evaluating their role in disease susceptibility. In addition, we provide
genetic prediction models of whole blood transcriptomes that cover a greater number of genes than similar
resources developed in European ancestry populations and facilitate more powerful TWAS when applied to
studies of admixed individuals and multi-ancestry GWAS meta-analyses. In summary, our study highlights the
need for larger genomic studies in globally representative populations for characterizing the genetic basis of

complex traits and ensuring equitable translation of precision medicine efforts.
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METHODS

Study population

This study examined African American, Puerto Rican and Mexican American children between 8-21 years of
age with or without physician-diagnosed asthma from the Genes-environments and Admixture in Latino
Americans Il (GALA 1) study and the Study of African Americans, Asthma, Genes & Environments (SAGE).
The inclusion and exclusion criteria are previously described in detail®?6, Briefly, participants were eligible if
they were 8-21 years of age and identified all four grandparents as Latino for GALA Il or African American for
SAGE. Study exclusion criteria included the following: 1) any smoking within one year of the recruitment date;
2) 10 or more pack-years of smoking; 3) pregnancy in the third trimester; 4) history of lung diseases other than

asthma (for cases) or chronic illness (for cases and controls).

The local institutional review board from the University of California San Francisco Human Research Protection
Program approved the studies (IRB# 10-02877 for SAGE and 10-00889 for GALA II). All subjects and their

legal guardians provided written informed consent.

Whole genome sequencing data and processing

Genomic DNA samples extracted from whole blood were sequenced as part of the Trans-Omics for Precision
Medicine (TOPMed) whole genome sequencing (WGS) program®? and the Centers for Common Disease
Genomes of the Genome Sequencing Program. WGS was performed at the New York Genome Center and
Northwest Genomics Center on a HiSeq X system (lllumina, San Diego, CA) using a paired-end read length of
150 base pairs (bp), with a minimum of 30x mean genome coverage. DNA sample handling, quality control,
library construction, clustering, and sequencing, read processing and sequence data quality control are
previously described in detail’2. All samples were jointly genotyped by the TOPMed Informatics Research
Center. Variant calls were obtained from TOPMed data freeze 8 VCF files generated based on the GRCh38

assembly. Variants with a minimum read depth of 10 (DP10) were used for analysis unless otherwise stated.

RNA sequencing data generation and processing

Total RNA was isolated from PAXgene tube using MagMax™ for Stabilized Blood Tubes RNA Isolation Kit
(Applied Biosystem, P/N 4452306). Globin depletion was performed using GLOBINcleasr™ Human (Thermo
Fisher Scientific, cat. no. AM1980). RNA integrity and yield were assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).

Total RNA was quantified using the Quant-iT™ RiboGreen® RNA Assay Kit and normalized to 5ng/ul. An
aliquot of 300ng for each sample was transferred into library preparation which was an automated variant of
the lllumina TruSeq™ Stranded mMRNA Sample Preparation Kit. This method preserves strand orientation of
the RNA transcript. It uses oligo dT beads to select mRNA from the total RNA sample. It is followed by heat
fragmentation and cDNA synthesis from the RNA template. The resultant cDNA then goes through library

preparation (end repair, base ‘A’ addition, adapter ligation, and enrichment) using Broad-designed indexed
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adapters substituted in for multiplexing. After enrichment the libraries were quantified with qPCR using the
KAPA Library Quantification Kit for lllumina Sequencing Platforms and then pooled equimolarly. The entire

process is in 96-well format and all pipetting is done by either Agilent Bravo or Hamilton Starlet.

Pooled libraries were normalized to 2nM and denatured using 0.1 N NaOH prior to sequencing. Flowcell cluster
amplification and sequencing were performed according to the manufacturer’s protocols using the HiSeq 4000.
Each run was a 101bp paired-end with an eight-base index barcode read. Each sample was targeted to 50M
reads. Data was analyzed using the Broad Picard Pipeline which includes de-multiplexing and data

aggregation.

RNA-seq reads were further processed using the TOPMed RNA-seq pipeline for Year 3 and Phase 5 RNA-
seq data (supplementary file 2 obtained from https://topmed.nhlbi.nih.gov/sites/default/
filessTOPMed_RNAseq_pipeline_COREyr3.pdf). Count-level data were generated using GRCh38 human
reference genome and GENCODE 30 for transcript annotation. Count-level quality control (QC) and
normalization were performed following the Genotype-Tissue Expression (GTEx) project v8 protocol
(https://gtexportal.org/home/methods). Sample-level QC included removal of RNA samples with RIN < 6,
genetically related samples (equal or more related than third degree relative), and sex-discordant samples
based on reported sex and their XIST and RPS4Y1 gene expression profiles. Count distribution outliers were
detected as follows: (i) Raw counts were normalized using the trimmed mean of M values (TMM) method in
edgeR® as described in GTEXx v8 protocol. (ii) The log2 transformed normalized counts at the 25th percentile
of every sample were identified (countqzs). (iii) The 25th percentile (Q25) of countq2s was calculated. (iv)

Samples were removed if their countq2s was lower than -4 as defined by visual inspection.

To account for hidden confounding factors such as batch effects, technical and biological variation in the
sample preparation, and sequencing and/or data processing procedures, latent factors were estimated using
the Probabilistic Estimation of Expression Residuals (PEER) method®4. Optimization was performed according
to approach adopted by GTEx with the goal to maximized eQTL discovery®®. A total of 50 (for AA, PR, MX,
pooled samples) and 60 (for AFRnigh, AFRiow, |1AMnigh, IAMiow) PEER factors were selected for downstream

analyses (Figure S11).

Estimation of global and local genetic ancestry

Genetic principal components (PCs), global and local ancestry, and kinship estimation on genetic relatedness
were computed using biallelic single nucleotide polymorphisms (SNPs) with a PASS flag from TOPMed freeze
8 DP10 data as described previously®®:67. Briefly, genotype data from European, African, and Indigenous
American (IAM) ancestral populations were used as the reference panels for global and local ancestry

estimation assuming three ancestral populations.
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Reference genotypes for European (HapMap CEU) and African (HapMap YRI) ancestries were obtained from
the Axiom® Genotype Data Set (https://www.thermofisher.com/us/en/home/life-science/microarray-
analysis/microarray-data-analysis/microarray-analysis-sample-data/axiom-genotype-data-set.). The CEU
populations were recruited from Utah residents with Northern and Western European ancestry from the CEPH
collection. The YRI populations were recruited from Yoruba in Ibadan, Nigeria. The Axiom® Genome-Wide
LAT 1 array was used to generate the Indigenous American (IAM) ancestry reference genotypes from 71
Indigenous Americans (14 Zapotec, 2 Mixe and 11 Mixtec from Oaxaca, 44 Nahua from Central Mexico)®8.6°,
ADMIXTURE was used with the reference genotypes in a supervised analysis assuming three ancestral
populations. Global ancestry was estimated by ADMIXTURE® in supervised while local ancestry was
estimated by RFMIX version 2 with default settings’*. Throughout this study, local ancestry of a gene was

defined as the number of ancestral alleles (0, 1, or 2) at the transcription start site.

Comparative analyses were performed based on two different sample grouping strategies, by self-identified
race/ethnicity or by global ancestry. Self-identified race/ethnicity included four groups — African Americans
(AA), Puerto Ricans (PR), Mexican Americans (MX), and the pooling of AA, PR, MX and other Latinos (pooled).
For groups defined by global ancestry, samples were grouped into high (> 50%, AFRnigh or IAMhign) or low (<
10%, AFRiow or IAMiow) global African or Indigenous American ancestry. The sample size for each group is

shown in Table S1.

Cis-heritability of gene expression

The genetic region of cis-gene regulation was defined by 1MB region flanking each side of the transcription
start site (cis-region). Cis-heritability (h?) of gene expression was estimated using unconstrained GREML"?
analysis (--reml-no-constrain), and estimation was restricted to common autosomal variants (MAF = 0.01).
Inverse-normalized gene expression was regressed on PEER factors, and the residuals were used as the
phenotype for GREML analysis. Sex and asthma case-control status was used as categorical covariates, while
age at blood draw and the first 5 genetic PCs were used as quantitative covariates. Cis-heritability was
estimated separately for each self-identified race/ethnicity group (AA, PR, MX and pooled) and groupings
based on global (AFRnigh, AFRiow, [AMhigh and IAMiow) and local ancestry (described below). Differences in the
distribution of h? and genetic variance (Vg) between groups were tested using two-sided Wilcoxon tests.
Parallel analyses were also conducted for Indigenous American ancestry (IAM/IAM vs. EUR/EUR and IAM/IAM
vs. IAM/EUR).

The following sensitivity analyses were conducted using GCTA: i) using the same sample size in each self-
identified group (n=600) and (ii) partitioning heritability and genetic variance by two minor allele frequency bins
(0.01-0.1, 0.1-0.5). We also estimated heritability using the LDAK-Thin model’3, following the recommended
GRM processing. Thinning of duplicate SNPs was performed using the arguments “--window-prune .98 --
window-kb 100”. The direct method was applied to calculate kinship using the thinned data and lastly,
generalized restricted maximum likelihood (REML) was used to estimate heritability.
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Association of global and local ancestry with gene expression

Methods from Gay et al (2020)°® was modified to identify genes associated with global and local ancestry
(Figure S1). In step 1, inversed normalized gene expression was regressed on age, sex and asthma status
(model 0). In step 2, the residuals from model 0 were regressed on global ancestry (model 1). In step 3, the
residuals from model 1 were regressed on local ancestry (model 2) to identify genes that are associated with
local ancestry. A false discovery rate (FDR) of 0.05 was applied to step 2 and 3 separately to identify genes
that were significantly associated with global and/or local ancestry. Step 1 to step 3 were run separately for
African and Indigenous American ancestry. For heritable genes that were associated with global and/or local
ancestry, a joint model of regressing global and local ancestry from residuals from model O was also examined

to assess the percentage of variance of gene expression explained by global and/or local ancestry.

Identification of eGenes, cis-eQTLs and ancestry-specific cis-eQTLs

Raw gene counts were processed and eQTLs were identified using FastQTL’* according to the GTEx v8
pipeline (https://github.com/broadinstitute/gtex-pipeline). Age, sex, asthma status, first 5 genetic ancestry PCs,
and PEER factors were used as covariates for FastQTL analysis. To account for multiple testing across all
tested genes, the Benjamini & Hochberg correction was applied to the beta-approximated p-values from the
permutation step of FastQTL. For each gene with a significant beta-approximated p-value at the false discovery
rate < 0.05, a nominal p-value threshold was estimated using the beta-approximated p-value. Cis-eQTLs were
defined as genetic variants that have nominal p-values less than the nominal p-value threshold of the
corresponding gene. eGenes were defined as genes with at least one eQTL. To summarize the number of
independent cis-eQTLs in each ancestry group, LD clumping was performed using PLINK (--clump-kb 1000 --

clump-r2 0.1) using gene-specific p-value thresholds.

Trans-eQTLs were identified using the same protocol as in GTEx v82. Trans-eQTLs were defined as eQTLs
that were not located on the same chromosome as the gene. Only protein-coding and lincRNA genes and
SNPs on autosomes were included in the analyses. Briefly, linear regression on expression of gene was
performed in PLINK2 (version v2.00a3LM released 28 Mar 2020) using SNPs with MAF = 0.05 and the same
covariates as cis-eQTL discovery. Gene and variant mappability data (GRCh38 and GENCODE v26) were
downloaded from Saha and Battle’® for the following filtering steps: (i) keep gene-variant pairs that passed a
p—value threshold of 1x10° (ii) keep genes with mappability = 0.8, (iii) remove SNPs with mappability < 1, and
(iv) remove a trans-eQTL candidate if genes within 1MB of the SNP candidate cross-mapped with the trans-
eGene candidate. The Benjamini-Hochberg procedure was applied to control for FDR at the 0.05 level using
the smallest p-value (multiplied by 10) from each gene. An additional filtering step was applied for the AFRnign
and IAMhigh groups. For AFRnigh, all trans-eQTLs detected in AFRow Were removed and the resulting trans-
eQTL were referred to as filtered AFRnigh trans-eQTLs. Similarity, for IAMnigh groups, all trans-eQTLs detected
in IAMow groups were removed and the resulting trans-eQTL were referred to as filtered 1AMhign trans-eQTLSs.

Filtered AFRnigh trans-eQTL were checked for presence of filtered IAMnign trans-eQTLs, and vice versa. LD
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clumping was performed using PLINK (v1.90b6.26 --clump-kb 1000 --clump-r2 0.1 --clump-p1 0.00000005 --

clump-p2 1) to group trans-eQTLs into independent signals.

Ancestry-specific eQTL (anc-eQTL) mapping was performed in participants stratified by high and low global
African and Indigenous American ancestry (see “Grouping samples by self-identified race/ethnicity or global
ancestry”). We developed a framework to identify anc-eQTLs by focusing on the lead eQTL signal for each
gene and comparing fine-mapped 95% credible sets between high (>50%) and low (<10%) global ancestry
groups (AFRnigh VS AFRiow; I1AMhigh VS IAMiow). Sensitivity analyses were conducted using >70% as the cut-off
for AFRnhigh and IAMhigh groups. Anc-eQTLs were classified into three tiers as described below, based on
population differences in allele frequency, linkage disequilibrium (LD), and effect size (Figure 3A). For every
protein-coding and heritable eGene (GCTA h? LRT p-value <0.05), the lead eQTL signal was identified using
CAVIAR’® assuming one causal locus (c=1). The 95% credible set of eQTLs in the high and low global ancestry
group were compared to determine if there was any overlap. Variants from non-overlapping 95% credible sets
were further classified as Tier 1 anc-eQTLs based on allele frequency differences or Tier 2 after additional fine-
mapping using PESCA?. For genes with overlapping 95% credible sets, Tier 3 anc-eQTLs were detected

based on effect size heterogeneity.

eQTLs identified in AFRnigh or IAMnigh high group that were common (MAF 20.01) in the high group but rare
(MAF<0.01) or monomorphic in the AFR 0w or IAMiow group were classified as Tier 1. If the eQTLs were detected
at MAF20.01 in both the high and low ancestry groups, they were further fine-mapped using PESCA?!, which
tests for differential effect sizes while accounting for LD between eQTLs. Pre-processing for the PESCA
analyses involved LD pruning at r2 >0.95. All eQTL pairs with r2 >0.95 were identified in both the high and low
groups and only those pairs common to both groups were removed. For each eQTL, PESCA estimated three
posterior probabilities: specific to the AFRhigh or IAMnigh group (PPhnign), specific to the AFRiow or IAMiow group
(PPiow), or shared between the two groups (PPshared). Tier 2 anc-eQTLs were selected based on the following
criteria: i) all variants in the credible set had (PPhigh > PPiow) and (PPhigh > PPshared) and ii) PPhigh > 0.8. Tier 3
class was based on evidence of significant heterogeneity in eQTL effect size, defined as Cochran’s Q p-value
< 0.05/nGene, where nGene was the number of genes tested. Since we assume the 95% credible set
corresponds to a single lead eQTL signal, all eQTLs in the credible set were required to have a significant

heterogeneous effect size to be classified as Tier 3 anc-eQTLs.

To systematically assess the overlap in eQTL signals identified in our study and trait-associated loci, we
colocalized eQTL summary statistics with GWAS results from PAGE. Colocalization was performed using
COLOC’7 within a LD window of 2 MB centered on the eQTL with the lowest GWAS p-value. For each eQTL-
trait pair, the posterior probably of a shared causal signal (PP4) >0.80 was interpreted as strong evidence of

colocalization.
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Development of gene prediction models and transcriptome-wide association analyses

Gene prediction models for cis-gene expression were generated using common variants and elastic net
modeling implemented in the PredictDB v7 pipeline (https://github.com/hakyimlab/
PredictDB_Pipeline_ GTEx_v7). Models were filtered by nested cross validation (CV) prediction performance
and heritability p-value (rho_avg > 0.1, zscore_pval <0.05 and GCTA h? p-value < 0.05). Sensitivity analyses
were performed by generating gene prediction models that included the number of ancestral alleles as
covariates to account for local ancestry in the cis-region. In AA, one covariate indicating the count of African
ancestral allele was used while in PR, MX, and pooled, two additional covariates indicating the number of

European and Indigenous American ancestral alleles were used.

Out-of-sample validation of the gene expression prediction models were done using 598 individuals from the
African American asthma cohort, Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-
Ethnicity (SAPPHIRE)®. Predicted gene expression from SAPPHIRE genotypes was generated using the
predict function from MetaXcan. Genotypes of SAPPHIRE samples were generated by whole genome
sequencing through the TOPMed program and were processed the same way as GALA Il and SAGE. RNA-
seq data from SAPPHIRE were generated as previously described’® and were normalized using TMM in

edgeR. Predicted and normalized gene expression data were compared to generate correlation R2.

To assess the performance of the resulting GALA/SAGE models we conducted transcriptome-wide association
studies (TWAS) of 28 traits using GWAS summary statistics from the Population Architecture using Genomics
and Epidemiology (PAGE) Consortium study by Wojcik et al?°. Analyses were performed using S-PrediXcan
with whole blood gene prediction models from GALA Il and SAGE (GALA/SAGE models), GTEx v8, and
monocyte gene expression models from the Multi-Ethnic Study of Atherosclerosis (MESA) study3. In the UK
Biobank we conducted TWAS of 22 blood-based biomarkers and quantitative traits using GALA/SAGE models
generated in African Americans (GALA/SAGE AA) and GTEx v8 whole blood. Each set of TWAS models was
applied to publicly available GWAS summary statistics (Pan-UKB team: https://pan.ukbb.broadinstitute.org)
from participants of predominantly European ancestry (UKB EUR) and African ancestry (UKB AFR). Ancestry
assignment in UKB was based on a random forest classifier trained on the merged 1000 Genomes and Human
Genome Diversity Project (HGDP) reference populations. The classifier was applied to UK Biobank participants

projected into the 1000G and HGDP principal components.

Data availability

TOPMed WGS and RNA-seq data from GALA Il and SAGE are available on dbGaP under accession number
phs000920.v4.p2 and phs000921.v4.pl, respectively. TOPMed WGS data from SAPPHIRE are available
under the dbGaP accession number phs001467.v1.pl. Summary statistics for cis- and trans-eQTLs, as well
as TWAS models developed using data from GALA Il and SAGE participants have been posted in the following
public repository DOI: 10.5281/zenodo.6622368
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Table 1: Study Participants. Demographic characteristics of 2,733 participants from the Genes-
environments and Admixture in Latino Americans (GALA Il) and the Study of African Americans,
Asthma, Genes, and Environments (SAGE) included in the present analysis.

Self-identified Race/Ethnicity

ﬁmgsgan Puerto Rican Mexican Other Latino Pooled
N (%) N (%) N (%) N (%) N (%)
Sex
Female 405 (63.5) 451 (50.5) 427 (54.5) 158 (562.8) 1,441 (52.7)
Asthma status
Case 433 (67.2) 549 (61.5) 351 (44.8) 156 (562.2) 1489 (54.5)
Recruitment center
SF Bay Area 757 (100) 0O (0) 348 (44.4) 109 (36.5) 1214 (44.4)
Chicago 0 (0) 31 (3.5) 247 (31.5) 52 (17.4) 330 (12.1)
Puerto Rico 0 (0) 837 (93.7) 0 (0) 8 (2.7) 845 (30.9)
New York City 0 (0) 22 (2.5) 36 (4.6) 86 (28.8) 144 (5.3)
Houston 0 (0) 3 (0.3) 153 (19.5) 44 (14.7) 200 (7.3)
Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)
Age (years) 16.0 (6.6) 13.2 (4.8) 13.8 (6.5) 13.7 (6.7) 14.0 (6.3)
Genetic ancestry (%)
African 82.6 (9.4) 197 (13.3) 3.5 (2.7) 83 (14.8) 17.5 (61.8)
Indigenous American 0.3 (0.9) 9.9 (3.6) 553 (23.2) 423 (43.2) 10.7 (45.2)
European 16.5 (9.5) 69.5 (13.6) 40.3 (21.9) 45.9 (20.8) 44.2 (43.8)
Total 757 893 784 299 2733

Abbreviations
IQR Interquartile range
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Table S1: Sample size overview. The total number of individuals with WGS and RNA-seq data that
were included in analyses based on self-identified race/ethnicity and genetic ancestry.

Group Sample Size
Self-identified race/ethnicity

African American 757

Puerto Rican 893

Mexican American 784

Other Latinos 299

Pooled (Total) 2,733

Global genetic ancestry

AFRigh (AFR > 50%) 721

AFRiow (AFR < 10%) 1,011

[AMhigh (IAM > 50%) 610

[AMiow (IAM < 10%) 1,257
Abbreviations

AFR African ancestry

IAM Indigenous American ancestry
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Table S2: Cis-heritability (h?) and genetic variance (V) of gene expression stratified by self-
identified race/ethnicity. GCTA analyses were restricted to common variants (MAF >= 0.01) in
each population within 1MB flanking regions of the transcription start site. Estimates of h? and V; are
summarized across the intersection of genes (nGene) with GCTA results available in all populations.

AA (n=757) PR (n=893) MX (n=784) Pooled (n=2733)
nGene 17,657 17,657 17,657 17,657
h?
mean 0.170 0.142 0.130 0.148
median 0.111 0.080 0.066 0.087
IQR 0.039-0.252 0.026-0.204 0.019-0.184 0.030-0.211
Ve
mean 0.059 0.052 0.044 0.054
median 0.025 0.020 0.014 0.020
IQR 0.006-0.073 0.005-0.060 0.003-0.047 0.006-0.062
Mean global ancestry proportion
AFR 0.80 0.22 0.04 0.32
IAM 0.01 0.10 0.57 0.24
Wilcoxon p-value of h? comparison between groups
AA - 1.7x10°%° 1.8x10716° 1.9x1034
PR = - 3.1x102% 2.1x107°
MX = = - 1.8x10°%
Wilcoxon p-value of Vg comparison between groups
AA - 4.3x102 2.3x10748 -
PR - - 2.0x10°2 -
MX - - - -
Abbreviations
AFR African ancestry
IAM Indigenous American ancestry
AA African Americans
PR Puerto Ricans
MX Mexican Americans
Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S3: Cis-heritability (h?) and genetic variance (Vc) of gene expression stratified by global
genetic ancestry. GCTA analyses were restricted to common variants (MAF >= 0.01) in each
population within 1MB flanking regions of the transcription start site. Individuals were stratified based
on proportion. Individuals with >50% global genetic African ancestry (AFRnighn) were compared to
those with <10% (AFRpw). Individuals with >50% global genetic Indigenous American ancestry
(IAMnign) were compared to those with <10% (IAMw). Estimates of h? and V€ are summarized across
the intersection of genes (nGene) with GCTA results available in all genetic ancestry groups.

AFRuigh (=721)  AFRiow (n=1011)  IAMpigh (n=610) 1AMy, (n=1257)

nGene 18,725 18,725 18,725 18,725
h?
mean 0.167 0.129 0.123 0.152
median 0.107 0.065 0.062 0.091
IQR 0.037-0.247 0.019-0.182 0.016-0.176 0.031-0.221
Ve
mean 0.058 0.046 0.041 0.055
median 0.024 0.014 0.013 0.022
IQR 0.006-0.072 0.003-0.048 0.002-0.045 0.006-0.066
Mean global ancestry proportion
AFR 0.82 0.04 0.04 0.58
1AM 0.01 0.54 0.67 0.04
Wilcoxon p-value of h? comparison between groups
AFReigh - 4.2x10740 - -
IAMhigh - - - 5.8x107"%
Wilcoxon p-value of Vg comparison between groups
AFReigh - 8.0x107"" - -
IAMhigh - - - 8.3x10""3
Abbreviations
AFR African ancestry
IAM Indigenous American ancestry
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S4: Comparison of Vg stratified by local genetic ancestry. GCTA analyses were restricted
to common variants (MAF >= 0.01) in each population within 1MB flanking regions of the transcription
start site. For each gene, individuals were classified into local ancestry groups, L1 and L2, based on
the ancestry at the transcription start site. The number of genes (nGene) for which GCTA models
successfully converged and produced reliable estimates is reported for each analysis. Genes were

not filtered based on heritability.

Sample Wilcoxon

Group Local ancestry Mean h? Mean Ve nGene ~_. o p-value
L1 L2 L1 L2 L1 L2

Pooled AFR/AFR AFR/EUR 0.153 0.142 0.053 0.049 17,866 516  2.0x107

AA  AFR/AFR AFR/EUR 0.143 0.137 0.041 0.039 19224 202  5.7x10°

PR AFR/EEUR EUR/EUR 0.129 0.108 0.041 0.033 18570 242  1.4x10%

Pooled IAM/IAM IAM/EUR 0.108 0.119 0.033 0.038 10,566 359  1.6x10°®

MX  IAM/IAM IAM/EUR 0.101 0.117 0.029 0.035 18,194 262 7.7x10™"

Abbreviations
AFR African ancestry
IAM Indigenous American ancestry
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S5: Cis-heritability (h?) estimated using LDAK-Thin. Analyses were restricted to common
variants (MAF >= 0.01) in each population within 1MB flanking regions of the transcription start site.

AA (n=757) PR (n=893) MX (n=784) Pooled (n=2733)
nGene 18,261 18,261 18,261 18,261
h2
mean 0.157 0.136 0.125 0.146
median 0.094 0.071 0.059 0.081
IQR 0.029-0.234 0.020-0.194 0.016-0.176 0.024-0.213
Mean global ancestry proportion
AFR 0.80 0.22 0.04 0.32
IAM 0.01 0.10 0.57 0.24
Wilcoxon p-value of h? comparison between groups
AA - 2.60x10* 1.80x1071%4 3.00x10°
PR - - 1.90x107" 2.70x107"
MX - - - 6.10x10°%°
AFRnigh (n=721) AFRiow (n=1011)  |AMsign (n=610) IAMiow (n=1257)
nGene 18475 18475 18475 18475
h2
mean 0.166 0.132 0.125 0.157
median 0.104 0.066 0.062 0.093
IQR 0.035-0.246 0.020-0.187 0.017-0.179 0.032-0.229
Mean global ancestry proportion
AFR 0.82 0.04 0.04 0.58
IAM 0.01 0.54 0.67 0.04
Wilcoxon p-value of h? comparison between groups
AFReigh - 1.9x10™""7

|AMhigh - 1.0X10'122
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Table S6: Number of heritable genes significantly associated with global and local ancestry.
Analyses were restricted to heritable and autosomal genes with local ancestry estimates, and
populations with sufficient variability for a given ancestry comparison. The number of association
genes is tabulated for all combinations of global and local ancestry associations. For example, group
AFRg=v L=y (global ancestry=Y and local ancestry=Y) includes genes that are associated with both

global and local African ancestry at FDR < 0.05 level.

Ancestry FDR <0.05? AA (n=757) PR (n=893) MX (n=784)
Associations Global Local nGene % nGene % nGene %
AFRG=y1=y Y Y 204 1.5 334 2.5 - -
x AFRG=v:.i=n Y N 326 24 589 4.5 - -
TR
< AFRg=n:1=y N Y 1,201 8.9 1,443 10.9 - -
AFRg=n:.=n N N 11,833 87.2 10,856 821 - -
IAMG:Y;L:Y Y Y - - - - 389 31
2 IAMG:Y;L:N Y N - - - - 353 28
<
~ lAMg=n1=y N Y - - - - 1,228 9.8
IAMg=n.i=n N N - - - - 10,559 84.3
No. of heritable autosomal genes 13,596 - 13,260 - 12,562 -
No. of genes analyzed 13,564 - 13,222 - 12,529 -
Abbreviations
AFR African ancestry
IAM Indigenous American ancestry
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S7: eQTLs and eGenes identified from each population. Results of FastQTL analyses
conducted in GALA Il / SAGE participants grouped based on self-identified race/ethnicity and genetic

ancestry.

. Sample  Number of Number of

Populations size eQTLs eQTL-gene pairs Number of eGenes

Self-identified groups
AA 757 2,448,802 4,399,353 17,336
PR 893 2,970,694 6,032,429 16,975
MX 784 2,333,522 5,232,074 15,938

Genetic ancestry groups
AFReigh 721 2,389,968 4,260,212 17,123
AFRow 1,011 2,736,501 6,601,500 17,146
IAMhigh 610 1,979,263 4,180,137 14,579
IAMiow 1,257 3,334,768 6,831,948 18,297

Pooled (Total) 2,733 4,984,220 13,402,207 19,567

Genetic ancestry groups (equal sample size)
AFReigh 1,975,039 3,339,661 16,110
AFRow 600 1,888,196 3,880,554 14,344
IAMhigh 1,953,964 4,104,553 14,419
IAMiow 1,707,612 2,841,161 14,866
Pooled 2400 3,432,115 7,442,079 18,620

Abbreviations

AA African Americans

PR Puerto Ricans

MX Mexican Americans

AFR African ancestry

IAM Indigenous American ancestry

AFRnigh  Individuals with >50% global AFR ancestry

AFRiow Individuals with <10% global AFR ancestry

[AMhigh Individuals with >50% global IAM ancestry

[AMiow Individuals with <10% global IAM ancestry

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S8: Gene pre-filtering for ancestry-specific eQTL analysis. Significant cis-heritability,
statistical significance of heritability estimates was determined using LRT p-value provided by GCTA.
A total of 9609 and 8515 genes were used as the input to the ancestry-specific eQTL filtering pipeline.

AFR IAM
Input number of genes 20,135 20,135
Protein coding genes (autosomal) 13,535 13,535
Significant cis-heritability in high group (LRT p < 0.05) 10,225 8,889
eGene in high ancestry group (>50% AFR or IAM) 10,077 8,594
95% credible sets generated using CAVIAR in both high 9.609 8515

and low (<10% AFR or IAM) ancestry group

Abbreviations

AFR African ancestry
IAM Indigenous American ancestry
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Table S9: Classification of ancestry-specific eQTLs (anc-eQTLs) using 50% global ancestry
cutoff. Analyses were restricted to heritable genes described in Table S8. Comparisons were
conducted using >50% as the cut-off for AFRnigh and IAMnign groups. Tier 1 represents the most
ancestry-specific eQTL class, followed by Tier 2 anc-eQTLs. Tier 3 eQTLs were detected within
overlapping 95% credible sets that are shared between ancestry groups and represent the least
ancestry-specific class.

AFRuigh (1=721) vs. AFRiow (n=1011)  IAMhigh (n=610) vs. IAMiow (n=1251)

Gene-eQTL pairs Gene-eQTL pairs

0, 0,
nGene %o AFRugn nGene % IAMygn
Genes analyzed 9,609 100 3,020,690 8515 100 3,015,261
Nooverlapin 95% 4 5z 474 1257678 3160 371 938278
credible set"
Tier 1 2695 280 41,102 562 66 3,938
PESCAinput 2,921 304 41,632 2009 352 98,149
Tier 2 109 11 112 33 04 36
H 0,
Overlapping 95% 5058 526 1,763,012 5355 629 2,076,983
credible set
Tier 3 196 20 894 88 10 420
Union of Tiers 1-3 2,961 308 42108 679 80 47394

" Tier 1 eQTLs includes variants that are rare (MAF<0.01) or monomorphic in the low ancestry (<10%) group

? Tier 2 eQTLs were identified using fine-mapping using PESCA and include variants with posterior
probability (PPhigh)>0.80 of being specific to AFRnigh or IAMhigh and have PPhigh>PPiow

° Tier 3 eQTLs show effect size heterogeneity based on Cochran’s Q test (Pa<0.05/number of genes tested)

Abbreviations

AFR African ancestry
IAM Indigenous American ancestry
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Table $10: Classification of ancestry-specific eQTLs (anc-eQTLs) using 70% global ancestry
as cutoff. Analyses were restricted to heritable genes described in Table S8. Comparisons were
conducted using >70% as the cut-off for AFRnigh and IAMnigh groups. Tier 1 represents the most
ancestry-specific eQTL class, followed by Tier 2 anc-eQTLs. Tier 3 eQTLs were detected within
overlapping 95% credible sets that are shared between ancestry groups and represent the least

ancestry-specific class.

AFRbigh (n=653) vs. AFR oy (n=1011)

IAMhign (n=212) vs. IAMLow (n=1251)

Gene-eQTL Gene-eQTL
0, 0,
nGene % oairs AFRngn nGene % 0airs [AMugn
Genes analyzed 9.267 100 2,653,736 4587 100 783,676
Nooverlapin 95% 4 445 458 1,116,628 1,726 203 204,927
credible set”

Tier 1 2,620 273 39.300 280 33 2263

Tier 2 111 1.2 111 5 01 5

H 0,
Overlapping 95% 4,862 506 1,537,018 2861  33.6 578,749
credible set

Tier 3 1 <0.001 1 0 0 0
Union of Tiers 1-3 2,701 281 39412 284 33 2268

" Tier 1 eQTLs includes variants that are rare (MAF<0.01) or monomorphic in the low ancestry (<10%) group

? Tier 2 eQTLs were identified using fine-mapping using PESCA and include variants with posterior

probability (PPhigh)>0.80 of being specific to AFRnigh or IAMhigh and have PPhigh>PPiow

° Tier 3 eQTLs show effect size heterogeneity based on Cochran’s Q test (Pa<0.05/number of genes tested)

Abbreviations
AFR African ancestry

IAM Indigenous American ancestry
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Table S13: Trans-eQTL discovery in GALA II/SAGE studies. Independent trans-eQTLs were
identified using LD clumping (within 1000 kb windows and LD r?<0.1) was performed on trans-eQTLs
for each gene. AFRnigh/IAMhigh groups, individuals with global AFR/IAM ancestry >50%.

Populations Sample Size Trans-eQTLs Independent trans-eQTLs eGenes
AA 757 329 39 33
PR 893 956 67 52
MX 784 1,168 62 51
Pooled 2,733 9,864 647 414
AFRhigh 791 283 36 31

Filtered' 149 26 24
[AMhigh 691 26 22

) , 610
Filtered 350 23 20

' All trans-eQTLs detected in AFRiow group were removed

2 All trans-eQTLs detected in IAMiow group were removed

Abbreviations
AFR African ancestry
IAM Indigenous American ancestry
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S14: TWAS model performance. Cross-validation (CV) R? of gene expression prediction
models generated by PredictDB. Heritability, CV R?, and Vg are summarized across the final set of
genes included in the TWAS models.

Number of Genes

h? CVR? Vg

Population Input' Pass? Final®

AA 15,012 10,782 10,090 0.246 0.180 0.077
PR 14,756 10,039 9,611 0.212 0.163 0.071
MX 14,893 9,665 9,084 0.205 0.167 0.062
Pooled 14,900 11,943 11,830 0.186 0.157 0.061

' The total number of gene models generated from PredictDB

2 Number of genes that passed the preliminary filters of CV correlation (rho_avg) > 0.1 and correlation z-
score p-value < 0.05 for the correlation between predicted and measured gene expression values

* Number of genes with h? p-value < 0.05, the total number of genes with valid TWAS models

Abbreviations
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Table S14: Comparison of TWAS model performance with local ancestry (LA) adjustment.
Cross-validation R? of gene expression prediction models with and without local ancestry adjustment.
Comparisons were restricted to heritable genes with valid TWAS models.

Valid TWAS Models CV R?
Population
Original LA-adjusted Intersection Original LA-adjusted
AA 10,090 9,848 9,701 0.186 0.177
PR 9,611 9,090 8,959 0.173 0.156
MX 9,084 8,582 8,475 0.177 0.161
Pooled 11,830 11,588 11,497 0.161 0.154
Abbreviations
AA African Americans
PR Puerto Ricans
MX Mexican Americans

Pooled Analysis includes AA, PR, MX, and other Latinos
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Figure 1. Study Overview.
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This study included TOPMed whole genome sequencing and whole transcriptome data generated from whole blood
samples of SAGE African American and GALA Il Latino individuals (n=2,733). We compared elements of the genetic
architecture gene expression, such as and cis-heritability and genetic variance, across participant groups defined
by self-identified race/ethnicity and genetic ancestry. Next, we developed genetic prediction models of whole blood
transcriptome levels and performed comparative transcriptome-wide association studies (TWAS) using GWAS
summary statistics generated from the PAGE study and the UK Biobank.



Figure 2. Comparison of cis-heritability (h?) and genetic component of transcriptome variance (Vc) by self-
identified race/ethnicity and genetic ancestry groups.
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Analyses stratified by self-identified race/ethnicity (A-B) and genetic ancestry comparing individuals with >50%
global ancestry (High) to participants with <10% of the same ancestry (Low) (C-D). Local ancestry at the
transcriptional start site of each gene was used to compare subjects with 100% (AFR/AFR or IAM/IAM) to 50%
(AFR/EUR or IAM/EUR) local ancestry (E-F). Median values of h? or Ve and two-sided Wilcoxon p-values are
annotated.



Figure 3. Identification of ancestry-specific eQTLs (anc-eQTLs).
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A) Decision tree for the identification of anc-eQTLs. Number of genes remaining after each step is indicated
alongside each branch. B) An example of a Tier 1 AFRnigh anc-eQTL (rs3211938) for CD36. C) An example of Tier
3 AFRnigh anc-eQTLs (rs34247110 and rs3734618) for KCNK17. Both eQTLs from the 95% credible set had
significantly different effect sizes in AFRnigh and AFRiow populations. D-G) An example of a Tier 2 AFRnigh anc-eQTL
(rs12460041) for TRAPPCG6A. CAVIAR detected different lead eQTLs with non-overlapping credible sets in AFRnigh
(D) and AFRiow (E) groups. In each panel variants are colored based on LD r? with respect to index variant (diamond)
and eQTLs are denoted by filled circles. F) The lead eQTL in AFRnigh (rs12460041) had a posterior probability

(PP)=0 in AFRiow. G) Fine-mapping using PESCA confirmed rs12460041 as a Tier 2 anc-eQTL with PP>0.80 in
AFRhigh.



Figure 4. Transcriptome imputation model performance and TWAS results in PAGE.
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Internal cross-validation R? values for each model were compared for overlapping genes using a two-sided
Wilcoxon test. GTEx v8 whole blood TWAS models were compared to models trained in A) pooled African American
and Hispanic/Latino samples and B) African Americans only from GALA/SAGE and MESA, respectively. C)
Summary of TWAS results for 28 traits in PAGE. Correlation between TWAS z-scores from analyses using
GALA/SAGE pooled models and z-scores using D) GTEx and E) MESA for the union of genes that achieved
FDR<0.05 using either prediction model. Genes highlighted in orange had FDR<0.05 using GALA/SAGE models
but did not reach nominal significance (TWAS p-value>0.05) using GTEx or MESA models.



Figure 5. Transcriptome-wide association study (TWAS) results for selected traits.
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TWAS of HDL in A) used GWAS summary statistics from the multi-ancestry PAGE study (N=33,063). TWAS of
neutrophil counts in B) used summary statistics from a GWAS meta-analysis of African ancestry individuals
(N=13,476) by Chen et al. Associated genes (FDR<0.05) are highlighted as circles with a black border and labeled,
except for chromosome 1 for neutrophil counts due to the large number of associations. Significantly associated
genes for which expression levels could not be predicted using GTEx v8 elastic net models are indicated in red.



A)

Figure S1: Comparison of cis-heritability (h?) and genetic component of transcriptome variance (Vg) in a
fixed sample size. Within each self-identified race/ethnicity group, individuals were down-sampled to n=600 for all
analyses. Median values of h? or Vg and two-sided Wilcoxon p-values are annotated.
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Figure S2: Comparison of cis-heritability (h? and genetic component of transcriptome variance (Vg) by
genetic ancestry groups and minor allele frequency (MAF). Analyses stratified by genetic ancestry compared
individuals with 250% global ancestry (High) to participants with <10% of the same ancestry (Low) within each MAF
bin. Median values of h? or V¢ and two-sided Wilcoxon p-values are annotated.
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Figure S3: Association of global and local ancestry with gene expression levels. Stepwise local regression
was used to identify genes for which global and/or local ancestry had a significant (FDR<0.05) effect on transcript
levels. For genes with significant global and/or local ancestry associations, the variance in transcript levels
accounted for by African and Indigenous American ancestry. In each panel, inset plots visualize the 0-15% range
on the y-axis, without outliers while the full range percentage variance explained are shown in the top panel. Red
box highlights the zoomed region as shown in the bottom panel.
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Figure S4: Overlap of eGenes between self-identified race/ethnicity groups
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Figure S5: Comparison of independent cis-eQTLs. Sample size was fixed to n=600 for eQTL mapping analyses
in each ancestry group. Independent cis-eQTLs were identified by performing LD-based clumping (*<0.10) of
statistically significant results within each ancestry group. Differences in the distribution of independent cis-eQTLs
per gene between AFRhigh and AFRiow A) and IAMhigh and IAMiow B) ancestry groups were tested using a two-sided
Wilcoxon test. Pie charts visualize the proportion of genes with a greater number of cis-eQTLs in AFRnigh compared
to AFRiw C) and |IAMnigh compared to |AMiow D).
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Figure S6: Scatter plots comparing h? and Ve by African ancestry. Estimates of h? and Vg for each gene are
compared for individuals with 250% global African ancestry (AFRHuign) to participants with <10% AFR ancestry
(AFRLow). Genes containing ancestry-specific eQTLs are are highlighted. The proportion of genes falling off the
diagonal, with higher h2 or Vi in AFRHigh than AFRLow, is visualized and compared using a two-sided binomial test.
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Figure S7: Colocalization of haptoglobin (HP) expression and total cholesterol. We observed strong evidence
of colocalization, with posterior probability (PP)=0.997, between GALA/SAGE eQTLs for HP and GWAS summary
statistics from PAGE for total cholesterol. The 95% credible set contained two variants: rs7200153 (PPsnp=0.519)
and rs5471 (PPsnp=0.481). Each plot shows variants colored based on LD with respect to rs7200153, which had

the lowest GWAS p-value in PAGE.
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Figure S8: Cross validation R? of gene prediction models generated from PredictDB. Cross validation (CV)
R? of each gene expression prediction model is represented by a red dot. Cis-heritability of the gene, represented
as black dot with 95% confidence interval in grey, was shown to indicate upper bound of CV R?. Genes are sorted
in ascending order of h?.
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Figure S9: Out of sample validation of TWAS models in the SAPPHIRE. Admixture plots for the SAPPHIRE
validation study and each of the training samples used to develop the TWAS models are shown in panel A).
Validation results are shown for the subset of genes (n=5254) that were available in GTEx and GALA/SAGE models.
Correlation between the predicted and measured gene expression levels is summarized in panel B) and the full
distribution of correlation coefficients is shown in C).
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Figure S10: Summary of TWAS results in UK Biobank (UKB). Comparative TWAS analyses in UKB were
conducted using GTEx v8 whole blood models and GALA/SAGE models trained in African Americans (AA). Number
of associated genes in ancestry matched and ancestry discordant analyses is summarized in for UKB European
(EUR) ancestry subjects in A) and UKB African (AFR) ancestry subjects in B). Correlation between the z-scores for
statistically significant findings in UKB EUR C) and UKB AFR D) are shown for genes that were present in both
models. Genes highlighted in orange had FDR<0.05 using ancestry-matched models but did not reach nominal
significance (TWAS p-value>0.05) using ancestry discordant models.
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Figure S11: Distribution of global genetic ancestry in GALA/SAGE participants.
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Figure S12: Selection of PEER factors for downstream analysis. Each panel visualizes the number of eQTLs
and eGenes identified using different number of PEER factors included as covariates. Vertical dashed lines indicate
the number of PEER factors selected for the final analysis with the goal of maximizing eQTL discovery.
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