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ABSTRACT

Motivation: The increasing number of publicly available databases containing drugs’ chemical
structures, their response in cell lines, and molecular profiles of the cell lines has garnered
attention to the problem of drug response prediction. However, many existing methods do not
fully leverage the information that is shared among cell lines and drugs with similar structure. As
such, drug similarities in terms of cell line responses and chemical structures could prove to be
useful in forming drug representations to improve drug response prediction accuracy.

Results: We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response
prediction. Our models take advantage of the drugs’ chemical structure and the underlying
relationships of drugs and cell lines through a bipartite graph and a heterogenous graph
convolutional network that incorporate sensitive and resistant cell line information in forming
drug representations. Evaluation of our methods and other state-of-the-art models in different
scenarios shows that incorporating this bipartite graph significantly improves the prediction
performance. Additionally, genes that contribute significantly to the performance of our models
also point to important biological processes and signaling pathways. Analysis of predicted drug
response of patients’ tumors using our model revealed important associations between

mutations and drug sensitivity, illustrating the utility of our model in pharmacogenomics studies.

Availability and Implementation: An implementation of the algorithms in Python is provided in
github.com/ddhostallero/BiG-DRP.

Contact: amin.emad@mcgill.ca
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Supplementary Information: Online-only supplementary data is available at the journal's

website.

INTRODUCTION

Utilization of machine learning and statistical analyses in precision medicine has gained attention
in the past decade. Prediction of drug response based on samples’ molecular profiles is a major
problem in this domain and various approaches have been proposed for this purpose [1-5]. Gene
expression profile of samples is widely used for this purpose due to their higher predictive ability
compared to other molecular profiles [1]. The curation of large public databases of gene
expression profiling of hundreds of cancer cell lines (CCLs) and their response to hundreds of
different drugs (e.g., GDSC [6]) has accelerated the development of novel methodologies in this

domain.

Due to the similarity in molecular and chemical structure of different drugs and their mechanisms
of action, machine learning (ML) methods that can take advantage of these similarities are of
great interest. Instead of training a different ML model for each drug, one can formulate the drug
response prediction as a paired prediction problem, such that a model takes in a (drug, CCL) pair
as input and trains a single model for all drugs and CCLs [7-9]. This increases the number of
samples, and enables information sharing across many drugs and drug families. Chemical
structure data (e.g., PubChem [10], ChEMBL [11]) is particularly useful for representing the drugs,

and models have been developed to take advantage of these [12-14].
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Some approaches [15-17] have formulated this as a matrix factorization problem, forming a
matrix of drugs and CCLs. One advantage of this is that these methods directly work with the
“entities” (i.e., drugs and CCLs) and responses, and do not need to map feature representations
of the entities to their responses, although available features can be utilized for regularization
[15, 17]. However, this formulation is inherently transductive, since samples and drugs are
expected to be present in the matrix. As a result, these models cannot be directly used to predict
the response of a new CCL to a drug unless the CCL has drug response information in the training
set for some other drugs prior to training. Another group of methods utilize collaborative filtering
[18, 19] and predictions are calculated using an entity's neighborhood, which are defined by the
similarities calculated from gene expressions, molecular fingerprints, and drug responses. Since
these approaches require the calculation of drug response similarities, an inherent assumption
is to have at least a few known responses for each unique CCL and drug in the test set, which is

a more relaxed assumption compared to that of matrix factorization methods.

Taking inspiration from the concept of “entity” from the matrix factorization approaches and to
overcome their shortcoming due to their transductive nature, we propose to utilize the
underlying matrix by transforming these entities into drug and CCL nodes and form a bipartite
graph. We hypothesized that incorporating cell line information that are highly sensitive or
resistant to a drug could improve the drug representation for drug response prediction. In our
approach called Bipartite Graph-represented Drug Response Predictor (BiG-DRP and BiG-DRP+),
we formed this graph by filtering the most sensitive and resistant CCLs for each drug, and linking

them through an edge. Although drugs are not directly connected to each other through an edge,
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2-hop message passing incorporates information on drug similarities. The model accepts drugs’
descriptors and CCLs’ gene expression profiles as input, and utilizes them as node attributes for
the bipartite graph and as sample features. The output is a continuous drug response value

pertaining to the predicted normalized log IC50.

To evaluate the performance of BiG-DRP and BiG-DRP+, we used 5-fold cross validation and
compared these results across different baselines and other drug response prediction
approaches, namely NRL2DRP [20], PathDNN [7], and tCNN [9]. We tested on two data-splitting
methods, 5-fold leave-pairs-out and 5-fold leave-cell lines-out, which represent two possible
scenarios of data availability. In both scenarios, we have shown significant improvement
compared to other approaches. In addition, using a computational pipeline that we developed
for identifying the most contributing features, we identified genes that pointed to biological

processes and signaling pathways involved in drugs’ mechanisms of action.

METHODS

Bipartite Graph-based Drug Response Prediction

We developed a novel deep learning-based drug response prediction model that takes advantage
of a bipartite graph between drugs and cell lines, which we called Bipartite Graph-represented
Drug Response Predictor (BiG-DRP). We also proposed an extension of BiG-DRP, called BiG-DRP+,
which accounts for constantly changing drug representations in the former approach. An

overview of the (shared) architecture of these models are provided in Figure 1.
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100  Figure 1: The computational pipeline and architecture of BiG-DRP and BiG-DRP+. A) Latent drug
101  embeddings are generated using a heterogenous graph convolutional network based on a
102  bipartite graph of drug-CCLs and drug descriptors. In parallel, CCL embeddings are generated
103  using an encoder neural network based on their gene expression profile. These embeddings are
104 then used by a predictor neural network to predict the drug response values. B) An overview of
105  asingle H-GCN layer is shown (our models use two stacked H-GCN layers). The H-GCN propagates
106  information to neighbouring nodes by taking the graph as an input. Node attributes are
107  multiplied to the weight matrices (W e, and W) to produce the messages, which will be sent
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108  to their neighbours, depending on the type of edge between two nodes. Each of the nodes will
109 then aggregate their received messages, along with the biases and self-information. The output
110 is then the same graph, whose nodes’ attributes include information from neighbouring nodes
111 and their connectivity.

112

113  The BiG-DRP pipeline first obtains latent embeddings of CCLs and drugs and uses them in the
114  drug response prediction task. To obtain drug embeddings, first a heterogeneous bipartite graph
115 composed of CCL nodes and drug nodes is formed. The nodes of the bipartite graph are
116  connected via two types of edges: sensitive edges or resistant edges. These edges are based on
117  the log IC50 values of each CCL-drug pair. A sensitive edge implies that the CCL is likely to be
118  sensitive to the drug, while a resistant edge implies that it is likely to be resistant to the drug. In
119  addition, each CCL node is assigned attributes corresponding to its gene expression (GEx) profile
120 and each drug node is assigned attributes corresponding to its drug descriptors. Then, a

121 heterogenous graph convolutional network (H-GCN) generates embeddings of each drug

122 (denoted as hd(z) in Figure 1) using this bipartite graph. For each drug of interest, the H-GCN
123  obtains an embedding that not only captures the molecular characteristic of the drug itself, but
124  also captures the characteristics of other drugs that induce a similar sensitive/resistant pattern
125  in CCLs. Inclusion of the GEx profiles of CCLs as node attributes in the bipartite graph allows the
126 model to define the “similar pattern” mentioned above in a broader sense: instead of requiring
127  asimilar pattern in the exact same CCLs, the model can identify such patterns in CCLs that have
128  asimilar GEx profile.

129

130 To obtain embeddings of the CCLs based on their GEx profiles (denoted as X in Figure 1), the

131  model uses a neural network that is separate from the H-GCN. While it is possible to use the
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132 bipartite graph and the H-GCN to obtain CCL embeddings, such a choice would limit the
133 applicability of the pipeline to only CCLs that are already present in the training set. The reason
134  is that a CCL that is not present in the training set will be in the form of a single disconnected
135 node in the bipartite graph and no embedding can be found for it using the H-GCN. However, in
136  many practical applications (e.g., prediction of clinical drug response of patients based on models
137  trained on preclinical CCLs [4, 5]), a model must be able to predict drug response of samples that
138 are not seen by the model during the training for any drug. To avoid this limitation, the CCL
139 embeddings are obtained independent of the H-GCN network and the bipartite graph. The drug
140 and CCL embeddings are then concatenated, representing each (drug, CCL) pair. Then, a series of
141 neural network layers (collectively called the predictor) are used to predict the drug response of
142  each such pair using the concatenated embeddings.

143

144  The BiG-DRP+is an extension of BiG-DRP with the exact same architecture, which aims to stabilize
145  thetrained model. After the “last” training epoch of BiG-DRP (i.e., starting from BiG-DRP’s trained
146  weights), we train the model for one more epoch but with a smaller learning rate and “frozen”
147  drug embeddings. The lower learning rate prevents the predictor from overfitting while the
148  freezing of the embeddings allows the predictor to learn the finite set of drugs instead of
149  constantly changing representations of the exact same drugs.

150

151  Construction of the Heterogenous Bipartite Graph
152  We denote the heterogenous bipartite graph as G (V¢, Vp, E,, E5), where V. is the set of CCL

153  nodes used to build the graph (a subset of all the CCLs in the study) and V}, is the set of drug
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154  nodes. E, is the set of edges that connect drugs to their “most resistant” CCLs, while E is the set
155  of edges that connect drugs to their “most sensitive” CCLs. For a fixed value of k, a drug is
156  connected via a resistant edge to CCLs whose log IC50 is among the top k percent and is
157  connected via a sensitive edge to CCLs whose log IC50 is among the bottom k percent of the CCLs.
158  The set V. is then the union of all such CCLs whose drug response are among the top k or bottom
159  k percent of all cell lines for at least one drug. It is worth noting that the edges in this graph are
160  unweighted and the log IC50 values are only used to determine whether a resistant (or sensitive)
161  edge exists or not. We used k = 1 in our analysis, but the performance of BiG-DRP and BiG-DRP+
162  were not sensitive to the choice of k, as discussed in Results.

163

164  Drug embedding using heterogenous graph convolutions

165 We used a 2-layer heterogenous graph convolutional network (H-GCN) to find a network-based
166  embedding of the drugs. An H-GCN is a variation of graph convolutional network [21], which
167  allows multiple edge types. A forward pass of an H-GCN can be summarized using the following
168  equation:

1
169 W =o( Y (60— > rPW® |+ an
|N(U, T')I ueN (v,r)

TER
170  where h,(,l) is node v’s embedding at the [th layer, o is a non-linearity function, N (v, r) is node
171  v’s set of neighbours connected using the edge type r. Wr(l)and bﬁl) are the weights and biases

172 at the Ith H-GCN layer for edge type r, respectively. Intuitively, this allows a separation of GCN

173  parameters for each edge type, and thus creates context during the message passing. The
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174  normalization factor \/m prevents the embedding values from exploding due to a large
175  number of neighbours.

176

177  Although we constructed a bipartite graph, artificially adding self-loops to the graph is a common
178  practice in GCNs to retain some information from the previous layer, avoiding the complete
179  dependence of the node’s embedding to its neighbours. However, in the case of H-GCN, self-

180 loops increase the complexity of the model by adding another set of parameters. To avoid this,

181  we injected a residual term (ah,(,l)) to the forward pass to simulate self-loops. Here, a is a
182  hyperparameter (we fixed the value to @ = 0.5 ) pertaining to the amount of information to be
183  retained for the next layer.

184

185  The bipartite graph and the H-GCN allow us to find a drug embedding that captures relevant
186 information about the CCLs that are generally resistant/sensitive to it (its 1-hop neighbours), as
187  well as information on other drugs to which these CCLs have a similar or inverse pattern of
188  response (its 2-hop neighbours). These embeddings enable sharing of information across drugs
189  that are connected to similar set of cell lines via similar edge types.

190

191  Data Acquisition and Preprocessing

192  We obtained the drug response data in the form of log IC50 values from the Genomics of Drug
193  Sensitivity in Cancer (GDSC) database [6]. We only selected drugs with known log IC50 values as
194  well as binarized responses that allow us to calculate the key performance metrics used for

195  evaluation of different methods. We also filtered out duplicate drugs that came from different

10
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196  batches, which are tagged with different drug IDs, named with synonyms, or labeled as
197  “rescreens”. In cases of such duplicates, we only kept the one for which the drug response in a
198  larger number of cell lines was measured. We collected the Simplified Molecular Input Line Entry
199  System (SMILES) encoding [22] of these drugs and used the RDKit software [12] to generate drug
200 descriptors (e.g. molecular weight, number of aromatic rings) from these encodings. Descriptors
201 with missing values were excluded from the analysis. At the end of these data cleaning steps, we
202  were left with 237 unique drugs, each with feature vectors of length 198 (representing their drug
203  descriptors).

204

205 We performed z-score normalization on drug descriptors, one feature at a time across all drugs.
206  We also z-score normalized the log IC50 values of each drug (one drug at a time) across cell lines.
207  This is necessary since the log IC50 values of different drugs have significantly different means
208  and standard deviations, which renders the calculated metrics incomparable across drugs and
209 inflates the overall correlation coefficient. For example, a relatively small mean squared error for
210 a certain drug, or a high overall spearman correlation do not necessarily indicate good
211 performance without such a normalization. This drug-wise normalization allows us to compare
212 results across different drugs, and prevents overestimation of the models’ performance.

213

214  For the 237 drugs above, we obtained the RNA-seq GEx profile of 1001 CCLs from the Cell Model
215  passports [23]. We performed logz(FPKM +1) transformation on the FPKM values. We excluded
216  genes that showed a small variability across the cell lines (genes with standard deviation <0.1) as

217  well as genes with missing values in some cell lines. After these preprocessing steps, we ended

11
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218  up with 944 unique CCLs and their GEx values of 13,823 genes. This amounted to a total of
219 181,380 labeled CCL-drug pairs.

220

221  Training Procedure

222 As discussed earlier, to enable the model to generalize to completely new CCLs (those that are
223  not seen by the model for any drug during training), we used a separate neural network, parallel

224  tothe H-GCN. As input, this network accepts the CCLs’ gene expression vector x and produces a

225 latent representation X = F.(x). We then concatenate X with the drug d’s embedding, hglz)’
226 and use it as input for our predictor, a 3-layer neural network that outputs the predicted drug
227  response values (V).

228

229  The model was trained end-to-end using the mean squared error £L = (y — $)? and Adam as the
230  optimizer [24]. We also fixed the learning rate to 0.0001 and batch size to 128 (see Results for
231  the effect of different choices of hyperparameters on the performance). We used Leaky ReLU for
232 all non-linearity functions (i.e. (x) = max(0, x) + 0.01 X min (0, x)). The number of training
233 steps were decided by randomly selecting samples from the training data and using them as a
234  validation set for early stopping. The model was then re-trained with the entire training set and
235  the previously identified optimal number of training steps. For BiG-DRP+, the extra epoch’s
236  learning rate was set to 0.00001.

237

238  In our approach, elements of a batch are (drug, CCL) pairs, although all drug embeddings can be

239 generated simultaneously for each forward pass. Embeddings generated using graph

12
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240  convolutional networks rely on the node connectivity. This generally means that a small
241  perturbation of a node’s embedding may affect the embeddings of its neighbours in the next GCN
242  (or H-GCN) layer. Unlike regular dense neural networks, it is possible that a dramatic change
243  would occur in the embeddings, even with a relatively small learning rate. In such cases, the
244  predictor may not easily map the “new” embedding to the “known” ones, especially if the drug
245  was not part of the batch during the previous training step. The predictor could see this as having
246  aninfinite number of drugs, increasing the level of complexity to the learning process. To address
247  this “moving embedding problem”, we developed BiG-DRP+, which slightly modifies the training
248 of BiG-DRP.

249

250 The idea of BiG-DRP+ is to stop the training of the H-GCN component after several epochs but
251  continue the training of the predictor using the “frozen” drug embeddings. In our BiG-DRP+
252  model, we froze the drug embeddings obtained by BiG-DRP (after the number of epochs
253 determined by early stopping), but continued the training of other components of the
254  architecture for one extra epoch (we used a lower learning rate for this epoch). This stabilizes the
255  training of the predictor and enables it to identify CCLs that were treated by the same drug (since
256  the half of the input to the predictor pertaining to the drug features are now fixed). The lower
257  learning rate is a preventative measure to avoid overfitting.

258

259  Evaluation and Cross-validation

260  To evaluate the performance of our model we used 5-fold cross validation (CV), in which one fold

261  was kept aside as the test set for evaluation and was not used during training of the model nor

13
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262  for the selection of hyperparameters. This process was repeated five times (each time with a
263  different fold as the test set) to ensure that the specific choice of the test set does not bias the
264  results. We adopted two types of data splitting techniques to form the folds, namely leave-pairs-
265  out (LPO) and leave-cell lines-out (LCO).

266

267  In the LPO-CV, the disjoint folds were randomly selected from the set of all (CCL, drug) pairs,
268  while in the LCO-CV the folds contained randomly selected sets of mutually exclusive CCLs. Prior
269  totraining, GEx values were z-score normalized per gene. We used only the training folds’ unique
270  CCLs to calculate the means and standard deviations to prevent data leakage between training
271  and test sets. Imposing the uniqueness criterion above ensures that the models are not biased
272 towards CCLs that exists in a larger number of (drug, CCL) pairs. To ensure a fair comparison,
273  identical folds were used for all methods. For each drug, predictions of the five folds on their
274  respective test sets were collected and were used to evaluate different methods.

275

276 To assess generalizability of our models to independent datasets, we obtained GEx profile (in the
277  form of FPKM) of cancer tumours and their RECIST clinical drug response from The Cancer
278  Genome Atlas (TCGA) [25]. Similar to previous studies [26], we considered “stable disease” or
279  “progressive disease” as resistant and “complete response” or “partial response” as sensitive.
280  We selected cisplatin (n = 398), paclitaxel (n = 233), gemcitabine (n = 226), and doxorubicin (n =
281  208), since they were present in our training dataset, had a large number of samples with known
282  clinical drug response, and had more than 50 samples in each category of resistant and sensitive.

283  Similar to the preprocessing steps used for GDSC dataset, the expression of each gene in the

14


https://doi.org/10.1101/2021.08.11.455993
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455993; this version posted April 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

284  testing set (in the form of log,(FPKM +1)) was z-score normalized across the samples. We used

285  PyCombat [27] to reduce the statistical discrepancies between the GDSC and TCGA samples.

286

287  Baseline Methods

288  We compared our method against several baseline algorithms including both deep learning-
289  based and traditional machine learning methods, detailed below. First, we used a multilayer
290  perceptron (MLP) with a similar architecture and hyperparameters as BiG-DRP. Similar to BiG-
291  DRP, the MLP also utilized the GEx and drug features. However, instead of an H-GCN, we replaced
292 it with a dense neural network, which takes the drug features as input. We also used a support
293  vector regressor (SVR) with a linear kernel as well as a SVR with a radial basis function (RBF) as
294  traditional ML baselines. The concatenation of the GEx and drug features were used as the input
295 to SVR models. Due to the large size of the data, we used Nystroem’s transformation [28] to
296  approximate the SVR’s kernels to improve its efficiency. Hyperparameters, namely the number
297  of Nystroem components, regularization factor, and gamma for RBF were selected using nested
298  cross validation. In addition to the SVR models above, we used recursive feature elimination (RFE)
299  [29] to identify the most relevant features to be used with the linear and non-linear SVR models.
300

301 NRL2DRP [20] is a graph representation learning-based method that uses a graph composed of
302 genes, drugs, and CCL nodes, connected by edges according to their sensitivity, mutation, and
303 protein-protein interactions. However, NRL2DRP uses a topology-based graph embedding called
304  LINE [30], which is typically used for transductive learning. We slightly modified NRL2DRP to

305 predict continuous values instead of binary values (so that it can be applied to our data). PathDNN
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306  [7]is another deep learning method that proposes to add some level of explainability to the drug
307 response prediction problem by constraining the neural network connectivity using a pathway
308  mask. This method uses drug targets and gene expressions, both of which should be in any of the
309 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [31]. We obtained the drug targets
310 and pathway information from the PathDNN’s repository. The drug targets were represented by
311  their normalized STITCH [32] confidence score, which indicates a non-zero value for genes in the
312  drug’stargets. However, we removed three compounds because they did not have known targets
313  inthe KEGG pathways. Another deep learning approach is tCNN [9], which utilizes 1-dimensional
314  CNNs. The canonical SMILES string of the compound is encoded into a sequence of one-hot
315  vectors, each of which represents a single character. Since the SMILES strings vary in length, the
316  resulting binary encoding is padded by zeros to the right to match the length of the longest
317  encoding, resulting in a matrix of size m X n, where m is the number of unique characters and
318 nis the length of the longest encoding. Mutations and copy number alterations, which GDSC
319  dubs as “genetic features,” were used as the features of the CCLs.

320

321 Inordertoensure a fair comparison, in our cross-validations we fixed the folds and used identical
322  folds for each method. In addition, when an algorithm required extra information that was not
323  used in Big-DRP, we provided those datasets as inputs to the baseline models, following the
324  descriptions provided in each method’s manuscript. This was done to ensure we give each
325  baseline model a fair chance.

326
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327 Identification of genes that are most predictive of drug response

328 Toidentify genes that are predictive of drug response, we used a neural network explainer called
329  CXPlain [33] and a similar approach which we previously developed to aggregate contribution
330 across CCLs and identify top contributors [5]. CXplain uses Granger’s causality [34] as the basis of
331 the feature attribution. Intuitively, for each of the features, it tries to predict the increase in the
332  sample’s loss if that specific feature is zeroed-out. We trained separate explainers for each of the
333  drugs, since this eliminates the unnecessary complexity of learning attributions for multiple drugs,
334 as well as the additional feature dimensions (i.e., drug features). We pooled the scores by
335 calculating the mean attribution across all the CCLs for each of these drugs. The top genes were
336 identified by a threshold calculated using kneedle [35], with sensitivity S=2.

337

338  Pathway characterization analysis

339  We used KnowEnG’s gene set characterization pipeline [36] to perform pathway enrichment
340 analysis (using Reactome pathways [37]). The p-values of Fisher’s exact test were corrected for
341  multiple tests (i.e., multiple pathways) using Benjamini-Hochberg false discovery rate (FDR).

342

343  Analysis of TCGA tumor mutations and their relationship with predicted drug responses

344  From TCGA database, we selected primary tumor samples that had both GEx profiles and
345  mutation data (n = 9067). We utilized BiG-DRP+ to predict response of 237 drugs for each of the
346  tumor samples using their GEx as input (see the Evaluation and Cross-validation section). Using
347 the Mutation Annotation Format (MAF) file, a binary matrix indicating the existence of a mutation

348 forasample was formed. Similar to previous studies [38], we focused on four types of mutations:
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349  nonsense, missense, frameshift insertions and frameshift deletions. Only mutations that exist in
350 atleast 10% of the samples were included in the analysis.

351

352 RESULTS

353  Performance of BiG-DRP and BiG-DRP+ based on leave-pair-out cross validation

354  First, we evaluated BiG-DRP, BiG-DRP+, and other baseline algorithms using a five-fold LPO-CV,
355 in which the folds were randomly selected among the set of all possible (CCL, drug) pairs. Table
356 1 shows a summary of the performance results using area under the receiver operating
357 characteristic curve (AUROC), root mean squared error (RMSE), Pearson’s correlation coefficient
358 (PCC) and Spearman’s correlation coefficient (SCC). To calculate these metrics across all drugs,
359  we first calculated them separately for each drug (Supplementary Table S1) and then obtained
360 mean and standard deviation across the drugs. BiG-DRP+ outperforms all other methods
361 according to all metrics, and BiG-DRP outperforms all baselines but has a slightly worse
362  performance compared to BiG-DRP+. BiG-DRP+ has a ~5% higher AUROC and ~11% higher SCC
363 and PCC compared to that of MLP, which utilizes a similar architecture to BiG-DRP+ (except for
364 the usage of the bipartite graph and the H-GCN). This highlights the importance of this novel
365  aspect of the algorithm.

366

367 As mentioned earlier, in our models the H-GCN is used to obtain drug representations and a
368 separate encoder is used to obtain cell line representations. We were interested to determine
369 how the performance of the models change if we substitute the role of these two components:

370 use the encoder to obtain drug embeddings and use the H-GCN to obtain cell line embeddings
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371  (called inverted BiG-DRP, henceforth). Our analysis showed that inverted Big-DRP outperforms
372  all baselines, except for BiG-DRP and BiG-DRP+ (Table 1). However, it is important to note that
373  inverted BiG-DRP has two shortcomings compared to BiG-DRP and BiG-DRP+. First, it cannot be
374  used to predict the response of a new CCL (i.e., it cannot be used in the LCO framework), since a
375 new CCL would not be part of the bipartite graph and as a result a representation for it cannot
376  be obtained. Second, the bipartite graph used in inverted BiG-DRP connects each CCL to most
377  sensitive and most resistant drugs and as a result is less reliable than the bipartite graph of BiG-
378  DRP (that connects each drug to CCLs that are most sensitive or resistant to it). The reason is that
379 log IC50 of different drugs for the same CCL are not directly comparable and making a bipartite
380 graph based on this criterion may introduce errors in the network.

381

382 Table 1: The performance of BiG-DRP, BiG-DRP+ and baseline methods using 5-fold LPO-CV
383  evaluation. Best performance values are in bold-face and underlined. The mean and standard
384  deviations are calculated across the drugs. *Since PathDNN requires availability of at least one

385  drug target in any of the signaling pathways, we could only apply it to 234 drugs.
386

AUROC RMSE SCC PCC
Drug Other Num.
Attributes inputs Drugs mean mean mean mean
(tstd.) | (xstd.) | (xstd.) | (+std.)
0.878 0.843 0.748 0.758
BiG-D Descri E 2 g.6/0
IG-DRP+ | Descriptors GEx 37 | (0.068) | (+0.241) | (20.100) | (20.102)
BiG-DRP | Descriptors GEx 237 0.875 0.855 0.742 0.752

(+0.068) | (+0.244) | (+0.099) | (+0.102)
Inverted 0.862 | 0.888 | 0721 | 0.730

BiG-DRp | DeSCriptors GEx 237 | (40.075) | (20.253) | (20.110) | (+0.110)
. 0835 | 0954 | 0675 | 0.681
MLP Descriptors GEx 237 | (40.083) | (20.273) | (20.120) | (+0.119)
Drug-CCL-
0804 | 1.153 | 0516 | 0.514
NRL2DRP None Gene 237 | (40.085) | (£0.345) | (£0.119) | (+0.123)
network
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NN ;r'\]/('e'_Ltht Genetic | . | 0787 | 1086 | 0587 | 0.591

. Features (£0.082) | (#0.336) | (¥0.119) | (+0.117)
encoding

Drug GEx, 0766 | 1.165 | 0516 | 0.529

PathDNN | - o rgets | PAtWay | 234% | \5 083) | (£0.355) | (£0.115) | (£0.117)
information

SVR-RBF . 0738 | 1.182 | 0503 | 0.500
(w/RFg) | Descriptors GEx 237 | (40.101) | (20.384) | (20.125) | (+0.130)

SVR-Linear . 0738 | 1.181 | 0498 | 0.497
(w/RFg) | Descriptors GEx 237 | (40.101) | (20.393) | (20.130) | (+0.135)

. 0737 | 1182 | 0502 | 0.499
SVR-RBF | Descriptors GEx 237 | (4+0.100) | (+0.383) | (£0.123) | (+0.129)

. . 0736 | 1.184 | 0494 | 0.493
SVR-Linear | Descriptors GEx 237 (£0.101) | (£0.393) | (20.129) | (£0.134)
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Figure 2: The drug-wise performance of BiG-DRP+ compared to baseline methods using five-fold
LPO-CV evaluation. Each circle represents a drug, and the color of the circles reflect the density
of other circles in their vicinity (yellow shows that there are many circles concentrated in that
area). The coordinates reflect SCC for BiG-DRP+ (y-axis) and baseline methods (x-axis). The p-
values are obtained using a one-sided Wilcoxon signed rank test, comparing the SCC of BiG-DRP+
and the baselines across drugs.
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397  Figure 2 compares the performance of BiG-DRP+ against other methods for individual drugs
398 (measured based on SCC). Each circle in the scatter plots reflects a drug, and the color of the
399 circles reflect the density of other circles in their vicinity. Comparing BiG-DRP+ and BiG-DRP
400 shows that the drug-specific SCC values are generally close to each other (concentrated around
401 the diagonal line); however, the one-sided Wilcoxon signed rank test (p=2.26E-36) suggests that
402  the performance for the majority of the drugs have improved in BiG-DRP+, albeit a small amount.
403  Comparing to other baselines, the figure shows that the majority (and in many cases all) of the
404  circles are above the diagonal line, suggesting a substantial improvement of their response
405  prediction by BiG-DRP+. One-sided Wilcoxon signed rank tests also confirmed this observation,
406  resulting in statistically significant p-values (Figure 2 and Supplementary Table S2).

407

408 Performance of BiG-DRP and BiG-DRP+ based on leave-cell line-out cross validation

409  Next, we evaluated the performance of different models using a five-fold LCO-CV. This is a stricter
410  evaluation, since unlike LPO-CV, a CCL in the test set is never seen by the models during training,
411  since folds are randomly selected based on the CCLs and not based on (CCL, drug) pairs. Table 2
412  shows the summary of the results using our performance metrics. Note that due to the
413  transductive nature of NRL2DRP’s embedding method (LINE [30]), this method could not be
414  applied to the LCO-CV evaluation and hence is not included in this table.

415

416  Based on these evaluations, BiG-DRP+ has the best performance using all metrics, while BiG-DRP
417  has the second-best performance. The BiG-DRP+ clearly outperforms MLP, further highlighting

418 the importance of the bipartite graph and H-GCN in the drug response prediction task. Similar to
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LPO-CV evaluation, a drug-wise analysis using SCC for each drug showed a significantly superior

performance of BiG-DRP+ compared to all baseline methods (one-sided Wilcoxon Signed-Rank

test, Supplementary Table S2). Supplementary Table S1 provides the drug-specific performance

metrics for all drugs.

Table 2: The performance of BiG-DRP+, BiG-DRP and baseline methods using five-fold LCO-CV
evaluation. Best performance values are underlined. The mean and standard deviations are
calculated across the drugs. *Since PathDNN requires availability of at least one drug target in
any of the signaling pathways, we could only apply it to 234 drugs.

Other AUROC | RMSE | scc PCC

Drug . Num.
Attributes lnput DI"UgS mean mean mean mean
features (tstd.) | (£std.) | (xstd.) | (£std.)
. . 0.746 | 1.204 | 0.431 | 0.450
BIG-DRP+ | Descriptors | GEx 237 1 (+0.077) | (0.367) | (0.094) | (£0.105)
. . 0743 | 1.210 | 0426 | 0.443
BIG-DRP | Descriptors GEx 237 1 (+0.077) | (£0.368) | (0.095) | (+0.106)
. 0730 | 1.219 | 0413 | 0.430
MLP Descriptors GEx 237 1 (+0.086) | (£0.374) | (£0.100) | (£0.111)
SVR-RBF . 0682 | 1.276 | 0354 | 0.360
(w/RFE) | Descriptors GEx 237 | (40.107) | (+0.404) | (+0.116) | (+0.127)
. 0680 | 1.278 | 0348 | 0.354
SVR-RBF | Descriptors GEx 237 | (40.110) | (+0.403) | (+0.120) | (+0.135)
. . 0666 | 1.292 | 0324 | 0331
SVR-Linear | Descriptors GEx 237 (£0.102) | (£0.420) | (£0.119) | (+0.126)
SVR-Linear . 0666 | 1.293 | 0322 | 0.330
(w/REE) | Descriptors GEx 237 1 (+0.102) | (£0.421) | (0.118) | (£0.124)
Drug GEXx, 0612 | 2201 | 0193 | 0.170

5 Janr | O . . .
PathDNN | o oets | PAtWaY | 234% 1 5 074y | (20.698) | (£0.061) | (£0.078)
information

SMILES Genetic 0.586 | 1.369 | 0.147 | 0.147

tCNN one-hot 237
) Features (£0.060) | (+0.427) | (£0.068) | (+0.072)

encoding
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429

430 To assess the generalizability of BiG-DRP+ to independent datasets, we used it to predict the drug
431 response of patient tumours from the TCGA dataset treated with cisplatin, gemcitabine,
432  doxorubicin, and paclitaxel. Given the predicted log IC50 values, we used a one-sided statistical
433  testtodetermine if our models can distinguish between the patients that are resistant from those
434  that are sensitive to these two drugs (using all TCGA samples with known clinical drug response).
435  Our statistical analysis (Mann Whitney U test, since data corresponding to one of the drugs did
436  not pass test of normality) showed significant p-values for three drugs (p = 2.19E-7 for cisplatin,
437  p = 8.80E-3 for doxorubicin, and p = 3.40E-2 for gemcitabine). Next, we removed any tumour
438 sample that had received a different drug beforehand or during the period that our drug of
439  interest was administered. Even though this significantly reduced the number of samples, the
440 results (Welch's t-test, since data corresponding to all drugs passed test of normality) were
441  significant for cisplatin (p = 1.82E-2) and doxorubicin (p = 4.29E-2). Supplementary Table S3
442  provides detailed information regarding the samples and the results of different statistical tests.
443

444  Detailed Evaluation of BiG-DRP+

445  Since one major component of the BiG-DRP and BiG-DRP+ pipeline is the bipartite graph of the
446  CCLs and drugs, we sought to evaluate the effect of different thresholds for forming this graph.
447  As explained in Methods, a drug is connected to a CCL with a sensitive (resistant) edge if the log
448  I1C50 of the CCL is among the bottom (top) k% of all the CCLs. In our analysis, we fixed this value
449 to be k = 1. To assess the robustness of the results to this parameter, we formed different

450  bipartite graphs with different choices of k = 0.5, 1, 2, 5, 10 and repeated the LPO-CV and LCO-
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451  CV. Supplementary Table S4 provides the SCC and AUROC of BiG-DRP and BiG-DRP+ for these
452  evaluations for different values of k. These results suggest that the performance of our proposed
453  methods remain stable for these different choices of k, with a slight deterioration as k increases
454  (lessthan 1% in all evaluations when comparing k=10 to k=1). This deterioration is expected, since

455  anincrease in k increases potentially erroneous edges in the bipartite graph.

456

457  Next, we asked whether the choice of drug features as attributes in the bipartite graph has a
458  significant effect on the performance of BiG-DRP+. To address this question, we used Morgan
459  fingerprints [13] of the drugs, alone or in addition to the drug descriptors, as the attributes of the
460 drug nodes in the bipartite graph. The results (Table 3) revealed that there is not a substantial
461  difference between any of these choices, but simultaneously using both types of drug features

462  slightly improves the results.

463

464  Table 3: The performance of BiG-DRP+ with different drug attributes. The rows show the results
465  of BiG-DRP+ when drug descriptors (vectors of length 198), Morgan fingerprints (vectors of length
466  512), or the combination of both (vectors of length 710) are used as node attributes.

467

468

LPO-CV LCO-CV
Method At:rzzﬁte AUROC scc AUROC scc
mean (t std.) mean (t std.) mean (t std.) mean (t std.)
Descriptors | 0.878 (+0.068) | 0.748 (+0.100) | 0.746 (+0.077) | 0.431 (+0.094)
SIIR(F;M Morgan 0.878 (+0.068) | 0.748 (+0.100) | 0.743 (+0.080) | 0.426 (+0.098)
Both 0.879 (+0.068) | 0.748 (+0.099) | 0.746 (+0.077) | 0.433 (+0.095)
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470  Figure 3: Performance comparison of BiG-DRP for different combinations of hyperparameters. A)
471  The distribution of mean SCCs of the models in 5-fold LCO-CV. The colors correspond to the
472  fraction of the bin that utilized either a high or low learning rate. B) The boxplots of the mean
473  SCCs grouped by the learning rate. C) The boxplots of the mean SCCs for combinations that used
474  1E-4 and 5E-5 as learning rates, grouped by specific hyperparameters. The boxes range from the
475  first to the third quartile, while the horizonal line corresponds to the median. The purple
476  datapoint represents the default hyperparameter combinations and the orange datapoint
477  pertains to the combination of hyperparameters that performed best.

478

479  Finally, we asked how different choices of hyperparameters influence the performance of BiG-
480  DRP+. For this purpose, we ran our model with 648 different combinations of learning rate (5E-
481 5, 1E-4,5E-4, 1E-3), batch size (64, 128, 256), CCL encoder size (512, 1024, 2048), H-GCN size (256,
482 512, 1024), predictor hidden layer size (256, 512, 1024), and dropout (with or without). (The
483  bold-face options represent the default values used for our models). The stacked histogram in
484  Figure 3A shows the mean SCC value of these combinations in a 5-fold LCO-CV framework.

485 Interestingly, there are 82 combinations that perform on par with the default parameters and 47
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486 combinations that perform better. This suggests that if computational complexity is not of a

487  concern, one may improve the performance of BiG-DRP+ by tuning the hyperparameters.

488

489  Further analysis revealed that the learning rate is the most influential hyperparameter (Figure 3B)
490 and a relatively large learning rate deteriorates the performance; however, learning rates of 5E-
491 5 or 1E-4 (the default) work well. More importantly, if the learning rate is selected appropriately
492  (the two choices mentioned above), the effect of other hyperparameters is relatively small and
493  the majority of choices result in good performance (orange fraction of the histogram in Figure
494  3A). Figure 3C better illustrates this by depicting the mean SCC for different choices of
495  hyperparameters when only learning rates of 5E-5 and 1E-4 are included. The only other
496  hyperparameter that seems to play an important role is dropout, where its inclusion (slightly)

497  improves the performance.

498

499  Characterization of the bipartite graph

500 Next, we sought to better characterize the bipartite graph and the drugs that have most
501 benefited from using this graph in the drug response prediction task. For this purpose, we first
502 formed a single bipartite graph by aggregating the bipartite graphs corresponding to each of the
503 five folds in our LCO-CV evaluation (i.e., by finding the union of edges). Then, we used a nested
504  stochastic block model (NSBM) [39] to infer the modular substructure of the graph, while taking
505 into account the edge type (i.e., resistant and sensitive) connecting each two nodes. This

506 approach automatically identifies the number of clusters by maximizing the likelihood of the
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507 graph being generated from the partitioning. The final partitioning is based on running the
508  stochastic algorithm many times (in our case 1000 times) and selecting the number of clusters
509 and the partitioning that is most frequently supported by these runs. The number of clusters
510 varied between 17 to 20 (Figure 4A), with 18 selected by the algorithm as the final number of
511  clusters (5 drug clusters and 13 CCL clusters). Comparing the clusters identified by each run of
512  the algorithm with the final clusters using Rand Index (RI) [40] revealed a high degree of

513  concordance (Figure 4B, mean Rl = 0.89 + 0.01).

514

515  Figure 4C illustrates the bipartite graph and clusters identified using this method (see
516  Supplementary Table S5 for the cluster assignment of drugs and CCLs). In particular, five drug
517  clusters were identified. Comparing the performance of BiG-DRP+ compared to MLP (SCC-LCO),
518 revealed that all these clusters significantly benefit from the use of the bipartite graph (one-sided
519  Wilcoxon signed rank test, Figure 4B). In particular, Cluster 3 had the highest median
520 improvement in SCC (8.4%) and had a significant improvement p-value (p = 5.25 E-5). The
521  majority of the drugs in this cluster (13 out of 20) are protein kinase inhibitors, with 8 of them
522  targeting members of serine/threonine protein kinase family and 5 of them targeting members
523  of tyrosine kinase family. These observations suggest that information sharing across the
524  bipartite graph used in our methods benefit certain groups of drugs more than others and this

525 may be dependent on the similarity between drugs’ mechanisms of action.
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526 Rand Index

527  Figure 4: The CCL-drug bipartite graph and its clusters. A) The histogram shows the number of
528 clusters obtained by NSBM in each run (total of 1000 runs). B) The histogram shows the Rand
529 Index between each clustering (in each run) with the final cluster assignment. C) The graph
530 represents the bipartite graph and the boxplots show the distribution of SCC improvements
531 obtained for each drug using BiG-DRP+ compared to MLP in the LCO evaluation. The p-values are
532  obtained using a one-sided Wilcoxon signed rank test.

533

534  Next, we sought to characterize the CCL clusters. Supplementary Table S6 shows the enrichment
535  of CCL clusters in tissue type, cancer type, and driver mutations (hypergeometric test, corrected
536  for multiple tests using Benjamini-Hochberg FDR). The analysis revealed that while only two
537 clusters (out of 13) were enriched in cancer type (FDR < 0.05), namely cluster 1 in B-
538 Lymphoblastic Leukemia and cluster 4 in Chronic Myelogenous Leukemia, the majority of clusters
539 (9 out of 13) were enriched in at least one driver gene mutation. For example, cluster 1 was
540 enriched in CCLs with mutations in RBM38 and GNA13, while cluster 2 was enriched in CCLs with

541  mutations in POLQ and BRCAL. These observations suggest that the patterns captured by the
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542  bipartite graph goes beyond tissue or cancer types and is able to capture patterns at the
543  molecular level.

544

545 ldentification of biomarkers of drug sensitivity

546  To identify genes whose expression substantially contribute to the predictive model, we used a
547  pipeline similar to the one we proposed in a previous study [5]. This approach provides an
548  aggregate contribution score for each gene in the model and uses these scores to systematically
549 identify the set of top contributing genes in each model. We focused on 15 drugs for which BiG-
550  DRP+ provided the highest SCCvalues in the LCO-CV evaluation. Supplementary Table S7 provides
551 the ranked list of genes that were implicated for each of the 15 drugs. We clustered the drugs
552  based on the contribution scores of all implicated genes (Figure 5). Interestingly, four drugs
553 formed a clear cluster, separate from the others: trametinib, refametinib, selumetinib, and
554  pd0325901. Further investigation revealed that these drugs all are MEK inhibitors (i.e., inhibit the
555  mitogen-activated protein kinase kinase enzymes) and involve some similar mechanisms of
556  action [10].

557

558  Next, we focused on genes implicated for trametinib, a MEK-inhibitor for which BiG-DRP+ had
559  thebest performance (SCCin LCO-CV). For this drug, ETV5 had the highest prediction contribution.
560 ETV5 and ETV4 (the fourth highest contributor) are among the ETS family of oncogenic
561  transcription factors. The expression of this family has been shown to be upregulated in solid
562  tumours and they have been shown to be involved in tumour’s progression, metastasis and

563 chemoresistance [41]. Previous studies have shown ETV5 to be regulated by ALK, a receptor
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564  tyrosine kinase, in a MEK/ERK-dependent manner in neuroblastoma cell lines [42]. In addition,
565 treatment of various cancer cell lines with trametinib has been shown to downregulate ETV5 [42-
566  44]. Moreover, the overexpression of ETV4 and ETV5 have been shown to reduce the sensitivity
567  different cancer cell lines to this drug [44].

568

569 To obtain a better functional characteristic of the genes implicated for trametinib, we also
570 performed pathway enrichment analysis on genes implicated for this drug (see Supplementary
571  Table S8 for results of pathway enrichment analysis of all 15 drugs). Several important pathways
572  related to MAPK signaling, EGFR signaling, and IL2 signaling were identified (Fisher’s exact test,
573  FDR<0.05). Taken together, these results suggest that genes that contribute to the predictive
574  ability of BiG-DRP+ for trametinib point to important genes and signaling pathways involved in
575 its mechanism of action.

576
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577

578  Figure 5: The clustering of 15 drugs based on contribution scores of their genes. The contribution
579  scores of the union of genes implicated for these drugs is used to cluster drugs using hierarchical
580 clustering. The heatmap shows the contribution scores.

581

582  Mutation landscape of TCGA tumor samples and their association with drug response

583  Next, we sought to evaluate the mutation landscape of tumors in TCGA dataset and their
584  associations with drug response predicted using Big-DRP+. For this purpose, we predicted the
585 normalized loglC50 of 9067 TCGA tumors (that had both mutation and GEx data) corresponding

586  to 32 cancer types to 237 drugs in our training dataset (Supplementary Table S9, Methods). We
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587 identified 10 genes that were mutated in more than 10% of the samples (Supplementary Table
588 S9) and performed two-sided Mann—Whitney U tests to assess the association between
589  mutations in these genes and drug response (the FDR values reported in this study correspond
590 to this test). In this section we focus on the insights obtained from PIK3CA mutation due to its
591 important role in determining the drug response in various cancers and its potential as a
592  therapeutic target [45] (results of statistical tests for all genes are provided in Supplementary

593  Table S9).

594

595  PIK3CA is an oncogene whose mutation leads to hyperactivation of PI3K/AKT/mTOR pathway,
596  associated with cancer progression and poor outcome in many cancer types [46-49]. Various
597 targeted therapies have been developed to target and inhibit this pathway in patients with
598 deregulation and hyperactivity of PI3K/AKT/mTOR pathway (due to PIK3CA mutation or other
599  mechanisms such as loss or inactivation of PTEN) [50]. Additionally, various studies have shown
600 that mutation in this gene is associated with better response to PI3K inhibitors both in vitro and
601  invivo [50, 51]. Consistent with these, our pan-cancer analyses showed that tumors that harbor
602  this mutation are significantly more sensitive to drugs targeting PI3K/AKT/mTOR pathway (Figure
603  6A, one-sided Wilcoxon signed rank test P = 1.14E-5) such as the pan-AKT kinase inhibitor
604  GSK690693 (FDR = 2.13E-59) and the pan-class | PI3K inhibitor ZSTK474 (FDR = 1.15E-29)

605 (Supplementary Table S9).

606
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607  On the other hand, mutation in this gene was associated with increase in resistance to drugs
608  targeting the MAPK/ERK signaling pathway (Supplementary Table S9). In particular, the mean
609 predicted normalized loglC50 of PIK3CA-mutated tumors were significantly larger for drugs
610  targeting this pathway compared to tumors that did not harbor this mutation (one-sided
611  Wilcoxon signed ranked test P = 2.14E-3, Figure 6B). Various studies (both in vivo and in vitro)
612  have shown a regulatory link between MAPK/ERK and PI3K/AKT/mTOR pathways and inhibition
613  of MAPK/ERK signaling has been linked to an increase in the activity of PI3K/AKT/mTOR pathway
614  ([52] and references therein). Previous studies have shown that hyperactivity in PI3K/AKT/mTOR
615 pathway as a result of PIK3CA mutation increases drug resistance to dabrafenib and trametinib
616  (drugs targeting MAPK/ERK pathway), supporting our observations (dabrafenib FDR = 2.93E-18,
617  trametinib FDR = 7.64E-9, Supplementary Table S9). Mutation in PIK3CA has been shown to
618  confer resistance to PD0325901 [53], a MEK-inhibitor that decreases MAPK/ERK pathway activity,
619  and genetic ablation of the mutant allele of this gene has been shown to increase sensitivity to
620  this drug in MEK-inhibitor resistant cells [53]. Our analysis also showed that tumors harboring

621  PIK3CA mutation are more resistant to this drug (FDR = 1.33E-5).

622

623  Among the four drugs that target IGF1R, three showed a significantly higher predicted loglC50
624  value in PIK3CA-mutated tumors. Previous studies have shown a link between this protein and
625  PIK3CA-driven ovarian cancer [54] and breast cancer tumors harboring mutation in this gene [55],
626  suggesting the dual inhibition of PI3K and IGF1R as a new therapeutic approach. Another

627 noteworthy example identified by our analyses is cetuximab (FDR = 5.98E-3), which is an
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epidermal growth factor receptor inhibitor. Previous studies have shown an association between

activity of PI3K/AKT/mTOR pathway and resistance to this drug [56].
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631  Figure 6: The association between mutations and drug response in TCGA. The scatter plots show
632 the mean predicted normalized loglC50 for mutated and unmutated tumors. P-values are
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633  calculated using a one-sided Wilcoxon signed rank test. A) The association between PIK3CA
634  mutation and response to drugs targeting the PI3K/AKT/mTOR pathway in our pan-cancer study.
635 B) The association between PIK3CA mutation and response to drugs targeting the MAPK/ERK
636  pathway in our pan-cancer study. C) The association between BRAF mutation and response to
637  drugs targeting the MAPK/ERK pathway in THCA.

638

639  To assess the effect of mutations on drug resistance in a cancer type-specific manner, we focused
640  onthyroid carcinoma (THCA), which is the most common endocrine malignancy, as an illustrating
641  example [57]. In this cancer type, only BRAF was mutated in more than 10% of the samples
642  (mutated in 57.7% of tumors). The mutation in this gene, the most frequent of which in thyroid
643  cancer is V600E mutation [57, 58], activates the MAPK/ERK pathway resulting in sustained cell
644  proliferation adverse phenotypes [57]. Various studies have proposed this pathway as a
645 therapeutic target, and have shown that cancer cells (including those corresponding to thyroid
646  cancers) harboring this mutation are much more sensitive to BRAF-inhibitors (e.g., AZ628 [59])
647  and various MEK-inhibitors [60]. Our analyses also showed that THCA tumors harboring BRAF
648  mutation are significantly more sensitive to drugs targeting MAPK/ERK pathway (Figure 6C, one-
649  sided Wilcoxon signed rank test P = 1.68E-3), including BRAF-inhibitors AZ628 (FDR = 2.25E-21)
650 and HG6-64-1 (FDR = 5.62E-12), and MEK-inhibitors such as trametinib (FDR = 2.83E-26),

651 refametinib (FDR = 1.69E-25), and selumetinib (FDR = 1.75E-25).

652

653  Taken together, these results suggest the utility of our proposed model in providing insights in

654 pharmacogenomics studies.

655
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656  DISCUSSION AND CONCLUSION

657 Inthis study, we proposed two novel graph representation deep learning methods to incorporate
658 information regarding the sensitivity and resistance of cell lines, their gene expression profiles
659  and chemical drug attributes to obtain better drug representations. Using cross-validation and
660 different data splitting methods we showed significant improvement compared to traditional and
661  state-of-the-art methods. Using a computational pipeline to make neural networks explainable,
662  we identified a set of genes that substantially contribute to the predictive model. These genes
663  implicated important signaling pathways and pointed to shared and unique mechanisms of action
664  in the drugs. In addition, we performed a study on the association between the mutation status
665  of cancer tumors from TCGA and the predicted drug response. These analyses revealed various
666 insights, many of which were confirmed by independent studies, which further illustrates the
667 utility of our pipeline in pharmacogenomics studies.

668

669  Moreover, detailed evaluation of our methods showed a high degree of robustness towards
670  changes in the threshold used to form the bipartite graph. This further supports the importance
671  of different techniques we used to ensure stability of our proposed architecture: the
672  normalization factor and the injected self-loop in our H-GCN’s forward pass. More specifically,
673  due to the injected self-loop, the nodes retain a portion of their own information, which forces
674 the embeddings to have some level of separation. The normalization factor also helps by
675 preventing the received messages from becoming too large and overpowering the self-loop. It is
676  important to note that this robustness may not be applicable to some corner cases. For example,

677 when a drug’s connected CCLs are not connected to any other drug (i.e., it forms a disconnected
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678  star subgraph), this drug’s embedding would not benefit from the existence of the second H-GCN
679 layer. As another example, the second H-GCN layer will be obsolete if all the drugs happen to
680  form disconnected stars, and thus no information sharing will take place across drugs. Another
681 example is when we add a new drug that results in a disconnected node. A disconnected node
682  will not be able to incorporate CCL information into the drug embedding, which defeats the
683  purpose of the H-GCN.

684

685  Unlike many previous models (e.g., NRL2DRP [30]) that require both cell lines and drugs to be
686  present in the training set, BiG-DRP is designed to enable prediction of unseen cell lines (those
687  that are not present in the training set). However, the drug embedding part of the model (the H-
688  GCN) requires the drugs to be part of the bipartite graph. This constraint implies that the drugs
689  present in the test set must be also present in the training set. As a result, this model generally
690 is not applicable to predict the response of CCLs to unseen new drugs. Although this could be
691 naively remedied by assuming known edges involving the unseen drug in the bipartite graph, this
692  kind of solution is impractical and would be difficult to enact without reducing the test set.
693  However, in most practical applications (e.g., prediction of drug response of cancer patients [4]
694  and [5]), it is more crucial for the model to generalize to unseen samples (CCLs or patients). The
695 reason is that before a drug enters clinical trial or enters clinical usage, many in vitro studies on
696  CCLs are first performed. Consequently, one can expect to have access to molecular description
697 and drug response of a drug for which the drug responses of a new set of samples (CCLs or
698  patients) are to be predicted.

699
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700 In this study, instead of directly using the logIC50 of drugs, we normalized the loglC50 of each
701  drug (separately) across the CCLs. This was done first to ensure that our prediction performance
702  results are not artificially inflated and second to make the drug response ranges of different drugs
703  comparable to allow the model to learn useful representations across drugs. However, this
704  normalization means that the predicted values should not be used to compare the potency of
705  different drugs, but rather should be used to compare the sensitivity of different CCLs to a specific
706  drug. This is why when we reported our prediction performance results, we calculated them one
707  drug at a time (across CCLs). If one wants to recover loglC50 values, these predictions can be
708 easily modified to reverse the normalization and allow comparison of different drugs for the
709  same CCL.

710

711  One of the main motivations of this study was to improve the representations of drugs for the
712 task of drug response prediction. While direct drug targets or SMILES chemical information of
713  drugs are common approaches for representing drugs, we believe these representations can be
714  improved by capturing the effects these drugs have on CCLs, either by measuring the changes in
715  the GEx profiles of CCLs after administration of the drug (e.g., LINCS dataset [61]) or using the
716  bipartite graph formulation proposed in this study. Improved drug representations are
717  particularly important in more challenging tasks such as prediction of response to drug
718  combinations, in which the sheer number of possible drug combinations (even for drug-pairs)
719  means that experimental measurements can only capture a very small portion of all possibilities.

720  As a result of this small sample size problem, more informative and robust drug representations
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become crucial in developing generalizable machine learning models for drug combinations, a

direction that we will pursue in the future by generalizing the models introduced in this study.
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SUPPLEMENTARY TABLES

Supplementary Table S1: The performance of BiG-DRP+, BiG-DRP and baseline methods
(columns) using five-fold CV for each drug (rows). Values presented are the mean across five folds.
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742  Each tab corresponds to a performance metric (Spearman’s correlation coefficient and area
743 under the receiver operating characteristic) for each data-splitting scenario: leave-cell lines-out
744  (LCO) and leave-pairs-out (LPO).

745

746  Supplementary Table S2: The results of the one-sided Wilcoxon signed rank test, represented by
747  the p-values. The test compares the per-drug Spearman’s correlation coefficient (SCC) of the BiG-
748  DRP+ and the other methods, where the alternative is that BiG-DRP+'s SCC is significantly larger.
749

750  Supplementary Table S3: The description of samples and results of statistical tests for prediction
751  of clinical drug response of TCGA cancer patients.

752

753  Supplementary Table S4: The performance of BiG-DRP and BiG-DRP+ using for k €
754 {0.5,1,2,5,10} . The performance metrics were calculated independently per drug and
755  presented as the mean and standard deviation.

756

757  Supplementary Table S5: The cluster assignments of the aggregated bipartite graph using the
758  nested stochastic block model. The first tab shows that cluster indices for the drugs and the
759  second tab shows the cluster indices for the cell lines. Although the graph partitioning was
760 performed on the entire graph, drug and cell line clusters were mutually exclusive; as a result,
761  similar indices in different tabs do not pertain to the same cluster.

762

763  Supplementary Table S6: Characterization of CCL clusters in the bipartite graph with respect to
764  tissue type, cancer type and driver mutations.

765

766  Supplementary Table S7: The top genes and their normalized contribution scores for top-
767  performing drugs in the leave-cell lines-out scenario. Each tab corresponds to the top genes for
768  aspecific drug.

769

770  Supplementary Table S8: The results of the pathway enrichment analysis of the top genes
771  (Supplementary Table S7) on the Reactome pathways using Fisher’s exact test. Each tab
772  corresponds to a specific drug. The corrected p-values are indicated in the pvalue_cor column.
773

774  Supplementary Table S9: The association between predicted drug response and mutation status
775  of TCGA samples for our pan-cancer and THCA study.

776
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