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Abstract

Large amounts of data from microbiome-related studies have been (and are
currently being) deposited on international public databases. These datasets
represent a valuable resource for the microbiome research community and could
serve future researchers interested in integrating multiple datasets into powerful
meta-analyses. However, this huge amount of data lacks harmonization and is far
from being completely exploited in its full potential to build a foundation that
places microbiome research at the nexus of many subdisciplines within and beyond
biology. Thus, urges the need for data accessibility and reusability, according to
FAIR (Findable, Accessible, Interoperable, and Reusable) principles, as supported

by National Microbiome Data Collaborative and FAIR Microbiome.

To tackle the challenge of accelerating discovery and advances in skin microbiome
research, we collected, integrated and organized existing microbiome data
resources from human skin 16S rRNA amplicon sequencing experiments. We
generated a comprehensive collection of datasets, enriched in metadata, and
organized this information into data frames ready to be integrated into
microbiome research projects and advanced post-processing analysis, such as data
science applications (e.g. machine learning). Furthermore, we have created a data

retrieval and curation framework built on three different stages to maximize the
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retrieval of datasets and metadata associated with them. Lastly, we highlighted
some caveats regarding metadata retrieval and suggested ways to improve future
metadata submissions.

Overall, our work resulted in a curated skin microbiome datasets collection
accompanied by a state-of-the-art analysis of the last 10 years of the skin

microbiome field.

Introduction

Directly in contact with the environment, the skin microbiome is a tangled and
dynamic ecosystem that interacts with both the host and its surroundings (1). It is
characterized by diverse ecological niches, where the microbiota, the host skin
cells and the host immune system are involved in the maintenance of skin health.
In the last decade, numerous studies have investigated the composition of the

human skin microbiome under very different conditions (2—4).

The advent of high-throughput DNA sequencing (HTS) technologies has
revolutionized numerous research fields, and the study of the human microbiome
was no exception. Following the introduction of HTS technologies, the number of
studies investigating the human microbiome has increased, expanding our
knowledge about its implications for human health. In particular, it was
demonstrated its pivotal linkage with diet and age (5,6) and specific microbiome
patterns were shown to relate to the body region sampled (7,8). Geography and
ethnicity have also been shown to affect the skin microbiome (9) and numerous
diseases have been associated with an altered microbial state (10), as in the cases of

atopic dermatitis (11) and psoriasis (12).

Since their adoption, the new sequencing strategies have been getting cheaper and
cheaper, becoming available for researchers and companies on a global scale. In
recent years, large amounts of data have been deposited in public databases and
more is going to be produced in the near future, as the number of sequencing

experiments is exponentially growing.
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There are three major databases used to store nucleotide sequence data: the NCBI’s
Sequence Read Archive (SRA) (13), the EBI’s European Nucleotide Archive (ENA)
(14), and the DDBJ Sequence Read Archive (DRA) (15). These three databases are
brought together by the International Nucleotide Sequence Database Collaboration
(INSDC) and are constantly synchronized to share their data (16). The publicly
available datasets deposited in these databases represent a valuable resource for
the microbiome research community. Public available data can be now accessed
and downloaded to be re-analysed or integrated to perform meta-analysis studies
(17-19).

As a consequence, in the last few years, we are facing an increasing adoption of
novel large-scale data science approaches to address challenges in microbiome
science (20). For example, machine learning strategies can be applied to perform
powerful prediction tasks on metagenomics data (e.g. disease-prediction based on
microbiome composition). However, these strategies require a large amount of
data to train and test models, making the integration and harmonization of
multiple datasets a necessary step (21,22). In this way, the availability of
large-scale sequencing data can enable microbiology researchers to ask new
questions and develop new strategies to study the human-associated microbial

communities (23,24).

However, this huge amount of microbiome data still lacks harmonization and is far
from being completely exploited to its full potential. Guidelines have been
proposed and tools have been developed to promote the standardization of sample
processing, sequencing and data analysis across the microbiome field (25-32) but
achieving global standardization is not an easy task. Initiatives such as the Human
Microbiome (33) and the Earth Microbiome Projects (34) have favored the
development of standardized procedures. In addition, important field-specific
databases were created, such as the Human Oral Microbiome Database (35) or the
GMrepo, a database of curated and consistently annotated human gut
metagenomes (36).

Several research groups have been proposing different sources of microbiome data:
initiatives like the Human Microbiome and the Integrative Microbiome Projects

(37,38), MicrobiomeDB (39), HumanMetagenomeDB (40),
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curatedMetagenomicData (41), the ML Repo (42), QIITA portal (43), or the
MG-RAST portal (44) suggested both data management infrastructures and

frameworks to guarantee data accessibility and reuse.

Despite the contribution of groups involved in this field, the lack of metadata and
the presence of datasets with missing or inconsistent information can reduce the
interpretability of the data generated, influencing the understanding of microbial
dynamics and ecological patterns (23,24,45). Inconsistency and uncontrolled
metadata filling were demonstrated by Gongalves and Musen (46), revealing the
necessity of standardized metadata compilation (47).

FAIR (Findable, Accessible, Interoperable, and Reusable) principles are supported
within the National Microbiome Data Collaborative and FAIR Microbiome
community

(https://www.go-fair.org/implementation-networks/overview/fair-microbiome

) (23,45) to promote data discovery and reuse in the microbiome field, and allow
for broader dissemination of knowledge and compliance for both humans and
machines.

Thus, making microbiome data and metadata accessible is a key aspect to
guarantee a concrete opportunity to perform meta-analyses and data reuse
(42,48,49). In this context, well-curated and FAIR microbiome datasets are now a
necessity to explore microbiome patterns, apply data science techniques and

promote data reusability (50,51).

In order to help researchers interested in performing meta-analyses with human
skin microbiome data and exploring the context-specific information related to
potentially useful datasets, we focused our work on published human skin
microbiome datasets, creating a curated skin microbiome collection accompanied
by a state-of-the-art analysis of the last 10 years of the skin microbiome field.

In particular, during the last decade, most of the studies have relied on amplicon
sequencing approaches, where different regions of the 16S rRNA gene are amplified
and sequenced to identify the microbial taxa present in a sample (52,53). For this

reason, we built a comprehensive human skin microbiome collection enriched with
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detailed metadata information, focusing on existing 16S rRNA
amplicon-sequencing microbiome datasets from the human skin biome.

To achieve our goal, we first collected datasets from the INSDC, which store the
majority of the publicly available nucleotide sequencing datasets together with
their associated metadata (16). As the availability of these metadata and the
possibility of recovering them is crucial for ensuring the reusability of the available
datasets (46), we dedicated special attention to maximize the amount of metadata
information that can be recovered. To do so, we combined different metadata
retrieval approaches enriched with a manual curation step. Then, we generated
explorable data frames at different curation levels containing all the retrieved
datasets together with the associated metadata. Further, we highlighted some of
the shortcomings of the current approaches for data and metadata retrieval and we
called attention to some of the issues that currently afflict the re-usability of the
deposited data. Overall, the output of our work constitutes a valuable resource for
researchers interested in performing meta-analyses with human skin microbiome
data, who can explore our collection to find a list of datasets that can be integrated

to answer old and new biological questions.

Materials and methods

Metadata retrieval and manual curation procedures

To obtain a comprehensive list of skin microbiome studies derived from amplicon
approaches with the associated metadata, we built a three-step framework (Fig. 1)
based on:

e Step 1: dataset retrieval from INSDC;

e Step 2: metadata retrieval and enrichment;

e Step 3: output curation with the removal of redundant and spurious

information.

In the sections below, all the steps are described together with the methods and

strategies used.
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Step 1: dataset retrieval from INSDC

To generate a comprehensive list of datasets of human skin microbiome derived
from 16S rRNA amplicon sequencing available on the INSDC public databases, we
decided to rely on two different approaches: i) an automatic search, which allows
querying the INSDC databases automatically using keywords and ii) a manual

approach on the SRA and ENA portals.

The automatic search of the datasets was performed with the R package “SRAdb”
(54). SRAdD relies on a SRAdb SQLite database, a regularly updated database of
metadata associated with the raw reads deposited on SRA and its interconnected
databases (ENA, DRA). The SRAdb database (up to 36 Gb) was downloaded and
stored locally on the 17" of June, 2021. We performed a full-text search with the
following query: “human skin microbiome OR human skin microbiota OR human
skin metagenome”.

For the manual approach, instead, we performed a search on the NCBI’s SRA and
EBI’s ENA databases with the following criteria: datasets coming from 16S rRNA
amplicon sequencing, containing only human skin samples that were deposited

from 2012 onwards and that presented an associated publication.

Step 2: metadata retrieval and enrichment

An enrichment step was performed on both automatic and manual outputs in order
to recover the largest amount of metadata associated with the datasets previously
found. For this step, we integrated three different strategies: i) SRAdb was used to
collect all the possible information from the retrieved list of studies and samples;
ii) for some run-associated metadata that could not be retrieved with SRAdb, we
used the Entrez Direct (EDirect) tool (55); iii) for the list of manually recovered
studies, we collected study-specific metadata from the associated publication,
including information that cannot be found on the INSDC databases. We focused
our attention on the sample origin, the laboratory and bioinformatics strategies
and the data related to the context in which the studies were performed. In
particular, we retrieved study-specific information related to the collection
method used, the 16S rRNA gene hypervariable region sequenced, the clustering

method used (OTUs, ASVs/RSVs), the number of recovered units/variants reported
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in the study, the database used for taxonomic assignment and its version, the
disease condition investigated (if any), the location of the sampling, the presence
of a MGnify analysis (56), the DOI and the year and journal of publication.

In addition, a bibliometric analysis of published papers related to the datasets
retrieved was performed. Research areas and categories from the Web of Science
(WoS) collection and Elsevier’s Scopus classifications were added to each
publication. Notably, since Scopus reported multiple subject areas for each
publication, we included multiple columns in the data frame to keep all the
information. We further generated a column categorizing a scientific journal as a
medicine-related journal (Medicine_ Journal) or not depending on the presence of
‘Medicine’ among the Scopus subject areas. Lastly, an additional column
containing any useful notes related to the study was added.

A comprehensive list of the manually curated metadata with description is
available in Supplementary File 1., also available in our Github repository
(https://github.com/giuliaago/SKIOMEMetadataRetrieval).

Step 3: outputs curation and metadata correction

Once all the information was stored into three data frames that differed in the way
the datasets and the metadata were retrieved, we proceeded to reorganize them by
removing redundant metadata and NA-inflated columns. For the smallest and
most refined data frame, we further inspected the data frame rows to remove
undesired samples and to correct wrongly assigned metadata. In detail, we
removed samples that were not obtained from amplicon sequencing and corrected

metadata by double-checking with the related publications.
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Figure 1. Schematic representation of the three-step framework adopted in the study to collect

datasets and metadata and generate three differently curated data frames.

Script and data availability

For all the steps of datasets and metadata retrieval, a list of studies and associated
metadata were kept (Dataframe 1, Dataframe 2 and Dataframe 3). All the outputs
will be available in our Github repository
(https://github.com/giuliaago/SKIOMEMetadataRetrieval), accompanied by the
scripts used for the retrieval framework. In particular, scripts describe the use of
SRAdD, Edirect tool, the entire R pipeline to obtain the final outputs and codes for

plot creation and data frame exploration.
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Results

Following the three steps presented in the Methods section (dataset retrieval from
INSCD; metadata retrieval and enrichment; data frame curation), we first tested
two approaches to retrieve datasets of the human skin microbiome from the INSCD
databases (Step 1): a manual search of the datasets and an automatic search with
SRAdb (54). We then collected metadata information for the retrieved datasets
(Step 2) using three different approaches: automatic search with SRAdb (54),
EDirect (55) and a manual search from the associated publication for the manually

retrieved studies. In this way we obtained three data frames:

e Data Frame 1, containing only datasets retrieved with SRAdb and metadata
collected automatically with SRAdb and EDirect;

e Data Frame 2, containing all the datasets identified with both the strategies
(manual and automatic) together with all the metadata that could be
recovered with SRAdb, EDirect and manual inspection of the publication;

e Data Frame 3, a subset of Data Frame 2, containing only the manually
retrieved datasets together with all the metadata that could be recovered

both manually and automatically with SRAdb and EDirect.

Data Frame 2 and Data Frame 3 both contain 61 metadata columns (from manual
and automatic metadata search), while Data Frame 1 only contains 37 metadata
columns obtained from the automatic search. All three data frames were curated to
remove redundant columns and NA-inflated columns (Step 3). Among the
redundant metadata, we observe columns containing the IDs of Run, Experiment,
Submission, Sample/BioSample and Study/BioProject. Other metadata recovered
by both methods were the spots, the bases, the library strategy, the sequencing
platform used and the Taxon ID. Data Frame 3 was further curated to remove
undesired samples coming from whole-genome sequencing experiments and to

correct wrongly assigned metadata.

The following sections will show the results, starting from a comparison between
the data collection approaches used and then moving to describe the

state-of-the-art of metadata related to the submission process and the metadata
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obtained from our manual curation step, in particular regarding the bioinformatic
strategies used and the skin data characteristics retrieved directly from the

published studies.

Comparison of datasets collection approaches and metadata retrieval

The automatic search with SRAdb recovered a total number of 97,182 samples from
203 studies (Data Frame 1) with 8,492 samples that were uploaded before 2012. The
manual search, instead, recovered a total of 21,958 samples from 68 studies (Data

Frame 3) starting from 2012.

We compared the ability of the two approaches in identifying the desired datasets.
Notably, the automatic search failed to identify 47 studies that were recovered by
the manual search, indicating that SRAdb does not perform an exhaustive search of
the available datasets. The automatic search identified 182 studies not found by the
manual search. Based on these observations we generated a data frame (Data
Frame 2) that comprised both automatically retrieved and manually identified
studies. This data frame contains 108,207 rows (samples) coming from 250
different studies and a total of 61 columns containing the metadata.
The metadata associated with the datasets can be differentiated into three major
categories: i) metadata related to dataset submission (obtained by the automatic
search), ii) metadata associated with the laboratory procedures and bioinformatic
pipelines (obtained by automatic and manual searches) and iii) manually collected
context metadata describing other relevant aspects of the study (e.g.
disease/condition investigated or sample origin).
The automatic search for metadata with SRAdb and EDirect was performed for all
the datasets, both manually and automatically retrieved, to collect metadata
related to dataset submission (i). After the curation step, we conserved a total of 37
metadata columns that were included in all three data frames.
These 37 columns contain information related to:

e the study with BioProject, Study_ID, Study_ description and

Study__abstract;
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e the submission and its date with the Year of release, Release Date and
Load_ Date;

e the experiment with the Library Strategy used (Library_Strategy),
specification on if it was performed a pair-end or a single-end sequencing
(Library__Layout) and the library Insert size (Insert_ Size);

e the sequencing platform and the model used (Platform, Model);

e the run with the average sequence length (AvgLength), the spots, the bases,
the size of the file (Size_MB) and the path for the download
(Download_ path);

e the experiment title (Experiment__title);

e adescription of its design (Design_ description);

e the name of the library (Library_name) and attributes of the experiment
(Experiment__attribute);

e the sample with BioSample, Sample_ID, Sample_alias, Sex, Body_ Site,
Description and Sample__attribute and

e the associated Taxonomic ID with the scientific name (TaxID,

Scientific_Name).

A comprehensive description of all the 37 metadata is available in Supplementary
File1.

In Data Frame 2 and 3 we also included 23 additional columns that contain
metadata not available on INSDC and obtained from the manual inspection of the
publication. These metadata were recovered only for the manually retrieved
datasets and contained information on the laboratory procedures and
bioinformatic pipelines (ii) together with other relevant metadata describing the
context of the study (iii).

In the next sections, all the categories of metadata and their distribution are
outlined. A full description of the metadata included in the data frames is given in
Supplementary File 1, also available in our Github repository
(https://github.com/giuliaago/SKIOMEMetadataRetrieval).
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Distribution of metadata related to dataset submission and
library preparation

By comparing the distribution of the number of datasets released over the years
among the three different data frames (Fig. 2.b), we observed that Data Frame 1
showed a peak in 2015 when 17,551 datasets were released. Differently, Data Frame
2 showed a peak in 2017 with 19,041 datasets released during that year. For Data
Frame 3, we observed two peaks: one in 2013 with 4,841 datasets released and one
in 2017 with 7,293 datasets released. However, if we look at the number of studies,
the peak was reached in 2019 with 16 studies investigating the human skin

microbiome (Fig. 2a).

After removing datasets with a value equal to zero for the following metadata, we
calculated the median number of spots (sequencing clusters that generated
sequence), bases (nucleotides), average read length and insert size (size of the
amplicon without sequencing adapters) for Data Frames 1, 2, and 3. The median
number of spots were respectively 23,590, 24,564, 22,560.5 (Fig. 2e), while the
median number of bases were 4,114,610, 4,364,032 and 7,270,396 (Fig. 2f). The
mean of the datasets’ average read length in Data Frame 1 is 227.0235 bp, while for
Data Frame 2 is 254.0603 bp and for Data Frame 3 is 440.2783 bp. The median
values are 150 bp for Data Frame 1 and 2, and 502 bp for Data Frame 3 (Fig. 2g and
Fig. 2i). The median insert size is 500 in Data Frame 1 and 2 and 300 in Data Frame
3 (Fig. 2h and Fig. 2i). Mean values are 455.5963, 440.2783 and 349.0783,

respectively.

Information about the sex of the individuals can be collected for 36,231 out of
97,182 samples in Data Frame 1 (20,011 females; 16,220 males), 37,340 out of
108,207 samples in Data Frame 2 (20,234 females; 17,106 males), and 3,461 out of
21,958 samples in Data Frame 3 (1,276 females; 2,185 males).

We recognized 66 different descriptions (more or less accurate), defining the
sampled region of the body. However, metadata on the body site is absent in most
of the datasets. In detail, a total of 42,489 empty metadata information were found

for Data Frame 1, 52,972 for Data Frame 2 and 18,061 for Data Frame 3.
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In our data frames, we have observed the use of different Taxon IDs to describe the
samples. Data Frame 3, which contains only samples of human skin microbiome,
presents 11 different taxon IDs, which correspond to the following scientific
names: "human skin metagenome", "Homo sapiens'", '"metagenome",
"metagenomes", "human metagenome', ''skin metagenome", "Staphylococcus
aureus", "clinical metagenome", "gut metagenome", "human gut metagenome"
and "bacterium'". The number of Taxon IDs increases in the other two data frames

so that in Data Frame 2 we observe 173 different Taxon IDs.
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Figure 2. a) Number of studies and samples from Data Frame 3 released every year starting from 2012.
b) Comparison of the number of samples released each year for the three Data Frames (Data Frame 1
in blue, Data Frame 2 in black and Data Frame 3 in red). Data Frames 1 and 2 contain samples starting
from 2008, while Data Frame 3 only from 2012. ¢) Distribution of the variable “sex” in the three Data
Frames. In all three cases, the majority of the samples don’t have such information reported. d) The
number of Taxon ID/Scientific names used in the three Data Frames (barplot) and relative abundance
(as a logarithm) of the Taxon ID/Scientific names used for the samples in Data Frame 3 (pie chart).
e-h) Comparison of the median number of spots (e), bases (f), reads average length (g) and insert
size (h) in the three Data Frames. i) Read length distribution in the three Data Frames. j) Distribution

of the insert size in the three Data Frames.

Methodological pipeline insights and context-metadata of skin

microbiome datasets

For the 68 manually retrieved studies we further collected other metadata from the
associated publications. Based on these manually collected metadata, we observed
that most of the studies had used swabs to collect samples (53 studies; 19,928
samples), with only a few relying on other methods like biopsies (5 studies; 257
samples), scrubs buffer washes (1 study; 1,358 samples) or a combination of swabs
and other methods (7 studies; 311 samples).

Considering the marker gene used, the most commonly sequenced hypervariable
regions of the 16S rRNA gene have been the V1-V3 (6,176 samples), followed by the
V4 (5,694) (Fig. 3a). However, if we consider the number of studies, we observed
that most of them relied on the V1-V3 (24 studies) and V3-V4 (21 studies) regions
(Fig. 3a). The Illumina sequencing platforms were the most used (88,295 samples
in Data Frame 2), particularly the Illumina Miseq platform (49,297 samples in Data
Frame 2), followed by Roche 454 platform (19,777 samples in Data Frame 2). A

total of 11,412 samples have no specific platform model assigned (Fig. 3c).

Regarding the bioinformatic pipeline used, most of the manually inspected studies
have clustered reads into Operational Taxonomic Units (OTUs) (56 studies), only a
few (6 studies) relied on Amplicon Sequence Variants (ASVs) or Ribosomal (35)
Sequence Variants (RSVs). For 6 studies this information was not reported in the

article methods (Fig. 3d).
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Taxonomy assignment was mainly performed with Greengenes database (57) (29
studies), followed by SILVA (58) (15 studies). Other works relied on different
databases, including RDP (59) (3 studies), EzTaxon-e (60) (3 studies), NCBI (1
study), and HOMD (1 study). Strikingly, many studies did not report this

information in the articles’ method section (16 studies) (Fig. 3e).
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Figure 3. a) Number of samples (pink) and studies (purple) that used specific 16S rRNA hypervariable

regions in Data Frame 3. b) The number of studies and samples for each disease/condition
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investigated in Data Frame 3. c-e) Frequency of use of the different sequencing platforms (c),
clustering methods (d) and taxonomic databases (e) in Data Frame 3. f) Table showing the Web Of
Science research areas (blue) and Scopus Research Subjects (red) that described the scientific journals
in which the studies of Data Frame 3 have been published. The research areas/subjects are divided
into three boxes depending on how often they were associated with the Scopus research subject
“Medicine”. Going from left to right are shown the research areas/subjects that were always (left),
sometimes (center) and never (right) associated with the Scopus research subject “Medicine”. g)

Geographical distribution of the studies included in Data Frame 3.

Our analysis also comprehended a detailed inspection of skin and disease
conditions related to the microbiome analysis. Among our list, we identify 42
studies investigating 26 different diseases/conditions of the skin (Fig. 3b). The
most commonly investigated disease in our curated dataset is atopic dermatitis (8
studies), followed by psoriasis and parapsoriasis (5 studies), while 7 studies
investigated skin injuries of different kinds. Among the other diseases/conditions
investigated, we observed acne (3 studies), skin pathogenic infections, such as
bacterial, fungal and parasitic infection (3 studies), allergic traits and atopic
individuals (3 studies), dandruff (2 studies), leprosy (2 studies), hidradenitis
suppurativa condition (2 studies), autoimmune bullous disease (1 study),
dystrophic epidermolysis bullosa (1 study), vitiligo (1 study), squamous cell
carcinoma (1 study), filaggrin-deficient human skin (1 study), and other conditions
such as obesity and low birth weight (2 studies). Overall, 26 studies collected
samples from healthy human skin (in Data frame 3, column 43

‘disease/condition’).

Looking at the geographic distribution of the studies, we observed that most of
them were conducted in the USA (22 studies), followed by European countries (19
studies) and China (11 studies). Other countries that featured more than one study
were South Korea (4 studies), Brazil (3 studies) and India (2 studies) (in Data frame
3, column 44 ‘Location’) (Fig. 3.g).

Finally, the 68 manually retrieved studies were published in 40 different scientific
journals from 17 different WOS research areas. According to Scopus classification,
36 studies were published in medicine-related scientific journals (Research Subject

= Medicine). Figure 3f shows how often specific WOS Research areas and Scopus
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Research Subjects are associated with the Scopus research subject “Medicine” in

the present dataset.

Discussion

In this section we discuss the results obtained from our work, in particular
focusing the attention on three main aspects: i) outcomes related to dataset
collection, ii) caveats related to metadata retrieval and data reuse and, finally, iii)
the importance of having a curated collection of a microbiome dataset for
advancing the microbiome research field through data-driven approaches and

powerful meta-analysis.

Skin microbiome data retrieval: dataset collection is not an easy task

The INSDCs databases are the source of an enormous amount of publicly available
datasets which can be accessed and downloaded to perform powerful
meta-analyses (16). The field of microbiome research can greatly benefit from the
availability of this large amount of data (23). However, the reusability of a dataset
strictly depends on the possibility of retrieving it and on the amount of

information (metadata) deposited by the authors at the time of submission (46,61).

If the number of datasets available is limited (such as for poorly studied
environments), a manual search will consent to gather all the studies available in a
relatively fast way. However, for well-studied environments, the number of
datasets can be very large and it becomes more convenient to rely on automatic
approaches (62). The automatic approach allows for a fast and comprehensive
search of datasets of interest, but at the same time, it lacks a curation step that
validates the recovered datasets. Moreover, the automatic search does not permit
the retrieval of important information that was not deposited in the INSDC
databases together with the raw data. Conversely, the manual search is more
accurate and allows a researcher to retrieve a well-validated list of studies together
with other information by inspecting the associated publication. Its drawbacks are
that it is time-consuming and presumably less comprehensive than the automatic

search. Moreover, it does not consent to retrieve sample-specific information.
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Our results showed that the automatic search did find a greater number of datasets
than the manual (97,182 samples from 203 studies vs 21,958 samples from 68
studies). Many can be the reasons that explain this difference. First, the automatic
search tends to be more exhaustive than a manual one if the number of available
datasets is large. Second, the list of studies is not inspected to remove undesired
studies that do not match some of the desired criteria but might be retrieved by the
searching tool. Third, the manual search was limited to the dataset deposited in the
last 10 years, starting from 2012, while the automatic search recovered studies
starting from 2008. Indeed, 8,492 samples found by the automatic search were
uploaded before 2012. Despite these observations, neither the manual nor the
automatic search with SRAdb, were capable of recovering all the studies,

highlighting the importance of combining the two approaches.

Together, our results indicated that SRAdb was not exhaustive in its search, and to
maximize the number of datasets retrieved, a combination of manual and
automated approaches might represent the optimal strategy. We observe that the
larger the number of available datasets, the less feasible an extensive manual
search, favoring an automated approach for the dataset retrieval step. Conversely,
for topics with a particularly small number of datasets available, the manual search

still remains the most accurate way of recovering them.

Caveats of metadata retrieval and data reuse

Depending on the topic, a researcher interested in performing a meta-analysis can
decide to rely on different approaches to retrieve metadata associated with the
datasets of interest, both directly through the INSDC data portal (16) or with
specific tools (54,55,63). In this work, we decided to combine three approaches,
based on SRAdD (54), Entrez (55) plus a manual search from the publication, with
the aim of generating a comprehensive data frame containing all the datasets from
the human skin microbiome amplicon sequencing available on INSDC databases. As

for the search of the datasets, also for metadata retrieval, we observed that the
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combination of automatic and manual approaches is capable of gathering a larger
amount of information than the two approaches alone.

However, while with a manual search it is possible to recover much information
related to a dataset if a publication is available, this approach is not feasible if the
number of datasets is high (62). Moreover, sample-specific information for large
datasets can only be collected using automatic approaches, making an automatic
search a necessity.

Automatic approaches of metadata retrieval (such as those used in this study)
collect the metadata deposited on the INSDC databases. As such, they are capable of
accessing only the metadata that were made available by the researchers during the
data submission. Failing in accessing specific metadata can affect the re-usability
of a given dataset, highlighting the importance of proper and extensive metadata

storage.

We recognized three major causes that affect the reusability of publicly available
microbiome datasets: 1) Missing metadata. A lot of essential metadata are simply
not available either because not included among the requested metadata or because
not mandatory and hence not compiled by the submitter. One example is the
absence of metadata specifying the 16S rRNA hypervariable region amplified and
sequenced for most of the studies, which seriously compromise data
harmonization efforts. Another information that is often not reported is the
presence of an associated publication. The availability of the raw reads on public
databases is a requirement for publication in many scientific journals. During the
raw reads submission, the researcher is required to provide metadata associated
with the dataset, including the presence of a publication. As such, since this step
predates the publication itself most of the datasets are uploaded without specifying
this information. 2) Metadata wrongly assigned. Sometimes metadata can be
wrongly assigned to the samples. This can also be the result of mandatory
metadata fields that are ambiguous and can lead a researcher inexperienced in the
submission process to compile the field in an incorrect way. Wrong metadata can
cause the inclusion of wrong datasets into an analysis, potentially affecting the
results and leading to incorrect biological conclusions, or, conversely, they can

cause the exclusion of datasets from analyses in which they would have fitted. As
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an example, by comparing the metadata deposited on INSDC with what was
reported in the publication we were able to identify studies that wrongly assigned
the library strategy as “RNA-Seq” and “WGS” instead of “AMPLICON”.

3) Inconsistency of the used terminology. Some metadata fields can be filled with
multiple correct metadata leading to inconsistency in the terminology used and
affecting the possibility of automatizing the search and filtering of datasets based
on these metadata. Good examples are the numerous Taxon ID and scientific
names associated with the samples, which are not necessarily wrong, but the lack
of consistency in the terms used compromises the usefulness and value of this

metadata.

Different works demonstrated the caveats of metadata retrieval and its
consequences (46,47,64). Researchers have undertaken different approaches to
ameliorate this step, in particular using a manual or automated/semi-automated
curation (65), or developing tools specific for the download of metadata
information (66). Most of the automated or semi-automated methods are based on
Natural Language Processing (NLP) techniques, used to recognize predefined
entities in unstructured text, in order to retrieve metadata from the text associated
with the samples. Others try to normalize metadata information by grouping or
mapping to ontologies (67—69). These methods still need a revised step of manual
curation and sometimes cannot reconstruct the totality of the metadata associated
(65). As we demonstrated before, manual curation seems the most accurate

solution (65,70) if data remains human-readable.

Considering the microbiome field, the INSDC significantly contributed with a
recent perspective paper describing the steps that the microbiome research
community should take to favor data FAIRification and metadata incorporation
(45). As microbiome samples are particularly related to the context in which they
were collected, data describing measurements or variables related to the context
are critical (45). Two main subject areas were indicated by the INSDC to improve
data standards: i) promote microbiome data sharing and ii) try to remove obstacles
and difficulties related to data and metadata submission. Some of their

observations and proposals are currently applied by the research community, as
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for example the “Minimum Information about any (x) Sequence” (MIxS) packages
(71) or the incorporation of DOIs for datasets (72). Unfortunately, some work is still
needed to establish standard procedures and a universal set of ontologies that are

easily accessible by the entire community (45,73).

In this context, this work also wants to disclose the situation of a sub-field of the
microbiome data world: the skin microbiome. The issues revealed by our results
show that the search and secondary use of the datasets is still not easy to achieve.
Since different studies can rely on different methodologies, different datasets
might not be directly comparable and precautions must be taken before combining
multiple datasets in a meta-analysis. Without some metadata, a potentially valid
dataset can not be included in a meta-analysis. Therefore it is essential for a
researcher that wants to valorize a dataset to upload as much information as
possible together with the raw reads so as to make the dataset reusable. To
motivate researchers in uploading more information, the submission procedure
should be made as simple and guided as possible, also to avoid misinterpretations
and wrong metadata assignments. To reduce the missingness of metadata, more
fields should be made mandatory, such as those referred to the 16S rRNA region
sequenced, and new metadata should be included, such as a field that easily
discriminates biological samples from negative controls. It also urges the need for
standardization of the Taxon ID used in microbiome studies. Guidelines should be
given to avoid the use of imprecise Taxon IDs. Efforts should also be made to
associate a link to the publication whenever it becomes available, to allow for
easier and straightforward access to this resource.

As we have stated, numerous are the aspects related to data and metadata
submission that can be improved. Some relate to the submission process itself
which can be refined to favor microbiome data reusability, while others strictly
depend on the commitment of the researcher performing the submission, who
should not overlook the relevance of this step and its importance for the whole

scientific community
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The value of a curated skin microbiome collection

Over the past decade, researchers have explored the intricate ecosystem of the skin
microbiome (10), unveiling the interactions between the microbiome players
(bacteria, archaea, fungi and viruses), the skin cells, and the host immune cells
that act as barriers, constituting a defense against pathogens invasion and
inflammation (10,74). Perturbations in the skin ecosystem can cause an unbalance
that can even lead to the rising of immune disorders, like allergies, dermatitis or
eczema, or chronic injuries, like ulcers. Determining the causes and effects of these
processes is not an easy task. Traditional approaches to study skin microbiome
mechanisms relies on culture-based techniques, leading to an underestimation of
the actors and a bottle-neck selection due to the strict range of cultivable species.
The case of Staphylococcus genus can serve as an example. Being more easily
cultivable than microorganisms belonging to Corynebacterium spp. or
Propionibacterium spp., it would dominate a microbiome dataset, leading to an
underestimation of the real biodiversity (75). It became obvious that to overcome
culture-dependent bottlenecks and to explore the skin microbiome as a whole, a

sequencing method must be applied (10).

In this context, large-scale sequencing data enable microbiology researchers to
obtain deep insights in genetic and functional profiling (10) and, nowadays, grand
challenges in microbiome science rely on large-scale data science approaches (20).
Secondary analysis can be full of potential and by-passing the need of generating
new large datasets can enormously reduce the costs associated with this kind of
study. Impactful meta-analyses have already contributed to advancing the
microbiome field, as demonstrated by numerous studies (17—-19).

From the more applied and clinically relevant studies of skin health and disease to
the more theoretical works investigating microbial ecology and the holobiont
evolution, all these sub-fields of microbiome research will benefit from the
adoption of data-driven approaches based on large-datasets integration (76). The
availability of a curated collection of microbiome datasets represents the required

starting point to make this transition possible and scalable (23,45).
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Currently, numerous research teams around the world have put efforts in trying to
collect and harmonize data from different microbiome fields and various curated
collections of microbiome datasets have been published, like the
TerrestrialMetagenomeDB (77), the HumanMetagenomeDB (40), or the Planet
Microbe (78). Each one of these collections is focused on a specific topic and
sometimes on a specific type of data and aims at providing each microbiome

research sub-field with a valuable resource to perform data-driven meta-analyses.

Based on these premises and focusing on the skin microbiome sub-field, our work
resulted in a comprehensive list of human skin microbiome datasets enriched with
metadata information related to the methodological pipelines and the context of
the dataset under study.

Skin research produces large quantities of data using a wide range of methods and
equipment that require large collaborative efforts. These research endeavors span a
broad range of disciplines and are critical to investigating the skin physiology,
functions, interactions and health status, from a broad perspective. This can be
seen in the bibliometric analysis of published papers related to the datasets
retrieved. Research areas and categories from the Web of Science collection and
Elsevier’s Scopus classifications showed a scattered distribution of publications in
different research areas, but with a higher proportion related to the
medicine-related area. As the number of studies grows, it clearly appears that
crossing the boundary between medicine and microbial ecology is the lynchpin for
a deep understanding of skin health (4,74). Indeed, a consistent proportion of the
data collected is dedicated to disease conditions, providing valuable material for
clinical researchers, but also for microbial ecologists and researchers from other
fields of research interested in studying the microbial dynamics in the skin
ecological niche. Moreover, taken together, more than half of the studies in our
Data Frame 3 collected microbiome data from healthy subjects, providing an
invaluable source of information. One of the main challenges for data
harmonization is to link the phylogenetic diversity of host-associated microbes to
their functional roles within the community and with the host. Much remains to be
learned about us as holobionts and much of the information is still kept inside the
data.
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The curated list we generated can serve as a most comprehensive collection of
datasets that can be searched and queried to identify datasets of interest.
Researchers interested in conducting meta-analyses with human skin microbiome
datasets can use these data frames as a starting point to recover the dataset more
suited for their analyses. As demonstrated by the presence of errors in the
metadata, these data frames require a curation step. Here, we reported a curated
data frame (Data Frame 3) in which we manually corrected errors in the metadata.
We also reported two non-curated data frames obtained with the automatic search
(Data Frame 1) and with a combination of manual and automatic search (Data
Frame 2). These two data frames contain a greater number of studies and samples,
however, a careful inspection of these datasets is advised before including any one

of those into a meta-analysis.

Conclusions

The aim of our effort was to help accelerate human skin microbiome research by
reducing the amount of time needed to search for datasets and metadata of interest
and at the same time favoring data reuse by maximizing the amount of
information associated with each dataset. Here we report three data frames
containing a comprehensive collection of human skin microbiome datasets
enriched with metadata recovered from different sources. The data frames are
easily explorable and can be useful for researchers interested in conducting

meta-analyses with human skin microbiome amplicon data.

Furthermore, we demonstrated that the reusability of a dataset depends on the
amount of information that can be gathered on the dataset itself, that is the
amount of metadata deposited by the authors at the time of submission. We are
aware that data sharing is increasing throughout the microbiome community, but
there are still barriers to making microbiome data truly FAIR. Metadata standards
exist, but their proper adoption by the research community is still lagging, as also

demonstrated by the NMDC community.
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Skin microbiome sampling has the advantage of being non-invasive, easily
accessible, and able to provide a huge amount of meaningful information. A
curated collection of skin microbiome datasets, enriched with study-related
metadata, could be used to investigate health-related phenotypes, offering the
potential for non-invasive diagnosis and condition monitoring. Our framework
sets the stage for new analyses implementing AI approaches focused on
understanding the complex relationships between microbial communities and
phenotypes, to predict any condition from microbiome samples. Indeed,
considering the skin microbiome topic, a few, very recent works included data
integration strategies and Al applications (79—81), showing the potential held by

these approaches in advancing skin microbiome research.

As the microbiome research field is headed to become a science founded on
big-data, the necessity of developing standardized procedures to generate and
analyze data acquires importance. The adoption of standard methodologies will
help future data integration efforts for the benefit of the whole research
community. For this reason, we advocate for a concerted effort to favor
standardized microbiome research and exhaustive data sharing.

Further, with this work we want to build a foundation that places microbiome
research at the nexus of many subdisciplines within and beyond biology, as for
example dermatology, medicine and microbial ecology.

For this reason, this project has the potential to accelerate the development of

microbiome-based personalized medicine and non-invasive diagnostics.

Supplementary data

Supplementary data will be available on our Github repository
(https://github.com/giuliaago/SKIOMEMetadataRetrieval).


https://www.zotero.org/google-docs/?2dVyHY
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Conflict of interest

The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential

conflict of interest.

Data availability statement

The data frames and supplementaries generated in this study will be available on
our Github repository (https://github.com/giuliaago/SKIOMEMetadataRetrieval).
Author’s notes

G.A. and D.B. equally contributed to this work.

Authors’ contribution

Conceptualization: G.A., D.B., A.B.; Implementation: G.A., D.B.; Data analysis and
visualization: G.A., D.B.; Manuscript preparation: G.A., D.B., A.B.; Review and
editing: G.A., D.B, AB. D.P, MC., ML, Funding acquisition: A.B., M.L.;
Supervision: G.A., A.B., M.L.


https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

References

1. Dimitriu PA, Iker B, Malik K, et al. (2019) New Insights into the Intrinsic and
Extrinsic Factors That Shape the Human Skin Microbiome. mBio. 10, 4,
€00839-19.

2. Swaney MH, Kalan LR. (2021) Living in Your Skin: Microbes, Molecules, and
Mechanisms. Infect Immun. 89, 4, €00695-20.

3. Luna PC. (2020) Skin Microbiome as Years Go By. Am J Clin Dermatol. 21, 1,
12—-7.

4. Callewaert C, Ravard Helffer K, Lebaron P. (2020 ) Skin Microbiome and its
Interplay with the Environment. Am J Clin Dermatol. 21, 1, 4—11.

5. SaD, Sriharsha M, Rk N,et al. (2015) Role of Diet in Dermatological Conditions.
J Nutr Food Sci 5, 400.

6. Leyden]JJ, McGinley KJ, Mills OH, et al. (1975) Age-related changes in the
resident bacterial flora of the human face. J Invest Dermatol. 65, 4, 379—81.

7. Capone KA, Dowd SE, Stamatas GN, et al. (2011) Diversity of the Human Skin
Microbiome Early in Life. J Invest Dermatol. 131, 10, 2026 —32.

8. Bouslimani A, Porto C, Rath CM, et al. (2015) Molecular cartography of the
human skin surface in 3D. Proc Natl Acad Sci. 112,17, E2120—9.

9. Gupta VK, Paul S, Dutta C. (2017) Geography, Ethnicity or Subsistence-Specific
Variations in Human Microbiome Composition and Diversity. Front Microbiol.
8, 1162.

10. Byrd AL, Belkaid Y, Segre JA. (2018) The human skin microbiome. Nat Rev
Microbiol. 16, 3, 143—55.

11. Williams MR, Gallo RL. (2015) The Role of the Skin Microbiome in Atopic
Dermatitis. Curr Allergy Asthma Rep. 15, 11, 65.

12. Langan EA, Griffiths CEM, Solbach W, et al. (2018) The role of the microbiome
in psoriasis: moving from disease description to treatment selection? Br |
Dermatol. 178, 5,1020-7.

13. Sayers EW, Agarwala R, Bolton EE, et al. (2019) Database resources of the
National Center for Biotechnology Information. Nucleic Acids Res. 47, D1,
D23-8.

14. Harrison PW, Alako B, Amid C, et al. (2019) The European Nucleotide Archive
in 2018. Nucleic Acids Res. 47, D1, D84—8.


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

15. Ogasawara O, Kodama Y, Mashima J, et al. (2020) DDB]J Database updates and
computational infrastructure enhancement. Nucleic Acids Res. 48, D1, D45-50.

16. Arita M, Karsch-Mizrachi I, Cochrane G, on behalf of the International
Nucleotide Sequence Database Collaboration. (2021) The international
nucleotide sequence database collaboration. Nucleic Acids Res. 49, D1, D121—4.

17. Duvallet C, Gibbons SM, Gurry T, et al. (2017) Meta-analysis of gut
microbiome studies identifies disease-specific and shared responses. Nat
Commun. 8, 1,1784.

18. Bisanz JE, Upadhyay V, Turnbaugh JA, et al. (2019) Meta-Analysis Reveals
Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell
Host Microbe. 26, 2, 265-272.e4.

19. KostiI, Lyalina S, Pollard KS, et al. (2020) Meta-Analysis of Vaginal
Microbiome Data Provides New Insights Into Preterm Birth. Front Microbiol. 11,
476.

20. Kyrpides NC, Eloe-Fadrosh EA, Ivanova NN. (2016) Microbiome Data Science:
Understanding Our Microbial Planet. Trends Microbiol. 24, 6, 425-17.

21. Jordan MI, Mitchell TM. (2015) Machine learning: Trends, perspectives, and
prospects. Science. 349, 6245, 255—60.

22. Ghannam RB, Techtmann SM. (2021) Machine learning applications in
microbial ecology, human microbiome studies, and environmental
monitoring. Comput Struct Biotechnol J. 19,1092-107.

23. Wood-Charlson EM, Anubhav, Auberry D, et al. (2020) The National
Microbiome Data Collaborative: enabling microbiome science. Nat Rev
Microbiol. 18, 6, 313—4.

24. SuX,Jing G, Zhang, et al. (2020) Method development for cross-study
microbiome data mining: Challenges and opportunities. Comput Struct
Biotechnol J. 18, 2075—80.

25. Greathouse KL, Sinha R, Vogtmann E. (2019) DNA extraction for human
microbiome studies: the issue of standardization. Genome Biol.20, 1, 212.

26. Bharti R, Grimm DG. (2021) Current challenges and best-practice protocols for
microbiome analysis. Brief Bioinform. 22, 1,178—-93.

27. LiuY-X, QinY, Chen T, et al. (2021) A practical guide to amplicon and

metagenomic analysis of microbiome data. Protein Cell. 12, 5, 315—30.


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

28. Amos GCA, Logan A, Anwar S, et al. (2020) Developing standards for the
microbiome field. Microbiome. 8, 1, 98.

29. Pollock], Glendinning L, Wisedchanwet T, et al. (2018) The Madness of
Microbiome: Attempting To Find Consensus “Best Practice” for 16S
Microbiome Studies. Appl Environ Microbiol. 84, 7, €02627-17.

30. Callahan BJ, McMurdie PJ, Rosen MJ, et al. (2016) DADA2: High-resolution
sample inference from Illumina amplicon data. Nat Methods. 13, 7, 581—3.

31. BolyenE, Rideout JR, Dillon MR, et al. (2019) Reproducible, interactive,
scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol.
37, 8,852-17.

32. ShiW, QiH, Sun Q, et al. (2019) gcMeta: a Global Catalogue of Metagenomics
platform to support the archiving, standardization and analysis of
microbiome data. Nucleic Acids Res. 47, D1, D637—48.

33. Turnbaugh PJ, Ley RE, Hamady M, et al. (2007) The Human Microbiome
Project. Nature. 449, 7164, 804—10.

34. Gilbert JA, Jansson JK, Knight R. (2014) The Earth Microbiome project:
successes and aspirations. BMC Biol. 12, 1, 69.

35. ChenT, Yu W-H, Izard J, et al. (2010) The Human Oral Microbiome Database: a
web accessible resource for investigating oral microbe taxonomic and
genomic information. Database, 2010, 2010, baqo13.

36. WuS,SunC,LiY, etal.(2020) GMrepo: a database of curated and consistently
annotated human gut metagenomes. Nucleic Acids Res. 48, D1, D545-53.

37. Gevers D, Knight R, Petrosino JF, et al. (2012) The Human Microbiome Project:
A Community Resource for the Healthy Human Microbiome. PLOS Biol. 10, 8,
€1001377.

38. Proctor LM, Creasy HH, Fettweis JM, et al. (2019) The Integrative Human
Microbiome Project. Nature. 569, 7758, 641—8.

39. Oliveira FS, Brestelli J, Cade S, et al. (2018) MicrobiomeDB: a systems biology
platform for integrating, mining and analyzing microbiome experiments.
Nucleic Acids Res. 46, D1, D684 —91.

£40. Kasmanas JC, Bartholomdus A, Corréa FB, et al. (2021) HumanMetagenomeDB:
a public repository of curated and standardized metadata for human

metagenomes. Nucleic Acids Res. 49, D1, D743-50.


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

41. Pasolli E, Schiffer L, Manghi P, et al. (2017) Accessible, curated metagenomic
data through ExperimentHub. Nat Methods. 14, 11,1023 —4.

42. Vangay P, Hillmann BM, Knights D. (2019) Microbiome Learning Repo (ML
Repo): A public repository of microbiome regression and classification tasks.
GigaScience. 8, 5.

43. Gonzalez A, Navas-Molina JA, Kosciolek T, et al. (2018) Qiita: rapid,
web-enabled microbiome meta-analysis. Nat Methods. 15,10, 796—38.

44. Wilke A, Bischof J, Gerlach W, et al. (2016) The MG-RAST metagenomics
database and portal in 2015. Nucleic Acids Res. 44, D1, D590—4.

45. Vangay P, Burgin J, Johnston A, et al. (2021) Microbiome metadata standards:
Report of the national microbiome data collaborative’s workshop and
follow-on activities. mSystems. 6, 1, €01194.

46. Gongalves RS, Musen MA. (2019) The variable quality of metadata about
biological samples used in biomedical experiments. Sci Data. 6,1, 190021.

47. Bernasconi A. (2021) Data quality-aware genomic data integration. Comput
Methods Programs Biomed Update. 1,100009.

48. Ching T, Himmelstein DS, Beaulieu-Jones BK|, et al. (2018) Opportunities and
obstacles for deep learning in biology and medicine. J R Soc Interface. 15, 141,
20170387.

49. Sze MA, Schloss PD. (2016) Looking for a Signal in the Noise: Revisiting
Obesity and the Microbiome. mBio. 7, 4, €01018-16.

50. Duvallet C. (2020) Data detectives, self-love, and humility: a research
parasite’s perspective. GigaScience 9, 1.

51. Longo DL, Drazen JM. (2016) Data Sharing. N Engl J Med. 374, 3, 276—17.

52. Bokulich NA, Ziemski M, Robeson MS, et al. (2020) Measuring the
microbiome: Best practices for developing and benchmarking microbiomics
methods. Comput Struct Biotechnol J. 18, 4048—62.

53. Knight R, Vrbanac A, Taylor BC, et al. (2018) Best practices for analysing
microbiomes. Nat Rev Microbiol. 16, 7, 410—22.

54. ZhuY, Stephens RM, Meltzer PS, et al. (2013) SRAdb: query and use public
next-generation sequencing data from within R. BMC Bioinformatics. 14, 1, 19.

55. Kans]J. (2021) Entrez Direct: E-utilities on the Unix Command Line. In: Entrez

Programming Utilities Help [Internet]. Bethesda (MD): National Center for


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Biotechnology Information (US). Available from:
https://www.ncbi.nlm.nih.gov/books/NBK179288/

Mitchell AL, Almeida A, Beracochea M, et al. (2020) MGnify: the microbiome
analysis resource in 2020. Nucleic Acids Res. 48, D1, D570-8.

McDonald D, Price MN, Goodrich J, et al. (2012) An improved Greengenes
taxonomy with explicit ranks for ecological and evolutionary analyses of
bacteria and archaea. ISME J. 6, 3, 610—38.

Quast C, Pruesse E, Yilmaz P, et al. (2013) The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools. Nucleic Acids
Res. 41, D1, D590-6.

Cole JR, Wang Q, Fish JA, et al. (2014) Ribosomal Database Project: data and
tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D1, D633—42.
Kim O-S, Cho Y-J, Lee K, et al. (2012) Introducing EzTaxon-e: a prokaryotic
16S rRNA gene sequence database with phylotypes that represent uncultured
species. Int J Syst Evol Microbiol. 62, Pt_ 3, 716—21.

Miron L, Gongalves RS, Musen MA. (2020) Obstacles to the reuse of study
metadata in ClinicalTrials.gov. Sci Data. 7, 1, 443.

Baumgartner WA, Cohen KB, Fox LM, et al. (2007) Manual curation is not
sufficient for annotation of genomic databases. Bioinforma Oxf Engl. 23, 13,
i41-8.

Eaton K. (2020) NCBImeta: efficient and comprehensive metadata retrieval
from NCBI databases. ] Open Source Softw. 5, 46, 1990.

Jurburg SD, Konzack M, Eisenhauer N, et al. (2020) The archives are
half-empty: an assessment of the availability of microbial community
sequencing data. Commun Biol. 3,1, 1-8.

Klie A, Tsui BY, Mollah S, et al. (2021) Increasing metadata coverage of SRA
BioSample entries using deep learning—based named entity recognition.
Database. 2021, baab021.

Hoarfrost A, Brown N, Brown CT, et al. (2019) Sequencing data discovery with
MetaSeek. Bioinformatics. 35, 22, 4857—9.

Bernstein MN, Doan A, Dewey CN. (2017) MetaSRA: normalized human
sample-specific metadata for the Sequence Read Archive. Bioinformatics. 33,

18, 2914—23.


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

68. HuW, Zaveri A, Qiu H, et al. (2017) Cleaning by clustering: methodology for
addressing data quality issues in biomedical metadata. BMC Bioinformatics. 18,
1, 415.

69. Martinez-Romero M, O’Connor M]J, Egyedi AL, et al. (2019) Using association
rule mining and ontologies to generate metadata recommendations from
multiple biomedical databases. Database. 2019, baz059.

70. Wang Z, Lachmann A, Ma’ayan A. (2019) Mining data and metadata from the
gene expression omnibus. Biophys Rev. 11, 1,103-10.

71. Yilmaz P, Kottmann R, Field D, et al. (2011) Minimum information about a
marker gene sequence (MIMARKS) and minimum information about any (x)
sequence (MIxS) specifications. Nat Biotechnol. 29, 5, 415-20.

72. Cousijn H, Kenall A, Ganley E, et al. (2018) A data citation roadmap for
scientific publishers. Sci Data. 5, 1, 180259.

73. Buttigieg PL, Pafilis E, Lewis SE, et al. (2016) The environment ontology in
2016: bridging domains with increased scope, semantic density, and
interoperation. ] Biomed Semant. 7,1, 57.

74. Prescott SL, Larcombe D-L, Logan AC, et al. (2017) The skin microbiome:
impact of modern environments on skin ecology, barrier integrity, and
systemic immune programming. World Allergy Organ J. 10, 29.

75. Kong HH, Segre JA. (2012) Skin Microbiome: Looking Back to Move Forward. ]
Invest Dermatol. 132, 3, 933—09.

76. Ross AA, Miiller KM, Weese JS, et al. (2018) Comprehensive skin microbiome
analysis reveals the uniqueness of human skin and evidence for
phylosymbiosis within the class Mammalia. Proc Natl Acad Sci. 115, 25,
E5786—-95.

77. Corréa FB, Saraiva JP, Stadler PF, et al. (2020) TerrestrialMetagenomeDB: a
public repository of curated and standardized metadata for terrestrial
metagenomes. Nucleic Acids Res. 48, D1, D626—32.

78. Ponsero AJ, Bomhoff M, Blumberg K, et al. (2021) Planet Microbe: a platform
for marine microbiology to discover and analyze interconnected ’omics and
environmental data. Nucleic Acids Res. 49, D1, D792—-802.

79. Marcos-Zambrano L], Karaduzovic-Hadziabdic K, Loncar Turukalo T, et al.

(2021) Applications of Machine Learning in Human Microbiome Studies: A


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456635; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Review on Feature Selection, Biomarker Identification, Disease Prediction and
Treatment. Front Microbiol. 12, 634511.

80. Jaiswal SK, Agarwal SM, Thodum P, et al. (2021) SkinBug: an artificial
intelligence approach to predict human skin microbiome-mediated
metabolism of biotics and xenobiotics. iScience. 24, 1.

81. Carrieri AP, Haiminen N, Maudsley-Barton S, et al. (2021) Explainable Al
reveals changes in skin microbiome composition linked to phenotypic

differences. Sci Rep. 11, 1, 4565.


https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://www.zotero.org/google-docs/?oLLp4Z
https://doi.org/10.1101/2021.08.17.456635
http://creativecommons.org/licenses/by-nc-nd/4.0/

