
SKIOME Project: a curated collection of skin microbiome

datasets enriched with study-related metadata

Agostinetto G.a*✝, Bozzi D.a*, Porro D.a,b, Casiraghi M.a, Labra M.a, Bruno A.a✝

a Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan (Italy)
b Institute of molecular bioimaging and physiology (IBFM), National Research Council

(CNR), Segrate (Italy)

*These authors contributed equally to this work.
✝Corresponding authors:

g.agostinetto@campus.unimib.it; antonia.bruno@unimib.it

Abstract

Large amounts of data from microbiome-related studies have been (and are

currently being) deposited on international public databases. These datasets

represent a valuable resource for the microbiome research community and could

serve future researchers interested in integrating multiple datasets into powerful

meta-analyses. However, this huge amount of data lacks harmonization and is far

from being completely exploited in its full potential to build a foundation that

places microbiome research at the nexus of many subdisciplines within and beyond

biology. Thus, urges the need for data accessibility and reusability, according to

FAIR (Findable, Accessible, Interoperable, and Reusable) principles, as supported

by National Microbiome Data Collaborative and FAIR Microbiome.

To tackle the challenge of accelerating discovery and advances in skin microbiome

research, we collected, integrated and organized existing microbiome data

resources from human skin 16S rRNA amplicon sequencing experiments. We

generated a comprehensive collection of datasets, enriched in metadata, and

organized this information into data frames ready to be integrated into

microbiome research projects and advanced post-processing analysis, such as data

science applications (e.g. machine learning). Furthermore, we have created a data

retrieval and curation framework built on three different stages to maximize the
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retrieval of datasets and metadata associated with them. Lastly, we highlighted

some caveats regarding metadata retrieval and suggested ways to improve future

metadata submissions.

Overall, our work resulted in a curated skin microbiome datasets collection

accompanied by a state-of-the-art analysis of the last 10 years of the skin

microbiome field.

Introduction

Directly in contact with the environment, the skin microbiome is a tangled and

dynamic ecosystem that interacts with both the host and its surroundings (1). It is

characterized by diverse ecological niches, where the microbiota, the host skin

cells and the host immune system are involved in the maintenance of skin health.

In the last decade, numerous studies have investigated the composition of the

human skin microbiome under very different conditions (2–4).

The advent of high-throughput DNA sequencing (HTS) technologies has

revolutionized numerous research fields, and the study of the human microbiome

was no exception. Following the introduction of HTS technologies, the number of

studies investigating the human microbiome has increased, expanding our

knowledge about its implications for human health. In particular, it was

demonstrated its pivotal linkage with diet and age (5,6) and specific microbiome

patterns were shown to relate to the body region sampled (7,8). Geography and

ethnicity have also been shown to affect the skin microbiome (9) and numerous

diseases have been associated with an altered microbial state (10), as in the cases of

atopic dermatitis (11) and psoriasis (12).

Since their adoption, the new sequencing strategies have been getting cheaper and

cheaper, becoming available for researchers and companies on a global scale. In

recent years, large amounts of data have been deposited in public databases and

more is going to be produced in the near future, as the number of sequencing

experiments is exponentially growing.
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There are three major databases used to store nucleotide sequence data: the NCBI’s

Sequence Read Archive (SRA) (13), the EBI’s European Nucleotide Archive (ENA)

(14), and the DDBJ Sequence Read Archive (DRA) (15). These three databases are

brought together by the International Nucleotide Sequence Database Collaboration

(INSDC) and are constantly synchronized to share their data (16). The publicly

available datasets deposited in these databases represent a valuable resource for

the microbiome research community. Public available data can be now accessed

and downloaded to be re-analysed or integrated to perform meta-analysis studies

(17–19).

As a consequence, in the last few years, we are facing an increasing adoption of

novel large-scale data science approaches to address challenges in microbiome

science (20). For example, machine learning strategies can be applied to perform

powerful prediction tasks on metagenomics data (e.g. disease-prediction based on

microbiome composition). However, these strategies require a large amount of

data to train and test models, making the integration and harmonization of

multiple datasets a necessary step (21,22). In this way, the availability of

large-scale sequencing data can enable microbiology researchers to ask new

questions and develop new strategies to study the human-associated microbial

communities (23,24).

However, this huge amount of microbiome data still lacks harmonization and is far

from being completely exploited to its full potential. Guidelines have been

proposed and tools have been developed to promote the standardization of sample

processing, sequencing and data analysis across the microbiome field (25–32) but

achieving global standardization is not an easy task. Initiatives such as the Human

Microbiome (33) and the Earth Microbiome Projects (34) have favored the

development of standardized procedures. In addition, important field-specific

databases were created, such as the Human Oral Microbiome Database (35) or the

GMrepo, a database of curated and consistently annotated human gut

metagenomes (36).

Several research groups have been proposing different sources of microbiome data:

initiatives like the Human Microbiome and the Integrative Microbiome Projects

(37,38), MicrobiomeDB (39), HumanMetagenomeDB (40),
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curatedMetagenomicData (41), the ML Repo (42), QIITA portal (43), or the

MG-RAST portal (44) suggested both data management infrastructures and

frameworks to guarantee data accessibility and reuse.

Despite the contribution of groups involved in this field, the lack of metadata and

the presence of datasets with missing or inconsistent information can reduce the

interpretability of the data generated, influencing the understanding of microbial

dynamics and ecological patterns (23,24,45). Inconsistency and uncontrolled

metadata filling were demonstrated by Gonçalves and Musen (46), revealing the

necessity of standardized metadata compilation (47).

FAIR (Findable, Accessible, Interoperable, and Reusable) principles are supported

within the National Microbiome Data Collaborative and FAIR Microbiome

community

(https://www.go-fair.org/implementation-networks/overview/fair-microbiome

) (23,45) to promote data discovery and reuse in the microbiome field, and allow

for broader dissemination of knowledge and compliance for both humans and

machines.

Thus, making microbiome data and metadata accessible is a key aspect to

guarantee a concrete opportunity to perform meta-analyses and data reuse

(42,48,49). In this context, well-curated and FAIR microbiome datasets are now a

necessity to explore microbiome patterns, apply data science techniques and

promote data reusability (50,51).

In order to help researchers interested in performing meta-analyses with human

skin microbiome data and exploring the context-specific information related to

potentially useful datasets, we focused our work on published human skin

microbiome datasets, creating a curated skin microbiome collection accompanied

by a state-of-the-art analysis of the last 10 years of the skin microbiome field.

In particular, during the last decade, most of the studies have relied on amplicon

sequencing approaches, where different regions of the 16S rRNA gene are amplified

and sequenced to identify the microbial taxa present in a sample (52,53). For this

reason, we built a comprehensive human skin microbiome collection enriched with
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detailed metadata information, focusing on existing 16S rRNA

amplicon-sequencing microbiome datasets from the human skin biome.

To achieve our goal, we first collected datasets from the INSDC, which store the

majority of the publicly available nucleotide sequencing datasets together with

their associated metadata (16). As the availability of these metadata and the

possibility of recovering them is crucial for ensuring the reusability of the available

datasets (46), we dedicated special attention to maximize the amount of metadata

information that can be recovered. To do so, we combined different metadata

retrieval approaches enriched with a manual curation step. Then, we generated

explorable data frames at different curation levels containing all the retrieved

datasets together with the associated metadata. Further, we highlighted some of

the shortcomings of the current approaches for data and metadata retrieval and we

called attention to some of the issues that currently afflict the re-usability of the

deposited data. Overall, the output of our work constitutes a valuable resource for

researchers interested in performing meta-analyses with human skin microbiome

data, who can explore our collection to find a list of datasets that can be integrated

to answer old and new biological questions.

Materials and methods

Metadata retrieval and manual curation procedures

To obtain a comprehensive list of skin microbiome studies derived from amplicon

approaches with the associated metadata, we built a three-step framework (Fig. 1)

based on:

● Step 1: dataset retrieval from INSDC;

● Step 2: metadata retrieval and enrichment;

● Step 3: output curation with the removal of redundant and spurious

information.

In the sections below, all the steps are described together with the methods and

strategies used.
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Step 1: dataset retrieval from INSDC

To generate a comprehensive list of datasets of human skin microbiome derived

from 16S rRNA amplicon sequencing available on the INSDC public databases, we

decided to rely on two different approaches: i) an automatic search, which allows

querying the INSDC databases automatically using keywords and ii) a manual

approach on the SRA and ENA portals.

The automatic search of the datasets was performed with the R package “SRAdb”

(54). SRAdb relies on a SRAdb SQLite database, a regularly updated database of

metadata associated with the raw reads deposited on SRA and its interconnected

databases (ENA, DRA). The SRAdb database (up to 36 Gb) was downloaded and

stored locally on the 17th of June, 2021. We performed a full-text search with the

following query: “human skin microbiome OR human skin microbiota OR human

skin metagenome”.

For the manual approach, instead, we performed a search on the NCBI’s SRA and

EBI’s ENA databases with the following criteria: datasets coming from 16S rRNA

amplicon sequencing, containing only human skin samples that were deposited

from 2012 onwards and that presented an associated publication.

Step 2: metadata retrieval and enrichment

An enrichment step was performed on both automatic and manual outputs in order

to recover the largest amount of metadata associated with the datasets previously

found. For this step, we integrated three different strategies: i) SRAdb was used to

collect all the possible information from the retrieved list of studies and samples;

ii) for some run-associated metadata that could not be retrieved with SRAdb, we

used the Entrez Direct (EDirect) tool (55); iii) for the list of manually recovered

studies, we collected study-specific metadata from the associated publication,

including information that cannot be found on the INSDC databases. We focused

our attention on the sample origin, the laboratory and bioinformatics strategies

and the data related to the context in which the studies were performed. In

particular, we retrieved study-specific information related to the collection

method used, the 16S rRNA gene hypervariable region sequenced, the clustering

method used (OTUs, ASVs/RSVs), the number of recovered units/variants reported
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in the study, the database used for taxonomic assignment and its version, the

disease condition investigated (if any), the location of the sampling, the presence

of a MGnify analysis (56), the DOI and the year and journal of publication.

In addition, a bibliometric analysis of published papers related to the datasets

retrieved was performed. Research areas and categories from the Web of Science

(WoS) collection and Elsevier’s Scopus classifications were added to each

publication. Notably, since Scopus reported multiple subject areas for each

publication, we included multiple columns in the data frame to keep all the

information. We further generated a column categorizing a scientific journal as a

medicine-related journal (Medicine_Journal) or not depending on the presence of

‘Medicine’ among the Scopus subject areas. Lastly, an additional column

containing any useful notes related to the study was added.

A comprehensive list of the manually curated metadata with description is

available in Supplementary File 1., also available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval).

Step 3: outputs curation and metadata correction

Once all the information was stored into three data frames that differed in the way

the datasets and the metadata were retrieved, we proceeded to reorganize them by

removing redundant metadata and NA-inflated columns. For the smallest and

most refined data frame, we further inspected the data frame rows to remove

undesired samples and to correct wrongly assigned metadata. In detail, we

removed samples that were not obtained from amplicon sequencing and corrected

metadata by double-checking with the related publications.
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Figure 1. Schematic representation of the three-step framework adopted in the study to collect

datasets and metadata and generate three differently curated data frames.

Script and data availability

For all the steps of datasets and metadata retrieval, a list of studies and associated

metadata were kept (Dataframe 1, Dataframe 2 and Dataframe 3). All the outputs

will be available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval), accompanied by the

scripts used for the retrieval framework. In particular, scripts describe the use of

SRAdb, Edirect tool, the entire R pipeline to obtain the final outputs and codes for

plot creation and data frame exploration.
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Results

Following the three steps presented in the Methods section (dataset retrieval from

INSCD; metadata retrieval and enrichment; data frame curation), we first tested

two approaches to retrieve datasets of the human skin microbiome from the INSCD

databases (Step 1): a manual search of the datasets and an automatic search with

SRAdb (54). We then collected metadata information for the retrieved datasets

(Step 2) using three different approaches: automatic search with SRAdb (54),

EDirect (55) and a manual search from the associated publication for the manually

retrieved studies. In this way we obtained three data frames:

● Data Frame 1, containing only datasets retrieved with SRAdb and metadata

collected automatically with SRAdb and EDirect;

● Data Frame 2, containing all the datasets identified with both the strategies

(manual and automatic) together with all the metadata that could be

recovered with SRAdb, EDirect and manual inspection of the publication;

● Data Frame 3, a subset of Data Frame 2, containing only the manually

retrieved datasets together with all the metadata that could be recovered

both manually and automatically with SRAdb and EDirect.

Data Frame 2 and Data Frame 3 both contain 61 metadata columns (from manual

and automatic metadata search), while Data Frame 1 only contains 37 metadata

columns obtained from the automatic search. All three data frames were curated to

remove redundant columns and NA-inflated columns (Step 3). Among the

redundant metadata, we observe columns containing the IDs of Run, Experiment,

Submission, Sample/BioSample and Study/BioProject. Other metadata recovered

by both methods were the spots, the bases, the library strategy, the sequencing

platform used and the Taxon ID. Data Frame 3 was further curated to remove

undesired samples coming from whole-genome sequencing experiments and to

correct wrongly assigned metadata.

The following sections will show the results, starting from a comparison between

the data collection approaches used and then moving to describe the

state-of-the-art of metadata related to the submission process and the metadata
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obtained from our manual curation step, in particular regarding the bioinformatic

strategies used and the skin data characteristics retrieved directly from the

published studies.

Comparison of datasets collection approaches and metadata retrieval

The automatic search with SRAdb recovered a total number of 97,182 samples from

203 studies (Data Frame 1) with 8,492 samples that were uploaded before 2012. The

manual search, instead, recovered a total of 21,958 samples from 68 studies (Data

Frame 3) starting from 2012.

We compared the ability of the two approaches in identifying the desired datasets.

Notably, the automatic search failed to identify 47 studies that were recovered by

the manual search, indicating that SRAdb does not perform an exhaustive search of

the available datasets. The automatic search identified 182 studies not found by the

manual search. Based on these observations we generated a data frame (Data

Frame 2) that comprised both automatically retrieved and manually identified

studies. This data frame contains 108,207 rows (samples) coming from 250

different studies and a total of 61 columns containing the metadata.

The metadata associated with the datasets can be differentiated into three major

categories: i) metadata related to dataset submission (obtained by the automatic

search), ii) metadata associated with the laboratory procedures and bioinformatic

pipelines (obtained by automatic and manual searches) and iii) manually collected

context metadata describing other relevant aspects of the study (e.g.

disease/condition investigated or sample origin).

The automatic search for metadata with SRAdb and EDirect was performed for all

the datasets, both manually and automatically retrieved, to collect metadata

related to dataset submission (i). After the curation step, we conserved a total of 37

metadata columns that were included in all three data frames.

These 37 columns contain information related to:

● the study with BioProject, Study_ID, Study_description and

Study_abstract;
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● the submission and its date with the Year_of_release, Release_Date and

Load_Date;

● the experiment with the Library Strategy used (Library_Strategy),

specification on if it was performed a pair-end or a single-end sequencing

(Library_Layout) and the library Insert size (Insert_Size);

● the sequencing platform and the model used (Platform, Model);

● the run with the average sequence length (AvgLength), the spots, the bases,

the size of the file (Size_MB) and the path for the download

(Download_path);

● the experiment title (Experiment_title);

● a description of its design (Design_description);

● the name of the library (Library_name) and attributes of the experiment

(Experiment_attribute);

● the sample with BioSample, Sample_ID, Sample_alias, Sex, Body_Site,

Description and Sample_attribute and

● the associated Taxonomic ID with the scientific name (TaxID,

Scientific_Name).

A comprehensive description of all the 37 metadata is available in Supplementary

File 1.

In Data Frame 2 and 3 we also included 23 additional columns that contain

metadata not available on INSDC and obtained from the manual inspection of the

publication. These metadata were recovered only for the manually retrieved

datasets and contained information on the laboratory procedures and

bioinformatic pipelines (ii) together with other relevant metadata describing the

context of the study (iii).

In the next sections, all the categories of metadata and their distribution are

outlined. A full description of the metadata included in the data frames is given in

Supplementary File 1, also available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval).
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Distribution of metadata related to dataset submission and

library preparation

By comparing the distribution of the number of datasets released over the years

among the three different data frames (Fig. 2.b), we observed that Data Frame 1

showed a peak in 2015 when 17,551 datasets were released. Differently, Data Frame

2 showed a peak in 2017 with 19,041 datasets released during that year. For Data

Frame 3, we observed two peaks: one in 2013 with 4,841 datasets released and one

in 2017 with 7,293 datasets released. However, if we look at the number of studies,

the peak was reached in 2019 with 16 studies investigating the human skin

microbiome (Fig. 2a).

After removing datasets with a value equal to zero for the following metadata, we

calculated the median number of spots (sequencing clusters that generated

sequence), bases (nucleotides), average read length and insert size (size of the

amplicon without sequencing adapters) for Data Frames 1, 2, and 3. The median

number of spots were respectively 23,590, 24,564, 22,560.5 (Fig. 2e), while the

median number of bases were 4,114,610, 4,364,032 and 7,270,396 (Fig. 2f). The

mean of the datasets’ average read length in Data Frame 1 is 227.0235 bp, while for

Data Frame 2 is 254.0603 bp and for Data Frame 3 is 440.2783 bp. The median

values are 150 bp for Data Frame 1 and 2, and 502 bp for Data Frame 3 (Fig. 2g and

Fig. 2i). The median insert size is 500 in Data Frame 1 and 2 and 300 in Data Frame

3 (Fig. 2h and Fig. 2i). Mean values are 455.5963, 440.2783 and 349.0783,

respectively.

Information about the sex of the individuals can be collected for 36,231 out of

97,182 samples in Data Frame 1 (20,011 females; 16,220 males), 37,340 out of

108,207 samples in Data Frame 2 (20,234 females; 17,106 males), and 3,461 out of

21,958 samples in Data Frame 3 (1,276 females; 2,185 males).

We recognized 66 different descriptions (more or less accurate), defining the

sampled region of the body. However, metadata on the body site is absent in most

of the datasets. In detail, a total of 42,489 empty metadata information were found

for Data Frame 1, 52,972 for Data Frame 2 and 18,061 for Data Frame 3.
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In our data frames, we have observed the use of different Taxon IDs to describe the

samples. Data Frame 3, which contains only samples of human skin microbiome,

presents 11 different taxon IDs, which correspond to the following scientific

names: "human skin metagenome", "Homo sapiens", "metagenome",

"metagenomes", "human metagenome", "skin metagenome", "Staphylococcus

aureus", "clinical metagenome", "gut metagenome", "human gut metagenome"

and "bacterium". The number of Taxon IDs increases in the other two data frames

so that in Data Frame 2 we observe 173 different Taxon IDs.
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Figure 2. a) Number of studies and samples from Data Frame 3 released every year starting from 2012.

b) Comparison of the number of samples released each year for the three Data Frames (Data Frame 1

in blue, Data Frame 2 in black and Data Frame 3 in red). Data Frames 1 and 2 contain samples starting

from 2008, while Data Frame 3 only from 2012. c) Distribution of the variable “sex” in the three Data

Frames. In all three cases, the majority of the samples don’t have such information reported. d) The

number of Taxon ID/Scientific names used in the three Data Frames (barplot) and relative abundance

(as a logarithm) of the Taxon ID/Scientific names used for the samples in Data Frame 3 (pie chart).

e-h) Comparison of the median number of spots (e), bases (f), reads average length (g) and insert

size (h) in the three Data Frames. i) Read length distribution in the three Data Frames. j) Distribution

of the insert size in the three Data Frames.

Methodological pipeline insights and context-metadata of skin

microbiome datasets

For the 68 manually retrieved studies we further collected other metadata from the

associated publications. Based on these manually collected metadata, we observed

that most of the studies had used swabs to collect samples (53 studies; 19,928

samples), with only a few relying on other methods like biopsies (5 studies; 257

samples), scrubs buffer washes (1 study; 1,358 samples) or a combination of swabs

and other methods (7 studies; 311 samples).

Considering the marker gene used, the most commonly sequenced hypervariable

regions of the 16S rRNA gene have been the V1-V3 (6,176 samples), followed by the

V4 (5,694) (Fig. 3a). However, if we consider the number of studies, we observed

that most of them relied on the V1-V3 (24 studies) and V3-V4 (21 studies) regions

(Fig. 3a). The Illumina sequencing platforms were the most used (88,295 samples

in Data Frame 2), particularly the Illumina Miseq platform (49,297 samples in Data

Frame 2), followed by Roche 454 platform (19,777 samples in Data Frame 2). A

total of 11,412 samples have no specific platform model assigned  (Fig. 3c).

Regarding the bioinformatic pipeline used, most of the manually inspected studies

have clustered reads into Operational Taxonomic Units (OTUs) (56 studies), only a

few (6 studies) relied on Amplicon Sequence Variants (ASVs) or Ribosomal (35)

Sequence Variants (RSVs). For 6 studies this information was not reported in the

article methods  (Fig. 3d).
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Taxonomy assignment was mainly performed with Greengenes database (57) (29

studies), followed by SILVA (58) (15 studies). Other works relied on different

databases, including RDP (59) (3 studies), EzTaxon-e (60) (3 studies), NCBI (1

study), and HOMD (1 study). Strikingly, many studies did not report this

information in the articles’ method section (16 studies)  (Fig. 3e).

Figure 3. a) Number of samples (pink) and studies (purple) that used specific 16S rRNA hypervariable

regions in Data Frame 3. b) The number of studies and samples for each disease/condition
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investigated in Data Frame 3. c-e) Frequency of use of the different sequencing platforms (c),

clustering methods (d) and taxonomic databases (e) in Data Frame 3. f) Table showing the Web Of

Science research areas (blue) and Scopus Research Subjects (red) that described the scientific journals

in which the studies of Data Frame 3 have been published. The research areas/subjects are divided

into three boxes depending on how often they were associated with the Scopus research subject

“Medicine”. Going from left to right are shown the research areas/subjects that were always (left),

sometimes (center) and never (right) associated with the Scopus research subject “Medicine”. g)

Geographical distribution of the studies included in Data Frame 3.

Our analysis also comprehended a detailed inspection of skin and disease

conditions related to the microbiome analysis. Among our list, we identify 42

studies investigating 26 different diseases/conditions of the skin (Fig. 3b). The

most commonly investigated disease in our curated dataset is atopic dermatitis (8

studies), followed by psoriasis and parapsoriasis (5 studies), while 7 studies

investigated skin injuries of different kinds. Among the other diseases/conditions

investigated, we observed acne (3 studies), skin pathogenic infections, such as

bacterial, fungal and parasitic infection (3 studies), allergic traits and atopic

individuals (3 studies), dandruff (2 studies), leprosy (2 studies), hidradenitis

suppurativa condition (2 studies), autoimmune bullous disease (1 study),

dystrophic epidermolysis bullosa (1 study), vitiligo (1 study), squamous cell

carcinoma (1 study), filaggrin-deficient human skin (1 study), and other conditions

such as obesity and low birth weight (2 studies). Overall, 26 studies collected

samples from healthy human skin (in Data frame 3, column 43

‘disease/condition’).

Looking at the geographic distribution of the studies, we observed that most of

them were conducted in the USA (22 studies), followed by European countries (19

studies) and China (11 studies). Other countries that featured more than one study

were South Korea (4 studies), Brazil (3 studies) and India (2 studies) (in Data frame

3, column 44 ‘Location’)  (Fig. 3.g).

Finally, the 68 manually retrieved studies were published in 40 different scientific

journals from 17 different WOS research areas. According to Scopus classification,

36 studies were published in medicine-related scientific journals (Research Subject

= Medicine). Figure 3f shows how often specific WOS Research areas and Scopus
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Research Subjects are associated with the Scopus research subject “Medicine” in

the present dataset.

Discussion

In this section we discuss the results obtained from our work, in particular

focusing the attention on three main aspects: i) outcomes related to dataset

collection, ii) caveats related to metadata retrieval and data reuse and, finally, iii)

the importance of having a curated collection of a microbiome dataset for

advancing the microbiome research field through data-driven approaches and

powerful meta-analysis.

Skin microbiome data retrieval: dataset collection is not an easy task

The INSDCs databases are the source of an enormous amount of publicly available

datasets which can be accessed and downloaded to perform powerful

meta-analyses (16). The field of microbiome research can greatly benefit from the

availability of this large amount of data (23). However, the reusability of a dataset

strictly depends on the possibility of retrieving it and on the amount of

information (metadata) deposited by the authors at the time of submission (46,61).

If the number of datasets available is limited (such as for poorly studied

environments), a manual search will consent to gather all the studies available in a

relatively fast way. However, for well-studied environments, the number of

datasets can be very large and it becomes more convenient to rely on automatic

approaches (62). The automatic approach allows for a fast and comprehensive

search of datasets of interest, but at the same time, it lacks a curation step that

validates the recovered datasets. Moreover, the automatic search does not permit

the retrieval of important information that was not deposited in the INSDC

databases together with the raw data. Conversely, the manual search is more

accurate and allows a researcher to retrieve a well-validated list of studies together

with other information by inspecting the associated publication. Its drawbacks are

that it is time-consuming and presumably less comprehensive than the automatic

search. Moreover, it does not consent to retrieve sample-specific information.
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Our results showed that the automatic search did find a greater number of datasets

than the manual (97,182 samples from 203 studies vs 21,958 samples from 68

studies). Many can be the reasons that explain this difference. First, the automatic

search tends to be more exhaustive than a manual one if the number of available

datasets is large. Second, the list of studies is not inspected to remove undesired

studies that do not match some of the desired criteria but might be retrieved by the

searching tool. Third, the manual search was limited to the dataset deposited in the

last 10 years, starting from 2012, while the automatic search recovered studies

starting from 2008. Indeed, 8,492 samples found by the automatic search were

uploaded before 2012. Despite these observations, neither the manual nor the

automatic search with SRAdb, were capable of recovering all the studies,

highlighting the importance of combining the two approaches.

Together, our results indicated that SRAdb was not exhaustive in its search, and to

maximize the number of datasets retrieved, a combination of manual and

automated approaches might represent the optimal strategy. We observe that the

larger the number of available datasets, the less feasible an extensive manual

search, favoring an automated approach for the dataset retrieval step. Conversely,

for topics with a particularly small number of datasets available, the manual search

still remains the most accurate way of recovering them.

Caveats of metadata retrieval and data reuse

Depending on the topic, a researcher interested in performing a meta-analysis can

decide to rely on different approaches to retrieve metadata associated with the

datasets of interest, both directly through the INSDC data portal (16) or with

specific tools (54,55,63). In this work, we decided to combine three approaches,

based on SRAdb (54), Entrez (55) plus a manual search from the publication, with

the aim of generating a comprehensive data frame containing all the datasets from

the human skin microbiome amplicon sequencing available on INSDC databases. As

for the search of the datasets, also for metadata retrieval, we observed that the
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combination of automatic and manual approaches is capable of gathering a larger

amount of information than the two approaches alone.

However, while with a manual search it is possible to recover much information

related to a dataset if a publication is available, this approach is not feasible if the

number of datasets is high (62). Moreover, sample-specific information for large

datasets can only be collected using automatic approaches, making an automatic

search a necessity.

Automatic approaches of metadata retrieval (such as those used in this study)

collect the metadata deposited on the INSDC databases. As such, they are capable of

accessing only the metadata that were made available by the researchers during the

data submission. Failing in accessing specific metadata can affect the re-usability

of a given dataset, highlighting the importance of proper and extensive metadata

storage.

We recognized three major causes that affect the reusability of publicly available

microbiome datasets: 1) Missing metadata. A lot of essential metadata are simply

not available either because not included among the requested metadata or because

not mandatory and hence not compiled by the submitter. One example is the

absence of metadata specifying the 16S rRNA hypervariable region amplified and

sequenced for most of the studies, which seriously compromise data

harmonization efforts. Another information that is often not reported is the

presence of an associated publication. The availability of the raw reads on public

databases is a requirement for publication in many scientific journals. During the

raw reads submission, the researcher is required to provide metadata associated

with the dataset, including the presence of a publication. As such, since this step

predates the publication itself most of the datasets are uploaded without specifying

this information. 2) Metadata wrongly assigned. Sometimes metadata can be

wrongly assigned to the samples. This can also be the result of mandatory

metadata fields that are ambiguous and can lead a researcher inexperienced in the

submission process to compile the field in an incorrect way. Wrong metadata can

cause the inclusion of wrong datasets into an analysis, potentially affecting the

results and leading to incorrect biological conclusions, or, conversely, they can

cause the exclusion of datasets from analyses in which they would have fitted. As
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an example, by comparing the metadata deposited on INSDC with what was

reported in the publication we were able to identify studies that wrongly assigned

the library strategy as “RNA-Seq” and “WGS” instead of “AMPLICON”.

3) Inconsistency of the used terminology. Some metadata fields can be filled with

multiple correct metadata leading to inconsistency in the terminology used and

affecting the possibility of automatizing the search and filtering of datasets based

on these metadata. Good examples are the numerous Taxon ID and scientific

names associated with the samples, which are not necessarily wrong, but the lack

of consistency in the terms used compromises the usefulness and value of this

metadata.

Different works demonstrated the caveats of metadata retrieval and its

consequences (46,47,64). Researchers have undertaken different approaches to

ameliorate this step, in particular using a manual or automated/semi-automated

curation (65), or developing tools specific for the download of metadata

information (66). Most of the automated or semi-automated methods are based on

Natural Language Processing (NLP) techniques, used to recognize predefined

entities in unstructured text, in order to retrieve metadata from the text associated

with the samples. Others try to normalize metadata information by grouping or

mapping to ontologies (67–69). These methods still need a revised step of manual

curation and sometimes cannot reconstruct the totality of the metadata associated

(65). As we demonstrated before, manual curation seems the most accurate

solution (65,70) if data remains human-readable.

Considering the microbiome field, the INSDC significantly contributed with a

recent perspective paper describing the steps that the microbiome research

community should take to favor data FAIRification and metadata incorporation

(45). As microbiome samples are particularly related to the context in which they

were collected, data describing measurements or variables related to the context

are critical (45). Two main subject areas were indicated by the INSDC to improve

data standards: i) promote microbiome data sharing and ii) try to remove obstacles

and difficulties related to data and metadata submission. Some of their

observations and proposals are currently applied by the research community, as
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for example the “Minimum Information about any (x) Sequence” (MIxS) packages

(71) or the incorporation of DOIs for datasets (72). Unfortunately, some work is still

needed to establish standard procedures and a universal set of ontologies that are

easily accessible by the entire community (45,73).

In this context, this work also wants to disclose the situation of a sub-field of the

microbiome data world: the skin microbiome. The issues revealed by our results

show that the search and secondary use of the datasets is still not easy to achieve.

Since different studies can rely on different methodologies, different datasets

might not be directly comparable and precautions must be taken before combining

multiple datasets in a meta-analysis. Without some metadata, a potentially valid

dataset can not be included in a meta-analysis. Therefore it is essential for a

researcher that wants to valorize a dataset to upload as much information as

possible together with the raw reads so as to make the dataset reusable. To

motivate researchers in uploading more information, the submission procedure

should be made as simple and guided as possible, also to avoid misinterpretations

and wrong metadata assignments. To reduce the missingness of metadata, more

fields should be made mandatory, such as those referred to the 16S rRNA region

sequenced, and new metadata should be included, such as a field that easily

discriminates biological samples from negative controls. It also urges the need for

standardization of the Taxon ID used in microbiome studies. Guidelines should be

given to avoid the use of imprecise Taxon IDs. Efforts should also be made to

associate a link to the publication whenever it becomes available, to allow for

easier and straightforward access to this resource.

As we have stated, numerous are the aspects related to data and metadata

submission that can be improved. Some relate to the submission process itself

which can be refined to favor microbiome data reusability, while others strictly

depend on the commitment of the researcher performing the submission, who

should not overlook the relevance of this step and its importance for the whole

scientific community
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The value of a curated skin microbiome collection

Over the past decade, researchers have explored the intricate ecosystem of the skin

microbiome (10), unveiling the interactions between the microbiome players

(bacteria, archaea, fungi and viruses), the skin cells, and the host immune cells

that act as barriers, constituting a defense against pathogens invasion and

inflammation (10,74). Perturbations in the skin ecosystem can cause an unbalance

that can even lead to the rising of immune disorders, like allergies, dermatitis or

eczema, or chronic injuries, like ulcers. Determining the causes and effects of these

processes is not an easy task. Traditional approaches to study skin microbiome

mechanisms relies on culture-based techniques, leading to an underestimation of

the actors and a bottle-neck selection due to the strict range of cultivable species.

The case of Staphylococcus genus can serve as an example. Being more easily

cultivable than microorganisms belonging to Corynebacterium spp. or

Propionibacterium spp., it would dominate a microbiome dataset, leading to an

underestimation of the real biodiversity (75). It became obvious that to overcome

culture-dependent bottlenecks and to explore the skin microbiome as a whole, a

sequencing method must be applied (10).

In this context, large-scale sequencing data enable microbiology researchers to

obtain deep insights in genetic and functional profiling (10) and, nowadays, grand

challenges in microbiome science rely on large-scale data science approaches (20).

Secondary analysis can be full of potential and by-passing the need of generating

new large datasets can enormously reduce the costs associated with this kind of

study. Impactful meta-analyses have already contributed to advancing the

microbiome field, as demonstrated by numerous studies (17–19).

From the more applied and clinically relevant studies of skin health and disease to

the more theoretical works investigating microbial ecology and the holobiont

evolution, all these sub-fields of microbiome research will benefit from the

adoption of data-driven approaches based on large-datasets integration (76). The

availability of a curated collection of microbiome datasets represents the required

starting point to make this transition possible and scalable (23,45).
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Currently, numerous research teams around the world have put efforts in trying to

collect and harmonize data from different microbiome fields and various curated

collections of microbiome datasets have been published, like the

TerrestrialMetagenomeDB (77), the HumanMetagenomeDB (40), or the Planet

Microbe (78). Each one of these collections is focused on a specific topic and

sometimes on a specific type of data and aims at providing each microbiome

research sub-field with a valuable resource to perform data-driven meta-analyses.

Based on these premises and focusing on the skin microbiome sub-field, our work

resulted in a comprehensive list of human skin microbiome datasets enriched with

metadata information related to the methodological pipelines and the context of

the dataset under study.

Skin research produces large quantities of data using a wide range of methods and

equipment that require large collaborative efforts. These research endeavors span a

broad range of disciplines and are critical to investigating the skin physiology,

functions, interactions and health status, from a broad perspective. This can be

seen in the bibliometric analysis of published papers related to the datasets

retrieved. Research areas and categories from the Web of Science collection and

Elsevier’s Scopus classifications showed a scattered distribution of publications in

different research areas, but with a higher proportion related to the

medicine-related area. As the number of studies grows, it clearly appears that

crossing the boundary between medicine and microbial ecology is the lynchpin for

a deep understanding of skin health (4,74). Indeed, a consistent proportion of the

data collected is dedicated to disease conditions, providing valuable material for

clinical researchers, but also for microbial ecologists and researchers from other

fields of research interested in studying the microbial dynamics in the skin

ecological niche. Moreover, taken together, more than half of the studies in our

Data Frame 3 collected microbiome data from healthy subjects, providing an

invaluable source of information. One of the main challenges for data

harmonization is to link the phylogenetic diversity of host-associated microbes to

their functional roles within the community and with the host. Much remains to be

learned about us as holobionts and much of the information is still kept inside the

data.
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The curated list we generated can serve as a most comprehensive collection of

datasets that can be searched and queried to identify datasets of interest.

Researchers interested in conducting meta-analyses with human skin microbiome

datasets can use these data frames as a starting point to recover the dataset more

suited for their analyses. As demonstrated by the presence of errors in the

metadata, these data frames require a curation step. Here, we reported a curated

data frame (Data Frame 3) in which we manually corrected errors in the metadata.

We also reported two non-curated data frames obtained with the automatic search

(Data Frame 1) and with a combination of manual and automatic search (Data

Frame 2). These two data frames contain a greater number of studies and samples,

however, a careful inspection of these datasets is advised before including any one

of those into a meta-analysis.

Conclusions

The aim of our effort was to help accelerate human skin microbiome research by

reducing the amount of time needed to search for datasets and metadata of interest

and at the same time favoring data reuse by maximizing the amount of

information associated with each dataset. Here we report three data frames

containing a comprehensive collection of human skin microbiome datasets

enriched with metadata recovered from different sources. The data frames are

easily explorable and can be useful for researchers interested in conducting

meta-analyses with human skin microbiome amplicon data.

Furthermore, we demonstrated that the reusability of a dataset depends on the

amount of information that can be gathered on the dataset itself, that is the

amount of metadata deposited by the authors at the time of submission. We are

aware that data sharing is increasing throughout the microbiome community, but

there are still barriers to making microbiome data truly FAIR. Metadata standards

exist, but their proper adoption by the research community is still lagging, as also

demonstrated by the NMDC community.
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Skin microbiome sampling has the advantage of being non-invasive, easily

accessible, and able to provide a huge amount of meaningful information. A

curated collection of skin microbiome datasets, enriched with study-related

metadata, could be used to investigate health-related phenotypes, offering the

potential for non-invasive diagnosis and condition monitoring. Our framework

sets the stage for new analyses implementing AI approaches focused on

understanding the complex relationships between microbial communities and

phenotypes, to predict any condition from microbiome samples. Indeed,

considering the skin microbiome topic, a few, very recent works included data

integration strategies and AI applications (79–81), showing the potential held by

these approaches in advancing skin microbiome research.

As the microbiome research field is headed to become a science founded on

big-data, the necessity of developing standardized procedures to generate and

analyze data acquires importance. The adoption of standard methodologies will

help future data integration efforts for the benefit of the whole research

community. For this reason, we advocate for a concerted effort to favor

standardized microbiome research and exhaustive data sharing.

Further, with this work we want to build a foundation that places microbiome

research at the nexus of many subdisciplines within and beyond biology, as for

example dermatology, medicine and microbial ecology.

For this reason, this project has the potential to accelerate the development of

microbiome-based personalized medicine and non-invasive diagnostics.

Supplementary data

Supplementary data will be available on our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval).
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