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ABSTRACT

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic
instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic
allelic imbalances (Als) has been limited by methods focused on BRCA1/2 mutations and
using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of Als in
high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to
generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly
predicted clinical outcomes in three independent patient cohorts with higher precision than
previous methods. Characterization of 98 spatiotemporally distinct metastatic samples
revealed low intra-patient variation and indicated the primary tumor as the preferred site for
clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes
in triple-negative breast cancer (thbcHRDscar), validated in two independent patient cohorts.
In conclusion, our tumor-specific, systematic approach has the potential to improve patient

selection for HR-targeted therapies.

BACKGROUND

As a part of the Fanconi Anemia (FA) pathway, homologous recombination (HR) is an
evolutionarily conserved, tightly regulated mechanism for high-fidelity repair of DNA double-
strand breaks (DSBs)!. Deficiency in homologous recombination (HRD) has profound
consequences for replicating cells driving genomic instability and oncogenic transformation.
In cancer, HRD results in a fundamental vulnerability, and tumors with HRD are markedly
sensitive to DSB-inducing agents such as platinum-based chemotherapy and Poly-ADP

Ribose Polymerase (PARP) inhibitors?.
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High-grade serous ovarian cancer (HGSC), the most common and most lethal subtype of
ovarian cancers?, is characterized by profound genomic instability. Around half of the HGSC
cases harbor genomic alterations leading to HRD#, and these patients have been shown to
benefit from treatment with PARP inhibitors >¢. The HRD test previously used in PARP inhibitor
clinical trials (MyriadMyChoise®CDx)*>®¢ works by quantifying specific allelic imbalances (Als):
1) Large scale transitions (LSTs)’, 2) Loss of heterozygosity (LOH)® and 3) Telomeric allelic
imbalances (TAls)®. However, the decision criteria for these HRD-specific Als (HRD-Als) and
the HRD status classification were originally designed using a mixture of breast and ovarian
cancer samples’891°, Further, other algorithms for HRD detection have primarily focused on
BRCA1/2 mutation prediction'*12, As the genomic drivers and mutational processes differ
across the cancer types, the details of the genomic instability occurring due to HRD in HGSC

remain unclear.

Herein, via pan-cancer analysis, we show that HGSC harbors unique patterns of Als, which
are also distinct from triple-negative breast cancers (TNBC). Using a systematic approach
based on machine learning and statistics on The Cancer Genome Atlas ovarian cancer (OVA-
TCGA) multi-omics dataset, we optimized the criteria for HRD-Als on HGSC. We implemented
these criteria as an open-source algorithm (ovaHRDscar) to reliably define HRD status beyond
the prediction of BRCA1/2 mutations. We show that ovaHRDscar improves the prediction of
clinical outcomes in three independent clinical datasets compared to previous algorithms.
Further, we show that our approach improves the prediction of clinical outcomes also in TNBC
(tnbcHRDscar). Thus, our machine learning-aided disease-specific approach (HRDscar)
shows promise as a biomarker that can improve outcome prediction and patient selection for

HR-targeted therapies in cancer.

RESULTS
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87 Systematic pan-cancer characterization reveals unique features of allelic imbalances
88 in HGSC
89 To elucidate the potential differences in the patterns of Als across human cancers, we first
90 characterized the quantity and the length distributions of Als in the 18 most common cancer
91 types from the TCGA (Fig. 1a). Interestingly, HGSC had the highest number of Als (Fig. 1b)
92 and the lowest median length (Fig. 1c). Concordantly, HGSC showed the highest levels of
93 LOH events (Sup. Fig. 1a) with one of the lowest median length (Sup. Fig. 1b).
94
95  We next performed hierarchical clustering using the median length and number of Als per
96 sample and the skewness of the length distribution of the Als for each cancer type. This
97 analysis shows two main clusters: the first cluster consisting of six cancer types (bladder
98 urothelial carcinoma (BLCA), stomach adenocarcinoma (STAD), lung squamous cell
99 carcinoma (LUSC), lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), and
100 HGSC) with a higher amount but a lower median length of Als (upper cluster: Fig. 1d). The
101  second cluster consisting of the remaining 12 cancer types (lower cluster: Fig. 1d). The same
102  main clusters were observed when using only LOH events (Sup. Fig. 1c).
103
104 As TNBC and HGSC are enriched in BRCA1/2 genetic mutations (BRCAmut)*3, both cancers
105 were used to define the HRD-algorithm in the MyriadMyChoise®CDx assay by Telli et al.°.
106  We next compared the differences in Als between these two cancer types. We observed a
107  significant difference in the abundance of Als between HGSC and TNBC, specifically among
108 the BRCAL/2-wild-type (BRCAwt) tumors (U test, p = 0.002, Fig. 1e to g). Interestingly, HGSC
109 had lower levels of LOH events than TNBC (U test, p = 0.002, Sup. Fig. 1d), also among the
110 BRCAmut samples (U test, p = 0.049, Sup. Fig. 1e) but not in the BRCAwt samples (Sup.
111  Fig. 1f). Overall, HGSC showed a higher number of Als of different lengths, while TNBC had
112  a higher number of LOH events (Fig. 1h). These results highlight the distinct characteristics
113  of Al events in HGSC, especially among the BRCAwt tumors, compared to other cancer types.

114
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115 Machine learning-aided detection of HRD-specific Als improves the detection of HRD in
116 HGSC

117  Although a wide range of molecular alterations is known to cause HRD, previous studies have
118 focused on BRCA1/2 mutations to detect HRD-specific Als (HRD-AIs), potentially failing to
119 detect non-BRCA associated HRD alterations while losing specificity to classify the HR-
120 proficient (HRP) samples accurately. To this end, we aimed to identify Als overrepresented in
121  samples carrying a wider range of genetic alterations (mutations, gene deletions, promoter
122  hypermethylation) associated with HRD in HGSC (Fig. 2a). To generate accurate selection
123  criteria for HRD-Als, we utilized SNP-arrays data from HGSC samples from TCGA (OVA-
124  TCGA) and its associated genomic and DNA methylation data. Using prior knowledge and
125  multi-omics data, we annotated 115 HRD samples harboring a somatic or germline mutation,
126  gene deletion, or promoter hypermethylation in the BRCA1/2 or RAD51 paralog genes, and
127 29 HRP samples that did not harbor any of the alterations used to select the HRD samples,
128 nor deletions in any other HR-related gene (Fig. 2a). A detailed description of the genomic
129  alterations in the samples is reported in Sup. Table 1. Overall, the HRD samples had a higher
130 number of all Als than the HRP samples (U test, p=0.0028, Sup. Fig. 2a). Importantly, HRD
131 samples had a notably higher proportion of Als of a specific length that spanned from 1Mb to
132  30Mbs. In contrast, the HRP samples contained a higher proportion of Als and LOH events
133  smaller than 1Mb (Sup. Figs. 2b, 2c).

134

135 We next applied statistics and machine learning* to identify the specific length and selection
136  criteria of LOH, LST, and TAI events overrepresented in the HRD samples (Fig. 2b). We then
137  compared the accuracies of the herein optimized criteria for HRD to those used in Telli et al.°
138 (hereafter called Telli2016). Notably, for LSTs, our approach increased the accuracy of
139 classification of the HRD/HRP samples from 86% to 90% when using the new criteria (Fig.
140  2c). For LOH events, the accuracy increased from 85% to 88% when using the new criteria
141 (Sup. Fig. 2d). We also assessed the HRD classification accuracy of LSTs consisting of three

142  consecutive Als. However, this produced a lower accuracy (Sup. Fig. 2e). The largest
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143  improvement in accuracy occurred after including all TAls larger than 1Mb, and the accuracy
144  for HRD-specific TAI events increased from 67% to 78% when compared to the Telli2016
145  criteria (Sup. Fig. 2f).

146

147  Via our systematic approach, we observed the following Als to be most characteristic of HRD
148 in HGSC: 1) LOH > 15Mb and <50Mb, 2) for LSTs Al > 12Mb, with a distance between them
149 <1Mb, and 3) TAI >1Mb. The sum of these events is hereafter called the ovaHRDscar levels.
150 Then, using bootstrapping subsampling of the pre-annotated HRD and HRP samples, we
151 evaluated the optimal cut-off value for ovaHRDscar to define the final HR-status as HRD or
152 HRP. The value with the highest balanced accuracy (BA) was 54 (Fig. 2d), meaning that
153 values higher or equal than 54 correspond to HRD, with higher accuracy for HR-status
154  classification (BA=0.89, right panel Fig. 2e) as compared to the Telli2016 algorithm (BA=0.76,
155 left panel Fig. 2e). In addition, using a HRD/HRP cut-off value of 54 in the Telli2016 algorithm
156  (hereafter Telli2016-54), the BA remained below that of ovaHRDscar (0.86 vs 0.89, Sup. Fig.
157  29).

158

159 ovaHRDscar levels correlate with genomic features of HRD and show concordance in
160 WGS data

161 Toinvestigate the relationships of ovaHRDscar with other known genomic features associated
162  with HRD, we annotated the OVA-TCGA samples according to mutations, gene deletions, and
163  promoter hypermethylation patterns previously reported to be associated with HRD* (Fig. 2f).
164  On average, samples with somatic mutations in BRCA1, BRCA2, PTEN, or somatic mutations
165 or gene deletions in any gene belonging to the Fanconi Anemia (FA) or HR pathways showed
166  high ovaHRDscar levels. Likewise, samples that contained hypermethylation in the promoter
167 regions of BRCA1 or RAD51C genes or germline mutations in BRCAL1 or BRCA2 had, on
168 average, high ovaHRDscar levels. As expected, samples harboring an amplification in CCNE1

169  (Sup. Fig. 2h) had significantly lower levels of ovaHRDscar. However, samples with EMSY
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170 amplification and CDK12 somatic mutation did not result in higher ovaHRDscar levels than
171  CCNE1 amplified samples (Sup. Fig. 2h).

172

173 To assess the concordance of ovaHRDscar between SNP array and whole genome
174  sequencing (WGS) data, we next quantified the ovaHRDscar levels in HGSC samples from
175 the Pan-Cancer Analysis of Whole Genomes project (PCAWG)*®. The ovaHRDscar levels
176  were highly concordant between WGS and SNP-arrays (Lin's concordance correlation
177  coefficient, ccc = 0.90; Sup. Fig. 2i) in 41 OVA-TCGA samples that were also included in the
178 PCAWG project, consistent with a previous report in breast cancer samples'®. Next, we tested
179 the correlation of ovaHRDscar with the single base substitution signature 3 (SBS3), which has
180 been associated with HRD'. We found that the ovaHRDscar levels detected in WGS
181  positively correlated with the proportion of SBS3 in WGS (Pearson, r=0.38, p= 3.7e-05; Fig.
182 2g). The SBS3 proportions also correlated with the number of HRD-Als using the Telli2016
183  algorithm in the PCAWG cohort (Sup. Fig. 2j). We next compared the performance of
184 ovaHRDscar to that of SBS3 inferred from whole exome sequencing (WES) data with a
185 likelihood-based approach SigMA?8, in 254 samples from the OVA-TCGA. The ovaHRDscar
186  algorithm detected 57% of samples as HRD, and the SigMA tool classified 56% of samples
187 as SBS3+; in contrast, the Telli2016 algorithm identified 83% of the samples as HRD (Fig.
188 2h). HRD detection with ovaHRDscar showed a higher agreement with SigMA (agreement
189  78.3% and Cohen's kappa = 0.56) as compared to the Telli2016 algorithm (agreement 68.5%
190 and Cohen's kappa = 0.32; Fig. 2h) or to the Telli2016-54 (agreement 77.2% and Cohen's
191  kappa = 0.53; Sup. Fig. 2Kk).

192

193 ovaHRDscar improves the prediction of PFS and OS compared to previous algorithms
194  Next, we measured the association of HR-status classification by ovaHRDscar to progression-
195 free survival (PFS, see methods) in advanced HGSC patients treated with platinum-based
196 chemotherapy in the TCGA and an independent prospective validation dataset (HERCULES).

197 We compared the performance of the ovaHRDscar to BRCA1/2 deficiency status to the
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198 Telli2016 algorithm. The Telli2016 algorithm uses a cut-off value of 63, as proposed by Takaya
199 et al.’®. As BRCA1/2 mutations can affect patient outcomes, we assessed the performances
200 of ovaHRDscar in the TCGA dataset after excluding the samples used when defining
201 ovaHRDscar, even though clinical outcomes were not utilized for designing the criteria of
202 ovaHRDscar. BRCAL1/2 mutation or deletion status (BRCAmut/del) was not significantly
203 associated with PFS (Log-rank p=0.72; Fig. 3a). For OVA-TCGA (Fig. 3a to 3c), we found
204  that ovaHRDscar positivity was associated with prolonged PFS (Log-rank p=4.4e-04; Fig.
205 3c). Consistently, ovaHRDscar positive patients had a longer PFS in the independent
206 HERCULES validation cohort (Log-rank p=0.001; Sup. Fig. 3a to 3c), while the Telli2016
207  algorithm did not reach statistical significance in predicting PFS (Log-rank p=0.11; Sup. Fig.
208  3b).

209

210 Residual tumor after primary debulking surgery has been shown to be a strong independent
211  prognostic factor in HGSC?. We next used residual tumor status as a covariable in Cox
212  proportional hazard models to assess the performance of HRD algorithms in predicting the
213  PFS. We found that ovaHRDscar positivity was significantly associated with prolonged PFS in
214  OVA-TCGA also when adjusting for residual tumor (Wald test p=2.2e-07, Fig. 3d), similar to
215 the Telli2016 (Wald test p=2.7e-06), Telli2016-54 (Wald test p=6.4e—-07) and the Takaya
216  algorithms (Wald test p=1.2e-06). The same was true also after excluding the annotated
217 HRD/HRP samples used in the optimization (middle panel, Fig. 3d) and when not adjusting
218  for the residual tumor (Sup. Fig. 3d). Importantly, ovaHRDscar significantly predicted PFS in
219 the external HERCULES validation cohort (HR: 0.47 (CI:0.27-0.85), Wald test p=0.026). To
220  compare how well the three algorithms (ovaHRDscar, Telli2016, Telli2016-54) can predict the
221 differential outcomes of patients, we next calculated the differences in PFS between the HRD
222  and HRP using a bootstrapping approach. Consistently, we found that the difference in PFS
223  was significantly greater using the ovaHRDscar than using the Telli2016 algorithm in the
224 independent HERCULES validation cohort (Fig. 3e). Moreover, ovaHRDscar was superior to

225  the Telli2016-54 algorithm in the OVA-TCGA (Fig. 3e). In further validation, we inspected the


https://doi.org/10.1101/2021.08.19.456809
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.19.456809; this version posted October 29, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

226  performance of the HRD-classification algorithms in an additional independent prospective
227  cohort (TERVA) with tumor-only SNP array profiling (see methods). Importantly, ovaHRDscar
228  positivity significantly predicted longer PFS using Log-rank test and Cox proportional hazard
229 model in the TERVA external validation dataset (Sup. Fig. 3e to 39).

230

231  We next explored the association of ovaHRDscar with overall survival (OS) in HGSC patients
232  inthe OVA-TCGA cohort and in an independent AU-OVA cohort in PCAWG (Fig. 3f to h, Sup.
233  Fig. 3h to j). The clinical data in the prospective cohorts (HERCULES, TERVA) were not
234  mature enough for OS evaluation. OvaHRDscar significantly predicted OS in the OVA-TCGA
235 (Fig. 3h). In Cox regression analysis adjusted for age at diagnosis, ovaHRDscar significantly
236  predicted OS, while the other algorithms did not reach statistical significance in the
237 independent PCAWG validation dataset (Fig. 3i). These results were concordant also using a
238 non-adjusted Cox regression analysis (Sup. Fig. 3k). Importantly, the median OS in patients
239  with HRD tumors as compared to HRP was significantly longer when using the ovaHRDscar
240 than using the Telli2016 or the Telli2016-54 algorithms in the independent PCAWG cohort
241  when using a bootstrapping approach (Fig. 3j). Additionally, we compared the performance of
242  ovaHRDscar to the CHORD algorithm that uses structural variation and a random forest
243  implementation to classify HR-status'!. In the PCAWG cohort, ovaHRDscar significantly
244  predicted OS using the Log-rank test (Sup. Fig. 3I, 3m) and Cox proportional hazard models
245  (Sup. Fig. 3n), while the CHORD algorithm did not show statistical significance.

246

247  Finally, to further investigate the impact of the ovaHRDscar cut-off value in predicting PFS and
248  OS, we plotted the differences of median PFS and OS in HRD vs HRP when using different
249  cut-off values in two independent validation test-sets (OVA-TCGA excluding samples used in
250 the optimization and HERCULES) using bootstrapping (Fig. 3k, 3I). We observed that cut-off
251  values lower than 54 led to significantly smaller differences (lower fold-changes) in PFS in the
252 OVA-TCGA, and in the OVA-TCGA test-set, while higher values led to smaller differences in

253  the HERCULES cohort (Fig. 3k). Further, values lower than 54 lead to smaller differences in
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254  OSinthe OVA-TCGA and OVA-TCGA test set, while higher values led to significantly smaller
255  fold-change differences in the HERCULES cohort (Fig. 3I). Thus, the exploration of clinical
256  outcomes in the multiple independent validation datasets supports HRD/HRP cut-off value of
257 54 as optimal for ovaHRDscar.

258

259 Low intra-patient variation of ovaHRDscar in spatiotemporal tumor profiling

260 HGSC is characterized by high inter-tumor heterogeneity, and we next explored whether the
261  anatomical site or timing of sample retrieval affects HR-status classification in HGSC. For this,
262  we investigated the concordance of the ovaHRDscar levels in the HERCULES prospective
263  cohort, which included 89 tumor samples from 33 HGSC collected from different anatomical
264  sites and different treatment phases (treatment-naive, after neoadjuvant chemotherapy, or at
265 relapse) (Fig. 4a). Consistent with the TCGA dataset, ovaHRDscar levels corresponded with
266 the known genomic predictors of HRD (Fig. 4b). Importantly, we found that the levels were
267 similar in paired, anatomically matched samples obtained before and after neoadjuvant
268 chemotherapy, and also in primary (treatment-naive) versus relapsed tumors (Fig. 4c).
269 Samples collected from different anatomical sites showed intra-patient variation (Fig. 4a),
270  however it was lower than the observed inter-patient variation (U test p=1.95e-38; Sup. Fig.
271  4a). The intra-patient variability was not explained by differences in tumor purity (minimum
272  30%, see methods) (Sup. Fig. 4b and Sup. Fig. 4c). To determine the optimal anatomical
273  sampling site, we next assessed HR-status per patient in treatment-naive primary samples
274  and compared ovaHRDscar calculated from different anatomical locations. Overall, the level
275 of agreement for the HR-status classification ranged from 94% and 97% between the
276  prioritization of different anatomical sites (Sup. Fig. 4d). However, ovaHRDscar status
277  calculated primarily from ovarian or adnexal tumors was the strongest predictor for PFS (Fig.
278  4d, Sup. Fig. 4e). Consistently, prioritizing ovarian tumors accurately classified all tumors
279  harboring CCNE1 amplification as HRP in the prospective HERCULES cohort (Sup. Fig. 4d).

280

10
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281 Machine learning-aided detection of HRD-Als improves the prediction of clinical
282 outcomesin TNBC

283  Finally, we tested whether our systematic detection of HRD-Als could improve previous
284  algorithms when predicting clinical outcomes in TNBC. For this, using multi-omics data in
285 TCGA and the same classification approach (Fig. 2a), we annotated 47 TNBC as HRD and
286 23 as HRP (Fig. 5a). Detection of HRD-LOH increased the accuracy of classification of HR-
287  status from 80% (Telli2016 algorithm) to 93% (Fig. 5b). Likewise for LSTs, the accuracy
288 increased from 93% to 98% (Sup. Fig. 5a) and for TAls from 86% to 92% (Sup. Fig. 5b).
289  Similarly as for the HGSC, instead of selecting TAls of a particular length, we selected TAls
290 longer than 1Mb as this resulted in the largest increase in significance. The following HRD-AI
291  criteria were observed as the most characteristic for TNBC: 1) LOH >10Mb and <30Mb, 2) for
292 LSTs Al >5Mb with a distance between them <2Mb, and 3) TAl >1Mb. Then, using a
293  subsampling approach, we identified that cut-off values for the sum of HRD-Als (hereafter
294  called tnbcHRDscar) from 47 to 53 produced the highest classification accuracy of the HRD
295 and HRP samples (Fig. 5c), with the cut-off value of 53 as the closest value at the intersection
296 of the HRP and HRP density distributions (Fig. 5d). Using the above criteria we observed that
297 tnbcHRDscar increased the accuracy of classifying the HRD and HRP samples from 0.92 to
298  0.94 (Fig. 5d).

299

300 To test whether HR-status classification by tnbcHRDscar can predict clinical outcomes in
301 TNBC, we next associated tnbcHRDscar with the PFS in the TCGA cohort and with the distant
302 relapse-free interval (DRFI) in an independent TNBC SNP-array dataset?'. Patients with the
303 tnbcHRDscar-positive tumors had a significantly longer PFS than those with the tnbcHRDscar-
304  negative tumors (Log-rank p=0.014), while BRCAmut/del status or the Telli2016 algorithm did
305 not significantly associate with PFS (Fig. 5e to 5g). Only tnbcHRDscar showed a statistically
306  significant association with the DRFI (Log-rank p=0.0022) in the independent validation
307 dataset (Fig. 5h to 5j). Further, thbcHRDscar classification in TCGA samples was also

308 associated with OS (Log-rank p=0.039), similarly to the Telli2016 algorithm (Log-rank p=0.039;
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309 Sup. Fig. 5c to 5e). We next applied Cox regression analysis to validate the association of
310 tnbcHRDscar with PFS and OS. In the TCGA cohort, tnbcHRDscar significantly predicted PFS
311 (HR: 0.34, p=0.018, Sup. Fig. 5f) but the Telli2016 algorithm did not, while both similarly
312  predicted OS (Sup. Fig. 5g). However, tnbcHRDscar but not the Telli2016 algorithm
313 significantly predicted DRFI in the validation dataset (HR: 0.29, p=0.004, Sup. Fig. 5h).
314  Additionally, we compared the performance of tnbcHRDscar with HRDetect!?, an algorithm
315 trained using WGS, to predict DRFI outcomes in the validation dataset. Interestingly,
316 tnbcHRDscar improved the prediction of DRFI compared to the HRDetect (Sup. Fig. 5h to
317  5j), regardless of the cut-off values selected for the HRDetect (Sup. Fig. 5k).

318

319 DISCUSSION

320 HRD tumors exhibit a distinct clinical phenotype with superior responses to platinum-based
321  chemotherapy and sensitivity to PARP inhibitors. However, the accurate detection of HRD via
322 somatic Als has been confounded by the lack of systematic approaches and analyses
323  performed in admixtures of tumor types with distinct genomic drivers. Herein, we established
324  the HRDscar, a systematic approach for HRD detection to improve patient selection and
325 clinical outcomes in cancer.

326

327  Several genomic approaches have been utilized to detect HRD, including 1) identification of
328  single genetic mutations leading to predicted HRD?, 2) profiles of DNA repair deficiency gene
329  expression?*24, 3) specific mutational patterns accumulated due to HRD®°?5 or 4) structural
330 genomic imbalances’?. These genomic features have been implemented alone or in
331 combinations in the search for optimal HRD detection, which has profound therapeutic
332 implications?’. It is now becoming accepted that benefits from the HR-directed therapies such
333  as PARP inhibitors extend beyond the identification of HRD via individual genetic mutations?2.
334 This is due to the fact that genes such as BRCA1/2 and RAD51 paralogs can be altered

335 beyond mutations via, e.g., hypermethylation or gene deletions®?°, and not all genomic events
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336 leading to HRD have yet been defined®. Allelic imbalances are indicative of the genetic
337 consequences of HRD and, although not dynamically reflective of tumors' functional HRD
338  status, have shown promise as a biomarker predictive of the magnitude of benefit from PARP
339 inhibitors, especially in the front-line setting®-*2. The HRD-algorithm used in ovarian cancer
340 clinical trials (Telli2016) was, however, generated using breast cancer samples or a mixture
341  of breast cancer and ovarian cancer samples using BRCA1/2 mutation as the sole determinant
342 of HRD, and BRCAwt status as HRP®%10, Importantly, the European Society of Medical
343  Oncology also indicated an urgent need to develop a more accurate HRD algorithm in HGSC
344  to especially improve the identification of the HRP tumors?8. Via a pan-cancer characterization
345  of Als, we discovered remarkable differences in the patterns of Als of HGSC as compared to
346  other cancer types, including TNBC, especially among the BRCAwt tumors. This prompted us
347  to systematically identify the genomic footprints of HRD-Als specific for HGSC using carefully
348 annotated multi-omics data from TCGA and an iterative machine learning and statistical
349  approach.

350

351 ovaHRDscar levels were concordant with tumor genetic alterations associated with HRD in
352 the TCGA dataset and an external validation cohort (HERCULES). We found significantly
353 lower levels of ovaHRDscar in tumors with CCNE1 amplification, which was also previously
354  proposed to be mutually exclusive with HRD and associated with poor clinical outcomes®3. In
355 line with a previous report!®, tumors with CDK12 mutation showed overall low levels of
356 ovaHRDscar and thus could be considered HRP. In contrast, tumors with somatic mutations
357 in PTEN, a gene associated with DNA repair®*%, showed high ovaHRDscar levels. However,
358 the vulnerability of PTEN deficient cancers to PARP inhibitors remains to be verified in the
359 clinical setting?®3. Further, ovaHRDscar showed a higher concordance with SBS3 than the
360 Telli2016 algorithm. Most importantly, ovaHRDscar can be applied to detect HRD in HGSC
361 samples using WGS or SNP-arrays, making it an attractive biomarker for the clinical setting.

362
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363  Adichotomous thresholding of a predictive HRD biomarker is needed for therapeutic decision-
364  making. In the Telli2016 algorithm, the cut-off for the total number of events was derived from
365 a mixture of breast and ovarian cancer samples'®. More recently, Takaya et al. set out to
366 improve the HRD test by adjusting the cut-off value in ovarian cancer!®. However, only
367 BRCAmut status was used for separating HRD from HRP samples and the same genomic
368  features of HRD-Als were used as in Telli et al. In ovaHRDscar, after the development of
369  accurate definitions of both the criteria of HRD-Als and the cut-off, we identified more samples
370 as being HRP, and separated HRD from HRP with improved accuracy over previous
371  algorithms. When testing the Telli2016 algorithm using the ovaHRDscar cut-off value of 54,
372  the accuracy was still below that of ovaHRDscar, indicating that both the accurate identification
373  of the HRD-AIls and the selection of the optimal cut-off are needed to improve HRD detection
374 in HGSC. In agreement, in most survival analyses, especially in the independent validation
375  cohorts, ovaHRDscar outperformed the previous algorithms in predicting clinical outcomes.
376

377 HRD tumors are known to have superior responses to platinum-based chemotherapy and
378  prolonged overall survival®’. Consistently, ovaHRDscar improved the prediction of PFS and
379  OS for platinum-based chemotherapy in the OVA-TCGA, also after excluding patients used
380 when defining the criteria for ovaHRDscar. ovaHRDscar significantly predicted PFS and OS
381 also among only the BRCAwt tumors. Importantly, ovaHRDscar improved the prediction of
382 clinical outcomes in two independent patient cohorts and in multivariable models after
383  adjusting for clinical covariables, indicating that ovaHRDscar reliably captures the phenotypic
384  clinical behavior of HRD in HGSC. Further, using a disease-specific, systematic approach in
385 the classification of HR-status, we could improve the prediction of the clinical outcomes also
386 in TNBC, and tnbcHRDscar significantly predicted disease-free survival in the TCGA and in
387 an independent dataset. However, none of the clinical cohorts included patients treated
388  prospectively with, e.g., PARP inhibitors; therefore, prospective validation in larger patient
389  series is warranted.

390
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391 Finally, as HGSC is characterized by a high intra-tumor heterogeneity, we aimed at assessing
392  whether the anatomical site of tumor sampling or the exposure to chemotherapy affects HRD
393  detection. Our analysis of 98 samples collected from different anatomical sites and treatment
394  phases indicated that ovaHRDscar levels remain similar within each patient, including
395 anatomically site-matched samples collected before and after neoadjuvant chemotherapy.
396 ovaHRDscar can thus be reliably assessed during routine clinical practice and also after
397 neoadjuvant chemotherapy, given that the tumor purity remains higher than 30%. Interestingly,
398 ovaHRDscar levels were also similar between treatment-naive and relapsed tumors, reflecting
399 the nature of HRD-Als as a historical consequence rather than a dynamic read-out of
400 functional HRD. Analysis of different anatomical sites revealed that the overall inter-patient
401  variation was higher than the intra-patient variation. However, in four out of 21 (19%) patients
402  with samples from multiple anatomical sites, the HRD category depended on the anatomical
403  site of sampling. The survival analyses indicated that ovarian or adnexal sites, followed by
404  omentum, could be the preferred sites for HRD testing, warranting future validation in larger
405  cohorts.

406

407 In conclusion, ovaHRDscar shows promise as a precise, clinically feasible assay for both
408 outcome prediction and selection of patients for HR-directed therapies. With the fully
409 documented, publicly available algorithms and generation pipeline, ovaHRDscar can be
410 applied to other tumor types and implemented clinically for optimal patient selection to improve

411  outcomes for patients with cancer.

412  MATERIALS AND METHODS

413 Data set collection and classification
414  For pan-cancer samples, allele-specific copy number segments were obtained from the

415  Genomics Data Commons (GDC) portal (https://portal.gdc.cancer.gov/). The list of TNBC

416 samples was adopted from Lehmann et al.*®. For TNBC, samples were considered with

417 BRCAmut if reported by Knijnenburg et al.* to contain a gene deletion, gene mutation, or gene
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418 silencing of BRCA1 or BRCA2; while BRCAwt were considered those with no reported
419  alterations.

420

421  For OVA-TCGA analysis, allele-specific copy number segments, DNA methylation, gene-level
422  copy number profiles (including gene deletions), and clinical information data were obtained
423  from the GDC data portal. Genes were considered with a "strong signal of deletion" if reported
424  as such (labeled by -2) by Taylor et al.*°. Gene promoter hypermethylation was considered
425  when the probes up to 1500bp downstream of the transcription start site had an average beta
426  value 20.75. The catalog of mc3 somatic mutations was obtained from the PanCanAtlas-GDC

427  data portal (https://gdc.cancer.gov/about-data/publications/pancanatlas). Somatic mutations

428  were classified according to the recommendations of the American College of Medical
429  Genetics and Genomics* using the web-tool VarSome*2. Only pathogenic somatic mutations
430 were considered in the analysis. For germline mutations, we selected those labeled as
431 pathogenic and prioritized by Huang et al. 2018*. Genes were considered part of the HR
432  pathway or other associated pathways according to the Kyoto Encyclopedia of Genes and
433 Genomes database*. Complementary clinical information was obtained from the
434  PanCanAtlas-GDC data portal. For PCAWG: allele-specific copy number segments,
435 mutational drivers, and clinical information were obtained from the International Cancer

436  Genome Consortium data portal (https://dcc.icgc.org/pcawq).

437

438 Pan-cancer characterization of Als

439  We used the allele-specific copy number segments from the Genomics Data Commons.
440  Segments that did not span a whole chromosome and with a total copy number value different
441  from two were selected as Als. Als shorter than 3Mb and longer than 50Mb were ignored. We
442  quantified the number of Als per sample and the median length of the Als. The skewness of
443  the distribution of the length Als in different types of cancers was performed using the package
444  DescTools.

445
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446  Selection of criteria for HRD-Als

447  First, we annotated the OVA-TCGA samples as HRD and HRP according to the following. For
448  HRD samples, samples harboring somatic or germline mutations, promoter hypermethylation,
449  or strong signal of deletion of the genes BRCAL, BRCA2, and RAD51 paralogs (Fig. 2a); for
450 HRP sample annotation, we selected those with none of the HRD selection criteria, plus
451  available data for methylation, gene deletion, somatic mutations and no deletion of any HR
452  gene. The rest of the samples were annotated as "undefined" (Fig. 2a). The HRD and HRP
453  annotation was used as "ground truth" in posterior accuracy assessment analysis. The HRP
454  sample TCGA-13-1511 was annotated as "undefined" as an outlier in the number of total Als.
455  Then, for the annotated HRD/HRP samples, we quantified the HRD-Als (LOH, LST, TAl)
456 according to Marquard et al.** under different criteria. For LOH, we used length criteria
457  (minimum length: lnin, maximum length: Imax). Exhaustively for each pair of values, Inin and lmax,
458  we quantified the number of LOH per sample. We selected the pair of values that produced
459 the highest classification power (see below) according to the HRD and HRP annotations. The
460 quantification of LST events, defined by the parameters s (minimum Al length) and m
461 (maximum distance between the Al events that comprise an LST event), was optimized
462  similarly. Finally, we quantified TAI events if they were larger than k, where the length k was
463  evaluated following the same approach. The classification power was evaluated by combining
464  two approaches: 1) differential abundance of selected Als in the annotated HRD vs HRP using
465 one-tailed Mann-Whitney U test; 2) classification performance by decision trees (R package
466  'rpart) taking the abundance of the selected Als as split-point. For the decision trees approach,
467  samples above the split-point were tentatively considered as HRD and below - HRP, then true
468  positive rate (TPR) and true negative rate (TNR) was computed when compared against the
469  ground truth annotations (Fig. 2b). For each type of HRD-AI, we selected the set of parameters

470  ({lmin, Imax},{s,m}, k) with the highest product of U test p-value (p) and balance accuracy (BA =

TPR+TNR
2

471 ), the product was inferred with the formula: —1 * log 10(p) * BA. The selected set of

472  parameters was incorporated in ovaHRDscar. The sum of HRD-AIs under the selected criteria
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473  was named the ovaHRDscar levels or values. A cut-off value to define the HR-status (samples
474  with values above the cut-off are considered HRD and below - HRP) for ovaHRDscar and
475 tnbcHRDscar levels was determined by exploring different cut-off values. For each cut-off
476  value, we resampled with replacement 29 of the annotated HRD and 29 of the HRP cases
477 10,000 times; for each pseudo replicate, we calculated the balanced accuracy by comparing
478  the HR-status using the cut-off value versus the ground truth annotations. Finally, we selected
479  the cut-off value that produced the highest median balanced accuracy.

480

481  Quantification of HRD-Als

482  The quantification of HRD-AIs by the Telli2016 algorithm, the Takaya2020, the ovaHRDscar,
483 and the tnbcHRDScar was performed using an in-house R-package (see code availability)
484  adapted from the package scarHRD?8. This package allows for the quantification of LOH, LSTs
485 and TAls under different selection criteria. Allelic imbalances smaller than 50bp were
486  smoothed, as previously suggested by Popova et al.”. The selection criteria of HRD-Als for
487  Telli2016: LOH Imin =15Mb, Imax = 50Mb; LSTs s=12Mb, m=1Mb, TAIl k=1Mb, samples with
488 HRD-AIs = 42 were considered HRD otherwise - HRP. For the Takaya2020 algorithm, the
489  same HRD-Als selection criteria as for Telli2016 were used: samples with HRD-Als = 63 were
490 considered HRD, and otherwise - HRP. For ovaHRDscar, the HRD-AIs selection criteria is:
491  LOH Imin=15Mb, Inax=50Mb; LSTs s=12Mb, m=1Mb, TAIl k=1Mb; samples with HRD-Als = 54
492  were considered HRD, and otherwise - HRP.

493

494  Survival analysis

495  Survival plots, Log-rank and Cox regression models were performed in R using the packages
496  “"survminer" and "survival'. For OVA-TCGA, only patients disease treated with cisplatin or
497  carboplatin were selected. For PCAWG, data from all patients were used (no treatment
498 information available). Only data from primary samples (treatment-naive) were used. The
499 BRCAmut/del status includes pathogenic somatic mutations, germline mutations, and "strong

500 signal of deletion"” in the genes BRCAL1 or BRCA2. Residual tumor after surgery was
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501 categorized as present or absent. For the indicated Cox regressions, residual tumor status or
502 patient age at diagnosis was used as a covariable. Progression-free survival (PFS) and overall
503 survival (OS) were defined as in Liu et al. 2018*. The CHORD signature HR-status
504  classification for PCAWG samples was adopted from Nguyen et al. 2020*. In the TNBC cohort
505 from TCGA, only patients with advanced Stage IlI-IV were selected. For survival analysis using
506 HRDetect stratification, positive status was labeled for patients with an HRDetect value 2 0.7,
507 and HRDetect negative for those with a value < 0.2, patients with intermediate values were
508 ignored. The mean differences of PFS and OS between HRD and HRP patients according to
509 different criteria were calculated by bootstrapping the patients 1000 times; for each
510 bootstrapping replicate was calculated the fold-change of median PFS or OS as median
511  survival (PFS or OS) time in HRD patients divided by median survival (PFS or OS) time in
512 HRP patients.

513

514  Prospective HERCULES and TERVA data analysis

515 The tumor samples were prospectively collected in the HERCULES (http://www.project-
516  hercules.eu) and TERVA (https://www.healthcampusturku.fi/innovation-new/terva-project/)
517  projects. The Ethics Committee of the Hospital District of Southwest Finland approved both
518 studies (Dnro: 145 /1801/2015). All patients gave their written informed consent to take part
519 inthe study. For HERCULES, paired fresh tumor and normal blood samples were sequenced
520 using lllumina-HiSeq X Ten WGS. Raw reads were trimmed and filtered with Trimmomatic“®,
521 followed by duplicate marking with Picard Tools (https://broadinstitute.github.io/picard/).
522  Alignment to the human genome GRCh38 was done using the Burrows-Wheeler aligner BWA-
523 MEM®. Mutations were detected using GATK4-Mutect2 approach®. GATK4-Mutect2 was
524  used for the detection of allele-specific copy numbers; regions listed in the ENCODE blacklist®!
525  were omitted. Tumor purity was estimated using two approaches: 1) Based on somatic copy-
526  number profiles using the software ASCAT v2.5.2° 2) Based on variant allele frequency of the
527  truncal mutation in gene TP53 (TP53-VAF), purity was estimated using the formula: 2/ ((CN /

528 TP53-VAF) - (CN - 2)), where CN corresponds to the absolute copy-number value estimated
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529 by ASCAT in the corresponding truncal mutation locus. Subsequently, the higher purity value
530 was selected. For the TERVA samples tumor-only profiling, tumor samples were genotyped
531  using the Infinium™ Global Screening Array-24 v2.0. B allele frequency and LogR ratios per
532 sample probe were calculated using lllumina-GenomeStudio. ASCAT software was used for
533 the detection of allele-specific copy numbers, ascat.predictGermlineGenotypes module was
534  performed, adjusting parameters according to a panel of 200 normal germline blood samples.
535 Intra- and inter-patient variability of ovaHRDscar values in the HERCULES cohort was
536 determined by calculating the absolute value of the pairwise ovaHRDscar difference between
537 all pair combinations of samples. Patient P19 was omitted from survival analysis because she
538 received PARP inhibitors as maintenance after the first-line therapy.

539

540  Statistics

541  The statistics analysis was performed in R. Difference in abundances was calculated using
542  one-sided Mann-Whitney U test. Agreement was calculated using the Cohen kappa test.
543 Concordance was measured using Lin's concordance correlation coefficient. Level of
544  correlations was assessed using Pearson correlations. P value less than 0.05 was considered
545  statistically significant.

546

547  Code Availability

548 The code used to detect HRD-Als under different criteria is available on Github
549  (https://github.com/farkkilab/findHRD-AIs). The ovaHRDscar algorithm implementation is
550 available as an R package on Github (https://github.com/farkkilab/ovaHRDscar).

551

552  Data availability

553 Data for the HERCULES and TERVA cohort will be available through the European Genome-

554 Phenome Archive.
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722

723

724  FIGURE LEGENDS

725  Figure 1. Pan-cancer characterization of Als reveals unique patterns in HGSC. a Types
726  of cancer with more than 200 samples in TCGA and their corresponding number of samples
727 are shown in green bars; bladder urothelial carcinoma (BLCA), stomach adenocarcinoma
728 (STAD), lung squamous cell carcinoma (LUSC), breast invasive carcinoma (BRCA), thyroid
729 carcinoma (THCA), kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell
730 carcinoma (KIRC), brain Lower Grade Glioma (LGG), uterine Corpus endometrial carcinoma
731  (UCEC), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma and
732  endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), prostate
733  adenocarcinoma (PRAD), head and neck squamous cell carcinoma (HNSC), skin cutaneous
734  melanoma (SKCM), glioblastoma multiforme (GBM),. b Box plots representing the number of
735  Als longer than 3Mb and smaller than 50Mb per sample. HGSC showed the highest average
736 levels of Als. ¢ Box plots showing the median length of Als (longer than 3Mb and smaller than
737  50Mb) per sample. HGSC showed the lowest median length of Als per sample. d Hierarchical
738  clustering for the types of cancer using as variables the median length, the median number of

739  Als per sample, and the skewness of the distribution of Als length. e Violin- and box plots
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740  representing the number of Als per sample. A long vertical line represents the median, HGSC
741  showing a similar number of Als as compared to TNBC (U test). f Comparison of BRCAmut
742  samples showing similar abundances of Als in HGSC as compared to TNBC (U test). g The
743  BRCAwt samples showing significantly higher number of Als in HGSC than in TNBC (U test,
744  p=0.002). h Dot plot showing the difference in abundance for Als of specific length between
745 HGSC and TNBC. The dot sizes represent the p-values (U-test) and dot colors represent the
746  fold-change (ratio of HGSC/TNBC abundance of Als minus one), only dots for corresponding
747  significant differences are shown (U test, p < 0.05).

748

749  Figure 2. Machine learning-aided detection of Als associated with HRD shows improved
750 accuracy and correlations with genomic features of HRD in HGSC. a Selection criteria for
751 annotating HRD, HRP and undefined HGSC samples in the OVA-TCGA. b A scheme of the
752  approach used to generate accurate criteria for selecting HRD-Als in HGSC samples. ¢ For
753  LST events, the size of dots represents the decision tree balanced accuracy (BA) of classifying
754  HRD and HRP when selecting Als of the corresponding criteria, the dot colors represent the
755  statistical difference (U test, p-value) in abundance of Als between HRD and HRP samples.
756  The black box corresponds to the selection criteria proposed by Telli2016, the blue box
757  correspond to the best BA and U-test value. d Evaluation of ovaHRDscar cut-off to define HR-
758  status. The black dots connected with a line correspond to the balanced accuracy (BA) of the
759 classification of the annotated HRD and HRP samples using the given cut-off value, the 95%
760  confidence intervals are shown in grey vertical lines, value of 54 (red dashed line) corresponds
761  to the highest BA. e Density distribution of HRD-AIs according to Telli2016 and ovaHRDscar
762  algorithms. The red dashed line represents the cut-off established to define the HR-status
763  using Telli2016 (= 42) and using ovaHRDscar (= 54). The BA of classification of the annotated
764  HRD and HRP is shown, density distribution colors correspond to the samples annotated as
765 in the panel a. f Levels of ovaHRDscar in OVA-TCGA samples harboring different genetic or
766  epigenetic alterations associated with HRD in HGSC*. The colors correspond to the

767  ovaHRDscar; in the outer ring of the pie chart every line represents a sample and in the center
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768  of the pie chart the colors correspond to the average number of HRD-AIs per genetic or
769  epigenetic alteration. For the somatic mutations (somaticmut) gene deletions were included.
770 g Linear regression of the proportion of single base substitution signature 3 (SBS3) and the
771  ovaHRDscar levels in PCAWG samples (Pearson r'=0.38). Blue line shows the regression line
772 and the 95% confidence intervals are shown in grey. h The SBS3 status inferred using
773  SigMA!® showing a higher agreement with ovaHRDscar (agreement=78.3%, Cohen's kappa
774 = 0.56) than with the Telli2016 algorithm (agreement=68.5%, Cohen's kappa = 0.32). In the
775  pie charts and table + and - correspond to the number of HRD positive and HRD negative
776  samples identified under each criterion, respectively. On the bottom is shown the number of
777  samples and the level of agreement between the corresponding criteria.

778

779  Figure 3. ovaHRDscar accurately predicts PFS and OS in HGSC patients. a to ¢ Kaplan-
780  Meier plots of PFS in OVA-TCGA patients stratified with different criteria, in a patients were
781  stratified according to the BRCAmut/del status with no significant difference in their PFS
782  probability over time (Log-rank, p=0.78); b patients were stratified according to the Telli2016
783  algorithm (Log-rank, p=0.017); and ¢ patients were stratified using the ovaHRDscar algorithm.
784  HRD patients had a prolonged PFS as compared to the HRP (Log-rank, p=4.4e-04). e Cox
785  regression models for PFS adjusted for residual tumor after surgery according to the different
786 HR classification criteria (BRCAmut/del, Telli2016, Telli2016-54, Takaya2020, ovaHRDscar).
787  Three panels are shown: OVA-TCGA cohort in the left panel, OVA-TCGA cohort excluding
788 the annotated HRD and HRP samples used for the detection of HRD-Als in the middle panel,
789 and the HERCULES prospective cohort (WGS) in the right panel. The number of patients (N)
790 selected as HRD positive and their corresponding proportion (Prop), the hazard ratio for the
791  Cox regression and the 95% confidence intervals (Cl) and the p-value (Pval) of the regression
792  are shown for each panel. The size of the dot represents the hazard ratio and color of the dot
793  represents the p-value, grey dots represent non-statistical significant associations (p = 0.05).
794  d Fold-change of the difference in median PFS between HRD and HRP patients were stratified

795  using ovaHRDscar, Telli2016 or Telli2016 using an HRD/HR cut-off value of 54 (Telli2016-
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796  54). Patients were bootstrapped 1000 times, and the fold-change was calculated for each
797  iteration; the Box plots represent the values obtained by each bootstrapping iteration, no
798  outliers are shown. U-test p-values are shown. f to h, Kaplan-Meier plots of OS for OVA-TCGA
799 patients stratified using different criteria. i Fold-change of the difference in median OS between
800 HRD and HRP patients stratified using ovaHRDscar, Telli2016 or Telli2016-54 using the same
801 approach as in panel d. | Cox regression models for OS according to the HR-status
802 classification criteria. The PCAWG samples in the right panel, the left and center panels are
803 the same asind.

804

805 Figure 4. Intra-patient spatiotemporal variation of ovaHRDscar levels in 98 prospective
806 HGSC samples. a Overview of the samples and their ovaHRDscar levels per patient in a
807  prospective cohort (HERCULES). The tumor samples were collected at three different
808 treatment phases and from different anatomical sites; the corresponding number of samples
809 are displayed in parentheses. b Levels of ovaHRDscar in samples harboring different genetic
810 or epigenetic alterations associated with HRD. The colors correspond to the ovaHRDscar
811 levels, in the outer ring of the pie chart every bar represents a sample carrying the
812  corresponding alteration, and average values for the genetic groups are displayed in the
813 center of the pie chart. ¢ ovaHRDscar values between paired samples for each patient
814  (connected dots) did not change (Wilcoxon test) between the samples collected at different
815 treatment phases. d Comparison of anatomical site prioritizations using Cox regression
816 models for PFS using the Telli2016 or the ovaHRDscar algorithms. The size of the dot
817  represents the HR and color of the dot represents the p-value. The HR-status for each patient
818 is shown assessed using three anatomical sample prioritization approaches: 1) average HRD-
819  Als per all samples 2) omentum, and OVA/ADN if omentum sample not available (OME-
820 OVA/ADN) 3) OVA/ADN, and then omentum if OVA/ADN not available (OVA/ADN-OME). In
821  the case of multiple samples per same site, the average was used.

822
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823  Figure 5. Machine learning-aided detection of HRD-Al in TNBC improves the prediction
824  of clinical outcomes. a Number of Als for TNBC in HRD and HRP samples in the TCGA. b
825  Detection of LOH events. The size of the dots represents the decision tree balanced accuracy
826  (BA) of classifying HRD and HRP using LOHSs of the corresponding length, and the dot colors
827  represent the difference in abundance of LOH between HRD versus HRP samples (U test, p
828  value). Black box corresponds to the selection criteria utilized in the Telli2016 algorithm, and
829  the blue box corresponds to the tnbcHRDscar BA and U test value. ¢ Evaluation of the cut-off
830 for tnbcHRDscar to define HR-status. The black dots connected with a line represent the
831 balanced accuracy (BA) of the classification of the HRD and HRP samples using the given
832  cut-off value, the 95% confidence intervals are shown in grey, the value of 53 (red dashed
833 line) shows the highest BA. d Density distribution of HRD-Als according to the Telli2016 and
834  tnbcHRDscar algorithms. The red dashed line represents the cut-off established to define HR-
835  status using Telli2016 (= 42) and tnbcHRDscar (= 53). The balanced accuracy (BA) for
836 classifying the HR-status is shown for Telli2016 and ovaHRDscar algorithm. e to g Kaplan-
837  Meier plots of PFS (Log-rank test) in TNBC patients in the TCGA stratified using: the
838 BRCAmut/del status (e), the Telli2016 algorithm (f), the tnbcHRDscar (g). h to j Kaplan-Meier
839 plots of distant relapse-free interval (DRFI, Log-rank test) of the TNBC patients in the
840 validation dataset stratified using: the BRCAmut/del status (h), the Telli2016 algorithm (i), the
841  tnbcHRDscar algorithm (j).

842

843

844  SUPPLEMENTARY FIGURE LEGENDS

845
846  Supplementary Figure 1. Pan-cancer characterization of LOH shows unique patterns in
847 HGSC. a. Box plots showing the number of LOH events larger than 3Mb and smaller than

848 50Mb in the different cancer types. b Box plots showing the median length of LOH events
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849  (longer than 3Mb and smaller than 50Mb) in the cancer types. ¢ Hierarchical clustering of the
850 cancer types using the median length, median number of LOH events per sample, and the
851  skewness of the distribution of LOH length. d Violin- and box plots representing the number
852  of LOH events in all HGSC samples as compared to TNBC (U test, p=0.005). Long horizontal
853 lines represent the medians .e Violin and box plots representing the number of LOH events in
854 BRCAmMut HGSC samples as compared to TNBC (U test, p=0.021). f Violin and box plots
855  representing the number of LOH events in BRCAwt HGSC samples as compared to the TNBC
856 (U test, NS).

857

858  Supplementary Figure 2. Descriptive statistics of HRD and HRP in HGSC. a Box plot
859  showing the number of allelic imbalances in HRD (red) and HRP (blue) samples in OVA-
860 TCGA. b The average proportion of segments (Als) equal or greater than the given length in
861 HRD (red) and HRP (blue) samples, the blue and red lines correspond to smoothing using
862  cubic splines, confidence intervals are shown in shaded colors. ¢ Density distribution of LOH
863  events in HRD (red) and HRP (blue) samples. d The accuracy of the new LOH criteria (blue
864  boxes) and those utilized in Telli et al. (black box); the size of dots represents the decision
865 tree balanced accuracy (BA) when using the corresponding cut-off, colors correspond to the
866  statistical difference in abundance of Als between HRD versus HRP samples (U test p value).
867 e Accuracy of HR classification using three tandem allelic imbalances LSTs of a given
868  minimum length (x axis) and distance between them smaller than 1 to 4 Mb (y axis). Dot sizes
869 and colors are presented similarly as in panel d. f Upper panel: Visualization of the statistical
870  difference (U test p-values) in the abundance of TAls between HRD versus HRP samples for
871 selected TAls length. Lower panel: The dot sizes and colors in the lower panel correspond to
872  the description in panel d and e. g Density distribution of HRD-AIs according to Telli2016
873  algorithm, the red dashed line represents a cut-off vale of 54 to define the HR-status. The
874  balanced accuracy (BA) of classifying the annotated HRD and HRP is shown, density
875  distribution colors correspond to the samples annotated as in Fig. 2a. h OVA-TCGA samples

876  stratified by genomic alterations and their corresponding ovaHRDscar levels. U test p values
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877  are shown for the comparison of ovaHRDscar levels between the corresponding alterations
878 as compared to the samples with CCNE1 amplification. i Bland-Altman plot that shows the
879  concordance (Concordance correlation coefficient, CCC = 0.90) between the number of
880 ovaHRDscars detected using SNP-arrays and WGS in the intersecting samples from OVA-
881 TCGA and PCAWG. j Correlation (Pearson, r=0.38) between the SBS3 proportion in WGS
882  data from PCAWG versus the number of scars using the Telli2016 approach. Blue line shows
883  the regression line, and the 95% confidence intervals are shown in grey. k The SBS3 status
884 inferred using SigMA!® showing a higher agreement with ovaHRDscar (agreement=78.3%,
885 Cohen's kappa = 0.56) than with the Telli2016 algorithm using an HRP/HRP cut-off value of
886 54 (agreement=77.2%, Cohen's kappa = 0.53). In the pie charts and table + and - correspond
887  to the number of HRD positive and HRD negative samples identified under each criterion,
888  respectively. On the bottom is shown the number of samples and the level of agreement
889  Dbetween the corresponding criteria.

890

891  Supplementary Figure 3. ovaHRDscar shows an improved prediction of PFS and OS in
892 HGSC patients. a to ¢ Kaplan-Meier plots for PFS in the HERCULES cohort. The patients
893  were stratified using different criteria: The BRCAmut/del status in the left panel (a), The
894  Telli2016 algorithm in the middle panel (b) and The ovaHRDscar algorithm (c). d Cox
895  regression models for PFS in HGSC patients using different selection criteria. The colors, rows
896 and columns descriptions are the same as in Figure 3d. e to f Kaplan-Meier plots of PFS in
897  the prospective TERVA cohort. The patients were stratified using: The Telli2016 algorithm on
898 the left (e), the ovaHRDscar on the right (f). g Cox regression models for PFS in the TERVA
899  cohort. The patients were stratified using different criteria. The colors, rows and columns
900 descriptions are the same as in Figure 3d. h to j Kaplan-Meier plots for OS in the HERCULES
901 cohort stratified using the different criteria: BRCAmut/del status on the left (h), the Telli2016
902  algorithm (i) and the ovaHRDscar algorithm (j). k Cox regression models for OS adjusted for
903 patient age at diagnosis in HGSC patients stratified using different criteria similarly as in Figure

904 3h. | to m Kaplan-Meier plots for OS in the PCAWG cohort stratified using: the CHORD
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905 signature on the left (1), the ovaHRDscar on the right (m). n Cox regression models for OS in
906 the PCAWG cohort. Patients were stratified using CHORD and ovaHRDscar criteria; the dot
907  colors, rows and columns descriptions are the same as in Figure 3d.

908

909 Supplementary Figure 4. Inter and intra-patient variability of ovaHRDscar levels.

910 A Left box plot for the difference of ovaHRDscar values between all possible intra-patients'
911 samples pairs. Right box plot for the corresponding difference of ovaHRDscar values in all
912  possible inter-patients' samples pairs in the HERCULES prospective cohort. b Samples from
913  different anatomical sites with tumor purity and ovaHRDscar levels indicated. ¢ The correlation
914  between the difference of ovaHRDscar values between all intra-patient sample pairs and the
915  difference in tumor purity of the corresponding sample pairs. Patient P4 was ignored as an
916  outlier. d Color table of HR-status classification and HR-related genomic alterations using five
917 different approaches to prioritize anatomical sites for ovaHRDscar calculations. e Cox
918 regression models for PFS adjusted for the residual tumor after surgery in the HERCULES
919 cohort using different algorithms and five different anatomical site prioritizations. Colors, rows
920 and column descriptions are the same as in Figure 3d.

921

922  Supplementary Figure 5. Machine learning-aided detection of HRD-Al in TNBC improves
923 the prediction of clinical outcomes. a Generation of HRD-LST events. The size of the dots
924  represents the decision tree balanced accuracy (BA) of the classification of HRD and HRP
925 when selected LSTs with the corresponding criteria. The dot colors correspond to the
926  statistical difference in abundance of the selected LSTs between HRD versus HRP samples
927 (U test, p-value). The black box corresponds to the selection criteria proposed by Telli2016,
928  Dblue box corresponds to the tnbcHRDscar BA and U test value. b Upper panel: Visualization
929 of the change in p-values (U test) when selecting TAls >1Mb (red dashed line). Lower panel:
930 the difference in abundance of TAls of selected length between HRD versus HRP samples.
931 The dot sizes and colors in the lower panel correspond to the description in panel a. c to e

932 Kaplan-Meier plots for OS in the TCGA's TNBC patients stratified using the different criteria;
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¢ BRCAmut/del status on the left, d the Telli2016 algorithm, and e the thbcHRDscar algorithm.
f Cox regression models for PFS in HGSC patients stratified using different criteria, the dot
colors descriptions are the same as in Figure 3d. g Cox regression models for OS in in the
TCGA's TNBC patients stratified using the different criteria. h Cox regression models for DRFI
in an independent TNBC patient cohort?! stratified using different criteria. i to j Kaplan-Meier
plots for DRFI in an independent TNBC patient cohort?! stratified using: HRDetect based on
whole genome sequencing data (i), the tnbcHRDscar based on SNP-array data (j). k Selection
of different values to define the HRDetect-high/low status for patient stratification in the TNBC
patient cohort?* and its association with DRFI (Log-rank test, p-value). Patients with
intermediate HRDetect values were ignored. In blue line, the Log-rank p-value when using

tnbcHRDscar in panel j.
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Supplementary Figure 5
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