

1 **Universal protein misfolding intermediates can bypass the**
2 **proteostasis network and remain soluble and less functional**

3 Daniel Nissley^{1,†}, Yang Jiang^{1,†}, Fabio Trovato¹, Ian Sitarik¹, Karthik Narayan¹, Philip
4 To², Yingzi Xia², Stephen D. Fried^{2,3}, Edward P. O'Brien^{1,4,5*}

5 ¹Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

6 ²Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA

7 ³Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA

8 ⁴Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences,
9 Pennsylvania State University, University Park, PA 16802, USA

10 ⁵Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA
11 16802, USA

12 [†]These authors contributed equally to this research project

13 * to whom correspondence should be addressed: epo2@psu.edu

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 **ABSTRACT**

44

45 Misfolded protein conformations with decreased functionality can bypass the
46 proteostasis machinery and remain soluble *in vivo*. This is an unexpected
47 phenomenon as several cellular quality control mechanisms have evolved to rid cells
48 of misfolded proteins. Three questions, then, are: how is it structurally possible for
49 long-lived, soluble, misfolded proteins to bypass the proteostasis machinery and
50 processes? How widespread are these soluble, misfolded states across the
51 proteome? And how long do they persist for? Here, we address these questions using
52 coarse-grain molecular dynamics simulations of the synthesis, termination, and post-
53 translational dynamics of a representative set of cytosolic *E. coli* proteins. We predict
54 that half of all proteins exhibits subpopulations of misfolded conformations that are likely
55 to bypass molecular chaperones, avoid aggregation, and not be rapidly degraded.
56 These misfolded states may persist for months or longer for some proteins.
57 Structurally characterizing these misfolded states, we observe they have a large
58 amount of native structure, but also contain localized misfolded regions from non-
59 native changes in entanglement, in which a protein segment threads through a loop
60 formed by another portion of the protein that is not found in the native state. The
61 surface properties of these misfolded states are native like, suggesting they may
62 bypass the proteostasis machinery and its regulatory processes to remain soluble,
63 while their entanglements make these states long-lived kinetic traps, as
64 disentanglement requires unfolding of already folded portions of the protein. In terms
65 of function, we predict that one-third of proteins have subpopulations that misfold into
66 less-functional states that have structurally perturbed functional sites yet remain
67 soluble. Data from limited-proteolysis mass spectrometry experiments, which
68 interrogate the misfolded conformations populated by proteins upon unfolding and
69 refolding, are consistent with the structural changes seen in the entangled states of
70 glycerol-3-phosphate dehydrogenase upon misfolding. These results provide an
71 explanation for how proteins can misfold into soluble conformations with reduced
72 functionality that can bypass cellular quality controls, and indicate, unexpectedly, this
73 may be a wide-spread phenomenon in proteomes. Such entanglements are observed
74 in many native structures, suggesting the non-native entanglements we observe are
75 plausible. More broadly, these near-native entangled structures suggest a hypothesis
76 for how synonymous mutations can modulate downstream protein structure and
77 function, with these mutations partitioning nascent proteins between these kinetically
78 trapped states.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 INTRODUCTION

94
95 How soluble, misfolded protein populations with reduced functionality¹⁻³ bypass
96 cellular quality control mechanisms⁴ for long time periods is poorly understood.
97 Further, how common this phenomenon is across organismal proteomes has not been
98 assessed. These are important gaps in our knowledge to fill as the answers will offer
99 a more complete picture of protein structure⁵ and function in cells, may lead to
100 refinement of the protein homeostasis model⁶ of proteome maintenance, are likely to
101 be relevant to how synonymous mutations have long-term impacts on protein structure
102 and function⁷, and could reveal long-term misfolding on a scale greater than previously
103 thought.

104 Protein homeostasis (“proteostasis”) refers to the maintenance of proteins at
105 their correct concentrations and in their correct conformational states through the
106 action of a cohort of chaperones, degradation machineries, and protein quality control
107 pathways^{6,8}. It is typically posited that under normal (i.e., not stressed) cellular growth
108 conditions globular proteins *in vivo* attain one of three states: folded/functional,
109 misfolded/aggregated, or degraded. Various molecules work together to maintain
110 proteostasis by catalyzing the interconversion of proteins between these states⁹⁻¹¹.
111 For example, some chaperones in *E. coli*, such as GroEL/GroES⁹ and DnaK¹⁰, can
112 promote the folding of misfolded or unfolded proteins. Others, such as the set of
113 enzymes associated with the ubiquitin-proteasome system in eukaryotes, covalently
114 tag misfolded proteins for degradation¹². Yet others, such as *E. coli*’s ClpXP, have the
115 potential to break apart aggregates, allowing released monomeric proteins to be
116 degraded¹³. Many caveats and nuances exist in the proteostasis model. For example,
117 some insoluble protein aggregates, such as carboxysomes, are biologically beneficial
118 by spatially concentrating protein function¹⁴. Some non-native protein oligomers are
119 soluble¹⁵, and recently discovered biomolecular condensates¹⁶ represent a form of
120 phase separation in which proteins within a condensate remain soluble but
121 preferentially interact with each other over other cellular components. Additionally,
122 soluble proteins are not always functional because some require co- or post-
123 translational modifications^{17,18}.

124 The timescales involved with many proteostasis processes are often quite
125 short. Co-translationally acting chaperones bind ribosome nascent chain complexes
126 on time scales of tens of ms^[19], the ubiquitin-degradation machinery tags up to 30%
127 of eukaryotic nascent chains for immediate degradation after synthesis^{20,21}, and post-
128 translationally acting chaperones can generally refold misfolded proteins in seconds
129 or minutes²². Indeed, the FoldEco kinetic model of *E. coli* proteostasis indicates that
130 conversions between various states within the network occur with rate constants
131 typically on the order of seconds²³. Thus, according to the proteostasis model,
132 misfolded proteins should either be converted in a matter of seconds or minutes into
133 their folded state, be degraded, or form aggregates provided cells are not stressed
134 and the proteostasis machinery is not overwhelmed²⁴.

135 Synonymous mutations change the triplet of nucleotides between degenerate
136 mRNA codons encoding the same amino acid, leading to an altered mRNA sequence
137 that encodes the same protein primary structure. Such mutations can alter the
138 translation-elongation rate of ribosomes and have been found to alter the structure
139 and function of proteins for long timescales⁷. For example, translation of a
140 synonymous variant of the *frq* gene in the fungus *Neurospora* resulted in the synthesis
141 of FRQ protein with altered conformations that bound 50% less to a partner protein,
142 resulting in a significantly altered circadian rhythm that persisted for multiple days².

143 Many other proteins have been reported to exhibit altered structure or function upon
144 the introduction of synonymous mutations^{25–27}. The fact that these functional changes
145 occur in the soluble fraction of the proteome indicates it is not insoluble aggregation
146 driving this phenomenon. And importantly, such observations are inconsistent with
147 aspects of the proteostasis model, which predicts that any protein with a misfolded
148 (and less functional) structure should either refold, aggregate, or be degraded on
149 faster timescales.

150 One hypothesis that could resolve this discrepancy is that proteins can populate
151 an additional state. In this state, proteins are kinetically trapped over long timescales
152 in misfolded conformations with reduced functionality, but they do not have a
153 propensity to aggregate or interact with proteostasis machinery in excess of that of
154 folded proteins. If correct, this hypothesis raises a number of questions, including: (i)
155 what type of structures are adopted in this state? (ii) how do those conformations
156 simultaneously avoid folding, aggregation, and degradation in excess of that observed
157 for the native ensemble? (iii) how long do they persist? And (iv) what fraction of the
158 proteome exhibits this behavior?

159 Answering these questions requires a computational method that can access
160 the second to minute timescale of protein synthesis and maturation while providing
161 sufficient structural resolution to identify misfolded conformations and their properties.
162 We use a topology-based coarse-grain model that represents proteins with one
163 interaction site per residue placed at the coordinates of the C_α atom. This model folds
164 proteins 4-million times faster, on average, than in real systems²⁸, and was previously
165 used to accurately reproduce the co-translational folding time course of HemK N-
166 terminal domain²⁹. Coarse-grain simulations of a zinc-finger protein folding in the
167 ribosome exit tunnel were also found to agree with experimental cryo-EM structures³⁰,
168 indicating this method can reproduce realistic scenarios of folding on the ribosome.
169 Additionally, excellent agreement has been found between such topology-based
170 models and experimental assays monitoring force generation due to the folding of titin
171 I27 domain on and off the ribosome³¹. These examples highlight the utility of such
172 coarse-grain models to protein misfolding on and off the ribosome.

173 Here, we use such coarse-grain methods to simulate protein synthesis, co-
174 translational and post-translational folding, and estimate the fraction of molecules that
175 fold, misfold, interact with chaperones, aggregate, are degraded, or attain a functional
176 conformation. After first confirming that our model can reproduce post-translational
177 misfolding in Luciferase, we simulate a representative subset of the cytosolic *E. coli*
178 proteome, finding that a substantial proportion of newly synthesized proteins can adopt
179 misfolded conformations that are near-native in structure and thus likely to interact
180 with co- and post-translational chaperones in a manner similar to that of their native
181 states. These misfolded conformations expose a similar amount of aggregation-prone
182 surface area as the native ensemble, and therefore do not have an increased
183 propensity to aggregate. For some proteins, misfolding is localized near their
184 functional sites, indicating their functionality is reduced. We estimate that many of
185 these near-native misfolded states are kinetically trapped, exhibiting lifetimes on the
186 order of days to months. Our simulations predict that there is a universal structural
187 feature of these proteome-wide, soluble misfolded states.

188

189 RESULTS

190

191 **A coarse-grain model reproduces experimentally observed misfolding of Firefly**
192 **Luciferase.** The model we use for protein synthesis, folding, and function has been

193 shown to accurately predict experimentally measured changes in enzyme specific
194 activities³², indicating it reasonably describes protein structure-function relationships.
195 As an additional test, here we examine if the model is able to identify if a protein will
196 exhibit misfolded subpopulations. Firefly Luciferase, a 550-residue protein with four
197 domains, folds co-translationally³³. Specific activity experiments²⁵ have found that
198 some soluble, nascent Luciferase molecules misfold when translation speed is
199 increased. Even when synthesized from its wild-type mRNA in *E. coli* some Luciferase
200 molecules still fail to fold correctly²⁵. We therefore selected Luciferase as a test
201 system, judging that if it partitions into long-lived misfolded states in our simulations
202 when translated from its wild-type mRNA that our model is able to capture realistic
203 scenarios of misfolding.

204 We simulated Luciferase's synthesis, ejection from the ribosome exit tunnel,
205 and post-translational dynamics using a coarse-grain representation of the protein and
206 ribosome (Figure 1a-c, Table S1, Methods, and Eq. 1 and 2). Fifty statistically
207 independent trajectories were run. To characterize Luciferase's native conformational
208 ensemble we also simulated ten trajectories initiated from Luciferase's crystal
209 structure, which we refer to as "native-state simulations". To assess whether or not a
210 given Luciferase trajectory is misfolded we utilize the time-dependent mode of the
211 fraction of native contacts (Q_{mode}) and the probability that a non-native entanglement
212 ($P(G_k)$) has formed. We categorize a trajectory as misfolded if it has (i) a mean Q_{mode} ,
213 over the final 100 ns of the post-translational phase of the simulation, that is less than
214 the average from the native-state simulations, or (ii) a mean $P(G_k)$ for the different
215 possible changes in non-covalent lasso threading denoted $k = \{0, 1, 2, 3, 4\}$ of 0.1 or
216 greater over the final 100 ns of the trajectory, or (iii) both (i) and (ii) occur (see
217 Methods). Conditions (i) and (ii) correspond to perturbations of structure relative to the
218 native state as defined by the fraction of native contacts and entanglement,
219 respectively. Based on this definition, 46% (95% Confidence Interval [32%, 60%],
220 calculated from bootstrapping 10^6 times) of nascent Luciferase molecules misfold
221 (Figure 1d-e, Methods). We observe that when Luciferase misfolds, it misfolds 100%
222 of the time in the second domain (based on $\langle Q_{\text{mode}} \rangle$), which is composed of residues
223 13-52 and 212-355. These misfolded Luciferase structures are near-native, with a
224 5.5% decrease in the overall fraction of native contacts ($\langle Q_{\text{overall}} \rangle = 0.86$, computed
225 over the final 100 ns of misfolded trajectories) compared to the native ensemble
226 ($\langle Q_{\text{overall}} \rangle = 0.91$). Thus, a large proportion of nascent Luciferase misfolds into near-
227 native conformations that typically involve misfolding of the second domain.

228 The motivating experiments on Luciferase were carried out in the presence of
229 the endogenous *E. coli* proteostasis machinery²⁵. To predict whether the Luciferase
230 misfolded states produced by our model are likely to display reduced specific activity
231 *in vivo* we therefore need to determine four things. They must (i) evade chaperones to
232 remain misfolded, (ii) not aggregate, (iii) not get degraded, and (iv) the residues
233 involved in function must be structurally perturbed. The chaperone trigger factor (TF)
234 binds nascent proteins co-translationally, DnaK interacts both co- and post-
235 translationally, while GroEL/GroES is primarily a post-translational chaperone.
236 Interactions with TF³⁴ or GroEL/GroES⁹ are thought to occur by the non-specific
237 recognition of exposed hydrophobic patches on client proteins co- and post-
238 translationally, respectively. DnaK, however, is hypothesized to interact with specific
239 binding sites within a protein's sequence³⁵.

240 To estimate whether misfolded Luciferase is likely to interact with TF we
241 computed the average relative difference between the hydrophobic solvent accessible
242 surface area (SASA) of each misfolded trajectory to the folded population (denoted

243 $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle$, Eq. 9 and Methods) during synthesis. The value of $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle$ is $\leq 10\%$
244 for 16 of 23 misfolded trajectories, meaning that they display less than a 10% increase
245 in hydrophobic SASA during synthesis relative to the folded population of trajectories.
246 This indicates that a majority of misfolded Luciferase molecules will not interact with
247 TF much more than a properly folded Luciferase molecule (see Methods). Though TF
248 accelerates protein folding under force³⁶, under normal conditions it is also thought to
249 act as a holdase³⁴. Thus, we conclude that our co-translational Luciferase misfolded
250 states can misfold into conformations that do not interact with TF in a manner that
251 accelerates folding, allowing these misfolded states to persist post-translationally.

252 Next, to determine whether misfolded conformations of Luciferase are likely to
253 interact with GroEL/GroES post-translationally, we computed the average relative
254 difference between the hydrophobic SASA of each misfolded conformation in the final
255 100 ns and its value in the native-state simulations ($\langle \zeta_{\text{hydrophobic}} \rangle$, Eq. 10, Methods).
256 The value of $\langle \zeta_{\text{hydrophobic}} \rangle$ for Luciferase is $\leq 10\%$ for 9 of 23 misfolded trajectories,
257 indicating that these misfolded states expose only a small excess of hydrophobic
258 SASA relative to the native ensemble, and are therefore not likely to be engaged by
259 GroEL/GroES.

260 Finally, to estimate whether misfolded Luciferase structures are more likely to
261 interact with DnaK than the native state, we computed $\langle \zeta_{\text{DnaK}} \rangle$ (Eq. 11), the average
262 relative difference in SASA of residues predicted to be DnaK binding sites by the Limbo
263 algorithm³⁵ in the final 100 ns for all misfolded trajectories. We find that 22 out of 23
264 misfolded trajectories have $\langle \zeta_{\text{DnaK}} \rangle \leq 10\%$, indicating that DnaK is unlikely to
265 preferentially bind to these misfolded states any more than it is to the native state.
266 Thus, some of Luciferase's misfolded states are unlikely to interact with TF,
267 GroEL/GroES, or DnaK, and thus bypass the *E. coli* chaperone network (Figure S1a).

268 The next key question is whether or not these misfolded Luciferase structures,
269 having bypassed chaperone quality controls, are likely to remain soluble or to
270 aggregate or be degraded. In the original experiments by Barral and co-workers,
271 centrifugation was used to remove aggregates from the soluble fraction. To estimate
272 whether the misfolded Luciferase structures from our simulations will aggregate we
273 used the AMYLPRED2³⁷ webserver to identify residues in the Luciferase amino acid
274 sequence that lead to aggregation when exposed to solvent. We then computed $\langle \zeta_{\text{agg}} \rangle$
275 (Eq. 12), the average relative difference in SASA between these aggregation-prone
276 residues in the final 100 ns of each misfolded trajectory in comparison to the same
277 residues in the native-state simulations. We find that 12 of 23 misfolded trajectories
278 have $\langle \zeta_{\text{agg}} \rangle \leq 10\%$, indicating that these misfolded conformations display only a minor
279 increase in aggregation propensity and are likely to remain soluble.

280 Finally, we considered the likelihood that misfolded Luciferase will be targeted
281 for degradation. Degradation in *E. coli* is carried out primarily by proteases coupled to
282 AAA+ ATPase motor proteins³⁸, including ClpXP and Lon, that recognize and degrade
283 misfolded or aggregated proteins. Misfolded protein structure contributes to
284 degradation³⁹, and therefore, like our GroEL/ES assessments, we use $\langle \zeta_{\text{hydrophobic}} \rangle$ to
285 quantify how similar misfolded Luciferase conformations are to the native state. For 9
286 of 23 misfolded Luciferase trajectories $\langle \zeta_{\text{hydrophobic}} \rangle$ is $\leq 10\%$, indicating they are
287 unlikely to be degraded more quickly than native Luciferase.

288 Having determined that some misfolded conformations of Luciferase can evade
289 chaperones, aggregation, and degradation, the final question is whether their function
290 is decreased relative to native Luciferase. To answer this question, we identified the
291 residues that take part in Luciferase's bioluminescence, defined as those residues

292 within 4.5 Å of the 5'-O-[N-(dehydroluciferyl)-sulfamoyl]-adenosine ligand in PDB
293 structure 4G36, in addition to all residues identified in the UniProt database⁴⁰ to have
294 a role in its catalytic mechanism. To quantify the difference in structure of residues
295 involved in Luciferase's catalytic mechanism, we compute the average relative
296 difference between the structures sampled in the final 100 ns of each misfolded
297 trajectory and native Luciferase in terms of the structural overlap function ($\langle \chi_{\text{func}} \rangle$) over
298 residues implicated in its function (see Eq. 13-15 and Figure 1b, c, f, g, and h). Positive
299 values of χ_{func} indicate perturbed structure relative to the native state simulations. We
300 find that 15 of 23 misfolded Luciferase trajectories have $\langle \chi_{\text{func}} \rangle \geq 10\%$, indicating that
301 they have significantly perturbed structure at functionally important sites relative to the
302 native state (Figure 1f). For example, Figures 1g and 1h show the binding pocket at
303 the final frames of folded and misfolded, soluble, but non-functional Luciferase
304 trajectories. The binding pocket structure is perturbed such that it impinges on the
305 substrate location. Since structure equals function, this result indicates that the
306 efficiency of the enzymatic reaction carried out by misfolded Luciferase will be less
307 efficient than in its native fold.

308 Cross-referencing the lists of misfolded trajectories that are likely to avoid
309 chaperones, aggregation, degradation, and exhibit reduced function, we find that one
310 trajectory displays all of these characteristics and likely remains soluble but less
311 functional than native Luciferase (Figure S1b). Our simulation results are thus
312 qualitatively consistent with the experimental observation that some nascent
313 Luciferase molecules misfold when translated from its wild-type mRNA. While a
314 misfolded state that is only populated by 2% of protein molecules is unlikely to strongly
315 influence the cell, perturbations to Luciferase translation-elongation kinetics by
316 synonymous mutations might increase this population beyond 2%. In general, these
317 results indicate that our coarse-grain simulation protocol for nascent protein synthesis,
318 ejection, and post-translational dynamics is able to recapitulate nascent protein
319 misfolding.

320 **Simulating a representative subset of the *E. coli* cytosolic proteome.** It is not
321 computationally feasible to simulate all 2,600 cytosolic *E. coli* proteins. Therefore, to
322 investigate the extent of nascent protein misfolding within the *E. coli* proteome we
323 constructed models for a representative subset of 122 proteins. This set of proteins
324 has the same distributions of protein length and structural class, and a similar ratio of
325 multi- to single-domain proteins as the entire *E. coli* proteome⁴¹ (Table S2). The
326 details of the parameterization of these models are described in Ref. 41. Each protein
327 was synthesized on the same coarse-grain ribosome representation as Luciferase and
328 their post-translational dynamics simulated for 30 CPU days per trajectory. Larger
329 proteins take longer to simulate. Therefore, this fixed post-translational simulation run
330 time resulted in trajectories of different durations due to different protein sizes. The
331 simulation time in the post-translational phase therefore ranged between 2.7 and
332 154.1 μ s per trajectory. Because our coarse-grain model exhibits an approximately
333 four-million fold acceleration of folding dynamics²⁸, due to decreased solvent
334 viscosity⁴² and a smoother free-energy landscape⁴³, these post-translational
335 simulation times correspond approximately to experimental times of 11.0 to 611
336 seconds, respectively. As with Luciferase, ten trajectories were also initiated from the
337 crystal structure of each protein and simulated for 30 CPU days to serve as reference
338 simulations representing the native-state structural ensemble.

339
340

341 **Two thirds of nascent *E. coli* proteins populate misfolded states.** A fundamental
342 question our simulation data set can address is how common nascent protein
343 misfolding is across *E. coli*'s cytosolic proteome. As with Luciferase, we use the
344 fraction of native contacts and entanglement as measures of misfolding. We find that
345 66% of proteins (80 out of 122) remain misfolded in at least one trajectory, 40% of
346 proteins are misfolded in at least 20% of trajectories (49 out of 122), and 7% are
347 misfolded in 100% of trajectories (9 out of 122). The proteins in these various
348 categories are summarized in Table S4; Figure 2a displays a histogram of the
349 probability of misfolding over the 122 different *E. coli* proteins simulated. In total, 27%
350 of the simulation trajectories (1,631 out of 6,100) of the *E. coli* cytosolic proteome
351 remain in misfolded conformations after 30 CPU days of post-translational dynamics.
352

353 **Many misfolded states are similar to the native state.** Misfolded conformations that
354 are very different from the native state will likely interact with the proteostasis
355 machinery. To characterize the closeness of misfolded states to the native state
356 across our set of misfolded conformations we calculated the absolute percent change
357 in the mean overall fraction of native contacts $\langle Q_{\text{overall}} \rangle$ (in this case, computed over
358 all residues in secondary structures within each protein, rather than for individual
359 domains or interfaces) between each protein's native state simulations and the mean
360 Q in the final 10 ns of each misfolded trajectory (Figure 2b). We observe that 76% of
361 misfolded trajectories (1,242 out of 1,631) have $\leq 20\%$ change in mean Q in
362 comparison to the native state, while 58% of trajectories (939 out of 1,631) misfold
363 and have a $\leq 10\%$ change in Q . 9% of trajectories (144 out of 1,631) have a $\leq 1\%$
364 change in Q . These calculations indicate that a large proportion of trajectories that
365 misfold populate states that are native-like. Therefore, many *E. coli* proteins can
366 populate kinetically trapped near-native conformations that are structurally similar to
367 the native state.
368

369 **Misfolded states can persist for days or longer after release from the ribosome.**
370 Misfolded conformations that persist for just a few minutes before properly folding are
371 unlikely to have downstream consequences in a cell. To estimate the range of folding
372 times for misfolded conformations we computed the survival probability of the unfolded
373 state, $S_U(t)$, for each protein domain and interface and extracted their characteristic
374 folding timescales using a three-state folding model, which reports folding timescales
375 for the fast- and slow-folding phases (see Methods). For a protein to be considered
376 folded all its component domains and interfaces must be folded. Furthermore, since
377 folding pathways that pass through misfolded states take longer to reach the native
378 state, the slow-folding phase reflects the time scale of these pathways. Therefore, for
379 a given protein, we interpret the longest, slow-folding phase time as the time scale of
380 the misfolded state reaching the native state. In total, we are able to reliably determine
381 folding times for 73 out of 122 proteins, with fit equations for other domains having
382 small Pearson R^2 values indicative of low-quality estimates. These extrapolated
383 folding times for the slow phase were then mapped onto experimental times using the
384 acceleration factor associated with the coarse-grained model²⁸ (see Methods). The
385 25th, 50th, 75th, and 95th percentile mean folding times for the slow phase are 1.41 s,
386 50.9 s, 1.19×10^7 d, and 3.83×10^{16} d, respectively, and the full range of times extend
387 from 0.04 s to 1.08×10^{22} d (Figure 2c, Table S5). While values at very long times
388 have larger uncertainties, as small differences in the fit parameters will lead to large
389 variation in the extrapolated folding times, these results clearly indicate that many of
390 these misfolded states can persist for many days or longer after synthesis.

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

Half of the proteome misfolds and bypasses the chaperone machinery. Misfolded proteins are engaged by various chaperones both co- and post-translationally that help direct their correct folding. So, we next determined how many of the trajectories that exhibit misfolding in our simulations are likely to evade chaperone-dependent quality control mechanisms. As was done for Luciferase, we considered the interactions of each of our 1,631 misfolded trajectories with TF, GroEL/GroES, and DnaK based on the relative difference between the SASA of specific subsets of residues in the misfolded ensemble versus the native state ensemble (see Methods, Eqs. 9-11). We find that 1,053 misfolded trajectories, representing 70 unique proteins, are not likely to interact with TF, as they display $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle \leq 10\%$ or are too short to engage with it co-translationally (see Methods, Table S6, and Figure S2). A total of 1,411 of misfolded trajectories representing 80 unique proteins are either not known GroEL/GroES⁴⁴⁻⁴⁶ clients or have $\langle \zeta_{\text{hydrophobic}} \rangle \leq 10\%$, and are therefore not likely to interact excessively with GroEL/GroES (Table S6, Figure 2d). Finally, we find that 1,115 misfolded trajectories representing 74 unique proteins are either not confirmed DnaK clients or have $\langle \zeta_{\text{DnaK}} \rangle \leq 10\%$ and are therefore unlikely to interact with DnaK excessively (Figure S3). A total of 731 trajectories representing 64 different proteins are misfolded and unlikely to interact with TF, GroEL/GroES, or DnaK (Table S6, Figure S4). These results indicate that 52% of proteins in our representative sample (64 out of 122 unique proteins) exhibit misfolded subpopulations that can bypass chaperones.

414
415
416
417
418
419
420
421
422
423
424
425

Half of the proteome misfolds and remains soluble. We next assessed how many of the 1,631 trajectories in which the protein misfolds represent conformational states that are likely to remain soluble. For each protein we computed $\langle \zeta_{\text{agg}} \rangle$, the average relative difference in SASA of residues predicted to be aggregation prone computed over the final 100 ns for each misfolded trajectory, to quantify the difference in aggregation propensity for the misfolded population relative to the native state simulations (see Methods, Eq. 12). Of the 1,631 misfolded trajectories, 814 have $\langle \zeta_{\text{agg}} \rangle \leq 10\%$, indicating they are not likely to aggregate in excess of what is observed for the native state (Table S7, Figure S5). We conclude that these trajectories, representing 56% of the proteins in the sample (68 out of 122), are unlikely to aggregate.

426
427
428
429
430
431
432
433
434
435
436

Half of the proteome misfolds and does not exhibit excess degradation. Next, we examined how many misfolded proteins are likely to avoid rapid degradation. We did this by computing $\langle \zeta_{\text{hydrophobic}} \rangle$, which characterizes the percent difference between the total hydrophobic SASA of misfolded trajectories in comparison to the set of native-state simulations (Eq. 10). The values of $\langle \zeta_{\text{hydrophobic}} \rangle$ for 896 misfolded trajectories are $\leq 10\%$, indicating they are unlikely to be targeted for degradation. These 896 misfolded trajectories predicted to bypass degradation represent 57% (70 out of 122) unique proteins (Table S7, Figure 2d). Thus, a majority of proteins can populate, to varying degrees, misfolded states that are not expected to be degraded at rates much faster than their native fold.

437
438
439

Half of the proteome misfold into conformations that bypass all aspects of the proteostasis machinery in *E. coli*. Misfolded conformations that do not engage chaperones, do not aggregate, and are not degraded in excess of the native state will

440 remain soluble within the cell for a similar time scale as the native state. We cross-
441 referenced our lists of misfolded trajectories that fall into each of these categories,
442 finding that 8% of all trajectories simulated (517 out of 6,100) misfold into such soluble
443 conformations, and 47% of proteins (57 out of 122) have at least one such trajectory
444 (Table S8). Thus, nearly half of proteins in our sample have subpopulations of
445 misfolded states that will bypass all aspects of protein homeostasis and stay misfolded
446 for biologically long time periods.

447

448 **Half of the proteome misfolds and will exhibit altered function.** Next, we examined
449 what percentage of the proteome misfolds and is likely to exhibit reduced function. To
450 answer this question, we constructed a database identifying residues that take part in
451 the function of each of the 122 proteins in our data set based on information available
452 in PDB and UniProt database entries. These functional residues were identified based
453 on whether they were in contact with substrates (such as other biomolecules, small-
454 molecule compounds, or ions) in their PDB structures, as well as based on UniProt's
455 identification of functional residues (see Methods). We then computed the mean
456 relative difference in the structural overlap function of these functional residues in the
457 final 100 ns of misfolded trajectories relative to the native state reference simulations
458 ($\langle \chi_{\text{func}} \rangle$, see Methods). We find that 62% of misfolded trajectories (1,019 out of 1,631)
459 have $\langle \chi_{\text{func}} \rangle \geq 10\%$, indicating that structure at their functional sites are significantly
460 perturbed as well as their function. These trajectories represent misfolded
461 conformations of 69 unique proteins, indicating that 57% of the proteome can populate
462 misfolded conformations likely to exhibit reduced function (Table S8, Figure 2e).

463

464 **One-third of proteins exhibit soluble, misfolded, native-like states with reduced
465 functionality.** We next determined which of our 122 proteins misfold, evade
466 chaperones, aggregation, degradation, and display reduced function. We find that
467 31% of proteins (38 out of 122) and 3% of all trajectories (186 out of 6,100) can bypass
468 proteostasis machinery and display decreased function (Table S8, Figure 2f). The
469 extrapolated folding times of these 38 soluble but non-functional proteins range from
470 2.13 s to 1.07×10^{22} days with a median predicted folding time of 1.05×10^{12} days,
471 indicating that their function is likely to be perturbed for long timescales.

472

473 **Intra-molecular entanglement drives long-lived, soluble misfolded
474 conformations.** To determine what characteristics, if any, the misfolded
475 conformations of different proteins have in common, we used the Gauss linking
476 number calculated from linking between a closed loop formed by a native contact
477 between residues i and j and the pseudo-closed loops formed by the flanking termini,
478 $g(i, j)$ ⁴⁷. This quantity provides a useful measure of whether subsections of the protein
479 chain are entangled with each other⁴⁸. Misfolding, or changes in the linkage between
480 the two closed loops, can then be identified by changes in the Gauss linking number
481 of specific native contacts between a reference structure and a target structure (Figure
482 3a, b).

483

484 To determine whether or not misfolded states tend to be entangled, we
485 generated a 2-by-2 contingency table (Figure 3c) tabulating the co-occurrence of
486 misfolding based on $\langle Q_{\text{mode}} \rangle$ and the presence of an entanglement. We find an odds
487 ratio of 48.1 ($p < 10^{-100}$, Fisher's Exact test), indicating that entanglement and
488 misfolding frequently co-occur, with 82% of misfolded states containing an
489 entanglement. Thus, misfolding is predominantly driven by entanglement of segments
of the nascent protein with each other.

490 We hypothesized that due to the large energetic barrier needed to disentangle
491 entanglements, the most long-lived misfolded states in the *E. coli* proteome would tend
492 to be entangled. To test this hypothesis, we generated a second 2-by-2 contingency
493 table and counted how frequently slow- and fast-folding proteins tend to be entangled
494 (Figure 3d). Proteins with an extrapolated folding time for the slow phase greater than
495 the median were considered to be slow folding; and a protein's misfolded state is
496 considered entangled if $\geq 50\%$ of its misfolded trajectories display an entanglement
497 We find an odds ratio of 15.0 ($p = 5.0 \times 10^{-7}$, Fisher's Exact test) indicating that the
498 presence of entangled misfolded structures are 15 times more likely to be associated
499 with slow folding. Thus, entanglement is the primary cause of long-lived misfolded
500 states.

501 Finally, we further hypothesized that, because entangled conformations can
502 represent local minima with only small structural perturbations relative to the native
503 state, the set of 186 trajectories predicted to bypass proteostasis machinery to remain
504 soluble but non-functional for long timescales should be enriched in entangled
505 structures. We find that 94% of these trajectories are entangled (174 out of 186), and
506 that there is a strong association between escaping proteostasis machinery and the
507 presence of an entanglement (odds ratio 59.2, $p = 3.4 \times 10^{-102}$, Fisher's Exact test;
508 Figure 4).

509 Taken together, these results demonstrate that the formation of entanglements
510 entangled misfolded states lead to long-lived kinetic traps that can bypass the
511 proteostasis machinery.

512 **An in-depth case study.** To illustrate our key findings, it is useful to consider the
513 structural basis of misfolding for one protein in-depth. We focus on glycerol-3-
514 phosphate dehydrogenase, which has the largest proportion of misfolded trajectories
515 that are predicted to bypass the proteostasis machinery (see Figure 4). It consists of
516 two domains composed of residues 1-387 and 388-501 (Figure 5a). As part of its
517 biological function, glycerol-3-phosphate dehydrogenase uses a flavin adenine
518 dinucleotide cofactor (Figure 5a, dark blue). In our post-translational simulations 74%
519 ($=37/50$) of trajectories misfold, yet they only exhibit a 4.7% decrease in the fraction of
520 native contacts relative to the native-state simulations (Figures 5b, c). Thus, these
521 misfolded states resemble the native ensemble. This protein also folds extremely
522 slowly, with Domain 1, Domain 2, and the interface between Domains 1 and 2
523 estimated to require, respectively, on the order of 10^{16} , 10^{15} , and 10^{21} seconds to fold
524 (Figure 5d). These misfolded states are, however, expected to evade chaperones,
525 aggregation, and degradation to remain soluble based on the similarity of their surface
526 properties to that of the native ensemble (Figure 5e). Twenty-five misfolded
527 trajectories (50%) also exhibit notably reduced structure at functional sites, including
528 around the cofactor, despite being well folded overall (Figure 5f, g, and h). In 92%
529 ($=34/37$) of these misfolded trajectories a non-native entanglement is present. These
530 results exemplify how entangled misfolded states can perturb portions of a protein
531 critical for function in ways that are structurally subtle compared to gross deformations
532 typically associated with misfolded proteins (Figure 5d and h).

533 **An experimental test for structural changes associated with entanglement.** To
534 test these predictions for glycerol-3-phosphate dehydrogenase we carried out
535 protease digestion mass spectrometry (see Methods) in which whole extracts from
536 cells were globally unfolded by incubation in 6 M guanidinium chloride, and refolded
537 by rapid dilution. The structures of the refolding proteins were then interrogated with

540 pulse proteolysis with proteinase K (PK), which specifically cuts at exposed or
541 unstructured sites. The resulting fragments were identified and quantified with mass
542 spectrometry and compared to those from native lysates that were never unfolded.
543 Protease digestion was carried out at 1-min, 5-min, and 120-min timepoints after
544 refolding conditions were established, and glycerol-3-phosphate dehydrogenase's
545 digestion pattern is observed to change over these time points (see Methods and
546 Supplementary Data File 1). We consider in our analysis only those peptides that show
547 a greater than 3.5-fold difference in abundance in the refolded sample versus native
548 sample ($|\log_2 \left(\frac{R}{N} \right)| > 1.8$, Column W in Supplementary Data File 1 sheet labeled
549 "GlpD") and whose difference is statistically significant ($p < 0.01, -\log_{10}(p) > 2$,
550 Column Y in same sheet, see Methods⁴⁹). A total of ten unique peptides meet these
551 criteria at one or more experimental time points. At 1 min residue V203 and residues
552 [333-354] are significantly more exposed in the refolded sample than in the native
553 sample. At 5 min L293, F351, Q487, and P387 are more exposed in the refolded than
554 native sample, while V203 and [333-354] are no longer found to be different between
555 refolded and native. After 120 min, seven exposed peptides are found: [333-354],
556 F351, and L293 once again appear more exposed in refolded than native, while Y313,
557 [284-302], D437, and G422 emerge as more exposed in the refolded sample. No one
558 peptide is found to be more exposed in the refolded than native samples at all three
559 time points, though L293, F351, and [333-354] are more exposed at two time points.
560 These experimental data indicate that some glycerol-3-phosphate dehydrogenase
561 molecules that fail to arrive at the native structure rapidly populate misfolded
562 structures.

563 To test if the entanglements we observe in simulations of glycerol-3-phosphate
564 dehydrogenase can explain these digestion patterns, we structurally clustered the
565 coarse-grain conformations from the final 100 ns of our simulations (based on their G
566 and Q_{overall}) into eight metastable states denoted $\{S_1, S_2, \dots, S_8\}$. We focus on
567 segment [333-354] and residues F351 and L293 because these peptides persist in the
568 experiments, being present at either the 1- or 5-min timepoints *and* the 120-min
569 timepoint. In seven out of eight states an entanglement is present, with states S5, S7,
570 and S8 the most native like (Table S11). The entangled loop or threading segments in
571 these states overlap with one or more peptide fragments in five out of eight states.
572 Structure near cleavage sites is still perturbed even when the entangled region does
573 not overlap with them. For example, the threading of residues 218-237 through the
574 loop formed by residues 271-288 in S2 does not contain residues L293, F351, or
575 segment [333-354]. However, this entanglement increases the solvent accessible
576 surface area of these segments (Figure 5i). This is most clearly seen for F351, which
577 in the native state forms part of a β -sheet buried beneath the threading segment
578 residues (Figure 5i, middle panel, "Folded" structure). When this set of residues
579 becomes entangled by threading through the loop ("Misfolded" structure in Figure 5i),
580 the thread is kinetically trapped in a position that exposes F351 much more than in the
581 native fold. Calculating the solvent accessible surface area change (Eq. 16) of these
582 fragments in each metastable state we find broad agreement with the experimental
583 data (Table S11). Each of the seven entangled metastable states displays increased
584 solvent accessibility at each of the three locations.

585
586
587
588

589 **DISCUSSION**

590

591 Previous work has established that soluble, long-lived, non-functional protein
592 misfolded states can arise from alteration of translation-elongation kinetics. To the best
593 of our knowledge, this study is the first to estimate the extent of this phenomenon
594 across the nascent proteome of an organism and examine the structural and kinetic
595 properties of these kinetically trapped states. We predict that a majority of cytosolic *E.*
596 *coli* proteins exhibit subpopulations of misfolded, kinetically trapped states, and that
597 many of these misfolded states are similar enough to the native state to evade the
598 proteostasis machinery in *E. coli*. We estimate that one-third of cytosolic *E. coli*
599 proteins have subpopulations that misfold into near-native conformations that have
600 reduced function and bypass the proteostasis network to remain soluble and non-
601 functional for days or longer.

602 To appreciate these results, it is useful to understand the types of misfolding
603 that can and cannot occur in our simulation model. The coarse-grain forcefield is
604 parameterized for each protein based on its crystal structure, with this native-state
605 conformation encoded as the potential energy minimum in the form of a G_0 -based
606 energy function (Eq. 1). This means that the native state is the global free energy
607 minimum at our simulation temperatures; any other state is metastable. Another
608 consequence of this type of model is that misfolding involving non-native tertiary
609 structure formation is not possible. Thus, the misfolded states our model can populate
610 are topologically frustrated states that are kinetic traps⁵⁰. A kinetic trap is a local
611 minimum separated from other conformations in the ensemble by energy barriers
612 much larger than thermal energy, making the attainment of the native state a slow
613 process for some protein subpopulations. In our model, intra-molecular entanglements
614 can occur. These entanglements consist of two parts: a contiguous segment of the
615 protein that forms a ‘closed’ loop, where the loop closure is geometrically defined as
616 a backbone segment that has a native contact between two residues at its ends, and
617 another segment of the protein that threads through this loop (Figure 3).

618 Proteins can misfold by a variety of mechanisms. For example, Bitran and co-
619 workers⁵¹ suggest that non-native contacts appear to play an important role in kinetic
620 trapping of some proteins. Misfolding has also been observed via domain swapping⁵²,
621 in which highly similar portions of proteins swap with one another. Our results are not
622 mutually exclusive with these other types of misfolding; indeed, one can imagine
623 situations in which domain swapping involves the introduction of an entanglement, or
624 in which non-native contacts form entanglements. Understanding the overlap and
625 interplay of these various types of misfolding in real systems is an interesting open
626 question.

627 It was previously hypothesized⁵³ that like protein topological knots⁵⁴ (which
628 persist when pulling on both termini), this type of entanglement, which we refer to as
629 a non-covalent lasso entanglement⁵⁵, would generate topological frustration and be a
630 kinetic trap. Simulations of proteins with topological knots in their native state⁵⁰
631 observed that the wrong knot could form and that many of these states were long-lived
632 kinetic traps as they required ‘backtracking’⁵⁶ (i.e., unfolding) to fix the knot. While only
633 3 of the 122 proteins (gene names *rlmB*, *metK*, and *rsmE*) in our study contain
634 topological knots in the native state, the non-covalent lasso entanglement
635 intermediates we observe are non-native pseudoknots⁵⁴ (which unravel when pulling
636 on both termini), and require either reptation of the threaded protein segment out of
637 the closed loop (Figure 3) or local unfolding of the loop surrounding the threaded
638 segment to disentangle. Thus, the results of this study bridge the rich field of polymer

639 topology with biologically important consequences for in vivo protein structure and
640 function.

641 A potential criticism of this work is that the non-native entanglements we
642 observe may be an artifact of our coarse-grained modeling of proteins. Several lines
643 of evidence indicate this criticism is unfounded. A sufficiently long linear polymer
644 performing a random walk will always sample knotted structures. Thus, it is a
645 fundamental polymer property that knots and entanglements have the potential to
646 form⁵⁷. In a recent study, four entangled structures produced from our coarse-grained
647 model were back-mapped and simulated using classical, all-atom molecular
648 dynamics³². The entanglements, and native-like structure of these states persisted for
649 the entire 1 μ s simulation time. In another study, one-third of the protein crystal
650 structures in the CATH database were found to contain in the native state the same
651 types of entanglements we observe as intermediates⁵⁸. Taken together, these results
652 indicate that the entanglements we observe are realistic non-native intermediates that
653 have the potential to be populated by many proteins.

654 Two differences between our simulations and the limited-proteolysis data we
655 compare to lie in the preparation of the proteins and limits of detection. In the
656 experiment proteins are prepared in a chemically denatured state and then allowed to
657 refold, compared to folding concomitant with or after translation. Protein's that are
658 prone to misfolding during translation are likely to be prone to misfolding during bulk
659 refolding. Thus, while it is not necessary that the same misfolded states be populated
660 under these two different situations, the consistency between the misfolded entangled
661 states of glycerol-3-phosphate dehydrogenase and the persistent and significant
662 protease fragments from the experiment indicates similar misfolded states do occur.
663 Secondly, our computational workflow can detect proteins that misfold as little as 2%
664 of the time (1 misfolded trajectory out of 50); on the other hand, to filter signal from
665 noise, protein regions are only considered more (or less) exposed in the refolded form
666 relative to native if the corresponding PK-fragment is >2-fold (i.e., $\log_2 \left(\frac{R}{N} \right) > 1$ with p
667 < 0.01) more (or less) abundant in the proteolysis reaction. Thus, the sensitivity of this
668 approach to misfolded states with low populations is lower, and needs to be
669 considered when comparing to the simulations results.

670 The majority of proteins simulated in this study misfold in some capacity. And
671 38 unique proteins, or about one-third of the proteins we simulated, have one or more
672 trajectories that remain soluble and non-functional due to misfolding. Projecting this
673 proportion across the entire set of 2,600 proteins that make up the cytosolic *E. coli*
674 proteome, we estimate that approximately 806 proteins may exhibit misfolding into
675 soluble states. Given that a reduction in the function of a protein has the potential to
676 influence multiple cellular processes, this result suggests that these misfolded states
677 could exert wide-spread influences on cell behavior and phenotype. We also note that
678 it is not only proteins that bypass all aspects of proteostasis and remain non-functional
679 that can negatively impact cells. For example, protein conformations that avoid
680 chaperones and degradation but then go on to aggregate may lead to the
681 accumulation of amyloid fibrils.

682 Changes to the speed of translation, such as those that may be introduced by
683 synonymous mutations in a protein's mRNA template, can strongly influence the ability
684 of proteins to fold⁷. The simulation results described here were generated using the
685 wild-type translation rate profile for each protein (see Methods). Experiments have
686 shown that changing translation speed can alter the subpopulation of soluble, less
687 functional states several fold. Thus, the population of proteins that misfold have the

688 potential to be significantly altered in our computer simulations what translation-
689 elongation rates are altered. These complexities make exploration of the influence of
690 translation kinetics on the propensity of the *E. coli* proteome to misfold an interesting
691 direction for future research.

692 One of the most fundamental timescales of a protein is its half-life, which gives
693 a measure of the lifetime of a typical copy of a protein between its synthesis and
694 degradation. If misfolded states persist on the same timescale as the protein half-life
695 then protein function will be perturbed for most of that protein's existence.
696 Unfortunately, we are unaware of any proteome-wide studies of protein half-lives in *E.*
697 *coli*. However, based on studies of protein lifetimes in budding yeast⁵⁹ and human
698 cells⁶⁰, which found median half-lives of 43 min (range 2 min to 81 days) and 36 h
699 (range: 8 h to 153 days), respectively, we estimate that typical half-lives in *E. coli* range
700 from minutes to hours. Many of our extrapolated folding times from our simulations are
701 on the same order of magnitude as these values or greater, indicating that misfolded
702 but states with reduced function can persist for the entire lifetime of a protein. This is
703 consistent with the experimental observation that misfolding can influence folding and
704 function for extended periods^{1,2,61}.

705 If the half-life is a fundamental time scale of a protein, then the cell-division time
706 is a fundamental time scale of a bacterium. In *E. coli*, doubling times during exponential
707 growth phase range from tens of minutes to hours depending on the growth medium⁶².
708 A total of 31 of our 122 proteins have extrapolated folding times for the slow phase
709 longer than 40 min. And, of the 38 proteins that misfold into soluble but less-functional
710 states, 14 have extrapolated folding times longer than 40 min. Since these folding
711 times are on a similar time scale as the doubling time, soluble misfolded conformations
712 will be split between the daughter cells. This suggests that the memory of those events
713 can be encoded in these kinetically trapped states and transferred to the daughter
714 cells. It will be an interesting area of future study to determine whether inheritance of
715 soluble, misfolded proteins with potentially altered function can act as a mechanism
716 for epigenetic inheritance and influence daughter cell behavior.

717 A key question potentially addressed by our simulations is what allows these
718 misfolded states to remain misfolded in non-functional states for such long timescales?
719 Entanglements appear to allow these misfolded states to persist for long time scales,
720 and their largely native topologies mean they are not excessively acted upon by the
721 proteostasis machinery. In many instances, large-scale unfolding would need to take
722 place in order for the entangled protein to disentangle⁵⁰ to a state from which the native
723 fold is more readily accessible. One interesting avenue for future research is
724 comparison of our results concerning misfolding after ribosomal synthesis with
725 simulations of refolding from denatured chains. Such work would provide a clearer
726 comparison to LiP-MS experiments and enable us to test the hypothesis of whether
727 protein synthesis reduces protein misfolding.

728 In summary, we have found that the majority of *E. coli* proteins misfold in our
729 simulations, and that some proteins misfold into states that likely bypass cellular
730 proteostasis machinery to remain soluble but with reduced function. We find that these
731 misfolded conformations are able to remain soluble because they are, overall, very
732 similar to the native state, but with certain entanglements that lead to perturbed
733 structure and function. Given that self-entanglement is a fundamental polymer
734 property, the entanglements we have observed represent a universal type of
735 misfolding that has the potential to impact a range of proteins and functions.
736 Specifically, our simulation results suggest the hypothesis that entangled states may
737 be the source of reduced dimerization², enzymatic function⁶³, and small-molecular

738 transport²⁷ upon changes in translation kinetics induced by synonymous mutations.
739 Future theoretical and experimental efforts should focus on the structural
740 characterization of non-native entangled states and their influence on protein function.
741

742 METHODS

743
744 **Selection of proteins and parameterization of their coarse-grain models.** A data
745 set of 50 multi- and 72 single-domain proteins was selected at random from a
746 previously developed database of *E. coli* proteins with solved X-ray diffraction or NMR
747 structures^{41,64}. This data set contains proteins with realistic distributions of protein size
748 and structural class (see Figure S1 and Table S1, respectively, of Ref. 41). Small
749 sections of missing residues (<10) were rebuilt and minimized in CHARMM, while
750 large missing sections for some multi-domain proteins were rebuilt based on
751 homologous protein structures (see Table S4 of Ref. 41). Each of the rebuilt all-atom
752 models was then converted to a C_α coarse-grain representation. The potential energy
753 forcefield of this coarse-grain model is given by the equation

$$754 E = \sum_i k_b(r_i - r_0)^2 + \sum_i \sum_j^4 k_{\varphi,ij} (1 + \cos[j\varphi_i - \delta_{ij}]) + \sum_i -\frac{1}{\gamma} \ln \left\{ \exp[-\gamma(k_\alpha(\theta_i - \theta_\alpha)^2 + \varepsilon_\alpha)] + \exp[-\gamma k_\beta(\theta_i - \theta_\beta)^2] \right\} + \sum_{ij} \frac{q_i q_j e^2}{4\pi \varepsilon_0 \varepsilon_r r_{ij}} \exp \left[-\frac{r_{ij}}{l_D} \right] + \sum_{ij \in \{NC\}} \epsilon_{ij}^{NC} \left[13 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 18 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{10} + 4 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{ij \notin \{NC\}} \epsilon_{ij}^{NN} \left[13 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 18 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{10} + 4 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]. \quad [1]$$

755 These forcefield terms represent, from left to right, the contributions from C_α – C_α
756 bonds, torsion angles, bond angles, electrostatic interactions, Lennard-Jones-like
757 native interactions, and repulsive non-native interactions to the total potential energy.
758 Full details of the model parameters can be found in Ref. 41. The value of ϵ_{ij}^{NC} , which
759 determines the global energy minimum for a native contact, is calculated as

$$760 \epsilon_{ij}^{NC} = n_{ij} \epsilon_{HB} + \eta \epsilon_{ij}. \quad [2]$$

761 In Eq. 2 ϵ_{HB} and ϵ_{ij} represent energetic contributions from the hydrogen bonds and
762 van der Waals interactions between residues *i* and *j* found within the all-atom structure
763 of the protein, respectively. n_{ij} is the integer number of hydrogen bonds between
764 residues *i* and *j* and $\epsilon_{HB} = 0.75$ kcal/mol. The value of ϵ_{ij} is initially set based on the
765 Betancourt-Thirumalai potential⁶⁵ and the value of η for each individual domain and
766 interface set based on a previously published training set²⁸. The values of η used for
767 all production simulations are listed in Ref. 41 Tables S2 and S3 alongside all protein
768 names and the chain identifiers used during model building. For simplicity, all proteins
769 are referred to using the PDB ID of the entry from which they were primarily derived.
770 The parameters for the coarse-grain model of firefly luciferase (PDB ID: 4G36) have
771 not previously been reported and are therefore provided in Table S1.
772

773
774 **Simulations of nascent protein synthesis, ejection, and post-translational**
775 **dynamics.** All simulations were performed using CHARMM and the coarse-grain
776 forcefield described in Eq. 1 with an integration timestep of 0.015 ps and a Langevin
777 integrator with friction coefficient of 0.050 ps⁻¹ at a temperature of 310 K. The synthesis
778 and ejection of each protein was simulated using a previously published protocol and
779 a coarse-grain cutout of the ribosome exit tunnel and surface (for complete simulation
780 details see Ref. 41). In this model, ribosomal RNA is represented by one interaction
781 site each for each ribose sugar, phosphate group, and pyrimidine base and two
782 interaction sites for each purine bases. Ribosomal proteins are represented at the C_α
783

784 level. Post-translational dynamics simulations were initiated from the final protein
785 structure obtained after ejection with the ribosome deleted. Fifty statistically
786 independent trajectories were run for each of the 122 proteins in the *E. coli* cytosolic
787 proteome data set and for Luciferase. Post-translational dynamics was run for 30 CPU
788 days for each trajectory. Ten trajectories were also initiated from the native-state
789 coordinates for all proteins and run for 30 CPU days each to provide a realistic
790 reference ensemble for each protein's folded state.

791
792 **Identification of misfolded trajectories.** Two order parameters, Q_{mode} and
793 $P(G_k \mid \text{PDB, traj})$, were used to determine whether or not a given trajectory folds.
794 Detailed definitions of these order parameters are given in the following two Methods
795 sections. A given trajectory is considered to be misfolded if either its Q_{mode} or
796 $f_c(G_k \mid \text{PDB, traj})$ values (or both, as described below) indicate that the trajectory is
797 significantly different from the native state reference simulations.

798
799 **Calculation of Q_{mode} and its use as an order parameter for protein folding.** The
800 fraction of native contacts, Q , was calculated for each domain and interface of all 122
801 proteins during their synthesis, ejection, and post-translational dynamics. Only
802 contacts between pairs of residues both within secondary structural elements as
803 identified by STRIDE⁶⁶ based on the final rebuilt all-atom structures were considered.
804 To determine when a given domain or interface within a protein folded, the mode of
805 the Q values over a 15-ns sliding window (Q_{mode}) was compared to the representative
806 value of the native state computed as the average Q_{mode} over all windows of the ten
807 native-state simulations denoted $\langle Q_{\text{mode}}^{\text{NS}} \rangle$. A given trajectory is defined as misfolded
808 if its average Q_{mode} over the final 100 ns of the post-translational dynamics portion of
809 the simulation, denoted $\langle Q_{\text{mode}}^{\text{NS}} \rangle$, is less than $\langle Q_{\text{mode}}^{\text{NS}} \rangle - 3\sigma$, where σ is the standard
810 deviation of $\langle Q_{\text{mode}}^{\text{NS}} \rangle$.

811
812 **Generation of entanglement metric distributions and use as an order parameter
813 for protein folding.** To detect non-covalent lasso entanglements we use linking
814 numbers⁶⁷. A link is defined as the entanglement of two closed curves; here, we use
815 (1) the closed curve composed of the backbone trace connecting residues i and j that
816 form a native contact and (2) the open curves formed by the terminal tails. The native
817 contact between i and j in (1) is considered to close this loop, even though there is no
818 covalent bond between these two residues. Outside this loop is an N-terminal
819 segment, composed of residues 1 through $i - 1$, and a C-terminal segment, composed
820 of residues $j + 1$ through N , whose entanglement through the closed loop we
821 characterize with partial linking numbers denoted g_N and g_C ⁴⁷. For a given structure
822 of an N -length protein, with a native contact present at residues (i, j) , the coordinates
823 \mathbf{R}_l and the gradient $d\mathbf{R}_l$ of the point l on the curves were calculated as

824
$$\begin{cases} \mathbf{R}_l = \frac{1}{2}(\mathbf{r}_l + \mathbf{r}_{l+1}), \\ d\mathbf{R}_l = \mathbf{r}_{l+1} - \mathbf{r}_l \end{cases} \quad [3]$$

825 where \mathbf{r}_l is the coordinates of the C_α atom in residue l . The linking numbers $g_N(i, j)$
826 and $g_C(i, j)$ were calculated as

827

$$\begin{cases} g_N(i,j) = \frac{1}{4\pi} \sum_{m=6}^{i-5} \sum_{n=i}^{j-1} \frac{\mathbf{R}_m - \mathbf{R}_n}{|\mathbf{R}_m - \mathbf{R}_n|^3} \cdot (\mathbf{dR}_m \times \mathbf{dR}_n) \\ g_C(i,j) = \frac{1}{4\pi} \sum_{m=i}^{j-1} \sum_{n=j+4}^{N-6} \frac{\mathbf{R}_m - \mathbf{R}_n}{|\mathbf{R}_m - \mathbf{R}_n|^3} \cdot (\mathbf{dR}_m \times \mathbf{dR}_n) \end{cases}, \quad [4]$$

828 where we excluded the first 5 residues on the N-terminal curve, last 5 residues on the
 829 C-terminal curve and 4 residues before and after the native contact for the purpose of
 830 eliminating the error introduced by both the high flexibility and contiguity of the termini
 831 and trivial entanglements in local structure. The above summations yield two non-
 832 integer values, and the total linking number for a native contact (i,j) was therefore
 833 estimated as

834 $g(i,j) = \text{round}(g_N(i,j)) + \text{round}(g_C(i,j)), \quad [5]$

835 Comparing the absolute value of the total linking number for a native contact (i,j) to
 836 that of a reference state allows us to ascertain a gain or loss of linking between the
 837 backbone trace loop and the terminal open curves as well as any switches in chirality.
 838 Therefore, there are 6 change in linking cases we should consider (Table S3) when
 839 using this approach to quantify entanglement.

840 To examine the distribution of change in linking (entanglement) detected for a
 841 given protein model and statistically independent post-translational trajectory we can
 842 generate a discrete probability distribution of the 6 cases in Table S3 as

843 $P(G_k | PDB, traj) = \frac{N_k}{N_E} \quad [6]$

844 Where G_k for $k \in \{0,1,2,3,4,5\}$ is the change in entanglement case of interest from
 845 Table S3, N_E is the total number of changes in entanglement instances detected in the
 846 trajectory, and N_k is the total number of changes in entanglement in the trajectory of
 847 type k . As the change in entanglement is held relative to the static crystal structure, it
 848 is necessary to correct the post-translational distribution to remove transient changes
 849 in entanglement present in the reference state dynamics. This was done by subtraction
 850 of the reference distribution from the post-translational distribution considering
 851 nontrivial changes in linkage:

852 $f_c(G_k | PDB, traj) = |P_{pt}(G_k | PDB, traj) - P_{ref}(G_k | PDB)|, \quad k \in \{0,1,2,3,4\}. \quad [7]$

853 For a given case of entanglement change k the magnitude of $f_c(G_k | PDB, traj)$
 854 increases as the probability of that mode of entanglement change deviates from the
 855 reference simulations. We define a given trajectory as misfolded if the average of any
 856 of its corrected entanglement values from Eq. 7 over the final 100 ns of the trajectory
 857 are ≥ 0.1 .

858 This trajectory-level analysis is useful for classifying statistically independent
 859 sample sets by the level and types of changes in entanglement they exhibit, but a time
 860 series metric which conveys the same information was desired to allow for folding time
 861 extrapolations. G is a time dependent order parameter that reflects the extent of the
 862 topological entanglement changes in a given structure compared to the native
 863 structure and is calculated as

864 $G(t) = \frac{1}{N} \sum_{(i,j)} \Theta \left((i,j) \in nc \cap g(i,j, t) \neq g^{\text{native}}(i,j) \right), \quad [8]$

865 where (i, j) is one of the native contacts in the native crystal structure; nc is the set of
 866 native contacts formed in the current structure at time t ; $g(i,j, t)$ and $g^{\text{native}}(i,j)$ are,
 867 respectively, the total entanglement number of the native contact (i, j) at time t , and
 868 native structures estimated using Eq. 5; N is the total number of native contacts within

869 the native structure and the selection function θ equals 1 when the condition is true
870 and equals 0 when it is false. The larger G is, the greater the number of native contact
871 residues that have changed their entanglement status relative to the native state. The
872 utility of entanglement for detecting structural perturbations not apparent by fraction of
873 native contacts or root mean square deviation is visually described in Figure S6.
874

875 **Calculation and extrapolation of folding times.** Folding times were determined for
876 each domain and interface from their post-translational Q_{mode} and G time series. The
877 folding time for a domain or interface is taken as the first t at which Q_{mode} is greater
878 than or equal to $\langle Q_{\text{mode}}^{\text{NS}} \rangle - 3\sigma$ and with $G \leq G_{\text{xs}}$. The survival probability of the unfolded
879 state was then computed based on these folding times and fit to the double-
880 exponential function $S_U(t) = f_1 \exp(k_1 * t) + f_2 \exp(k_2 * t)$ with $f_1 + f_2 \equiv 1$. This
881 double-exponential fitequation represents a kinetic scheme in which the unfolded and
882 misfolded states each proceed irreversibly to the folded state by parallel folding
883 pathways and there is no inter-transitions between unfolded and misfolded states.
884 Folding times for each kinetic phase were computed as $\tau_{F,1} = \frac{1}{k_1}$ and $\tau_{F,2} = \frac{1}{k_2}$, with the
885 overall folding time of the domain or interface taken as the longer of the two folding
886 times. The folding time reported for each protein is the longest folding time from any
887 of its constituent domains or interfaces. The assumption of double-exponential folding
888 kinetics is not a good assumption for all 122 proteins simulated. We therefore only
889 consider domains and interfaces whose $S_U(t)$ time series are fit with a Pearson $R^2 >$
890 0.90. We are also unable to compute folding times for the nine proteins for which no
891 trajectories folded. In total, we found reliable folding times for 73 of our 122 proteins.
892 Simulated folding times were extrapolated to experimental timescales using the
893 equation $\tau_{\text{exp}} = \tau_{\text{sim}} * \alpha$, where τ_{sim} is a given protein's simulated folding time and $\alpha =$
894 3,967,486 is the mean acceleration of folding in our coarse-grain simulations relative
895 to real timescales²⁸.
896

897 **Identifying misfolded proteins unlikely to interact with trigger factor.** To
898 determine whether or not a given protein in our data set is likely to interact with trigger
899 factor (TF) during synthesis we computed the relative difference in the hydrophobic
900 SASA between misfolded trajectories and folded trajectories on the ribosome using
901 the equation

$$\zeta_{\text{hydrophobic}}^{\text{co-t}}(t, l) = \left(\frac{A_{\text{hydrophobic}}(t, l)}{\langle A_{\text{hydrophobic}}(t, l) \rangle_F} - 1 \right) * 100\%. \quad [9]$$

902 In Eq. 9, $A_{\text{hydrophobic}}(t, l)$ is the total hydrophobic SASA of residues in the nascent
903 protein at time t and nascentchain length l exposed outside of the ribosome exit tunnel
904 (defined as having an x-coordinate $\geq 100 \text{ \AA}$ in the internal CHARMM coordinate system;
905 see Ref. 41 for details). The term $\langle A_{\text{hydrophobic}}(t, l) \rangle_F$ is the mean total hydrophobic
906 SASA of residues at time t and length l outside of the exit tunnel calculated over all
907 frames of synthesis trajectories identified to be folded by Q_{mode} and G analysis. Note
908 well, the reference states for Equations 10-12 are the native-state reference
909 simulations initiated in bulk solution, but due to the co-translational nature of TF
910 interactions we use the folded subpopulation of synthesis trajectories as the reference
911 state in Eq. 9. As TF is thought to only interact with nascent proteins of 100 residues
912 or longer⁶⁸, we compute Eq. 9 for $l = \{100, 101, \dots, N\}$ for each protein and trajectory,
913 where N is the total number of residues in the full-length protein. Proteins shorter than
914 100 amino acids are considered not to interact with TF. To quantify the overall
915 propensity of a misfolded trajectory of a given protein to interact with TF we compute
916

917 $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle$ as the mean of $\zeta_{\text{hydrophobic}}^{\text{co-t}}(t, l)$ for all t and allowed values of l . Based
918 on examination of $\zeta_{\text{hydrophobic}}^{\text{co-t}}(t, l)$ time series, we determined that a value of
919 $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle \leq 10\%$ corresponds to proteins that are unlikely to engage TF
920 significantly more than folded conformations on the ribosome. For the purposes of this
921 calculation and all others in this work that consider sets of hydrophobic residues,
922 coarse-grain interactions sites representing {Ile, Val, Leu, Phe, Cys, Met, Ala, Gly, Trp}
923 are considered to be hydrophobic.

924
925 **Identifying misfolded proteins unlikely to interact with GroEL/GroES.** Our data
926 set of 122 *E. coli* proteins was first cross-referenced with the list of 276 confirmed
927 GroEL/GroES substrates^{44–46}. The 103 proteins that do not appear in this list of
928 confirmed clients are considered to not be GroEL/GroES client proteins. GroEL/GroES
929 is thought to identify and bind regions of exposed hydrophobic surface area on nascent
930 proteins. To determine whether the misfolded conformations of proteins that can
931 interact with GroEL/GroES are likely to do so, we compared the total hydrophobic
932 SASA of misfolded conformations with the native-state ensemble using the equation

933
$$\zeta_{\text{hydrophobic}}(t) = \left(\frac{A_{\text{hydrophobic}}(t)}{\langle A_{\text{hydrophobic}}(t) \rangle_{\text{NS}}} - 1 \right) * 100\%. \quad [10]$$

934 This equation provides the quantity $\zeta_{\text{hydrophobic}}(t)$, which measures the relative
935 difference between the SASA of hydrophobic residues within a misfolded conformation
936 at time t ($A_{\text{hydrophobic}}(t)$) in comparison to the mean hydrophobic SASA calculated
937 over all frames of the native-state reference simulations ($\langle A_{\text{hydrophobic}}(t) \rangle_{\text{NS}}$). As
938 GroEL/GroES interacts with proteins post-translationally, Eq. 10 was applied to the
939 post-translational simulation data for all misfolded conformations of a given protein
940 and the average over the final 100 ns computed for each trajectory ($\langle \zeta_{\text{hydrophobic}} \rangle$). The
941 full set of proteins with misfolded conformations that we predict will not interact with
942 GroEL/GroES is taken as the union of the sets of all trajectories for proteins not in the
943 list of experimentally confirmed clients and the list of trajectories with $\langle \zeta_{\text{hydrophobic}} \rangle \leq$
944 10%.

945
946 **Identifying misfolded proteins unlikely to interact with DnaK.** We first cross-
947 referenced our list of 122 simulated proteins with a list of DnaK client proteins. The 34
948 proteins that do not appear on this list are considered to not interact with DnaK. To
949 determine whether misfolded conformations of proteins that can interact with DnaK
950 are likely to do so, we predicted DnaK binding sites using the Limbo webserver³⁵ and
951 then compared the total SASA of residues in predicted binding sites between
952 misfolded conformations and the native state using the equation

953
$$\zeta_{\text{DnaK}}(t) = \left(\frac{A_{\text{DnaK}}(t)}{\langle A_{\text{DnaK}}(t) \rangle_{\text{NS}}} - 1 \right) * 100\%. \quad [11]$$

954 In this equation $A_{\text{DnaK}}(t)$ is the total SASA of residues in DnaK binding sites as a
955 function of time t and $\langle A_{\text{DnaK}}(t) \rangle_{\text{NS}}$ is the mean total SASA of residues in DnaK binding
956 sites averaged over all frames of the native-state reference simulations. Equation 11
957 was applied to the post-translational simulation data of all misfolded conformations for
958 each misfolded trajectory and the average over the final 100 ns of each trajectory
959 computed ($\langle \zeta_{\text{DnaK}} \rangle$). The full set of trajectories with misfolded conformations that we
960 predict will not interact with DnaK is taken as the union of the sets of trajectories for
961 proteins not in the list of experimentally confirmed clients and the list of trajectories
962 with $\langle \zeta_{\text{DnaK}} \rangle \leq 10\%$. We note that three proteins, PDB IDs 2JRX, 2V81, and 2KFW,
963 are predicted by Limbo to have no DnaK binding sites. 2JRX and 2KFW appear on the

964 list of confirmed DnaK clients, and are therefore considered to be DnaK binders. 2V81,
965 however, is not a confirmed DnaK client and is thus counted as not likely to interact
966 with DnaK.

967

968 **Identifying misfolded proteins unlikely to aggregate.** We used the AMYLPRED2
969 webserver³⁷ to predict the sets of aggregation-prone residues within the primary
970 sequences of our 122 proteins. Whether or not a given trajectory for a protein is likely
971 to aggregate was determined by comparing the SASA of aggregation-prone regions
972 within the misfolded trajectory to the mean SASA of aggregation-prone regions in the
973 native-state reference ensemble using the equation

974
$$\zeta_{\text{agg}}(t) = \left(\frac{A_{\text{agg}}(t)}{\langle A_{\text{agg}}(t) \rangle_{\text{NS}}} - 1 \right) * 100\%. \quad [12]$$

975 In this equation, $A_{\text{agg}}(t)$ is the total SASA of residues in aggregation-prone regions as
976 a function of time, t , and $\langle A_{\text{agg}}(t) \rangle_{\text{NS}}$ is the mean total SASA of residues in aggregation-
977 prone regions averaged over all frames of the native-state reference simulations.
978 Equation 12 was applied to the post-translational simulation data for all misfolded
979 trajectories of a given protein and the average over the final 100 ns for each trajectory
980 ($\langle \zeta_{\text{agg}} \rangle$). Trajectories with $\langle \zeta_{\text{agg}} \rangle \leq 10\%$ are considered to be unlikely to aggregate.
981 Note that our methods do not account for the presence of forms of aggregates other
982 than amyloid, as our calculation is based on the AMYLPRED2 algorithm.

983

984 **Identifying misfolded proteins unlikely to be degraded.** Whether or not a protein's
985 misfolded conformations are likely to be targeted for degradation was determined on
986 the basis of $\zeta_{\text{hydrophobic}}$ (Eq. 10). Proteins with $\langle \zeta_{\text{hydrophobic}} \rangle \leq 10\%$ are considered to
987 be unlikely to be degraded.

988

989 **Creating a database of functional residues for *E. coli* proteins.** Information from
990 UniProt and RCSB was unified and parsed to create a database of residues implicated
991 in function for each of our 122 proteins. Residues involved in interactions with small
992 molecules were identified as those residues with heavy atoms within 4.5 Å of any
993 heteroatom (identified by the HETATM keyword in PDB records) other than water and
994 non-native amino acids such as selenidomethionine (*i.e.*, MSE residues). Many
995 proteins must form multimeric complexes in order to exercise their function. To
996 consider these interactions, we also identified residues with heavy atoms within 4.5 Å
997 of heavy atoms in a different chain ID within the same PDB structure.

998 Our 122 coarse-grain models were built from single PDB structures or, in the
999 case of some multi-domain protein models, the merging of multiple structures. These
1000 structures used for model building often lack ligands or protein binding partners that
1001 may be required for function due to differences in crystallographic conditions and/or
1002 the intention of the original crystallographers. To provide a broader view of functional
1003 residues we therefore also considered all PDB structures identified by UniProt to
1004 represent the same gene product. Functional residues were identified in these
1005 alternative structures as described above for the initial structures. PDB entries
1006 representing the same protein often have different residue numbering schemes and a
1007 small number of mutations. We therefore used amino acid alignments in BLAST to
1008 determine the mapping from alternative numbering schemes to the numbering scheme
1009 within the structure used for model building. Only those domains with at least 97%
1010 sequence identity were considered for this analysis to allow for small mutational
1011 changes while excluding significantly different proteins. A summary of each of the
1012 terms in the database and their meanings is provided in Table S 10.

1013
1014
1015
1016
1017
1018

Determining which misfolded conformations are likely non-functional. The relative difference in function between misfolded trajectories and native-state reference trajectories was determined by calculating the relative difference of the structural overlap of residues identified to be involved in protein function using the equation

$$\chi_{\text{func}} = \left(1 - \frac{\chi(t)}{\langle \chi(t) \rangle_{\text{NS}}} \right) * 100\%. \quad [13]$$

1019
1020
1021
1022
1023

In this equation, $\chi(t)$ is the structural overlap between residues implicated in function at time t in a misfolded trajectory with the native-state reference structure and $\langle \chi(t) \rangle_{\text{NS}}$ is the mean of this same value computed over all simulation frames of the native-state reference simulations. The value of $\chi(t)$ is calculated as

$$\chi(t) = \frac{1}{N} \sum_{i \in \{\text{Func}\}} \sum_{j \geq i+2; j \in \{\text{Func}\}} \theta[\epsilon - |r_{ij}(t) - r_{ij}^0|] \quad [14]$$

1024
1025
1026
1027
1028
1029
1030
1031

and gives the fraction of pairwise distances that are at native-like values at time t . The set $\{\text{Func}\}$ contains all residues implicated in protein function. The indices i and j correspond to residues in $\{\text{Func}\}$ for the protein being analyzed. N is the total number of pairwise contacts between residues i and j both in $\{\text{Func}\}$ that also satisfy the condition $j \geq i + 2$. The parameters $r_{ij}(t)$ and r_{ij}^0 are the distances between residues i and j at time t and between i and j in the native state reference structure, respectively. $\theta(x)$ is the step function given by

$$\theta(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}. \quad [15]$$

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

The value of ϵ is taken as $0.2 \cdot r_{c_\alpha}$ where $r_{c_\alpha} = 3.81 \text{ \AA}$ is the virtual bond length between coarse-grain interaction sites in the coarse-grain simulation model. A particular pair of residues i and j contribute 1 to $\chi(t)$ if $|r_{ij}(t) - r_{ij}^0|$ is less than ϵ , such that $\epsilon - |r_{ij}(t) - r_{ij}^0| \geq 0$, and in all other situations contribute 0 to $\chi(t)$. Similar forms of this equation have been used previously to observe structural transitions in simulations of proteins⁶⁹. The value of χ_{func} was averaged over the final 100 ns for given protein trajectory to give $\langle \chi_{\text{func}} \rangle$, the mean relative difference in structure of functional residues for the misfolded conformation in comparison to the native state. Trajectories with $\langle \chi_{\text{func}} \rangle \geq 10\%$ are considered to be less functional than the native state.

1043

Selection of 10% threshold for classifying misfolded trajectories as native-like. We selected a threshold of 10% for $\zeta_{\text{hydrophobic}}(t)$, $\zeta_{\text{DnaK}}(t)$, $\zeta_{\text{agg}}(t)$, and χ_{func} (see Eqs. 10, 11, 12, and 13) based on an analysis of how frequently our native state reference trajectories for each protein explore conformations with 10% or greater difference from their native state mean (Table S9). Virtually all proteins explore conformations with $\geq 10\%$ for each metric in their native state, indicating that 10% is a parsimonious threshold for determining if misfolded conformations are native like. In the case of $\zeta_{\text{hydrophobic}}^{\text{co-t}}(t, l)$, similar calculations as those performed for the other metrics would require running prohibitively expensive arrested-ribosome-nascent chain complex simulations for each of our 122 proteins. We therefore use a threshold of 10% for $\zeta_{\text{hydrophobic}}^{\text{co-t}}(t, l)$ for the sake of consistency with our other thresholds.

1055

1056
1057
1058

Protease mass spectrometry experiments. See the Supplementary Methods for a full description. Briefly, *E. coli* K12 cells (NEB) were grown in 2 sets of $3 \times 50 \text{ mL}$ (biological triplicates) MOPS EZ rich media from saturated overnight cultures with a

1059 starting OD₆₀₀ of 0.05. As described in Ref. 71, one set was supplemented with 0.5
1060 mM [¹³C₆]L-Arginine and 0.4 mM [¹³C₆]L-Lysine and the other with 0.5 mM L-Arginine
1061 and 0.4 mM L-Lysine. Cells were cultured at 37°C with agitation (220 rpm) to a final
1062 OD₆₀₀ of 0.8. Each heavy/light pair was pooled together; cells were collected by
1063 centrifugation at 4000 g for 15 mins at 4°C, supernatants were removed, and cell
1064 pellets were stored at -20°C until further use.

1065 Frozen cell pellets were resuspended in a lysis buffer consisting of 900 µL of
1066 Tris pH 8.2 (20 mM Tris pH 8.2, 100 mM NaCl, 2 mM MgCl₂ and supplemented with
1067 DNase I to a final concentration (f.c.) of 0.1 mg mL⁻¹). Resuspended cells were
1068 cryogenically pulverized with a freezer mill (SPEX Sample Prep). Lysates were then
1069 clarified at 16000 g for 15 min at 4 °C to remove insoluble cell debris. To deplete
1070 ribosome particles, clarified lysates were ultracentrifuged at 33,300 rpm at 4 °C for 90
1071 min using a SW55 Ti rotor. Protein concentrations of clarified lysates were determined
1072 using the bicinchoninic acid assay (Rapid Gold BCA Assay, Pierce) and diluted to 3.3
1073 mg mL⁻¹ using lysis buffer.

1074
1075 To prepare native samples, 3.5 µL of normalized lysates were diluted with 96.5
1076 µL of Tris native dilution buffer (20 mM Tris pH 8.2, 100 mM NaCl, 10.288 mM MgCl₂,
1077 10.36 mM KCl, 2.07 mM ATP, 1.04 mM DTT, 62 mM GdmCl) to a final protein
1078 concentration of 0.115 mg mL⁻¹. Native samples were then equilibrated by incubating
1079 for 90 min at room temperature. To prepare unfolded samples, 600 µL of normalized
1080 lysates, 100 mg of solid GdmCl, and 2.4 µL of a freshly prepared 700 mM DTT stock
1081 solution were combined, and solvent was removed using a vacufuge plus to a final
1082 volume of 170 µL. Unfolded lysates were incubated overnight at room temperature.
1083 To refold, 99 µL of refolding dilution buffer (19.5 mM Tris pH 8.2, 97.5 mM NaCl, 10.03
1084 mM MgCl₂, 10.1 mM KCl, 2.02 mM ATP and .909 mM DTT) were rapidly added to 1
1085 µL of unfolded extract. Refolded samples were then incubated at room temperature
1086 for 1 min, 5 min or 2 h.

1087 100 µL of the native or refolded lysates was added to Proteinase K
1088 (enzyme:substrate ratio of 1:100 w/w ratio⁷⁰), incubated for 1 min at room temperature,
1089 and quenched by boiling in a mineral oil bath at 110°C for 5. Boiled samples were
1090 transferred to tubes containing 76 mg urea. To prepare samples for mass
1091 spectrometry, dithiothreitol was added to a final concentration of 10 mM and samples
1092 were incubated at 37°C for 30 minutes. Iodoacetamide was added to a final
1093 concentration of 40 mM and samples were incubated at room temperature in the dark
1094 for 45 minutes. LysC was added to a 1:100 enzyme:substrate (w/w) ratio and samples
1095 were incubated at 37°C for 2 h, urea was diluted to 2 M using 100 mM ammonium
1096 bicarbonate pH 8, then trypsin was added to a 1:50 enzyme:substrate (w/w) ratio and
1097 incubated overnight at 25°C.

1098 Peptides were acidified, desalting with Sep-Pak C18 1 cc Vac Cartridges, dried
1099 down, and resuspend in 0.1% formic acid, as previously described⁷¹. LC-MS/MS
1100 acquisition was conducted on a Thermo Ultimate3000 UHPLC system with an Acclaim
1101 Pepmap RSLC C18 column (75 µm × 25 cm, 2 µm, 100 Å) in line with a Thermo Q-
1102 Exactive HF-X Orbitrap, identically as previously described⁷¹.

1103 Proteome Discoverer (PD) Software Suite (v2.4, Thermo Fisher) and the
1104 Minora Algorithm were used to analyze mass spectra and perform Label Free
1105 Quantification (LFQ) of detected peptides. Default settings for all analysis nodes were
1106 used except where specified. The data were searched against *Escherichia coli*
1107 (UP00000625, Uniprot) reference proteome database. For peptide identification, the
1108 PD MSFragger node was used, using a semi-tryptic search allowing up to 2 missed

1109 cleavages⁷². A precursor mass tolerance of 10 ppm was used for the MS1 level, and
1110 a fragmentation tolerance was set to 0.02 Da at the MS2 level. Additionally, a maximum
1111 charge state for theoretical fragments was set at 2. Oxidation of methionine and
1112 acetylation of the N-terminus were allowed as dynamic modifications while
1113 carbamidomethylation on cysteines was set as a static modification. Heavy isotope
1114 labeling (¹³C₆) of Arginine and Lysine were allowed as dynamic modifications. The
1115 Philosopher PD node was used for FDR validation. Raw normalized extracted ion
1116 intensity data for the identified peptides were exported from the .pdResult file using a
1117 three-level hierarchy (protein > peptide group > consensus feature). These data were
1118 further processed utilizing custom Python analyzer scripts (available on GitHub, and
1119 described in depth previously^{49,71}).

1120
1121 **Clustering long-lived misfolded states of glycerol-3-phosphate dehydrogenase.**
1122 The structural distribution from the last 100 ns of the post-translational simulations of
1123 glycerol-3-phosphate dehydrogenase was assessed as the pseudo free energy
1124 $-\ln(P)$, where P is the probability density, along the order parameters G and Q_{overall} .
1125 To further analyze the post-translational structures, 400 clusters (micro-states) were
1126 grouped from the last 100 ns trajectories using the k- means algorithm^{73,74}. A Markov
1127 state model (MSM) was built and the clusters were coarse-grained into a small number
1128 of metastable states using the PCCA+ algorithm⁷⁵. The number of metastable states
1129 was chosen based on the existence of a gap in the eigenvalue spectrum of the
1130 transition probability matrix⁷⁶. Five representative structures of each metastable state
1131 were randomly sampled from all microstates according to the probability distribution
1132 of the microstates within the given metastable state. All the clustering and MSM
1133 building were performed by using PyEmma package⁷⁷.

1134
1135 **Determining which coarse-grain structures have increased exposure of**
1136 **peptides.** The relative change in solvent accessible surface area of experimentally
1137 identified peptides for glycerol-3-phosphate dehydrogenase was calculated as

1138

$$\zeta_{\text{peptide}}(t) = \left(\frac{A_{\text{peptide}}(t)}{\langle A_{\text{peptide}}(t) \rangle_{\text{NS}}} - 1 \right) * 100\%. \quad [16]$$

1139
1140 In this equation, $A_{\text{peptide}}(t)$ is the total SASA of the residues within the peptide under
1141 consideration at time t and $\langle A_{\text{peptide}}(t) \rangle_{\text{NS}}$ is the mean value of $A_{\text{peptide}}(t)$ computed
1142 over all frames of the native-state reference simulations. Eq. 16 was applied to all
1143 frames in the final 100 ns of each glycerol-3-phosphate dehydrogenase trajectory and
1144 then averaged separately for each of its eight misfolded metastable states. Values of
1145 $\langle \zeta_{[333-354]} \rangle$, $\langle \zeta_{[F351]} \rangle$, $\langle \zeta_{[L293]} \rangle$ are summarized in Table S11 for metastable states {S1,
1146 S2, ..., S8}.

1147
1148 **DATA AVAILABILITY**
1149

1150 Raw data for Figures 1, 2, 3, 4, 5, S1, S2, and S3 are available in the included software
1151 directory. We cannot feasibly provide all ~30 TB of trajectory data, but we do provide
1152 sample trajectory files and use them to demonstrate our analysis methods.
1153 Supplementary Data File 1 contains the annotated experimental data for glycerol-3-
1154 phosphate dehydrogenase. Supplementary Data Files 2, 3, and 4 contain all peptide-
1155 level data from the 1-, 5-, and 120-min time points, respectively. The mass

1157 spectrometry proteomics data have been deposited to the ProteomeXchange
1158 Consortium via the PRIDE partner repository with the dataset identifier PXD031425.
1159

1160 CODE AVAILABILITY

1161
1162 CHARMM input files, Python analysis code, sample commands, and example output
1163 are available in the included software directory. A CHARMM license is required to run
1164 the molecular dynamics simulation programs. Additional software is available at:
1165 <https://github.com/obrien-lab/> and <https://github.com/FriedLabJHU/Refoldibility-Tools/>.
1166

1167

1168 ACKNOWLEDGMENTS

1169 SDF acknowledges support from the NIH Director's New Innovator Award
1170 (DP2GM140926) and from the National Science Foundation Division of Molecular and
1171 Cellular Biology (MCB-2045844). EPO acknowledges funding from the National
1172 Institutes of Health (R35-GM124818) and the National Science Foundation (MCB-
1173 1553291).
1174

1175

1176 REFERENCES

1177

- 1178 (1) Komar, A. A.; Lesnik, T.; Reiss, C. *FEBS Lett.* **1999**, *462* (3), 387–391.
- 1179 (2) Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J. M.; Sachs, M. S.; Liu, Y. *Nature* **2013**, *494* (7439), 111–115.
- 1180 (3) Fu, J.; Murphy, K. A.; Zhou, M.; Li, Y. H.; Lam, V. H.; Tabuloc, C. A.; Chiu, J. C.; Liu, Y. *Genes Dev.* **2016**, *30* (15), 1761–1775.
- 1181 (4) Jayaraj, G. G.; Hipp, M. S.; Ulrich Hartl, F. *Cold Spring Harb. Perspect. Biol.* **2020**, *12* (1).
- 1182 (5) Kuhlman, B.; Bradley, P. *Nat. Rev. Mol. Cell Biol.* **2019**, *20* (11), 681–697.
- 1183 (6) Hipp, M. S.; Kasturi, P.; Hartl, F. U. *Nat. Rev. Mol. Cell Biol.* **2019**, *20* (7), 421–435.
- 1184 (7) Sharma, A. K.; O'Brien, E. P. *Curr. Opin. Struct. Biol.* **2018**, *49*, 94–103.
- 1185 (8) Balch, W. E.; Morimoto, R. I.; Dillin, A.; Kelly, J. W. *Science*. **2008**, *319* (5865), 916–919.
- 1186 (9) Hayer-Hartl, M.; Bracher, A.; Hartl, F. U. *Trends Biochem. Sci.* **2016**, *41* (1), 62–76.
- 1187 (10) Mayer, M. P.; Bukau, B. *Cell. Mol. Life Sci.* **2005**, *62* (6), 670–684.
- 1188 (11) Calloni, G.; Chen, T.; Schermann, S. M.; Chang, H. C.; Genevaux, P.; Agostini, F.; Tartaglia, G. G.; Hayer-Hartl, M.; Hartl, F. U. *Cell Rep.* **2012**, *1* (3), 251–264.
- 1189 (12) Gong, B.; Radulovic, M.; Figueiredo-Pereira, M. E.; Cardozo, C. *Front. Mol. Neurosci.* **2016**, *9* (JAN), 1–16.
- 1190 (13) LaBreck, C. J.; May, S.; Viola, M. G.; Conti, J.; Camberg, J. L. *Front. Mol. Biosci.* **2017**, *4* (MAY), 1–13.
- 1191 (14) Rae, B. D.; Long, B. M.; Badger, M. R.; Price, G. D. *Microbiol. Mol. Biol. Rev.* **2013**, *77* (3), 357–379.
- 1192 (15) Haass, C.; Selkoe, D. J. *Nat. Rev. Mol. Cell Biol.* **2007**, *8* (2), 101–112.
- 1193 (16) Alberti, S.; Hyman, A. A. *Nat. Rev. Mol. Cell Biol.* **2021**, *22* (March).
- 1194 (17) Kramer, G.; Shiber, A.; Bukau, B. *Annu. Rev. Biochem.* **2019**, *88*, 337–364.
- 1195 (18) Conibear, A. C. *Nat. Rev. Chem.* **2020**, *4* (December).

1207 (19) Fluit, A.; Pienaar, E.; Viljoen, H. *Comput. Biol. Chem.* **2007**, 31 (5–6), 335–
1208 346.

1209 (20) Qian, S. B.; Princiotta, M. F.; Bennink, J. R.; Yewdell, J. W. *J. Biol. Chem.*
1210 **2006**, 281 (1), 392–400.

1211 (21) Schubert, U.; Antón, L. C.; Gibbs, J.; Norbury, C. C.; Yewdell, J. W.; Bennink,
1212 J. R. *Nature* **2000**, 404 (6779), 770–774.

1213 (22) Wu, K.; Stull, F.; Lee, C.; Bardwell, J. C. A. *Nat. Commun.* **2019**, 10 (1).

1214 (23) Powers, E. T.; Powers, D. L.; Giersch, L. M. *Cell Rep.* **2012**, 1 (3), 265–276.

1215 (24) Santra, M.; Dill, K. A.; De Graff, A. M. R. *Proc. Natl. Acad. Sci. U. S. A.* **2019**,
1216 116 (44), 22173–22178.

1217 (25) Spencer, P. S.; Siller, E.; Anderson, J. F.; Barral, J. M. *J. Mol. Biol.* **2012**, 422
1218 (3), 328–335.

1219 (26) Zhang, G.; Hubalewska, M.; Ignatova, Z. *Nat. Struct. Mol. Biol.* **2009**, 16 (3),
1220 274–280.

1221 (27) Kimchi-Sarfaty, C.; Oh, J. M.; Kim, I.-W.; Sauna, Z.; Calcagno, A. M.;
1222 Ambudkar, S.; Gottesman, M. *Science (80-)* **2007**, 315 (November), 525–
1223 529.

1224 (28) Leininger, S. E.; Trovato, F.; Nissley, D. A.; O'Brien, E. P. *Proc. Natl. Acad.*
1225 *Sci. U.S.A.* **2019**, 116 (12), 5523–5532.

1226 (29) Nissley, D. A.; O'Brien, E. P. *J. Phys. Chem. B* **2018**, 122 (43), 9927–9937.

1227 (30) Nilsson, O. B.; Hedman, R.; Marino, J.; Wickles, S.; Bischoff, L.; Johansson,
1228 M.; Müller-Lucks, A.; Trovato, F.; Puglisi, J. D.; O'Brien, E. P.; Beckmann, R.;
1229 von Heijne, G. *Cell Rep.* **2015**, 12 (10), 1533–1540.

1230 (31) Tian, P.; Steward, A.; Kudva, R.; Su, T.; Shilling, P. J.; Nickson, A. A.; Hollins,
1231 J. J.; Beckmann, R.; Von Heijne, G.; Clarke, J.; Best, R. B. *Proc. Natl. Acad.*
1232 *Sci. U. S. A.* **2018**, 115 (48), E11284–E11293.

1233 (32) Jiang, Y.; Neti, S. S.; Pradhan, P.; Booker, S. J.; O'Brien, E. P. O. *Under*
1234 *Review. bioRxiv* **2021**. DOI: <https://doi.org/10.1101/2021.08.18.456802>.

1235 (33) Frydman, J.; Erdjument-Bromage, H.; Tempst, P.; Ulrich Hartl, F. *Nat. Struct.*
1236 *Biol.* **1999**, 6 (7), 697–705.

1237 (34) Saio, T.; Guan, X.; Rossi, P.; Economou Anastassios, Kalodimos, C. G.
1238 *Science* **2014**, 344.

1239 (35) Van Durme, J.; Maurer-Stroh, S.; Gallardo, R.; Wilkinson, H.; Rousseau, F.;
1240 Schymkowitz, J. *PLoS Comput. Biol.* **2009**, 5 (8).

1241 (36) Tapia-rojo, R.; Eckels, E. C.; Valle-orero, J.; Fernandez, J. M. *Nat. Commun.*
1242 **2017**, 1–7.

1243 (37) Tsolis, A. C.; Papandreou, N. C.; Iconomidou, V. A.; Hamodrakas, S. J. *PLoS*
1244 *One* **2013**, 8 (1), 1–6.

1245 (38) Yedidi, R. S.; Wendler, P.; Enenkel, C. *Front. Mol. Biosci.* **2017**, 4 (JUN), 1–14.

1246 (39) Goldberg, A. L.; Dice, J. F. *Annu. Rev. Biochem.* **1974**, 835–864.

1247 (40) Consortium, T. U. *Nucleic Acids Res.* **2017**, 45, 158–169.

1248 (41) Nissley, D. A.; Vu, Q. V.; Trovato, F.; Ahmed, N.; Jiang, Y.; Li, M. S.; O'Brien,
1249 E. P. *J. Am. Chem. Soc.* **2020**, jacs.9b12264.

1250 (42) Klimov, D. K.; Thirumalai, D. *Phys. Rev. Lett.* **1997**, 79 (2), 317–320.

1251 (43) Kmiecik, S.; Gront, D.; Kolinski, M.; Witeska, L.; Dawid, A. E.; Kolinski, A.
1252 *Chem. Rev.* **2016**, 116 (14), 7898–7936.

1253 (44) Niwa, T.; Fujiwara, K.; Taguchi, H. *FEBS Lett.* **2016**, 590 (2), 251–257.

1254 (45) Fujiwara, K.; Ishihama, Y.; Nakahigashi, K.; Soga, T.; Taguchi, H. *EMBO J.*
1255 **2010**, 29 (9), 1552–1564.

1256 (46) Kerner, M. J.; Naylor, D. J.; Ishihama, Y.; Maier, T.; Chang, H. C.; Stines, A.

1257 P.; Georgopoulos, C.; Frishman, D.; Hayer-Hartl, M.; Mann, M.; Hartl, F. U.
1258 *Cell* **2005**, 122 (2), 209–220.

1259 (47) Baiesi, M.; Orlandini, E.; Seno, F.; Trovato, A. *J. Phys. A Math. Theor.* **2017**.
1260 (48) Rolfson, D. *Knots and Links*; 1976.

1261 (49) To, P.; Whitehead, B.; Tarbox, H. E.; Fried, S. D. *J. Am. Chem. Soc.* **2021**, 143
1262 (30), 11435–11448.

1263 (50) Sułkowska, J. I.; Sułkowski, P.; Onuchic, J. *Proc. Natl. Acad. Sci. U. S. A.*
1264 **2009**, 106 (9), 3119–3124.

1265 (51) Bitran, A.; Jacobs, W. M.; Zhai, X.; Shakhnovich, E. *Proc. Natl. Acad. Sci. U.*
1266 *S. A.* **2020**, 117 (3), 1485–1495.

1267 (52) Lafita, A.; Tian, P.; Best, R. B.; Bateman, A. *Curr. Opin. Struct. Biol.* **2019**, 58,
1268 97–104.

1269 (53) Norcross, T. S.; Yeates, T. O. *J. Mol. Biol.* **2006**, 362 (3), 605–621.

1270 (54) Taylor, W. R.; Lin, K. *Nature* **2003**, 421 (6918), 25.

1271 (55) Dabrowski-Tumanski, P.; Piejko, M.; Niewieczerzal, S.; Stasiak, A.;
1272 Sulkowska, J. I. *J. Phys. Chem. B* **2018**, 122 (49), 11616–11625.

1273 (56) Gosavi, S.; Chavez, L. L.; Jennings, P. A.; Onuchic, J. N. *J. Mol. Biol.* **2006**,
1274 357 (3), 986–996.

1275 (57) Grosberg, A.; Nechaev, S. **1993**, 106, 1–29.

1276 (58) Baiesi, M.; Orlandini, E.; Seno, F.; Trovato, A. *Sci. Rep.* **2019**, 9 (1), 1–12.

1277 (59) Belle, A.; Tanay, A.; Bitincka, L.; Shamir, R.; Shea, E. K. O. *Proc. Natl. Acad.*
1278 *Sci. USA* **2006**, 103 (35), 13004–13009.

1279 (60) Cambridge, S. B.; Gnad, F.; Nguyen, C.; Bermejo, J. L.; Kruger, M.; Mann, M.;
1280 Atthias. *J. Proteome Res.* **2011**, 10, 5275–5284.

1281 (61) Buhr, F.; Jha, S.; Thommen, M.; Mittelstaet, J.; Kutz, F.; Schwalbe, H.;
1282 Rodnina, M. V.; Komar, A. A. *Mol. Cell* **2016**, 61 (3), 341–351.

1283 (62) Neidhardt, F.; Ingraham, J.; Schaechter, M. *Physiology of the Bacterial Cell. A*
1284 *Molecular Approach*; 1990.

1285 (63) Siller, E.; DeZwaan, D. C.; Anderson, J. F.; Freeman, B. C.; Barral, J. M. *J.*
1286 *Mol. Biol.* **2010**, 396 (5), 1310–1318.

1287 (64) Ciryam, P.; Morimoto, R. I.; Vendruscolo, M.; Dobson, C. M.; O'Brien, E. P.
1288 *Proc. Natl. Acad. Sci.* **2013**, 110 (2), E132–E140.

1289 (65) Betancourt, M. R.; Thirumalai, D. *Protein Sci.* **2008**, 8 (2), 361–369.

1290 (66) Frishman, D.; Argos, P. *Proteins Struct. Funct. Genet.* **1995**, 23, 566–579.

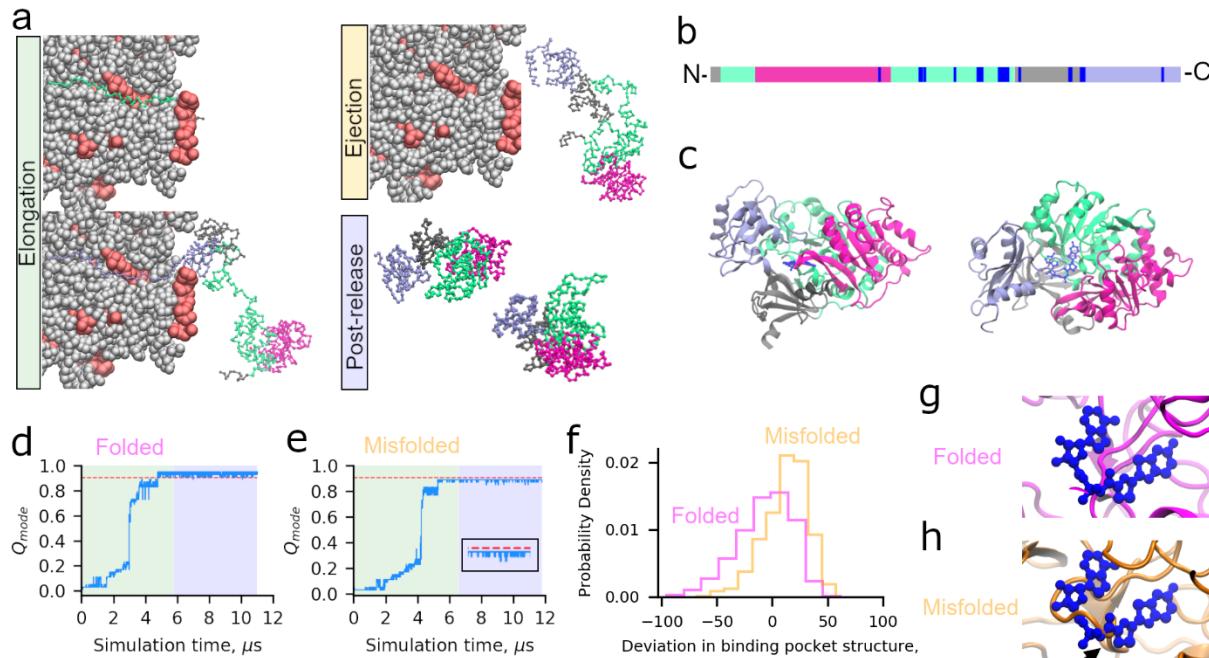
1291 (67) Kauffman, L.; Balachandran, A. P. *Phys. Today* **1992**.

1292 (68) Oh, E.; Becker, A. H.; Sandikci, A.; Huber, D.; Chaba, R.; Gloge, F.; Nichols,
1293 R. J.; Typas, A.; Gross, C. A.; Kramer, G.; Weissman, J. S.; Bukau, B. *Cell*
1294 **2011**, 147 (6), 1295–1308.

1295 (69) Guo, Z.; Thirumalai, D. *J. Mol. Biol.* **1996**, 263 (2), 323–343.

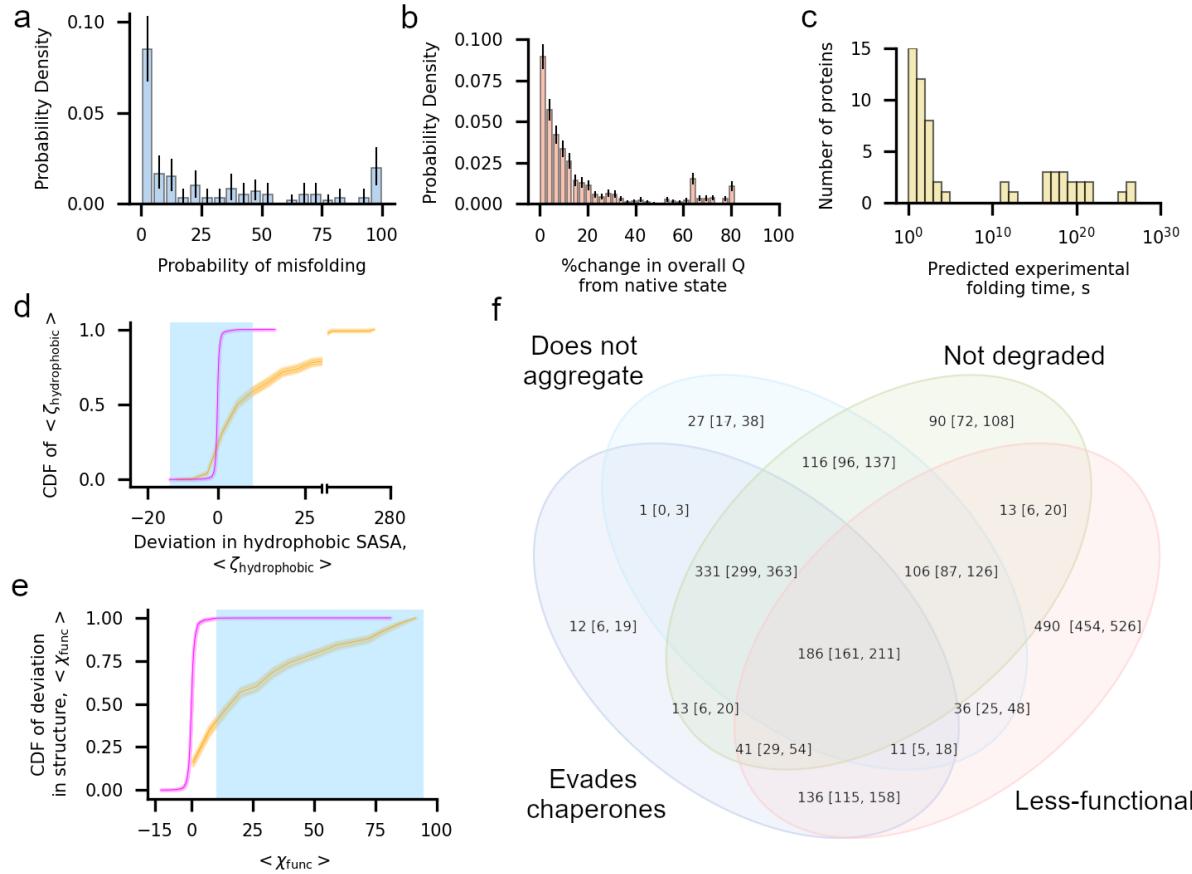
1296 (70) Feng, Y.; De Franceschi, G.; Kahraman, A.; Soste, M.; Melnik, A.; Boersema,
1297 P. J.; De Laureto, P. P.; Nikolaev, Y.; Oliveira, A. P.; Picotti, P. *Nat. Biotechnol.*
1298 **2014**, 32 (10), 1036–1044.

1299 (71) To, P.; Lee, S. O.; Xia, Y.; Devlin, T.; Fleming, K. G.; Fried, S. D. *bioRxiv* **2021**
1300 DOI: 10.1101/2021.11.20.469408.


1301 (72) Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu, D.;
1302 Nesvizhskii, A. I. *Nat. Methods* **2017**, 14 (5), 513–520.

1303 (73) Steinhaus, H. *Bull. L'Académie Pol. des Sci.* **1956**, 4, 801–804.

1304 (74) MacQueen, J. In *Proceedings of the fifth Berkeley symposium on*
1305 *mathematical statistics and probability*, Oakland, CA, USA.; 1967; pp 281–297.


1306 (75) Röblitz, S.; Weber, M. *Adv. Data Anal. Classif.* **2013**, 7 (2), 147–179.

1307 (76) Buchete, N. V.; Hummer, G. *J. Phys. Chem. B* **2008**, *112* (19), 6057–6069.
1308 (77) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.;
1309 Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J. H.; Noé, F. *J. Chem.*
1310 *Theory Comput.* **2015**, *11* (11), 5525–5542.
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

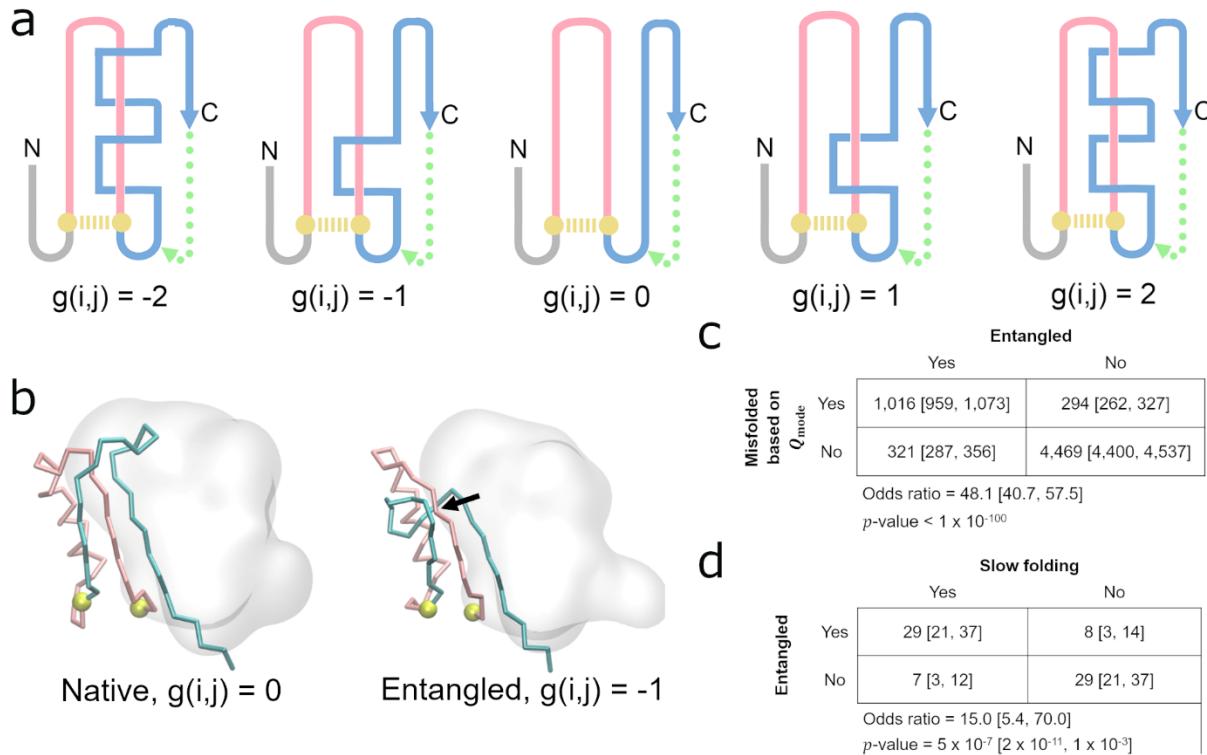
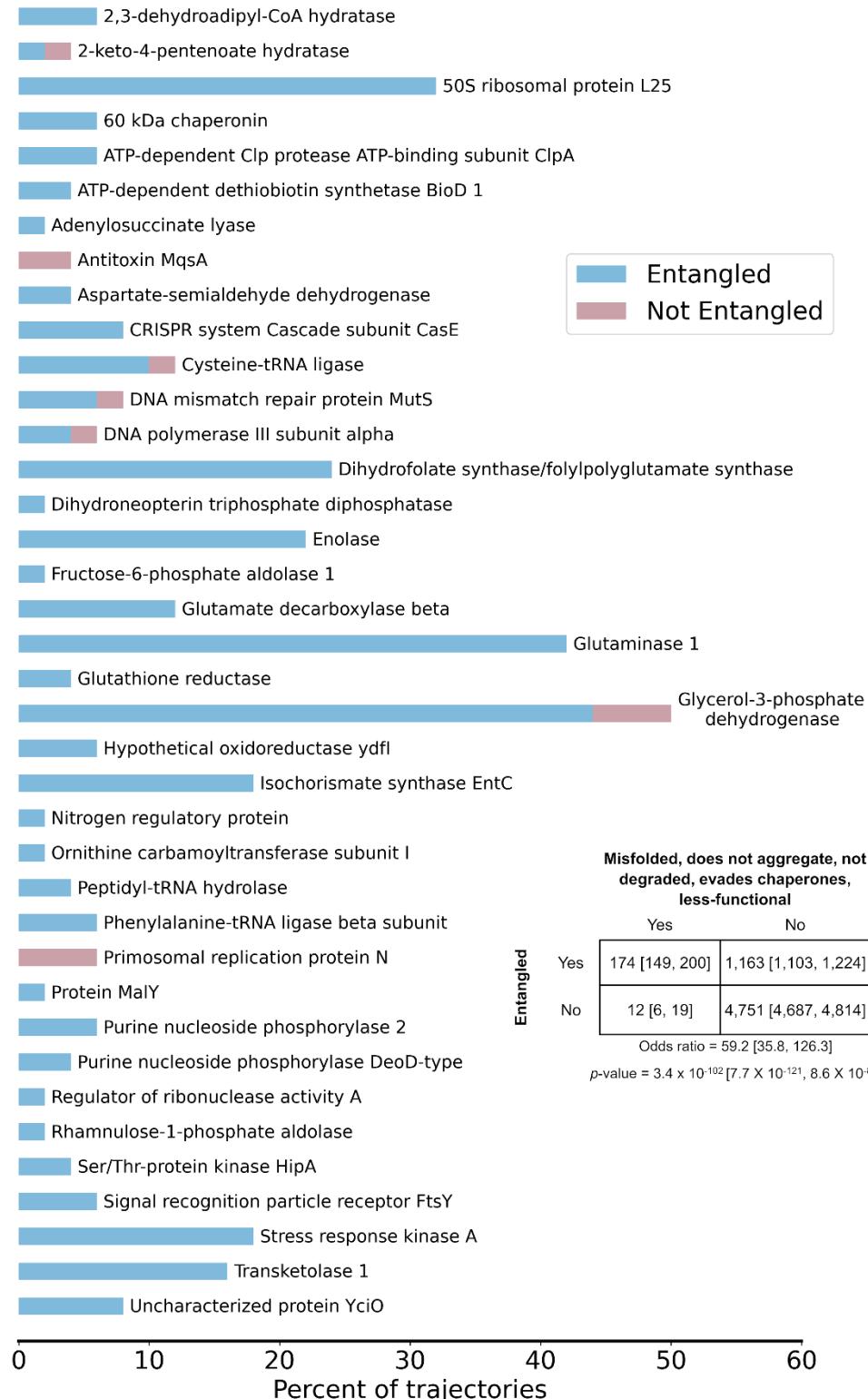
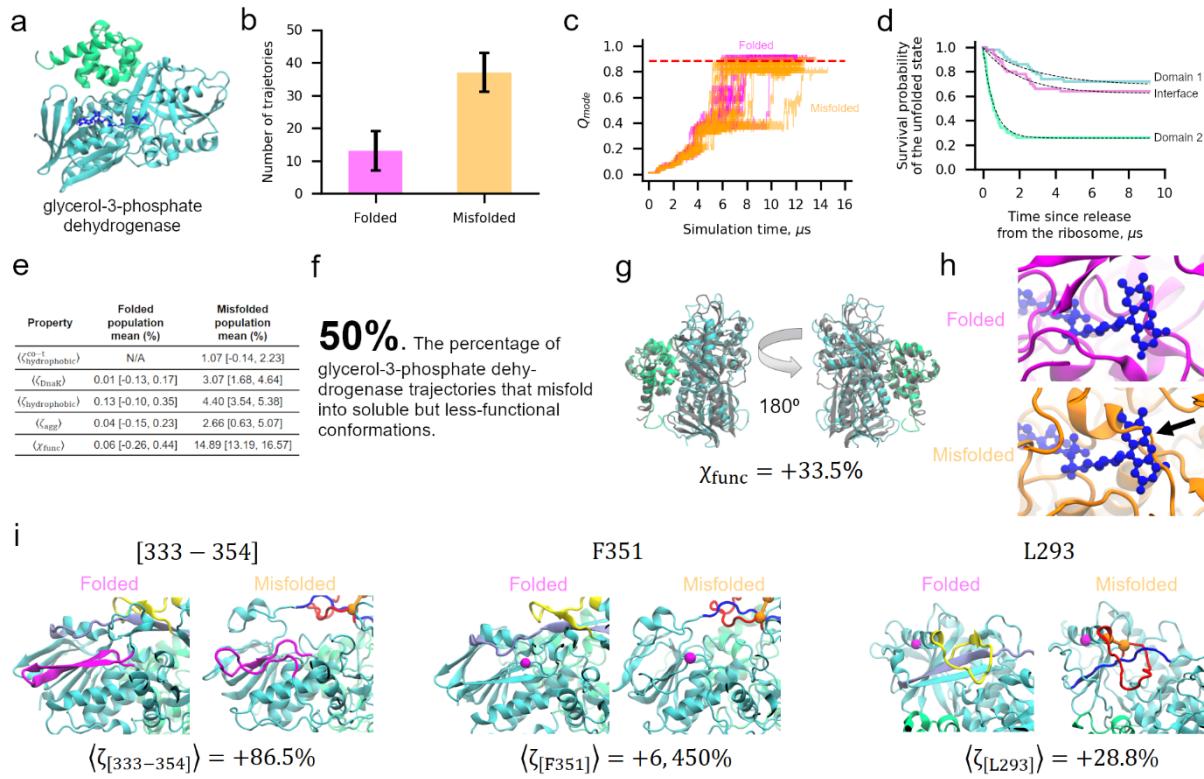

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

Figure 1. Luciferase exhibits subpopulations that misfold into soluble but less-functional conformations. (a) Simulations of translation elongation and ejection of nascent Luciferase were performed with a coarse-grain ribosome representation (ribosomal proteins and RNA are displayed in red and grey respectively). Domains 1, 2, 3, and 4 of Luciferase are displayed in silver, light green, magenta, and light purple, respectively. After ejection, the ribosome is removed and post-release dynamics is simulated for 30 CPU days per trajectory. (b) Primary structure diagram of Luciferase colored as described in (a); positions involved in the catalytic function of Luciferase as described in Methods are colored blue. (c) Cartoon diagram of Luciferase native state colored as described in (a) with the 5'-O-[N-(dehydroluciferyl)-sulfamoyl]-adenosine ligand colored dark blue. (d) Q_{mode} (see Methods) versus time for Domain 2 of a trajectory of Luciferase that folded correctly. Portions of the plot colored green, yellow, and blue correspond to the synthesis, ejection, and post-translation phases of the simulation. Note that the relatively short duration of ejection for this protein renders that section of the plot invisible at this resolution. The red line corresponds to $\langle Q_{\text{mode}}^{\text{NS}} \rangle$ minus three standard deviations and represents the threshold for defining this domain as folded (see Methods). (e) Same as (d) but for a trajectory that misfolds. Inset shows the final microsecond of the Q_{mode} time series. (f) Distributions of χ_{func} (Eq. 13) over the final 100 ns of the folded (magenta) and misfolded (orange) trajectories displayed in panels (d) and (e). The misfolded and folded distributions are different based on the Kolmogorov-Smirnov test with test statistic 0.33 and p -value of 1×10^{-66} . The misfolded distribution shows greater structural distortion (i.e., values of $\chi_{\text{func}} > 0$) of the binding pocket. (g) Backmapped all-atom structure from the final frame of the folded simulation shown in (d) aligned based on the residues implicated in function to the native state. (h) Same as (g) except for the final structure from the misfolded trajectory in (e), showing a strand misfolding in the ligand binding pocket (indicated by black arrow). Steric conflict between where the substrate binds and the surrounding binding pocket of the misfolded structures indicates this misfolded state will have reduced function.



1370
1371 **Figure 2. One in three proteins exhibit subpopulations that misfold into soluble but less-**
1372 **functional conformations that evade proteostasis machinery.** (a) Histogram of the probability of

1373 misfolding being detected in the final 100 ns of the simulation, computed as the number of misfolded
1374 proteins divided by 50, for each of the 122 proteins in the cytosolic *E. coli* proteome set. (b) Histogram
1375 of the percent change, computed as $\frac{|\langle Q_{\text{overall}} \rangle - \langle Q_{\text{overall}}^{\text{NS}} \rangle|}{\langle Q_{\text{overall}}^{\text{NS}} \rangle} * 100\%$, in fraction of native contacts within the
1376 final 100 ns of each of the 1,631 misfolded trajectories ($\langle Q_{\text{overall}} \rangle$) in the *E. coli* proteome data set relative
1377 to the average value from each protein's native state simulations ($\langle Q_{\text{overall}}^{\text{NS}} \rangle$). The majority of misfolded
1378 proteins are within 10% of the native value. (c) Histogram of extrapolated folding times for the slow-
1379 folding kinetic phase from survival probability curves for the 73 proteins in the cytosolic *E. coli* dataset
1380 with a reliable estimate (see Methods). (d) Cumulative distribution function (CDF) of $\langle \zeta_{\text{hydrophobic}} \rangle$
1381 computed over the values of $\langle \zeta_{\text{hydrophobic}} \rangle$ (Eq. 10) for 1,631 misfolded (orange) and 4,469 folded
1382 (magenta) trajectories. The blue shaded region indicates the set of $\langle \zeta_{\text{hydrophobic}} \rangle$ values considered to
1383 have no significant increase in hydrophobic solvent-accessible surface area relative to the native-state
1384 ensemble. (e) Same as (d) but CDFs are computed over values of $\langle \chi_{\text{func}} \rangle$ for trajectories in the misfolded
1385 and folded populations. Blue shaded region indicates the set of values considered to result in perturbed
1386 function. (f) Venn diagram indicating the number of the 1,631 misfolded trajectories that evade
1387 chaperones (TF, DnaK, and GroEL/GroES), do not aggregate, are not degraded, and are non-
1388 functional. The 186 trajectories at the center of this diagram are misfolded states that are expected to
1389 evade the proteostasis machinery, remaining soluble but non-functional. All error bars are 95%
1390 confidence intervals computed from bootstrapping 10^6 times; the height of the CDF plots in (d) and (e)
1391 indicates the 95% confidence intervals.



1392
1393
1394 **Figure 3. Detecting non-native entanglements in a monomeric protein structure.** (a) Schematic of
1395 how self-entanglements can be detected by examining the change in the Gauss linking number $g(i,j)$
1396 (Eq. 5) between a closed loop (pink) formed by the backbone segment between residues i and j that
1397 form a native contact (gold dashed line) and another pseudo-closed loop formed by the C-terminal
1398 backbone segment (blue) and a pseudo-vector (dashed green line) connecting the C-terminal residue
1399 and the start of the C-terminal segment, which begins at residue $j+1$. Threading of the N-terminal
1400 segment (composed of residues 1 through $i-1$) is determined in a similar manner. Examples of different
1401 Gauss linking numbers and their corresponding structures are shown in this hypothetical illustration.
1402 The magnitude of $g(i,j)$ is proportional to the number of threading events of the blue segment through
1403 the pink loop, while its sign is a function of the relative positioning of primary structure vectors at crossing
1404 points between the pink and blue segments. The structure with $g(i,j) = 0$ exhibits no entanglement. (b)
1405 An example of a gain in entanglement of the protein YJGH (PDB: 1PF5), where the C-termini (cyan)
1406 threads a loop (pink) formed by the native contact between residues D72 & Y104 (gold). Black arrow
1407 indicates the location of the crossing point of the two entangled loops. (c) Contingency table indicating
1408 the number of trajectories that are misfolded/folded across our 122 proteins based on Q_{mode} analysis
1409 and entangled/not entangled. Indicated p -values and odds ratios were computed in SciPy using the
1410 Fisher Exact Test. (d) Same as (c) except contingency table displays the number of proteins that are
1411 entangled/not entangled and predicted to be slow folding/fast folding. For the purposes of this analysis,
1412 a protein is considered slow- or fast-folding if its computed folding time is above or below the median
1413 folding time from the set of 73 proteins with reliable estimates, respectively. A protein is considered
1414 entangled if $\geq 50\%$ of its misfolded trajectories are entangled. All error bars are 95% confidence intervals
1415 computed from bootstrapping 10^6 times.

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

Figure 4. The vast majority of trajectories predicted to bypass cellular quality controls and exhibit reduced function are entangled. The percent of trajectories out of 50 for each of the 38 proteins that bypass quality controls and are predicted to have reduced function that are entangled (blue) or not entangled (red). A total of 174 out of 186 trajectories are entangled. Protein names were taken from UNIPROT; see Table S2 for the structures used and their corresponding gene names. Inset contingency table indicates the number of trajectories that are misfolded and escape proteostasis machinery while remaining non-functional and entangled/not entangled. Indicated p -value and odds ratio were computed in SciPy using the Fisher Exact Test. All error bars are 95% confidence intervals from bootstrapping 10^6 times.

1429
1430 **Figure 5. The two-domain glycerol-3-phosphate dehydrogenase protein displays widespread**
1431 **misfolding into soluble but less-functional conformations.** (a) Ribbon structure of glycerol-3-
1432 phosphate dehydrogenase (PDB ID: 2QCU). Domains 1 and 2 are composed of residues 1-387 and
1433 388-501 and are colored cyan and green, respectively. The FAD cofactor is shown in a dark blue
1434 representation. (b) Number of folded and misfolded trajectories for this protein in our simulations. (c)
1435 Q_{mode} versus time for Domain 1 for the subpopulations of folded (magenta) and misfolded (orange)
1436 trajectories. Each line represents one independent trajectory. (d) Survival probability of the unfolded
1437 state versus time computed for Domain 1 (cyan), Domain 2 (green), and the Domain 1|2 interface as
1438 described in Methods. Dotted black lines are double-exponential fits used to extract rate constants. (e)
1439 Summary of key parameters for the folded and misfolded populations. (f) 50% [36%, 64%] of glycerol-
1440 3-phosphate dehydrogenase trajectories are predicted to remain soluble but non-functional. (g)
1441 Representative misfolded structure colored as in (a) aligned to the native-state reference structure.
1442 Despite a high χ_{func} value indicative of a less-functional conformation, the protein is largely native. (h)
1443 Representative folded and misfolded structures back-mapped to all-atom resolution and then aligned
1444 to the native state based on the FAD binding pocket residues. Steric conflict (indicated by black arrow)
1445 can be seen between the substrate binding location and the misfolded binding pocket, indicating
1446 reduced function of this conformation. (i) Three pairs of structures corresponding to the native state
1447 (left) and the first representative structure of metastable state S2 (right) with locations of [333-354],
1448 F351, and L293 indicated in magenta. The loop (residues 271-288) and threading (residues 218-237)
1449 segments of the entanglement present in S2 are shown in red and blue, respectively. The same regions
1450 are colored yellow and light purple in the native state for reference, though no entanglement is present.
1451 The CA atoms of residues 271 and 288 that form the contact closing the loop segment are represented
1452 by orange spheres. Values of $\langle \zeta_{\text{peptide}} \rangle$ were calculated with Eq. 16; error bars are available in Table
1453 S11. All error bars are 95% confidence intervals computed from bootstrapping 10^6 times.

1454
1455
1456
1457
1458
1459
1460
1461

1513 **Supplementary Methods**

1514

1515 **Preparation of K12 Cell Pellets.** *E. coli* K12 cells (NEB) were grown in 2 sets of 3 ×
1516 50 mL (biological triplicates) of in-house prepared MOPS EZ rich media(-Arginine/-
1517 Lysine) from saturated overnight cultures with a starting OD₆₀₀ of 0.05. Similar to
1518 reported elsewhere⁷¹, one set was supplemented with 0.5 mM [¹³C₆]L-Arginine and
1519 0.4 mM [¹³C₆]L-Lysine and the other with 0.5 mM L-Arginine and 0.4 mM L-Lysine.
1520 Cells were cultured at 37 °C with agitation (220 rpm) to a final OD₆₀₀ of 0.8. Each
1521 heavy/light pair was pooled together and then transferred to 2 × 50 mL falcon tubes
1522 and collected by centrifugation at 4000 g for 15 mins at 4 °C. The supernatants were
1523 removed, and cell pellets were stored at -20 °C until further use.

1524 Frozen cell pellets were resuspended in a lysis buffer consisting of 900 µL of
1525 Tris pH 8.2 (20 mM Tris pH 8.2, 100 mM NaCl, 2 mM MgCl₂ and supplemented with
1526 DNase I to a final concentration (f.c.) of 0.1 mg mL⁻¹). Resuspended cells were flash
1527 frozen by slow drip over liquid nitrogen and cryogenically pulverized with a freezer mill
1528 (SPEX Sample Prep) over 8 cycles consisting of 1 min of grinding (9 Hz), and 1 min
1529 of cooling. Pulverized lysates were transferred to 50 mL centrifuge tubes and thawed
1530 at room temperature for 20 min. Lysates were then transferred to fresh 1.5 mL
1531 microfuge tubes and clarified at 16000 g for 15 min at 4 °C to remove insoluble cell
1532 debris. To deplete ribosome particles, clarified lysates were transferred to 3 mL *konical*
1533 tubes and ultracentrifuged at 33,300 rpm at 4 °C for 90 min without sucrose cushions
1534 using a SW55 Ti rotor. Protein concentrations of clarified lysates were determined
1535 using the bicinchoninic acid assay (Rapid Gold BCA Assay, Pierce) in a microtiter
1536 format with a plate reader (Molecular Devices iD3) using BSA as a calibration
1537 standard. Protein concentrations were diluted to a standard concentration of 3.3 mg
1538 mL⁻¹ using Tris lysis buffer. This generates the normalized lysates for all downstream
1539 workflows.

1540

1541 **Preparation of Native and Refolded Lysates for Limited Proteolysis Mass**
1542 **Spectrometry.** To prepare half-isotopically-labeled native samples, 3.5 µL of
1543 normalized lysates derived from pellets in which half of the cells were grown with
1544 [¹³C₆]L-Arginine and [¹³C₆]L-Lysine during cell culture and half of the cells were grown
1545 with natural abundance L-Arginine and L-Lysine during cell culture, were diluted with
1546 96.5 µL of Tris native dilution buffer (20 mM Tris pH 8.2, 100 mM NaCl, 10.288 mM
1547 MgCl₂, 10.36 mM KCl, 2.07 mM ATP, 1.04 mM DTT, 62 mM GdmCl) to a final protein
1548 concentration of 0.115 mg mL⁻¹. Following dilution, the final concentrations are 20 mM
1549 Tris pH 8.2, 100 mM NaCl, 10 mM MgCl₂, 10 mM KCl, 2 mM ATP, 1 mM DTT and 60
1550 mM GdmCl. Native samples were then equilibrated by incubating for 90 min at room
1551 temperature prior to limited proteolysis.

1552 The refolding samples were prepared as described previously⁴⁹. Briefly: 600 µL
1553 of normalized lysates, 100 mg of solid GdmCl, and 2.4 µL of a freshly prepared 700
1554 mM DTT stock solution were added to a fresh 1.5 mL microfuge tube, and solvent was
1555 removed using a vacufuge plus to a final volume of 170 µL, such that the final
1556 concentrations of all components were 11.6 mg mL⁻¹ protein, 6 M GdmCl, 70 mM Tris
1557 pH 8.2, 350 mM NaCl, 7 mM MgCl₂, and 10 mM DTT. Unfolded lysates were incubated
1558 overnight at room temperature to complete unfolding prior to refolding.

1559 To prepare refolding samples, 99 µL of refolding dilution buffer (19.5 mM Tris
1560 pH 8.2, 97.5 mM NaCl, 10.03 mM MgCl₂, 10.1 mM KCl, 2.02 mM ATP and .909 mM
1561 DTT) were added to a fresh 1.5 mL microfuge tube. 1 µL of unfolded extract was then
1562 added to the tube containing the refolding dilution buffer and quickly mixed by rapid

1563 vortexing, diluting the sample by 100x, followed by flash centrifugation to collect liquids
1564 to the bottom of the tube. The final concentrations were 20 mM Tris pH 8.2, 100 mM
1565 NaCl, 10 mM MgCl₂, 10 mM KCl, 2mM ATP, 1 mM DTT and 60 mM GdmCl. Refolded
1566 samples were then incubated at room temperature for 1min, 5 min or 2 h to allow for
1567 proteins to refold prior to limited proteolysis.

1568 To perform limited proteolysis, 2 μ L of a PK stock (prepared as a 0.067 mg mL⁻¹
1569 PK in a 1:1 mixture of Tris lysis buffer and 20% glycerol, stored at -20°C and thawed
1570 at most only once) were added to a fresh 1.5 mL microfuge tube. After refolded
1571 proteins were allowed to refold for the specified amount of time (1 min, 5 min, or 2 h),
1572 or native proteins were allowed their 90 min equilibration, 100 μ L of the native/refolded
1573 lysates were added to the PK-containing microfuge tube and quickly mixed by rapid
1574 vortexing (enzyme:substrate ratio is a 1:100 w/w ratio⁷⁰), followed by flash
1575 centrifugation to collect liquids to the bottom of the tube. Samples were incubated for
1576 exactly 1 min at room temperature before transferring them to a mineral oil bath
1577 preequilibrated at 110°C for 5 min to quench PK activity. Boiled samples were then
1578 flash centrifuged (to collect condensation on the sides of the tube), and transferred to
1579 fresh 1.5 mL microfuge tube containing 76 mg urea such that the final urea
1580 concentration was 8 M and the final volume was 158 μ L. They are then vortexed to
1581 dissolve the urea to unfold all proteins and quench any further enzyme activity
1582 indefinitely, and flash centrifuged to collect liquids to the bottom of the tubes.

1583 All protein samples were prepared for mass spectrometry as follows: 2.25 μ L
1584 of a freshly prepared 700 mM stock of DTT were added to each sample-containing
1585 microfuge tube to a final concentration of 10 mM. Samples were incubated at 37°C for
1586 30 minutes at 700 rpm on a thermomixer to reduce cysteine residues. 9 μ L of a freshly
1587 prepared 700 mM stock of iodoacetamide (IAA) were then added to a final
1588 concentration of 40 mM, and samples were incubated at room temperature in the dark
1589 for 45 minutes to alkylate reduced cysteine residues. 1 μ L of a 0.1 μ g μ L⁻¹ stock of
1590 LysC (NEB) was added to the samples (to a final enzyme:substrate ratio of 1:100 w/w)
1591 and incubated for 2 h at 37°C at 700 rpm. 471 μ L of 100 mM ammonium bicarbonate
1592 (pH 8) were added to the samples to dilute the urea to a final concentration of 2 M. 2
1593 μ L of a 0.1 μ g μ L⁻¹ stock of Trypsin (NEB) were added to the samples (to a final
1594 enzyme:substrate ratio of 1:50 w/w) and incubated overnight (15-16 h) at 25°C at 700
1595 rpm (not 37°C, so as to minimize decomposition of urea and carbamylation of lysines).
1596

1597 **Desalting of Mass Spectrometry Samples.** Peptides were desalted with Sep-Pak
1598 C18 1 cc Vac Cartridges (Waters) over a vacuum manifold. Tryptic digests were first
1599 acidified by addition of 16.6 μ L trifluoroacetic acid (TFA, Acros) to a final concentration
1600 of 1% (vol/vol). Cartridges were first conditioned (1 mL 80% ACN, 0.5% TFA) and
1601 equilibrated (4 x 1 mL 0.5% TFA) before loading the sample slowly under a diminished
1602 vacuum (ca. 1 mL/min). The columns were then washed (4 x 1 mL 0.5% TFA), and
1603 peptides were eluted by addition of 1 mL elution buffer (80% ACN, 0.5% TFA). During
1604 elution, vacuum cartridges were suspended above 15 mL conical tubes, placed in a
1605 swing-bucket rotor (Eppendorf 5910R), and spun for 3 min at 350 g. Eluted peptides
1606 were transferred from Falcon tubes back into microfuge tubes and dried using a
1607 vacuum centrifuge (Eppendorf Vacufuge). Dried peptides were stored at -80°C until
1608 analysis. For analysis, samples were vigorously resuspended in 0.1% FA in Optima
1609 water (ThermoFisher) to a final concentration of 0.5 mg mL⁻¹.
1610

1611 **LC-MS/MS Acquisition.** Chromatographic separation of digests were carried out on
1612 a Thermo UltiMate3000 UHPLC system with an Acclaim Pepmap RSLC, C18, 75 μ m

1613 \times 25 cm, 2 μ m, 100 \AA column. Approximately, 1 μ g of protein was injected onto the
1614 column. The column temperature was maintained at 40 $^{\circ}$ C, and the flow rate was set
1615 to 0.300 μ L min $^{-1}$ for the duration of the run. Solvent A (0.1% FA) and Solvent B (0.1%
1616 FA in ACN) were used as the chromatography solvents. The samples were run
1617 through the UHPLC System as follows: peptides were allowed to accumulate onto the
1618 trap column (Acclaim PepMap 100, C18, 75 μ m \times 2 cm, 3 μ m, 100 \AA column) for 10
1619 min (during which the column was held at 2% Solvent B). The peptides were resolved
1620 by switching the trap column to be in-line with the separating column, quickly
1621 increasing the gradient to 5% B over 5 min and then applying a 95 min linear gradient
1622 from 5% B to 25% B. Subsequently, the gradient was increased from 35% B to 40%
1623 B over 25 min and then increased again from 40% B to 90% B over 5 min. The column
1624 was then cleaned with a sawtooth gradient to purge residual peptides between runs in
1625 a sequence.

1626 A Thermo Q-Exactive HF-X Orbitrap mass spectrometer was used to analyze
1627 protein digests. A full MS scan in positive ion mode was followed by 20 data-dependent
1628 MS scans. The full MS scan was collected using a resolution of 120000 (@ m/z 200),
1629 an AGC target of 3E6, a maximum injection time of 64 ms, and a scan range from 350
1630 to 1500 m/z. The data-dependent scans were collected with a resolution of 15000 (@
1631 m/z 200), an AGC target of 1E5, a minimum AGC target of 8E3, a maximum injection
1632 time of 55 ms, and an isolation window of 1.4 m/z units. To dissociate precursors prior
1633 to their reanalysis by MS2, peptides were subjected to an HCD of 28% normalized
1634 collision energies. Fragments with charges of 1, 6, 7, or higher and unassigned were
1635 excluded from analysis, and a dynamic exclusion window of 30.0 s was used for the
1636 data-dependent scans. Mass tags were enabled with Δ m of 2.00671 Th, 3.01007 Th,
1637 4.01342 Th, and 6.02013 Th.

1638
1639 **LC-MS/MS Data Analysis.** Proteome Discoverer (PD) Software Suite (v2.4, Thermo
1640 Fisher) and the Minora Algorithm were used to analyze mass spectra and perform
1641 Label Free Quantification (LFQ) of detected peptides. Default settings for all analysis
1642 nodes were used except where specified. The data were searched against *Escherichia*
1643 *coli* (UP000000625, Uniprot) reference proteome database. For peptide identification,
1644 the PD MSFragger node was used, using a semi-tryptic search allowing up to 2 missed
1645 cleavages⁷². A precursor mass tolerance of 10 ppm was used for the MS1 level, and
1646 a fragmentation tolerance was set to 0.02 Da at the MS2 level. Peptide lengths between
1647 7 and 50 amino acid residues was allowed with a peptide mass between 500 and 5000
1648 Da. Additionally, a maximum charge state for theoretical fragments was set at 2.
1649 Oxidation of methionine and acetylation of the N-terminus were allowed as dynamic
1650 modifications while carbamidomethylation on cysteines was set as a static
1651 modification. Heavy isotope labeling (¹³C₆) of Arginine and Lysine were allowed as
1652 dynamic modifications. The Philosopher PD node was used for FDR validation. Raw
1653 normalized extracted ion intensity data for the identified peptides were exported from
1654 the .pdResult file using a three-level hierarchy (protein > peptide group > consensus
1655 feature). These data were further processed utilizing custom Python analyzer scripts
1656 (available on GitHub, and described in depth previously^{49,71}). Briefly, normalized ion
1657 counts were collected across the refolded replicates and the native replicates for each
1658 successfully identified peptide group. Effect sizes are the ratio of averages (reported
1659 in log₂) and P-values (reported as $-\log_{10}$) were assessed using *t* tests with Welch's
1660 correction for unequal population variances. Missing data are treated in a special
1661 manner. If a feature is not detected in all three native (or refolded) injections and is
1662 detected in all three refolded (or native) injections, we use those data, and fill the

1663 missing values with 1000 (the ion limit of detection for this mass analyzer); this peptide
1664 becomes classified as an all-or-nothing peptide. If a feature is not detected in one out
1665 of six injections, the missing value is dropped. Any other permutation of missing data
1666 (e.g., missing in two injections) results in the quantification getting discarded. In many
1667 situations, our data provide multiple independent sets of quantifications for the same
1668 peptide group. This happens most frequently because the peptide is detected in
1669 multiple charge states or as a heavy isotopomer. In this case, we calculate effect size
1670 and P-value for all features that map to the same peptide group. If the features all
1671 agree with each other in sign, they are combined: the quantification associated with
1672 the median amongst available features is used and the P-values are combined with
1673 Fisher's method. If the features disagree with each other in sign, the P-value is set to
1674 1. Coefficients of variation (CV) for the peptide abundance in the three replicate
1675 refolded samples are also calculated. Analyzer returns a file listing all the peptides
1676 that can be confidently quantified, and provides their effect-size, P-value, refolded CV,
1677 proteinase K site (if half-tryptic), and associated protein metadata.

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

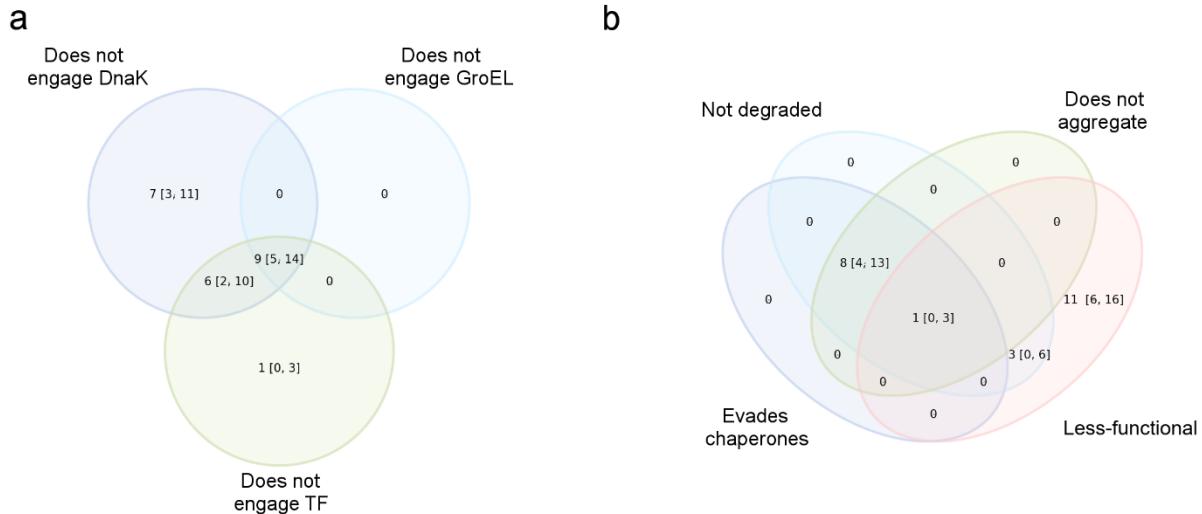
1703

1704

1705

1706

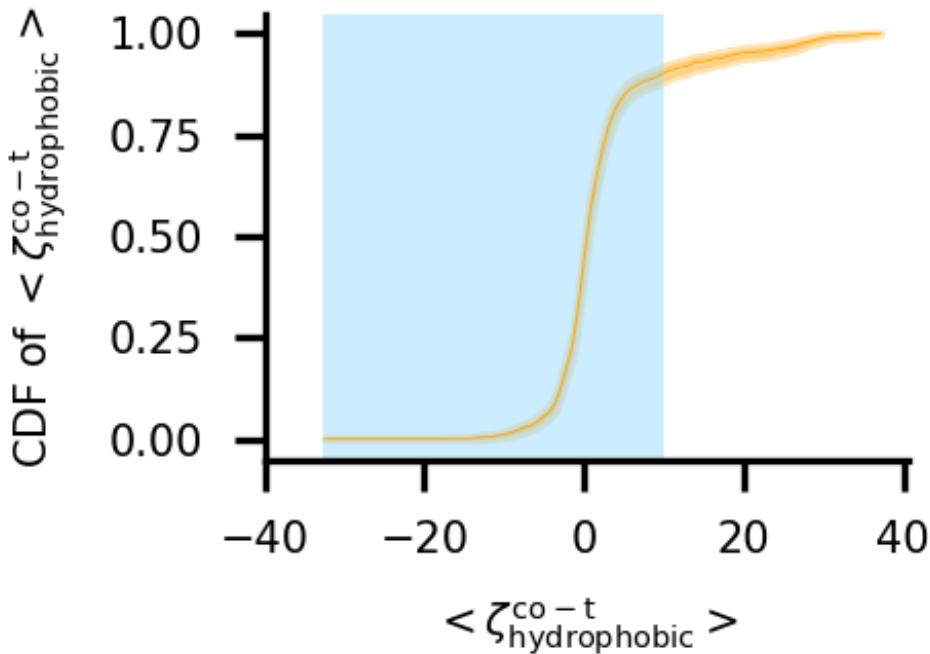
1707


1708

1709

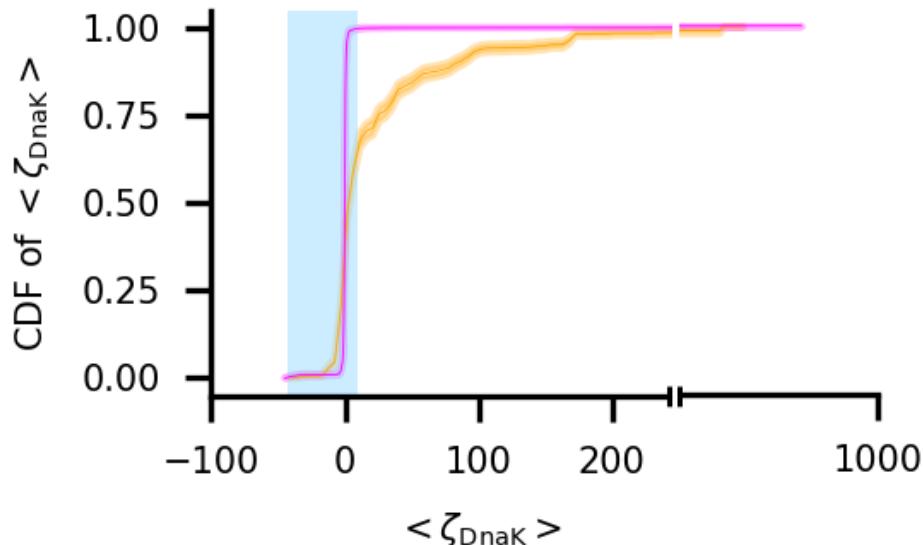
1710

1711


1712

1713
1714
1715
1716
1717

Figure S1. Venn diagrams showing the overlap between Luciferase trajectories that are misfolded and (a) predicted to evade DnaK, GroEL, and TF or (b) predicted not to aggregate, not to be degraded, to evade all chaperones, and to remain non-functional. Error bars are 95% confidence intervals from bootstrapping 10^6 times.


1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740
1741
1742
1743
1744

Figure S2. Cumulative distribution function of $\langle \zeta_{\text{hydrophobic}}^{\text{co-t}} \rangle$ over the subset of 1,053 misfolded trajectories for which it was computed (see Methods). The blue shaded region indicates the subset of values taken to indicate no significant increase in trigger factor interactions relative to the folded population. The height of the CDF indicates the 95% confidence intervals.

1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

1771

1772

1773 **Figure S3.** Cumulative distribution function of $\langle \zeta_{DnaK} \rangle$ over the subset of 1,631 misfolded (orange) and 4,469 folded (magenta) trajectories. The blue shaded region indicates the subset of values taken to indicate no significant increase in DnaK interactions relative to the native-state population. The height of the CDFs indicates the 95% confidence intervals.

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

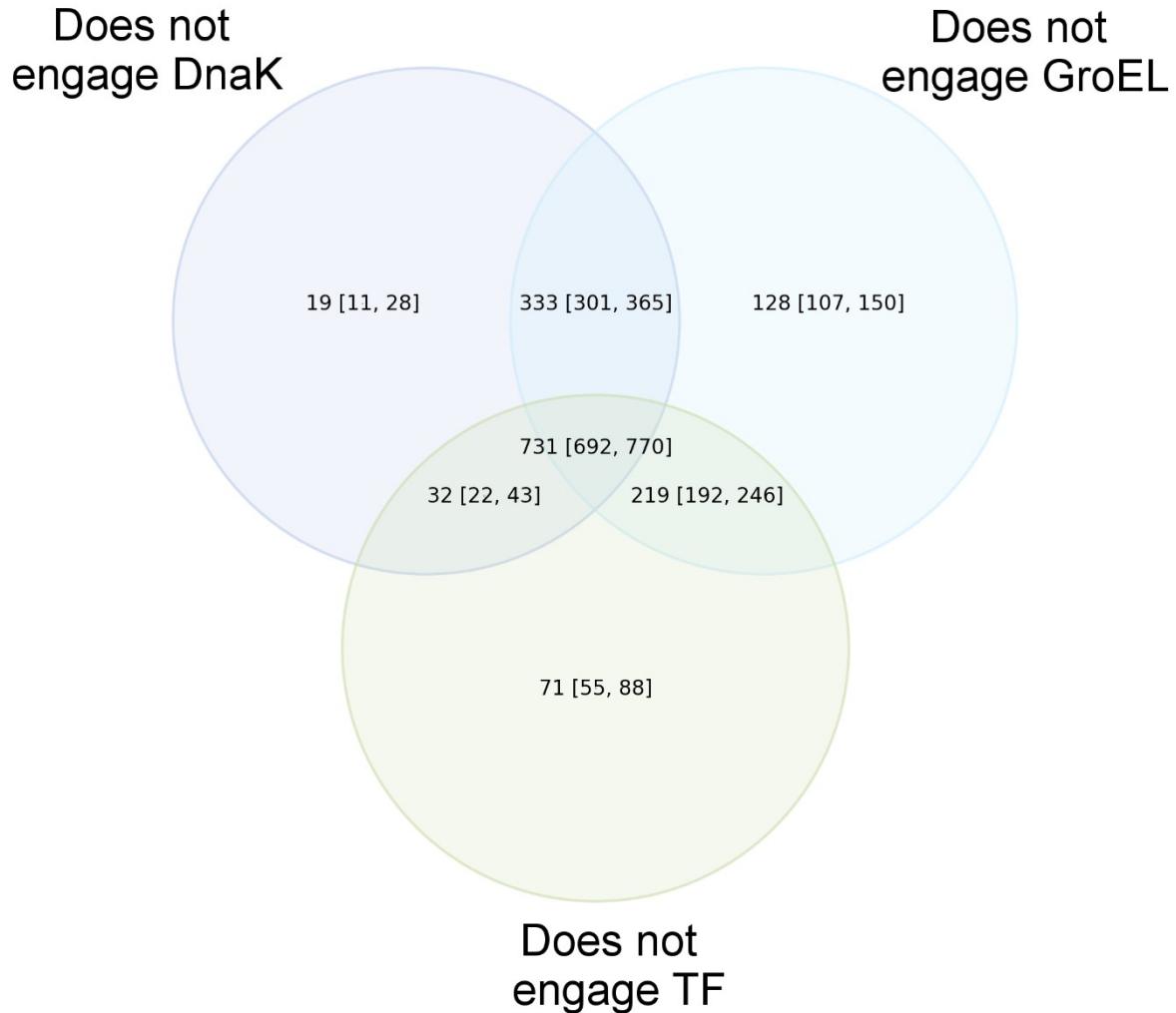
1796

1797

1798

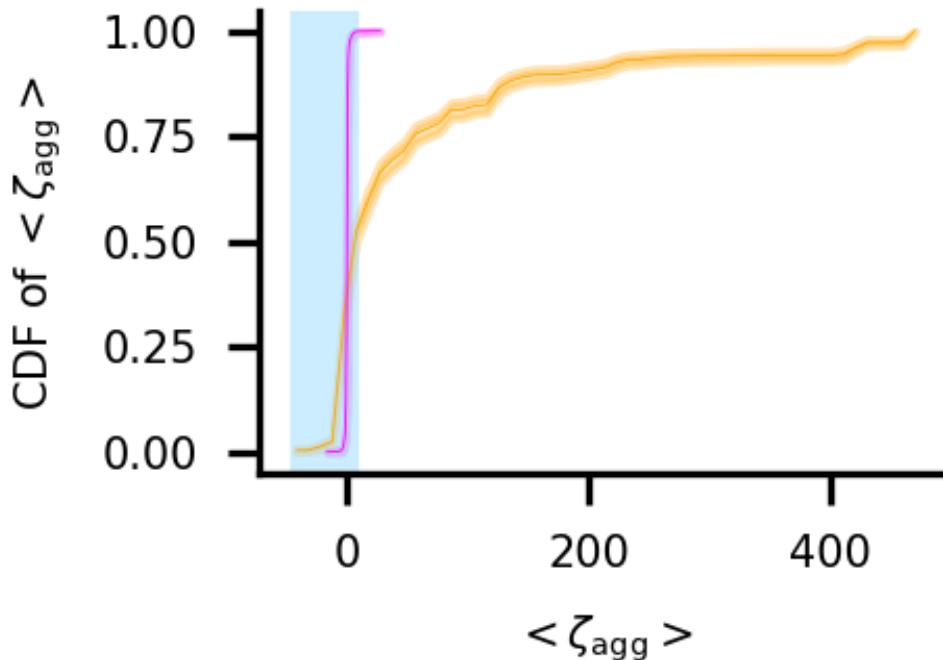
1799

1800


1801

1802

1803


1804

1805

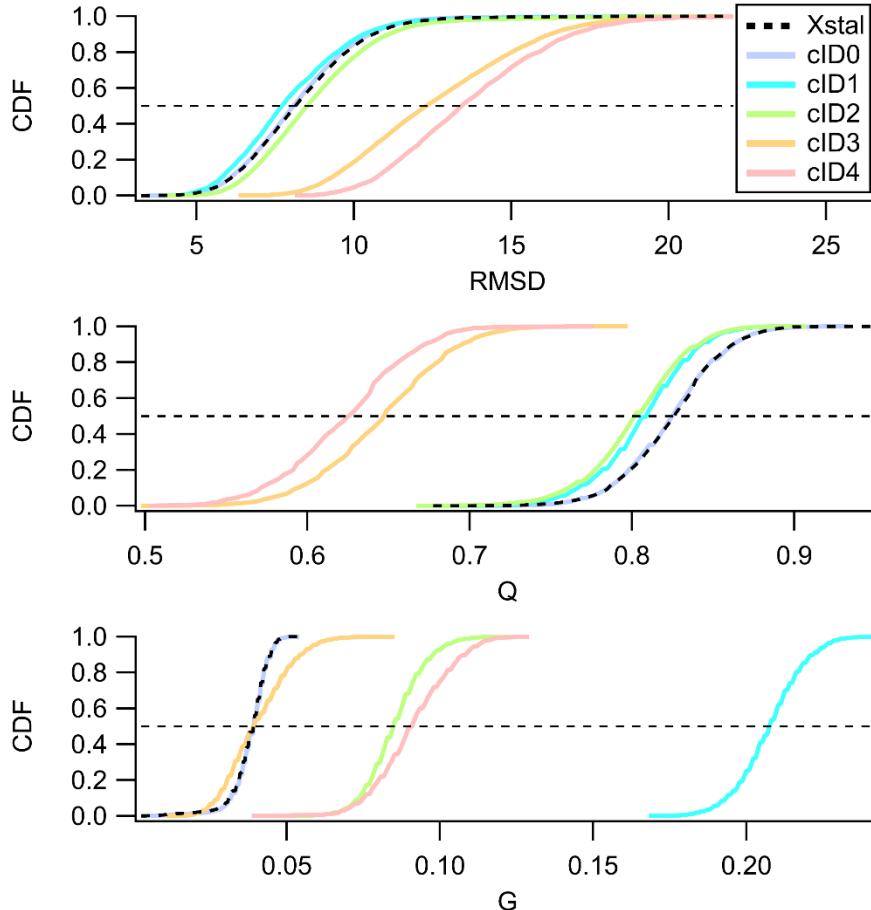

1806
1807
1808
1809
1810

Figure S4. Venn diagram showing the overlap between those trajectories that are predicted not to engage TF, DnaK, or GroEL/GroES. A total of 1,533 trajectories evade at least one chaperone. Error bars are 95% confidence intervals from bootstrapping 10^6 times.

1811
1812 **Figure S5.** Cumulative distribution function of $\langle \zeta_{\text{agg}} \rangle$ over the subset of 1,631 misfolded (orange) and
1813 4,469 folded (magenta) trajectories. The blue shaded region indicates the subset of values taken to
1814 indicate no significant increase in aggregation propensity relative to the native state simulations. The
1815 height of the CDFs indicates the 95% confidence intervals.

1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841

1842

1843 **Figure S6.** The utility of the change in entanglement metric (G) for detecting structural perturbations not
 1844 apparent by fraction of native contacts (Q) or root mean square deviation (RMSD) is exemplified by
 1845 examining clusters of the trajectories for aminoimidazole ribonucleotide synthetase (PDB: 1CLI) relative
 1846 to the cluster of trajectories started from the reference state. The 50 trajectories obtained from synthesis
 1847 simulations can be clustered into 5 separate clusters characterized by the $\langle Q_{\text{mode}} \rangle$ and the corrected
 1848 discrete distribution of a given type of change in entanglement (Eq. 7). cID0 contains 8/50 trajectories all
 1849 of which terminate to the native state with no changes in entanglement. cID1 contains 3/50 trajectories
 1850 that are near native like (i.e. $\langle Q_{\text{mode}} \rangle \approx \langle Q_{\text{mode}}^{\text{NS}} \rangle$) that show appreciable gain and loss of entanglements
 1851 as well as pure switch in chirality. cID2 contains 32/50 trajectories that show appreciable gain and loss
 1852 of entanglements with less near native like conformations (i.e. $\langle Q_{\text{mode}} \rangle \geq \langle Q_{\text{mode}}^{\text{NS}} \rangle - \sigma(Q_{\text{mode}}^{\text{NS}})$). cID3
 1853 contains 6/50 trajectories that show non-native like conformations (i.e. $\langle Q_{\text{mode}} \rangle < \langle Q_{\text{mode}}^{\text{NS}} \rangle - \sigma(Q_{\text{mode}}^{\text{NS}})$)
 1854 with appreciable gain and loss of entanglements. cID4 contains 1/50 trajectories that show non-native
 1855 like conformations with appreciable gain and loss of entanglements and pure change in chirality. For
 1856 the clusters which contain near native like conformations and changes in entanglement of any kind
 1857 (cID1 light blue and cID2) Q and RMSD fail to distinguish different clusters while G does not. For those
 1858 clusters that contain non-native like conformations and changes in entanglement of any kind (cID3 &
 1859 cID4) Q and RMSD are much more reliable.

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869 **Table S1.** Coarse-grain model parameters for PDB ID 4G36

PDB ID	Protein name	Domain or interface	Structural class	η used in model building
4G36	Firefly Luciferase	Domain 1:1-12; 356-437	β	1.442
		Domain 2:13-52; 212-355	α/β	1.114
		Domain 3: 53-211	α/β	1.114
		Domain 4: 438-550	α/β	1.916
		Interface 1 2	-	1.235
		Interface 1 3	-	1.235
		Interface 1 4	-	1.507*
		Interface 2 3	-	1.235
		Interface 2 4	-	1.235
		Interface 3 4	-	1.235

1870 *indicates interface is unstable at all tested values of η and so median interface
1871 value from set of stable interfaces is used for all simulations

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906
1907

Table S2 *E. coli* proteome dataset information

Index	PDB ID	Chain ID	UniProt Entry name	Protein name	Gene names
1	1A69	A	DEOD_ECOLI	Purine nucleoside phosphorylase DeoD-type	deoD, pup, b4384, JW4347
2	1A6J	B	PTSN_ECOLI	Nitrogen regulatory protein	ptsN, rpoP, yhbl, b3204, JW3171
3	1A82	A	BIOD1_ECOLI	ATP-dependent dethiobiotin synthetase BioD ₁	bioD1, b0778, JW0761
4	1AG9	A	FLAV_ECOLI	Flavodoxin 1	fldA, b0684, JW0671
5	1AH9	Model 1	IF1_ECOLI	Translation initiation factor IF-1	infA, b0884, JW0867
6	1AKE	A	KAD_ECOLI	Adenylate kinase	Adk, dnaW, plsA, b0474, JW0463
7	1B9L	A	FOLX_ECOLI	Dihydronoopterin triphosphate 2'-epimerase	folIX, b2303, JW2300
8	1CLI	A	PUR5_ECOLI	Phosphoribosylformylglycinamide cycloligase	purM, purG, b2499, JW2484
9	1D2F	A	MALY_ECOLI	Protein MalY	malY, b1622, JW1614
10	1DCJ	Model 1	TUSA_ECOLI	Sulfur carrier protein TusA	tusA, sirA, yhhP, b3470, JW3435
11	1DFU	P	RL25_ECOLI	50S ribosomal protein L25	rplY, b2185, JW2173
12	1DUV	G	OTC1_ECOLI	Ornithine carbamoyltransferase subunit I	argI, b4254, JW4211
13	1DXE	A	GARL_ECOLI	5-keto-4-deoxy-D-glucarate aldolase	garL, yhaF, b3126, JW3095
14	1EF9	A	SCPB_ECOLI	Methylmalonyl-CoA decarboxylase	scpB, mmcD, ygfG, b2919, JW2886
15	1EIX	C	PYRF_ECOLI	Orotidine 5'-phosphate decarboxylase	pyrF, b1281, JW1273
16	1EM8	A	HOLC_ECOLI	DNA polymerase III subunit chi	holC, b4259, JW4216
17	1EUM	A	FTNA_ECOLI	Bacterial non-heme ferritin	ftnA, ftn, gen-165, rsgA, b1905, JW1893
18	1FJJ	A	YBHB_ECOLI	UPF0098 protein YbhB	ybhB, b0773, JW0756
19	1FM0	D	MOAD_ECOLI	Molybdopterin synthase sulfur carrier subunit	moaD, chIA4, chIM, b0784, JW0767
20	1FTS	A	FTSY_ECOLI	Signal recognition particle receptor FtsY	ftsY, b3464, JW3429
21	1FUI	A	FUCI_ECOLI	L-fucose isomerase, Fuclease	fucl, b2802, JW2773
22	1GER	B	GSHR_ECOLI	Glutathione reductase	gor, b3500, JW3467
23	1GLF	O	GLPK_ECOLI	Glycerokinase	glpK, b3926, JW3897
24	1GQE	A	RF2_ECOLI	Peptide chain release factor RF2	prfB, supK, b2891, JW5847
25	1GQT	B	RBSK_ECOLI	Ribokinase	rbsK, b3752, JW3731
26	1GT7	A	RHAD_ECOLI	Rhamnulose-1-phosphate aldolase	rhaD, rhua, b3902, JW3873
27	1GYT	L	AMPA_ECOLI	Cytosol aminopeptidase	pepA, carP, xerB, b4260, JW4217
28	1GZ0	C	RLMB_ECOLI	23S rRNA (guanosine-2'-O)-methyltransferase RlmB	rlmB, yjfH, b4180, JW4138
29	1H16	A	PFLB_ECOLI	Formate acetyltransferase 1	pflB, pfl, b0903, JW0886
30	1H75	A	NRDH_ECOLI	Glutaredoxin-like protein NrdH	nrdH, ygaN, b2673, JW2648

1908
1909

1910

Table S2 cont.

Index	PDB ID	Chain ID	UniProt Entry name	Protein name	Gene names
31	1I6O	B	CAN_ECOLI	Carbonic anhydrase 2	can, cynT2, yadF, b0126, JW0122
32	1JNS	Model 1	PPIC_ECOLI	Peptidyl-prolyl cis-trans isomerase C	ppiC, parVA, b3775, JW3748
33	1JW2	A	HHA_ECOLI	Hemolysin expression-modulating protein Hha	hha, b0460, JW0449
34	1JX7	A	YCHN_ECOLI	Protein YchN	ychN, b1219, JW1210
35	1K7J	A	YCI0_ECOLI	Uncharacterized protein YciO	yciO, b1267, JW5196
36	1KO5	A	GNTK_ECOLI	Thermoresistant gluconokinase	gntK, b3437, JW3400
37	1KSF	X	CLPA_ECOLI	ATP-dependent Clp protease ATP-binding subunit ClpA	clpA, lopD, b0882, JW0866
38	1L6W	A	FSAA_ECOLI	Fructose-6-phosphate aldolase 1	fsaA, fsa, mipB, ybiZ, b0825, JW5109
39	1M3U	A	PANB_ECOLI	3-methyl-2-oxobutanoate hydroxymethyltransferase	panB, b0134, JW0130
40	1MZG	B	SUFE_ECOLI	Cysteine desulfurization protein SufE	sufE, ynhA, b1679, JW1669
41	1NAQ	A	CUTA_ECOLI	Divalent-cation tolerance protein CutA	cutA, cutA1, cycY, b4137, JW4097
42	1NG9	A	MUTS_ECOLI	DNA mismatch repair protein MutS	mutS, fdv, b2733, JW2703
43	1OR0	A	PYRE_ECOLI	Orotate phosphoribosyltransferase	pyrE, b3642, JW3617
44	1P7L	A	METK_ECOLI	S-adenosylmethionine synthase	metK, metX, b2942, JW2909
45	1P91	A	RLMA_ECOLI	23S rRNA (guanine(745)-N(1))-methyltransferase	rImA, rrmA, yebH, b1822, JW1811
46	1PF5	A	YJGH_ECOLI	RutC family protein YjgH	yjgH, b4248, JW4206
47	1PMO	B	DCEB_ECOLI	Glutamate decarboxylase beta	gadB, b1493, JW1488
48	1PSU	B	PAAI_ECOLI	Acyl-coenzyme A thioesterase Paal	paal, ydbV, b1396, JW1391
49	1Q5X	A	RRAA_ECOLI	Regulator of ribonuclease activity A	rraA, menG, yiiV, b3929, JW3900
50	1QF6	A	SYT_ECOLI	Threonine-tRNA ligase	thrS, b1719, JW1709
51	1QTW	A	END4_ECOLI	Endonuclease 4	Nfo, b2159, JW2146
52	1RQJ	A	ISPA_ECOLI	Farnesyl diphosphate synthase	ispA, b0421, JW0411
53	1SG5	Model 1	ROF_ECOLI	Protein rof	Rof, yaeO, b0189, JW0184
54	1SV6	A	MHPD_ECOLI	2-keto-4-pentenoate hydratase	mhpD, b0350, JW0341
55	1SVT	J	CH60_ECOLI	60 kDa chaperonin	groL, groEL, mopA, b4143, JW4103
56	1T4B	A	DHAS_ECOLI	Aspartate-semialdehyde dehydrogenase	asd, hom, b3433, JW3396
57	1T8K	A	ACP_ECOLI	Acyl carrier protein	acpP, b1094, JW1080
58	1U0B	B	SYC_ECOLI	Cysteine-tRNA ligase	cysS, b0526, JW0515
59	1U60	A	GLSA1_ECOLI	Glutaminase 1	glsA1, ybaS, b0485, JW0474
60	1UUF	A	YAHK_ECOLI	Aldehyde reductase YahK	yahK, b0325, JW0317
61	1W78	A	FOLC_ECOLI	Dihydrofolate synthase/folylpolyglutamate synthase	folC, dedC, b2315, JW2312

1911

1912

Table S2 cont.

Index	PDB ID	Chain ID	UniProt Entry name	Protein name	Gene names
62	1W8G	A	PLPHP_ECOLI	Pyridoxal phosphate homeostasis protein	yggS, b2951, JW2918
63	1WOC	C	PRIB_ECOLI	Primosomal replication protein N	priB, b4201, JW4159
64	1XN7	Model 1	FEOC_ECOLI	Probable [Fe-S]-dependent transcriptional repressor FeoC	feoC, yhgG, b3410, JW3373
65	1XRU	A	KDUI_ECOLI	4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase	kdul, yqeE, b2843, JW2811
66	1XVI	A	MPGP_ECOLI	Mannosyl-3-phosphoglycerate phosphatase	yedP, b1955, JW1938
67	1YQQ	A	XAPA_ECOLI	Purine nucleoside phosphorylase 2	xapA, pndA, b2407, JW2398
68	1ZYL	A	SRKA_ECOLI	Stress response kinase A	srkA, rdoA, yihE, b3859, JW3831
69	1ZZM	A	YJJV_ECOLI	Uncharacterized metal-dependent hydrolase YjjV	yjjV, b4378, JW4341
70	2A6Q	E	YOEB_ECOLI	Toxin YoeB	yoeB, b4539, JW5331
71	2AXD	Model 1	HOLE_ECOLI	DNA polymerase III subunit theta	holE, b1842, JW1831
72	2D1P	B	TUSC_ECOLI	Protein TusC	tusC, yhem, b3344, JW3306
73	2FEK	Model 1	WZB_ECOLI	Low molecular weight protein-tyrosine-phosphatase Wzb	wzb, b2061, JW2046
74	2FYM	A	ENO_ECOLI	Enolase	eno, b2779, JW2750
75	2GQR	A	PUR7_ECOLI	Phosphoribosylaminoimidazole-succinocarboxamide synthase	purC, b2476, JW2461
76	2H1F	A	A0A0H2VC26_ECO L6	Lipopolysaccharide heptosyltransferase-1	rfaC, c4447
77	2HD3	K	EUTN_ECOLI	Ethanolamine catabolic microcompartment shell protein EutN	eutN, cchB, yffY, b2456, JW2440
78	2HG2	A	ALDA_ECOLI	Lactaldehyde dehydrogenase	aldA, ald, b1415, JW1412
79	2HGK	Model 1	YQCC_ECOLI	Uncharacterized protein YqcC	yqcC, b2792, JW2763
80	2HNA	A	MIOC_ECOLI	Protein MioC	mioC, yieB, b3742, JW3720
81	2HNH	A	DPO3A_ECOLI	DNA polymerase III subunit alpha	dnaE, polC, b0184, JW0179
82	2HO9	Model 1	CHEW_ECOLI	Chemotaxis protein CheW	cheW, b1887, JW1876
83	2ID0	A	RNB_ECOLI	Exoribonuclease 2	rnb, b1286, JW1279
84	2JEE	C	ZAPB_ECOLI	Cell division protein ZapB	zapB, yiiU, b3928, JW3899
85	2JO6	Model 1	NIRD_ECOLI	Nitrite reductase (NADH) small subunit	nirD, b3366, JW3329
86	2JRX	Model 1	YEJL_ECOLI	UPF0352 protein YejL	yejL, b2187, JW2175
87	2KC5	Model 1	HYBE_ECOLI	Hydrogenase-2 operon protein HybE	hybE, b2992, JW2960
88	2KFW	Model 1	SLYD_ECOLI	FKBP-type peptidyl-prolyl cis-trans isomerase SlyD, PPlase	slyD, b3349, JW3311
89	2KX9	A	PT1_ECOLI	Phosphoenolpyruvate-protein phosphotransferase	ptsl, b2416, JW2409
90	2O1C	A	NUDB_ECOLI	Dihydronoopterin triphosphate diphosphatase	nudB, ntpA, b1865, JW1854
91	2OQ3	Model 1	PTMA_ECOLI	Mannitol-specific cryptic phosphotransferase enzyme IIA component	cmtB, b2934, JW2901
92	2PTH	A	PTH_ECOLI	Peptidyl-tRNA hydrolase	pth, b1204, JW1195
93	2PTQ	A	PUR8_ECOLI	Adenylosuccinate lyase	purB, b1131, JW1117
94	2QCU	B	GLPD_ECOLI	Aerobic glycerol-3-phosphate dehydrogenase	glpD, glyD, b3426, JW3389
95	2QVR	A	F16PA_ECOLI	Fructose-1,6-bisphosphatase class 1	fbp, fdp, b4232, JW4191

1913

1914

Table S2 cont.

Index	PDB ID	Chain ID	UniProt Entry name	Protein name	Gene names
96	2R5N	A	TKT1_ECOLI	Transketolase 1	tktA, tkt, b2935, JW5478
97	2UYJ	A	TDCF_ECOLI	Putative reactive intermediate deaminase TdcF	tdcF, yhaR, b3113, JW5521
98	2V81	A	DGOA_ECOLI	2-dehydro-3-deoxy-6-phosphogalactonate aldolase	dgoA, yidU, b4477, JW5628
99	2WIU	A	HIPA_ECOLI	Ser/Thr-protein kinase HipA	hipA, b1507, JW1500
100	2WW4	A	ISPE_ECOLI	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, CMK	ispE, ipk, ychB, b1208, JW1199
101	2YVA	A	DIAA_ECOLI	DnaA initiator-associating protein DiaA	diaA, yraO, b3149, JW3118
102	3ASV	B	YDFG_ECOLI	NADP-dependent 3-hydroxy acid dehydrogenase YdfG	ydfG, b1539, JW1532
103	3BMB	B	RNK_ECOLI	Regulator of nucleoside diphosphate kinase	rnk, b0610, JW0602
104	3BRQ	B	ASCG_ECOLI	HTH-type transcriptional regulator AscG	ascG, b2714, JW5434
105	3GN5	B	MQSA_ECOLI	Antitoxin MqsA	mqsA, ygiT, b3021, JW2989
106	3HWO	A	ENTC_ECOLI	Isochorismate synthase EntC	entC, b0593, JW0585
107	3IV5	B	FIS_ECOLI	DNA-binding protein Fis	fis, b3261, JW3229
108	3M7M	X	HSLO_ECOLI	33 kDa chaperonin	hsIO, yrfI, b3401, JW5692
109	3N1S	J	HINT_ECOLI	Purine nucleoside phosphoramidase	hinT, ycfF, b1103, JW1089
110	3NXC	A	SLMA_ECOLI	Nucleoid occlusion factor SlmA	slmA, ttk, yicB, b3641, JW5641
111	3OFO	D	RS4_ECOLI	30S ribosomal protein S4	rpsD, ramA, b3296, JW3258
112	3PCO	D	SYFB_ECOLI	Phenylalanine-tRNA ligase beta subunit	pheT, b1713, JW1703
113	3QOU	A	CNOX_ECOLI	Chaperedoxin	cnoX, ybbN, b0492, JW5067
114	4A2C	A	GATD_ECOLI	Galactitol 1-phosphate 5-dehydrogenase	gatD, b2091, JW2075
115	4DCM	A	RLMG_ECOLI	Ribosomal RNA large subunit methyltransferase G	rlmG, ygjO, b3084, JW5513
116	4DZD	A	CAS6_ECOLI	CRISPR system Cascade subunit CasE	casE, cas6e, ygcH, b2756, JW2726
117	4E8B	A	RSME_ECOLI	Ribosomal RNA small subunit methyltransferase E	rsmE, yggJ, b2946, JW2913
118	4FZW	A	PAAF_ECOLI	2,3-dehydroadipyl-CoA hydratase	paaF, ydBR, b1393, JW1388
119	4HR7	A	ACCC_ECOLI	Biotin carboxylase	accC, fabG, b3256, JW3224
120	4IM7	A	AOA0H2V7F2_ECOLI_L6	Hypothetical oxidoreductase ydfI	c1968
121	4IWX	A	RIMK_ECOLI	Ribosomal protein S6-L-glutamate ligase	rimK, b0852, JW0836
122	4KN7	A	RPOB_ECOLI	DNA-directed RNA polymerase subunit beta, RNAP subunit beta	rpoB, groN, nitB, rif, ron, stl

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924 **Table S3. Definitions of entanglement types**

Type	Change in entanglement	Change in chirality	Conditional*
G0	Gain	No	$ g^{\text{current}}(i, j) > g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) \geq 0$
G1	Gain	Yes	$ g^{\text{current}}(i, j) > g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) < 0$
G2	Lose	No	$ g^{\text{current}}(i, j) < g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) \geq 0$
G3	Lose	Yes	$ g^{\text{current}}(i, j) < g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) < 0$
G4	None	Yes	$ g^{\text{current}}(i, j) = g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) < 0$
G5	None	None	$ g^{\text{current}}(i, j) = g^{\text{native}}(i, j) $ and $g^{\text{current}}(i, j) \times g^{\text{native}}(i, j) \geq 0$

1925 * conditional used to determine if a native contact between residues i and j has a
 1926 change in a given type of entanglement in the current structure relative to the native
 1927 state structure.

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

Table S4. Proteins categorized by percent of trajectories misfolded based

Category

Number of proteins

PDB IDs

Category	Number of proteins	PDB IDs
At least 2% misfolded	80	1A69, 1A6J, 1A82, 1AH9, 1DFU, 1DXE, 1FJJ, 1GQT, 1GT7, 1H16, 1I6O, 1K7J, 1L6W, 1M3U, 1NAQ, 1ORO, 1P91, 1PF5, 1PMO, 1Q5X, 1SV6, 1U60, 1W8G, 1WOC, 1YQQ, 1ZYL, 2HNA, 2JO6, 2O1C, 2PTH, 2V81, 2YVA, 3BMB, 3HWO, 4A2C, 1CLI, 1D2F, 1DUV, 1EF9, 1FTS, 1FUI, 1GER, 1GLF, 1GYT, 1GZ0, 1KSF, 1NG9, 1P7L, 1QF6, 1SVT, 1T4B, 1U0B, 1UU, 1W78, 1XRU, 1XVI, 2FYM, 2H1F, 2HG2, 2HNN, 2ID0, 2KFW, 2KX9, 2PTQ, 2QCU, 2R5N, 2WIU, 2WW4, 3BRQ, 3GN5, 3M7M, 3PCO, 4DCM, 4DZD, 4E8B, 4FZW, 4HR7, 4IM7, 4IWX, 4KN7
At least 20% misfolded	49	1A69, 1DFU, 1DXE, 1GQT, 1H16, 1K7J, 1P91, 1SV6, 1U60, 1YQQ, 1ZYL, 2HNA, 2JO6, 2V81, 3HWO, 4A2C, 1CLI, 1DUV, 1FTS, 1FUI, 1GLF, 1GYT, 1GZ0, 1KSF, 1NG9, 1P7L, 1QF6, 1SVT, 1T4B, 1U0B, 1W78, 1XRU, 1XVI, 2FYM, 2HG2, 2HNN, 2ID0, 2KFW, 2KX9, 2QCU, 2R5N, 2WIU, 3GN5, 3PCO, 4E8B, 4HR7, 4IM7, 4IWX, 4KN7
At least 50% misfolded	27	1GQT, 1H16, 1K7J, 1P91, 1U60, 1YQQ, 2JO6, 2V81, 1CLI, 1FUI, 1GYT, 1GZ0, 1KSF, 1P7L, 1T4B, 1U0B, 1XVI, 2HNN, 2ID0, 2KX9, 2QCU, 2R5N, 3PCO, 4E8B, 4HR7, 4IM7, 4KN7
100% misfolded	9	1GQT, 1H16, 1FUI, 1GYT, 1GZ0, 1XVI, 4E8B, 4HR7, 4KN7

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

Table S5. Extrapolated folding times for the 73 proteins with a reliable estimate

PDB ID	Simulated τ_F , ns	Estimated experimental τ_F , s	Estimated experimental τ_F , min	Estimated experimental τ_F , h	Estimated experimental τ_F , d
1SG5	1.08E+01	4.29E-02	7.15E-04	1.19E-05	4.97E-07
2AXD	1.08E+01	4.29E-02	7.15E-04	1.19E-05	4.97E-07
3IV5	1.15E+01	4.55E-02	7.58E-04	1.26E-05	5.27E-07
2JRX	1.57E+01	6.22E-02	1.04E-03	1.73E-05	7.20E-07
2KC5	1.68E+01	6.67E-02	1.11E-03	1.85E-05	7.72E-07
2HO9	2.10E+01	8.34E-02	1.39E-03	2.32E-05	9.65E-07
2JEE	2.28E+01	9.05E-02	1.51E-03	2.52E-05	1.05E-06
3QOU	3.77E+01	1.50E-01	2.49E-03	4.16E-05	1.73E-06
1H75	4.25E+01	1.69E-01	2.81E-03	4.68E-05	1.95E-06
1T8K	4.30E+01	1.70E-01	2.84E-03	4.73E-05	1.97E-06
2FEK	4.30E+01	1.70E-01	2.84E-03	4.74E-05	1.97E-06
1MZG	5.86E+01	2.32E-01	3.87E-03	6.45E-05	2.69E-06
3NXC	9.97E+01	3.96E-01	6.60E-03	1.10E-04	4.58E-06
1FM0	1.07E+02	4.26E-01	7.10E-03	1.18E-04	4.93E-06
2HGK	2.84E+02	1.13E+00	1.88E-02	3.13E-04	1.30E-05
4DCM	2.92E+02	1.16E+00	1.93E-02	3.21E-04	1.34E-05
1GQE	3.42E+02	1.36E+00	2.26E-02	3.76E-04	1.57E-05
1ZZM	3.51E+02	1.39E+00	2.32E-02	3.87E-04	1.61E-05
2KX9	3.55E+02	1.41E+00	2.35E-02	3.92E-04	1.63E-05
2OQ3	3.63E+02	1.44E+00	2.40E-02	4.00E-04	1.67E-05
1EIX	4.34E+02	1.72E+00	2.87E-02	4.78E-04	1.99E-05
1KO5	4.39E+02	1.74E+00	2.90E-02	4.84E-04	2.02E-05
1GT7	5.36E+02	2.13E+00	3.54E-02	5.91E-04	2.46E-05
3N1S	5.83E+02	2.31E+00	3.85E-02	6.42E-04	2.68E-05
2QVR	6.26E+02	2.48E+00	4.14E-02	6.90E-04	2.87E-05
1AG9	8.60E+02	3.41E+00	5.68E-02	9.47E-04	3.95E-05
1EUM	9.16E+02	3.64E+00	6.06E-02	1.01E-03	4.21E-05
3OFO	9.94E+02	3.94E+00	6.57E-02	1.10E-03	4.56E-05
2KFW	1.81E+03	7.20E+00	1.20E-01	2.00E-03	8.33E-05
3BMB	3.36E+03	1.33E+01	2.22E-01	3.70E-03	1.54E-04
2PTH	3.39E+03	1.35E+01	2.24E-01	3.74E-03	1.56E-04
2GQR	3.82E+03	1.51E+01	2.52E-01	4.21E-03	1.75E-04
1QTW	4.13E+03	1.64E+01	2.73E-01	4.55E-03	1.90E-04
1JX7	4.43E+03	1.76E+01	2.93E-01	4.88E-03	2.03E-04
2YVA	5.42E+03	2.15E+01	3.59E-01	5.98E-03	2.49E-04
1PSU	1.05E+04	4.16E+01	6.93E-01	1.15E-02	4.81E-04
1GLF	1.28E+04	5.09E+01	8.49E-01	1.41E-02	5.89E-04
1A6J	1.54E+04	6.12E+01	1.02E+00	1.70E-02	7.09E-04
1DXE	1.81E+04	7.18E+01	1.20E+00	2.00E-02	8.31E-04
2HD3	1.93E+04	7.65E+01	1.28E+00	2.13E-02	8.86E-04
4IM7	2.46E+04	9.77E+01	1.63E+00	2.71E-02	1.13E-03
1XRU	3.38E+04	1.34E+02	2.23E+00	3.72E-02	1.55E-03

1979 **Table S5 cont.**

PDB ID	Simulated τ_F , ns	Estimated experimental τ_F , s	Estimated experimental τ_F , min	Estimated experimental τ_F , h	Estimated experimental τ_F , d
1I6O	4.03E+04	1.60E+02	2.66E+00	4.44E-02	1.85E-03
1EF9	4.66E+04	1.85E+02	3.08E+00	5.13E-02	2.14E-03
1ORO	4.82E+04	1.91E+02	3.18E+00	5.31E-02	2.21E-03
1SV6	4.94E+04	1.96E+02	3.26E+00	5.44E-02	2.27E-03
1AH9	6.57E+04	2.61E+02	4.34E+00	7.24E-02	3.02E-03
3GN5	7.30E+04	2.90E+02	4.83E+00	8.04E-02	3.35E-03
1ZYL	8.02E+04	3.18E+02	5.30E+00	8.84E-02	3.68E-03
2PTQ	5.28E+05	2.09E+03	3.49E+01	5.82E-01	2.42E-02
2V81	5.58E+05	2.22E+03	3.69E+01	6.15E-01	2.56E-02
1FTS	4.60E+06	1.83E+04	3.04E+02	5.07E+00	2.11E-01
3M7M	7.33E+13	2.91E+11	4.85E+09	8.08E+07	3.36E+06
4IWX	7.61E+13	3.02E+11	5.03E+09	8.39E+07	3.50E+06
1KSF	2.59E+14	1.03E+12	1.71E+10	2.85E+08	1.19E+07
3BRQ	3.83E+18	1.52E+16	2.53E+14	4.22E+12	1.76E+11
2FYM	1.28E+19	5.06E+16	8.44E+14	1.41E+13	5.86E+11
1CLI	2.35E+19	9.31E+16	1.55E+15	2.59E+13	1.08E+12
2O1C	3.30E+19	1.31E+17	2.18E+15	3.64E+13	1.52E+12
1NG9	1.35E+20	5.37E+17	8.94E+15	1.49E+14	6.21E+12
1U60	1.65E+20	6.53E+17	1.09E+16	1.81E+14	7.56E+12
1K7J	6.72E+20	2.67E+18	4.45E+16	7.41E+14	3.09E+13
1W78	7.66E+20	3.04E+18	5.07E+16	8.45E+14	3.52E+13
2HNH	7.85E+20	3.11E+18	5.19E+16	8.65E+14	3.60E+13
1U0B	2.82E+21	1.12E+19	1.87E+17	3.11E+15	1.30E+14
1UUU	7.80E+21	3.09E+19	5.15E+17	8.59E+15	3.58E+14
2ID0	4.21E+22	1.67E+20	2.78E+18	4.64E+16	1.93E+15
1QF6	7.43E+22	2.95E+20	4.91E+18	8.19E+16	3.41E+15
2HG2	2.83E+23	1.12E+21	1.87E+19	3.12E+17	1.30E+16
2QCU	1.66E+24	6.60E+21	1.10E+20	1.83E+18	7.64E+16
2WIU	4.80E+27	1.91E+25	3.18E+23	5.29E+21	2.20E+20
1GER	3.73E+28	1.48E+26	2.47E+24	4.11E+22	1.71E+21
1YQQ	2.34E+29	9.30E+26	1.55E+25	2.58E+23	1.08E+22

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991 **Table S6.** Proteins with at least one misfolded trajectory expected to bypass
1992 chaperones

Category	Number of unique proteins	PDB IDs
Not expected to interact with TF	70	2ID0, 4IWX, 1A69, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 1KSF, 1ORO, 1ZYL, 3BRQ, 1XRU, 1EF9, 2PTQ, 2FYM, 1NG9, 1DXE, 2JO6, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 1GLF, 1GER, 2H1F, 1YQQ, 1DFU, 1SVT, 2V81, 1NAQ, 1U0B, 1PF5, 1FJJ, 2YVA, 1DUV, 1UU, 3BMB, 1A6J, 1SV6, 1W78, 4IM7, 2KFW, 1Q5X, 1P7L, 1QF6, 1T4B, 4FZW, 1AH9, 1FTS, 2QCU, 1CLI, 2PTH, 2O1C, 2HNA, 1W8G, 3GN5, 1WOC, 4DCM, 1A82, 2HG2, 1L6W, 1D2F, 1I6O, 1M3U
Not expected to interact with GroEL/GroES	80	2ID0, 1XVI, 4IWX, 1A69, 1FUI, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 1KSF, 1ORO, 1P91, 1ZYL, 3BRQ, 1XRU, 1EF9, 2PTQ, 2FYM, 1NG9, 1DXE, 4HR7, 2JO6, 2HG2, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 1GQT, 2WW4, 3M7M, 3PCO, 1GLF, 1GER, 2H1F, 1YQQ, 1DFU, 1SVT, 2V81, 1NAQ, 1U0B, 1PF5, 1FJJ, 2YVA, 1DUV, 1UU, 3BMB, 1A6J, 1H16, 1SV6, 1W78, 4IM7, 2KFW, 1Q5X, 1P7L, 1QF6, 2PTH, 3GN5, 4FZW, 1AH9, 1FTS, 2QCU, 1GZ0, 1CLI, 2O1C, 2HNA, 4E8B, 1W8G, 1WOC, 4DCM, 1A82, 1L6W, 1T4B, 1D2F, 1I6O, 4KN7, 1GYT, 1M3U
Not expected to interact with DnaK	74	2ID0, 1XVI, 1A69, 1FUI, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 1KSF, 1ORO, 1P91, 1ZYL, 3BRQ, 1XRU, 1EF9, 2PTQ, 2FYM, 4HR7, 1NG9, 1DXE, 2JO6, 2HG2, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 2H1F, 1YQQ, 1DFU, 1SVT, 2V81, 1NAQ, 1U0B, 1PF5, 1FJJ, 1DUV, 1UU, 3BMB, 1H16, 1SV6, 1W78, 4IM7, 1Q5X, 1P7L, 1QF6, 2PTH, 3GN5, 4FZW, 1AH9, 2QCU, 1GZ0, 2O1C, 1A6J, 4E8B, 1W8G, 1FTS, 1GYT, 1WOC, 4DCM, 1A82, 2HNA, 1L6W, 1T4B, 1D2F, 1GER, 4KN7, 1CLI, 1M3U
Not expected to interact with TF, GroEL/GroES, or DnaK	64	2ID0, 1A69, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 1KSF, 1ORO, 1ZYL, 3BRQ, 1XRU, 1EF9, 2PTQ, 2FYM, 1NG9, 1DXE, 2JO6, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 2H1F, 1YQQ, 1DFU, 1SVT, 2V81, 1NAQ, 1U0B, 1PF5, 1FJJ, 1DUV, 1UU, 3BMB, 1SV6, 1W78, 4IM7, 1Q5X, 1P7L, 1QF6, 4FZW, 1AH9, 2QCU, 2O1C, 1A6J, 1W8G, 1FTS, 3GN5, 1WOC, 4DCM, 1A82, 2HNA, 1L6W, 1T4B, 1D2F, 1GER, 1CLI, 1M3U

1993
1994
1995
1996
1997
1998
1999
2000

2001 **Table S7.** Proteins with at least one misfolded trajectory expected not to aggregate or
2002 be degraded

Category	Number of unique proteins	PDB IDs
Not expected to aggregate	68	2ID0, 1XVI, 1A69, 1FUI, 2WIU, 1U60, 4DZD, 2HNH, 3HWO, 1KSF, 1ORO, 1P91, 1ZYL, 3BRQ, 1XRU, 2PTQ, 2FYM, 4HR7, 1NG9, 2JO6, 2HG2, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 1DFU, 1SVT, 1U0B, 1PF5, 1FJJ, 1DUV, 1SV6, 1W78, 4IM7, 1YQQ, 2KFW, 1Q5X, 1P7L, 1QF6, 2PTH, 3GN5, 4FZW, 1AH9, 1FTS, 2QCU, 1GZ0, 1CLI, 2O1C, 2HNA, 1A6J, 1W8G, 1WOC, 4DCM, 1A82, 1L6W, 1T4B, 1D2F, 1NAQ, 1I6O, 1GER, 4KN7, 1GYT, 1M3U
Not expected to be degraded	70	2ID0, 1XVI, 1A69, 1FUI, 2WIU, 1U60, 4DZD, 2HNH, 3HWO, 1KSF, 1ORO, 1P91, 1ZYL, 3BRQ, 1XRU, 2PTQ, 2FYM, 1NG9, 4HR7, 2JO6, 2HG2, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 1GER, 1YQQ, 1DFU, 1SVT, 1U0B, 1PF5, 1FJJ, 1DUV, 1SV6, 1W78, 4IM7, 2KFW, 1Q5X, 1NAQ, 1P7L, 1QF6, 2PTH, 3GN5, 4FZW, 1AH9, 1FTS, 2QCU, 1GZ0, 1CLI, 2O1C, 1A6J, 4E8B, 1W8G, 1WOC, 4DCM, 1A82, 2HNA, 1L6W, 1T4B, 1UUF, 1D2F, 1I6O, 4KN7, 1GYT, 1M3U

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

2031 **Table S8.** Proteins with misfolded conformations expected to bypass proteostasis
2032 machinery and remain soluble but less functional

Category	Number of unique proteins	PDB IDs
Expected to bypass chaperones, not aggregate, and not be degraded	57	2ID0, 1A69, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 1KSF, 1ORO, 1ZYL, 3BRQ, 1XRU, 2PTQ, 2FYM, 1NG9, 2JO6, 4A2C, 1PMO, 2KX9, 2R5N, 1K7J, 1GT7, 2WW4, 3M7M, 3PCO, 1DFU, 1SVT, 1U0B, 1PF5, 1FJJ, 1DUV, 1SV6, 1W78, 4IM7, 1YQQ, 1Q5X, 1P7L, 1QF6, 4FZW, 1AH9, 2QCU, 2PTH, 2O1C, 1A6J, 1W8G, 1FTS, 3GN5, 1WOC, 4DCM, 1A82, 2HNA, 1L6W, 1T4B, 1D2F, 1GER, 1CLI, 1M3U
Expected to exhibit reduced function	69	1XVI, 4IWX, 1A69, 1FUI, 2WIU, 1U60, 4DZD, 2HNN, 3HWO, 2ID0, 1ZYL, 1XRU, 1P91, 1EF9, 2FYM, 4HR7, 1NG9, 1DXE, 2HG2, 1PMO, 2R5N, 1K7J, 1GQT, 3PCO, 1GLF, 2H1F, 1YQQ, 1DFU, 1SVT, 2V81, 1NAQ, 1U0B, 2YVA, 4KN7, 1DUV, 1UUF, 3BMB, 1A6J, 1H16, 1SV6, 1W78, 4IM7, 1Q5X, 2PTH, 1T4B, 4FZW, 1FTS, 2QCU, 1P7L, 1GZ0, 1KSF, 1CLI, 1GYT, 1WOC, 2PTQ, 1A82, 2WW4, 4A2C, 3GN5, 1L6W, 1GT7, 1QF6, 1D2F, 1I6O, 1GER, 2KX9, 2O1C, 1PF5, 3M7M
Expected to bypass proteostasis machinery and to exhibit reduced function	38	1A69, 2WIU, 1U60, 4DZD, 3HWO, 1ZYL, 2FYM, 1NG9, 1PMO, 2R5N, 1K7J, 1DFU, 1SVT, 1U0B, 1SV6, 1W78, 4IM7, 1YQQ, 1Q5X, 4FZW, 2QCU, 1KSF, 2PTH, 1FTS, 2HNN, 1WOC, 2PTQ, 1A82, 3GN5, 3PCO, 1L6W, 1T4B, 1A6J, 1GT7, 1D2F, 1GER, 1DUV, 2O1C

2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056

2057 **Table S9.** Percent of native state simulation frames with metric $\geq 10\%$ averaged over
2058 set of 122 *E. coli* proteins
2059

Metric	Mean [95% CIs]*, %	Range (low-high), %
$\zeta_{\text{hydrophobic}}(t)$,	6.32 [5.44, 7.27]	0.08 – 32.31
$\zeta_{\text{DnaK}}(t)$	14.74 [13.03, 16.47]	0.17 – 38.35
$\zeta_{\text{agg}}(t)$	11.74 [10.32, 13.22]	0.60 – 39.75
χ_{func}	24.58 [22.97, 26.28]	9.52 – 55.47

2060 *confidence intervals calculated from bootstrapping 10^6 times
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100

2101

Table S10. Functional residues database terms and descriptions

Term in database	Description
PDB used in model	Uniprot: PDB ID used in the simulation
Gene name	Uniprot: Name of gene
Protein Uniprot ID	Uniprot: ID associated with gene in uniprot
Ordered Locus	Uniprot: Ordered locus associated with gene
Function	Uniprot: Function of the gene product
Catalytic activity	Uniprot: Catalytic activity of protein
Subunit	Uniprot: Information about n-mers structure
GO functions	Uniprot: Gene ontology functions
Binding site	Uniprot: Information about mapped and unmapped binding site
Active site	Uniprot: Information about mapped and unmapped active site
Metal binding site	Uniprot: Information about mapped and unmapped metal binding site
Site	Uniprot: Information about mapped and unmapped site
Absorption	Uniprot: Information about ligands absorbed
Calcium binding	Uniprot: Information about calcium binding
DNA binding	Uniprot: Information about DNA binding
EC number	Uniprot: Enzyme Commission number
Metal binding	Uniprot: Information about mapped and unmapped metal binding
Nucleotide binding	Uniprot: Information about mapped and unmapped about nucleotide binding
Pathway	Uniprot: Information about mechanism pathway
pH dependence	Uniprot: Information about the protein function's pH dependence
Temperature dependence	Uniprot: Information about the protein function's temperature dependence
Cofactor	Uniprot: Information about the protein's cofactors

2102

2103

2104

2105

2106

2107

Table S10 continued

Term in database	Description
Kinetics	Uniprot: Information about the kinetics of the protein
mRNA sequence	mRNA sequence of the gene product
AA sequence	Amino acid sequence of the gene product
CIF sequence of # - X	PDB: Amino acid sequence of the chain X in CIF #
Unmapped active residues from CIF #	PDB: Chain ID, Residue # in CIF file, Residue Name, Ligand in contact with
Mapped active residues from CIF #	PDB: Chain ID, Mapped residue #, Residue Name, Ligand in contact with
Ligand abbreviation from CIF #	PDB: 3 letter abbreviation, ligand name
Unmapped interfacial residues from CIF #	PDB: Chain 1, residue name, unmapped residue # in CIF file, Chain 2, residue name, unmapped residue # in CIF file
Mapped interfacial residues from CIF #	PDB: Chain 1, residue name, mapped residue, Chain 2, residue name, unmapped residue # in CIF file
Small molecule active residues (mapped)	PDB: List of residues in contact with small molecules and ligands
Interfacial active residues (mapped)	PDB: List of interfacial residues in the crystal structure
Combined active residues (mapped)	Uniprot and PDB: List of functional residues from Uniprot, residues interacting with small molecules and interfacial residues

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128 **Table S11.** Values of $\langle \zeta_{\text{peptide}} \rangle$ and locations of principle entanglements by
2129 metastable state
2130

Markov State	$\langle \zeta_{\text{peptide}} \rangle$, %			Principle entanglement*		
	[333-354]	[F351]	[L293]	Loop segment	Threading segment	Overlapping with non-refoldable region?
S1	1.56 [0.83, 2.30]	108.38 [84.49, 133.75]	50.45 [-12.64, 123.61]	44-314	318-337	Yes
S2	86.53 [84.74, 88.30]	6446.30 [6266.09, 6626.00]	28.83 [-27.88, 99.59]	271-288	218-237	No
S3	1.42 [1.11, 1.74]	51.22 [42.10, 60.67]	-12.30 [-42.09, 22.20]	-	-	-
S4	14.66 [13.73, 15.60]	1802.97 [1707.65, 1900.01]	358.21 [151.55, 608.55]	90-138	318-337	Yes
S5	22.42 [21.41, 23.43]	1644.79 [1567.43, 1723.38]	58.64 [-8.93, 154.10]	271-288	218-237	No
S6	1.03 [0.38, 1.69]	358.65 [312.01, 407.32]	87.72 [-2.56, 212.08]	41-207	318-337	Yes
S7	6.55 [6.41, 6.69]	506.27 [496.06, 516.54]	155.52 [125.11, 188.00]	44-313	317-336	Yes
S8	3.85 [3.61, 4.10]	302.66 [290.37, 315.22]	66.70 [25.23, 115.01]	44-313	317-336	Yes

2131 *principle entanglement refers to the entanglement present in a representative structure for each metastable
2132 state. Segments that overlap with [333-354], [F351], or [L293] are highlighted in bold.