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Classical statistical genetic theory defines dominance as a deviation from a

purely additive effect. Dominance is well documented in model organisms and

plant/animal breeding; outside of rare monogenic traits, however, evidence in

humans is limited. We evaluated dominance effects in >1,000 phenotypes in

the UK Biobank through GWAS, identifying 175 genome-wide significant loci

(P < 4.7 ⇥ 10�11
). Power to detect non-additive loci is low: we estimate a

20-30 fold increase in sample size is required to detect dominance loci to sig-

nificance levels observed at additive loci. By deriving a new dominance form

of LD-score regression, we found no evidence of a dominance contribution to

phenotypic variance tagged by common variation genome-wide (median frac-
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tion 5.73 ⇥ 10�4
). We introduce dominance fine-mapping to explore whether

the more rapid decay of dominance linkage disequilibrium can be leveraged to

find causal variants. These results provide the most comprehensive assessment

of dominance trait variation in humans to date.

Main text

There is a wealth of evidence suggesting that non-additive effects provide a non-negligible con-

tribution to phenotypic variance in model organisms and animal breeding studies (1–8). How-

ever, these effects are not typically included in the genetic analysis of complex traits in humans.

Even the simplest nonlinear contribution to effect on a given trait, Fishers dominance devia-

tion (9), is generally omitted from genome-wide association studies (GWAS), on the grounds

that the additive model captures most of the contribution of the locus even in the presence of

a dominant architecture in all but the most extreme cases (10). Following Fisher 1918, we

parametrise the dominance contribution at a locus orthogonally to the additive one, so that a

non-zero contribution indicates any deviation from a purely additive or dosage pattern.

Empirically, outside of rare variants reported to cause recessive Mendelian disease pheno-

types (11, 12), evidence of non-additive variance explained across single nucleotide polymor-

phisms (SNPs) is weak. Extensions to the GREML model (13) to allow for estimation of dom-

inance variance place the average contribution to broad sense heritability at around one fifth

of that explained by the additive component, and the authors suggest a limited contribution to

phenotypic variance. However, Chen et al. (14) found increased sample sizes in older twin pairs

resulted in an increased contribution of dominance variation in twin-based estimation: an aver-

age of 0.25 in the 18 traits they analysed. A huge study drawing from twin studies across the

last 60 years estimated that of the ⇠18,000 traits analysed, 69% were consistent with a simple
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additive genetic model (15).

Population biobanks of hundreds of thousands of individuals, including the UK Biobank offer

the opportunity to explore questions of genetic architecture. In this work, we sought to in-

vestigate the role of dominance effects on phenotype. We examined non-additive variation in

human disease using 71 truncated ICD-10 codes and 81 disease endpoints curated by FinnGen,

as well as 267 quantitative traits, including measures for 31 biomarkers in 361,194 partici-

pants. As our approach requires a re-coding of genotypes which is a function of minor allele

frequency (MAF), we restrict analysis to individuals in the UK Biobank with British or Irish

ancestry (16, 17). We estimated the contribution of dominance to phenotypes both at single

loci through a series of 1,060 ‘dominance scans’, and tagged by common variation genome

wide through an extension to LD-score regression. Our new method: dominance LD-score re-

gression (d-ldsc) is scalable to thousands of phenotypes and can readily incorporate the genetic

correlation and partitioned heritability extensions of LD-score regression (18–20).

Testing for dominance effects at each variant

In this work, we wish to determine whether there is evidence for genetic effects beyond addi-

tivity at a locus contributing to variation in a collection of phenotypes. With this goal in mind,

the sensible approach is to regress out any additive effect site by site, and test for evidence of

any residual contribution to trait variation. Doing so amounts to testing for evidence of a dom-

inance deviation (9) from additivity. This is not the same as re-coding genotypes according to

the canonical biological dominance encoding [0,1,1], as illustrated in Fig. 1B. Notice that even

with a MAF of 0.5, the additive model captures the majority of the variance explained by the

locus (88.8%) when the true underlying architecture is [0,1,1]. Furthermore, if a dominance de-

viation exists, then the contribution to variance explained by the dominance deviation depends
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on the MAF. This can be seen by contrasting the first and second rows of Fig.1. We use the

terms non-additivity and dominance interchangeably to refer to the non-additive contribution

to variance at a site which is uncorrelated to the additive model, as it encodes the dominance

deviation.

Using a re-coding of the genotypes to capture the dominance deviation, referred to hereafter

as the dominance encoding (see Theory: parametrisation of non-additivity at a locus, for our

reasoning), we then assess within locus non-additive effects using a series of dominance GWAS

scans and estimate the relative contribution of additive and non-additive genetic variation to
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Figure 1: Examples of inheritance patterns at different MAFs.The effect sizes under a col-
lection of genetic architectures is shown by the black line. The expected proportion of individ-
uals with each of the three genotypes is shown by a green circle under the alternative allelic
dosage (0, 1, 2); the area of the circle scales with the expected proportion of samples with that
genotype. The extra variance captured by deviations from that additive fit (dashed purple line)
is non-additive or dominance contribution to phenotypic variance. A. Purely additive genetic
architecture at the SNP, no deviation of the truth (black line) from the additive fit (dashed purple
line), so no extra variance is explained by non-additive effects, independent of MAF (p = 0.5;
top row, p = 0.3; bottom row, variance contribution for both MAFs is entirely blue; representing
100% additive variance contribution at this site). B. Biological dominance architecture at a very
common SNP (p = 0.5; top row) and at a common SNP (p = 0.3; bottom row). Despite being
the canonical ‘dominance’ architecture, note that additivity explains a large portion of the vari-
ance (the dashed purple line is not horizontal and the variance contribution of additive effects is
high: see the relative length of the blue bar to the red bar), but there is an appreciable amount
of variation which cannot be explained by a purely additive model. This contribution decreases
as MAF decreases from 0.5. I.e. the allele frequency of the SNP matters. Due to the rarity of
the homozygous alternate genotype (shown by a smaller green circle beneath the black line at
‘2’), the additive model explains a larger portion of the total variance at the SNP. The variance
contribution of the recessive contribution is equivalent to the biological dominance encoding of
the other allele, and amounts to swapping the alternative allele. C. Overdominance at a very
common SNP (p = 0.5; top row) and at a common SNP (p = 0.3; bottom row). When p =
0.5 (top row), half the sample is expected to be heterozygous, which completely balances the
homozygous individuals so that the additive model explains none of the variance (the dashed
purple line is horizontal, the variance contribution is entirely red) for this genetic architecture
at a SNP with p = 0.5. However, overdominance architecture with any other MAF will contain
an additive contribution, for example the bottom row, where p = 0.3.
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phenotypic variance at top loci.

Theory: Parametrisation of non-additivity at a locus

The dominance encoding amounts to mapping the genotypes [0,1,2] to
h

�p
(1�p) , 1,

�(1�p)
p

i
for

each SNP, where p is the MAF of the SNP (Supplementary note: LD-score regression with

dominance: Eqns (33)-(45), (13)). The model incorporating both an additive effect and domi-

nance deviation site-by-site is then:

y = XA�A +XD�D + " (1)

where y is a phenotype vector across the samples, XA and XD are matrices of the standardised

additive and dominance encoding of the genotypes, �A and �D are column vectors of causal

effect sizes, and " is a vector of contributions to the phenotype through environmental contribu-

tions and higher order genetic contributions. Re-coding the sample-by-variant genotype matrix

in this way means that the additive contribution to the phenotype (XA�A) is unchanged fol-

lowing the addition of dominance effects (XD�D). Not only is each column of our dominance

encoded genotype matrix uncorrelated with its additive counterpart assuming Hardy-Weinberg

Equilibrium (HWE), but also with every other additively encoded SNP (Supplementary note:

LD-score regression with dominance: Eqns (72)-(75)).

In light of this orthogonality between additive and dominance encodings, we extend the standard

GWAS marginal regression framework to perform simple marginal regression of phenotype on

both Xj,A and Xj,D for each variant j, yielding GWAS coefficients �̂j,A and �̂j,A respectively.

Using Fishers dominance deviation parametrisation serves several of purposes: it enables us to

be agnostic to the marginal diploid genotype-phenotype pattern, leads to the same estimator for

marginal additive effects �̂j,A as in the usual additive-only model, and provides a straightforward

partitioning of phenotypic variance explained by genetics.
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Fig. 1 displays examples of inheritance patterns at different MAFs. In each panel, the non-

additive variance captured by deviations from the best linear fit (shown by the dashed purple

line) is the contribution to phenotypic variance that our method will estimate. The largest con-

tributions to non-additive variation at a site will occur if dominance and overdominance inher-

itance patterns are widespread at high MAFs. See Fig. S2 for examples of the additive and

dominance encoding at varying MAF and effect size, followed by their combined contribution

to the phenotype, to help guide intuition for how the additive and dominance effects combine to

represent any inheritance pattern at a SNP.

It is relevant that linkage disequilibrium (LD) behaves differently under the dominance encod-

ing: in particular, dominance LD decays much more rapidly than additive LD as one moves

away from an index SNP (the former is in fact the square of the latter: Fig. S1B, Supple-

mentary note: LD-score regression with dominance: Eqns (72)-(75), (13, 21)). One may ask

whether this behavior can be exploited in fine-mapping a locus; we explore this idea by devel-

oping a modification of the SuSiE method (22) to ‘dominance fine-map’ a collection of leading

dominance loci.

Application: Association studies in the UK Biobank

Following careful curation of the phenotypic and genotypic data (361,194 samples, 13.7 million

variants, 1,060 well-covered phenotypes (Materials and methods: phenotype curation, sample

and genotype curation, Fig. S3-4)), we ran additive and dominance GWAS using age, age2,

sex, age ⇥ sex, age2⇥ sex, and the first 20 principal components as covariates (Materials and

methods: evaluation of additive and dominance marginal effect sizes). To avoid potential bias

arising due to ancestry differences, we considered the individuals with British and Irish ances-

try (23). For continuous traits, we analysed the inverse-rank normal transformation (IRNT) of
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the raw phenotype. This was to avoid false positive dominance associations which can arise

due to heteroskedasticity in the noise term unaccounted for in Eqn. (1), (Materials and meth-

ods: checking for artefactual dominance: heteroskedastic noise, Box: the impact of scale). We

note that this does not remove all potential sources of heteroskedasticity, but works well in

removing spurious inflation in dominance test statistics empirically. Restricting to SNPs with

MAF > 0.05, we found 175 genome-wide significant (using a conservative Bonferroni cutoff:

P < 5⇥10�8

1060 = 4.7 ⇥ 10�11) loci: 128 in continuous traits, 47 in case-control traits. Loci

were defined by considering 500kb windows around significant SNPs; merging loci where win-

dows overlapped. To check for potential sequencing artefacts, we examined the distribution of

imputation quality score (24), P -HWE, inbreeding F -statistic, and cluster confidence (25) at

the closest genotyped variant across MAF bins (Fig. S5-7). Dominance loci were more con-

fidently called and have greater cluster confidence than random loci. As expected, dominance

hits were enriched for lower P -HWE. To guard against incorrect calls, we excluded variants

with P -HWE < 10�6. A summary of the dominance and additive GWAS results are shown in

Fig. 2 and Fig. S8. We verified empirically and via simulation that these results were not due to

deviations from HWE (Materials and methods: checking for artefactual dominance: deviations

from Hardy-Weinberg equilibrium, Fig. S9-S13). At lead SNPs in loci exhibiting a genome-

wide significant dominance association, estimates of the underlying genetic architecture were

enriched for monotonic functions of dosage: of the 175 genome-wide significant dominance

loci, we observed monotonic functions of dosage at the lead dominance SNP in 132 (75.4%).

We replicated known non-additive effects, including rs1805007 in MC1R for hair colour (26,27)

(P < 1 ⇥ 10�5000 for red hair, Fig. S14), an intronic variant of HERC2 which functions as an

enhancer regulating OCA2 expression for hair and skin colour (28,29) (rs12913832, P = 2.87⇥

10�56 and P = 5.33 ⇥ 10�191 for blonde hair and skin colour respectively, Fig. S15-16), and

a non-additive signal tagging ILDR1 for hearing difficulty which is stronger than the additive
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Figure 2: Aggregate Manhattan plots for additive and non-additive marginal effect sizes.
We determine the most extreme t-statistic for marginal effect sizes across all well covered traits
at each site with MAF > 0.05, and plot the associated � log10(P ) value for the non-additive
(top) and reflect the additive � log10(P ) value (bottom). Traits are grouped into broad cate-
gories as defined in the UK Biobank data showcase and coloured according to the legend. To
aid presentation, in panel A (B respectively) the y-axis is on the � log10 scale up to 30 (300
respectively), after which it switches to a � log10(� log10(P )) scale. Plots on the � log10(P )
scale are shown in Fig. S7.
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signal at the locus (additive P = 4.26⇥10�8, dominance P = 5.79⇥10�13, Fig. S17). ILDR1 is

a known Mendelian hearing loss gene (30–32). The stronger dominance signal reflects the high

MAF and putative overdominant contribution to the phenotype. We also observed a genome-

wide significant non-additive association with red blood cell distribution width (rs67002563,

P = 2.99⇥ 10�11, Fig. S18), in tight linkage-disequilibrium with ITPA. Notably, this locus did

not reach genome-wide significance under additivity (P = 0.000152, Fig. S18). ITPA has been

implicated in red blood cell disorders through an autosomal recessive mode of inheritance (33–

36). A strong non-additive association was also observed for the distribution width of platelets

at an intronic eQTL (rs1354034, P = 5.80 ⇥ 10�90, Fig. S19) associated with ARHGEF3

expression in platelets (37). ARHGEF3 displays a regulatory role in myeloid differentiation in

zebrafish (38). The highly significant additive association for platelet count and volume at this

locus was completely ablated for distribution width (P = 0.825, Fig. S19). Throughout, we

ran linear regression to identify associations to enable cost effective examination of thousands

of traits. In the presence of small effect sizes and MAF > 0.05, we expect P -values for linear

and logistic regression to be extremely similar (Supplementary note: similarity of logistic and

linear regression with small effect sizes). We assessed whether this choice of model materially

affected the results by running logistic regression at all dominance loci which were genome-

wide significant under a standard linear model following the dominance encoding. P -values

were highly correlated at dominance loci (mean r = 0.993), with the median difference in

log(P ) of 0.02 across all SNPs within 500kb of the lead SNP.

Application: The relative variance contribution of additive and dominance effects at top

loci

To probe the relative variance explained by the additive and non-additive contributions, we

first examined their relative contributions across the top loci. We annotated variants with MAF
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> 0.05 in the full dataset using ANNOVAR (39), and took the top additive and dominance as-

sociations across unique cytobands for each phenotype. Effect sizes were rescaled such that the

squared effect size represents an estimate of the variance explained by the locus, and summed

across the top five additive and dominance associations respectively. We then plot the relative

contribution to variance explained by the additive and uncorrelated non-additive components in

Fig. 3A. The median ratio of the two variance components is 20.9. If we further enforce that

the additive and dominance associations must have a signal of association P < 1 ⇥ 10�6, the

median ratio of the variance components is 28.0; displayed in Fig. 3B. Therefore, assuming

the same distribution of genetic architectures across MAF and effect size, we expect to require

millions of samples (⇠ 7, 500, 000) to be powered to detect non-additive effects to the same

level of significance as those currently reported for additive effects (40). Furthermore, this is

a best-case scenario for our ability to detect non-additive effects for any locus-by-locus: given

that there is much less dominance variance for any particular locus, the expected amount of

noise variance in the marginal dominance effect size contribution is greater than the additive

noise variance.

Theory: Fine-mapping dominance loci

By combining the observations that not all dominance GWAS are devoid of signal (Fig. 2) and

that the dominance flavour of LD decays at the square of additive LD (Fig. 1B), we sought to

determine whether we could fine-map these non-additive signals. By doing so, we looked to

distinguish between distinct causal variants within a locus when there is a differential contribu-

tion of dominance signals at these causal sites. We used a straightforward method to perform

dominance fine-mapping that can be naturally applied due to the partitioning of effects at each

SNP into uncorrelated additive and dominance effects: we can simply take the dominance LD

matrix (an entry-wise squared additive LD matrix) and marginal dominance effect size esti-
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Figure 3: Relative power to detect dominance associations. We show the distribution across
phenotypes of the ratio of the variance explained by the top 5 additive loci to the variance
explained by the top 5 dominance loci. The x-axis is on the log scale. In A, we place no
P -value restriction for inclusion of the most significant association in the cytoband. In B, we
enforce that each association must have P < 1⇥ 10�6.
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mates as input into existing fine-mapping software that act on summary statistics to fine-map

dominance effects (Materials and methods: fine-mapping).

Application: Fine-mapping dominance loci

We used SuSiE (22) to fine-map the dominance signal at nominally significant (P < 5⇥ 10�8)

dominance loci. We then fine-mapped the additive effects at these loci and compared the results.

A summary is displayed in Fig. 4. While acknowledging the likelihood of ‘winner’s curse’ in

these results (we restricted attention to significant dominance loci), we observed differences in

fine-mapping. Of the variant-phenotype pairs with additive posterior inclusion probability (PIP)

> 0.2 and more evidence of causal signal under the additive encoding (bottom right, n = 710),

22.6% are distinct additive signals without a dominance component lying in the same gene as

a confidently fine-mapped dominance association. Of particular interest are those variants ly-

ing above the y = x line (top left, n = 330 with dominance PIP > 0.2). These are putatively

causal variants that were more confidently fine-mapped via the dominance association. Table S1

summarises the collection of exonic variants that are more confidently dominance fine-mapped.

The non-additive signal in the ITPA locus associated with red blood cell distribution width was

fine-mapped to rs1127354, a non-synonymous single nucleotide variant which is known to pre-

dict drug induced anaemia among chronic HCV patients (41–45). The genome-wide significant

non-additive association with hearing difficulty/problems was fine-mapped to rs2877561, a syn-

onymous change in ILDR1 associated with age-related hearing impairment (46) but which did

not reach genome-wide significance in that study. We note that rs2877561 is an eQTL and

sQTL for a large number of genes and tissues in GTEx (47).
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Figure 4: Fine-mapping dominance loci using SuSiE. We took the collection of genome wide
significant dominance loci tagged by SNPs with MAF > 0.05, and fine-mapped using SuSiE
( (22), Materials and methods: fine-mapping). This amounted to passing dominance effect sizes
and within sample dominance LD. We then plot the additive and dominance posterior inclusion
probabilities against each other for all dominance loci across all phenotypes. Red points are in
the exome, teal points are intronic or intergenic.
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Genome-wide dominance - a matter of LD genome-wide.

Another question that presents itself following our dominance scans is what proportion of phe-

notypic variance can be explained by dominance effects? Some existing papers have suggested

via theory and empirically that this dominance heritability h2
D is likely small in human com-

plex traits (13). More recently, methods used to estimate the dominance contribution (which

rely on the same partitioning of variance that we apply here) were extended and applied to 70

complex traits in the UK Biobank (48). Others have relaxed the assumptions of the model and

applied it to a selection of 50 quantitative traits in the UK Biobank (49). These works find zero

or marginal evidence of non-additive effects contributing meaningfully to phenotypic variance

genome-wide.

By extending the LD-score software, we are able to estimate the dominance contribution to the

variance of traits extremely rapidly. Following a dominance GWAS and generation of domi-

nance LD-scores (in the sample or an ancestrally matched reference panel, Materials and meth-

ods: evaluation of additive and dominance heritability), dominance SNP heritability estimates

can be obtained as quickly as additive SNP heritability estimates (50). This efficiency allowed

us to estimate the non-additive variance contribution to all 1,060 curated phenotypes in the UK

Biobank at low time and economic cost.

Theory: Dominance LD-score regression

To estimate the common variant contribution of dominance effects to phenotypic variation h2
D,

we have constructed a dominance LD-score regression model, which we call d-ldsc (see Ma-

terials and methods: LD-score dominance extension for a summary and Supplementary note:

LD-score regression with dominance for a detailed derivation). Briefly, the dominance encoding
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of genotypes naturally leads to a new flavour of LD:

rj,D =
1

n
X 0

j,DXj,D,

which can then be used in a new LD-score regression in which we regress the chi-squared

statistics of our dominance GWAS on dominance LD-scores (Fig. S1B):

lDj :=
X

k

r2j,k,D

The key insight is that HWE assumption (Fig. S1A) leads to several simplifications, ultimately

yielding a simple, decoupled analogue of the standard additive ldsc result (18):

E
h
n�̂Dj|lDj

i
⇡ nh2

D

m
lDj + 1, (2)

where n is the number of samples, m is the number of SNPs, h2
D is the dominance heritability,

and �̂Dj is the marginal effect of SNP j under the dominance encoding.

As in the original, we may estimate the dominance LD-scores using an ancestry matched ref-

erence panel. With access to dominance summary statistics and LD-scores, we can estimate

the gradient of the linear model in Eq. (2) to obtain an estimate of h2
D. We use a block jack-

knife (18) to obtain standard errors on our estimates and determine their statistical significance.

To ensure d-ldsc is an appropriately conditioned statistical model, we performed an extensive

collection of simulation studies (Materials and methods: simulation studies). We considered

two simulation scenarios: fully simulated genotypes and real genotypes (a random subset of

the UK Biobank samples which we define as having British or Irish ancestry). We then simu-

lated phenotype data according to the model in Eq. (1) under infinitesimal (all SNPs are causal)

and spike and slab (10% of SNPs are causal) genetic architectures with varying sample sizes

(10,000, 50,000, 100,000). We tested the accuracy of our estimator on both continuous and

case-control phenotypes (under a liability threshold model) with varying levels of case-control
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ascertainment, and magnitudes of h2
A and h2

D (0, 0.05, 0.2). Throughout, estimates are unbiased,

and well calibrated under all simulation scenarios (Fig. S20-28, summarised in Tables S2-3).

Box: The impact of phenotype scale

As part of the phenotype curation process we compared and contrasted the impact of inverse-

rank normal transformation (IRNT) of continuous phenotypes in our results as in the curation

in the additive heritability browser (51). We find high concordance between evidence of associ-

ation across the raw and IRNT flavours of continuous phenotypes (median Pearson correlation

= 0.913), but a minority showed poorly calibrated QQ plots with an abundance of ‘hits’ and de-

flation at higher P -values. Similarly, a subset of ordinal phenotypes displayed likely spurious

signals. An example of one of the most extreme of these was high light reticulocyte percentage

on the raw scale (GC = 0.862, Fig. S29). Following IRNT, these artefacts were removed, with

the resultant Manhattan plot displaying a few dominance ‘towers’, and well calibrated QQ plot

at high P -values (GC = 1.02, Fig. S29). Due to the distribution of phenotypes containing this

signature of likely spurious hits, we hypothesised that this error mode could be partially a result

of heteroskedasticity of the noise term. For example, perhaps larger phenotypic values were

measured with increased measurement error on the raw scale. To investigate, we performed a

simple simulation study by simulating true effects under an infinitesimal additive model and

adding a heteroskedastic noise term that increases in variance as the phenotype increases (Ma-

terials and methods: checking for artefactual dominance: heteroskedastic noise). We then per-

formed the same simulation study with spike and slab architecture in the true effects. In each

case, heteroskedastic noise did indeed give rise to spurious significant dominance signals and

reduced GC which was then resolved through the IRNT (GC = 0.74 and 0.96 before and after

IRNT for infinitesimal architecture, and GC = 0.78 and 0.99 for 1% causal spike and slab be-
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fore and after IRNT respectively (Fig. S30-31)). As a consequence, we conservatively removed

all raw and ordinal phenotypes from the rest of our analysis (but we make all raw and ordinal

additive and dominance GWAS results publicly available (see Data and Materials Availability).

Given the observation that a subset of variants in a collection of traits displayed artifactual dom-

inance, we were concerned that similar effects could accumulate over small scale perturbations

genome-wide, giving rise to significant but spurious dominance heritability for some traits.

More generally, we were concerned that a simple change in scale could induce significant dom-

inance heritability. To test the impact of phenotype scale or parametrisation both at the level of

the locus and genome-wide, we applied a collection of non-linear transformations to standing

height in the UK Biobank and re-ran GWAS and heritability analysis (Table S4-5). Second order

and higher polynomial transformations induced non-additive effects as expected. Exponentia-

tion of height did not, due to the small effect size polygenic nature of height and accuracy of the

linear approximation under this regime (exp(y) ⇡ 1 + y for y ⌧ 1). Under all transformation

scenarios, non-additive heritability was not induced, and we conclude that false positive non-

additive heritability estimation is unlikely. This is likely due to the transformations inducing

heteroskedasticity which lead to both genome wide significant hits and deflation in dominance

chi-squared statistics for non-significant variants, which effectively cancel each other out. Due

to the better calibrated dominance QQ plots following the IRNT we also restrict to IRNT con-

tinuous phenotypes and remove ordinal phenotypes from our dominance heritability analyses.

Application: Dominance heritability of traits in the UK Biobank

Applying additive and dominance LD-score regression after filtering (Fig. S32) to the 1,060

traits with dense phenotyping we found strong evidence of significant additive heritability as
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expected, but very little evidence of dominance heritability (Fig. 5, Table S6-7). This con-

trast was present in both continuous and case-control traits. For case-control phenotypes, we

see increased evidence for variance explained by additive genetic architecture as case-count in-

creases. This trend was not apparent for non-additive heritability tagged by common variation

(MAF > 0.05); h2
D. These results support existing evidence for extremely modest additional

contributions to phenotypic variance that a model incorporating non-additive effects provides

over a purely additive model tagged by common variation (13, 48, 49): across all 1,060 phe-

notypes we did not find evidence of a non-zero relative contribution of dominance heritability

estimates to additive heritability estimates (gradient = 0.0024, P = 0.10; Fig 5A). This does

not preclude the possibility that non-additivity is widespread throughout the genome, or that

non-additive effects should be disregarded. Finally, power to detect deviations from additivity

is weakest precisely where we expect the largest effects: rarer variation.

Discussion

We have performed the largest and most comprehensive dominance scan and heritability anal-

ysis of phenotypes to date. We analysed 1,060 GWAS scans following careful phenotype cu-

ration, identifying 175 loci at genome-wide significance. These loci consisted of many well

known associations in phenotypes with dominant and recessive patterns of inheritance (for ex-

ample, hair colour). Qualitatively, we observed stronger non-additive effects in more tissue-

specific phenotypes such as blood, hair colour traits, biomarkers, and in genes with strong

additive associations such as APOE and HPE. For most traits, far more samples are likely to be

required to capture evidence of dominance effects to genome-wide significance. Extrapolating

from the lead five loci in each trait, we estimate that on the order of millions of samples will be

required to obtain marginal dominance effect size estimates to a level of significance similar to

that currently observed in additive GWAS.
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Figure 5: Summary of heritability analysis. In panel A, the first column displays histograms
of LD-score based estimates of additive and dominance SNP heritability shown in blue and red
respectively. Mean heritability estimates are shown by the grey lines. The second column dis-
plays the paired results for each phenotype, coloured according to the key. The York regression
best fit line is displayed in black (intercept = 0.00026, gradient = 0.0024). In panel B, the first
and second columns display QQ plots of observed against expected P -values evaluated using
block jack-knife standard errors to test if h2

A 6= 0 and h2
D0 respectively. The first row includes

all traits with over 50,000 data points if continuous or ordinal, and over 3,000 ‘cases’ if binary.
In the second row, we restrict to the continuous and ordinal traits. Finally, in the third row, we
restrict to the binary traits. Points in the final row are coloured according to the legend.

Despite increased power over existing studies (13, 14), we still find limited evidence of a sub-

stantial dominance contribution to phenotypic variance. We hypothesise that the distribution of

estimated dominance heritability being close to null remains a power issue, coupled with the low

relative magnitude of the dominance variance to the additive variance enforced by the uncorre-

lated parametrisation of dominance (52). More generally, we find further evidence supporting

the robustness of the linear model for human complex traits, reflecting that common variant

effects are largely small perturbations of continuous latent biological processes aggregated by

a mean-field approximation.

We introduce dominance fine-mapping to attempt more accurate estimation of causal variants

in the presence of a dominance signal. Using the dominance effect sizes and the dominance

LD matrix we are able to use existing software (22) to fine-map dominance loci. With the

same strength of association, a dominance signal would fine-map more readily. However, gains

in fine-mapping accuracy due to the far more rapid decay of dominance LD are generally out-

weighed by the increased effect size of the additive signal of association at the locus. It would be

natural to explore using all information jointly to gain power to increase fine-mapping precision

and distinguish distinct putatively causal variants in a locus.

We highlight two caveats and limitations. Throughout, we have assumed HWE in the deter-
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mination of the dominance encoding and subsequent evaluation of dominance effect sizes and

heritability. If this is not the case, additive effects will be pulled into the dominance encoding

and manifest as non-zero dominance effect sizes. To counter this effect, we impose a stringent

P -HWE cutoff for inclusion in our results. In doing so, we are removing a subset of SNPs of pu-

tatively large effect under selection that we are most well powered to detect. However, given we

are focused on common variation, we expect that variants exhibiting this behavior are far more

likely to be due to errors in genotyping rather than true effects of selection. Parametrisations

exist that do not require an assumption of HWE (53, 54). We can also determine an orthogo-

nal contribution within-sample empirically to avoid potentially capturing additive effects in the

non-additive dominance contribution to phenotypic variation. Either of these extensions would

help get around the issue of selection for or against a variant coinciding with departures from

HWE leading to a spurious dominance association.

Secondly, in our dominance scans we assume the same cutoff for genome-wide significance as

for additive GWAS. However, given the increased number of effectively independent sites in

the genome implied by a more rapidly decaying LD structure, this assumption should be chal-

lenged. Under the approximation of a Poisson process for recombination, the effective number

of independent SNPs is approximately double the number of independent additive markers.

The benefit dominance LD provides for fine-mapping is a drawback for GWAS and detection

of phenotypic variance explained: dominance LD tagging does not extend as far in the genome.

This reduced tagging, in combination with the observation that we are most underpowered to

detect associations at rare variants where we expect to see the strongest effect sizes, suggests

that we should look to bottlenecked populations such as Finland and Iceland as their enrichment

for rare variants and longer haplotypes may offer enhanced power to detect non-additive effects

at a locus.
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In this work, we estimated dominance heritability tagged by common SNPs genome-wide and

did not consider partitions of the genome due to the general paucity of dominance variance

explained. However, given a non-zero dominance variance, the entirety of the LD-score toolkit

including partitioned heritability estimation (20) and genetic correlation estimation (19) can be

applied to dominance effects. In addition to site-by-site dominance effects, LD-score regression

is readily extendable to test gene-by-environment interactions; an extension to pairwise epistasis

would be interesting but more challenging.
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