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 2 

ABSTRACT 34 

 35 

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic 36 

instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic 37 

allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and 38 

using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in 39 

high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to 40 

generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly 41 

predicted clinical outcomes in three independent patient cohorts with higher precision than 42 

previous methods. Characterization of 98 spatiotemporally distinct metastatic samples 43 

revealed low intra-patient variation and indicated the primary tumor as the preferred site for 44 

clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes 45 

in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. 46 

In conclusion, our tumor-specific, systematic approach has the potential to improve patient 47 

selection for HR-targeted therapies.  48 

 49 

 50 

BACKGROUND 51 

 52 

As a part of the Fanconi Anemia (FA) pathway, homologous recombination (HR) is an 53 

evolutionarily conserved, tightly regulated mechanism for high-fidelity repair of DNA double-54 

strand breaks (DSBs)1. Deficiency in homologous recombination (HRD) has profound 55 

consequences for replicating cells driving genomic instability and oncogenic transformation. 56 

In cancer, HRD results in a fundamental vulnerability, and tumors with HRD are markedly 57 

sensitive to DSB-inducing agents such as platinum-based chemotherapy and Poly-ADP 58 

Ribose Polymerase (PARP) inhibitors2. 59 

 60 
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 3 

High-grade serous ovarian cancer (HGSC), the most common and most lethal subtype of 61 

ovarian cancers3, is characterized by profound genomic instability. Around half of the HGSC 62 

cases harbor genomic alterations leading to HRD4, and these patients have been shown to 63 

benefit from treatment with PARP inhibitors 5,6. The HRD test previously used in PARP inhibitor 64 

clinical trials (MyriadMyChoise®CDx)5,6 works by quantifying specific allelic imbalances (AIs): 65 

1) Large scale transitions (LSTs)7, 2) Loss of heterozygosity (LOH)8 and 3) Telomeric allelic 66 

imbalances (TAIs)9. However, the decision criteria for these HRD-specific AIs (HRD-AIs) and 67 

the HRD status classification were originally designed using a mixture of breast and ovarian 68 

cancer samples7,8,9,10. Further, other algorithms for HRD detection have primarily focused on 69 

BRCA1/2 mutation prediction11,12. As the genomic drivers and mutational processes differ 70 

across the cancer types, the details of the genomic instability occurring due to HRD in HGSC 71 

remain unclear.  72 

 73 

Herein, via pan-cancer analysis, we show that HGSC harbors unique patterns of AIs, which 74 

are also distinct from triple-negative breast cancers (TNBC). Using a systematic approach 75 

based on machine learning and statistics on The Cancer Genome Atlas ovarian cancer (OVA-76 

TCGA) multi-omics dataset, we optimized the criteria for HRD-AIs on HGSC. We implemented 77 

these criteria as an open-source algorithm (ovaHRDscar) to reliably define HRD status beyond 78 

the prediction of BRCA1/2 mutations. We show that ovaHRDscar improves the prediction of 79 

clinical outcomes in three independent clinical datasets compared to previous algorithms. 80 

Further, we show that our approach improves the prediction of clinical outcomes also in TNBC 81 

(tnbcHRDscar). Thus, our machine learning-aided disease-specific approach (HRDscar) 82 

shows promise as a biomarker that can improve outcome prediction and patient selection for 83 

HR-targeted therapies in cancer. 84 

RESULTS 85 

 86 
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Systematic pan-cancer characterization reveals unique features of allelic imbalances 87 

in HGSC 88 

To elucidate the potential differences in the patterns of AIs across human cancers, we first 89 

characterized the quantity and the length distributions of AIs in the 18 most common cancer 90 

types from the TCGA (Fig. 1a). Interestingly, HGSC had the highest number of AIs (Fig. 1b) 91 

and the lowest median length (Fig. 1c). Concordantly, HGSC showed the highest levels of 92 

LOH events (Sup. Fig. 1a) with one of the lowest median length (Sup. Fig. 1b).  93 

 94 

We next performed hierarchical clustering using the median length and number of AIs per 95 

sample and the skewness of the length distribution of the AIs for each cancer type. This 96 

analysis shows two main clusters: the first cluster consisting of six cancer types (bladder 97 

urothelial carcinoma (BLCA), stomach adenocarcinoma (STAD), lung squamous cell 98 

carcinoma (LUSC), lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), and 99 

HGSC) with a higher amount but a lower median length of AIs (upper cluster: Fig. 1d). The 100 

second cluster consisting of the remaining 12 cancer types (lower cluster: Fig. 1d). The same 101 

main clusters were observed when using only LOH events (Sup. Fig. 1c). 102 

 103 

As TNBC and HGSC are enriched in BRCA1/2 genetic mutations (BRCAmut)13, both cancers 104 

were used to define the HRD-algorithm in the MyriadMyChoise®CDx assay by Telli et al.10. 105 

We next compared the differences in AIs between these two cancer types. We observed a 106 

significant difference in the abundance of AIs between HGSC and TNBC, specifically among 107 

the BRCA1/2-wild-type (BRCAwt) tumors (U test, p = 0.002, Fig. 1e to g). Interestingly, HGSC 108 

had lower levels of LOH events than TNBC (U test, p = 0.002, Sup. Fig. 1d), also among the 109 

BRCAmut samples (U test, p = 0.049, Sup. Fig. 1e) but not in the BRCAwt samples (Sup. 110 

Fig. 1f). Overall, HGSC showed a higher number of AIs of different lengths, while TNBC had 111 

a higher number of LOH events (Fig. 1h). These results highlight the distinct characteristics 112 

of AI events in HGSC, especially among the BRCAwt tumors, compared to other cancer types.  113 

 114 
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 5 

Machine learning-aided detection of HRD-specific AIs improves the detection of HRD in 115 

HGSC 116 

Although a wide range of molecular alterations is known to cause HRD, previous studies have 117 

focused on BRCA1/2 mutations to detect HRD-specific AIs (HRD-AIs), potentially failing to 118 

detect non-BRCA associated HRD alterations while losing specificity to classify the HR-119 

proficient (HRP) samples accurately. To this end, we aimed to identify AIs overrepresented in 120 

samples carrying a wider range of genetic alterations (mutations, gene deletions, promoter 121 

hypermethylation) associated with HRD in HGSC (Fig. 2a). To generate accurate selection 122 

criteria for HRD-AIs, we utilized SNP-arrays data from HGSC samples from TCGA (OVA-123 

TCGA) and its associated genomic and DNA methylation data. Using prior knowledge and 124 

multi-omics data, we annotated 115 HRD samples harboring a somatic or germline mutation, 125 

gene deletion, or promoter hypermethylation in the BRCA1/2 or RAD51 paralog genes, and 126 

29 HRP samples that did not harbor any of the alterations used to select the HRD samples, 127 

nor deletions in any other HR-related gene (Fig. 2a). A detailed description of the genomic 128 

alterations in the samples is reported in Sup. Table 1. Overall, the HRD samples had a higher 129 

number of all AIs than the HRP samples (U test, p=0.0028, Sup. Fig. 2a). Importantly, HRD 130 

samples had a notably higher proportion of AIs of a specific length that spanned from 1Mb to 131 

30Mbs. In contrast, the HRP samples contained a higher proportion of AIs and LOH events 132 

smaller than 1Mb (Sup. Figs. 2b, 2c). 133 

 134 

We next applied statistics and machine learning14 to identify the specific length and selection 135 

criteria of LOH, LST, and TAI events overrepresented in the HRD samples (Fig. 2b). We then 136 

compared the accuracies of the herein optimized criteria for HRD to those used in Telli et al.10 137 

(hereafter called Telli2016). Notably, for LSTs, our approach increased the accuracy of 138 

classification of the HRD/HRP samples from 86% to 90% when using the new criteria (Fig. 139 

2c). For LOH events, the accuracy increased from 85% to 88% when using the new criteria 140 

(Sup. Fig. 2d). We also assessed the HRD classification accuracy of LSTs consisting of three 141 

consecutive AIs. However, this produced a lower accuracy (Sup. Fig. 2e). The largest 142 
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 6 

improvement in accuracy occurred after including all TAIs larger than 1Mb, and the accuracy 143 

for HRD-specific TAI events increased from 67% to 78% when compared to the Telli2016 144 

criteria (Sup. Fig. 2f).  145 

 146 

Via our systematic approach, we observed the following AIs to be most characteristic of HRD 147 

in HGSC: 1) LOH > 15Mb and <50Mb, 2) for LSTs AI > 12Mb, with a distance between them 148 

<1Mb, and 3) TAI >1Mb. The sum of these events is hereafter called the ovaHRDscar levels. 149 

Then, using bootstrapping subsampling of the pre-annotated HRD and HRP samples, we 150 

evaluated the optimal cut-off value for ovaHRDscar to define the final HR-status as HRD or 151 

HRP. The value with the highest balanced accuracy (BA) was 54 (Fig. 2d), meaning that 152 

values higher or equal than 54 correspond to HRD, with higher accuracy for HR-status 153 

classification (BA=0.89, right panel Fig. 2e) as compared to the Telli2016 algorithm (BA=0.76, 154 

left panel Fig. 2e). In addition, using a HRD/HRP cut-off value of 54 in the Telli2016 algorithm 155 

(hereafter Telli2016-54), the BA remained below that of ovaHRDscar (0.86 vs 0.89, Sup. Fig. 156 

2g).  157 

 158 

ovaHRDscar levels correlate with genomic features of HRD and show concordance in 159 

WGS data  160 

To investigate the relationships of ovaHRDscar with other known genomic features associated 161 

with HRD, we annotated the OVA-TCGA samples according to mutations, gene deletions, and 162 

promoter hypermethylation patterns previously reported to be associated with HRD4 (Fig. 2f). 163 

On average, samples with somatic mutations in BRCA1, BRCA2, PTEN, or somatic mutations 164 

or gene deletions in any gene belonging to the Fanconi Anemia (FA) or HR pathways showed 165 

high ovaHRDscar levels. Likewise, samples that contained hypermethylation in the promoter 166 

regions of BRCA1 or RAD51C genes or germline mutations in BRCA1 or BRCA2 had, on 167 

average, high ovaHRDscar levels. As expected, samples harboring an amplification in CCNE1 168 

(Sup. Fig. 2h) had significantly lower levels of ovaHRDscar. However, samples with EMSY 169 
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 7 

amplification and CDK12 somatic mutation did not result in higher ovaHRDscar levels than 170 

CCNE1 amplified samples (Sup. Fig. 2h). 171 

 172 

To assess the concordance of ovaHRDscar between SNP array and whole genome 173 

sequencing (WGS) data, we next quantified the ovaHRDscar levels in HGSC samples from 174 

the Pan-Cancer Analysis of Whole Genomes project (PCAWG)15. The ovaHRDscar levels 175 

were highly concordant between WGS and SNP-arrays (Lin's concordance correlation 176 

coefficient, ccc = 0.90; Sup. Fig. 2i) in 41 OVA-TCGA samples that were also included in the 177 

PCAWG project, consistent with a previous report in breast cancer samples16. Next, we tested 178 

the correlation of ovaHRDscar with the single base substitution signature 3 (SBS3), which has 179 

been associated with HRD17. We found that the ovaHRDscar levels detected in WGS 180 

positively correlated with the proportion of SBS3 in WGS (Pearson, r’=0.38, p= 3.7e-05; Fig. 181 

2g). The SBS3 proportions also correlated with the number of HRD-AIs using the Telli2016 182 

algorithm in the PCAWG cohort (Sup. Fig. 2j). We next compared the performance of 183 

ovaHRDscar to that of SBS3 inferred from whole exome sequencing (WES) data with a 184 

likelihood-based approach SigMA18, in 254 samples from the OVA-TCGA. The ovaHRDscar 185 

algorithm detected 57% of samples as HRD, and the SigMA tool classified 56% of samples 186 

as SBS3+; in contrast, the Telli2016 algorithm identified 83% of the samples as HRD (Fig. 187 

2h). HRD detection with ovaHRDscar showed a higher agreement with SigMA (agreement 188 

78.3% and Cohen's kappa = 0.56) as compared to the Telli2016 algorithm (agreement 68.5% 189 

and Cohen's kappa = 0.32; Fig. 2h) or to the Telli2016-54 (agreement 77.2% and Cohen's 190 

kappa = 0.53; Sup. Fig. 2k). 191 

 192 

ovaHRDscar improves the prediction of PFS and OS compared to previous algorithms 193 

Next, we measured the association of HR-status classification by ovaHRDscar to progression-194 

free survival (PFS, see methods) in advanced HGSC patients treated with platinum-based 195 

chemotherapy in the TCGA and an independent prospective validation dataset (HERCULES). 196 

We compared the performance of the ovaHRDscar to BRCA1/2 deficiency status to the 197 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2021.08.19.456809doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456809
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Telli2016 algorithm. The Telli2016 algorithm uses a cut-off value of 63, as proposed by Takaya 198 

et al.19. As BRCA1/2 mutations can affect patient outcomes, we assessed the performances 199 

of ovaHRDscar in the TCGA dataset after excluding the samples used when defining 200 

ovaHRDscar, even though clinical outcomes were not utilized for designing the criteria of 201 

ovaHRDscar. BRCA1/2 mutation or deletion status (BRCAmut/del) was not significantly 202 

associated with PFS (Log-rank p=0.72; Fig. 3a). For OVA-TCGA (Fig. 3a to 3c), we found 203 

that ovaHRDscar positivity was associated with prolonged PFS (Log-rank p=4.4e−04; Fig. 204 

3c). Consistently, ovaHRDscar positive patients had a longer PFS in the independent 205 

HERCULES validation cohort (Log-rank p=0.001; Sup. Fig. 3a to 3c), while the Telli2016 206 

algorithm did not reach statistical significance in predicting PFS (Log-rank p=0.11; Sup. Fig. 207 

3b).  208 

 209 

Residual tumor after primary debulking surgery has been shown to be a strong independent 210 

prognostic factor in HGSC20. We next used residual tumor status as a covariable in Cox 211 

proportional hazard models to assess the performance of HRD algorithms in predicting the 212 

PFS. We found that ovaHRDscar positivity was significantly associated with prolonged PFS in 213 

OVA-TCGA also when adjusting for residual tumor (Wald test p=2.2e−07, Fig. 3d), similar to 214 

the Telli2016 (Wald test p=2.7e−06), Telli2016-54 (Wald test p=6.4e−07) and the Takaya 215 

algorithms (Wald test p=1.2e−06). The same was true also after excluding the annotated 216 

HRD/HRP samples used in the optimization (middle panel, Fig. 3d) and when not adjusting 217 

for the residual tumor (Sup. Fig. 3d). Importantly, ovaHRDscar significantly predicted PFS in 218 

the external HERCULES validation cohort (HR: 0.47 (CI:0.27-0.85), Wald test p=0.026). To 219 

compare how well the three algorithms (ovaHRDscar, Telli2016, Telli2016-54) can predict the 220 

differential outcomes of patients, we next calculated the differences in PFS between the HRD 221 

and HRP using a bootstrapping approach. Consistently, we found that the difference in PFS 222 

was significantly greater using the ovaHRDscar than using the Telli2016 algorithm in the 223 

independent HERCULES validation cohort (Fig. 3e). Moreover, ovaHRDscar was superior to 224 

the Telli2016-54 algorithm in the OVA-TCGA (Fig. 3e). In further validation, we inspected the 225 
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 9 

performance of the HRD-classification algorithms in an additional independent prospective 226 

cohort (TERVA) with tumor-only SNP array profiling (see methods). Importantly, ovaHRDscar 227 

positivity significantly predicted longer PFS using Log-rank test and Cox proportional hazard 228 

model in the TERVA external validation dataset (Sup. Fig. 3e to 3g).  229 

 230 

We next explored the association of ovaHRDscar with overall survival (OS) in HGSC patients 231 

in the OVA-TCGA cohort and in an independent AU-OVA cohort in PCAWG (Fig. 3f to h, Sup. 232 

Fig. 3h to j). The clinical data in the prospective cohorts (HERCULES, TERVA) were not 233 

mature enough for OS evaluation. OvaHRDscar significantly predicted OS in the OVA-TCGA 234 

(Fig. 3h). In Cox regression analysis adjusted for age at diagnosis, ovaHRDscar significantly 235 

predicted OS, while the other algorithms did not reach statistical significance in the 236 

independent PCAWG validation dataset (Fig. 3i). These results were concordant also using a 237 

non-adjusted Cox regression analysis (Sup. Fig. 3k). Importantly, the median OS in patients 238 

with HRD tumors as compared to HRP was significantly longer when using the ovaHRDscar 239 

than using the Telli2016 or the Telli2016-54 algorithms in the independent PCAWG cohort 240 

when using a bootstrapping approach (Fig. 3j). Additionally, we compared the performance of 241 

ovaHRDscar to the CHORD algorithm that uses structural variation and a random forest 242 

implementation to classify HR-status11. In the PCAWG cohort, ovaHRDscar significantly 243 

predicted OS using the Log-rank test (Sup. Fig. 3l, 3m) and Cox proportional hazard models 244 

(Sup. Fig. 3n), while the CHORD algorithm did not show statistical significance. 245 

 246 

Finally, to further investigate the impact of the ovaHRDscar cut-off value in predicting PFS and 247 

OS, we plotted the differences of median PFS and OS in HRD vs HRP when using different 248 

cut-off values in two independent validation test-sets (OVA-TCGA excluding samples used in 249 

the optimization and HERCULES) using bootstrapping (Fig. 3k, 3l). We observed that cut-off 250 

values lower than 54 led to significantly smaller differences (lower fold-changes) in PFS in the 251 

OVA-TCGA, and in the OVA-TCGA test-set, while higher values led to smaller differences in 252 

the HERCULES cohort (Fig. 3k). Further, values lower than 54 lead to smaller differences in 253 
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OS in the OVA-TCGA and OVA-TCGA test set, while higher values led to significantly smaller 254 

fold-change differences in the HERCULES cohort (Fig. 3l). Thus, the exploration of clinical 255 

outcomes in the multiple independent validation datasets supports HRD/HRP cut-off value of 256 

54 as optimal for ovaHRDscar. 257 

 258 

Low intra-patient variation of ovaHRDscar in spatiotemporal tumor profiling  259 

HGSC is characterized by high inter-tumor heterogeneity, and we next explored whether the 260 

anatomical site or timing of sample retrieval affects HR-status classification in HGSC. For this, 261 

we investigated the concordance of the ovaHRDscar levels in the HERCULES prospective 262 

cohort, which included 89 tumor samples from 33 HGSC collected from different anatomical 263 

sites and different treatment phases (treatment-naive, after neoadjuvant chemotherapy, or at 264 

relapse) (Fig. 4a). Consistent with the TCGA dataset, ovaHRDscar levels corresponded with 265 

the known genomic predictors of HRD (Fig. 4b). Importantly, we found that the levels were 266 

similar in paired, anatomically matched samples obtained before and after neoadjuvant 267 

chemotherapy, and also in primary (treatment-naive) versus relapsed tumors (Fig. 4c). 268 

Samples collected from different anatomical sites showed intra-patient variation (Fig. 4a), 269 

however it was lower than the observed inter-patient variation (U test p=1.95e-38; Sup. Fig. 270 

4a). The intra-patient variability was not explained by differences in tumor purity (minimum 271 

30%, see methods) (Sup. Fig. 4b and Sup. Fig. 4c). To determine the optimal anatomical 272 

sampling site, we next assessed HR-status per patient in treatment-naïve primary samples 273 

and compared ovaHRDscar calculated from different anatomical locations. Overall, the level 274 

of agreement for the HR-status classification ranged from 94% and 97% between the 275 

prioritization of different anatomical sites (Sup. Fig. 4d). However, ovaHRDscar status 276 

calculated primarily from ovarian or adnexal tumors was the strongest predictor for PFS (Fig. 277 

4d, Sup. Fig. 4e). Consistently, prioritizing ovarian tumors accurately classified all tumors 278 

harboring CCNE1 amplification as HRP in the prospective HERCULES cohort (Sup. Fig. 4d).  279 

 280 
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Machine learning-aided detection of HRD-AIs improves the prediction of clinical 281 

outcomes in TNBC 282 

Finally, we tested whether our systematic detection of HRD-AIs could improve previous 283 

algorithms when predicting clinical outcomes in TNBC. For this, using multi-omics data in 284 

TCGA and the same classification approach (Fig. 2a), we annotated 47 TNBC as HRD and 285 

23 as HRP (Fig. 5a). Detection of HRD-LOH increased the accuracy of classification of HR-286 

status from 80% (Telli2016 algorithm) to 93% (Fig. 5b). Likewise for LSTs, the accuracy 287 

increased from 93% to 98% (Sup. Fig. 5a) and for TAIs from 86% to 92% (Sup. Fig. 5b). 288 

Similarly as for the HGSC, instead of selecting TAIs of a particular length, we selected TAIs 289 

longer than 1Mb as this resulted in the largest increase in significance. The following HRD-AI 290 

criteria were observed as the most characteristic for TNBC: 1) LOH >10Mb and <30Mb, 2) for 291 

LSTs AI >5Mb with a distance between them <2Mb, and 3) TAI >1Mb. Then, using a 292 

subsampling approach, we identified that cut-off values for the sum of HRD-AIs (hereafter 293 

called tnbcHRDscar) from 47 to 53 produced the highest classification accuracy of the HRD 294 

and HRP samples (Fig. 5c), with the cut-off value of 53 as the closest value at the intersection 295 

of the HRP and HRP density distributions (Fig. 5d). Using the above criteria we observed that 296 

tnbcHRDscar increased the accuracy of classifying the HRD and HRP samples from 0.92 to 297 

0.94 (Fig. 5d). 298 

 299 

To test whether HR-status classification by tnbcHRDscar can predict clinical outcomes in 300 

TNBC, we next associated tnbcHRDscar with the PFS in the TCGA cohort and with the distant 301 

relapse-free interval (DRFI) in an independent TNBC SNP-array dataset21. Patients with the 302 

tnbcHRDscar-positive tumors had a significantly longer PFS than those with the tnbcHRDscar-303 

negative tumors (Log-rank p=0.014), while BRCAmut/del status or the Telli2016 algorithm did 304 

not significantly associate with PFS (Fig. 5e to 5g). Only tnbcHRDscar showed a statistically 305 

significant association with the DRFI (Log-rank p=0.0022) in the independent validation 306 

dataset (Fig. 5h to 5j). Further, tnbcHRDscar classification in TCGA samples was also 307 

associated with OS (Log-rank p=0.039), similarly to the Telli2016 algorithm (Log-rank p=0.039; 308 
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Sup. Fig. 5c to 5e). We next applied Cox regression analysis to validate the association of 309 

tnbcHRDscar with PFS and OS. In the TCGA cohort, tnbcHRDscar significantly predicted PFS 310 

(HR: 0.34, p=0.018, Sup. Fig. 5f) but the Telli2016 algorithm did not, while both similarly 311 

predicted OS (Sup. Fig. 5g). However, tnbcHRDscar but not the Telli2016 algorithm 312 

significantly predicted DRFI in the validation dataset (HR: 0.29, p=0.004, Sup. Fig. 5h). 313 

Additionally, we compared the performance of tnbcHRDscar with HRDetect12, an algorithm 314 

trained using WGS, to predict DRFI outcomes in the validation dataset. Interestingly, 315 

tnbcHRDscar improved the prediction of DRFI compared to the HRDetect (Sup. Fig. 5h to 316 

5j), regardless of the cut-off values selected for the HRDetect (Sup. Fig. 5k).  317 

 318 

DISCUSSION 319 

HRD tumors exhibit a distinct clinical phenotype with superior responses to platinum-based 320 

chemotherapy and sensitivity to PARP inhibitors. However, the accurate detection of HRD via 321 

somatic AIs has been confounded by the lack of systematic approaches and analyses 322 

performed in admixtures of tumor types with distinct genomic drivers. Herein, we established 323 

the HRDscar, a systematic approach for HRD detection to improve patient selection and 324 

clinical outcomes in cancer. 325 

 326 

Several genomic approaches have been utilized to detect HRD, including 1) identification of 327 

single genetic mutations leading to predicted HRD22, 2) profiles of DNA repair deficiency gene 328 

expression23,24, 3) specific mutational patterns accumulated due to HRD8,9,25 or 4) structural 329 

genomic imbalances7,26. These genomic features have been implemented alone or in 330 

combinations in the search for optimal HRD detection, which has profound therapeutic 331 

implications27. It is now becoming accepted that benefits from the HR-directed therapies such 332 

as PARP inhibitors extend beyond the identification of HRD via individual genetic mutations28. 333 

This is due to the fact that genes such as BRCA1/2 and RAD51 paralogs can be altered 334 

beyond mutations via, e.g., hypermethylation or gene deletions3,29, and not all genomic events 335 
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leading to HRD have yet been defined30. Allelic imbalances are indicative of the genetic 336 

consequences of HRD and, although not dynamically reflective of tumors' functional HRD 337 

status, have shown promise as a biomarker predictive of the magnitude of benefit from PARP 338 

inhibitors, especially in the front-line setting31,32. The HRD-algorithm used in ovarian cancer 339 

clinical trials (Telli2016) was, however, generated using breast cancer samples or a mixture 340 

of breast cancer and ovarian cancer samples using BRCA1/2 mutation as the sole determinant 341 

of HRD, and BRCAwt status as HRP8,9,10. Importantly, the European Society of Medical 342 

Oncology also indicated an urgent need to develop a more accurate HRD algorithm in HGSC 343 

to especially improve the identification of the HRP tumors28. Via a pan-cancer characterization 344 

of AIs, we discovered remarkable differences in the patterns of AIs of HGSC as compared to 345 

other cancer types, including TNBC, especially among the BRCAwt tumors. This prompted us 346 

to systematically identify the genomic footprints of HRD-AIs specific for HGSC using carefully 347 

annotated multi-omics data from TCGA and an iterative machine learning and statistical 348 

approach.  349 

 350 

ovaHRDscar levels were concordant with tumor genetic alterations associated with HRD in 351 

the TCGA dataset and an external validation cohort (HERCULES). We found significantly 352 

lower levels of ovaHRDscar in tumors with CCNE1 amplification, which was also previously 353 

proposed to be mutually exclusive with HRD and associated with poor clinical outcomes33. In 354 

line with a previous report19, tumors with CDK12 mutation showed overall low levels of 355 

ovaHRDscar and thus could be considered HRP. In contrast, tumors with somatic mutations 356 

in PTEN, a gene associated with DNA repair34,35, showed high ovaHRDscar levels. However, 357 

the vulnerability of PTEN deficient cancers to PARP inhibitors remains to be verified in the 358 

clinical setting28,36. Further, ovaHRDscar showed a higher concordance with SBS3 than the 359 

Telli2016 algorithm. Most importantly, ovaHRDscar can be applied to detect HRD in HGSC 360 

samples using WGS or SNP-arrays, making it an attractive biomarker for the clinical setting. 361 

 362 
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A dichotomous thresholding of a predictive HRD biomarker is needed for therapeutic decision-363 

making. In the Telli2016 algorithm, the cut-off for the total number of events was derived from 364 

a mixture of breast and ovarian cancer samples10. More recently, Takaya et al. set out to 365 

improve the HRD test by adjusting the cut-off value in ovarian cancer19. However, only 366 

BRCAmut status was used for separating HRD from HRP samples and the same genomic 367 

features of HRD-AIs were used as in Telli et al. In ovaHRDscar, after the development of 368 

accurate definitions of both the criteria of HRD-AIs and the cut-off, we identified more samples 369 

as being HRP, and separated HRD from HRP with improved accuracy over previous 370 

algorithms. When testing the Telli2016 algorithm using the ovaHRDscar cut-off value of 54, 371 

the accuracy was still below that of ovaHRDscar, indicating that both the accurate identification 372 

of the HRD-AIs and the selection of the optimal cut-off are needed to improve HRD detection 373 

in HGSC. In agreement, in most survival analyses, especially in the independent validation 374 

cohorts, ovaHRDscar outperformed the previous algorithms in predicting clinical outcomes. 375 

 376 

HRD tumors are known to have superior responses to platinum-based chemotherapy and 377 

prolonged overall survival37. Consistently, ovaHRDscar improved the prediction of PFS and 378 

OS for platinum-based chemotherapy in the OVA-TCGA, also after excluding patients used 379 

when defining the criteria for ovaHRDscar. ovaHRDscar significantly predicted PFS and OS 380 

also among only the BRCAwt tumors. Importantly, ovaHRDscar improved the prediction of 381 

clinical outcomes in two independent patient cohorts and in multivariable models after 382 

adjusting for clinical covariables, indicating that ovaHRDscar reliably captures the phenotypic 383 

clinical behavior of HRD in HGSC. Further, using a disease-specific, systematic approach in 384 

the classification of HR-status, we could improve the prediction of the clinical outcomes also 385 

in TNBC, and tnbcHRDscar significantly predicted disease-free survival in the TCGA and in 386 

an independent dataset. However, none of the clinical cohorts included patients treated 387 

prospectively with, e.g., PARP inhibitors; therefore, prospective validation in larger patient 388 

series is warranted. 389 

 390 
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Finally, as HGSC is characterized by a high intra-tumor heterogeneity, we aimed at assessing 391 

whether the anatomical site of tumor sampling or the exposure to chemotherapy affects HRD 392 

detection. Our analysis of 98 samples collected from different anatomical sites and treatment 393 

phases indicated that ovaHRDscar levels remain similar within each patient, including 394 

anatomically site-matched samples collected before and after neoadjuvant chemotherapy. 395 

ovaHRDscar can thus be reliably assessed during routine clinical practice and also after 396 

neoadjuvant chemotherapy, given that the tumor purity remains higher than 30%. Interestingly, 397 

ovaHRDscar levels were also similar between treatment-naive and relapsed tumors, reflecting 398 

the nature of HRD-AIs as a historical consequence rather than a dynamic read-out of 399 

functional HRD. Analysis of different anatomical sites revealed that the overall inter-patient 400 

variation was higher than the intra-patient variation. However, in four out of 21 (19%) patients 401 

with samples from multiple anatomical sites, the HRD category depended on the anatomical 402 

site of sampling. The survival analyses indicated that ovarian or adnexal sites, followed by 403 

omentum, could be the preferred sites for HRD testing, warranting future validation in larger 404 

cohorts.  405 

 406 

In conclusion, ovaHRDscar shows promise as a precise, clinically feasible assay for both 407 

outcome prediction and selection of patients for HR-directed therapies. With the fully 408 

documented, publicly available algorithms and generation pipeline, ovaHRDscar can be 409 

applied to other tumor types and implemented clinically for optimal patient selection to improve 410 

outcomes for patients with cancer. 411 

MATERIALS AND METHODS 412 

Data set collection and classification 413 

For pan-cancer samples, allele-specific copy number segments were obtained from the 414 

Genomics Data Commons (GDC) portal (https://portal.gdc.cancer.gov/). The list of TNBC 415 

samples was adopted from Lehmann et al.38. For TNBC, samples were considered with 416 

BRCAmut if reported by Knijnenburg et al.39 to contain a gene deletion, gene mutation, or gene 417 
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silencing of BRCA1 or BRCA2; while BRCAwt were considered those with no reported 418 

alterations. 419 

 420 

For OVA-TCGA analysis, allele-specific copy number segments, DNA methylation, gene-level 421 

copy number profiles (including gene deletions), and clinical information data were obtained 422 

from the GDC data portal. Genes were considered with a "strong signal of deletion" if reported 423 

as such (labeled by -2) by Taylor et al.40. Gene promoter hypermethylation was considered 424 

when the probes up to 1500bp downstream of the transcription start site had an average beta 425 

value ≥0.75. The catalog of mc3 somatic mutations was obtained from the PanCanAtlas-GDC 426 

data portal (https://gdc.cancer.gov/about-data/publications/pancanatlas). Somatic mutations 427 

were classified according to the recommendations of the American College of Medical 428 

Genetics and Genomics41 using the web-tool VarSome42. Only pathogenic somatic mutations 429 

were considered in the analysis. For germline mutations, we selected those labeled as 430 

pathogenic and prioritized by Huang et al. 201843. Genes were considered part of the HR 431 

pathway or other associated pathways according to the Kyoto Encyclopedia of Genes and 432 

Genomes database44. Complementary clinical information was obtained from the 433 

PanCanAtlas-GDC data portal. For PCAWG: allele-specific copy number segments, 434 

mutational drivers, and clinical information were obtained from the International Cancer 435 

Genome Consortium data portal (https://dcc.icgc.org/pcawg). 436 

 437 

Pan-cancer characterization of AIs 438 

We used the allele-specific copy number segments from the Genomics Data Commons. 439 

Segments that did not span a whole chromosome and with a total copy number value different 440 

from two were selected as AIs. AIs shorter than 3Mb and longer than 50Mb were ignored. We 441 

quantified the number of AIs per sample and the median length of the AIs. The skewness of 442 

the distribution of the length AIs in different types of cancers was performed using the package 443 

DescTools.  444 

 445 
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Selection of criteria for HRD-AIs 446 

First, we annotated the OVA-TCGA samples as HRD and HRP according to the following. For 447 

HRD samples, samples harboring somatic or germline mutations, promoter hypermethylation, 448 

or strong signal of deletion of the genes BRCA1, BRCA2, and RAD51 paralogs (Fig. 2a); for 449 

HRP sample annotation, we selected those with none of the HRD selection criteria, plus 450 

available data for methylation, gene deletion, somatic mutations and no deletion of any HR 451 

gene. The rest of the samples were annotated as "undefined" (Fig. 2a). The HRD and HRP 452 

annotation was used as "ground truth" in posterior accuracy assessment analysis. The HRP 453 

sample TCGA-13-1511 was annotated as "undefined" as an outlier in the number of total AIs. 454 

Then, for the annotated HRD/HRP samples, we quantified the HRD-AIs (LOH, LST, TAI) 455 

according to Marquard et al.45 under different criteria. For LOH, we used length criteria 456 

(minimum length: lmin, maximum length: lmax). Exhaustively for each pair of values, lmin and lmax, 457 

we quantified the number of LOH per sample. We selected the pair of values that produced 458 

the highest classification power (see below) according to the HRD and HRP annotations. The 459 

quantification of LST events, defined by the parameters s (minimum AI length) and m 460 

(maximum distance between the AI events that comprise an LST event), was optimized 461 

similarly. Finally, we quantified TAI events if they were larger than k, where the length k was 462 

evaluated following the same approach. The classification power was evaluated by combining 463 

two approaches: 1) differential abundance of selected AIs in the annotated HRD vs HRP using 464 

one-tailed Mann-Whitney U test; 2) classification performance by decision trees (R package 465 

'rpart') taking the abundance of the selected AIs as split-point. For the decision trees approach, 466 

samples above the split-point were tentatively considered as HRD and below - HRP, then true 467 

positive rate (TPR) and true negative rate (TNR) was computed when compared against the 468 

ground truth annotations (Fig. 2b). For each type of HRD-AI, we selected the set of parameters 469 

({lmin, lmax},{s,m}, k) with the highest product of U test p-value (p) and balance accuracy (𝐵𝐴 =470 

𝑇𝑃𝑅+𝑇𝑁𝑅

2
), the product was inferred with the formula: −1 ∗ log 10(𝑝) ∗ 𝐵𝐴. The selected set of 471 

parameters was incorporated in ovaHRDscar. The sum of HRD-AIs under the selected criteria 472 
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was named the ovaHRDscar levels or values. A cut-off value to define the HR-status (samples 473 

with values above the cut-off are considered HRD and below - HRP) for ovaHRDscar and 474 

tnbcHRDscar levels was determined by exploring different cut-off values. For each cut-off 475 

value, we resampled with replacement 29 of the annotated HRD and 29 of the HRP cases 476 

10,000 times; for each pseudo replicate, we calculated the balanced accuracy by comparing 477 

the HR-status using the cut-off value versus the ground truth annotations. Finally, we selected 478 

the cut-off value that produced the highest median balanced accuracy. 479 

 480 

Quantification of HRD-AIs 481 

The quantification of HRD-AIs by the Telli2016 algorithm, the Takaya2020, the ovaHRDscar, 482 

and the tnbcHRDScar was performed using an in-house R-package (see code availability) 483 

adapted from the package scarHRD46. This package allows for the quantification of LOH, LSTs 484 

and TAIs under different selection criteria. Allelic imbalances smaller than 50bp were 485 

smoothed, as previously suggested by Popova et al.7. The selection criteria of HRD-AIs for 486 

Telli2016: LOH lmin =15Mb, lmax = 50Mb; LSTs s=12Mb, m=1Mb, TAI k=1Mb, samples with 487 

HRD-AIs ≥ 42 were considered HRD otherwise - HRP. For the Takaya2020 algorithm, the 488 

same HRD-AIs selection criteria as for Telli2016 were used: samples with HRD-AIs ≥ 63 were 489 

considered HRD, and otherwise - HRP. For ovaHRDscar, the HRD-AIs selection criteria is: 490 

LOH lmin =15Mb, lmax=50Mb; LSTs s=12Mb, m=1Mb, TAI k=1Mb; samples with HRD-AIs ≥ 54 491 

were considered HRD, and otherwise - HRP. 492 

 493 

Survival analysis 494 

Survival plots, Log-rank and Cox regression models were performed in R using the packages 495 

"survminer" and "survival". For OVA-TCGA, only patients disease treated with cisplatin or 496 

carboplatin were selected. For PCAWG, data from all patients were used (no treatment 497 

information available). Only data from primary samples (treatment-naive) were used. The 498 

BRCAmut/del status includes pathogenic somatic mutations, germline mutations, and "strong 499 

signal of deletion" in the genes BRCA1 or BRCA2. Residual tumor after surgery was 500 
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categorized as present or absent. For the indicated Cox regressions, residual tumor status or 501 

patient age at diagnosis was used as a covariable. Progression-free survival (PFS) and overall 502 

survival (OS) were defined as in Liu et al. 201847. The CHORD signature HR-status 503 

classification for PCAWG samples was adopted from Nguyen et al. 202011. In the TNBC cohort 504 

from TCGA, only patients with advanced Stage III-IV were selected. For survival analysis using 505 

HRDetect stratification, positive status was labeled for patients with an HRDetect value ≥ 0.7, 506 

and HRDetect negative for those with a value ≤ 0.2, patients with intermediate values were 507 

ignored. The mean differences of PFS and OS between HRD and HRP patients according to 508 

different criteria were calculated by bootstrapping the patients 1000 times; for each 509 

bootstrapping replicate was calculated the fold-change of median PFS or OS as median 510 

survival (PFS or OS) time in HRD patients divided by median survival (PFS or OS) time in 511 

HRP patients. 512 

 513 

Prospective HERCULES and TERVA data analysis 514 

The tumor samples were prospectively collected in the HERCULES (http://www.project-515 

hercules.eu) and TERVA (https://www.healthcampusturku.fi/innovation-new/terva-project/) 516 

projects. The Ethics Committee of the Hospital District of Southwest Finland approved both 517 

studies (Dnro: 145 /1801/2015). All patients gave their written informed consent to take part 518 

in the study. For HERCULES, paired fresh tumor and normal blood samples were sequenced 519 

using Illumina-HiSeq X Ten WGS. Raw reads were trimmed and filtered with Trimmomatic48, 520 

followed by duplicate marking with Picard Tools (https://broadinstitute.github.io/picard/). 521 

Alignment to the human genome GRCh38 was done using the Burrows-Wheeler aligner BWA-522 

MEM49. Mutations were detected using GATK4-Mutect2 approach50. GATK4-Mutect2 was 523 

used for the detection of allele-specific copy numbers; regions listed in the ENCODE blacklist51 524 

were omitted. Tumor purity was estimated using two approaches: 1) Based on somatic copy-525 

number profiles using the software ASCAT v2.5.251 2) Based on variant allele frequency of the 526 

truncal mutation in gene TP53 (TP53-VAF), purity was estimated using the formula: 2 / ((CN / 527 

TP53-VAF) - (CN - 2)), where CN corresponds to the absolute copy-number value estimated 528 
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by ASCAT in the corresponding truncal mutation locus. Subsequently, the higher purity value 529 

was selected. For the TERVA samples tumor-only profiling, tumor samples were genotyped 530 

using the Infinium™ Global Screening Array-24 v2.0. B allele frequency and LogR ratios per 531 

sample probe were calculated using Illumina-GenomeStudio. ASCAT software was used for 532 

the detection of allele-specific copy numbers, ascat.predictGermlineGenotypes module was 533 

performed, adjusting parameters according to a panel of 200 normal germline blood samples. 534 

Intra- and inter-patient variability of ovaHRDscar values in the HERCULES cohort was 535 

determined by calculating the absolute value of the pairwise ovaHRDscar difference between 536 

all pair combinations of samples. Patient P19 was omitted from survival analysis because she 537 

received PARP inhibitors as maintenance after the first-line therapy. 538 

 539 

Statistics 540 

The statistics analysis was performed in R. Difference in abundances was calculated using 541 

one-sided Mann-Whitney U test. Agreement was calculated using the Cohen kappa test. 542 

Concordance was measured using Lin's concordance correlation coefficient. Level of 543 

correlations was assessed using Pearson correlations. P value less than 0.05 was considered 544 

statistically significant. 545 

 546 

Code Availability 547 

The code used to detect HRD-AIs under different criteria is available on Github 548 

(https://github.com/farkkilab/findHRD-AIs). The ovaHRDscar algorithm implementation is 549 

available as an R package on Github (https://github.com/farkkilab/ovaHRDscar). 550 

 551 

Data availability 552 

Data for the HERCULES and TERVA cohort will be available through the European Genome-553 

Phenome Archive.  554 
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 722 

 723 

FIGURE LEGENDS 724 

Figure 1. Pan-cancer characterization of AIs reveals unique patterns in HGSC. a Types 725 

of cancer with more than 200 samples in TCGA and their corresponding number of samples 726 

are shown in green bars; bladder urothelial carcinoma (BLCA), stomach adenocarcinoma 727 

(STAD), lung squamous cell carcinoma (LUSC), breast invasive carcinoma (BRCA), thyroid 728 

carcinoma (THCA), kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell 729 

carcinoma (KIRC), brain Lower Grade Glioma (LGG), uterine Corpus endometrial carcinoma 730 

(UCEC), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma and 731 

endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), prostate 732 

adenocarcinoma (PRAD), head and neck squamous cell carcinoma (HNSC), skin cutaneous 733 

melanoma (SKCM), glioblastoma multiforme (GBM),. b Box plots representing the number of 734 

AIs longer than 3Mb and smaller than 50Mb per sample. HGSC showed the highest average 735 

levels of AIs. c Box plots showing the median length of AIs (longer than 3Mb and smaller than 736 

50Mb) per sample. HGSC showed the lowest median length of AIs per sample. d Hierarchical 737 

clustering for the types of cancer using as variables the median length, the median number of 738 

AIs per sample, and the skewness of the distribution of AIs length. e Violin- and box plots 739 
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representing the number of AIs per sample. A long vertical line represents the median, HGSC 740 

showing a similar number of AIs as compared to TNBC (U test). f Comparison of BRCAmut 741 

samples showing similar abundances of AIs in HGSC as compared to TNBC (U test). g The 742 

BRCAwt samples showing significantly higher number of AIs in HGSC than in TNBC (U test, 743 

p=0.002). h Dot plot showing the difference in abundance for AIs of specific length between 744 

HGSC and TNBC. The dot sizes represent the p-values (U-test) and dot colors represent the 745 

fold-change (ratio of HGSC/TNBC abundance of AIs minus one), only dots for corresponding 746 

significant differences are shown (U test, p < 0.05). 747 

 748 

Figure 2. Machine learning-aided detection of AIs associated with HRD shows improved 749 

accuracy and correlations with genomic features of HRD in HGSC. a Selection criteria for 750 

annotating HRD, HRP and undefined HGSC samples in the OVA-TCGA. b A scheme of the 751 

approach used to generate accurate criteria for selecting HRD-AIs in HGSC samples. c For 752 

LST events, the size of dots represents the decision tree balanced accuracy (BA) of classifying 753 

HRD and HRP when selecting AIs of the corresponding criteria, the dot colors represent the 754 

statistical difference (U test, p-value) in abundance of AIs between HRD and HRP samples. 755 

The black box corresponds to the selection criteria proposed by Telli2016, the blue box 756 

correspond to the best BA and U-test value. d Evaluation of ovaHRDscar cut-off to define HR-757 

status. The black dots connected with a line correspond to the balanced accuracy (BA) of the 758 

classification of the annotated HRD and HRP samples using the given cut-off value, the 95% 759 

confidence intervals are shown in grey vertical lines, value of 54 (red dashed line) corresponds 760 

to the highest BA. e Density distribution of HRD-AIs according to Telli2016 and ovaHRDscar 761 

algorithms. The red dashed line represents the cut-off established to define the HR-status 762 

using Telli2016 (≥ 42) and using ovaHRDscar (≥ 54). The BA of classification of the annotated 763 

HRD and HRP is shown, density distribution colors correspond to the samples annotated as 764 

in the panel a. f Levels of ovaHRDscar in OVA-TCGA samples harboring different genetic or 765 

epigenetic alterations associated with HRD in HGSC4. The colors correspond to the 766 

ovaHRDscar; in the outer ring of the pie chart every line represents a sample and in the center 767 
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of the pie chart the colors correspond to the average number of HRD-AIs per genetic or 768 

epigenetic alteration. For the somatic mutations (somaticmut) gene deletions were included. 769 

g Linear regression of the proportion of single base substitution signature 3 (SBS3) and the 770 

ovaHRDscar levels in PCAWG samples (Pearson r’=0.38). Blue line shows the regression line 771 

and the 95% confidence intervals are shown in grey. h The SBS3 status inferred using 772 

SigMA16 showing a higher agreement with ovaHRDscar (agreement=78.3%, Cohen's kappa 773 

= 0.56) than with the Telli2016 algorithm (agreement=68.5%, Cohen's kappa = 0.32). In the 774 

pie charts and table + and - correspond to the number of HRD positive and HRD negative 775 

samples identified under each criterion, respectively. On the bottom is shown the number of 776 

samples and the level of agreement between the corresponding criteria. 777 

 778 

Figure 3. ovaHRDscar accurately predicts PFS and OS in HGSC patients. a to c Kaplan-779 

Meier plots of PFS in OVA-TCGA patients stratified with different criteria, in a patients were 780 

stratified according to the BRCAmut/del status with no significant difference in their PFS 781 

probability over time (Log-rank, p=0.78); b patients were stratified according to the Telli2016 782 

algorithm (Log-rank, p=0.017); and c patients were stratified using the ovaHRDscar algorithm. 783 

HRD patients had a prolonged PFS as compared to the HRP (Log-rank, p=4.4e-04). e Cox 784 

regression models for PFS adjusted for residual tumor after surgery according to the different 785 

HR classification criteria (BRCAmut/del, Telli2016, Telli2016-54, Takaya2020, ovaHRDscar). 786 

Three panels are shown: OVA-TCGA cohort in the left panel, OVA-TCGA cohort excluding 787 

the annotated HRD and HRP samples used for the detection of HRD-AIs in the middle panel, 788 

and the HERCULES prospective cohort (WGS) in the right panel. The number of patients (N) 789 

selected as HRD positive and their corresponding proportion (Prop), the hazard ratio for the 790 

Cox regression and the 95% confidence intervals (CI) and the p-value (Pval) of the regression 791 

are shown for each panel. The size of the dot represents the hazard ratio and color of the dot 792 

represents the p-value, grey dots represent non-statistical significant associations (p ≥ 0.05). 793 

d Fold-change of the difference in median PFS between HRD and HRP patients were stratified 794 

using ovaHRDscar, Telli2016 or Telli2016 using an HRD/HR cut-off value of 54 (Telli2016-795 
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54). Patients were bootstrapped 1000 times, and the fold-change was calculated for each 796 

iteration; the Box plots represent the values obtained by each bootstrapping iteration, no 797 

outliers are shown. U-test p-values are shown. f to h, Kaplan-Meier plots of OS for OVA-TCGA 798 

patients stratified using different criteria. i Fold-change of the difference in median OS between 799 

HRD and HRP patients stratified using ovaHRDscar, Telli2016 or Telli2016-54 using the same 800 

approach as in panel d. j Cox regression models for OS according to the HR-status 801 

classification criteria. The PCAWG samples in the right panel, the left and center panels are 802 

the same as in d.  803 

 804 

Figure 4. Intra-patient spatiotemporal variation of ovaHRDscar levels in 98 prospective 805 

HGSC samples. a Overview of the samples and their ovaHRDscar levels per patient in a 806 

prospective cohort (HERCULES). The tumor samples were collected at three different 807 

treatment phases and from different anatomical sites; the corresponding number of samples 808 

are displayed in parentheses. b Levels of ovaHRDscar in samples harboring different genetic 809 

or epigenetic alterations associated with HRD. The colors correspond to the ovaHRDscar 810 

levels, in the outer ring of the pie chart every bar represents a sample carrying the 811 

corresponding alteration, and average values for the genetic groups are displayed in the 812 

center of the pie chart. c ovaHRDscar values between paired samples for each patient 813 

(connected dots) did not change (Wilcoxon test) between the samples collected at different 814 

treatment phases. d Comparison of anatomical site prioritizations using Cox regression 815 

models for PFS using the Telli2016 or the ovaHRDscar algorithms. The size of the dot 816 

represents the HR and color of the dot represents the p-value. The HR-status for each patient 817 

is shown assessed using three anatomical sample prioritization approaches: 1) average HRD-818 

AIs per all samples 2) omentum, and OVA/ADN if omentum sample not available (OME-819 

OVA/ADN) 3) OVA/ADN, and then omentum if OVA/ADN not available (OVA/ADN-OME). In 820 

the case of multiple samples per same site, the average was used.  821 

 822 
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Figure 5. Machine learning-aided detection of HRD-AI in TNBC improves the prediction 823 

of clinical outcomes. a Number of AIs for TNBC in HRD and HRP samples in the TCGA. b 824 

Detection of LOH events. The size of the dots represents the decision tree balanced accuracy 825 

(BA) of classifying HRD and HRP using LOHs of the corresponding length, and the dot colors 826 

represent the difference in abundance of LOH between HRD versus HRP samples (U test, p 827 

value). Black box corresponds to the selection criteria utilized in the Telli2016 algorithm, and 828 

the blue box corresponds to the tnbcHRDscar BA and U test value. c Evaluation of the cut-off 829 

for tnbcHRDscar to define HR-status. The black dots connected with a line represent the 830 

balanced accuracy (BA) of the classification of the HRD and HRP samples using the given 831 

cut-off value, the 95% confidence intervals are shown in grey, the value of 53 (red dashed 832 

line) shows the highest BA. d Density distribution of HRD-AIs according to the Telli2016 and 833 

tnbcHRDscar algorithms. The red dashed line represents the cut-off established to define HR-834 

status using Telli2016 (≥ 42) and tnbcHRDscar (≥ 53). The balanced accuracy (BA) for 835 

classifying the HR-status is shown for Telli2016 and ovaHRDscar algorithm. e to g Kaplan-836 

Meier plots of PFS (Log-rank test) in TNBC patients in the TCGA stratified using: the 837 

BRCAmut/del status (e), the Telli2016 algorithm (f), the tnbcHRDscar (g). h to j Kaplan-Meier 838 

plots of distant relapse-free interval (DRFI, Log-rank test) of the TNBC patients in the 839 

validation dataset stratified using: the BRCAmut/del status (h), the Telli2016 algorithm (i), the 840 

tnbcHRDscar algorithm (j). 841 

 842 

 843 

SUPPLEMENTARY FIGURE LEGENDS 844 

 845 

Supplementary Figure 1. Pan-cancer characterization of LOH shows unique patterns in 846 

HGSC. a. Box plots showing the number of LOH events larger than 3Mb and smaller than 847 

50Mb in the different cancer types. b Box plots showing the median length of LOH events 848 
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(longer than 3Mb and smaller than 50Mb) in the cancer types. c Hierarchical clustering of the 849 

cancer types using the median length, median number of LOH events per sample, and the 850 

skewness of the distribution of LOH length. d Violin- and box plots representing the number 851 

of LOH events in all HGSC samples as compared to TNBC (U test, p=0.005). Long horizontal 852 

lines represent the medians .e Violin and box plots representing the number of LOH events in 853 

BRCAmut HGSC samples as compared to TNBC (U test, p=0.021). f Violin and box plots 854 

representing the number of LOH events in BRCAwt HGSC samples as compared to the TNBC 855 

(U test, NS).  856 

 857 

Supplementary Figure 2. Descriptive statistics of HRD and HRP in HGSC. a Box plot 858 

showing the number of allelic imbalances in HRD (red) and HRP (blue) samples in OVA-859 

TCGA. b The average proportion of segments (AIs) equal or greater than the given length in 860 

HRD (red) and HRP (blue) samples, the blue and red lines correspond to smoothing using 861 

cubic splines, confidence intervals are shown in shaded colors. c Density distribution of LOH 862 

events in HRD (red) and HRP (blue) samples. d The accuracy of the new LOH criteria (blue 863 

boxes) and those utilized in Telli et al. (black box); the size of dots represents the decision 864 

tree balanced accuracy (BA) when using the corresponding cut-off, colors correspond to the 865 

statistical difference in abundance of AIs between HRD versus HRP samples (U test p value). 866 

e Accuracy of HR classification using three tandem allelic imbalances LSTs of a given 867 

minimum length (x axis) and distance between them smaller than 1 to 4 Mb (y axis). Dot sizes 868 

and colors are presented similarly as in panel d. f Upper panel: Visualization of the statistical 869 

difference (U test p-values) in the abundance of TAIs between HRD versus HRP samples for 870 

selected TAIs length. Lower panel: The dot sizes and colors in the lower panel correspond to 871 

the description in panel d and e. g Density distribution of HRD-AIs according to Telli2016 872 

algorithm, the red dashed line represents a cut-off vale of 54 to define the HR-status. The 873 

balanced accuracy (BA) of classifying the annotated HRD and HRP is shown, density 874 

distribution colors correspond to the samples annotated as in Fig. 2a. h OVA-TCGA samples 875 

stratified by genomic alterations and their corresponding ovaHRDscar levels. U test p values 876 
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are shown for the comparison of ovaHRDscar levels between the corresponding alterations 877 

as compared to the samples with CCNE1 amplification. i Bland-Altman plot that shows the 878 

concordance (Concordance correlation coefficient, CCC = 0.90) between the number of 879 

ovaHRDscars detected using SNP-arrays and WGS in the intersecting samples from OVA-880 

TCGA and PCAWG. j Correlation (Pearson, r=0.38) between the SBS3 proportion in WGS 881 

data from PCAWG versus the number of scars using the Telli2016 approach. Blue line shows 882 

the regression line, and the 95% confidence intervals are shown in grey. k The SBS3 status 883 

inferred using SigMA16 showing a higher agreement with ovaHRDscar (agreement=78.3%, 884 

Cohen's kappa = 0.56) than with the Telli2016 algorithm using an HRP/HRP cut-off value of 885 

54 (agreement=77.2%, Cohen's kappa = 0.53). In the pie charts and table + and - correspond 886 

to the number of HRD positive and HRD negative samples identified under each criterion, 887 

respectively. On the bottom is shown the number of samples and the level of agreement 888 

between the corresponding criteria. 889 

 890 

Supplementary Figure 3. ovaHRDscar shows an improved prediction of PFS and OS in 891 

HGSC patients. a to c Kaplan-Meier plots for PFS in the HERCULES cohort. The patients 892 

were stratified using different criteria: The BRCAmut/del status in the left panel (a), The 893 

Telli2016 algorithm in the middle panel (b) and The ovaHRDscar algorithm (c). d Cox 894 

regression models for PFS in HGSC patients using different selection criteria. The colors, rows 895 

and columns descriptions are the same as in Figure 3d. e to f Kaplan-Meier plots of PFS in 896 

the prospective TERVA cohort. The patients were stratified using: The Telli2016 algorithm on 897 

the left (e), the ovaHRDscar on the right (f). g Cox regression models for PFS in the TERVA 898 

cohort. The patients were stratified using different criteria. The colors, rows and columns 899 

descriptions are the same as in Figure 3d. h to j Kaplan-Meier plots for OS in the HERCULES 900 

cohort stratified using the different criteria: BRCAmut/del status on the left (h), the Telli2016 901 

algorithm (i) and the ovaHRDscar algorithm (j). k Cox regression models for OS adjusted for 902 

patient age at diagnosis in HGSC patients stratified using different criteria similarly as in Figure 903 

3h. l to m Kaplan-Meier plots for OS in the PCAWG cohort stratified using: the CHORD 904 
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signature on the left (l), the ovaHRDscar on the right (m). n Cox regression models for OS in 905 

the PCAWG cohort. Patients were stratified using CHORD and ovaHRDscar criteria; the dot 906 

colors, rows and columns descriptions are the same as in Figure 3d. 907 

 908 

Supplementary Figure 4. Inter and intra-patient variability of ovaHRDscar levels. 909 

A Left box plot for the difference of ovaHRDscar values between all possible intra-patients' 910 

samples pairs. Right box plot for the corresponding difference of ovaHRDscar values in all 911 

possible inter-patients' samples pairs in the HERCULES prospective cohort. b Samples from 912 

different anatomical sites with tumor purity and ovaHRDscar levels indicated. c The correlation 913 

between the difference of ovaHRDscar values between all intra-patient sample pairs and the 914 

difference in tumor purity of the corresponding sample pairs. Patient P4 was ignored as an 915 

outlier. d Color table of HR-status classification and HR-related genomic alterations using five 916 

different approaches to prioritize anatomical sites for ovaHRDscar calculations. e Cox 917 

regression models for PFS adjusted for the residual tumor after surgery in the HERCULES 918 

cohort using different algorithms and five different anatomical site prioritizations. Colors, rows 919 

and column descriptions are the same as in Figure 3d. 920 

 921 

Supplementary Figure 5. Machine learning-aided detection of HRD-AI in TNBC improves 922 

the prediction of clinical outcomes. a Generation of HRD-LST events. The size of the dots 923 

represents the decision tree balanced accuracy (BA) of the classification of HRD and HRP 924 

when selected LSTs with the corresponding criteria. The dot colors correspond to the 925 

statistical difference in abundance of the selected LSTs between HRD versus HRP samples 926 

(U test, p-value). The black box corresponds to the selection criteria proposed by Telli2016, 927 

blue box corresponds to the tnbcHRDscar BA and U test value. b Upper panel: Visualization 928 

of the change in p-values (U test) when selecting TAIs >1Mb (red dashed line). Lower panel: 929 

the difference in abundance of TAIs of selected length between HRD versus HRP samples. 930 

The dot sizes and colors in the lower panel correspond to the description in panel a. c to e 931 

Kaplan-Meier plots for OS in the TCGA's TNBC patients stratified using the different criteria; 932 
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c BRCAmut/del status on the left, d the Telli2016 algorithm, and e the tnbcHRDscar algorithm. 933 

f Cox regression models for PFS in HGSC patients stratified using different criteria, the dot 934 

colors descriptions are the same as in Figure 3d. g Cox regression models for OS in in the 935 

TCGA's TNBC patients stratified using the different criteria. h Cox regression models for DRFI 936 

in an independent TNBC patient cohort21 stratified using different criteria. i to j Kaplan-Meier 937 

plots for DRFI in an independent TNBC patient cohort21 stratified using: HRDetect based on 938 

whole genome sequencing data (i), the tnbcHRDscar based on SNP-array data (j). k Selection 939 

of different values to define the HRDetect-high/low status for patient stratification in the TNBC 940 

patient cohort21 and its association with DRFI (Log-rank test, p-value). Patients with 941 

intermediate HRDetect values were ignored. In blue line, the Log-rank p-value when using 942 

tnbcHRDscar in panel j. 943 
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