

1 **Optimized detection of allelic imbalances specific for homologous recombination**
2 **deficiency improves the prediction of clinical outcomes in cancer**

3

4 Fernando Perez-Villatoro^{1,2}, Jaana Oikonen¹, Julia Casado^{1,2}, Anastasiya Chernenko^{1,2},
5 Doga C. Gulhan³, Manuela Tumiati¹, Yilin Li¹, Kari Lavikka¹, Sakari Hietanen⁴, Johanna
6 Hynninen⁴, Ulla-Maija Haltia⁵, Jaakko S. Tyrmä^{6,7}, Hannele Laivuori⁶, Panagiotis A.
7 Konstantinopoulos⁹, Sampsu Hautaniemi¹, Liisa Kauppi^{1,8}, Anniina Färkkilä^{1,2,5,9}

8

9 ¹ *Research Program for Systems Oncology, University of Helsinki, Helsinki, Finland*

10 ² *iCAN digital precision cancer medicine flagship*

11 ³ *Department of Biomedical Informatics and Ludwig Center at Harvard, Harvard Medical
12 School, Boston, MA, USA*

13 ⁴ *Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital,
14 Turku, Finland*

15 ⁵ *Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland*

16 ⁶ *Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal
17 Health, Tampere University Tampere, Finland*

18 ⁷ *Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland*

19 ⁸ *Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki,
20 Finland*

21 ⁹ *Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA*

22

23 Correspondence:

24 Anniina Färkkilä, MD PhD, Docent in Translational Gynecologic Oncology

25 Principal Investigator, Academy of Finland Clinical Research Fellow

26 Specialist in Obstetrics and Gynecology

27

28 Research Program for Systems Oncology &

29 Department of Obstetrics and Gynecology

30 University of Helsinki and Helsinki University Hospital

31 00014 University of Helsinki

32 anniina.farkkila@helsinki.fi

33 +358505967786

34 ABSTRACT

35

36 Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic
37 instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic
38 allelic imbalances (AIs) has been limited by methods focused on *BRCA1/2* mutations and
39 using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in
40 high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to
41 generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly
42 predicted clinical outcomes in three independent patient cohorts with higher precision than
43 previous methods. Characterization of 98 spatiotemporally distinct metastatic samples
44 revealed low intra-patient variation and indicated the primary tumor as the preferred site for
45 clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes
46 in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts.
47 In conclusion, our tumor-specific, systematic approach has the potential to improve patient
48 selection for HR-targeted therapies.

49

50

51 BACKGROUND

52

53 As a part of the Fanconi Anemia (FA) pathway, homologous recombination (HR) is an
54 evolutionarily conserved, tightly regulated mechanism for high-fidelity repair of DNA double-
55 strand breaks (DSBs)¹. Deficiency in homologous recombination (HRD) has profound
56 consequences for replicating cells driving genomic instability and oncogenic transformation.
57 In cancer, HRD results in a fundamental vulnerability, and tumors with HRD are markedly
58 sensitive to DSB-inducing agents such as platinum-based chemotherapy and Poly-ADP
59 Ribose Polymerase (PARP) inhibitors².

60

61 High-grade serous ovarian cancer (HGSC), the most common and most lethal subtype of
62 ovarian cancers³, is characterized by profound genomic instability. Around half of the HGSC
63 cases harbor genomic alterations leading to HRD⁴, and these patients have been shown to
64 benefit from treatment with PARP inhibitors^{5,6}. The HRD test previously used in PARP inhibitor
65 clinical trials (MyriadMyChoise®CDx)^{5,6} works by quantifying specific allelic imbalances (AIs):
66 1) Large scale transitions (LSTs)⁷, 2) Loss of heterozygosity (LOH)⁸ and 3) Telomeric allelic
67 imbalances (TAIs)⁹. However, the decision criteria for these HRD-specific AIs (HRD-AIs) and
68 the HRD status classification were originally designed using a mixture of breast and ovarian
69 cancer samples^{7,8,9,10}. Further, other algorithms for HRD detection have primarily focused on
70 *BRCA1/2* mutation prediction^{11,12}. As the genomic drivers and mutational processes differ
71 across the cancer types, the details of the genomic instability occurring due to HRD in HGSC
72 remain unclear.

73

74 Herein, via pan-cancer analysis, we show that HGSC harbors unique patterns of AIs, which
75 are also distinct from triple-negative breast cancers (TNBC). Using a systematic approach
76 based on machine learning and statistics on The Cancer Genome Atlas ovarian cancer (OVA-
77 TCGA) multi-omics dataset, we optimized the criteria for HRD-AIs on HGSC. We implemented
78 these criteria as an open-source algorithm (ovaHRDscar) to reliably define HRD status beyond
79 the prediction of *BRCA1/2* mutations. We show that ovaHRDscar improves the prediction of
80 clinical outcomes in three independent clinical datasets compared to previous algorithms.
81 Further, we show that our approach improves the prediction of clinical outcomes also in TNBC
82 (tnbcHRDscar). Thus, our machine learning-aided disease-specific approach (HRDscar)
83 shows promise as a biomarker that can improve outcome prediction and patient selection for
84 HR-targeted therapies in cancer.

85 RESULTS

86

87 **Systematic pan-cancer characterization reveals unique features of allelic imbalances**
88 **in HGSC**

89 To elucidate the potential differences in the patterns of AIs across human cancers, we first
90 characterized the quantity and the length distributions of AIs in the 18 most common cancer
91 types from the TCGA (**Fig. 1a**). Interestingly, HGSC had the highest number of AIs (**Fig. 1b**)
92 and the lowest median length (**Fig. 1c**). Concordantly, HGSC showed the highest levels of
93 LOH events (**Sup. Fig. 1a**) with one of the lowest median length (**Sup. Fig. 1b**).

94

95 We next performed hierarchical clustering using the median length and number of AIs per
96 sample and the skewness of the length distribution of the AIs for each cancer type. This
97 analysis shows two main clusters: the first cluster consisting of six cancer types (bladder
98 urothelial carcinoma (BLCA), stomach adenocarcinoma (STAD), lung squamous cell
99 carcinoma (LUSC), lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), and
100 HGSC) with a higher amount but a lower median length of AIs (upper cluster: **Fig. 1d**). The
101 second cluster consisting of the remaining 12 cancer types (lower cluster: **Fig. 1d**). The same
102 main clusters were observed when using only LOH events (**Sup. Fig. 1c**).

103

104 As TNBC and HGSC are enriched in *BRCA1/2* genetic mutations (*BRCA*mut)¹³, both cancers
105 were used to define the HRD-algorithm in the MyriadMyChoise®CDx assay by Telli et al.¹⁰.
106 We next compared the differences in AIs between these two cancer types. We observed a
107 significant difference in the abundance of AIs between HGSC and TNBC, specifically among
108 the *BRCA1/2*-wild-type (*BRCA*wt) tumors (U test, $p = 0.002$, **Fig. 1e to g**). Interestingly, HGSC
109 had lower levels of LOH events than TNBC (U test, $p = 0.002$, **Sup. Fig. 1d**), also among the
110 *BRCA*mut samples (U test, $p = 0.049$, **Sup. Fig. 1e**) but not in the *BRCA*wt samples (**Sup.**
111 **Fig. 1f**). Overall, HGSC showed a higher number of AIs of different lengths, while TNBC had
112 a higher number of LOH events (**Fig. 1h**). These results highlight the distinct characteristics
113 of AI events in HGSC, especially among the *BRCA*wt tumors, compared to other cancer types.

114

115 **Machine learning-aided detection of HRD-specific AIs improves the detection of HRD in**
116 **HGSC**

117 Although a wide range of molecular alterations is known to cause HRD, previous studies have
118 focused on *BRCA1/2* mutations to detect HRD-specific AIs (HRD-AIs), potentially failing to
119 detect non-*BRCA* associated HRD alterations while losing specificity to classify the HR-
120 proficient (HRP) samples accurately. To this end, we aimed to identify AIs overrepresented in
121 samples carrying a wider range of genetic alterations (mutations, gene deletions, promoter
122 hypermethylation) associated with HRD in HGSC (**Fig. 2a**). To generate accurate selection
123 criteria for HRD-AIs, we utilized SNP-arrays data from HGSC samples from TCGA (OVA-
124 TCGA) and its associated genomic and DNA methylation data. Using prior knowledge and
125 multi-omics data, we annotated 115 HRD samples harboring a somatic or germline mutation,
126 gene deletion, or promoter hypermethylation in the *BRCA1/2* or *RAD51* paralog genes, and
127 29 HRP samples that did not harbor any of the alterations used to select the HRD samples,
128 nor deletions in any other HR-related gene (**Fig. 2a**). A detailed description of the genomic
129 alterations in the samples is reported in **Sup. Table 1**. Overall, the HRD samples had a higher
130 number of all AIs than the HRP samples (U test, $p=0.0028$, **Sup. Fig. 2a**). Importantly, HRD
131 samples had a notably higher proportion of AIs of a specific length that spanned from 1Mb to
132 30Mbs. In contrast, the HRP samples contained a higher proportion of AIs and LOH events
133 smaller than 1Mb (**Sup. Figs. 2b, 2c**).

134

135 We next applied statistics and machine learning¹⁴ to identify the specific length and selection
136 criteria of LOH, LST, and TAI events overrepresented in the HRD samples (**Fig. 2b**). We then
137 compared the accuracies of the herein optimized criteria for HRD to those used in Telli et al.¹⁰
138 (hereafter called Telli2016). Notably, for LSTs, our approach increased the accuracy of
139 classification of the HRD/HRP samples from 86% to 90% when using the new criteria (**Fig.**
140 **2c**). For LOH events, the accuracy increased from 85% to 88% when using the new criteria
141 (**Sup. Fig. 2d**). We also assessed the HRD classification accuracy of LSTs consisting of three
142 consecutive AIs. However, this produced a lower accuracy (**Sup. Fig. 2e**). The largest

143 improvement in accuracy occurred after including all TAIs larger than 1Mb, and the accuracy
144 for HRD-specific TAI events increased from 67% to 78% when compared to the Telli2016
145 criteria (**Sup. Fig. 2f**).

146

147 Via our systematic approach, we observed the following AIs to be most characteristic of HRD
148 in HGSC: 1) LOH > 15Mb and <50Mb, 2) for LSTs AI > 12Mb, with a distance between them
149 <1Mb, and 3) TAI >1Mb. The sum of these events is hereafter called the ovaHRDscar levels.
150 Then, using bootstrapping subsampling of the pre-annotated HRD and HRP samples, we
151 evaluated the optimal cut-off value for ovaHRDscar to define the final HR-status as HRD or
152 HRP. The value with the highest balanced accuracy (BA) was 54 (**Fig. 2d**), meaning that
153 values higher or equal than 54 correspond to HRD, with higher accuracy for HR-status
154 classification (BA=0.89, right panel **Fig. 2e**) as compared to the Telli2016 algorithm (BA=0.76,
155 left panel **Fig. 2e**). In addition, using a HRD/HRP cut-off value of 54 in the Telli2016 algorithm
156 (hereafter Telli2016-54), the BA remained below that of ovaHRDscar (0.86 vs 0.89, **Sup. Fig.**
157 **2g**).

158

159 **ovaHRDscar levels correlate with genomic features of HRD and show concordance in**
160 **WGS data**

161 To investigate the relationships of ovaHRDscar with other known genomic features associated
162 with HRD, we annotated the OVA-TCGA samples according to mutations, gene deletions, and
163 promoter hypermethylation patterns previously reported to be associated with HRD⁴ (**Fig. 2f**).
164 On average, samples with somatic mutations in *BRCA1*, *BRCA2*, *PTEN*, or somatic mutations
165 or gene deletions in any gene belonging to the Fanconi Anemia (FA) or HR pathways showed
166 high ovaHRDscar levels. Likewise, samples that contained hypermethylation in the promoter
167 regions of *BRCA1* or *RAD51C* genes or germline mutations in *BRCA1* or *BRCA2* had, on
168 average, high ovaHRDscar levels. As expected, samples harboring an amplification in *CCNE1*
169 (**Sup. Fig. 2h**) had significantly lower levels of ovaHRDscar. However, samples with *EMSY*

170 amplification and *CDK12* somatic mutation did not result in higher ovaHRDscar levels than
171 *CCNE1* amplified samples (**Sup. Fig. 2h**).

172

173 To assess the concordance of ovaHRDscar between SNP array and whole genome
174 sequencing (WGS) data, we next quantified the ovaHRDscar levels in HGSC samples from
175 the Pan-Cancer Analysis of Whole Genomes project (PCAWG)¹⁵. The ovaHRDscar levels
176 were highly concordant between WGS and SNP-arrays (Lin's concordance correlation
177 coefficient, ccc = 0.90; **Sup. Fig. 2i**) in 41 OVA-TCGA samples that were also included in the
178 PCAWG project, consistent with a previous report in breast cancer samples¹⁶. Next, we tested
179 the correlation of ovaHRDscar with the single base substitution signature 3 (SBS3), which has
180 been associated with HRD¹⁷. We found that the ovaHRDscar levels detected in WGS
181 positively correlated with the proportion of SBS3 in WGS (Pearson, $r'=0.38$, $p= 3.7e-05$; **Fig.**
182 **2g**). The SBS3 proportions also correlated with the number of HRD-Als using the Telli2016
183 algorithm in the PCAWG cohort (**Sup. Fig. 2j**). We next compared the performance of
184 ovaHRDscar to that of SBS3 inferred from whole exome sequencing (WES) data with a
185 likelihood-based approach SigMA¹⁸, in 254 samples from the OVA-TCGA. The ovaHRDscar
186 algorithm detected 57% of samples as HRD, and the SigMA tool classified 56% of samples
187 as SBS3+; in contrast, the Telli2016 algorithm identified 83% of the samples as HRD (**Fig.**
188 **2h**). HRD detection with ovaHRDscar showed a higher agreement with SigMA (agreement
189 78.3% and Cohen's kappa = 0.56) as compared to the Telli2016 algorithm (agreement 68.5%
190 and Cohen's kappa = 0.32; **Fig. 2h**) or to the Telli2016-54 (agreement 77.2% and Cohen's
191 kappa = 0.53; **Sup. Fig. 2k**).

192

193 **ovaHRDscar improves the prediction of PFS and OS compared to previous algorithms**

194 Next, we measured the association of HR-status classification by ovaHRDscar to progression-
195 free survival (PFS, see methods) in advanced HGSC patients treated with platinum-based
196 chemotherapy in the TCGA and an independent prospective validation dataset (HERCULES).

197 We compared the performance of the ovaHRDscar to *BRCA1/2* deficiency status to the

198 Telli2016 algorithm. The Telli2016 algorithm uses a cut-off value of 63, as proposed by Takaya
199 et al.¹⁹. As *BRCA1/2* mutations can affect patient outcomes, we assessed the performances
200 of ovaHRDscar in the TCGA dataset after excluding the samples used when defining
201 ovaHRDscar, even though clinical outcomes were not utilized for designing the criteria of
202 ovaHRDscar. *BRCA1/2* mutation or deletion status (*BRCA*mut/del) was not significantly
203 associated with PFS (Log-rank p=0.72; **Fig. 3a**). For OVA-TCGA (**Fig. 3a to 3c**), we found
204 that ovaHRDscar positivity was associated with prolonged PFS (Log-rank p=4.4e-04; **Fig.**
205 **3c**). Consistently, ovaHRDscar positive patients had a longer PFS in the independent
206 HERCULES validation cohort (Log-rank p=0.001; **Sup. Fig. 3a to 3c**), while the Telli2016
207 algorithm did not reach statistical significance in predicting PFS (Log-rank p=0.11; **Sup. Fig.**
208 **3b**).

209
210 Residual tumor after primary debulking surgery has been shown to be a strong independent
211 prognostic factor in HGSC²⁰. We next used residual tumor status as a covariate in Cox
212 proportional hazard models to assess the performance of HRD algorithms in predicting the
213 PFS. We found that ovaHRDscar positivity was significantly associated with prolonged PFS in
214 OVA-TCGA also when adjusting for residual tumor (Wald test p=2.2e-07, **Fig. 3d**), similar to
215 the Telli2016 (Wald test p=2.7e-06), Telli2016-54 (Wald test p=6.4e-07) and the Takaya
216 algorithms (Wald test p=1.2e-06). The same was true also after excluding the annotated
217 HRD/HRP samples used in the optimization (middle panel, **Fig. 3d**) and when not adjusting
218 for the residual tumor (**Sup. Fig. 3d**). Importantly, ovaHRDscar significantly predicted PFS in
219 the external HERCULES validation cohort (HR: 0.47 (CI:0.27-0.85), Wald test p=0.026). To
220 compare how well the three algorithms (ovaHRDscar, Telli2016, Telli2016-54) can predict the
221 differential outcomes of patients, we next calculated the differences in PFS between the HRD
222 and HRP using a bootstrapping approach. Consistently, we found that the difference in PFS
223 was significantly greater using the ovaHRDscar than using the Telli2016 algorithm in the
224 independent HERCULES validation cohort (**Fig. 3e**). Moreover, ovaHRDscar was superior to
225 the Telli2016-54 algorithm in the OVA-TCGA (**Fig. 3e**). In further validation, we inspected the

226 performance of the HRD-classification algorithms in an additional independent prospective
227 cohort (TERVA) with tumor-only SNP array profiling (see methods). Importantly, ovaHRDscar
228 positivity significantly predicted longer PFS using Log-rank test and Cox proportional hazard
229 model in the TERVA external validation dataset (**Sup. Fig. 3e to 3g**).

230

231 We next explored the association of ovaHRDscar with overall survival (OS) in HGSC patients
232 in the OVA-TCGA cohort and in an independent AU-OVA cohort in PCAWG (**Fig. 3f to h, Sup.**
233 **Fig. 3h to j**). The clinical data in the prospective cohorts (HERCULES, TERVA) were not
234 mature enough for OS evaluation. OvaHRDscar significantly predicted OS in the OVA-TCGA
235 (**Fig. 3h**). In Cox regression analysis adjusted for age at diagnosis, ovaHRDscar significantly
236 predicted OS, while the other algorithms did not reach statistical significance in the
237 independent PCAWG validation dataset (**Fig. 3i**). These results were concordant also using a
238 non-adjusted Cox regression analysis (**Sup. Fig. 3k**). Importantly, the median OS in patients
239 with HRD tumors as compared to HRP was significantly longer when using the ovaHRDscar
240 than using the Telli2016 or the Telli2016-54 algorithms in the independent PCAWG cohort
241 when using a bootstrapping approach (**Fig. 3j**). Additionally, we compared the performance of
242 ovaHRDscar to the CHORD algorithm that uses structural variation and a random forest
243 implementation to classify HR-status¹¹. In the PCAWG cohort, ovaHRDscar significantly
244 predicted OS using the Log-rank test (**Sup. Fig. 3l, 3m**) and Cox proportional hazard models
245 (**Sup. Fig. 3n**), while the CHORD algorithm did not show statistical significance.

246

247 Finally, to further investigate the impact of the ovaHRDscar cut-off value in predicting PFS and
248 OS, we plotted the differences of median PFS and OS in HRD vs HRP when using different
249 cut-off values in two independent validation test-sets (OVA-TCGA excluding samples used in
250 the optimization and HERCULES) using bootstrapping (**Fig. 3k, 3l**). We observed that cut-off
251 values lower than 54 led to significantly smaller differences (lower fold-changes) in PFS in the
252 OVA-TCGA, and in the OVA-TCGA test-set, while higher values led to smaller differences in
253 the HERCULES cohort (**Fig. 3k**). Further, values lower than 54 lead to smaller differences in

254 OS in the OVA-TCGA and OVA-TCGA test set, while higher values led to significantly smaller
255 fold-change differences in the HERCULES cohort (**Fig. 3I**). Thus, the exploration of clinical
256 outcomes in the multiple independent validation datasets supports HRD/HRP cut-off value of
257 54 as optimal for ovaHRDscar.

258

259 **Low intra-patient variation of ovaHRDscar in spatiotemporal tumor profiling**

260 HGSC is characterized by high inter-tumor heterogeneity, and we next explored whether the
261 anatomical site or timing of sample retrieval affects HR-status classification in HGSC. For this,
262 we investigated the concordance of the ovaHRDscar levels in the HERCULES prospective
263 cohort, which included 89 tumor samples from 33 HGSC collected from different anatomical
264 sites and different treatment phases (treatment-naive, after neoadjuvant chemotherapy, or at
265 relapse) (**Fig. 4a**). Consistent with the TCGA dataset, ovaHRDscar levels corresponded with
266 the known genomic predictors of HRD (**Fig. 4b**). Importantly, we found that the levels were
267 similar in paired, anatomically matched samples obtained before and after neoadjuvant
268 chemotherapy, and also in primary (treatment-naive) versus relapsed tumors (**Fig. 4c**).
269 Samples collected from different anatomical sites showed intra-patient variation (**Fig. 4a**),
270 however it was lower than the observed inter-patient variation (U test $p=1.95e-38$; **Sup. Fig.**
271 **4a**). The intra-patient variability was not explained by differences in tumor purity (minimum
272 30%, see methods) (**Sup. Fig. 4b** and **Sup. Fig. 4c**). To determine the optimal anatomical
273 sampling site, we next assessed HR-status per patient in treatment-naïve primary samples
274 and compared ovaHRDscar calculated from different anatomical locations. Overall, the level
275 of agreement for the HR-status classification ranged from 94% and 97% between the
276 prioritization of different anatomical sites (**Sup. Fig. 4d**). However, ovaHRDscar status
277 calculated primarily from ovarian or adnexal tumors was the strongest predictor for PFS (**Fig.**
278 **4d, Sup. Fig. 4e**). Consistently, prioritizing ovarian tumors accurately classified all tumors
279 harboring CCNE1 amplification as HRP in the prospective HERCULES cohort (**Sup. Fig. 4d**).

280

281 **Machine learning-aided detection of HRD-AIs improves the prediction of clinical**
282 **outcomes in TNBC**

283 Finally, we tested whether our systematic detection of HRD-AIs could improve previous
284 algorithms when predicting clinical outcomes in TNBC. For this, using multi-omics data in
285 TCGA and the same classification approach (**Fig. 2a**), we annotated 47 TNBC as HRD and
286 23 as HRP (**Fig. 5a**). Detection of HRD-LOH increased the accuracy of classification of HR-
287 status from 80% (Telli2016 algorithm) to 93% (**Fig. 5b**). Likewise for LSTs, the accuracy
288 increased from 93% to 98% (**Sup. Fig. 5a**) and for TAs from 86% to 92% (**Sup. Fig. 5b**).
289 Similarly as for the HGSC, instead of selecting TAs of a particular length, we selected TAs
290 longer than 1Mb as this resulted in the largest increase in significance. The following HRD-AI
291 criteria were observed as the most characteristic for TNBC: 1) LOH >10Mb and <30Mb, 2) for
292 LSTs AI >5Mb with a distance between them <2Mb, and 3) TAI >1Mb. Then, using a
293 subsampling approach, we identified that cut-off values for the sum of HRD-AIs (hereafter
294 called tnbcHRDscar) from 47 to 53 produced the highest classification accuracy of the HRD
295 and HRP samples (**Fig. 5c**), with the cut-off value of 53 as the closest value at the intersection
296 of the HRP and HRP density distributions (**Fig. 5d**). Using the above criteria we observed that
297 tnbcHRDscar increased the accuracy of classifying the HRD and HRP samples from 0.92 to
298 0.94 (**Fig. 5d**).

299

300 To test whether HR-status classification by tnbcHRDscar can predict clinical outcomes in
301 TNBC, we next associated tnbcHRDscar with the PFS in the TCGA cohort and with the distant
302 relapse-free interval (DRFI) in an independent TNBC SNP-array dataset²¹. Patients with the
303 tnbcHRDscar-positive tumors had a significantly longer PFS than those with the tnbcHRDscar-
304 negative tumors (Log-rank p=0.014), while *BRCA*mut/del status or the Telli2016 algorithm did
305 not significantly associate with PFS (**Fig. 5e to 5g**). Only tnbcHRDscar showed a statistically
306 significant association with the DRFI (Log-rank p=0.0022) in the independent validation
307 dataset (**Fig. 5h to 5j**). Further, tnbcHRDscar classification in TCGA samples was also
308 associated with OS (Log-rank p=0.039), similarly to the Telli2016 algorithm (Log-rank p=0.039;

309 **Sup. Fig. 5c to 5e).** We next applied Cox regression analysis to validate the association of
310 tnbcHRDscar with PFS and OS. In the TCGA cohort, tnbcHRDscar significantly predicted PFS
311 (HR: 0.34, p=0.018, **Sup. Fig. 5f**) but the Telli2016 algorithm did not, while both similarly
312 predicted OS (**Sup. Fig. 5g**). However, tnbcHRDscar but not the Telli2016 algorithm
313 significantly predicted DRFI in the validation dataset (HR: 0.29, p=0.004, **Sup. Fig. 5h**).
314 Additionally, we compared the performance of tnbcHRDscar with HRDetect¹², an algorithm
315 trained using WGS, to predict DRFI outcomes in the validation dataset. Interestingly,
316 tnbcHRDscar improved the prediction of DRFI compared to the HRDetect (**Sup. Fig. 5h to**
317 **5j**), regardless of the cut-off values selected for the HRDetect (**Sup. Fig. 5k**).
318

319 DISCUSSION

320 HRD tumors exhibit a distinct clinical phenotype with superior responses to platinum-based
321 chemotherapy and sensitivity to PARP inhibitors. However, the accurate detection of HRD via
322 somatic AIs has been confounded by the lack of systematic approaches and analyses
323 performed in admixtures of tumor types with distinct genomic drivers. Herein, we established
324 the HRDscar, a systematic approach for HRD detection to improve patient selection and
325 clinical outcomes in cancer.

326
327 Several genomic approaches have been utilized to detect HRD, including 1) identification of
328 single genetic mutations leading to predicted HRD²², 2) profiles of DNA repair deficiency gene
329 expression^{23,24}, 3) specific mutational patterns accumulated due to HRD^{8,9,25} or 4) structural
330 genomic imbalances^{7,26}. These genomic features have been implemented alone or in
331 combinations in the search for optimal HRD detection, which has profound therapeutic
332 implications²⁷. It is now becoming accepted that benefits from the HR-directed therapies such
333 as PARP inhibitors extend beyond the identification of HRD via individual genetic mutations²⁸.
334 This is due to the fact that genes such as *BRCA1/2* and *RAD51* paralogs can be altered
335 beyond mutations via, e.g., hypermethylation or gene deletions^{3,29}, and not all genomic events

336 leading to HRD have yet been defined³⁰. Allelic imbalances are indicative of the genetic
337 consequences of HRD and, although not dynamically reflective of tumors' functional HRD
338 status, have shown promise as a biomarker predictive of the magnitude of benefit from PARP
339 inhibitors, especially in the front-line setting^{31,32}. The HRD-algorithm used in ovarian cancer
340 clinical trials (Telli2016) was, however, generated using breast cancer samples or a mixture
341 of breast cancer and ovarian cancer samples using *BRCA1/2* mutation as the sole determinant
342 of HRD, and *BRCAwt* status as HRP^{8,9,10}. Importantly, the European Society of Medical
343 Oncology also indicated an urgent need to develop a more accurate HRD algorithm in HGSC
344 to especially improve the identification of the HRP tumors²⁸. Via a pan-cancer characterization
345 of AIs, we discovered remarkable differences in the patterns of AIs of HGSC as compared to
346 other cancer types, including TNBC, especially among the *BRCAwt* tumors. This prompted us
347 to systematically identify the genomic footprints of HRD-AIs specific for HGSC using carefully
348 annotated multi-omics data from TCGA and an iterative machine learning and statistical
349 approach.

350

351 ovaHRDscar levels were concordant with tumor genetic alterations associated with HRD in
352 the TCGA dataset and an external validation cohort (HERCULES). We found significantly
353 lower levels of ovaHRDscar in tumors with *CCNE1* amplification, which was also previously
354 proposed to be mutually exclusive with HRD and associated with poor clinical outcomes³³. In
355 line with a previous report¹⁹, tumors with *CDK12* mutation showed overall low levels of
356 ovaHRDscar and thus could be considered HRP. In contrast, tumors with somatic mutations
357 in *PTEN*, a gene associated with DNA repair^{34,35}, showed high ovaHRDscar levels. However,
358 the vulnerability of *PTEN* deficient cancers to PARP inhibitors remains to be verified in the
359 clinical setting^{28,36}. Further, ovaHRDscar showed a higher concordance with SBS3 than the
360 Telli2016 algorithm. Most importantly, ovaHRDscar can be applied to detect HRD in HGSC
361 samples using WGS or SNP-arrays, making it an attractive biomarker for the clinical setting.

362

363 A dichotomous thresholding of a predictive HRD biomarker is needed for therapeutic decision-
364 making. In the Telli2016 algorithm, the cut-off for the total number of events was derived from
365 a mixture of breast and ovarian cancer samples¹⁰. More recently, Takaya et al. set out to
366 improve the HRD test by adjusting the cut-off value in ovarian cancer¹⁹. However, only
367 *BRCA*mut status was used for separating HRD from HRP samples and the same genomic
368 features of HRD-AIs were used as in Telli et al. In ovaHRDscar, after the development of
369 accurate definitions of both the criteria of HRD-AIs and the cut-off, we identified more samples
370 as being HRP, and separated HRD from HRP with improved accuracy over previous
371 algorithms. When testing the Telli2016 algorithm using the ovaHRDscar cut-off value of 54,
372 the accuracy was still below that of ovaHRDscar, indicating that both the accurate identification
373 of the HRD-AIs and the selection of the optimal cut-off are needed to improve HRD detection
374 in HGSC. In agreement, in most survival analyses, especially in the independent validation
375 cohorts, ovaHRDscar outperformed the previous algorithms in predicting clinical outcomes.

376

377 HRD tumors are known to have superior responses to platinum-based chemotherapy and
378 prolonged overall survival³⁷. Consistently, ovaHRDscar improved the prediction of PFS and
379 OS for platinum-based chemotherapy in the OVA-TCGA, also after excluding patients used
380 when defining the criteria for ovaHRDscar. ovaHRDscar significantly predicted PFS and OS
381 also among only the *BRCA*wt tumors. Importantly, ovaHRDscar improved the prediction of
382 clinical outcomes in two independent patient cohorts and in multivariable models after
383 adjusting for clinical covariates, indicating that ovaHRDscar reliably captures the phenotypic
384 clinical behavior of HRD in HGSC. Further, using a disease-specific, systematic approach in
385 the classification of HR-status, we could improve the prediction of the clinical outcomes also
386 in TNBC, and tnbCHRDscar significantly predicted disease-free survival in the TCGA and in
387 an independent dataset. However, none of the clinical cohorts included patients treated
388 prospectively with, e.g., PARP inhibitors; therefore, prospective validation in larger patient
389 series is warranted.

390

391 Finally, as HGSC is characterized by a high intra-tumor heterogeneity, we aimed at assessing
392 whether the anatomical site of tumor sampling or the exposure to chemotherapy affects HRD
393 detection. Our analysis of 98 samples collected from different anatomical sites and treatment
394 phases indicated that ovaHRDscar levels remain similar within each patient, including
395 anatomically site-matched samples collected before and after neoadjuvant chemotherapy.
396 ovaHRDscar can thus be reliably assessed during routine clinical practice and also after
397 neoadjuvant chemotherapy, given that the tumor purity remains higher than 30%. Interestingly,
398 ovaHRDscar levels were also similar between treatment-naive and relapsed tumors, reflecting
399 the nature of HRD-Als as a historical consequence rather than a dynamic read-out of
400 functional HRD. Analysis of different anatomical sites revealed that the overall inter-patient
401 variation was higher than the intra-patient variation. However, in four out of 21 (19%) patients
402 with samples from multiple anatomical sites, the HRD category depended on the anatomical
403 site of sampling. The survival analyses indicated that ovarian or adnexal sites, followed by
404 omentum, could be the preferred sites for HRD testing, warranting future validation in larger
405 cohorts.

406

407 In conclusion, ovaHRDscar shows promise as a precise, clinically feasible assay for both
408 outcome prediction and selection of patients for HR-directed therapies. With the fully
409 documented, publicly available algorithms and generation pipeline, ovaHRDscar can be
410 applied to other tumor types and implemented clinically for optimal patient selection to improve
411 outcomes for patients with cancer.

412 MATERIALS AND METHODS

413 **Data set collection and classification**

414 For pan-cancer samples, allele-specific copy number segments were obtained from the
415 Genomics Data Commons (GDC) portal (<https://portal.gdc.cancer.gov/>). The list of TNBC
416 samples was adopted from Lehmann et al.³⁸. For TNBC, samples were considered with
417 *BRCA*mut if reported by Knijnenburg et al.³⁹ to contain a gene deletion, gene mutation, or gene

418 silencing of *BRCA1* or *BRCA2*; while *BRCAwt* were considered those with no reported
419 alterations.

420

421 For OVA-TCGA analysis, allele-specific copy number segments, DNA methylation, gene-level
422 copy number profiles (including gene deletions), and clinical information data were obtained
423 from the GDC data portal. Genes were considered with a "strong signal of deletion" if reported
424 as such (labeled by -2) by Taylor et al.⁴⁰. Gene promoter hypermethylation was considered
425 when the probes up to 1500bp downstream of the transcription start site had an average beta
426 value ≥ 0.75 . The catalog of mc3 somatic mutations was obtained from the PanCanAtlas-GDC
427 data portal (<https://gdc.cancer.gov/about-data/publications/pancanatlas>). Somatic mutations
428 were classified according to the recommendations of the American College of Medical
429 Genetics and Genomics⁴¹ using the web-tool VarSome⁴². Only pathogenic somatic mutations
430 were considered in the analysis. For germline mutations, we selected those labeled as
431 pathogenic and prioritized by Huang et al. 2018⁴³. Genes were considered part of the HR
432 pathway or other associated pathways according to the Kyoto Encyclopedia of Genes and
433 Genomes database⁴⁴. Complementary clinical information was obtained from the
434 PanCanAtlas-GDC data portal. For PCAWG: allele-specific copy number segments,
435 mutational drivers, and clinical information were obtained from the International Cancer
436 Genome Consortium data portal (<https://dcc.icgc.org/pcawg>).

437

438 **Pan-cancer characterization of AIs**

439 We used the allele-specific copy number segments from the Genomics Data Commons.
440 Segments that did not span a whole chromosome and with a total copy number value different
441 from two were selected as AIs. AIs shorter than 3Mb and longer than 50Mb were ignored. We
442 quantified the number of AIs per sample and the median length of the AIs. The skewness of
443 the distribution of the length AIs in different types of cancers was performed using the package
444 DescTools.

445

446 **Selection of criteria for HRD-AIs**

447 First, we annotated the OVA-TCGA samples as HRD and HRP according to the following. For
448 HRD samples, samples harboring somatic or germline mutations, promoter hypermethylation,
449 or strong signal of deletion of the genes *BRCA1*, *BRCA2*, and *RAD51* paralogs (**Fig. 2a**); for
450 HRP sample annotation, we selected those with none of the HRD selection criteria, plus
451 available data for methylation, gene deletion, somatic mutations and no deletion of any HR
452 gene. The rest of the samples were annotated as "undefined" (**Fig. 2a**). The HRD and HRP
453 annotation was used as "ground truth" in posterior accuracy assessment analysis. The HRP
454 sample *TCGA-13-1511* was annotated as "undefined" as an outlier in the number of total AIs.
455 Then, for the annotated HRD/HRP samples, we quantified the HRD-AIs (LOH, LST, TAI)
456 according to Marquard et al.⁴⁵ under different criteria. For LOH, we used length criteria
457 (minimum length: l_{min} , maximum length: l_{max}). Exhaustively for each pair of values, l_{min} and l_{max} ,
458 we quantified the number of LOH per sample. We selected the pair of values that produced
459 the highest classification power (see below) according to the HRD and HRP annotations. The
460 quantification of LST events, defined by the parameters s (minimum AI length) and m
461 (maximum distance between the AI events that comprise an LST event), was optimized
462 similarly. Finally, we quantified TAI events if they were larger than k , where the length k was
463 evaluated following the same approach. The classification power was evaluated by combining
464 two approaches: 1) differential abundance of selected AIs in the annotated HRD vs HRP using
465 one-tailed Mann-Whitney U test; 2) classification performance by decision trees (R package
466 'rpart') taking the abundance of the selected AIs as split-point. For the decision trees approach,
467 samples above the split-point were tentatively considered as HRD and below - HRP, then true
468 positive rate (TPR) and true negative rate (TNR) was computed when compared against the
469 ground truth annotations (Fig. 2b). For each type of HRD-AI, we selected the set of parameters
470 $(\{l_{min}, l_{max}\}, \{s, m\}, k)$ with the highest product of U test p-value (p) and balance accuracy ($BA =$
471 $\frac{TPR+TNR}{2}$), the product was inferred with the formula: $-1 * \log 10(p) * BA$. The selected set of
472 parameters was incorporated in ovaHRDscar. The sum of HRD-AIs under the selected criteria

473 was named the ovaHRDscar levels or values. A cut-off value to define the HR-status (samples
474 with values above the cut-off are considered HRD and below - HRP) for ovaHRDscar and
475 tnbcHRDscar levels was determined by exploring different cut-off values. For each cut-off
476 value, we resampled with replacement 29 of the annotated HRD and 29 of the HRP cases
477 10,000 times; for each pseudo replicate, we calculated the balanced accuracy by comparing
478 the HR-status using the cut-off value versus the ground truth annotations. Finally, we selected
479 the cut-off value that produced the highest median balanced accuracy.

480

481 **Quantification of HRD-AIs**

482 The quantification of HRD-AIs by the Telli2016 algorithm, the Takaya2020, the ovaHRDscar,
483 and the tnbcHRDScar was performed using an in-house R-package (see code availability)
484 adapted from the package scarHRD⁴⁶. This package allows for the quantification of LOH, LSTs
485 and TAIs under different selection criteria. Allelic imbalances smaller than 50bp were
486 smoothed, as previously suggested by Popova et al.⁷. The selection criteria of HRD-AIs for
487 Telli2016: LOH $l_{min}=15Mb$, $l_{max} = 50Mb$; LSTs $s=12Mb$, $m=1Mb$, TAI $k=1Mb$, samples with
488 HRD-AIs ≥ 42 were considered HRD otherwise - HRP. For the Takaya2020 algorithm, the
489 same HRD-AIs selection criteria as for Telli2016 were used: samples with HRD-AIs ≥ 63 were
490 considered HRD, and otherwise - HRP. For ovaHRDscar, the HRD-AIs selection criteria is:
491 LOH $l_{min}=15Mb$, $l_{max}=50Mb$; LSTs $s=12Mb$, $m=1Mb$, TAI $k=1Mb$; samples with HRD-AIs ≥ 54
492 were considered HRD, and otherwise - HRP.

493

494 **Survival analysis**

495 Survival plots, Log-rank and Cox regression models were performed in R using the packages
496 "survminer" and "survival". For OVA-TCGA, only patients disease treated with cisplatin or
497 carboplatin were selected. For PCAWG, data from all patients were used (no treatment
498 information available). Only data from primary samples (treatment-naive) were used. The
499 *BRCA*mut/del status includes pathogenic somatic mutations, germline mutations, and "strong
500 signal of deletion" in the genes *BRCA1* or *BRCA2*. Residual tumor after surgery was

501 categorized as present or absent. For the indicated Cox regressions, residual tumor status or
502 patient age at diagnosis was used as a covariate. Progression-free survival (PFS) and overall
503 survival (OS) were defined as in Liu et al. 2018⁴⁷. The CHORD signature HR-status
504 classification for PCAWG samples was adopted from Nguyen et al. 2020¹¹. In the TNBC cohort
505 from TCGA, only patients with advanced Stage III-IV were selected. For survival analysis using
506 HRDetect stratification, positive status was labeled for patients with an HRDetect value ≥ 0.7 ,
507 and HRDetect negative for those with a value ≤ 0.2 , patients with intermediate values were
508 ignored. The mean differences of PFS and OS between HRD and HRP patients according to
509 different criteria were calculated by bootstrapping the patients 1000 times; for each
510 bootstrapping replicate was calculated the fold-change of median PFS or OS as median
511 survival (PFS or OS) time in HRD patients divided by median survival (PFS or OS) time in
512 HRP patients.

513

514 **Prospective HERCULES and TERVA data analysis**

515 The tumor samples were prospectively collected in the HERCULES (<http://www.project-hercules.eu>) and TERVA (<https://www.healthcampusturku.fi/innovation-new/terva-project/>)
516 projects. The Ethics Committee of the Hospital District of Southwest Finland approved both
517 studies (Dnro: 145 /1801/2015). All patients gave their written informed consent to take part
518 in the study. For HERCULES, paired fresh tumor and normal blood samples were sequenced
519 using Illumina-HiSeq X Ten WGS. Raw reads were trimmed and filtered with Trimmomatic⁴⁸,
520 followed by duplicate marking with Picard Tools (<https://broadinstitute.github.io/picard/>).
521 Alignment to the human genome GRCh38 was done using the Burrows-Wheeler aligner BWA-
522 MEM⁴⁹. Mutations were detected using GATK4-Mutect2 approach⁵⁰. GATK4-Mutect2 was
523 used for the detection of allele-specific copy numbers; regions listed in the ENCODE blacklist⁵¹
524 were omitted. Tumor purity was estimated using two approaches: 1) Based on somatic copy-
525 number profiles using the software ASCAT v2.5.2⁵¹ 2) Based on variant allele frequency of the
526 truncal mutation in gene *TP53* (*TP53*-VAF), purity was estimated using the formula: $2 / ((CN /$
527 *TP53*-VAF) - (CN - 2)), where CN corresponds to the absolute copy-number value estimated
528

529 by ASCAT in the corresponding truncal mutation locus. Subsequently, the higher purity value
530 was selected. For the TERVA samples tumor-only profiling, tumor samples were genotyped
531 using the Infinium™ Global Screening Array-24 v2.0. B allele frequency and LogR ratios per
532 sample probe were calculated using Illumina-GenomeStudio. ASCAT software was used for
533 the detection of allele-specific copy numbers, *ascat.predictGermlineGenotypes* module was
534 performed, adjusting parameters according to a panel of 200 normal germline blood samples.
535 Intra- and inter-patient variability of ovaHRDscar values in the HERCULES cohort was
536 determined by calculating the absolute value of the pairwise ovaHRDscar difference between
537 all pair combinations of samples. Patient P19 was omitted from survival analysis because she
538 received PARP inhibitors as maintenance after the first-line therapy.

539

540 **Statistics**

541 The statistics analysis was performed in R. Difference in abundances was calculated using
542 one-sided Mann-Whitney U test. Agreement was calculated using the Cohen kappa test.
543 Concordance was measured using Lin's concordance correlation coefficient. Level of
544 correlations was assessed using Pearson correlations. P value less than 0.05 was considered
545 statistically significant.

546

547 **Code Availability**

548 The code used to detect HRD-AIs under different criteria is available on Github
549 (<https://github.com/farkkilab/findHRD-AIs>). The ovaHRDscar algorithm implementation is
550 available as an R package on Github (<https://github.com/farkkilab/ovaHRDscar>).

551

552 **Data availability**

553 Data for the HERCULES and TERVA cohort will be available through the European Genome-
554 Phenome Archive.

555

556 ACKNOWLEDGMENTS

557 This study was funded by the Sigrid Jusélius Foundation (AF, LK), Cancer Society of Finland
558 (AF, JC, LK), Academy of Finland (grant number 322979 to AF, grant numbers 314394 and
559 322178 to LK, grant number 314398 to SaHi), Paolo Foundation (AF), The Finnish Medical
560 Foundation (AF), Finnish Cultural Foundation (AF), Instrumentarium Foundation (AF, JC),
561 University of Helsinki (AF), AstraZeneca (to SaHi), the European Union's Horizon 2020
562 research and innovation program under grant agreement No 667403 for HERCULES (SHa,
563 JH, SaHi) and No 965193 for DECIDER (SHa, JH, SaHi). We also wish to thank FIMM
564 Genomics core facility, The FINNPEC for the statistical reference data, Johan Staaf for
565 assistance in TNBC data access, and the IT Center for Science (CSC) for computational
566 resources.

567

568 AUTHOR CONTRIBUTIONS

569 A.F. and F.P. conceived and designed the study with contributions from L.K., J.O., P.A.K. and
570 S.H. F.P., J.O., J.C., D.C.G, Y.L. and K.L. analyzed the data. F.P. performed the statistical
571 analysis. A.C., M.T., S.K., J. H., U. H., J.S.T. and H.L. performed experiments and provided
572 materials. All authors wrote and approved the manuscript.

573

574 COMPETING INTEREST

575 The authors declare no competing interests

576

577 Supplementary information is available for this paper

578

579 REFERENCES

580 1 Ceccaldi, R., Rondinelli, B. & D'Andrea, A. D. Repair Pathway Choices and
581 Consequences at the Double-Strand Break. *Trends Cell Biol* **26**, 52-64,
582 doi:10.1016/j.tcb.2015.07.009 (2016).

583 2 Lord, C. J. & Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. *Science*
584 **355**, 1152-1158, doi:10.1126/science.aam7344 (2017).

585 3 Torre, L. A. *et al.* Ovarian cancer statistics, 2018. *CA Cancer J Clin* **68**, 284-296,
586 doi:10.3322/caac.21456 (2018).

587 4 Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D'Andrea, A. D. Homologous
588 Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian
589 Cancer. *Cancer Discov* **5**, 1137-1154, doi:10.1158/2159-8290.CD-15-0714 (2015).

590 5 Ray-Coquard, I. *et al.* Olaparib plus Bevacizumab as First-Line Maintenance in
591 Ovarian Cancer. *N Engl J Med* **381**, 2416-2428, doi:10.1056/NEJMoa1911361 (2019).

592 6 Gonzalez-Martin, A. *et al.* Niraparib in Patients with Newly Diagnosed Advanced
593 Ovarian Cancer. *N Engl J Med* **381**, 2391-2402, doi:10.1056/NEJMoa1910962 (2019).

594 7 Popova, T. *et al.* Ploidy and large-scale genomic instability consistently identify basal-
595 like breast carcinomas with BRCA1/2 inactivation. *Cancer Res* **72**, 5454-5462,
596 doi:10.1158/0008-5472.CAN-12-1470 (2012).

597 8 Abkevich, V. *et al.* Patterns of genomic loss of heterozygosity predict homologous
598 recombination repair defects in epithelial ovarian cancer. *Br J Cancer* **107**, 1776-1782,
599 doi:10.1038/bjc.2012.451 (2012).

600 9 Birkbak, N. J. *et al.* Telomeric allelic imbalance indicates defective DNA repair and
601 sensitivity to DNA-damaging agents. *Cancer Discov* **2**, 366-375, doi:10.1158/2159-
602 8290.CD-11-0206 (2012).

603 10 Telli, M. L. *et al.* Homologous Recombination Deficiency (HRD) Score Predicts
604 Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-
605 Negative Breast Cancer. *Clin Cancer Res* **22**, 3764-3773, doi:10.1158/1078-
606 0432.CCR-15-2477 (2016).

607 11 Nguyen, L., J. W. M. M., Van Hoeck, A. & Cuppen, E. Pan-cancer landscape of
608 homologous recombination deficiency. *Nat Commun* **11**, 5584, doi:10.1038/s41467-
609 020-19406-4 (2020).

610 12 Davies, H. *et al.* HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on
611 mutational signatures. *Nat Med* **23**, 517-525, doi:10.1038/nm.4292 (2017).

612 13 Stefansson, O. A. *et al.* Genomic profiling of breast tumours in relation to BRCA
613 abnormalities and phenotypes. *Breast Cancer Res* **11**, R47, doi:10.1186/bcr2334
614 (2009).

615 14 Breiman, L. *Classification and regression trees*. (Wadsworth International Group,
616 1984).

617 15 Consortium, I. T. P.-C. A. o. W. G. Pan-cancer analysis of whole genomes. *Nature*
618 **578**, 82-93, doi:10.1038/s41586-020-1969-6 (2020).

619 16 de Luca, X. M. *et al.* Using whole-genome sequencing data to derive the homologous
620 recombination deficiency scores. *NPJ Breast Cancer* **6**, 33, doi:10.1038/s41523-020-
621 0172-0 (2020).

622 17 Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer.
623 *Nature* **578**, 94-101, doi:10.1038/s41586-020-1943-3 (2020).

624 18 Gulhan, D. C., Lee, J. J., Melloni, G. E. M., Cortes-Ciriano, I. & Park, P. J. Detecting
625 the mutational signature of homologous recombination deficiency in clinical samples.
626 *Nat Genet* **51**, 912-919, doi:10.1038/s41588-019-0390-2 (2019).

627 19 Takaya, H., Nakai, H., Takamatsu, S., Mandai, M. & Matsumura, N. Homologous
628 recombination deficiency status-based classification of high-grade serous ovarian
629 carcinoma. *Sci Rep* **10**, 2757, doi:10.1038/s41598-020-59671-3 (2020).

630 20 Polterauer, S. *et al.* Prognostic value of residual tumor size in patients with epithelial
631 ovarian cancer FIGO stages IIA-IV: analysis of the OVCAD data. *Int J Gynecol Cancer*
632 **22**, 380-385, doi:10.1097/IGC.0b013e31823de6ae (2012).

633 21 Staaf, J. *et al.* Whole-genome sequencing of triple-negative breast cancers in a
634 population-based clinical study. *Nat Med* **25**, 1526-1533, doi:10.1038/s41591-019-
635 0582-4 (2019).

636 22 Wagle, N. *et al.* High-throughput detection of actionable genomic alterations in clinical
637 tumor samples by targeted, massively parallel sequencing. *Cancer Discov* **2**, 82-93,
638 doi:10.1158/2159-8290.CD-11-0184 (2012).

639 23 Kang, J., D'Andrea, A. D. & Kozono, D. A DNA repair pathway-focused score for
640 prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy.
641 *J Natl Cancer Inst* **104**, 670-681, doi:10.1093/jnci/djs177 (2012).

642 24 Konstantinopoulos, P. A. *et al.* Gene expression profile of BRCAness that correlates
643 with responsiveness to chemotherapy and with outcome in patients with epithelial
644 ovarian cancer. *J Clin Oncol* **28**, 3555-3561, doi:10.1200/JCO.2009.27.5719 (2010).

645 25 Wang, Y. K. *et al.* Genomic consequences of aberrant DNA repair mechanisms stratify
646 ovarian cancer histotypes. *Nat Genet* **49**, 856-865, doi:10.1038/ng.3849 (2017).

647 26 Polak, P. *et al.* A mutational signature reveals alterations underlying deficient
648 homologous recombination repair in breast cancer. *Nat Genet* **49**, 1476-1486,
649 doi:10.1038/ng.3934 (2017).

650 27 Swisher, E. M. *et al.* Rucaparib in relapsed, platinum-sensitive high-grade ovarian
651 carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
652 *Lancet Oncol* **18**, 75-87, doi:10.1016/S1470-2045(16)30559-9 (2017).

653 28 Miller, R. E. *et al.* ESMO recommendations on predictive biomarker testing for
654 homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer.
655 *Ann Oncol* **31**, 1606-1622, doi:10.1016/j.annonc.2020.08.2102 (2020).

656 29 Golmard, L. *et al.* Contribution of germline deleterious variants in the RAD51 paralogs
657 to breast and ovarian cancers. *Eur J Hum Genet* **25**, 1345-1353, doi:10.1038/s41431-
658 017-0021-2 (2017).

659 30 Radhakrishnan, S. K., Jette, N. & Lees-Miller, S. P. Non-homologous end joining:
660 emerging themes and unanswered questions. *DNA Repair (Amst)* **17**, 2-8,
661 doi:10.1016/j.dnarep.2014.01.009 (2014).

662 31 Ray-Coquard, I. *et al.* Olaparib plus Bevacizumab as First-Line Maintenance in
663 Ovarian Cancer. *N Engl J Med* **381**, 2416-2428, doi:10.1056/NEJMoa1911361 (2019).

664 32 Gonzalez-Martin, A. *et al.* Niraparib in Patients with Newly Diagnosed Advanced
665 Ovarian Cancer. *N Engl J Med* **381**, 2391-2402, doi:10.1056/NEJMoa1910962 (2019).

666 33 Etemadmoghadam, D. *et al.* Synthetic lethality between CCNE1 amplification and loss
667 of BRCA1. *Proc Natl Acad Sci U S A* **110**, 19489-19494,
668 doi:10.1073/pnas.1314302110 (2013).

669 34 Saal, L. H. *et al.* Recurrent gross mutations of the PTEN tumor suppressor gene in
670 breast cancers with deficient DSB repair. *Nat Genet* **40**, 102-107,
671 doi:10.1038/ng.2007.39 (2008).

672 35 Bassi, C. *et al.* Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress.
673 *Science* **341**, 395-399, doi:10.1126/science.1236188 (2013).

674

675 36 Bian, X. *et al.* PTEN deficiency sensitizes endometrioid endometrial cancer to
676 compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. *Oncogene*
677 **37**, 341-351, doi:10.1038/onc.2017.326 (2018).

678 37 Norquist, B. M. *et al.* Mutations in Homologous Recombination Genes and Outcomes
679 in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology
680 Group Study. *Clin Cancer Res* **24**, 777-783, doi:10.1158/1078-0432.CCR-17-1327
681 (2018).

682 38 Lehmann, B. D. *et al.* Refinement of Triple-Negative Breast Cancer Molecular
683 Subtypes: Implications for Neoadjuvant Chemotherapy Selection. *PLoS One* **11**,
684 e0157368, doi:10.1371/journal.pone.0157368 (2016).

685 39 Knijnenburg, T. A. *et al.* Genomic and Molecular Landscape of DNA Damage Repair
686 Deficiency across The Cancer Genome Atlas. *Cell Rep* **23**, 239-254 e236,
687 doi:10.1016/j.celrep.2018.03.076 (2018).

688 40 Taylor, A. M. *et al.* Genomic and Functional Approaches to Understanding Cancer
689 Aneuploidy. *Cancer Cell* **33**, 676-689 e673, doi:10.1016/j.ccell.2018.03.007 (2018).

690 41 Richards, S. *et al.* Standards and guidelines for the interpretation of sequence variants:
691 a joint consensus recommendation of the American College of Medical Genetics and
692 Genomics and the Association for Molecular Pathology. *Genet Med* **17**, 405-424,
693 doi:10.1038/gim.2015.30 (2015).

694 42 Kopanos, C. *et al.* VarSome: the human genomic variant search engine. *Bioinformatics*
695 **35**, 1978-1980, doi:10.1093/bioinformatics/bty897 (2019).

696 43 Huang, K. L. *et al.* Pathogenic Germline Variants in 10,389 Adult Cancers. *Cell* **173**,
697 355-370 e314, doi:10.1016/j.cell.2018.03.039 (2018).

698 44 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
699 Acids Res* **28**, 27-30, doi:10.1093/nar/28.1.27 (2000).

700 45 Marquard, A. M. *et al.* Pan-cancer analysis of genomic scar signatures associated with
701 homologous recombination deficiency suggests novel indications for existing cancer
702 drugs. *Biomark Res* **3**, 9, doi:10.1186/s40364-015-0033-4 (2015).

703 46 Sztupinszki, Z. *et al.* Migrating the SNP array-based homologous recombination
704 deficiency measures to next generation sequencing data of breast cancer. *NPJ Breast
705 Cancer* **4**, 16, doi:10.1038/s41523-018-0066-6 (2018).

706 47 Liu, J. *et al.* An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-
707 Quality Survival Outcome Analytics. *Cell* **173**, 400-416 e411,
708 doi:10.1016/j.cell.2018.02.052 (2018).

709 48 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
710 sequence data. *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170
711 (2014).

712 49 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
713 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).

714 50 Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and
715 heterogeneous cancer samples. *Nat Biotechnol* **31**, 213-219, doi:10.1038/nbt.2514
716 (2013).

717 51 Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of
718 Problematic Regions of the Genome. *Sci Rep* **9**, 9354, doi:10.1038/s41598-019-
719 45839-z (2019).

720 52 Van Loo, P. *et al.* Allele-specific copy number analysis of tumors. *Proc Natl Acad Sci
721 U S A* **107**, 16910-16915, doi:10.1073/pnas.1009843107 (2010).

722

723

724 FIGURE LEGENDS

725 **Figure 1. Pan-cancer characterization of Al's reveals unique patterns in HGSC.** **a** Types
726 of cancer with more than 200 samples in TCGA and their corresponding number of samples
727 are shown in green bars; bladder urothelial carcinoma (BLCA), stomach adenocarcinoma
728 (STAD), lung squamous cell carcinoma (LUSC), breast invasive carcinoma (BRCA), thyroid
729 carcinoma (THCA), kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell
730 carcinoma (KIRC), brain Lower Grade Glioma (LGG), uterine Corpus endometrial carcinoma
731 (UCEC), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma and
732 endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), prostate
733 adenocarcinoma (PRAD), head and neck squamous cell carcinoma (HNSC), skin cutaneous
734 melanoma (SKCM), glioblastoma multiforme (GBM),. **b** Box plots representing the number of
735 Al's longer than 3Mb and smaller than 50Mb per sample. HGSC showed the highest average
736 levels of Al's. **c** Box plots showing the median length of Al's (longer than 3Mb and smaller than
737 50Mb) per sample. HGSC showed the lowest median length of Al's per sample. **d** Hierarchical
738 clustering for the types of cancer using as variables the median length, the median number of
739 Al's per sample, and the skewness of the distribution of Al's length. **e** Violin- and box plots

740 representing the number of AIs per sample. A long vertical line represents the median, HGSC
741 showing a similar number of AIs as compared to TNBC (U test). **f** Comparison of *BRCA*mut
742 samples showing similar abundances of AIs in HGSC as compared to TNBC (U test). **g** The
743 *BRCA*wt samples showing significantly higher number of AIs in HGSC than in TNBC (U test,
744 $p=0.002$). **h** Dot plot showing the difference in abundance for AIs of specific length between
745 HGSC and TNBC. The dot sizes represent the p-values (U-test) and dot colors represent the
746 fold-change (ratio of HGSC/TNBC abundance of AIs minus one), only dots for corresponding
747 significant differences are shown (U test, $p < 0.05$).

748

749 **Figure 2. Machine learning-aided detection of AIs associated with HRD shows improved**
750 **accuracy and correlations with genomic features of HRD in HGSC. a** Selection criteria for
751 annotating HRD, HRP and undefined HGSC samples in the OVA-TCGA. **b** A scheme of the
752 approach used to generate accurate criteria for selecting HRD-AIs in HGSC samples. **c** For
753 LST events, the size of dots represents the decision tree balanced accuracy (BA) of classifying
754 HRD and HRP when selecting AIs of the corresponding criteria, the dot colors represent the
755 statistical difference (U test, p-value) in abundance of AIs between HRD and HRP samples.
756 The black box corresponds to the selection criteria proposed by Telli2016, the blue box
757 correspond to the best BA and U-test value. **d** Evaluation of ovaHRDscar cut-off to define HR-
758 status. The black dots connected with a line correspond to the balanced accuracy (BA) of the
759 classification of the annotated HRD and HRP samples using the given cut-off value, the 95%
760 confidence intervals are shown in grey vertical lines, value of 54 (red dashed line) corresponds
761 to the highest BA. **e** Density distribution of HRD-AIs according to Telli2016 and ovaHRDscar
762 algorithms. The red dashed line represents the cut-off established to define the HR-status
763 using Telli2016 (≥ 42) and using ovaHRDscar (≥ 54). The BA of classification of the annotated
764 HRD and HRP is shown, density distribution colors correspond to the samples annotated as
765 in the panel a. **f** Levels of ovaHRDscar in OVA-TCGA samples harboring different genetic or
766 epigenetic alterations associated with HRD in HGSC⁴. The colors correspond to the
767 ovaHRDscar; in the outer ring of the pie chart every line represents a sample and in the center

768 of the pie chart the colors correspond to the average number of HRD-AIs per genetic or
769 epigenetic alteration. For the somatic mutations (somaticmut) gene deletions were included.
770 **g** Linear regression of the proportion of single base substitution signature 3 (SBS3) and the
771 ovaHRDscar levels in PCAWG samples (Pearson $r^2=0.38$). Blue line shows the regression line
772 and the 95% confidence intervals are shown in grey. **h** The SBS3 status inferred using
773 SigMA¹⁶ showing a higher agreement with ovaHRDscar (agreement=78.3%, Cohen's kappa
774 = 0.56) than with the Telli2016 algorithm (agreement=68.5%, Cohen's kappa = 0.32). In the
775 pie charts and table + and - correspond to the number of HRD positive and HRD negative
776 samples identified under each criterion, respectively. On the bottom is shown the number of
777 samples and the level of agreement between the corresponding criteria.

778

779 **Figure 3. ovaHRDscar accurately predicts PFS and OS in HGSC patients. a to c** Kaplan-
780 Meier plots of PFS in OVA-TCGA patients stratified with different criteria, in **a** patients were
781 stratified according to the *BRCA*mut/del status with no significant difference in their PFS
782 probability over time (Log-rank, $p=0.78$); **b** patients were stratified according to the Telli2016
783 algorithm (Log-rank, $p=0.017$); and **c** patients were stratified using the ovaHRDscar algorithm.
784 HRD patients had a prolonged PFS as compared to the HRP (Log-rank, $p=4.4e-04$). **e** Cox
785 regression models for PFS adjusted for residual tumor after surgery according to the different
786 HR classification criteria (*BRCA*mut/del, Telli2016, Telli2016-54, Takaya2020, ovaHRDscar).
787 Three panels are shown: OVA-TCGA cohort in the left panel, OVA-TCGA cohort excluding
788 the annotated HRD and HRP samples used for the detection of HRD-AIs in the middle panel,
789 and the HERCULES prospective cohort (WGS) in the right panel. The number of patients (N)
790 selected as HRD positive and their corresponding proportion (Prop), the hazard ratio for the
791 Cox regression and the 95% confidence intervals (CI) and the p-value (Pval) of the regression
792 are shown for each panel. The size of the dot represents the hazard ratio and color of the dot
793 represents the p-value, grey dots represent non-statistical significant associations ($p \geq 0.05$).
794 **d** Fold-change of the difference in median PFS between HRD and HRP patients were stratified
795 using ovaHRDscar, Telli2016 or Telli2016 using an HRD/HR cut-off value of 54 (Telli2016-

796 54). Patients were bootstrapped 1000 times, and the fold-change was calculated for each
797 iteration; the Box plots represent the values obtained by each bootstrapping iteration, no
798 outliers are shown. U-test p-values are shown. **f to h**, Kaplan-Meier plots of OS for OVA-TCGA
799 patients stratified using different criteria. **i** Fold-change of the difference in median OS between
800 HRD and HRP patients stratified using ovaHRDscar, Telli2016 or Telli2016-54 using the same
801 approach as in panel d. **j** Cox regression models for OS according to the HR-status
802 classification criteria. The PCAWG samples in the right panel, the left and center panels are
803 the same as in d.

804

805 **Figure 4. Intra-patient spatiotemporal variation of ovaHRDscar levels in 98 prospective**
806 **HGSC samples. a** Overview of the samples and their ovaHRDscar levels per patient in a
807 prospective cohort (HERCULES). The tumor samples were collected at three different
808 treatment phases and from different anatomical sites; the corresponding number of samples
809 are displayed in parentheses. **b** Levels of ovaHRDscar in samples harboring different genetic
810 or epigenetic alterations associated with HRD. The colors correspond to the ovaHRDscar
811 levels, in the outer ring of the pie chart every bar represents a sample carrying the
812 corresponding alteration, and average values for the genetic groups are displayed in the
813 center of the pie chart. **c** ovaHRDscar values between paired samples for each patient
814 (connected dots) did not change (Wilcoxon test) between the samples collected at different
815 treatment phases. **d** Comparison of anatomical site prioritizations using Cox regression
816 models for PFS using the Telli2016 or the ovaHRDscar algorithms. The size of the dot
817 represents the HR and color of the dot represents the p-value. The HR-status for each patient
818 is shown assessed using three anatomical sample prioritization approaches: 1) average HRD-
819 Als per all samples 2) omentum, and OVA/ADN if omentum sample not available (OME-
820 OVA/ADN) 3) OVA/ADN, and then omentum if OVA/ADN not available (OVA/ADN-OME). In
821 the case of multiple samples per same site, the average was used.

822

823 **Figure 5. Machine learning-aided detection of HRD-AI in TNBC improves the prediction**
824 **of clinical outcomes. a** Number of AIs for TNBC in HRD and HRP samples in the TCGA. **b**
825 Detection of LOH events. The size of the dots represents the decision tree balanced accuracy
826 (BA) of classifying HRD and HRP using LOHs of the corresponding length, and the dot colors
827 represent the difference in abundance of LOH between HRD versus HRP samples (U test, p
828 value). Black box corresponds to the selection criteria utilized in the Telli2016 algorithm, and
829 the blue box corresponds to the tnbcHRDscar BA and U test value. **c** Evaluation of the cut-off
830 for tnbcHRDscar to define HR-status. The black dots connected with a line represent the
831 balanced accuracy (BA) of the classification of the HRD and HRP samples using the given
832 cut-off value, the 95% confidence intervals are shown in grey, the value of 53 (red dashed
833 line) shows the highest BA. **d** Density distribution of HRD-AIs according to the Telli2016 and
834 tnbcHRDscar algorithms. The red dashed line represents the cut-off established to define HR-
835 status using Telli2016 (≥ 42) and tnbcHRDscar (≥ 53). The balanced accuracy (BA) for
836 classifying the HR-status is shown for Telli2016 and ovaHRDscar algorithm. **e to g** Kaplan-
837 Meier plots of PFS (Log-rank test) in TNBC patients in the TCGA stratified using: the
838 *BRCA*mut/del status (**e**), the Telli2016 algorithm (**f**), the tnbcHRDscar (**g**). **h to j** Kaplan-Meier
839 plots of distant relapse-free interval (DRFI, Log-rank test) of the TNBC patients in the
840 validation dataset stratified using: the *BRCA*mut/del status (**h**), the Telli2016 algorithm (**i**), the
841 tnbcHRDscar algorithm (**j**).

842

843

844 SUPPLEMENTARY FIGURE LEGENDS

845

846 **Supplementary Figure 1. Pan-cancer characterization of LOH shows unique patterns in**
847 **HGSC. a.** Box plots showing the number of LOH events larger than 3Mb and smaller than
848 50Mb in the different cancer types. **b** Box plots showing the median length of LOH events

849 (longer than 3Mb and smaller than 50Mb) in the cancer types. **c** Hierarchical clustering of the
850 cancer types using the median length, median number of LOH events per sample, and the
851 skewness of the distribution of LOH length. **d** Violin- and box plots representing the number
852 of LOH events in all HGSC samples as compared to TNBC (U test, $p=0.005$). Long horizontal
853 lines represent the medians. **e** Violin and box plots representing the number of LOH events in
854 *BRCA*mut HGSC samples as compared to TNBC (U test, $p=0.021$). **f** Violin and box plots
855 representing the number of LOH events in *BRCA*wt HGSC samples as compared to the TNBC
856 (U test, NS).

857

858 **Supplementary Figure 2. Descriptive statistics of HRD and HRP in HGSC.** **a** Box plot
859 showing the number of allelic imbalances in HRD (red) and HRP (blue) samples in OVA-
860 TCGA. **b** The average proportion of segments (Al)s equal or greater than the given length in
861 HRD (red) and HRP (blue) samples, the blue and red lines correspond to smoothing using
862 cubic splines, confidence intervals are shown in shaded colors. **c** Density distribution of LOH
863 events in HRD (red) and HRP (blue) samples. **d** The accuracy of the new LOH criteria (blue
864 boxes) and those utilized in Telli et al. (black box); the size of dots represents the decision
865 tree balanced accuracy (BA) when using the corresponding cut-off, colors correspond to the
866 statistical difference in abundance of Al's between HRD versus HRP samples (U test p value).
867 **e** Accuracy of HR classification using three tandem allelic imbalances LSTs of a given
868 minimum length (x axis) and distance between them smaller than 1 to 4 Mb (y axis). Dot sizes
869 and colors are presented similarly as in panel d. **f** Upper panel: Visualization of the statistical
870 difference (U test p -values) in the abundance of TAl's between HRD versus HRP samples for
871 selected TAl's length. Lower panel: The dot sizes and colors in the lower panel correspond to
872 the description in panel d and e. **g** Density distribution of HRD-Als according to Telli2016
873 algorithm, the red dashed line represents a cut-off vale of 54 to define the HR-status. The
874 balanced accuracy (BA) of classifying the annotated HRD and HRP is shown, density
875 distribution colors correspond to the samples annotated as in Fig. 2a. **h** OVA-TCGA samples
876 stratified by genomic alterations and their corresponding ovaHRDscar levels. U test p values

877 are shown for the comparison of ovaHRDscar levels between the corresponding alterations
878 as compared to the samples with CCNE1 amplification. **i** Bland-Altman plot that shows the
879 concordance (Concordance correlation coefficient, CCC = 0.90) between the number of
880 ovaHRDscars detected using SNP-arrays and WGS in the intersecting samples from OVA-
881 TCGA and PCAWG. **j** Correlation (Pearson, r=0.38) between the SBS3 proportion in WGS
882 data from PCAWG versus the number of scars using the Telli2016 approach. Blue line shows
883 the regression line, and the 95% confidence intervals are shown in grey. **k** The SBS3 status
884 inferred using SigMA¹⁶ showing a higher agreement with ovaHRDscar (agreement=78.3%,
885 Cohen's kappa = 0.56) than with the Telli2016 algorithm using an HRP/HRP cut-off value of
886 54 (agreement=77.2%, Cohen's kappa = 0.53). In the pie charts and table + and - correspond
887 to the number of HRD positive and HRD negative samples identified under each criterion,
888 respectively. On the bottom is shown the number of samples and the level of agreement
889 between the corresponding criteria.

890

891 **Supplementary Figure 3. ovaHRDscar shows an improved prediction of PFS and OS in**
892 **HGSC patients. a to c** Kaplan-Meier plots for PFS in the HERCULES cohort. The patients
893 were stratified using different criteria: The *BRCA*mut/del status in the left panel (**a**), The
894 Telli2016 algorithm in the middle panel (**b**) and The ovaHRDscar algorithm (**c**). **d** Cox
895 regression models for PFS in HGSC patients using different selection criteria. The colors, rows
896 and columns descriptions are the same as in Figure 3d. **e to f** Kaplan-Meier plots of PFS in
897 the prospective TERVA cohort. The patients were stratified using: The Telli2016 algorithm on
898 the left (**e**), the ovaHRDscar on the right (**f**). **g** Cox regression models for PFS in the TERVA
899 cohort. The patients were stratified using different criteria. The colors, rows and columns
900 descriptions are the same as in Figure 3d. **h to j** Kaplan-Meier plots for OS in the HERCULES
901 cohort stratified using the different criteria: *BRCA*mut/del status on the left (**h**), the Telli2016
902 algorithm (**i**) and the ovaHRDscar algorithm (**j**). **k** Cox regression models for OS adjusted for
903 patient age at diagnosis in HGSC patients stratified using different criteria similarly as in Figure
904 3h. **l to m** Kaplan-Meier plots for OS in the PCAWG cohort stratified using: the CHORD

905 signature on the left (**l**), the ovaHRDscar on the right (**m**). **n** Cox regression models for OS in
906 the PCAWG cohort. Patients were stratified using CHORD and ovaHRDscar criteria; the dot
907 colors, rows and columns descriptions are the same as in Figure 3d.

908

909 **Supplementary Figure 4. Inter and intra-patient variability of ovaHRDscar levels.**

910 **A** Left box plot for the difference of ovaHRDscar values between all possible intra-patients'
911 samples pairs. Right box plot for the corresponding difference of ovaHRDscar values in all
912 possible inter-patients' samples pairs in the HERCULES prospective cohort. **b** Samples from
913 different anatomical sites with tumor purity and ovaHRDscar levels indicated. **c** The correlation
914 between the difference of ovaHRDscar values between all intra-patient sample pairs and the
915 difference in tumor purity of the corresponding sample pairs. Patient P4 was ignored as an
916 outlier. **d** Color table of HR-status classification and HR-related genomic alterations using five
917 different approaches to prioritize anatomical sites for ovaHRDscar calculations. **e** Cox
918 regression models for PFS adjusted for the residual tumor after surgery in the HERCULES
919 cohort using different algorithms and five different anatomical site prioritizations. Colors, rows
920 and column descriptions are the same as in Figure 3d.

921

922 **Supplementary Figure 5. Machine learning-aided detection of HRD-AI in TNBC improves**
923 **the prediction of clinical outcomes.** **a** Generation of HRD-LST events. The size of the dots
924 represents the decision tree balanced accuracy (BA) of the classification of HRD and HRP
925 when selected LSTs with the corresponding criteria. The dot colors correspond to the
926 statistical difference in abundance of the selected LSTs between HRD versus HRP samples
927 (U test, p-value). The black box corresponds to the selection criteria proposed by Telli2016,
928 blue box corresponds to the tnbcHRDscar BA and U test value. **b** Upper panel: Visualization
929 of the change in p-values (U test) when selecting TAs >1Mb (red dashed line). Lower panel:
930 the difference in abundance of TAs of selected length between HRD versus HRP samples.
931 The dot sizes and colors in the lower panel correspond to the description in panel a. **c to e**
932 Kaplan-Meier plots for OS in the TCGA's TNBC patients stratified using the different criteria;

933 **c** *BRCAmut/del* status on the left, **d** the Telli2016 algorithm, and **e** the tnbcHRDscar algorithm.
934 **f** Cox regression models for PFS in HGSC patients stratified using different criteria, the dot
935 colors descriptions are the same as in Figure 3d. **g** Cox regression models for OS in in the
936 TCGA's TNBC patients stratified using the different criteria. **h** Cox regression models for DRFI
937 in an independent TNBC patient cohort²¹ stratified using different criteria. **i to j** Kaplan-Meier
938 plots for DRFI in an independent TNBC patient cohort²¹ stratified using: HRDetect based on
939 whole genome sequencing data (**i**), the tnbcHRDscar based on SNP-array data (**j**). **k** Selection
940 of different values to define the HRDetect-high/low status for patient stratification in the TNBC
941 patient cohort²¹ and its association with DRFI (Log-rank test, p-value). Patients with
942 intermediate HRDetect values were ignored. In blue line, the Log-rank p-value when using
943 tnbcHRDscar in panel **j**.

Figure 1

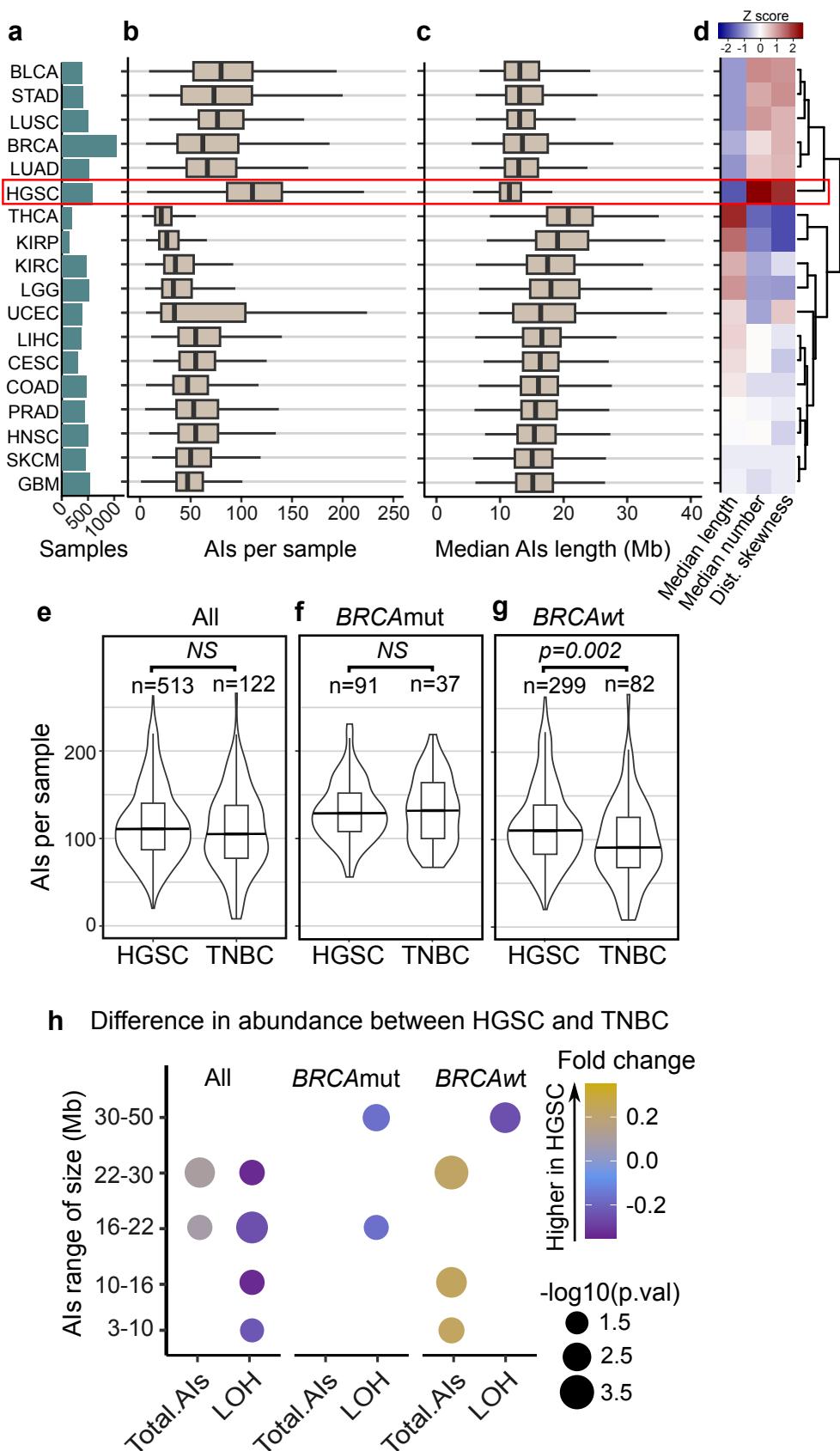


Figure 2

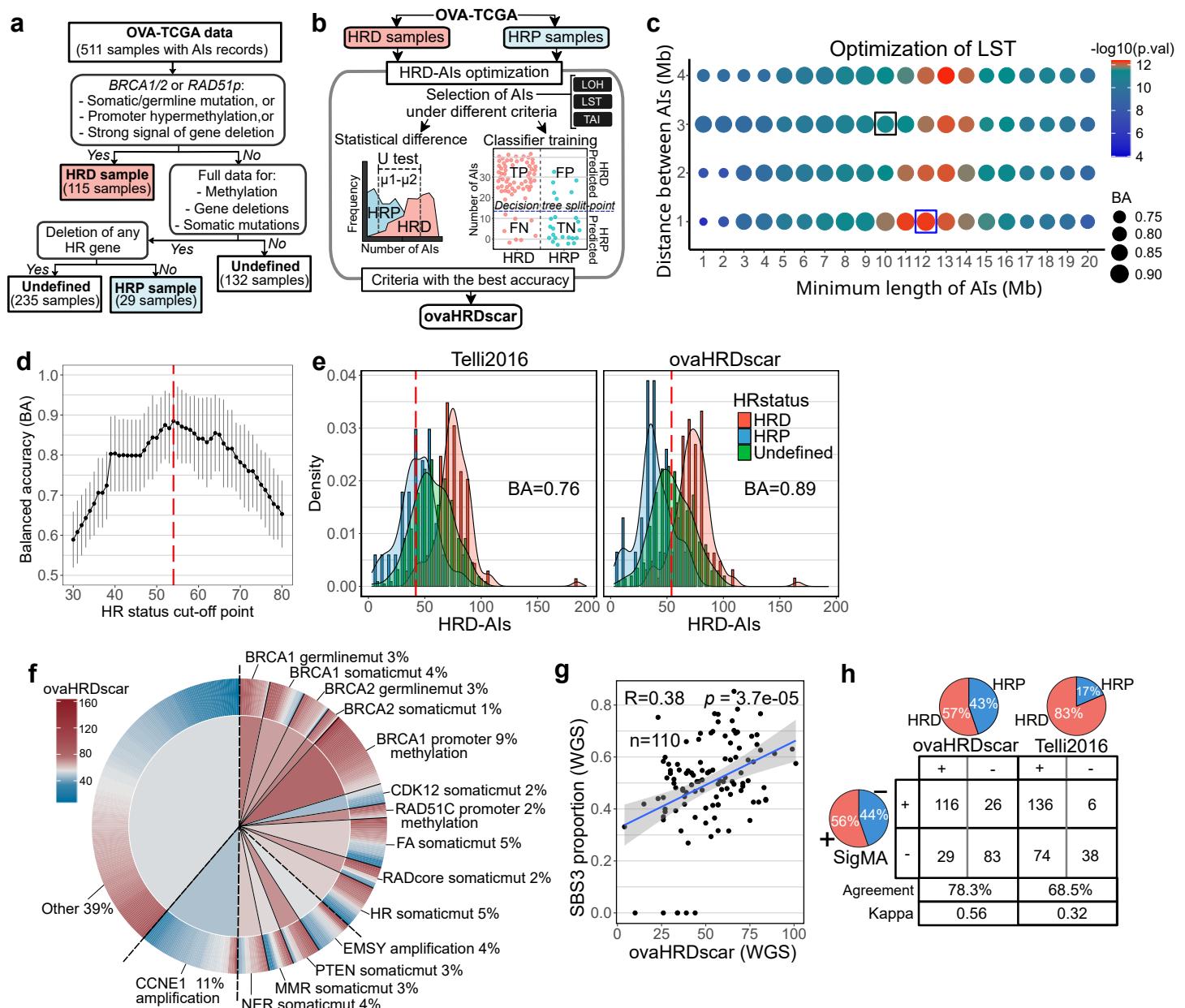


Figure 3

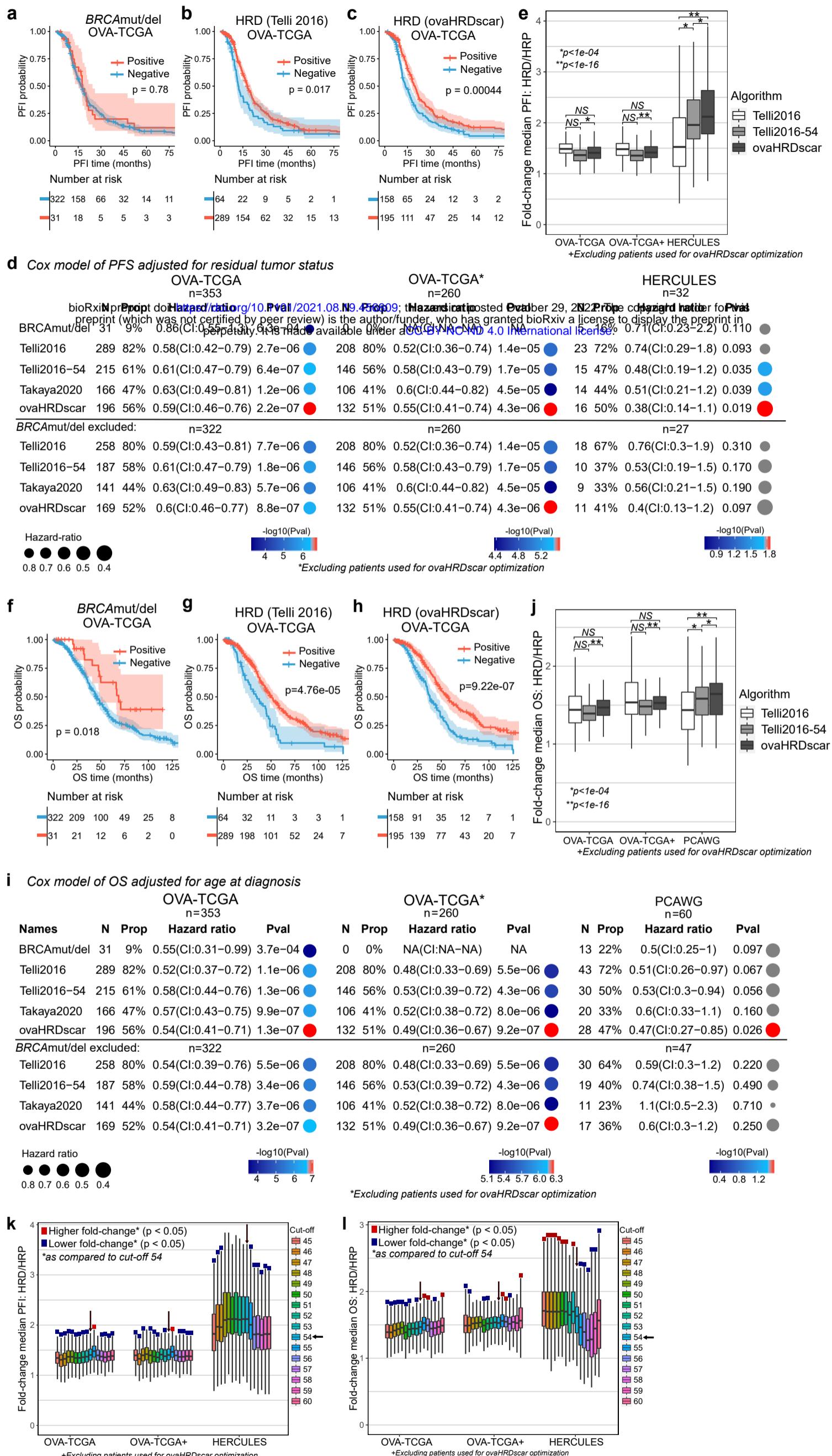


Figure 4

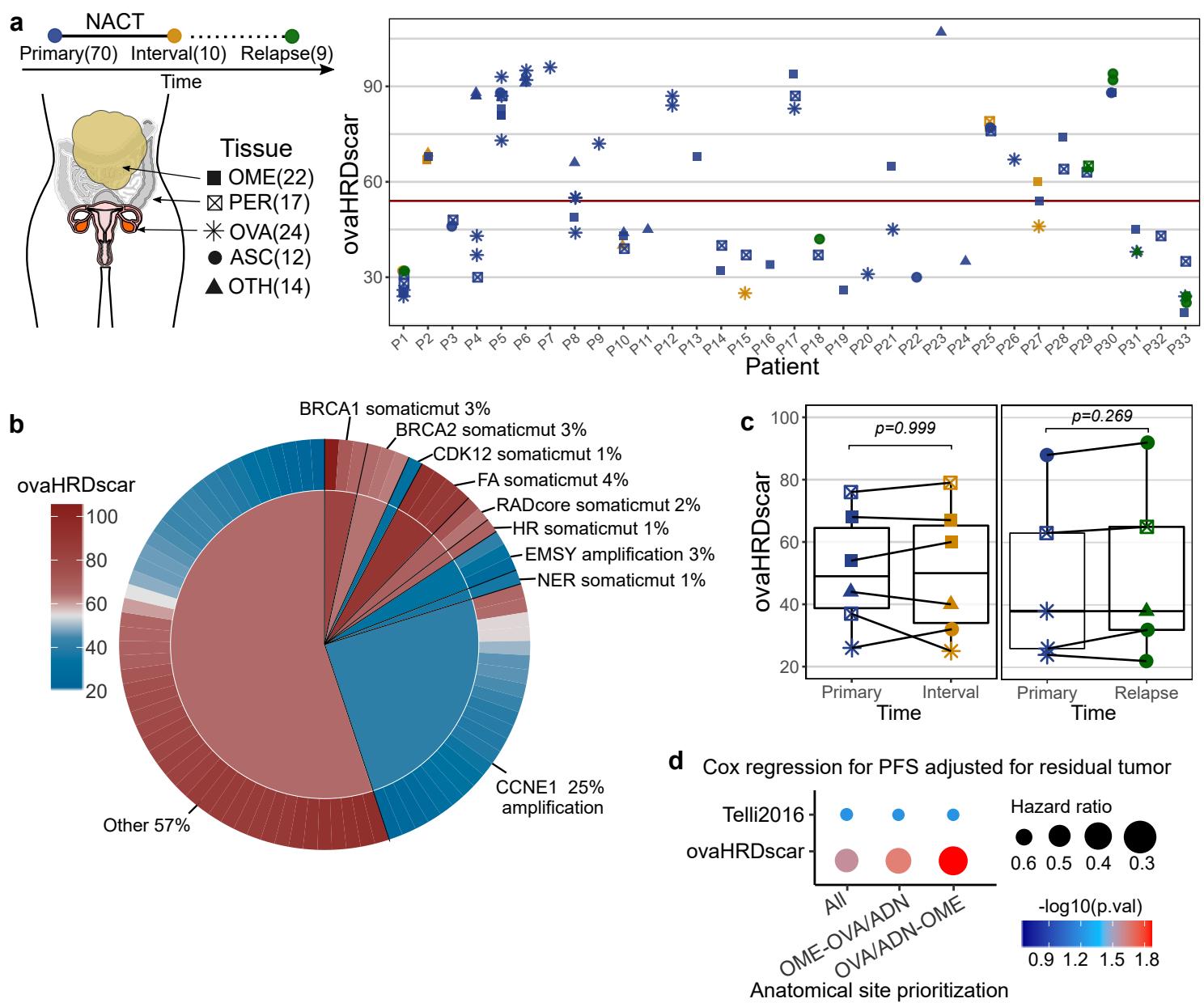
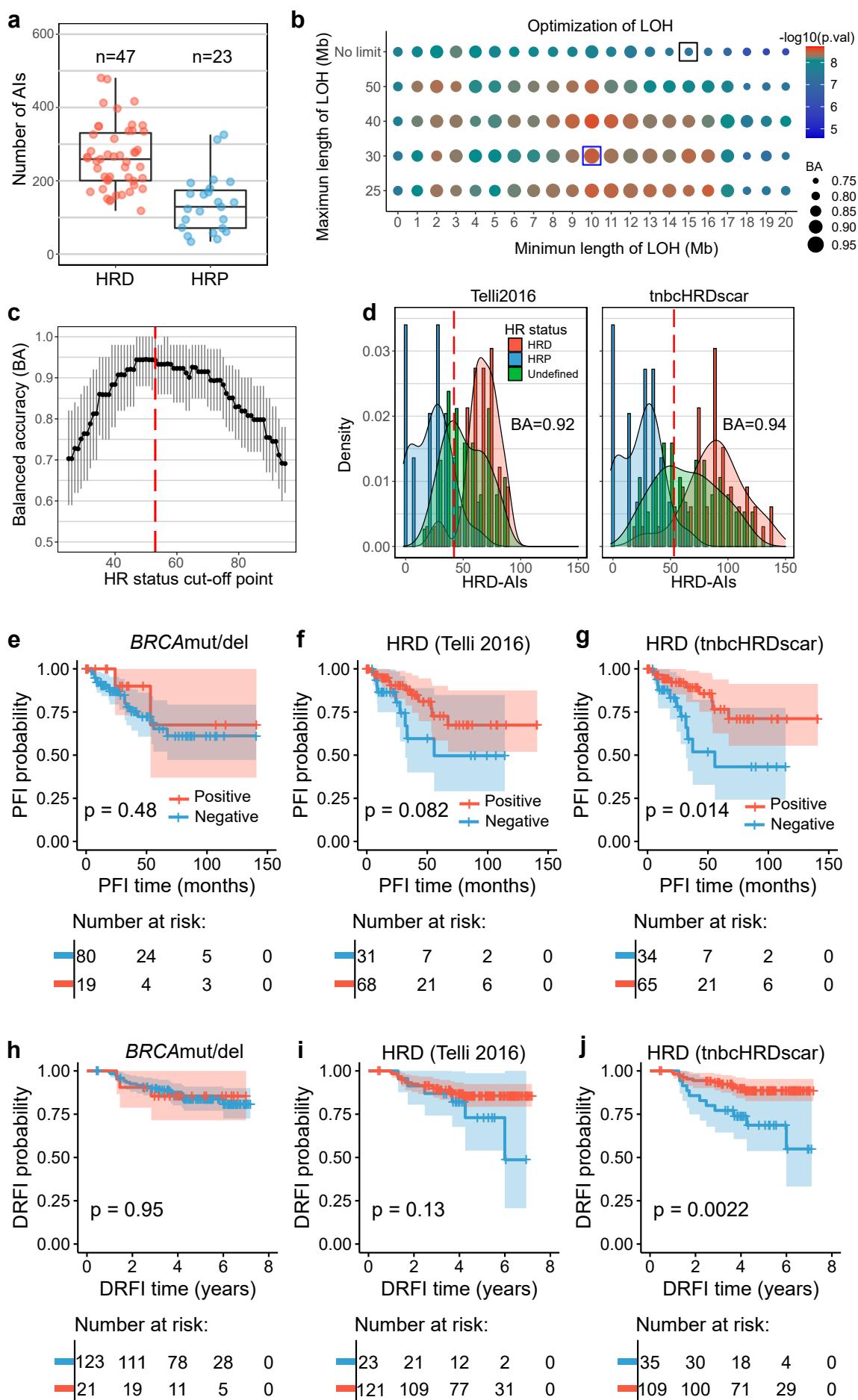
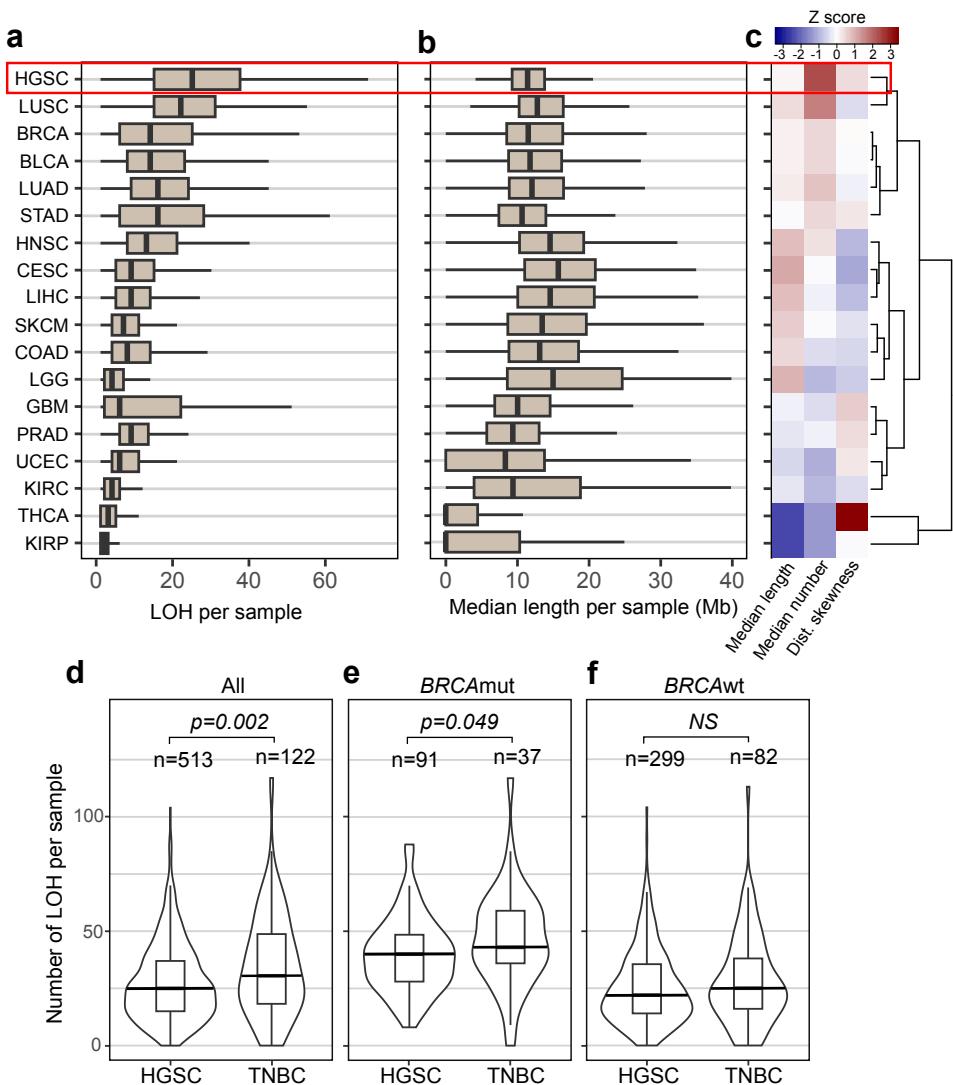


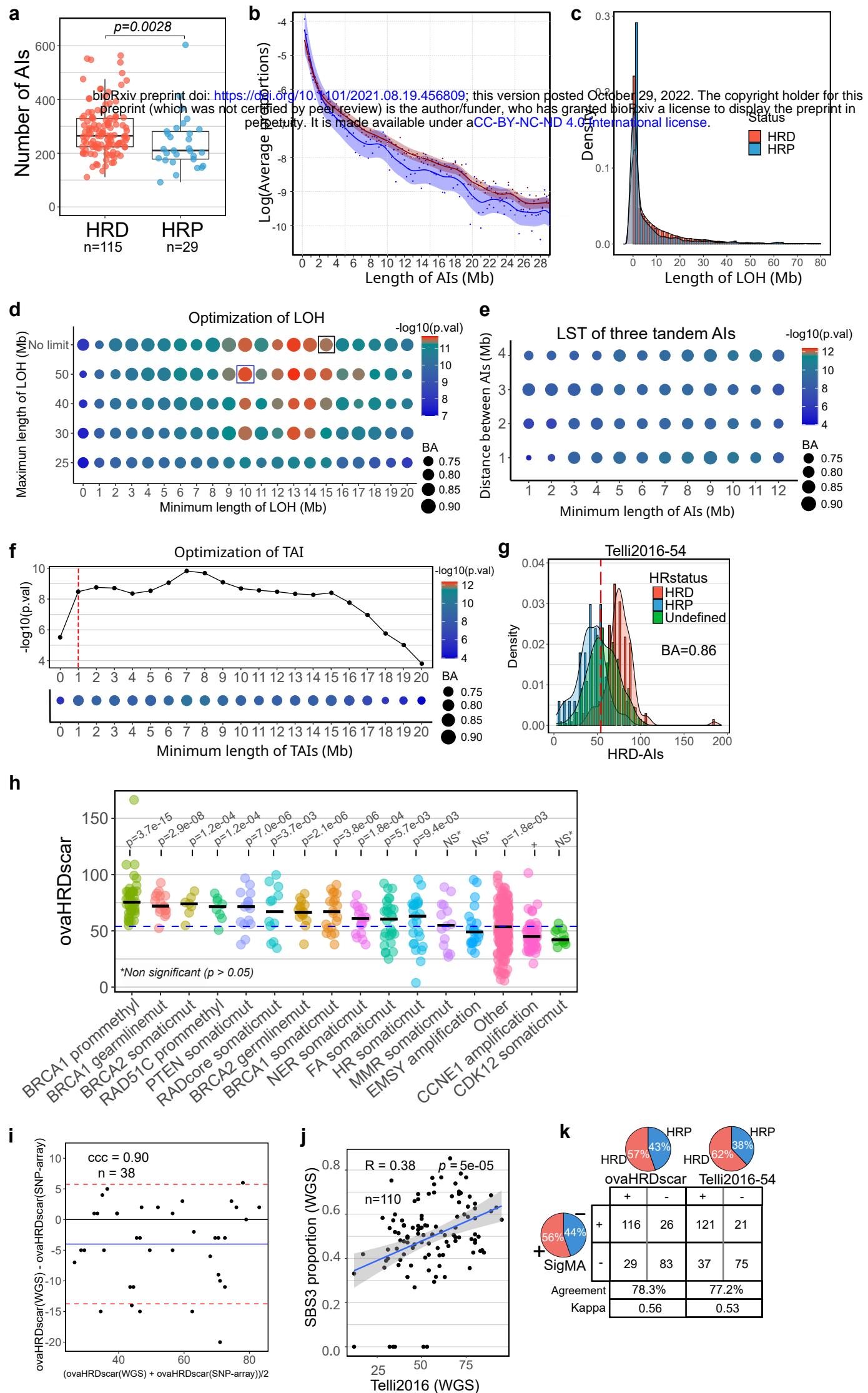
Figure 5



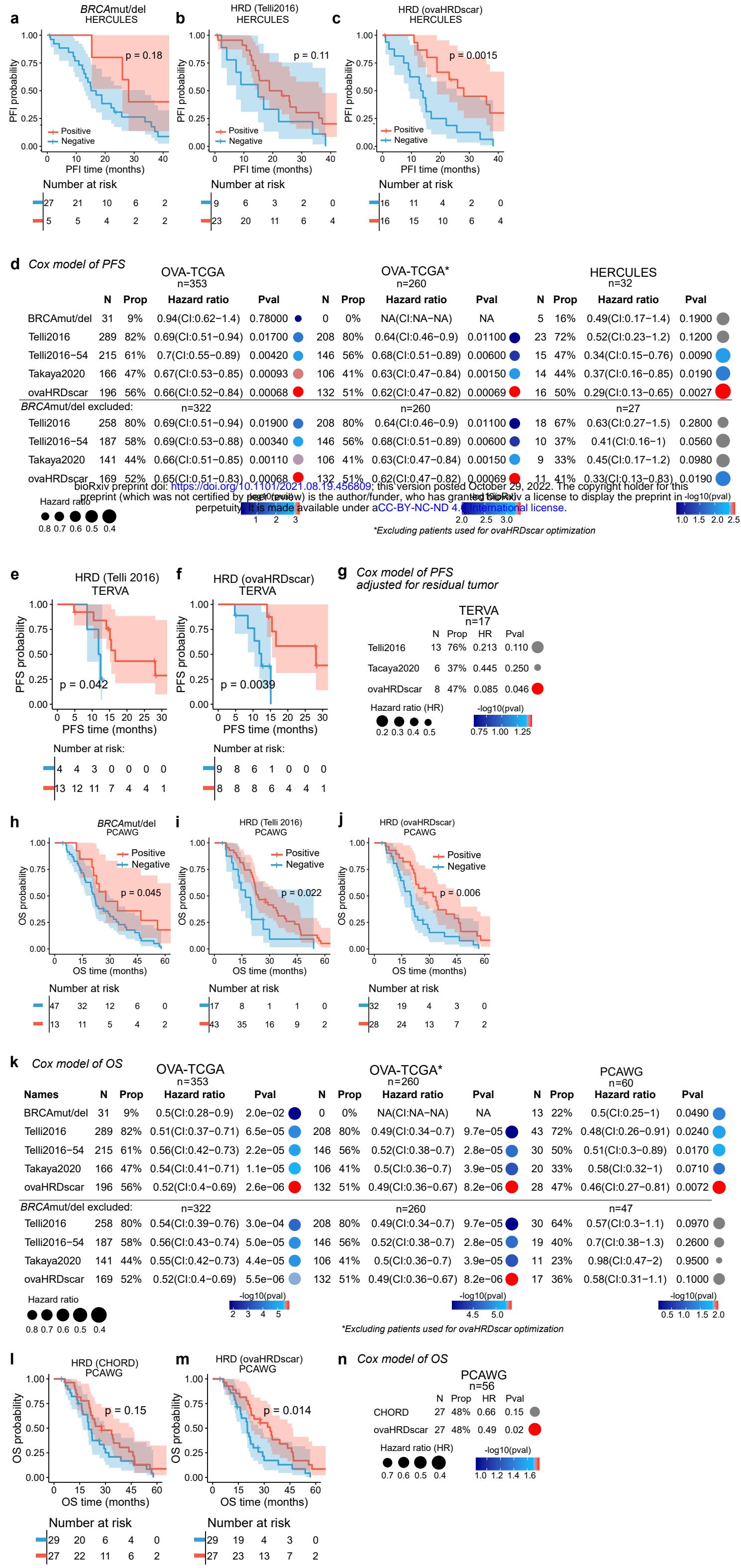
Supplementary Figure 1



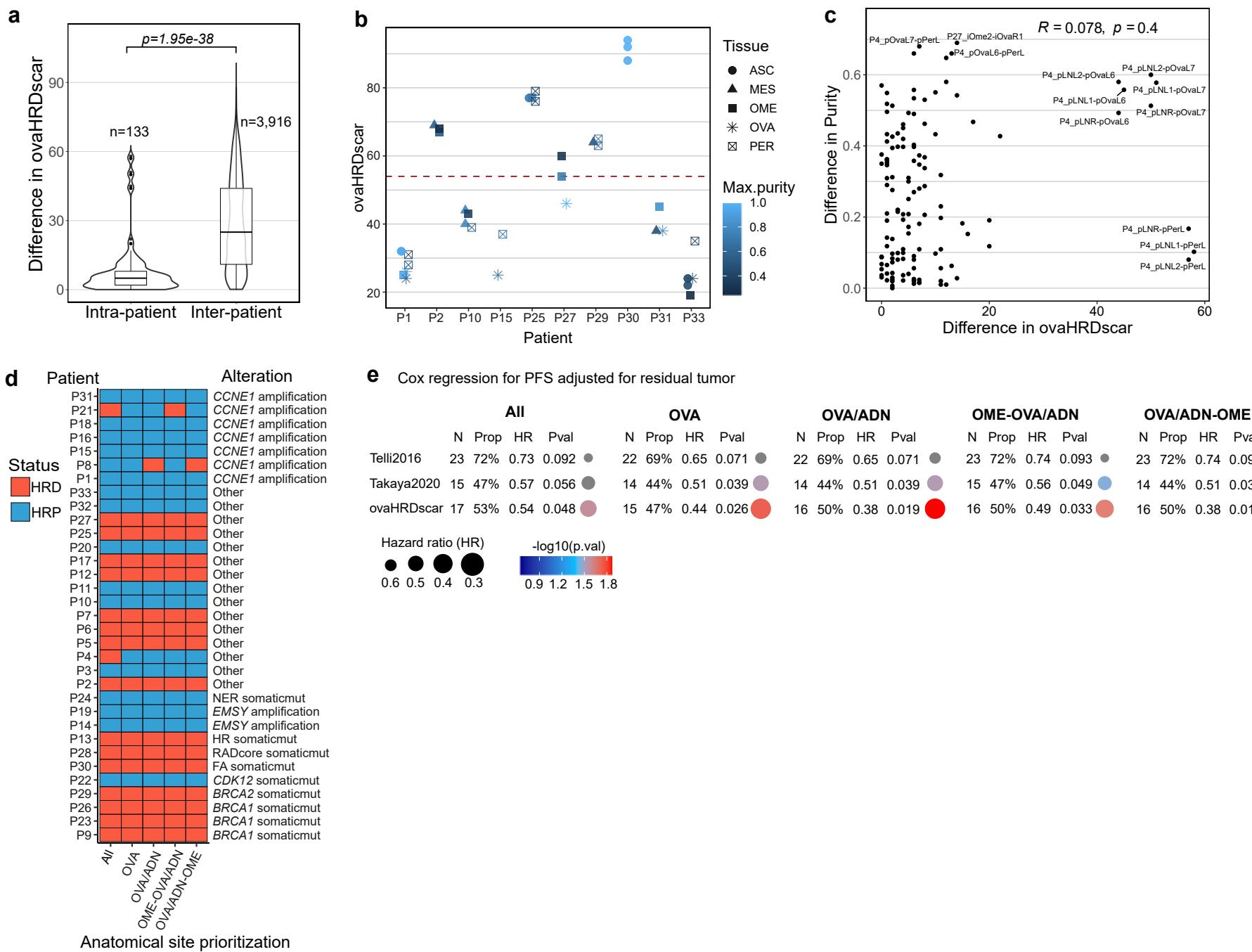
Supplementary Figure 2



Supplementary Figure 3



Supplementary Figure 4



Supplementary Figure 5

