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ABSTRACT 10 

Motivation: The increasing number of publicly available databases containing drugs’ chemical 11 

structures, their response in cell lines, and molecular profiles of the cell lines has garnered 12 

attention to the problem of drug response prediction. However, many existing methods do not 13 

fully leverage the information that is shared among cell lines and drugs with similar structure. As 14 

such, drug similarities in terms of cell line responses and chemical structures could prove to be 15 

useful in forming drug representations to improve drug response prediction accuracy.  16 

Results: We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response 17 

prediction. Our models take advantage of the drugs’ chemical structure and the underlying 18 

relationships of drugs and cell lines through a bipartite graph and a heterogenous graph 19 

convolutional network that incorporate sensitive and resistant cell line information in forming 20 

drug representations. Evaluation of our methods and other state-of-the-art models in different 21 

scenarios shows that incorporating this bipartite graph significantly improves the prediction 22 

performance. Additionally, genes that contribute significantly to the performance of our models 23 

also point to important biological processes and signaling pathways. Analysis of predicted drug 24 

response of patients’ tumors using our model revealed important associations between 25 

mutations and drug sensitivity, illustrating the utility of our model in pharmacogenomics studies.  26 

 27 

Availability and Implementation: An implementation of the algorithms in Python is provided in 28 

github.com/ddhostallero/BiG-DRP. 29 

Contact: amin.emad@mcgill.ca 30 
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Supplementary Information: Online-only supplementary data is available at the journal's 31 

website.  32 

 33 

INTRODUCTION 34 

Utilization of machine learning and statistical analyses in precision medicine has gained attention 35 

in the past decade. Prediction of drug response based on samples’ molecular profiles is a major 36 

problem in this domain and various approaches have been proposed for this purpose [1-5]. Gene 37 

expression profile of samples is widely used for this purpose due to their higher predictive ability 38 

compared to other molecular profiles [1]. The curation of large public databases of gene 39 

expression profiling of hundreds of cancer cell lines (CCLs) and their response to hundreds of 40 

different drugs (e.g., GDSC [6]) has accelerated the development of novel methodologies in this 41 

domain. 42 

 43 

Due to the similarity in molecular and chemical structure of different drugs and their mechanisms 44 

of action, machine learning (ML) methods that can take advantage of these similarities are of 45 

great interest. Instead of training a different ML model for each drug, one can formulate the drug 46 

response prediction as a paired prediction problem, such that a model takes in a (drug, CCL) pair 47 

as input and trains a single model for all drugs and CCLs [7-9]. This increases the number of 48 

samples, and enables information sharing across many drugs and drug families. Chemical 49 

structure data (e.g., PubChem [10], ChEMBL [11]) is particularly useful for representing the drugs, 50 

and models have been developed to take advantage of these [12-14].  51 

 52 
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Some approaches [15-17] have formulated this as a matrix factorization problem, forming a 53 

matrix of drugs and CCLs. One advantage of this is that these methods directly work with the 54 

“entities” (i.e., drugs and CCLs) and responses, and do not need to map feature representations 55 

of the entities to their responses, although available features can be utilized for regularization 56 

[15, 17]. However, this formulation is inherently transductive, since samples and drugs are 57 

expected to be present in the matrix. As a result, these models cannot be directly used to predict 58 

the response of a new CCL to a drug unless the CCL has drug response information in the training 59 

set for some other drugs prior to training. Another group of methods utilize collaborative filtering 60 

[18, 19] and predictions are calculated using an entity's neighborhood, which are defined by the 61 

similarities calculated from gene expressions, molecular fingerprints, and drug responses. Since 62 

these approaches require the calculation of drug response similarities, an inherent assumption 63 

is to have at least a few known responses for each unique CCL and drug in the test set, which is 64 

a more relaxed assumption compared to that of matrix factorization methods.   65 

 66 

Taking inspiration from the concept of “entity” from the matrix factorization approaches and to 67 

overcome their shortcoming due to their transductive nature, we propose to utilize the 68 

underlying matrix by transforming these entities into drug and CCL nodes and form a bipartite 69 

graph. We hypothesized that incorporating cell line information that are highly sensitive or 70 

resistant to a drug could improve the drug representation for drug response prediction. In our 71 

approach called Bipartite Graph-represented Drug Response Predictor (BiG-DRP and BiG-DRP+), 72 

we formed this graph by filtering the most sensitive and resistant CCLs for each drug, and linking 73 

them through an edge. Although drugs are not directly connected to each other through an edge, 74 
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2-hop message passing incorporates information on drug similarities. The model accepts drugs’ 75 

descriptors and CCLs’ gene expression profiles as input, and utilizes them as node attributes for 76 

the bipartite graph and as sample features. The output is a continuous drug response value 77 

pertaining to the predicted normalized log IC50. 78 

 79 

To evaluate the performance of BiG-DRP and BiG-DRP+, we used 5-fold cross validation and 80 

compared these results across different baselines and other drug response prediction 81 

approaches, namely NRL2DRP [20], PathDNN [7], and tCNN [9]. We tested on two data-splitting 82 

methods, 5-fold leave-pairs-out and 5-fold leave-cell lines-out, which represent two possible 83 

scenarios of data availability. In both scenarios, we have shown significant improvement 84 

compared to other approaches. In addition, using a computational pipeline that we developed 85 

for identifying the most contributing features, we identified genes that pointed to biological 86 

processes and signaling pathways involved in drugs’ mechanisms of action.  87 

 88 

METHODS 89 

Bipartite Graph-based Drug Response Prediction 90 

We developed a novel deep learning-based drug response prediction model that takes advantage 91 

of a bipartite graph between drugs and cell lines, which we called Bipartite Graph-represented 92 

Drug Response Predictor (BiG-DRP). We also proposed an extension of BiG-DRP, called BiG-DRP+, 93 

which accounts for constantly changing drug representations in the former approach. An 94 

overview of the (shared) architecture of these models are provided in Figure 1. 95 

 96 
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 97 

 98 

 99 

Figure 1: The computational pipeline and architecture of BiG-DRP and BiG-DRP+. A) Latent drug 100 

embeddings are generated using a heterogenous graph convolutional network based on a 101 

bipartite graph of drug-CCLs and drug descriptors. In parallel, CCL embeddings are generated 102 

using an encoder neural network based on their gene expression profile. These embeddings are 103 

then used by a predictor neural network to predict the drug response values. B) An overview of 104 

a single H-GCN layer is shown (our models use two stacked H-GCN layers). The H-GCN propagates 105 

information to neighbouring nodes by taking the graph as an input. Node attributes are 106 

multiplied to the weight matrices (𝑾𝒔𝒆𝒏 and 𝑾𝒓𝒆𝒔) to produce the messages, which will be sent 107 
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 7 

to their neighbours, depending on the type of edge between two nodes. Each of the nodes will 108 

then aggregate their received messages, along with the biases and self-information. The output 109 

is then the same graph, whose nodes’ attributes include information from neighbouring nodes 110 

and their connectivity. 111 

 112 

The BiG-DRP pipeline first obtains latent embeddings of CCLs and drugs and uses them in the 113 

drug response prediction task. To obtain drug embeddings, first a heterogeneous bipartite graph 114 

composed of CCL nodes and drug nodes is formed. The nodes of the bipartite graph are 115 

connected via two types of edges: sensitive edges or resistant edges. These edges are based on 116 

the log IC50 values of each CCL-drug pair. A sensitive edge implies that the CCL is likely to be 117 

sensitive to the drug, while a resistant edge implies that it is likely to be resistant to the drug. In 118 

addition, each CCL node is assigned attributes corresponding to its gene expression (GEx) profile 119 

and each drug node is assigned attributes corresponding to its drug descriptors. Then, a 120 

heterogenous graph convolutional network (H-GCN) generates embeddings of each drug 121 

(denoted as ℎ𝑑
(2) in Figure 1) using this bipartite graph. For each drug of interest, the H-GCN 122 

obtains an embedding that not only captures the molecular characteristic of the drug itself, but 123 

also captures the characteristics of other drugs that induce a similar sensitive/resistant pattern 124 

in CCLs. Inclusion of the GEx profiles of CCLs as node attributes in the bipartite graph allows the 125 

model to define the “similar pattern” mentioned above in a broader sense: instead of requiring 126 

a similar pattern in the exact same CCLs, the model can identify such patterns in CCLs that have 127 

a similar GEx profile.  128 

  129 

To obtain embeddings of the CCLs based on their GEx profiles (denoted as 𝑥̂ in Figure 1), the 130 

model uses a neural network that is separate from the H-GCN. While it is possible to use the 131 
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bipartite graph and the H-GCN to obtain CCL embeddings, such a choice would limit the 132 

applicability of the pipeline to only CCLs that are already present in the training set. The reason 133 

is that a CCL that is not present in the training set will be in the form of a single disconnected 134 

node in the bipartite graph and no embedding can be found for it using the H-GCN. However, in 135 

many practical applications (e.g., prediction of clinical drug response of patients based on models 136 

trained on preclinical CCLs [4, 5]), a model must be able to predict drug response of samples that 137 

are not seen by the model during the training for any drug. To avoid this limitation, the CCL 138 

embeddings are obtained independent of the H-GCN network and the bipartite graph. The drug 139 

and CCL embeddings are then concatenated, representing each (drug, CCL) pair. Then, a series of 140 

neural network layers (collectively called the predictor) are used to predict the drug response of 141 

each such pair using the concatenated embeddings.  142 

 143 

The BiG-DRP+ is an extension of BiG-DRP with the exact same architecture, which aims to stabilize 144 

the trained model. After the “last” training epoch of BiG-DRP (i.e., starting from BiG-DRP’s trained 145 

weights), we train the model for one more epoch but with a smaller learning rate and “frozen” 146 

drug embeddings. The lower learning rate prevents the predictor from overfitting while the 147 

freezing of the embeddings allows the predictor to learn the finite set of drugs instead of 148 

constantly changing representations of the exact same drugs. 149 

 150 

Construction of the Heterogenous Bipartite Graph 151 

We denote the heterogenous bipartite graph as 𝐺(𝑉𝐶 , 𝑉𝐷 , 𝐸𝑟 , 𝐸𝑠), where 𝑉𝐶  is the set of CCL 152 

nodes used to build the graph (a subset of all the CCLs in the study) and 𝑉𝐷 is the set of drug 153 
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nodes. 𝐸𝑟 is the set of edges that connect drugs to their “most resistant” CCLs, while 𝐸𝑠 is the set 154 

of edges that connect drugs to their “most sensitive” CCLs. For a fixed value of 𝑘 , a drug is 155 

connected via a resistant edge to CCLs whose log IC50 is among the top  𝑘  percent and is 156 

connected via a sensitive edge to CCLs whose log IC50 is among the bottom 𝑘 percent of the CCLs. 157 

The set 𝑉𝐶 is then the union of all such CCLs whose drug response are among the top 𝑘 or bottom 158 

𝑘 percent of all cell lines for at least one drug. It is worth noting that the edges in this graph are 159 

unweighted and the log IC50 values are only used to determine whether a resistant (or sensitive) 160 

edge exists or not. We used  𝑘 = 1 in our analysis, but the performance of BiG-DRP and BiG-DRP+ 161 

were not sensitive to the choice of 𝑘, as discussed in Results.  162 

 163 

Drug embedding using heterogenous graph convolutions 164 

We used a 2-layer heterogenous graph convolutional network (H-GCN) to find a network-based 165 

embedding of the drugs. An H-GCN is a variation of graph convolutional network [21], which 166 

allows multiple edge types. A forward pass of an H-GCN can be summarized using the following 167 

equation: 168 

ℎ𝑣
(𝑙+1)

= 𝜎 (∑ (𝑏𝑟
(𝑙)

+
1

√|𝒩(𝑣, 𝑟)|
∑ ℎ𝑢

(𝑙)
𝑊𝑟

(𝑙)

𝑢∈𝒩(𝑣,𝑟)

)

𝑟∈ℛ

+ 𝛼ℎ𝑣
(𝑙)

) 169 

where ℎ𝑣
(𝑙)

 is node 𝑣’s embedding at the 𝑙th layer, 𝜎 is a non-linearity function, 𝒩(𝑣, 𝑟) is node 170 

𝑣’s set of neighbours connected using the edge type 𝑟. 𝑊𝑟
(𝑙)

and 𝑏𝑟
(𝑙)

 are the weights and biases 171 

at the 𝑙th H-GCN layer for edge type 𝑟, respectively. Intuitively, this allows a separation of GCN 172 

parameters for each edge type, and thus creates context during the message passing. The 173 
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normalization factor √|𝒩(𝑣, 𝑟)| prevents the embedding values from exploding due to a large 174 

number of neighbours. 175 

 176 

Although we constructed a bipartite graph, artificially adding self-loops to the graph is a common 177 

practice in GCNs to retain some information from the previous layer, avoiding the complete 178 

dependence of the node’s embedding to its neighbours. However, in the case of H-GCN, self-179 

loops increase the complexity of the model by adding another set of parameters. To avoid this, 180 

we injected a residual term (𝛼ℎ𝑣
(𝑙)

)  to the forward pass to simulate self-loops. Here, 𝛼  is a 181 

hyperparameter (we fixed the value to 𝛼 = 0.5 ) pertaining to the amount of information to be 182 

retained for the next layer.  183 

 184 

The bipartite graph and the H-GCN allow us to find a drug embedding that captures relevant 185 

information about the CCLs that are generally resistant/sensitive to it (its 1-hop neighbours), as 186 

well as information on other drugs to which these CCLs have a similar or inverse pattern of 187 

response (its 2-hop neighbours). These embeddings enable sharing of information across drugs 188 

that are connected to similar set of cell lines via similar edge types.  189 

 190 

Data Acquisition and Preprocessing 191 

We obtained the drug response data in the form of log IC50 values from the Genomics of Drug 192 

Sensitivity in Cancer (GDSC) database [6]. We only selected drugs with known log IC50 values as 193 

well as binarized responses that allow us to calculate the key performance metrics used for 194 

evaluation of different methods. We also filtered out duplicate drugs that came from different 195 
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batches, which are tagged with different drug IDs, named with synonyms, or labeled as 196 

“rescreens”. In cases of such duplicates, we only kept the one for which the drug response in a 197 

larger number of cell lines was measured. We collected the Simplified Molecular Input Line Entry 198 

System (SMILES) encoding [22] of these drugs and used the RDKit software [12] to generate drug 199 

descriptors (e.g. molecular weight, number of aromatic rings) from these encodings. Descriptors 200 

with missing values were excluded from the analysis. At the end of these data cleaning steps, we 201 

were left with 237 unique drugs, each with feature vectors of length 198 (representing their drug 202 

descriptors). 203 

 204 

We performed z-score normalization on drug descriptors, one feature at a time across all drugs. 205 

We also z-score normalized the log IC50 values of each drug (one drug at a time) across cell lines. 206 

This is necessary since the log IC50 values of different drugs have significantly different means 207 

and standard deviations, which renders the calculated metrics incomparable across drugs and 208 

inflates the overall correlation coefficient. For example, a relatively small mean squared error for 209 

a certain drug, or a high overall spearman correlation do not necessarily indicate good 210 

performance without such a normalization. This drug-wise normalization allows us to compare 211 

results across different drugs, and prevents overestimation of the models’ performance. 212 

 213 

For the 237 drugs above, we obtained the RNA-seq GEx profile of 1001 CCLs from the Cell Model 214 

passports [23]. We performed log2(FPKM +1) transformation on the FPKM values. We excluded 215 

genes that showed a small variability across the cell lines (genes with standard deviation <0.1) as 216 

well as genes with missing values in some cell lines. After these preprocessing steps, we ended 217 
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up with 944 unique CCLs and their GEx values of 13,823 genes. This amounted to a total of 218 

181,380 labeled CCL-drug pairs.  219 

 220 

Training Procedure 221 

As discussed earlier, to enable the model to generalize to completely new CCLs (those that are 222 

not seen by the model for any drug during training), we used a separate neural network, parallel 223 

to the H-GCN. As input, this network accepts the CCLs’ gene expression vector 𝑥 and produces a 224 

latent representation  𝑥̂ = 𝐹𝑐(𝑥). We then concatenate  𝑥̂ with the drug 𝑑’s embedding, ℎ𝑑
(2)

, 225 

and use it as input for our predictor, a 3-layer neural network that outputs the predicted drug 226 

response values (𝑦̂).  227 

 228 

The model was trained end-to-end using the mean squared error ℒ = (𝑦 − 𝑦̂)2 and Adam as the 229 

optimizer [24]. We also fixed the learning rate to 0.0001 and batch size to 128 (see Results for 230 

the effect of different choices of hyperparameters on the performance). We used Leaky ReLU for 231 

all non-linearity functions (i.e. 𝜎(𝑥) = max(0, 𝑥) + 0.01 × min (0, 𝑥)). The number of training 232 

steps were decided by randomly selecting samples from the training data and using them as a 233 

validation set for early stopping. The model was then re-trained with the entire training set and 234 

the previously identified optimal number of training steps. For BiG-DRP+, the extra epoch’s 235 

learning rate was set to 0.00001.  236 

 237 

In our approach, elements of a batch are (drug, CCL) pairs, although all drug embeddings can be 238 

generated simultaneously for each forward pass. Embeddings generated using graph 239 
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convolutional networks rely on the node connectivity. This generally means that a small 240 

perturbation of a node’s embedding may affect the embeddings of its neighbours in the next GCN 241 

(or H-GCN) layer. Unlike regular dense neural networks, it is possible that a dramatic change 242 

would occur in the embeddings, even with a relatively small learning rate. In such cases, the 243 

predictor may not easily map the “new” embedding to the “known” ones, especially if the drug 244 

was not part of the batch during the previous training step. The predictor could see this as having 245 

an infinite number of drugs, increasing the level of complexity to the learning process. To address 246 

this “moving embedding problem”, we developed BiG-DRP+, which slightly modifies the training 247 

of BiG-DRP.  248 

 249 

The idea of BiG-DRP+ is to stop the training of the H-GCN component after several epochs but 250 

continue the training of the predictor using the “frozen” drug embeddings. In our BiG-DRP+ 251 

model, we froze the drug embeddings obtained by BiG-DRP (after the number of epochs 252 

determined by early stopping), but continued the training of other components of the 253 

architecture for one extra epoch (we used a lower learning rate for this epoch). This stabilizes the 254 

training of the predictor and enables it to identify CCLs that were treated by the same drug (since 255 

the half of the input to the predictor pertaining to the drug features are now fixed). The lower 256 

learning rate is a preventative measure to avoid overfitting. 257 

 258 

Evaluation and Cross-validation 259 

To evaluate the performance of our model we used 5-fold cross validation (CV), in which one fold 260 

was kept aside as the test set for evaluation and was not used during training of the model nor 261 
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for the selection of hyperparameters. This process was repeated five times (each time with a 262 

different fold as the test set) to ensure that the specific choice of the test set does not bias the 263 

results. We adopted two types of data splitting techniques to form the folds, namely leave-pairs-264 

out (LPO) and leave-cell lines-out (LCO).  265 

 266 

In the LPO-CV, the disjoint folds were randomly selected from the set of all (CCL, drug) pairs, 267 

while in the LCO-CV the folds contained randomly selected sets of mutually exclusive CCLs. Prior 268 

to training, GEx values were z-score normalized per gene. We used only the training folds’ unique 269 

CCLs to calculate the means and standard deviations to prevent data leakage between training 270 

and test sets. Imposing the uniqueness criterion above ensures that the models are not biased 271 

towards CCLs that exists in a larger number of (drug, CCL) pairs. To ensure a fair comparison, 272 

identical folds were used for all methods. For each drug, predictions of the five folds on their 273 

respective test sets were collected and were used to evaluate different methods.  274 

 275 

To assess generalizability of our models to independent datasets, we obtained GEx profile (in the 276 

form of FPKM) of cancer tumours and their RECIST clinical drug response from The Cancer 277 

Genome Atlas (TCGA) [25]. Similar to previous studies [26], we considered “stable disease” or 278 

“progressive disease” as resistant and “complete response” or “partial response” as sensitive. 279 

We selected cisplatin (n = 398), paclitaxel (n = 233), gemcitabine (n = 226), and doxorubicin (n = 280 

208), since they were present in our training dataset, had a large number of samples with known 281 

clinical drug response, and had more than 50 samples in each category of resistant and sensitive. 282 

Similar to the preprocessing steps used for GDSC dataset, the expression of each gene in the 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2021.08.11.455993doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

testing set (in the form of log2(FPKM +1)) was z-score normalized across the samples. We used 284 

PyCombat [27] to reduce the statistical discrepancies between the GDSC and TCGA samples.  285 

 286 

Baseline Methods 287 

We compared our method against several baseline algorithms including both deep learning-288 

based and traditional machine learning methods, detailed below. First, we used a multilayer 289 

perceptron (MLP) with a similar architecture and hyperparameters as BiG-DRP. Similar to BiG-290 

DRP, the MLP also utilized the GEx and drug features. However, instead of an H-GCN, we replaced 291 

it with a dense neural network, which takes the drug features as input. We also used a support 292 

vector regressor (SVR) with a linear kernel as well as a SVR with a radial basis function (RBF) as 293 

traditional ML baselines. The concatenation of the GEx and drug features were used as the input 294 

to SVR models. Due to the large size of the data, we used Nystroem’s transformation [28]  to 295 

approximate the SVR’s kernels to improve its efficiency. Hyperparameters, namely the number 296 

of Nystroem components, regularization factor, and gamma for RBF were selected using nested 297 

cross validation. In addition to the SVR models above, we used recursive feature elimination (RFE) 298 

[29] to identify the most relevant features to be used with the linear and non-linear SVR models.  299 

 300 

NRL2DRP [20] is a graph representation learning-based method that uses a graph composed of 301 

genes, drugs, and CCL nodes, connected by edges according to their sensitivity, mutation, and 302 

protein-protein interactions. However, NRL2DRP uses a topology-based graph embedding called 303 

LINE [30], which is typically used for transductive learning. We slightly modified NRL2DRP to 304 

predict continuous values instead of binary values (so that it can be applied to our data). PathDNN 305 
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[7] is another deep learning method that proposes to add some level of explainability to the drug 306 

response prediction problem by constraining the neural network connectivity using a pathway 307 

mask. This method uses drug targets and gene expressions, both of which should be in any of the 308 

Kyoto Encyclopedia of Genes and Genomes  (KEGG) pathways [31]. We obtained the drug targets 309 

and pathway information from the PathDNN’s repository. The drug targets were represented by 310 

their normalized STITCH [32] confidence score, which indicates a non-zero value for genes in the 311 

drug’s targets. However, we removed three compounds because they did not have known targets 312 

in the KEGG pathways. Another deep learning approach is tCNN [9], which utilizes 1-dimensional 313 

CNNs. The canonical SMILES string of the compound is encoded into a sequence of one-hot 314 

vectors, each of which represents a single character. Since the SMILES strings vary in length, the 315 

resulting binary encoding is padded by zeros to the right to match the length of the longest 316 

encoding, resulting in a matrix of size 𝑚 × 𝑛,  where 𝑚 is the number of unique characters and 317 

𝑛 is the length of the longest encoding. Mutations and copy number alterations, which GDSC 318 

dubs as “genetic features,” were used as the features of the CCLs.  319 

 320 

In order to ensure a fair comparison, in our cross-validations we fixed the folds and used identical 321 

folds for each method. In addition, when an algorithm required extra information that was not 322 

used in Big-DRP, we provided those datasets as inputs to the baseline models, following the 323 

descriptions provided in each method’s manuscript. This was done to ensure we give each 324 

baseline model a fair chance.  325 

 326 
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Identification of genes that are most predictive of drug response 327 

To identify genes that are predictive of drug response, we used a neural network explainer called 328 

CXPlain [33] and a similar approach which we previously developed to aggregate contribution 329 

across CCLs and identify top contributors [5]. CXplain uses Granger’s causality [34] as the basis of 330 

the feature attribution. Intuitively, for each of the features, it tries to predict the increase in the 331 

sample’s loss if that specific feature is zeroed-out. We trained separate explainers for each of the 332 

drugs, since this eliminates the unnecessary complexity of learning attributions for multiple drugs, 333 

as well as the additional feature dimensions (i.e., drug features). We pooled the scores by 334 

calculating the mean attribution across all the CCLs for each of these drugs. The top genes were 335 

identified by a threshold calculated using kneedle [35], with sensitivity S=2.  336 

 337 

Pathway characterization analysis 338 

We used KnowEnG’s gene set characterization pipeline [36] to perform pathway enrichment 339 

analysis (using Reactome pathways [37]). The p-values of Fisher’s exact test were corrected for 340 

multiple tests (i.e., multiple pathways) using Benjamini-Hochberg false discovery rate (FDR).  341 

 342 

Analysis of TCGA tumor mutations and their relationship with predicted drug responses 343 

From TCGA database, we selected primary tumor samples that had both GEx profiles and 344 

mutation data (n = 9067). We utilized BiG-DRP+ to predict response of 237 drugs for each of the 345 

tumor samples using their GEx as input (see the Evaluation and Cross-validation section). Using 346 

the Mutation Annotation Format (MAF) file, a binary matrix indicating the existence of a mutation 347 

for a sample was formed. Similar to previous studies [38], we focused on four types of mutations: 348 
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nonsense, missense, frameshift insertions and frameshift deletions. Only mutations that exist in 349 

at least 10% of the samples were included in the analysis.  350 

 351 

RESULTS 352 

Performance of BiG-DRP and BiG-DRP+ based on leave-pair-out cross validation 353 

First, we evaluated BiG-DRP, BiG-DRP+, and other baseline algorithms using a five-fold LPO-CV, 354 

in which the folds were randomly selected among the set of all possible (CCL, drug) pairs. Table 355 

1 shows a summary of the performance results using area under the receiver operating 356 

characteristic curve (AUROC), root mean squared error (RMSE), Pearson’s correlation coefficient 357 

(PCC) and Spearman’s correlation coefficient (SCC). To calculate these metrics across all drugs, 358 

we first calculated them separately for each drug (Supplementary Table S1) and then obtained 359 

mean and standard deviation across the drugs. BiG-DRP+ outperforms all other methods 360 

according to all metrics, and BiG-DRP outperforms all baselines but has a slightly worse 361 

performance compared to BiG-DRP+. BiG-DRP+ has a ~5% higher AUROC and ~11% higher SCC 362 

and PCC compared to that of MLP, which utilizes a similar architecture to BiG-DRP+ (except for 363 

the usage of the bipartite graph and the H-GCN). This highlights the importance of this novel 364 

aspect of the algorithm.  365 

 366 

As mentioned earlier, in our models the H-GCN is used to obtain drug representations and a 367 

separate encoder is used to obtain cell line representations. We were interested to determine 368 

how the performance of the models change if we substitute the role of these two components: 369 

use the encoder to obtain drug embeddings and use the H-GCN to obtain cell line embeddings 370 
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(called inverted BiG-DRP, henceforth). Our analysis showed that inverted Big-DRP outperforms 371 

all baselines, except for BiG-DRP and BiG-DRP+ (Table 1). However, it is important to note that 372 

inverted BiG-DRP has two shortcomings compared to BiG-DRP and BiG-DRP+. First, it cannot be 373 

used to predict the response of a new CCL (i.e., it cannot be used in the LCO framework), since a 374 

new CCL would not be part of the bipartite graph and as a result a representation for it cannot 375 

be obtained. Second, the bipartite graph used in inverted BiG-DRP connects each CCL to most 376 

sensitive and most resistant drugs and as a result is less reliable than the bipartite graph of BiG-377 

DRP (that connects each drug to CCLs that are most sensitive or resistant to it). The reason is that 378 

log IC50 of different drugs for the same CCL are not directly comparable and making a bipartite 379 

graph based on this criterion may introduce errors in the network.  380 

 381 

Table 1: The performance of BiG-DRP, BiG-DRP+ and baseline methods using 5-fold LPO-CV 382 

evaluation. Best performance values are in bold-face and underlined. The mean and standard 383 

deviations are calculated across the drugs. *Since PathDNN requires availability of at least one 384 

drug target in any of the signaling pathways, we could only apply it to 234 drugs.   385 

 386 

 
Drug 

Attributes 
Other 
inputs 

Num. 
Drugs 

AUROC 
mean 

(± std.) 

RMSE 
mean 

(± std.) 

SCC 
mean 

(± std.) 

PCC 
mean 

(± std.) 

BiG-DRP+ Descriptors GEx 237 
0.878 

(±0.068) 
0.843 

(±0.241) 
0.748 

(±0.100) 
0.758 

(±0.102) 

BiG-DRP Descriptors GEx 237 
0.875 

(±0.068) 
0.855 

(±0.244) 
0.742 

(±0.099) 
0.752 

(±0.102) 

Inverted 
BiG-DRP 

Descriptors GEx 237 
0.862 

(±0.075) 
0.888 

(±0.253) 
0.721 

(±0.110) 
0.730 

(±0.110) 

MLP Descriptors GEx 237 
0.835 

(±0.083) 
0.954 

(±0.273) 
0.675 

(±0.120) 
0.681 

(±0.119) 

NRL2DRP None 
Drug-CCL-

Gene 
network 

237 
0.804 

(±0.085) 
1.153 

(±0.345) 
0.516 

(±0.119) 
0.514 

(±0.123) 
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tCNN 
SMILES 
One-hot 
encoding 

Genetic 
Features 

237 
0.787 

(±0.082) 
1.086 

(±0.336) 
0.587 

(±0.119) 
0.591 

(±0.117) 

PathDNN 
Drug 

Targets 

GEx, 
pathway 

information 
234* 

0.766 
(±0.083) 

1.165  
(±0.355) 

0.516 
(±0.115) 

0.529 
(±0.117) 

SVR-RBF 
(w/RFE) 

Descriptors GEx 237 
0.738 

(±0.101) 
1.182 

(±0.384) 
0.503 

(±0.125) 
0.500 

(±0.130) 

SVR-Linear 
(w/RFE) 

Descriptors GEx 237 
0.738 

(±0.101) 
1.181 

(±0.393) 
0.498 

(±0.130) 
0.497 

(±0.135) 

SVR-RBF Descriptors GEx 237 
0.737 

(±0.100) 
1.182 

(±0.383) 
0.502 

(±0.123) 
0.499 

(±0.129) 

SVR-Linear Descriptors GEx 237 
0.736 

(±0.101) 
1.184 

(±0.393) 
0.494 

(±0.129) 
0.493 

(±0.134) 

 387 
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 388 

Figure 2: The drug-wise performance of BiG-DRP+ compared to baseline methods using five-fold 389 

LPO-CV evaluation. Each circle represents a drug, and the color of the circles reflect the density 390 

of other circles in their vicinity (yellow shows that there are many circles concentrated in that 391 

area). The coordinates reflect SCC for BiG-DRP+ (y-axis) and baseline methods (x-axis). The p-392 

values are obtained using a one-sided Wilcoxon signed rank test, comparing the SCC of BiG-DRP+ 393 

and the baselines across drugs.  394 

 395 

 396 
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Figure 2 compares the performance of BiG-DRP+ against other methods for individual drugs 397 

(measured based on SCC). Each circle in the scatter plots reflects a drug, and the color of the 398 

circles reflect the density of other circles in their vicinity. Comparing BiG-DRP+ and BiG-DRP 399 

shows that the drug-specific SCC values are generally close to each other (concentrated around 400 

the diagonal line); however, the one-sided Wilcoxon signed rank test (p=2.26E-36) suggests that 401 

the performance for the majority of the drugs have improved in BiG-DRP+, albeit a small amount. 402 

Comparing to other baselines, the figure shows that the majority (and in many cases all) of the 403 

circles are above the diagonal line, suggesting a substantial improvement of their response 404 

prediction by BiG-DRP+. One-sided Wilcoxon signed rank tests also confirmed this observation, 405 

resulting in statistically significant p-values (Figure 2 and Supplementary Table S2).  406 

 407 

Performance of BiG-DRP and BiG-DRP+ based on leave-cell line-out cross validation 408 

Next, we evaluated the performance of different models using a five-fold LCO-CV. This is a stricter 409 

evaluation, since unlike LPO-CV, a CCL in the test set is never seen by the models during training, 410 

since folds are randomly selected based on the CCLs and not based on (CCL, drug) pairs. Table 2 411 

shows the summary of the results using our performance metrics. Note that due to the 412 

transductive nature of NRL2DRP’s embedding method (LINE [30]), this method could not be 413 

applied to the LCO-CV evaluation and hence is not included in this table.  414 

 415 

Based on these evaluations, BiG-DRP+ has the best performance using all metrics, while BiG-DRP 416 

has the second-best performance. The BiG-DRP+ clearly outperforms MLP, further highlighting 417 

the importance of the bipartite graph and H-GCN in the drug response prediction task. Similar to 418 
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LPO-CV evaluation, a drug-wise analysis using SCC for each drug showed a significantly superior 419 

performance of BiG-DRP+ compared to all baseline methods (one-sided Wilcoxon Signed-Rank 420 

test, Supplementary Table S2). Supplementary Table S1 provides the drug-specific performance 421 

metrics for all drugs.  422 

 423 

Table 2: The performance of BiG-DRP+, BiG-DRP and baseline methods using five-fold LCO-CV 424 

evaluation. Best performance values are underlined. The mean and standard deviations are 425 

calculated across the drugs. *Since PathDNN requires availability of at least one drug target in 426 

any of the signaling pathways, we could only apply it to 234 drugs.   427 

 428 

 
Drug 

Attributes 

Other 
input 

features 

Num. 
Drugs 

AUROC 
mean 

(± std.) 

RMSE 
mean 

(± std.) 

SCC 
mean 

(± std.) 

PCC 
mean 

(± std.) 

BiG-DRP+ Descriptors GEx 237 
0.746 

(±0.077) 
1.204 

(±0.367) 
0.431 

(±0.094) 
0.450 

(±0.105) 

BiG-DRP Descriptors GEx 237 
0.743 

(±0.077) 
1.210 

(±0.368) 
0.426 

(±0.095) 
0.443 

(±0.106) 

MLP Descriptors GEx 237 
0.730 

(±0.086) 
1.219 

(±0.374) 
0.413 

(±0.100) 
0.430 

(±0.111) 

SVR-RBF 
(w/RFE) 

Descriptors GEx 237 
0.682 

(±0.107) 
1.276 

(±0.404) 
0.354 

(±0.116) 
0.360 

(±0.127) 

SVR-RBF Descriptors GEx 237 
0.680 

(±0.110) 
1.278 

(±0.403) 
0.348 

(±0.120) 
0.354 

(±0.135) 

SVR-Linear Descriptors GEx 237 
0.666 

(±0.102) 
1.292 

(±0.420) 
0.324 

(±0.119) 
0.331 

(±0.126) 

SVR-Linear 
(w/RFE) 

Descriptors GEx 237 
0.666 

(±0.102) 
1.293 

(±0.421) 
0.322 

(±0.118) 
0.330 

(±0.124) 

PathDNN 
Drug 

Targets 

GEx, 
pathway 

information 
234* 

0.612 
(±0.074) 

2.201 
(±0.698) 

0.193 
(±0.061) 

0.170 
(±0.078) 

tCNN 
SMILES  
one-hot 

encoding 

Genetic 
Features 

237 
0.586 

(±0.060) 
1.369 

(±0.427) 
0.147 

(±0.068) 
0.147 

(±0.072) 
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 429 

To assess the generalizability of BiG-DRP+ to independent datasets, we used it to predict the drug 430 

response of patient tumours from the TCGA dataset treated with cisplatin, gemcitabine, 431 

doxorubicin, and paclitaxel. Given the predicted log IC50 values, we used a one-sided statistical 432 

test to determine if our models can distinguish between the patients that are resistant from those 433 

that are sensitive to these two drugs (using all TCGA samples with known clinical drug response). 434 

Our statistical analysis (Mann Whitney U test, since data corresponding to one of the drugs did 435 

not pass test of normality) showed significant p-values for three drugs (p = 2.19E-7 for cisplatin, 436 

p = 8.80E-3 for doxorubicin, and p = 3.40E-2 for gemcitabine). Next, we removed any tumour 437 

sample that had received a different drug beforehand or during the period that our drug of 438 

interest was administered. Even though this significantly reduced the number of samples, the 439 

results (Welch's t-test, since data corresponding to all drugs passed test of normality) were 440 

significant for cisplatin (p = 1.82E-2) and doxorubicin (p = 4.29E-2). Supplementary Table S3 441 

provides detailed information regarding the samples and the results of different statistical tests.  442 

 443 

Detailed Evaluation of BiG-DRP+ 444 

Since one major component of the BiG-DRP and BiG-DRP+ pipeline is the bipartite graph of the 445 

CCLs and drugs, we sought to evaluate the effect of different thresholds for forming this graph. 446 

As explained in Methods, a drug is connected to a CCL with a sensitive (resistant) edge if the log 447 

IC50 of the CCL is among the bottom (top) k% of all the CCLs. In our analysis, we fixed this value 448 

to be k = 1. To assess the robustness of the results to this parameter, we formed different 449 

bipartite graphs with different choices of k = 0.5, 1, 2, 5, 10 and repeated the LPO-CV and LCO-450 
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CV. Supplementary Table S4 provides the SCC and AUROC of BiG-DRP and BiG-DRP+ for these 451 

evaluations for different values of k. These results suggest that the performance of our proposed 452 

methods remain stable for these different choices of k, with a slight deterioration as k increases 453 

(less than 1% in all evaluations when comparing k=10 to k=1). This deterioration is expected, since 454 

an increase in k increases potentially erroneous edges in the bipartite graph.  455 

 456 

Next, we asked whether the choice of drug features as attributes in the bipartite graph has a 457 

significant effect on the performance of BiG-DRP+. To address this question, we used Morgan 458 

fingerprints [13] of the drugs, alone or in addition to the drug descriptors, as the attributes of the 459 

drug nodes in the bipartite graph. The results (Table 3) revealed that there is not a substantial 460 

difference between any of these choices, but simultaneously using both types of drug features 461 

slightly improves the results.  462 

 463 

Table 3: The performance of BiG-DRP+ with different drug attributes. The rows show the results 464 

of BiG-DRP+ when drug descriptors (vectors of length 198), Morgan fingerprints (vectors of length 465 

512), or the combination of both (vectors of length 710) are used as node attributes. 466 

 467 

Method 
Drug 

Attribute 

LPO-CV LCO-CV 

AUROC 
mean (± std.) 

SCC 
mean (± std.) 

AUROC 
mean (± std.) 

SCC 
mean (± std.) 

BiG-
DRP+ 

Descriptors 0.878 (±0.068) 0.748 (±0.100) 0.746 (±0.077) 0.431 (±0.094) 

Morgan 0.878 (±0.068) 0.748 (±0.100) 0.743 (±0.080) 0.426 (±0.098) 

Both 0.879 (±0.068) 0.748 (±0.099) 0.746 (±0.077) 0.433 (±0.095) 

 468 
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 469 

Figure 3: Performance comparison of BiG-DRP for different combinations of hyperparameters. A) 470 

The distribution of mean SCCs of the models in 5-fold LCO-CV. The colors correspond to the 471 

fraction of the bin that utilized either a high or low learning rate. B) The boxplots of the mean 472 

SCCs grouped by the learning rate. C)  The boxplots of the mean SCCs for combinations that used 473 

1E-4 and 5E-5 as learning rates, grouped by specific hyperparameters. The boxes range from the 474 

first to the third quartile, while the horizonal line corresponds to the median. The purple 475 

datapoint represents the default hyperparameter combinations and the orange datapoint 476 

pertains to the combination of hyperparameters that performed best. 477 

 478 

Finally, we asked how different choices of hyperparameters influence the performance of BiG-479 

DRP+. For this purpose, we ran our model with 648 different combinations of learning rate (5E-480 

5, 1E-4, 5E-4, 1E-3), batch size (64, 128, 256), CCL encoder size (512, 1024, 2048), H-GCN size (256, 481 

512, 1024), predictor hidden layer size (256, 512, 1024), and dropout (with or without). (The 482 

bold-face options represent the default values used for our models). The stacked histogram in 483 

Figure 3A shows the mean SCC value of these combinations in a 5-fold LCO-CV framework. 484 

Interestingly, there are 82 combinations that perform on par with the default parameters and 47 485 
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combinations that perform better. This suggests that if computational complexity is not of a 486 

concern, one may improve the performance of BiG-DRP+ by tuning the hyperparameters.  487 

 488 

Further analysis revealed that the learning rate is the most influential hyperparameter (Figure 3B) 489 

and a relatively large learning rate deteriorates the performance; however, learning rates of 5E-490 

5 or 1E-4 (the default) work well. More importantly, if the learning rate is selected appropriately 491 

(the two choices mentioned above), the effect of other hyperparameters is relatively small and 492 

the majority of choices result in good performance (orange fraction of the histogram in Figure 493 

3A). Figure 3C better illustrates this by depicting the mean SCC for different choices of 494 

hyperparameters when only learning rates of 5E-5 and 1E-4 are included. The only other 495 

hyperparameter that seems to play an important role is dropout, where its inclusion (slightly) 496 

improves the performance. 497 

 498 

Characterization of the bipartite graph  499 

Next, we sought to better characterize the bipartite graph and the drugs that have most 500 

benefited from using this graph in the drug response prediction task. For this purpose, we first 501 

formed a single bipartite graph by aggregating the bipartite graphs corresponding to each of the 502 

five folds in our LCO-CV evaluation (i.e., by finding the union of edges). Then, we used a nested 503 

stochastic block model (NSBM) [39] to infer the modular substructure of the graph, while taking 504 

into account the edge type (i.e., resistant and sensitive) connecting each two nodes. This 505 

approach automatically identifies the number of clusters by maximizing the likelihood of the 506 
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graph being generated from the partitioning. The final partitioning is based on running the 507 

stochastic algorithm many times (in our case 1000 times) and selecting the number of clusters 508 

and the partitioning that is most frequently supported by these runs. The number of clusters 509 

varied between 17 to 20 (Figure 4A), with 18 selected by the algorithm as the final number of 510 

clusters (5 drug clusters and 13 CCL clusters). Comparing the clusters identified by each run of 511 

the algorithm with the final clusters using Rand Index (RI) [40] revealed a high degree of 512 

concordance (Figure 4B, mean RI = 0.89 ± 0.01).  513 

 514 

Figure 4C illustrates the bipartite graph and clusters identified using this method (see 515 

Supplementary Table S5 for the cluster assignment of drugs and CCLs). In particular, five drug 516 

clusters were identified. Comparing the performance of BiG-DRP+ compared to MLP (SCC-LCO), 517 

revealed that all these clusters significantly benefit from the use of the bipartite graph (one-sided 518 

Wilcoxon signed rank test, Figure 4B). In particular, Cluster 3 had the highest median 519 

improvement in SCC (8.4%) and had a significant improvement p-value (p = 5.25 E-5). The 520 

majority of the drugs in this cluster (13 out of 20) are protein kinase inhibitors, with 8 of them 521 

targeting members of serine/threonine protein kinase family and 5 of them targeting members 522 

of tyrosine kinase family. These observations suggest that information sharing across the 523 

bipartite graph used in our methods benefit certain groups of drugs more than others and this 524 

may be dependent on the similarity between drugs’ mechanisms of action.  525 
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 526 

Figure 4: The CCL-drug bipartite graph and its clusters. A) The histogram shows the number of 527 

clusters obtained by NSBM in each run (total of 1000 runs). B) The histogram shows the Rand 528 

Index between each clustering (in each run) with the final cluster assignment. C) The graph 529 

represents the bipartite graph and the boxplots show the distribution of SCC improvements 530 

obtained for each drug using BiG-DRP+ compared to MLP in the LCO evaluation. The p-values are 531 

obtained using a one-sided Wilcoxon signed rank test.   532 

 533 

Next, we sought to characterize the CCL clusters. Supplementary Table S6 shows the enrichment 534 

of CCL clusters in tissue type, cancer type, and driver mutations (hypergeometric test, corrected 535 

for multiple tests using Benjamini-Hochberg FDR). The analysis revealed that while only two 536 

clusters (out of 13) were enriched in cancer type (FDR < 0.05), namely cluster 1 in B-537 

Lymphoblastic Leukemia and cluster 4 in Chronic Myelogenous Leukemia, the majority of clusters 538 

(9 out of 13) were enriched in at least one driver gene mutation. For example, cluster 1 was 539 

enriched in CCLs with mutations in RBM38 and GNA13, while cluster 2 was enriched in CCLs with 540 

mutations in POLQ and BRCA1. These observations suggest that the patterns captured by the 541 
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bipartite graph goes beyond tissue or cancer types and is able to capture patterns at the 542 

molecular level.  543 

 544 

Identification of biomarkers of drug sensitivity  545 

To identify genes whose expression substantially contribute to the predictive model, we used a 546 

pipeline similar to the one we proposed in a previous study [5]. This approach provides an 547 

aggregate contribution score for each gene in the model and uses these scores to systematically 548 

identify the set of top contributing genes in each model. We focused on 15 drugs for which BiG-549 

DRP+ provided the highest SCC values in the LCO-CV evaluation. Supplementary Table S7 provides 550 

the ranked list of genes that were implicated for each of the 15 drugs. We clustered the drugs 551 

based on the contribution scores of all implicated genes (Figure 5). Interestingly, four drugs 552 

formed a clear cluster, separate from the others: trametinib, refametinib, selumetinib, and 553 

pd0325901. Further investigation revealed that these drugs all are MEK inhibitors (i.e., inhibit the 554 

mitogen-activated protein kinase kinase enzymes) and involve some similar mechanisms of 555 

action [10].  556 

 557 

Next, we focused on genes implicated for trametinib, a MEK-inhibitor for which BiG-DRP+ had 558 

the best performance (SCC in LCO-CV). For this drug, ETV5 had the highest prediction contribution. 559 

ETV5 and ETV4 (the fourth highest contributor) are among the ETS family of oncogenic 560 

transcription factors. The expression of this family has been shown to be upregulated in solid 561 

tumours and they have been shown to be involved in tumour’s progression, metastasis and 562 

chemoresistance [41]. Previous studies have shown ETV5 to be regulated by ALK, a receptor 563 
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tyrosine kinase, in a MEK/ERK-dependent manner in neuroblastoma cell lines [42]. In addition, 564 

treatment of various cancer cell lines with trametinib has been shown to downregulate ETV5 [42-565 

44]. Moreover, the overexpression of ETV4 and ETV5 have been shown to reduce the sensitivity 566 

different cancer cell lines to this drug [44].  567 

 568 

To obtain a better functional characteristic of the genes implicated for trametinib, we also 569 

performed pathway enrichment analysis on genes implicated for this drug (see Supplementary 570 

Table S8 for results of pathway enrichment analysis of all 15 drugs). Several important pathways 571 

related to MAPK signaling, EGFR signaling, and IL2 signaling were identified (Fisher’s exact test, 572 

FDR<0.05). Taken together, these results suggest that genes that contribute to the predictive 573 

ability of BiG-DRP+ for trametinib point to important genes and signaling pathways involved in 574 

its mechanism of action.  575 

 576 
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 577 

Figure 5: The clustering of 15 drugs based on contribution scores of their genes. The contribution 578 

scores of the union of genes implicated for these drugs is used to cluster drugs using hierarchical 579 

clustering. The heatmap shows the contribution scores.  580 

 581 

Mutation landscape of TCGA tumor samples and their association with drug response 582 

Next, we sought to evaluate the mutation landscape of tumors in TCGA dataset and their 583 

associations with drug response predicted using Big-DRP+. For this purpose, we predicted the 584 

normalized logIC50 of 9067 TCGA tumors (that had both mutation and GEx data) corresponding 585 

to 32 cancer types to 237 drugs in our training dataset (Supplementary Table S9, Methods). We 586 
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identified 10 genes that were mutated in more than 10% of the samples (Supplementary Table 587 

S9) and performed two-sided Mann–Whitney U tests to assess the association between 588 

mutations in these genes and drug response (the FDR values reported in this study correspond 589 

to this test). In this section we focus on the insights obtained from PIK3CA mutation due to its 590 

important role in determining the drug response in various cancers and its potential as a 591 

therapeutic target [45] (results of statistical tests for all genes are provided in Supplementary 592 

Table S9).  593 

 594 

PIK3CA is an oncogene whose mutation leads to hyperactivation of PI3K/AKT/mTOR pathway, 595 

associated with cancer progression and poor outcome in many cancer types [46-49]. Various 596 

targeted therapies have been developed to target and inhibit this pathway in patients with 597 

deregulation and hyperactivity of PI3K/AKT/mTOR pathway (due to PIK3CA mutation or other 598 

mechanisms such as loss or inactivation of PTEN) [50]. Additionally, various studies have shown 599 

that mutation in this gene is associated with better response to PI3K inhibitors both in vitro and 600 

in vivo [50, 51]. Consistent with these, our pan-cancer analyses showed that tumors that harbor 601 

this mutation are significantly more sensitive to drugs targeting PI3K/AKT/mTOR pathway (Figure 602 

6A, one-sided Wilcoxon signed rank test P = 1.14E-5) such as the pan-AKT kinase inhibitor 603 

GSK690693 (FDR = 2.13E-59) and the pan-class I PI3K inhibitor ZSTK474 (FDR = 1.15E-29) 604 

(Supplementary Table S9).  605 

 606 
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On the other hand, mutation in this gene was associated with increase in resistance to drugs 607 

targeting the MAPK/ERK signaling pathway (Supplementary Table S9). In particular, the mean 608 

predicted normalized logIC50 of PIK3CA-mutated tumors were significantly larger for drugs 609 

targeting this pathway compared to tumors that did not harbor this mutation (one-sided 610 

Wilcoxon signed ranked test P = 2.14E-3, Figure 6B). Various studies (both in vivo and in vitro) 611 

have shown a regulatory link between MAPK/ERK and PI3K/AKT/mTOR pathways and inhibition 612 

of MAPK/ERK signaling has been linked to an increase in the activity of PI3K/AKT/mTOR pathway 613 

([52] and references therein). Previous studies have shown that hyperactivity in PI3K/AKT/mTOR 614 

pathway as a result of PIK3CA mutation increases drug resistance to dabrafenib and trametinib 615 

(drugs targeting MAPK/ERK pathway), supporting our observations (dabrafenib FDR = 2.93E-18, 616 

trametinib FDR = 7.64E-9, Supplementary Table S9). Mutation in PIK3CA has been shown to 617 

confer resistance to PD0325901 [53], a MEK-inhibitor that decreases MAPK/ERK pathway activity, 618 

and genetic ablation of the mutant allele of this gene has been shown to increase sensitivity to 619 

this drug in MEK-inhibitor resistant cells [53]. Our analysis also showed that tumors harboring 620 

PIK3CA mutation are more resistant to this drug (FDR = 1.33E-5).  621 

 622 

Among the four drugs that target IGF1R, three showed a significantly higher predicted logIC50 623 

value in PIK3CA-mutated tumors. Previous studies have shown a link between this protein and 624 

PIK3CA-driven ovarian cancer [54] and breast cancer tumors harboring mutation in this gene [55], 625 

suggesting the dual inhibition of PI3K and IGF1R as a new therapeutic approach. Another 626 

noteworthy example identified by our analyses is cetuximab (FDR = 5.98E-3), which is an 627 
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epidermal growth factor receptor inhibitor. Previous studies have shown an association between 628 

activity of PI3K/AKT/mTOR pathway and resistance to this drug [56]. 629 

 630 

Figure 6: The association between mutations and drug response in TCGA. The scatter plots show 631 

the mean predicted normalized logIC50 for mutated and unmutated tumors. P-values are 632 
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calculated using a one-sided Wilcoxon signed rank test. A) The association between PIK3CA 633 

mutation and response to drugs targeting the PI3K/AKT/mTOR pathway in our pan-cancer study. 634 

B) The association between PIK3CA mutation and response to drugs targeting the MAPK/ERK 635 

pathway in our pan-cancer study. C) The association between BRAF mutation and response to 636 

drugs targeting the MAPK/ERK pathway in THCA. 637 

 638 

To assess the effect of mutations on drug resistance in a cancer type-specific manner, we focused 639 

on thyroid carcinoma (THCA), which is the most common endocrine malignancy, as an illustrating 640 

example [57]. In this cancer type, only BRAF was mutated in more than 10% of the samples 641 

(mutated in 57.7% of tumors). The mutation in this gene, the most frequent of which in thyroid 642 

cancer is V600E mutation [57, 58], activates the MAPK/ERK pathway resulting in sustained cell 643 

proliferation adverse phenotypes [57]. Various studies have proposed this pathway as a 644 

therapeutic target, and have shown that cancer cells (including those corresponding to thyroid 645 

cancers) harboring this mutation are much more sensitive to BRAF-inhibitors (e.g., AZ628 [59]) 646 

and various MEK-inhibitors [60]. Our analyses also showed that THCA tumors harboring BRAF 647 

mutation are significantly more sensitive to drugs targeting MAPK/ERK pathway (Figure 6C, one-648 

sided Wilcoxon signed rank test P = 1.68E-3), including BRAF-inhibitors AZ628 (FDR = 2.25E-21) 649 

and HG6-64-1 (FDR = 5.62E-12), and MEK-inhibitors such as trametinib (FDR = 2.83E-26), 650 

refametinib (FDR = 1.69E-25), and selumetinib (FDR = 1.75E-25).  651 

 652 

Taken together, these results suggest the utility of our proposed model in providing insights in 653 

pharmacogenomics studies.  654 

 655 
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DISCUSSION AND CONCLUSION 656 

In this study, we proposed two novel graph representation deep learning methods to incorporate 657 

information regarding the sensitivity and resistance of cell lines, their gene expression profiles 658 

and chemical drug attributes to obtain better drug representations. Using cross-validation and 659 

different data splitting methods we showed significant improvement compared to traditional and 660 

state-of-the-art methods. Using a computational pipeline to make neural networks explainable, 661 

we identified a set of genes that substantially contribute to the predictive model. These genes 662 

implicated important signaling pathways and pointed to shared and unique mechanisms of action 663 

in the drugs. In addition, we performed a study on the association between the mutation status 664 

of cancer tumors from TCGA and the predicted drug response. These analyses revealed various 665 

insights, many of which were confirmed by independent studies, which further illustrates the 666 

utility of our pipeline in pharmacogenomics studies.  667 

 668 

Moreover, detailed evaluation of our methods showed a high degree of robustness towards 669 

changes in the threshold used to form the bipartite graph. This further supports the importance 670 

of different techniques we used to ensure stability of our proposed architecture: the 671 

normalization factor and the injected self-loop in our H-GCN’s forward pass. More specifically, 672 

due to the injected self-loop, the nodes retain a portion of their own information, which forces 673 

the embeddings to have some level of separation. The normalization factor also helps by 674 

preventing the received messages from becoming too large and overpowering the self-loop. It is 675 

important to note that this robustness may not be applicable to some corner cases. For example, 676 

when a drug’s connected CCLs are not connected to any other drug (i.e., it forms a disconnected 677 
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star subgraph), this drug’s embedding would not benefit from the existence of the second H-GCN 678 

layer. As another example, the second H-GCN layer will be obsolete if all the drugs happen to 679 

form disconnected stars, and thus no information sharing will take place across drugs. Another 680 

example is when we add a new drug that results in a disconnected node. A disconnected node 681 

will not be able to incorporate CCL information into the drug embedding, which defeats the 682 

purpose of the H-GCN.  683 

 684 

Unlike many previous models (e.g., NRL2DRP [30]) that require both cell lines and drugs to be 685 

present in the training set, BiG-DRP is designed to enable prediction of unseen cell lines (those 686 

that are not present in the training set). However, the drug embedding part of the model (the H-687 

GCN) requires the drugs to be part of the bipartite graph. This constraint implies that the drugs 688 

present in the test set must be also present in the training set. As a result, this model generally 689 

is not applicable to predict the response of CCLs to unseen new drugs. Although this could be 690 

naively remedied by assuming known edges involving the unseen drug in the bipartite graph, this 691 

kind of solution is impractical and would be difficult to enact without reducing the test set. 692 

However, in most practical applications (e.g., prediction of drug response of cancer patients [4] 693 

and [5]), it is more crucial for the model to generalize to unseen samples (CCLs or patients). The 694 

reason is that before a drug enters clinical trial or enters clinical usage, many in vitro studies on 695 

CCLs are first performed. Consequently, one can expect to have access to molecular description 696 

and drug response of a drug for which the drug responses of a new set of samples (CCLs or 697 

patients) are to be predicted.  698 

 699 
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In this study, instead of directly using the logIC50 of drugs, we normalized the logIC50 of each 700 

drug (separately) across the CCLs. This was done first to ensure that our prediction performance 701 

results are not artificially inflated and second to make the drug response ranges of different drugs 702 

comparable to allow the model to learn useful representations across drugs. However, this 703 

normalization means that the predicted values should not be used to compare the potency of 704 

different drugs, but rather should be used to compare the sensitivity of different CCLs to a specific 705 

drug. This is why when we reported our prediction performance results, we calculated them one 706 

drug at a time (across CCLs). If one wants to recover logIC50 values, these predictions can be 707 

easily modified to reverse the normalization and allow comparison of different drugs for the 708 

same CCL.  709 

 710 

One of the main motivations of this study was to improve the representations of drugs for the 711 

task of drug response prediction. While direct drug targets or SMILES chemical information of 712 

drugs are common approaches for representing drugs, we believe these representations can be 713 

improved by capturing the effects these drugs have on CCLs, either by measuring the changes in 714 

the GEx profiles of CCLs after administration of the drug (e.g., LINCS dataset [61]) or using the 715 

bipartite graph formulation proposed in this study. Improved drug representations are 716 

particularly important in more challenging tasks such as prediction of response to drug 717 

combinations, in which the sheer number of possible drug combinations (even for drug-pairs) 718 

means that experimental measurements can only capture a very small portion of all possibilities. 719 

As a result of this small sample size problem, more informative and robust drug representations 720 
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become crucial in developing generalizable machine learning models for drug combinations, a 721 

direction that we will pursue in the future by generalizing the models introduced in this study.  722 
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SUPPLEMENTARY TABLES 739 

Supplementary Table S1: The performance of BiG-DRP+, BiG-DRP and baseline methods 740 

(columns) using five-fold CV for each drug (rows). Values presented are the mean across five folds. 741 
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Each tab corresponds to a performance metric (Spearman’s correlation coefficient and area 742 

under the receiver operating characteristic) for each data-splitting scenario: leave-cell lines-out 743 

(LCO) and leave-pairs-out (LPO). 744 

 745 

Supplementary Table S2: The results of the one-sided Wilcoxon signed rank test, represented by 746 

the p-values. The test compares the per-drug Spearman’s correlation coefficient (SCC) of the BiG-747 

DRP+ and the other methods, where the alternative is that BiG-DRP+’s SCC is significantly larger. 748 

 749 

Supplementary Table S3: The description of samples and results of statistical tests for prediction 750 

of clinical drug response of TCGA cancer patients. 751 

 752 

Supplementary Table S4: The performance of BiG-DRP and BiG-DRP+ using for 𝑘 ∈753 

{0.5, 1, 2, 5, 10} . The performance metrics were calculated independently per drug and 754 

presented as the mean and standard deviation. 755 

 756 

Supplementary Table S5: The cluster assignments of the aggregated bipartite graph using the 757 

nested stochastic block model. The first tab shows that cluster indices for the drugs and the 758 

second tab shows the cluster indices for the cell lines. Although the graph partitioning was 759 

performed on the entire graph, drug and cell line clusters were mutually exclusive; as a result, 760 

similar indices in different tabs do not pertain to the same cluster. 761 

 762 

Supplementary Table S6: Characterization of CCL clusters in the bipartite graph with respect to 763 

tissue type, cancer type and driver mutations. 764 

 765 

Supplementary Table S7: The top genes and their normalized contribution scores for top-766 

performing drugs in the leave-cell lines-out scenario.  Each tab corresponds to the top genes for 767 

a specific drug.  768 

 769 

Supplementary Table S8: The results of the pathway enrichment analysis of the top genes 770 

(Supplementary Table S7) on the Reactome pathways using Fisher’s exact test. Each tab 771 

corresponds to a specific drug. The corrected p-values are indicated in the pvalue_cor column. 772 

 773 

Supplementary Table S9: The association between predicted drug response and mutation status 774 

of TCGA samples for our pan-cancer and THCA study.  775 

 776 
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