

Caruso et al 2022

The Nuclear Lamina Binds the EBV Genome During Latency and Regulates Viral Gene Expression

Lisa Beatrice Caruso¹, Rui Guo²⁻⁴, Kelsey Keith⁵, Jozef Madzo⁵, Davide Maestri¹, Sarah Boyle¹, Jason Wasserman⁶, Andrew Kossenkov¹, Benjamin E. Gewurz²⁻⁴ and Italo Tempera^{1#}.

1 The Wistar Institute, Philadelphia, PA 19104

2 Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115

3 Department of Microbiology, Harvard Medical School, Boston, MA 02115

4 Broad Institute of Harvard and MIT, Cambridge, MA 02142

5 The Coriell Institute for Medical Research, Camden, NJ 08103

6 The Fels Cancer Institute for Personalized Medicine, School of Medicine Temple University, Philadelphia, PA 19140

#Address correspondence to Italo Tempera, itempera@wistar.org

14

Caruso et al 2022

15 **ABSTRACT**

16 The Epstein Barr virus (EBV) infects almost 95% of the population worldwide. While typically
17 asymptomatic, EBV latent infection is associated with several malignancies of epithelial and
18 lymphoid origin in immunocompromised individuals. In latently infected cells, the EBV genome
19 persists as a chromatinized episome that expresses a limited set of viral genes in different
20 patterns, referred to as latency types, which coincide with varying stages of infection and
21 various malignancies. We have previously demonstrated that latency types correlate with
22 differences in the composition and structure of the EBV episome. Several cellular factors,
23 including the nuclear lamina, regulate chromatin composition and architecture. While the
24 interaction of the viral genome with the nuclear lamina has been studied in the context of EBV
25 lytic reactivation, the role of the nuclear lamina in controlling EBV latency has not been
26 investigated. Here, we report that the nuclear lamina is an essential epigenetic regulator of the
27 EBV episome. We observed that in B cells, EBV infection affects the composition of the nuclear
28 lamina by inducing the expression of lamin A/C, but only in EBV+ cells expressing the Type III
29 latency program. Using ChIP-Seq, we determined that lamin B1 and lamin A/C bind the EBV
30 genome, and their binding correlates with deposition of the histone repressive mark H3K9me2.
31 By RNA-Seq, we observed that knock-out of lamin A/C in B cells alters EBV gene expression.
32 Our data indicate that the interaction between lamins and the EBV episome contributes to the
33 epigenetic control of viral gene expression during latency, suggesting a restrictive function of the
34 nuclear lamina as part of the host response against viral DNA entry into the nucleus.

35

36 **AUTHOR SUMMARY**

37 Epstein-Barr virus (EBV) is a common herpesvirus that establishes a lifelong latent infection
38 in a small fraction of B cells of the infected individuals. In most cases, EBV infection is
39 asymptomatic; however, especially in the context of immune suppression, EBV latent infection
40 is associated with several malignancies. In EBV+ cancer cells, latent viral gene expression
41 plays an essential role in sustaining the cancer phenotype. We and others have established that
42 epigenetic modifications of the viral genome are critical to regulating EBV gene expression
43 during latency. Understanding how the EBV genome is epigenetically regulated during latent
44 infection may help identify new specific therapeutic targets for treating EBV+ malignancies. The
45 nuclear lamina is involved in regulating the composition and structure of the cellular chromatin.
46 In the present study, we determined that the nuclear lamina binds the EBV genome during
47 latency, influencing viral gene expression. Depleting one component of the nuclear lamina,
48 lamin A/C, increased the expression of latent EBV genes associated with cellular proliferation,
49 indicating that the binding of the nuclear lamina with the viral genome is essential to control viral
50 gene expression in infected cells. Our data show for the first time that the nuclear lamina may
51 be involved in the cellular response against EBV infection by restricting viral gene expression.

52

Caruso et al 2022

53 **INTRODUCTION**

54 Epstein Barr Virus (EBV) is a human gamma-herpesvirus that establishes lifelong latent
55 infection in almost 95% of the population [1-4]. EBV infection is generally asymptomatic;
56 however, EBV latency is associated with several malignancies, including Burkitt lymphoma,
57 Hodgkin's lymphoma, gastric cancer, and nasopharyngeal carcinoma [5-9] . During latent
58 infection, EBV persists as multicopy nuclear episomes [10, 11], and viral gene expression is
59 restricted to a few latent genes. These latent genes are expressed in different patterns —
60 referred to as latency types — that induce distinct responses in the infected cells and are
61 associated with different types of malignancies [12, 13]. Type I latency is characterized by the
62 expression of the viral protein EBNA1 [14], which is necessary for viral DNA replication and
63 episome maintenance by tethering the EBV genome to the host chromosomes [10, 15]. Type III
64 latency is associated with the expression of all the EBV latent proteins: six nuclear antigens
65 (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA-LP) and three membrane proteins
66 (LMP1, LMP2A, and LMP2B), in addition to a few non-coding RNAs [12]. Switching between
67 these different latency types is an essential strategy for EBV to persist in the host and evade
68 immune detection; however, the mechanisms controlling EBV latency are only partially
69 understood.

70 We and others have previously reported differences in histone modifications and DNA
71 methylation levels of the EBV genome across different latency types [16-21]. Furthermore, EBV
72 genomes representing distinct latency types have vastly different three-dimensional chromatin
73 conformations that correlate with viral gene expression [22, 23]. Overall, these observations
74 indicate that dynamic changes in chromatin composition and architecture can be critical for
75 initiating and maintaining latency programs, but how these epigenetic programs are established
76 remains unclear.

Caruso et al 2022

77 In eukaryotes, the epigenetic status and conformation of the genome can be influenced by the
78 interaction of genomic regions with the nuclear lamina [24, 25]. The nuclear lamina is a
79 filamentous protein network located at the nuclear periphery that is formed by proteins known as
80 lamins that are grouped into two different families (type A and B lamins) based on sequence
81 homology and molecular weight. B-type lamins (B1 and B2) localize only at the nuclear
82 periphery and are ubiquitously expressed in mammalian cells from two different genes
83 (*LMNB1* and *LMNB2*), while A-type lamins (A and C) are also present in the nuclear interior and
84 are encoded by differential splicing of a single gene (*LMNA*) that is expressed only in
85 differentiated cells [24, 26, 27].

86 The nuclear lamina interacts with genomic DNA at regions of the chromatin called lamin
87 associated domains, or LADS, ranging in size between 0.1 and 10 Mb, whose spatial location
88 within the nucleus shifts dynamically during cell differentiation [28, 29]. Both lamin A and lamin
89 B can interact with chromatin to form LADS, which are referred to as A-LADS and B-LADS,
90 respectively [30]. While most of the A- and B-LADS overlap, the two lamin types can also form
91 distinct LADS, suggesting that A- and B-type lamins may have complementary and specific
92 functions in organizing the genome architecture within the nuclear space [31-33]. For example,
93 lamin A-LADS tend to be positioned more toward the center of the nucleus than the other types
94 of LADS [30]. When localized at the nuclear periphery, all LADS have low transcription levels
95 and are associated with repressive histone marks, including H3K9me2/3 and H3K27me3 [34-
96 37]. The H3K9me2 histone mark plays an essential role in positioning the LADS at the nuclear
97 periphery, as depletion of the histone methyltransferase G9a, which specifically mono- and
98 demethylates Lysine-9 of histone H3, causes LADS to dissociate from the nuclear lamina [29].
99 Detachment of the LADS from the nuclear periphery also causes reorganization of the 3D
100 structure of the genome, indicating that the nuclear lamina assists in the spatial organization of

Caruso et al 2022

101 the genome [38-40]. These observations suggest that the interplay between LADs and lamins is
102 essential in the dynamic organization of the genome and the regulation of gene expression.

103 Nuclear lamins play an antiviral role during the replication of herpesviruses, including EBV [41,
104 42], HSV [43-50], and HCMV [51-56], regulating viral replication and functioning as a physical
105 barrier that prevents the egress of the viral capsid. Moreover, the nuclear lamina interacts with
106 the HSV1 genome and plays a critical role in forming replication compartments during the lytic
107 replication of HSV1 [48]. To counteract the antiviral effect of the nuclear lamina, herpesviruses
108 have evolved lytic genes encoding viral proteins that target the nuclear lamina during a lytic
109 infection. For example, the EBV lytic gene *BGLF4* encodes a viral kinase that interacts with the
110 nuclear lamina and causes its degradation via phosphorylation of lamin A [41]. While the
111 antiviral function of lamins and the nuclear lamina during EBV lytic infection has been described,
112 we still ignore whether the nuclear lamina plays a similar restrictive role during latent viral
113 infection. Based on the ability of lamins to bind the genome and to regulate both the structure
114 and conformation of the LADs, here, we investigated the role of nuclear lamins in the control of
115 the EBV latency states and the potential function of the nuclear lamina as an epigenetic
116 regulator of the different EBV gene expression profiles observed during latency.

117 We found that infection of B cells with EBV changes the nuclear lamina composition by inducing
118 lamin A/C expression, which is maintained during Type III latency and lost in Type I latency.
119 Consistent with these changes in nuclear lamina composition, we found that lamin B1 binds to
120 several regions of the EBV genome in Type I latency, while lamin A/C binds to a few regulatory
121 viral regions in Type III cells. We observed that the regions of the EBV genome repressed
122 through nuclear lamina binding were enriched for the repressive histone mark H3K9me2.
123 Furthermore, by knocking out *LMNA* expression in lymphoblastoid cell lines (LCLs), we found
124 that lamin A/C regulates the expression of both lytic and latent genes and that the changes in
125 gene expression were associated with changes in the chromatin composition of the EBV

Caruso et al 2022

126 genome. Finally, we determined that lamin A/C knock-out has no effects on the 3D organization
127 of the EBV genome, indicating that lamin A/C only influences its chromatin composition.

128 Altogether, our data indicate that EBV infection affects the nuclear lamina composition by
129 promoting expression of lamin A/C, which contributes to the establishment of specific chromatin
130 landscapes and transcriptional profiles of Type III latent EBV genome.

131 **RESULTS**

132 **EBV+ B cells adopting the Type III latency program express lamin A/C.** The nuclear lamina
133 represents a physical barrier for the nuclear egress of viral capsids and undergoes a dramatic
134 reorganization during herpesvirus lytic infection. However, the effect of EBV latent replication on
135 the nuclear lamina has not been widely explored. To assess whether EBV latent replication
136 alters the nuclear lamina composition, we analyzed the expression of its two major components,
137 lamin B1 and lamin A/C, in a panel of EBV+ B cell lines and primary B cells from a healthy
138 donor (**Figure 1**). Using western blot analysis, we observed that primary B cells and all cell lines
139 express lamin B1. In contrast, lamin A/C expression was present only in EBV+ B cells adopting
140 the Type III latency (Mutu-LCL, B95.8-LCL, GM12878, and Mutu III). This was not due to
141 inherent genetic differences in the host cells or EBV strains, as the lamin A/C protein was
142 differentially expressed in Mutu III cells (Type III) and Mutu I cells (Type I) that are fully isogenic
143 with respect to both the host and EBV genomes.

144 To determine whether the differences in the composition of the nuclear lamina correlate with
145 changes in its structure and whether the localization of the lamins differs between EBV latency
146 types, we used immunofluorescence microscopy to assess the specific localization of lamin B1
147 and lamin A/C in the nucleus of Mutu I cells and LCL cells (Mutu-LCL, Type III) generated by
148 immortalization of primary B cells with the Mutu strain of EBV. We found that lamin B1 was
149 localized at the nuclear rim in both Mutu I and Mutu-LCL cells (**Figure 1B** and **1C**), in

Caruso et al 2022

150 agreement with previous observations. In contrast, lamin A/C staining was present only in Mutu-
151 LCL cells, consistent with our western blotting results and confirming that lamin A/C expression
152 is restricted to Type III EBV+ B cells (**Figure 1B**). In Mutu-LCL cells, lamin A/C staining was
153 localized at the nuclear rim (**Figure 1B**) and overlapped with lamin B1 staining (**Figure 1C**).
154 Lamin A/C staining was also present in the nucleoplasm, although with lower intensity than at
155 the nuclear rim, in agreement with previous reports indicating that a fraction of lamin A/C exists
156 in the nucleoplasm (**Figure 1C and 1D**). To further investigate the distribution of lamin A/C and
157 lamin B1 in LCL cells and to validate the presence of lamin A/C in the nucleoplasm, we
158 qualitatively analyzed the fluorescence intensity of lamin B1, lamin A/C and DAPI along the
159 nuclear diameter. We confirmed that the lamin A/C signal was distributed from the nuclear
160 lamina toward the interior of the nucleus, while lamin B1 was localized only at the nuclear
161 lamina (**Figure 1D**). Using laser scanning confocal microscopy in z-stack mode, we confirmed
162 that lamin B1 and lamin A/C colocalize at the nuclear rim, but lamin A/C was also present in the
163 interior of the nucleus (**Supplementary video 1 and 2**). Overall, these results show that the
164 composition of the nuclear lamina differs among EBV+ latently infected B cells, with lamin A/C
165 expressed only in cells adopting the Type III latency.

166 **EBV infection of primary B cells induces lamin A/C expression.** Since we observed that
167 primary B cells do not express the lamin A/C protein, we tested whether lamin A/C expression is
168 induced upon EBV infection or as a later consequence of infection (**Figure 2**). First, we
169 analyzed by immunofluorescence microscopy the expression of lamin B1 and lamin A/C in
170 primary B cells from healthy donors before and 24 hours after infection with EBV (B95.8 virus
171 strain). We confirmed that B cells expressed lamin A/C only after EBV infection and that the
172 lamin A/C signal was detected both at the nuclear rim, where it overlapped with lamin B1, and in
173 the nucleoplasm, as observed in Type III EBV+ cell lines (**Figure 2A**). In addition, we observed
174 that the nuclei of infected cells had a lobulated shape (**Figure 2A**). These data indicate that

Caruso et al 2022

175 lamin A/C was expressed upon EBV infection, and this change in nuclear lamina composition
176 correlated with altered nuclear shape in infected cells.

177 It has been reported that both viral and cellular genes are expressed in different patterns
178 during the time necessary for EBV to transform primary B cells to LCLs [57, 58]. We therefore
179 explored whether lamin A/C expression changes during progression of EBV infection by
180 interrogating RNA-Seq datasets of primary B cells from healthy donors before and after EBV
181 infection, at 9 different timepoints (**Figure 2B**). We observed that lamin A/C mRNA abundance
182 significantly increased 4 days post infection and reached a ~10-fold increase 28 days post
183 infections, when EBV+ B cells exhibit LCL physiology and the Type III latency gene expression
184 program (**Figure 2B**). Using proteomic datasets obtained from human primary B cells before
185 and after EBV infection, we found that lamin A/C protein levels mirrored the surge in lamin A/C
186 mRNA expression, reaching a ~5-fold increase in the same time frame (**Figure 2C**). Taken
187 together, these results demonstrate that EBV infection and the subsequent establishment of the
188 Type III latency program induce and maintain lamin A/C expression in B cells.

189 **B cell activation induces lamin A/C expression.** In infected B cells, the EBV type III
190 latency program is characterized by the expression of viral latent proteins, including EBNA2 and
191 LMP1, that interfere with B cell biology and mimic key aspects of antigen-mediated B cell
192 activation. We therefore investigated whether physiological activation of B cells also induced
193 lamin A/C expression. To address this question, we compared lamin A/C and lamin B1
194 expression in primary B cells before and after 24 hours of treatment with interleukin 4 (IL-4),
195 CD40 ligand (CD40L), and CpG oligodeoxynucleotides, a cocktail that mimics antigen activation
196 and stimulates B cell proliferation (**Figure 3**). We achieved ~65% of activated B cells, as
197 demonstrated by expression of the transmembrane C-Type lectin protein CD69, a marker for B
198 cell activation (**Supplementary Figure 1**). Analyzing CD69+ B cells and untreated (control) cells
199 by immunofluorescence microscopy, we detected lamin B1 expression at the nuclear rim in both

Caruso et al 2022

200 conditions (**Figure 3A**). Lamin A/C expression was observed both at the nuclear rim,
201 colocalizing with lamin B1 signal, and in the nucleoplasm in CD69+ B cells, but not in untreated
202 cells. Furthermore, the nuclei of activated B cells had an irregular and elongated shape (**Figure**
203 **3A**). Since the stimulatory cocktail activates both BCR and CD40 signaling pathways, we next
204 dissected which of the B cell stimuli included in the cocktail treatment triggered lamin A/C
205 expression. We used RNA-Seq to quantify the expression of lamin A/C in B cells after treatment
206 with CD40L, CpG, α IgM, or IL-4, individually or in different combinations. B cell activation with
207 CD40L alone was sufficient to induce a 3-fold increase in lamin A/C expression compared to
208 untreated cells, whereas treatment with CpG, α IgM or IL-4 alone had a very modest effect
209 (**Figure 3B**). The increase in lamin A/C expression was similar after treatment with CD40L
210 alone and in combination with the other stimulatory compounds, negating the existence of
211 additive or synergistic effects between CD40 signaling and BCR signaling in inducing lamin A/C
212 expression (**Figure 3B**). Proteomic analysis of lamin A/C expression in B cells before and after
213 the stimulatory treatment described above showed that CD40L was sufficient to induce a
214 significant increase of lamin A/C protein levels compared to control (**Figure 3C**). Consistent with
215 RNA-Seq data, there was no additive or synergistic effect on lamin A/C expression when B cells
216 were treated with CD40L in combination with the other stimulatory compounds (**Figure 3C**).
217 These results indicated that induction of lamin A/C expression is part of the cascade of cellular
218 changes that occur in B cells after activation via T-cell CD40L stimulation.

219 **The EBV genome interacts with the nuclear lamina at viral LADs during latency.** The
220 binding of lamin B and lamin A/C to genomic DNA affects the epigenetic modifications of the
221 interacting chromatin regions. Based on the observed changes in nuclear lamina composition
222 between EBV latency types and the increased expression of lamin A/C resulting from EBV
223 infection, we investigated whether the EBV genome interacts with the nuclear lamina during
224 latency and whether this interaction is latency type-specific. We used chromatin

Caruso et al 2022

225 immunoprecipitation followed by next-generation sequencing (ChIP-Seq) to assess lamin B1
226 and lamin A/C binding across the EBV genome in Mutu I (Type I) and LCL (Type III) cells
227 (**Figure 4**). Using a computational peak calling method, we identified areas in the EBV genome
228 enriched for the binding of nuclear lamins in Type I and Type III latency, suggestive of the
229 existence of LADs across the viral latent genome (**Figure 4**, and **Supplementary table 1**). In
230 Type I cells, we identified 23 viral regions enriched for lamin B1, including 3 prominent peaks, 2
231 of which localized at lytic origins of DNA replication (OriLyt-left and RPMS1-OriLyt), and 1 at the
232 tandemly arranged terminal repeats (TR) region (**Figure 4**, blue track, and **Supplementary**
233 **table 1**). In Mutu I cells, the width of lamin B1-LADs varied, with an average of 2.4 kbp
234 (**Supplementary table 1**). In contrast, in Type III cells we identified only 3 viral regions
235 associated with lamin B1, coinciding with the three prominent peaks present in Type I cells.
236 (**Figure 4**, green track, and **Supplementary table 1**). In addition to being less numerous, we
237 noticed that lamin B1-LADs were narrower in LCL cells compared to Mutu I. In Type III cells, we
238 identified 16 EBV regions bound by lamin A/C, including a peak at the TR region and a cluster
239 of peaks spanning the region between 110 kbp and 130 kbp (**Figure 4**, orange track, and
240 **Supplementary table 1**). By quantitative ChIP, we confirmed that lamin B1 was bound to the
241 OriLyt-left and TR regions in both Mutu I and LCL cells, while lamin A/C was bound to these
242 regions in LCL cells only (**Supplementary Figure 2**). Overall, these results indicate that viral
243 LADs are present in the EBV genome and are enriched for lamin B1 in Type I latency and for
244 lamin A/C in Type III latency.

245 **Different pattern of lamina association between Type I and Type III EBV genomes.** The
246 differences in expression of lamin A/C between Type I and Type III latency and the presence of
247 lamin A/C in the nucleoplasm of infected cells prompted us to study the relationship between
248 lamin A/C and lamin B binding across the EBV genome in Type I and Type III latency. We
249 applied a Spearman correlation using the number of reads at each peak as variables

Caruso et al 2022

250 (Supplementary Figure 3). We found that lamin B1 binding strongly correlated between Mutu I
251 and LCL cells and with lamin A/C binding in LCL cells (Supplementary Figure 3). Next, we
252 generated an UpSet plot [59] to visually quantify the relationship between lamin B1 and lamin
253 A/C binding across the EBV genome in Mutu I and LCLs. We observed similarity and
254 differences between latency types with respect to the nuclear lamina interactions. We confirmed
255 lamin B1 binding to three regions both in Mutu I and LCL cells. These regions also interacted
256 with lamin A/C in LCL cells (Figure 5A and 5B). In contrast, 8 LADs were bound by lamin B1 in
257 Mutu I cells and lamin A/C in LCL cells, suggesting that the transition between latency types is
258 associated with a switch in nuclear lamina components at these LADs (Figure 5A), which
259 include the region downstream the lytic promoter Zp (~ 90 Kk) and the region of RPMS-OriLyt
260 (140 -150 Kb) (Figure 5C). Finally, we identified 12 regions that exclusively interacted with
261 lamin B1 in Mutu I cells and 5 regions that exclusively interacted with lamin A/C in LCL cells
262 (Figures 5A and 5D). Overall, the viral LADs formed by lamin B1 and lamin A/C in the two
263 different EBV latency types partly overlap, however, some LADs contain only one of the two
264 nuclear lamina components. This indicates a rearrangement of the nuclear lamina-EBV genome
265 interactions between latency types and suggests that the nuclear lamina may play alternative
266 functions in regulating EBV gene expression.

267 **Lamin A/C binding regulates the chromatin composition of the EBV genome.** Since lamin
268 B1 and lamin A/C binding regulates gene expression, our data suggest that the nuclear lamina
269 proteins may regulate EBV latency. To test this hypothesis, we used CRISPR/Cas9 gene editing
270 to knock out lamin A/C expression and assess the effect of its depletion in LCL cells (Figure 6).
271 We focused on lamin A/C because its expression is linked to EBV infection and specific to type
272 III latency. Furthermore, B-type lamins, including lamin B1, are essential for mammalian cells
273 [60, 61], therefore their depletion in B cells may lead to cell death. We used two different single-
274 guide RNAs (sgRNAs) that target distinct regions of the *LMNA* gene. After puromycin selection,

Caruso et al 2022

275 we obtained two stable LCL cell lines in which we successfully knocked out *LMNA* gene
276 expression, as verified by western blot and immunofluorescence analysis (**Figure 6A** and **6B**).
277 We found that lamin A/C depletion had no effect on lamin B1 expression and localization and
278 did not alter the nuclear shape (**Figure 6B**). We then tested whether the interaction of lamin B1
279 with the EBV genome was affected in lamin A/C KO cells. We used quantitative ChIP to quantify
280 lamin A/C and lamin B1 binding at the OriLyt-left and TR regions, two of the viral LADs bound
281 by both nuclear lamin proteins in type III LCL cells and where prominent lamin B1 peaks were
282 observed in type I Mutu cells (**Figure 4** and **Figure 5B**). In lamin A/C KO cells, lamin B1 binding
283 increased at OriLyt-left and decreased at the TR regions (**Figure 6C**), suggesting that the effect
284 of lamin A/C on the binding of the nuclear lamina components may vary between different
285 regions of the EBV genome.

286 Chromatin regions that interact with the nuclear lamina are enriched for specific histone marks:
287 H3K9me2 [29]—a marker associated with localization at the nuclear periphery, and H3K27me3
288 [36]—a marker associated with heterochromatin and downregulation of gene expression. We
289 assessed the effect of lamin A/C on H3K9me2 and H3K27me3 deposition at OriLyt-left and TR
290 regions and found that in KO cells, H3K9me2 deposition was reduced at both viral sites, while
291 H3K27me3 deposition was reduced only at OriLyt-left (**Figure 6C**), consistent with the observed
292 differences in lamin B1 binding between these two regions in KO cells.

293 In mammalian cells, the LADs borders are demarcated by binding of CTCF [36], a protein
294 implicated in chromatin loop formation. We recently reported that CTCF regulates changes in
295 the three-dimensional structure of the EBV genome between types of latency [22]. This
296 prompted us to investigate the relationship between lamin A/C and chromatin looping across the
297 EBV genome. We used *in situ* HiC assay followed by enrichment for EBV-EBV chromatin
298 interaction as we recently described [22], to assess the 3D structure of the EBV genome in
299 lamin A/C KO cells and Ctrl cells (**Supplementary Figure 4**). We found few loops with a fold

Caruso et al 2022

300 change ≥ 2 and with a p value $< 0.05\%$. (**Supplementary figure 4A**). When we corrected our
301 analysis for multiple testing, we observed no loops with a false discovery rate (FDR) $<5\%$,
302 indicating that lamin A/C depletion did not cause significant changes in the EBV chromatin
303 architecture (**Supplemental Figure 4B**). Taken together, these findings demonstrate that lamin
304 A/C binding during latency influences the interaction of the EBV genome with the other
305 component of the nuclear lamina and regulates viral chromatin composition without affecting the
306 chromatin architecture.

307 **Lamin A/C regulates EBV gene expression during latency.** We and others have
308 demonstrated that epigenetic modifications play an essential role in regulating viral gene
309 expression during latency. In lamin A/C KO cells, we observed changes in both lamin B1
310 occupancy and H3K9me2 and H3K27me3 deposition at viral LADs. To test whether EBV gene
311 expression was altered as a consequence of lamin A/C depletion, we used RNA-Seq to analyze
312 EBV global gene expression in KO and Ctr LCL cells (**Figure 7**). We performed an
313 unsupervised principal component analysis (PCA) to assess the dominant direction of viral gene
314 expression variability in our RNA-Seq datasets (**Figure 7A**). We observed that the first PC is
315 associated with lamin A/C KO, with 61% of the viral gene expression variance between samples
316 explained by the biological absence of lamin A/C (**Figure 7A**). We identified 27 EBV genes
317 differentially expressed ($p<0.05$) between Ctr and lamin A/C KO cells, corresponding to a
318 change in the expression of $\sim 25\%$ of all EBV genes (**Figure 7B**). Through an unsupervised
319 hierarchical cluster analysis, we found that all of the 11 EBV genes that were downregulated in
320 lamin A/C KO cells encoded proteins that play a role during viral lytic replication (**Figure 7B**),
321 while 14 of the 16 upregulated genes encoded EBV latent proteins, including EBNA3A, -3C, -
322 3D, LMP1 and LMP2, the EBER family, and EBNA2 (**Figure 7B**). The transcriptome profile of
323 lamin A/C KO LCL cells is consistent with a role of lamin A/C in downregulating Type III latency

Caruso et al 2022

324 and supporting lytic gene expression. Overall, our results show that the nuclear lamina is an
325 important regulator of EBV viral gene expression during latency.

326 **DISCUSSION**

327 EBV latent infection is characterized by alternative and dynamic expression patterns of viral
328 latent genes, which correspond to distinct latency types. These latency types exert different
329 effects on infected cells and correlate with different EBV malignancies. We and others have
330 demonstrated that the EBV latency types are associated with different levels of DNA
331 methylation and histone modifications across the viral genome, indicating the importance of
332 epigenetics in establishing and maintaining EBV latency [18, 62]. How the viral epigenetic
333 patterns are regulated is only partially understood. The nuclear lamina is an important regulator
334 of the epigenome as it interacts with specific regions of the chromatin and influences its
335 composition. A role of the nuclear lamina in regulating herpesviruses infection, including EBV,
336 has been reported during viral lytic activation, but, to the best of our knowledge, the ability of the
337 nuclear lamina to regulate EBV gene expression during latency has been unexplored. Here, we
338 report that EBV latent infection alters the composition of the nuclear lamina and is linked to
339 lamin A/C expression. We found that Type III latent EBV+ B cells express lamin A/C in addition
340 to lamin B1 and observed similar changes in lamin A/C expression upon EBV primary infection,
341 which triggers germinal center-like differentiation of naïve B cells, consistent with lamin A/C
342 expression being correlated with cell differentiation [63, 64]. Our temporal proteomic and
343 transcriptomic analyses reveal indeed a steady increase in lamin A/C expression starting 4 days
344 after EBV infection, when the first cell division is observed in infected B cells [58].

345 EBV infection of primary B cells triggers cell activation and proliferation by mimicking
346 fundamental B cell signaling pathways, including the BCR and CD40 pathways. Our results
347 show that CD40 signaling triggers lamin A/C expression, confirming previous reports that in

Caruso et al 2022

348 immune cells, lamin A/C is rapidly expressed upon antigen activation [39]. Since the EBV
349 protein LMP1 mimics CD40-mediated B cell activation [65, 66], we speculated that lamin A/C
350 expression may be dependent on LMP1. Interestingly, work from the Gewurz laboratory showed
351 that LMP1 is expressed 4 days post infection of primary B cells, which temporally coincides with
352 expression of lamin A/C in EBV-infected B cells in our analysis [57]. Overall, our results indicate
353 that the induction of lamin A/C is part of the transcriptional reprogramming induced by EBV
354 infection to mimic CD40 stimulation and trigger germ-like differentiation of naïve B cells.

355 The changes in nuclear lamina composition observed upon EBV infection of B cells and
356 between Type I and Type III EBV+ cell lines, and the well-established link between nuclear
357 lamina and gene regulation, prompted us to investigate whether lamin B1 and lamin A/C interact
358 with the EBV genome during latency. We report for the first time the existence of LADs across
359 the EBV genome. We found that the pattern of lamin B1 and lamin A/C binding to the EBV LADs
360 varies between EBV latency types. Our data show that in Type I latency, lamin B1 extensively
361 binds the EBV genome at 23 regions. Since chromatin regions that interact with the nuclear
362 lamina are repressed, this observation is concordant with the robust transcriptional repression of
363 viral genes in Type I latency and suggests that transcriptionally silent EBV regions may localize
364 at the nuclear periphery, where lamin B1 is located. Notably, in EBV+ gastric cancer cells, in
365 which viral gene expression is limited, genome-wide associations between the EBV
366 chromosome and the host genome tend to occur at genomic regions associated with the
367 nuclear lamina [67]. During Type III latency, lamin B1 binding was restricted to 3 regions, while
368 lamin A/C binding was prevalent (16 regions). Among the regions where lamin B1 binding was
369 conserved in both latency types and overlapped with lamin A/C binding, we observed the two
370 origins of lytic replication OriLyt-left and RMPSI-OriLyt that are inactive during latency, pointing
371 to a role of the nuclear lamina in regulating viral lytic genome replication. These observations
372 are consistent with work from the Miranda group showing that upon EBV lytic reactivation, when

Caruso et al 2022

373 both OriLyt regions are active, the interactions between EBV and human LADs decrease [68].
374 Although lamin B1 and lamin A/C colocalized at the nuclear rim, a lamin A/C nucleoplasmic pool
375 was present in type III EBV+ cells, suggesting it could interact with the chromatin. We speculate
376 that in Type III latency the EBV regions exclusively associated with lamin A/C may be localized
377 in the proximity of the nuclear lamina but in a less peripheral position than lamin B1-associated
378 viral regions in Type I latency. This hypothesis is supported by the observation that in LCL and
379 Raji cells, which adopt a Type III latency, the EBV genome is localized at the perichromatinic
380 region of the nucleus [69]. Overall, our results uncover the dynamic interaction existing between
381 the EBV genome and lamins during latency and reveal the importance of lamin A/C expression
382 in repositioning the EBV genome with respect to the nuclear periphery.

383 Rearrangement of the lamin-genome interactions and changes in lamin composition of the
384 LADs contribute to changes in gene expression. We observed that lamin A/C depletion alters
385 the expression of 27 of the ~ 100 genes expressed by EBV and exerts specific and opposite
386 effects on the expression of latent and lytic genes. In fact, depletion of lamin A/C resulted in
387 upregulation of latent genes and downregulation of lytic genes, suggesting a role of lamin A/C in
388 fine-tuning EBV gene expression during latency. Our data suggest therefore that EBV infection
389 induces expression of lamin A/C, which subsequently binds the viral genome and modulates the
390 expression of viral latent genes. This hypothesis is consistent with published transcriptional
391 profiling of EBV infection of B cells showing that in the pre-latent viral phase of the infection, the
392 peak of lamin A/C expression coincides with reduced expression of EBNA2, BHRF1, and
393 EBNA-LP [58]. More work will be necessary to better understand the role of lamin A/C during
394 the early stages of EBV infection, but our data establish a role of this protein in transcriptionally
395 regulating viral gene expression during latency.

396 The nuclear lamina-genome interactions regulate gene expression by modifying the chromatin
397 composition (i.e., histone modifications). In Type III latency, we observed that lamin A/C

Caruso et al 2022

398 depletion resulted in reduced H3K9me2 deposition at viral loci bound by both lamin A/C and
399 lamin B1. The H3K9me2 histone mark is specifically associated with heterochromatin regions
400 positioned at the nuclear periphery, and reduced H3K9me2 levels at LADs weaken the
401 association of these regions with the nuclear lamina [29]. Our results therefore highlight the role
402 of the nuclear lamina in regulating the chromatin composition of the EBV genome by affecting
403 H3K9me2 deposition across the viral genome during latency. We hypothesize that this altered
404 histone modification may play an important and underappreciated role in regulating EBV
405 latency. We plan to further explore the role of the H3K9me2 histone mark in regulating the EBV
406 epigenome and viral gene expression by inhibiting the H3K9 methyltransferase G9a.

407 Lamin A/C and lamin B1 binding regulates the three-dimensional organization of the cellular
408 genome, and our recent work has showed the importance of 3D chromatin structure in
409 controlling viral gene expression between latency types [22]. However, we did not observe
410 effects on the 3D-structure of the EBV episome after lamin A/C depletion, indicating that lamin
411 A/C binding changes the local composition of the viral chromatin without affecting its
412 architecture.

413 Based on our observations on the location of lamin A/C within the nuclear space, we propose
414 that upon EBV infection, lamin A/C accumulates in the nucleus of infected cells, where it binds
415 the EBV genome and repositions it toward the nuclear periphery, attenuating viral gene
416 expression. As lamin A/C is present both at the nuclear periphery and in the nuclear interior, the
417 association of lamin A/C EBV LADs with the nuclear lamina is dynamical, allowing expression of
418 a few viral latent genes. Rearrangement of the nuclear lamina-EBV genome interactions and the
419 observed lamin B1/lamin A/C switch may result in heterochromatin deposition across the viral
420 genome and repression of EBV gene expression. How remodeling of the viral LADs occurs
421 remains unknown, but since B cell differentiation is known to induce a reorganization of the

Caruso et al 2022

422 nuclear space, we argue that the effects of EBV infection on B cell differentiation may induce
423 this remodeling.

424 Further studies are required to validate our hypothesis, but our results highlight for the first time
425 the dynamic interplay between lamin A/C and lamin B1 and the EBV genome during viral
426 latency and the regulatory role of the lamin-genome interaction in restricting viral latent gene
427 expression.

428 The nuclear lamina plays an anti-viral role in herpesvirus replication, including EBV, HSV1 and
429 HSV2, and HCMV, representing a physical barrier that prevents viral capsid egress. Elegant
430 work from the Knipe group also showed the importance of the nuclear lamina in the formation of
431 HSV-1 viral replication compartments [43-49]. Our data shed light on an additional antiviral
432 function during EBV latency, by contributing to the formation of an epigenetic “barrier” across
433 the viral genome that restricts viral gene transcription.

434 Our work has some limitations. It is possible that lamin A/C may work as a repressor of latent
435 gene expression in cooperation with other cellular factors or transcription factors that can help
436 tether the EBV viral genome at the nuclear periphery. It is worth noting that a similar model has
437 been proposed for the regulation of HSV-1 lytic gene expression by lamin A/C [46]. It will be of
438 interest to identify the cellular factor(s) that cooperate with the nuclear lamina to anchor the EBV
439 genome at the nuclear periphery. The changes we observed in the composition of the nuclear
440 lamina may also affect host gene expression, an aspect that we left unexplored. Although such
441 studies are beyond the scope of this work, the role of lamin A/C regulating host gene expression
442 may be relevant to the creation of a cellular environment that supports Type III viral latency and
443 EBV-induced cell proliferation.

444 In summary, our results, together with previous work from our group and others, reveal a novel
445 and unrecognized function of the nuclear lamina in the host response against the intrusion of

Caruso et al 2022

446 viral DNA into the nucleus. Our work adds an important piece of information to the existing
447 model of how host epigenetic factors regulate the viral chromatin, and how host and viruses
448 communicate to regulate gene expression through chromatin modification. Gaining a better
449 insight into the nuclear lamina/EBV interaction will help reveal additional molecular steps that
450 are necessary for cells to control viral replication.

451 **MATERIALS AND METHODS**

452 **Cell culture and treatment.** Cell lines were maintained in a humidified atmosphere containing
453 5% CO₂ at 37°C. EBV positive cell lines were cultured in suspension in RPMI 1640
454 supplemented with fetal bovine serum at a concentration of either 10% for type I latency (Mutu
455 and Kem I) or 15% for type III latency (LCL, Kem III, and GM12878). All cell media were
456 supplemented with 1% penicillin-streptomycin.

457 **CRISPR Cas9 Mutagenesis.** B-cells were transduced with lentiviruses expressing sgRNAs, as
458 previously described [70]. Briefly, lentiviruses were produced by transfection of 293T cells,
459 which were plated in a 6-well dish at a density of 600,000 cells per well in 2 mL DMEM
460 supplemented with 10% fetal calf serum 24 hours before transfection. Transfection was done
461 using the TransIT-LT1 Transfection Reagent (Mirus). Two solutions were prepared for each
462 well: a solution with 4 mL of LT1 diluted in 16 mL of Opti-MEM (Corning) and incubated at room
463 temperature for 5 min. The second solution contained 150 ng pCMV-VSVG (Addgene 8454),
464 400 ng psPAX2 (Addgene 12260), and 500 ng plentiguide puro expression vector (Addgene cat
465 # 52963), in a final volume of 20 mL with Opti-MEM. The two solutions were then mixed and
466 incubated at room temperature for 30 min, added dropwise to wells and gently mixed. Plates
467 were returned to a 37C humidified chamber with 5% CO₂. The following day, media was
468 exchanged to RPMI with 10% fetal calf serum. Virus supernatant was harvested 48h post-
469 transfection and filtered through a 0.4 uM sterile filter. Fresh media was replenished on the

Caruso et al 2022

470 293T producer cell and a, second harvest, was done 72h post-transfection and again sterile
471 filtered. Virus supernatant was added to target cells at 48- and 72-hours post-transfection.
472 Target cell selection was begun 48 hours post-transduction by addition of puromycin 3g/ml.
473 sgRNA sequences used were as follows. Control: ATTCGCAGATCATCGACAT. LMNA:
474 GCGCCGTCATGAGACCCGAC and AGTTTAAGGAGCTGAAAGCG.

475 **B cell activation and B cells infection.** Platelet-depleted venous blood, obtained from the
476 Brigham and Women's Hospital bank, were used for primary human B cell isolation, following
477 institutional guidelines for discarded and de-identified samples. CD19+ B-cells were isolated by
478 negative selection as follows. RosetteSep (Stem Cell Technologies, #15064) and EasySep
479 negative isolation kits (Stem Cell Technologies, #19054) were used to sequentially isolate B-
480 cells, with the following modifications of the manufacturer's protocols. For RosetteSep, 40 μ L of
481 antibody cocktail was added per mL of blood and layered onto Lymphoprep density medium for
482 centrifugation. For EasySep, 10 μ L of antibody cocktail was added per mL of B cells, followed
483 by 15 μ L of magnetic bead suspension per mL of B cells. Following this negative selection,
484 FACS for CD19 plasma membrane expression was used to confirm B cell purity. The following
485 reagents were used for B-cell stimulation: MEGA-CD40L (Enzo Life Sciences Cat# ALX-522-
486 110-C010, 50ng/mL), CpG (IDT, TCGTCGTTTGTGCGTTTGTGTT, 1 μ M), α IgM (Sigma
487 Cat#10759, 1mg/mL), IL-4 (R&D Systems Cat#204-IL-050, 20ng/mL), α IgG (Agilent
488 Cat#A042402-2). Cells were cultured in RPMI-1640 (Invitrogen), supplemented with 10%
489 standard FBS and penicillin-streptomycin. Cells were cultured in a humidified incubator at 37°C
490 and at 5% CO₂.

491 **Western blot analysis.** Cell lysates were prepared in radioimmunoprecipitation assay (RIPA)
492 lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1% NP-40, 1 mM
493 EDTA; Millipore) supplemented with 1 \times protease inhibitor cocktail (Thermo Scientific). Protein
494 extracts were obtained by centrifugation at 3,000 \times g for 10 min at 4°C. Protein concentration

Caruso et al 2022

495 was measured using a bicinchoninic acid (BCA) protein assay (Pierce). Lysates were boiled
496 with 2x Laemmli sample buffer (Bio-Rad) containing 2.5% β -mercaptoethanol (Sigma-Aldrich).
497 Proteins were resolved by gel electrophoresis on a 4 to 20% polyacrylamide gradient Mini-
498 Protean TGX precast gel (Bio-Rad) and transferred to an Immobilon-P membrane (Millipore).
499 Membranes were blocked in 5% milk in PBS-T for 1 h at room temperature and incubated
500 overnight at 4°C with primary antibodies against Lamin AC (Active Motif 39287), Lamin B1
501 (Abcam ab16048), EBNA2 (Abcam ab90543), LMP1 (Abcam ab78113), and actin (Sigma-
502 Aldrich A2066) as recommended per the manufacturer. Membranes were washed, incubated for
503 1 h with the appropriate secondary antibody, either goat anti-rabbit IgG-HRP (Jackson Immuno
504 Research) or rabbit anti-mouse IgG-HRP (Jackson Immuno Research). Membranes were then
505 washed and detected by enhanced chemiluminescence.

506 **Proteomic analysis.** Samples were prepared for LC-MS/MS experiments are described
507 previously [71]. Samples were prepared for LC-MS/MS analysis as described above except
508 samples were normalized to total protein amount. A protein bicinchoninic acid assay was used
509 on clarified lysate before reduction and alkylation. Additionally, after labelling samples with TMT-
510 11 reagents, samples were normalized based on ratio check data to ensure a 1:1:1:1:1:1:1:1:1:1:1
511 total protein ratio was observed as described previously [71]. For each BPRP fractionated
512 sample, 12 of the 24 fractions were selected for LC-MS/MS analysis to reduce redundant
513 identifications. Each fraction was analyzed on a Thermo Orbitrap Fusion Lumos with a Proxeon
514 EASY-nLC 1200 system before the source (Thermo Fisher Scientific, San Jose). The mass
515 spectrometer was operated in a data-dependent centroid mode for all SPS-MS3 methods. On-
516 line chromatography was performed on a 100 μ m inner diameter microcapillary column packed
517 with 35cm of Accucore C18 resin was used. Approximately 2 μ g of labelled peptides were
518 loaded onto the column. Spectra were acquired across a 90-minute LC gradient ranging from 6-
519 25% acetonitrile in 0.125% formic acid. For the 10-condition experiment, a real-time search

Caruso et al 2022

520 method was employed in the instrument such that SPS-MS3 scans would not trigger unless a
521 successful Comet search result was obtained from a preceding MS2 scan [72]. Spectra from all
522 mass spectrometry experiments were processed and searched with an in-house Sequest-based
523 software pipeline as described previously [71, 73, 74]. Raw data acquired on mass
524 spectrometer instruments were converted into an mzXML format before a Sequest search was
525 executed against a human proteome database (Uniprot Database ID: 9606, downloaded
526 February 4, 2014). This database was concatenated with common laboratory contaminants and
527 a database comprised of all protein sequences reversed. Ion tolerances for precursor and
528 product ions were set to 50ppm and 0.9 Da respectively. A variable mass difference of
529 +15.99491 Da was assigned to methionine residues to account for potential oxidation.
530 Additionally, fixed modifications on cysteine (+57.02146 Da) and lysine and the peptide N-
531 terminus (+229.16293 Da) were assigned to account for protective alkylation and TMT-11
532 labelling, respectively.

533 **RNA extraction and RNA-seq.** Total RNA for Lamin A/C knockout experiment was isolated
534 from 1.5×10^6 cells using a PureLink RNA Mini Kit (ThermoFisher) according to the
535 manufacturer's protocol. RNA samples were submitted to the Wistar Institute genomics core
536 facility for initial analysis of RNA quality, with each sample having a RIN value greater than 8.5
537 (TapeStation, Agilent Technologies). Sequencing library preparation was then completed using
538 the QuantSeq 3'-mRNA kit (Lexogen) to generate Illumina-compatible sequencing libraries
539 according to the manufacturer's instructions. Single reads of 75 bp were obtained using a
540 NextSeq 500 sequencer. RNA-seq data was aligned using bowtie2 [75] against hg19 version of
541 the human genome and all unaligned reads were then aligned against NC_007605.1 version of
542 EBV genome and RSEM v1.2.12 software [76] was used to estimate raw read counts and
543 RPKM for EBV genes. DESeq2 [77] was used to estimate significance of differential expression
544 between groups pairs. Genes that passed nominal $p < 0.05$ (FDR < 5%) threshold were reported.

Caruso et al 2022

545 **Immunofluorescence assay.** For cell seeding sterile cover slips or slides can be used and
546 coated with adhesive material, Poly-L-Lysine (PLL). ~500 ul of 0.5 *10^6/ml cells resuspended
547 in media can be seeded on the coverslip and incubate overnight in a humidified atmosphere
548 containing 5% CO₂ at 37°C. Cells were fixed with 4% PFA and incubate at room temperature for
549 10 minutes. Cover slips washed for three times with Ca2+/Mg2+ free PBS. Then permeabilize in
550 PBS + 0.1% Triton X for 10 minutes at room temperature and then washed for three times with
551 Ca2+/Mg2+ free PBS. Coverslip were blocked in chi block (5% serum, 1%BSA in Ca2+/Mg2+
552 free PBS) for 1 hour at room temperature. Incubation with primary antibody diluted in chi block
553 [78]at 1:100 at room temperature for an hour. Wash with PBS + 0.1% Triton X for three times,
554 each wash 5 minutes. Incubation with secondary antibody, diluted 1:1000 in chi block and
555 incubated at room temperature for an hour. Wash with PBS + 0.1% Triton X for three times,
556 each wash 5 minutes last wash without tween. Mounting by adding a drop of pro Long Diamond
557 antifade mountant with DAPI, let it mount overnight and image the next day.

558 **ChIP-seq.** Chromatin immunoprecipitation with next-generation sequencing (ChIP-seq) was
559 performed as previously described [78] with minor changes. A total of 2.5 × 10⁷ cells were
560 cross-linked with 1% formaldehyde for 10 min, and chromatin was sonicated with a Qsonica
561 sonicator. One-tenth of the sonicated chromatin was collected and used as input material, while
562 the rest of the chromatin was immunoprecipitated using 5 µg of Lamin AC antibody (Active
563 Motif), 5 µg of Lamin B1 antibody (Abcam), or in LCLs and Mutu I. DNA fragments of ~150 to
564 300 bp were visualized by agarose gel purification. Immunoprecipitated DNA was ligated to
565 adapter primers using the TruSeq ChIP library preparation kit (Illumina) and then sequenced
566 using the Illumina HiSeq 2500 platform according to the manufacturer's recommendations
567 (Illumina) at the Fox Chase Cancer Center Sequencing Facility. For both LCL and Mutu I, ~15
568 ng of Lamin A/C, and B1-immunoprecipitated or input DNA was recovered from each biological
569 replicate. Sequenced reads were trimmed for quality and sequencing adapters using

Caruso et al 2022

570 trimmomatic [79] then aligned to the EBV genome using bowtie2 [75]. Aligned reads were
571 prepared for visualization in IGV browser using samtools [80] and BigWig tools [81]. Peaks were
572 called using macs2 broad peaks and differential peaks identified using macs2 bdgdiff [82].
573 Heatmaps and traces were made using deepTools [83]

574 **ChIP-qPCR.** ChIP assays were performed according to the Upstate Biotechnology, Inc.,
575 protocol as described previously, with minor modifications [78]. Briefly, cells were fixed in 1%
576 formaldehyde for 15 min, and DNA was sonicated using a Qsonica sonicator to generate 200- to
577 500-bp fragments. Chromatin was immunoprecipitated with antibodies to LaminB1 (abcam),
578 Lamin A/C (Active Motif) and H3K9me2 (abcam). Real-time PCR was performed with a master
579 mix containing 1x Maxima SYBR green, 0.25 μ M primers, and 1/50 of the ChIP DNA per well.
580 Quantitative PCRs were carried out in triplicate using the ABI StepOnePlus PCR system. Data
581 were analyzed by the $\Delta\Delta C_T$ method (where C_T is threshold cycle) relative to DNA input and
582 normalized to the IgG control.

583 **HiC assay.** Hi-C assay was performed as previously described (Reference to Nat. Comm.
584 Paper). Briefly, 5x10⁶ cells per condition were collected for in situ Hi-C. Libraries of total ligation
585 products were produced using Ultralow Library Systems V2 (Tecan Genomics, part no.
586 0344NB-32) as per manufacturer's protocol. Purified libraries were then enriched for only EBV
587 genome ligation products using myBaits enrichment kit as per manufacturer's protocol. Both
588 enriched and human libraries were sequenced using the Illumina MiSeq500 sequencing
589 platform with paired-end 75bp read length. Briefly, 75-bp paired reads were separately aligned
590 to the EBV genome (V01555.2) using Bowtie2 (version 2.2.9) with iterative alignment
591 strategy71. Redundant paired reads derived from a PCR bias, reads aligned to repetitive
592 sequences, and reads with low mapping quality (MapQ < 30) were removed. Reads potentially
593 derived from self-ligation and undigested products were also discarded. EBV genome were
594 divided into 5 kb windows with 1 kb sliding. Raw contact matrices were constructed by counting

Caruso et al 2022

595 paired reads assigned to two 5 kb windows. Hi-C biases in contact matrices were corrected
596 using the ICE method. The ICE normalization was repeated 30 times. Significant associations
597 were determined based on the distance between two 5kb windows, all combinations were
598 categorized into 20 groups. We assumed Hi-C score as Poisson distribution with a parameter λ
599 matching the mean score. We then assigned a P values for each group and applied an FDR
600 correction for multiply hypotheses. FDR < 0.05 were defined as significant 27 associations.
601 Significant associations were plotted as circos graph using the circlize package (version 0.3.3)
602 of R (version 3.6.1). The detailed protocol with all minor alterations will be happily supplied by
603 corresponding author per request.

604 **qRT-PCR.** For quantitative reverse transcription-PCR (qRT-PCR), RNA was extracted from $2 \times$
605 10^6 cells using TRIzol (Thermo Fisher Scientific) according to the manufacturer's instructions.
606 SuperScript IV reverse transcriptase (Invitrogen) was used to generate randomly primed cDNA
607 from 1 μ g of total RNA. A 50-ng cDNA sample was analyzed in triplicate by quantitative PCR
608 using the ABI StepOnePlus system. Data were analyzed by the $\Delta\Delta C_T$ method relative to
609 expression of 18S and normalized to controls.

610 **Histone Extraction.** Cell were harvest and wash twice using ice-cold PBS. Cell were
611 resuspended it in Triton Extraction Buffer (TEB: PBS containing 0.5% Triton X 100 (v/v), 2mM
612 phenylmethyl sulfonyl fluoride (PMSF), 0.02% (w/v) NaN3 at a cell density of 107 cells per ml.
613 Cell were lysed on ice for 10 minutes with gentle stirring, centrifugated at 2000 rpm for 10
614 minutes at 4 C. The supernatant was removed and discarded. Cells washed in half the volume
615 of TEB and centrifuge at before. Pellets resuspend in 0.2N HCl at a cell density of 4x107 cells
616 per ml. Acid extraction of histones over night at 4 C. Next day samples were centrifuge at 2000
617 rpm for 10 minutes at 4 C. The supernatant moved to a new clean tube and determinate the
618 protein content by Bradford assay.

Caruso et al 2022

619 **Statistical analysis.** All experiments presented were conducted at least in triplicate to ensure
620 reproducibility of results. The Prism statistical software package (GraphPad) was used to
621 identify statistically significant differences between experimental conditions and control samples,
622 using Student's *t* test as indicated in the figure legends.

623 **ACKNOWLEDGMENTS**

624 Research reported in this publication was supported by the National Institute of
625 Allergy and Infectious Diseases of the National Institutes of Health under Award
626 Number R01AI130209 to IT and R01AI164709 and CA228700 to BG, a Burroughs
627 Wellcome Career Award in Medical Sciences, and a Lymphoma Research Foundation
628 Fellowship to RG. We thank Paul Lieberman for scientific discussions the Wistar
629 Imaging Facility for technical assistance.

630 **REFERENCE:**

- 631 1. G. de-The NED, A. Geser, et al. . Sero-epidemiology of the Epstein-Barr virus: 632 preliminary analysis of an international study – a review. IARC Sci Publ 1975:pp. 3-16
- 633 2. Ohga S NA, Takada H, et al Immunological aspects of Epstein-Barr virus infection. . Crit 634 Rev Oncol Hematol 2002. doi: 10.1016/S1040-8428(02)00112-9. PubMed Central PMCID: 635 PMC12467961.
- 636 3. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic 637 diversity of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. 638 Virus Res. 2009;143(2):209-21. Epub 2009/07/15. doi: 10.1016/j.virusres.2009.07.005. PubMed 639 PMID: 19596032; PubMed Central PMCID: PMCPMC2731007.
- 640 4. Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine 641 target for cancer prevention. Sci Transl Med. 2011;3(107):107fs7. Epub 2011/11/04. doi: 642 10.1126/scitranslmed.3002878. PubMed PMID: 22049067; PubMed Central PMCID: 643 PMCPMC3501269.
- 644 5. Sarwari NM, Khouri JD, Hernandez CM. Chronic Epstein Barr virus infection leading to 645 classical Hodgkin lymphoma. BMC Hematol. 2016;16:19. Epub 2016/07/21. doi:

646 10.1186/s12878-016-0059-3. PubMed PMID: 27437106; PubMed Central PMCID:
647 PMCPMC4950766.

648 6. Khan G, Hashim M. Global burden of deaths from Epstein-Barr virus attributable
649 malignancies 1990-2010. *Infectious agents and cancer*. 2014;9(1):38 -- 11. doi: 10.1186/1750-
650 9378-9-38. PubMed PMID: Khan:2014eh.

651 7. Hsu JL, Glaser SL. Epstein-barr virus-associated malignancies: epidemiologic patterns
652 and etiologic implications. *Crit Rev Oncol Hematol*. 2000;34(1):27-53. Epub 2000/04/27. doi:
653 10.1016/s1040-8428(00)00046-9. PubMed PMID: 10781747.

654 8. Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-
655 Barr virus-induced disease. *Annu Rev Immunol*. 2015;33:787-821. Epub 2015/02/24. doi:
656 10.1146/annurev-immunol-032414-112326. PubMed PMID: 25706097.

657 9. Rickinson AB. Co-infections, inflammation and oncogenesis: Future directions for EBV
658 research. *Seminars in Cancer Biology*. 2014;26:99 -- 115. doi:
659 10.1016/j.semcan.2014.04.004. PubMed PMID: Rickinson:2014fi.

660 10. De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance
661 Proteins. *Trends Microbiol*. 2020;28(2):150-62. Epub 2019/10/19. doi:
662 10.1016/j.tim.2019.09.002. PubMed PMID: 31624007; PubMed Central PMCID:
663 PMCPMC6980450.

664 11. Chiu YF, Sugden B. Plasmid Partitioning by Human Tumor Viruses. *J Virol*. 2018;92(9).
665 Epub 2018/02/23. doi: 10.1128/JVI.02170-17. PubMed PMID: 29467315; PubMed Central
666 PMCID: PMCPMC5899212.

667 12. Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB. Three pathways of
668 Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. *Journal of
669 Virology*. 1992;66(1):122 -- 31. PubMed PMID: Rowe:1992te.

670 13. Babcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with
671 Epstein-Barr virus, express the restricted pattern of latent genes previously found only in
672 Epstein-Barr virus-associated tumors. *Proc Natl Acad Sci U S A*. 2000;97(22):12250 -- 5. doi:
673 10.1073/pnas.200366597. PubMed PMID: Babcock:2000ca.

674 14. Babcock GJ, Hochberg D, Thorley-Lawson AD. The expression pattern of Epstein-Barr
675 virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell.
676 *Immunity*. 2000;13(4):497 -- 506. PubMed PMID: Babcock:2000ww.

677 15. Avolio-Hunter TM, Lewis PN, Frappier L. Epstein-Barr nuclear antigen 1 binds and
678 destabilizes nucleosomes at the viral origin of latent DNA replication. *Nucleic acids research*.
679 2001;29(17):3520 -- 8. PubMed PMID: AvolioHunter:2001wx.

Caruso et al 2022

680 16. Dyson PJ, Farrell PJ. Chromatin structure of Epstein-Barr virus. *The Journal of general*
681 *virology*. 1985;66 (Pt 9):1931 -- 40. PubMed PMID: Dyson:1985wr.

682 17. Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. CTCF prevents the epigenetic drift
683 of EBV latency promoter Qp. *PLoS pathogens*. 2010;6(8):e1001048. doi:
684 10.1371/journal.ppat.1001048. PubMed PMID: Tempera:2010ki.

685 18. Arvey A, Tempera I, Lieberman PM. Interpreting the Epstein-Barr Virus (EBV)
686 epigenome using high-throughput data. *Viruses*. 2013;5(4):1042-54. Epub 2013/04/04. doi:
687 10.3390/v5041042. PubMed PMID: 23549386; PubMed Central PMCID: PMCPMC3705264.

688 19. Pei Y, Wong JH, Robertson ES. Herpesvirus Epigenetic Reprogramming and
689 Oncogenesis. *Annu Rev Virol*. 2020;7(1):309-31. Epub 2020/09/30. doi: 10.1146/annurev-
690 virology-020420-014025. PubMed PMID: 32991266.

691 20. Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. *Semin*
692 *Immunopathol*. 2020;42(2):131-42. Epub 2020/04/02. doi: 10.1007/s00281-020-00792-2.
693 PubMed PMID: 32232535; PubMed Central PMCID: PMCPMC7174264.

694 21. Zhang Y, Jiang C, Trudeau SJ, Narita Y, Zhao B, Teng M, et al. Histone Loaders CAF1
695 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation. *mBio*. 2020;11(5). Epub
696 2020/10/29. doi: 10.1128/mBio.01063-20. PubMed PMID: 33109754; PubMed Central PMCID:
697 PMCPMC7593962.

698 22. Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. The three-
699 dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by
700 PARP1 enzymatic activity. *Nat Commun*. 2022;13(1):187. Epub 2022/01/19. doi:
701 10.1038/s41467-021-27894-1. PubMed PMID: 35039491; PubMed Central PMCID:
702 PMCPMC8764100.

703 23. Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin
704 conformations. *PLoS pathogens*. 2011;7(7):e1002180. doi: 10.1371/journal.ppat.1002180.
705 PubMed PMID: Tempera:2011jb.

706 24. Verstraeten VL, Broers JL, Ramaekers FC, van Steensel MA. The nuclear envelope, a
707 key structure in cellular integrity and gene expression. *Curr Med Chem*. 2007;14(11):1231-48.
708 Epub 2007/05/17. doi: 10.2174/092986707780598032. PubMed PMID: 17504143.

709 25. Peric-Hupkes D, van Steensel B. Role of the nuclear lamina in genome organization and
710 gene expression. *Cold Spring Harb Symp Quant Biol*. 2010;75:517-24. Epub 2011/01/07. doi:
711 10.1101/sqb.2010.75.014. PubMed PMID: 21209388.

Caruso et al 2022

712 26. Broers JL, Machiels BM, Kuijpers HJ, Smedts F, van den Kieboom R, Raymond Y, et al.
713 A- and B-type lamins are differentially expressed in normal human tissues. *Histochem Cell Biol.*
714 1997;107(6):505-17. Epub 1997/06/01. doi: 10.1007/s004180050138. PubMed PMID: 9243284.

715 27. Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD. Nuclear Lamins. *Cold Spring*
716 *Harbor Perspectives in Biology*. 2010;2(11):a000547 -- a. doi: 10.1101/cshperspect.a000547.
717 PubMed PMID: Dechat:2010fd.

718 28. Amendola M, van Steensel B. Mechanisms and dynamics of nuclear lamina-genome
719 interactions. *Curr Opin Cell Biol*. 2014;28:61-8. Epub 2014/04/04. doi:
720 10.1016/j.ceb.2014.03.003. PubMed PMID: 24694724.

721 29. Kind J, Pagie L, Ortabozkoyun H, Boyle S, Vries SSd, Janssen H, et al. Single-cell
722 dynamics of genome-nuclear lamina interactions. *Cell*. 2013;153(1):178 -- 92. doi:
723 10.1016/j.cell.2013.02.028. PubMed PMID: Kind:2013gg.

724 30. Forsberg F, Brunet A, Ali TML, Collas P. Interplay of lamin A and lamin B LADs on the
725 radial positioning of chromatin. *Nucleus*. 2019;10(1):7-20. Epub 2019/01/22. doi:
726 10.1080/19491034.2019.1570810. PubMed PMID: 30663495; PubMed Central PMCID:
727 PMCPMC6363278.

728 31. Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T, Foisner R. A-type
729 lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated
730 polypeptide 2 alpha. *Genome Res*. 2016;26(4):462-73. Epub 2016/01/23. doi:
731 10.1101/gr.196220.115. PubMed PMID: 26798136; PubMed Central PMCID:
732 PMCPMC4817770.

733 32. Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, et al. Loss of lamin
734 A function increases chromatin dynamics in the nuclear interior. *Nat Commun*. 2015;6:8044.
735 Epub 2015/08/25. doi: 10.1038/ncomms9044. PubMed PMID: 26299252; PubMed Central
736 PMCID: PMCPMC4560783.

737 33. Camps J, Wangsa D, Falke M, Brown M, Case CM, Erdos MR, et al. Loss of lamin B1
738 results in prolongation of S phase and decondensation of chromosome territories. *FASEB J*.
739 2014;28(8):3423-34. Epub 2014/04/16. doi: 10.1096/fj.14-250456. PubMed PMID: 24732130;
740 PubMed Central PMCID: PMCPMC4101663.

741 34. Kind J, van Steensel B. Genome-nuclear lamina interactions and gene regulation. *Curr*
742 *Opin Cell Biol*. 2010;22(3):320-5. Epub 2010/05/07. doi: 10.1016/j.ceb.2010.04.002. PubMed
743 PMID: 20444586.

744 35. Poleshko A, Smith CL, Nguyen SC, Sivaramakrishnan P, Wong KG, Murray JI, et al.
745 H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through

746 mitosis. *Elife*. 2019;8. Epub 2019/10/02. doi: 10.7554/eLife.49278. PubMed PMID: 31573510;
747 PubMed Central PMCID: PMCPMC6795522.

748 36. Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. Directed targeting of
749 chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. *J Cell Biol*.
750 2015;208(1):33-52. Epub 2015/01/07. doi: 10.1083/jcb.201405110. PubMed PMID: 25559185;
751 PubMed Central PMCID: PMCPMC4284222.

752 37. Gasser B, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, et al. Step-
753 Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery. *Cell*.
754 2012;150(5):934 -- 47. doi: 10.1016/j.cell.2012.06.051. PubMed PMID: Gasser:2012et.

755 38. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, et al. Step-
756 Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery. *Cell*.
757 Hutchinson-Gilford progeria syndrome. *Proc Natl Acad Sci U S A*. 2004;101(24):8963-8. Epub
758 2004/06/09. doi: 10.1073/pnas.0402943101. PubMed PMID: 15184648; PubMed Central
759 PMCID: PMCPMC428455.

760 39. Contu F, Rangel-Pozzo A, Trokajlo P, Wark L, Klewes L, Johnson NA, et al. Distinct 3D
761 Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. *Cancers*
762 (Basel). 2018;10(9). Epub 2018/08/29. doi: 10.3390/cancers10090286. PubMed PMID:
763 30149530; PubMed Central PMCID: PMCPMC6162537.

764 40. Briand N, Collas P. Lamina-associated domains: peripheral matters and internal affairs.
765 *Genome Biol*. 2020;21(1):85. Epub 2020/04/04. doi: 10.1186/s13059-020-02003-5. PubMed
766 PMID: 32241294; PubMed Central PMCID: PMCPMC7114793.

767 41. Lee CP, Huang YH, Lin SF, Chang Y, Chang YH, Takada K, et al. Epstein-Barr virus
768 BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. *J Virol*.
769 2008;82(23):11913-26. Epub 2008/09/26. doi: 10.1128/JVI.01100-08. PubMed PMID:
770 18815303; PubMed Central PMCID: PMCPMC2583647.

771 42. Gonnella R, Farina A, Santarelli R, Raffa S, Feederle R, Bei R, et al. Characterization
772 and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1
773 and with the nuclear lamina. *Journal of Virology*. 2005;79(6):3713 -- 27. doi:
774 10.1128/jvi.79.6.3713-3727.2005. PubMed PMID: Gonnella:2005hj.

775 43. de Bruyn Kops A, Knipe DM. Preexisting nuclear architecture defines the intranuclear
776 location of herpesvirus DNA replication structures. *J Virol*. 1994;68(6):3512-26. Epub
777 1994/06/01. doi: 10.1128/JVI.68.6.3512-3526.1994. PubMed PMID: 8189490; PubMed Central
778 PMCID: PMCPMC236855.

Caruso et al 2022

779 44. Simpson-Holley M, Baines J, Roller R, Knipe DM. Herpes simplex virus 1 U(L)31 and
780 U(L)34 gene products promote the late maturation of viral replication compartments to the
781 nuclear periphery. *J Virol.* 2004;78(11):5591-600. Epub 2004/05/14. doi:
782 10.1128/jvi.78.11.5591-5600.2004. PubMed PMID: 15140956; PubMed Central PMCID:
783 PMCPMC415826.

784 45. Simpson-Holley M, Colgrove RC, Nalepa G, Harper JW, Knipe DM. Identification and
785 functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture
786 during herpes simplex virus 1 infection. *J Virol.* 2005;79(20):12840-51. Epub 2005/09/29. doi:
787 10.1128/jvi.79.20.12840-12851.2005. PubMed PMID: 16188986; PubMed Central PMCID:
788 PMCPMC1235858.

789 46. Silva L, Cliffe A, Chang L, Knipe DM. Role for A-type lamins in herpesviral DNA targeting
790 and heterochromatin modulation. *PLoS Pathog.* 2008;4(5):e1000071. Epub 2008/05/24. doi:
791 10.1371/journal.ppat.1000071. PubMed PMID: 18497856; PubMed Central PMCID:
792 PMCPMC2374905.

793 47. Silva L, Oh HS, Chang L, Yan Z, Triezenberg SJ, Knipe DM. Roles of the Nuclear
794 Lamina in Stable Nuclear Association and Assembly of a Herpesviral Transactivator Complex
795 on Viral Immediate-Early Genes. *mBio.* 2011;3(1):e00300--11 - e-11. doi: 10.1128/mBio.00300-
796 11. PubMed PMID: Silva:2011fo.

797 48. Silva L, Oh HS, Chang L, Yan Z, Triezenberg SJ, Knipe DM. Roles of the nuclear lamina
798 in stable nuclear association and assembly of a herpesviral transactivator complex on viral
799 immediate-early genes. *mBio.* 2012;3(1). Epub 2012/01/19. doi: 10.1128/mBio.00300-11.
800 PubMed PMID: 22251972; PubMed Central PMCID: PMCPMC3258183.

801 49. Oh HS, Traktman P, Knipe DM. Barrier-to-Autointegration Factor 1 (BAF/BANF1)
802 Promotes Association of the SETD1A Histone Methyltransferase with Herpes Simplex Virus
803 Immediate-Early Gene Promoters. *mBio.* 2015;6(3):e00345-15. Epub 2015/05/28. doi:
804 10.1128/mBio.00345-15. PubMed PMID: 26015494; PubMed Central PMCID:
805 PMCPMC4447252.

806 50. de Noronha CM, Sherman MP, Lin HW, Cavrois MV, Moir RD, Goldman RD, et al.
807 Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr.
808 *Science.* 2001;294(5544):1105-8. Epub 2001/11/03. doi: 10.1126/science.1063957. PubMed
809 PMID: 11691994.

810 51. Hamirally S, Kamil JP, Ndassa-Colday YM, Lin AJ, Jahng WJ, Baek MC, et al. Viral
811 mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human
812 cytomegalovirus nuclear egress. *PLoS Pathog.* 2009;5(1):e1000275. Epub 2009/01/24. doi:

Caruso et al 2022

813 10.1371/journal.ppat.1000275. PubMed PMID: 19165338; PubMed Central PMCID:
814 PMCPMC2625439.

815 52. Camozzi D, Pignatelli S, Valvo C, Lattanzi G, Capanni C, Dal Monte P, et al.
816 Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral
817 proteins pUL50 and pUL53. *J Gen Virol.* 2008;89(Pt 3):731-40. Epub 2008/02/15. doi:
818 10.1099/vir.0.83377-0. PubMed PMID: 18272765.

819 53. Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M. Novel mode of phosphorylation-
820 triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus.
821 *J Biol Chem.* 2010;285(18):13979-89. Epub 2010/03/06. doi: 10.1074/jbc.M109.063628.
822 PubMed PMID: 20202933; PubMed Central PMCID: PMCPMC2859560.

823 54. Reim NI, Kamil JP, Wang D, Lin A, Sharma M, Ericsson M, et al. Inactivation of
824 retinoblastoma protein does not overcome the requirement for human cytomegalovirus UL97 in
825 lamina disruption and nuclear egress. *J Virol.* 2013;87(9):5019-27. Epub 2013/02/22. doi:
826 10.1128/JVI.00007-13. PubMed PMID: 23427156; PubMed Central PMCID: PMCPMC3624322.

827 55. Sharma M, Kamil JP, Coughlin M, Reim NI, Coen DM. Human cytomegalovirus UL50
828 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina
829 and nuclear egress in infected cells. *J Virol.* 2014;88(1):249-62. Epub 2013/10/25. doi:
830 10.1128/JVI.02358-13. PubMed PMID: 24155370; PubMed Central PMCID: PMCPMC3911691.

831 56. Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH. Cytomegalovirus
832 recruitment of cellular kinases to dissolve the nuclear lamina. *Science (New York, NY).*
833 2002;297(5582):854 -- 7. doi: 10.1126/science.1071506. PubMed PMID: Muranyi:2002he.

834 57. Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. Epstein-Barr-Virus-
835 Induced One-Carbon Metabolism Drives B Cell Transformation. *Cell Metab.* 2019;30(3):539-55
836 e11. Epub 2019/07/02. doi: 10.1016/j.cmet.2019.06.003. PubMed PMID: 31257153; PubMed
837 Central PMCID: PMCPMC6720460.

838 58. Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al.
839 Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of
840 infection. *Proc Natl Acad Sci U S A.* 2019;116(32):16046-55. Epub 2019/07/26. doi:
841 10.1073/pnas.1901314116. PubMed PMID: 31341086; PubMed Central PMCID:
842 PMCPMC6690029.

843 59. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of
844 Intersecting Sets. *IEEE Trans Vis Comput Graph.* 2014;20(12):1983-92. Epub 2015/09/12. doi:
845 10.1109/TVCG.2014.2346248. PubMed PMID: 26356912; PubMed Central PMCID:
846 PMCPMC4720993.

847 60. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes
848 in cultured mammalian cells using small interfering RNAs. *J Cell Sci.* 2001;114(Pt 24):4557-65.
849 Epub 2002/01/17. PubMed PMID: 11792820.

850 61. Tang CW, Maya-Mendoza A, Martin C, Zeng K, Chen S, Feret D, et al. The integrity of a
851 lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human
852 cells. *J Cell Sci.* 2008;121(Pt 7):1014-24. Epub 2008/03/13. doi: 10.1242/jcs.020982. PubMed
853 PMID: 18334554.

854 62. Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis.
855 *Semin Cancer Biol.* 2014;26:22-9. Epub 2014/01/29. doi: 10.1016/j.semcan.2014.01.003.
856 PubMed PMID: 24468737; PubMed Central PMCID: PMCPMC4048758.

857 63. Wang C, Li D, Zhang L, Jiang S, Liang J, Narita Y, et al. RNA Sequencing Analyses of
858 Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. *J Virol.*
859 2019;93(13). Epub 2019/04/26. doi: 10.1128/JVI.00226-19. PubMed PMID: 31019051; PubMed
860 Central PMCID: PMCPMC6580941.

861 64. Zhao B, Zou J, Wang H, Johannsen E, Peng C-W, Quackenbush J, et al. Epstein-Barr
862 virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth.
863 *Proceedings of the National Academy of Sciences of the United States of America.* 2011. doi:
864 10.1073/pnas.1108892108. PubMed PMID: Zhao:2011in.

865 65. Huen DS, Henderson SA, Croom-Carter D, Rowe M. The Epstein-Barr virus latent
866 membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via
867 two effector regions in its carboxy-terminal cytoplasmic domain. *Oncogene.* 1995;10(3):549 --
868 60. PubMed PMID: Huen:1995tc.

869 66. Graham JP, Arcipowski KM, Bishop GA. Differential B-lymphocyte regulation by CD40
870 and its viral mimic, latent membrane protein 1. *Immunological reviews.* 2010;237(1):226 -- 48.
871 doi: 10.1111/j.1600-065x.2010.00932.x. PubMed PMID: Graham:2010id.

872 67. Okabe A, Huang KK, Matsusaka K, Fukuyo M, Xing M, Ong X, et al. Cross-species
873 chromatin interactions drive transcriptional rewiring in Epstein-Barr virus-positive gastric
874 adenocarcinoma. *Nature Genetics.* 2020:1--12. doi: 10.1038/s41588-020-0665-7. PubMed
875 PMID: 10.1038/s41588-020-0665-7.

876 68. Moquin SA, Thomas S, Whalen S, Warburton A, Fernandez SG, McBride AA, et al. The
877 Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during
878 Reactivation. *Journal of Virology.* 2018;92(3):e01413--17 - 18. doi: 10.1128/jvi.01413-17.
879 PubMed PMID: Moquin:2018gk.

880 69. Deutsch MJ, Ott E, Papior P, Schepers A. The latent origin of replication of Epstein-Barr
881 virus directs viral genomes to active regions of the nucleus. *Journal of Virology*.
882 2010;84(5):2533 -- 46. doi: 10.1128/jvi.01909-09. PubMed PMID: Deutsch:2010ju.

883 70. Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY, et al.
884 CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency
885 Factors. *Cell Host Microbe*. 2017;21(5):580-91 e7. Epub 2017/05/12. doi:
886 10.1016/j.chom.2017.04.005. PubMed PMID: 28494239.

887 71. Navarrete-Perea J, Yu Q, Gygi SP, Paulo JA. Streamlined Tandem Mass Tag (SL-TMT)
888 Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem
889 Mass Tag-Synchronous Precursor Selection-MS3. *J Proteome Res*. 2018;17(6):2226-36. Epub
890 2018/05/08. doi: 10.1021/acs.jproteome.8b00217. PubMed PMID: 29734811; PubMed Central
891 PMCID: PMCPMC5994137.

892 72. Erickson BK, Mintseris J, Schweiße DK, Navarrete-Perea J, Erickson AR, Nusinow DP,
893 et al. Active Instrument Engagement Combined with a Real-Time Database Search for
894 Improved Performance of Sample Multiplexing Workflows. *J Proteome Res*. 2019;18(3):1299-
895 306. Epub 2019/01/20. doi: 10.1021/acs.jproteome.8b00899. PubMed PMID: 30658528;
896 PubMed Central PMCID: PMCPMC7081948.

897 73. Paulo JA, O'Connell JD, Gygi SP. A Triple Knockout (TKO) Proteomics Standard for
898 Diagnosing Ion Interference in Isobaric Labeling Experiments. *J Am Soc Mass Spectrom*.
899 2016;27(10):1620-5. Epub 2016/07/13. doi: 10.1007/s13361-016-1434-9. PubMed PMID:
900 27400695; PubMed Central PMCID: PMCPMC5018445.

901 74. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, et al. A
902 tissue-specific atlas of mouse protein phosphorylation and expression. *Cell*. 2010;143(7):1174-
903 89. Epub 2010/12/25. doi: 10.1016/j.cell.2010.12.001. PubMed PMID: 21183079; PubMed
904 Central PMCID: PMCPMC3035969.

905 75. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
906 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286;
907 PubMed Central PMCID: PMCPMC3322381.

908 76. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
909 without a reference genome. *BMC Bioinformatics*. 2011;12:323. Epub 2011/08/06. doi:
910 10.1186/1471-2105-12-323. PubMed PMID: 21816040; PubMed Central PMCID:
911 PMCPMC3163565.

912 77. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
913 RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550. Epub 2014/12/18. doi:

Caruso et al 2022

914 10.1186/s13059-014-0550-8. PubMed PMID: 25516281; PubMed Central PMCID:
915 PMCPMC4302049.

916 78. Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, et al. PARP1
917 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type.
918 J Virol. 2018;92(18). Epub 2018/07/07. doi: 10.1128/JVI.00755-18. PubMed PMID: 29976663;
919 PubMed Central PMCID: PMCPMC6146685.

920 79. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
921 data. Bioinformatics. 2014;30(15):2114-20. Epub 2014/04/04. doi:
922 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID:
923 PMCPMC4103590.

924 80. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
925 Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. Epub 2009/06/10.
926 doi: 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID:
927 PMCPMC2723002.

928 81. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling
929 browsing of large distributed datasets. Bioinformatics. 2010;26(17):2204-7. Epub 2010/07/20.
930 doi: 10.1093/bioinformatics/btq351. PubMed PMID: 20639541; PubMed Central PMCID:
931 PMCPMC2922891.

932 82. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
933 analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. Epub 2008/09/19. doi:
934 10.1186/gb-2008-9-9-r137. PubMed PMID: 18798982; PubMed Central PMCID:
935 PMCPMC2592715.

936 83. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a
937 next generation web server for deep-sequencing data analysis. Nucleic Acids Res.
938 2016;44(W1):W160-5. Epub 2016/04/16. doi: 10.1093/nar/gkw257. PubMed PMID: 27079975;
939 PubMed Central PMCID: PMCPMC4987876.

940

Caruso et al 2022

941 **FIGURE LEGENDS**

942 **Figure 1: Type I and Type III EBV+ cells express different components of the nuclear**
943 **lamina. A)** Western blot for key EBV proteins (EBNA2, LMP1) and nuclear lamina components
944 (lamin B1 and A/C) in EBV-negative cell lines (B cells, Akata) and EBV-positive cell lines that
945 express the type I (Mutu I) or the type III (Mutu III, Mutu-LCL, B95.8-LCK, GM12878) latency
946 program. EBV actin was used as a loading control. Images are representative of at least three
947 independent experiments. **B)** Top: Confocal microscopy analysis of EBV+ Mutu I and LCL cells
948 stained with anti-Lamin B1 and anti-Lamin A/C antibodies and DAPI. The images show that
949 lamin A/C is differentially expressed, depending on the presence of EBV and its latency state.
950 Bottom: Higher magnifications of the boxed areas showing colocalization of the lamin proteins at
951 the nuclear periphery. **C)** Representative quality analysis of the fluorescence intensity in LCL
952 cell nuclei immunostained as described above. The fluorescence intensity was measured along
953 the dotted white line (x-axis) using a Leica software analysis.

954 **Figure 2: EBV infection of primary B cells induces the expression of lamin A/C. A)**
955 Immunofluorescence confocal microscopy analysis of B cells from a healthy donor
956 immunostained with lamin B1 (red) and lamin A/C (green) antibodies and DAPI (blu). Top:
957 control (uninfected) cells; bottom: 2 days post-infection with EBV viral particles. **B)** RNA-seq of
958 primary B cells from 3 different healthy donors that were infected with EBV and collected at the
959 indicated time points after viral infection. The plot shows the normalized reads of lamin A/C
960 mRNA. The t test p values for each time point are indicated. **C)** Whole cell proteomic analysis of
961 lamin A/C expression at the indicated time points following infection of primary human B cells as
962 described in B. The plot shows the relative abundance of lamin A/C from 3 biological replicates,
963 representing 12 human donors. The t test p values for each time point are indicated. N=3, Mean
964 \pm SD.

Caruso et al 2022

965 **Figure 3: Activation of B cells by CD40 treatment induces lamin A/C expression. A)**

966 Confocal analysis of resting (top) and activated (bottom) primary B cells from a healthy donor,
967 immunostained with lamin A/C (green) and lamin B1 (red) antibodies and DAPI (blue). For
968 activation, cells were treated for 24 hours with a stimulatory cocktail containing 20 ng/mL
969 interleukin 4 (IL-4), 5uM CD40 ligand (CD40L), and 25 ng/mL CpG oligodeoxynucleotides. The
970 right panel shows higher magnification of the boxed areas in the left panel to show
971 colocalization of the lamin proteins at the nuclear periphery. **B)** RNA-seq of primary B cells from
972 2 donors. The plot shows the normalized reads for lamin A/C mRNA after a 24-hour stimulation
973 with the indicated ligands (control = untreated cells). The values of two different experiments
974 performed in parallel is shown. **C)** Proteomic analysis of lamin A/C expression in B cells treated
975 as described above with the indicated stimulatory compounds (control = untreated cells). Data
976 are presented as Mean \pm SD (N=3). The t test p values for each time point are indicated.

977 **Figure 4: The EBV genome interacts with the nuclear lamins. A)** ChIP-Seq analysis of
978 lamin B1 and lamin A/C binding in EBV+ B cells adopting Type I (Mutu I) or Type III (LCLs)
979 latency. Blue track profile: lamin B1 binding in type I cells; green track profile: lamin B1 binding
980 in type III cells; orange track profile: lamin A/C binding in type III cells. The peaks identified
981 through peak calling method are indicated above each track. Tracks are aligned with the
982 annotated EBV genome shown at the bottom.

983 **Figure 5: Patterns of lamin B1 and lamin A/C binding on the EBV genome in different**
984 **types of latency. A)** Upset plot of EBV peaks identified in three ChIP-seq datasets. Each bar in
985 the upper plot corresponds to the number of peaks identified in the datasets indicated by black
986 dots in the lower plot. Connected dots indicate an intersection of peaks between ChIP-Seq
987 datasets. The number of EBV regions in each condition is indicated above the corresponding
988 columns. **B), C) and D)** Lamin B1 and lamin A/C ChIP-Seq tracks for unique and overlapping
989 peaks across the viral genome identified in A: LADs with lamin B1 binding in Mutu I and LCL

Caruso et al 2022

990 cells and lamin A/C binding in LCL cells (B); LADs with lamin B1 binding in Mutu I cells and
991 lamin A/C binding in LCL cells (C); LADs with lamin B1 binding only in Mutu I cells and lamin
992 A/C binding only in LCL cells (D).

993 **Figure 6: Lamin A/C knockout alters interaction of the EBV genome with the nuclear**
994 **lamina and changes viral chromatin composition.** **A)** Western blot analysis for lamin A/C,
995 lamin B1 and actin protein expression in Ctr and *LMNA* KO GM12878 LCL cells. CRISPR/Cas9
996 gene editing was used to knock out lamin A/C expression in GM12878 cell lines using two
997 different single-guide RNAs (sgRNAs) that target distinct regions of the *LMNA* gene. We
998 generated two lamin A/C KO stable bulk populations. **B)** Immunofluorescence confocal
999 microscopy analysis of Ctr and KO cells immunostained with lamin A/C (green) and lamin B1
1000 (red) antibodies and DAPI (blue). **C)** Quantitative chromatin immunoprecipitation (ChIP-qPCR)
1001 analysis of EBV chromatin extracted from Ctr and *LMNA* KO GM12878 cells. EBV chromatin
1002 was analyzed for the binding of lamin B1 and lamin A/C and the deposition of the repressive
1003 histone marks H3K9me2 and H3K27me3 at the indicated regions. Data are presented as
1004 %input. N=3, Mean \pm SD. The t test p values for the KO/ctr comparison are indicated.

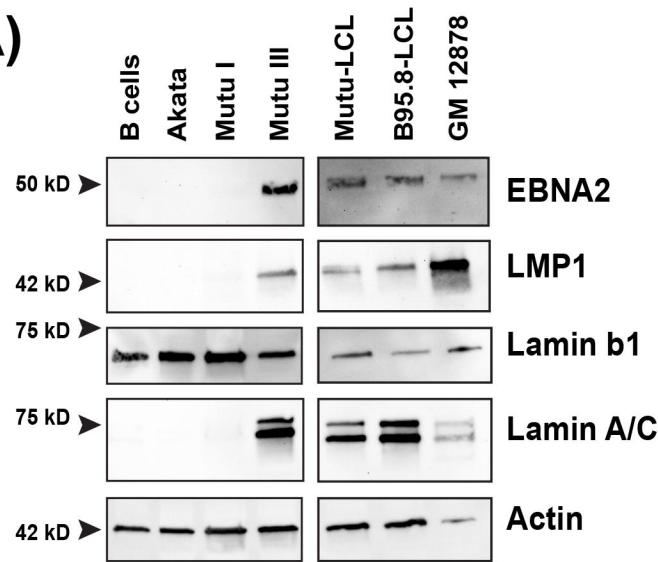
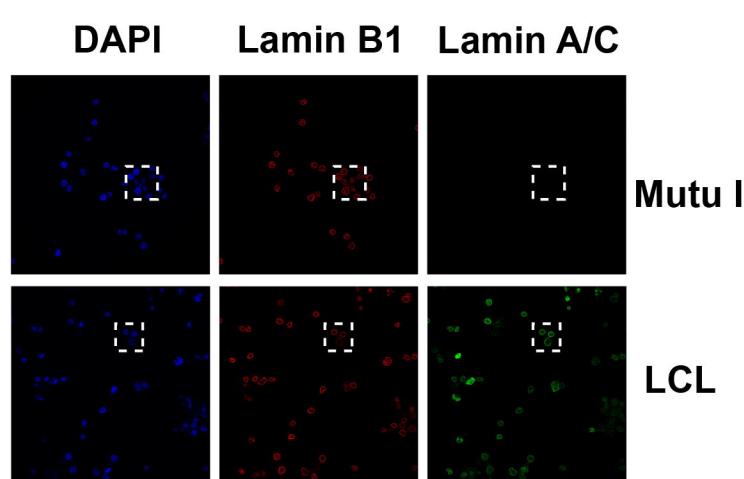
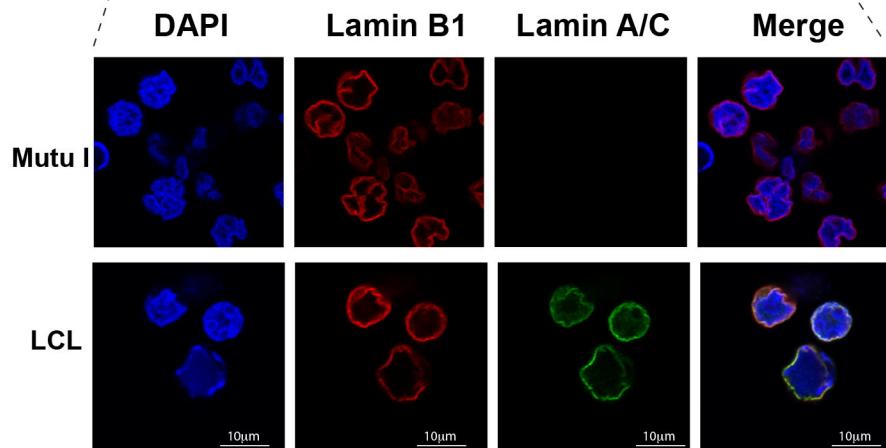
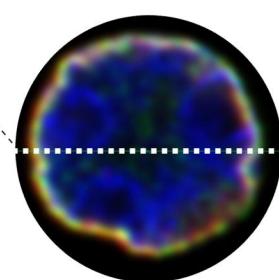
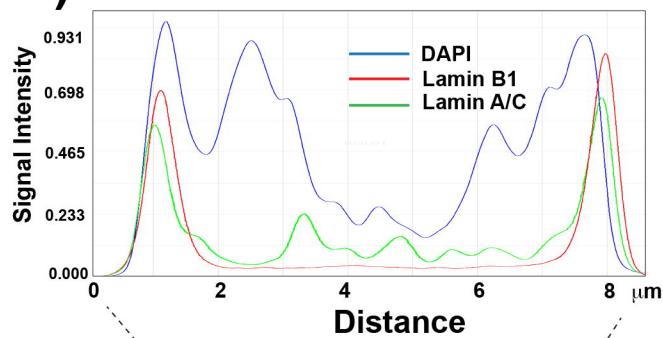
1005 **Figure 7: Lamin A/C knockout deregulates EBV gene expression in Type III B cells. A)**
1006 Principal Component Analysis (PCA) of RNA-Seq analysis of Ctr and KO LCL cells (3 samples
1007 and 2 samples, respectively). The samples are shown as a function of principal component 1, or
1008 PC1 (x-axis), and principal component 2, or PC2 (y-axis). The percentage of variance explained
1009 by PC1 and PC2 is indicated. **B)** Heat map of RNA-seq data from Ctr and *LMNA* KO LCL cells
1010 showing genes whose expression was significantly altered ($P < 0.05$) by lamin A/C depletion,
1011 which include EBNAs and LMP1 family members; differences were calculated using p-values.

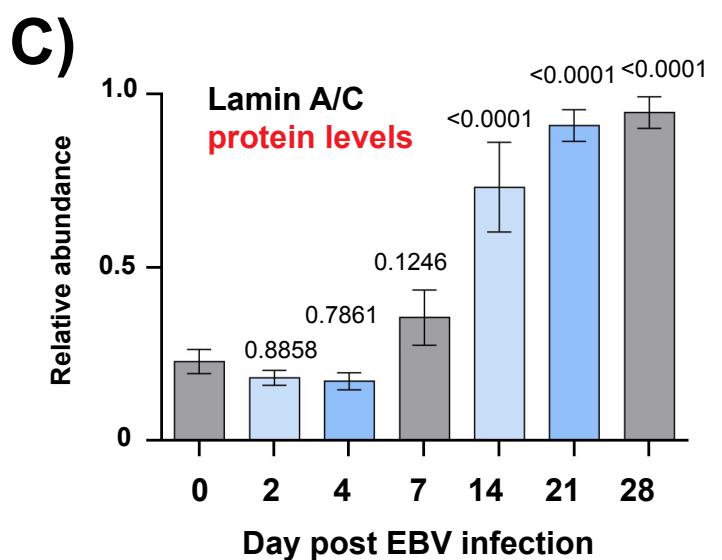
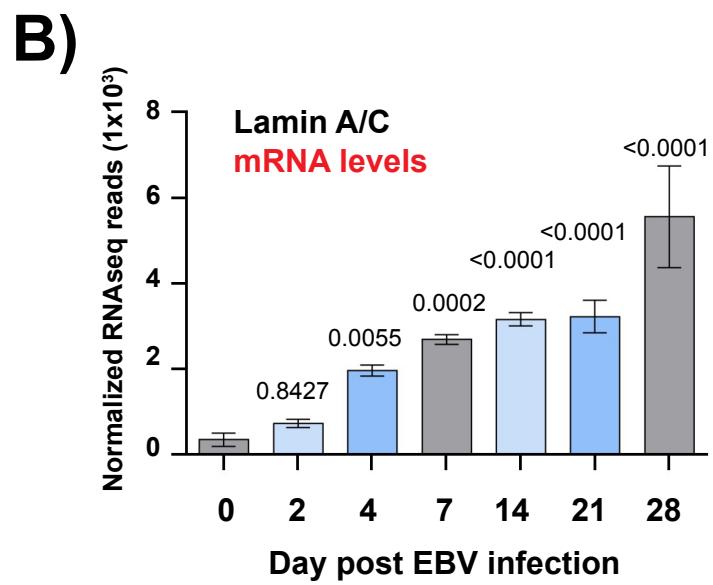
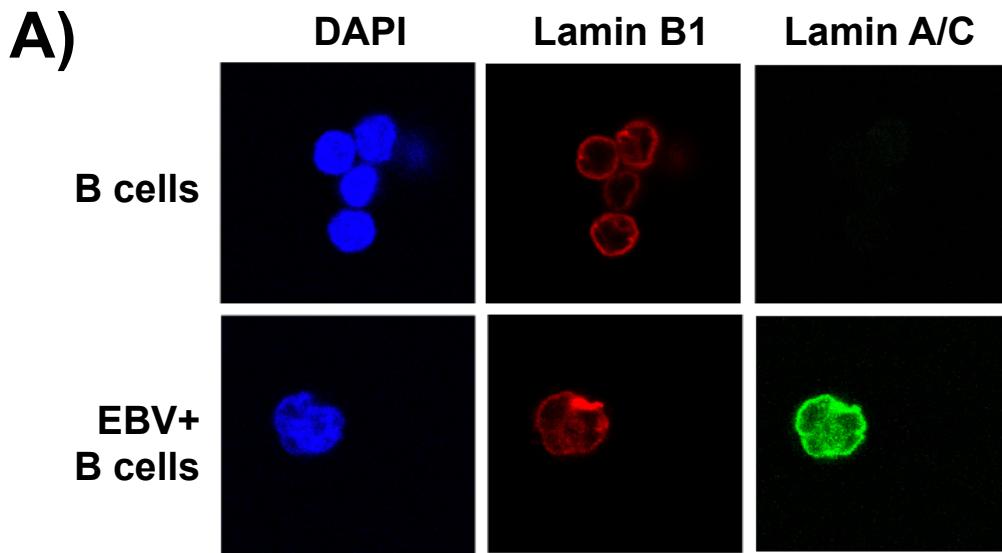
1012 **Supplementary Figure 1:** The graph shows the percentage of CD69+ and CD69- cells after
1013 FACS sorting of primary B cells treated for 24 hours with a stimulatory cocktail containing 20

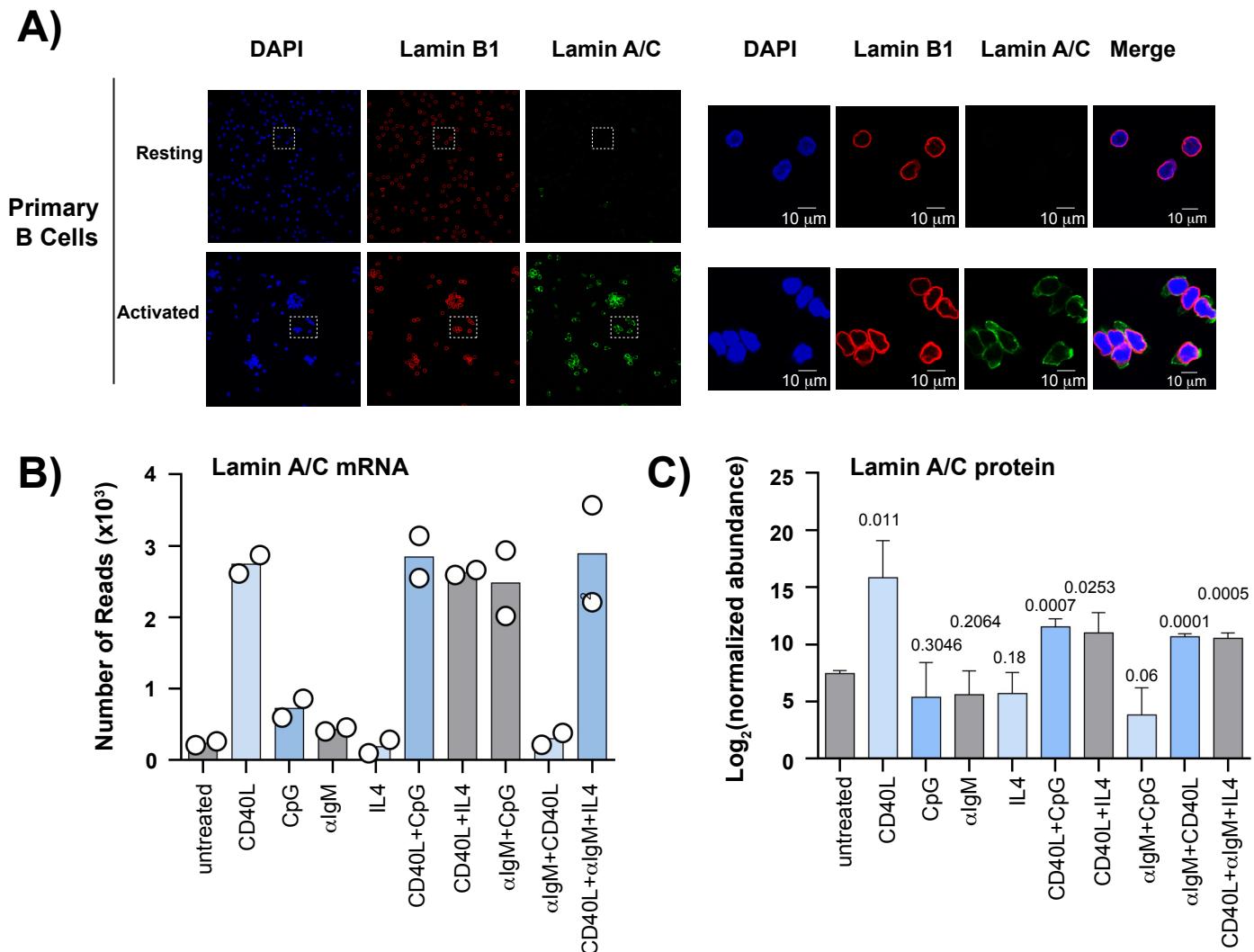
Caruso et al 2022

1014 ng/mL Interleukin 4 (IL-4), 5uM CD40 ligand (CD40L), and 25 ng/mL CpG
1015 oligodeoxynucleotides.

1016 **Supplementary Figure 2:** Quantitative chromatin immunoprecipitation (ChIP-qPCR)
1017 analysis of EBV chromatin extracted from Mutu I and LCL EBV+ cells. EBV chromatin was
1018 analyzed for the binding of lamin B1 and lamin A/C at the indicated EBV regions. Data are
1019 presented as %input. N=3, Mean \pm SD.






1020 **Supplementary Figure 3:** Heat map of Spearman correlation coefficients of the read counts
1021 from all locations where a peak is present in any sample. The dendrogram indicates similarity
1022 between ChIP-seq samples based on read counts.

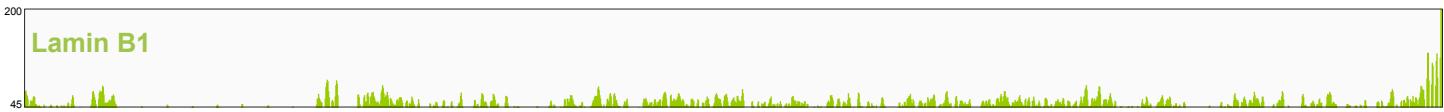



1023 **Supplementary Figure 4: A)** Scatter plots of normalized HiC counts of DNA-DNA
1024 interactions across the EBV genome in Ctr (x-axis) and *LMNA* KO (y-axis) LCL cells. DNA-DNA
1025 interactions with $p < 0.05$ are indicated in blue (downregulated in Ctr cells) and red (upregulated
1026 in KO cells). **B)** Circos graph of all DNA-DNA contacts across the EBV genome that change
1027 between Wt and *LMNA* KO LCL (GM12878) cells. DNA-DNA contacts derived from HiC
1028 matrices (chromatin loops) with a $p < 0.05$ are shown. Blue arcs represent chromatin loops that
1029 are frequent in Ctr cells; red arcs represent chromatin loops that are more frequently observed
1030 in *LMNA* KO cells.


1031

1032

1033

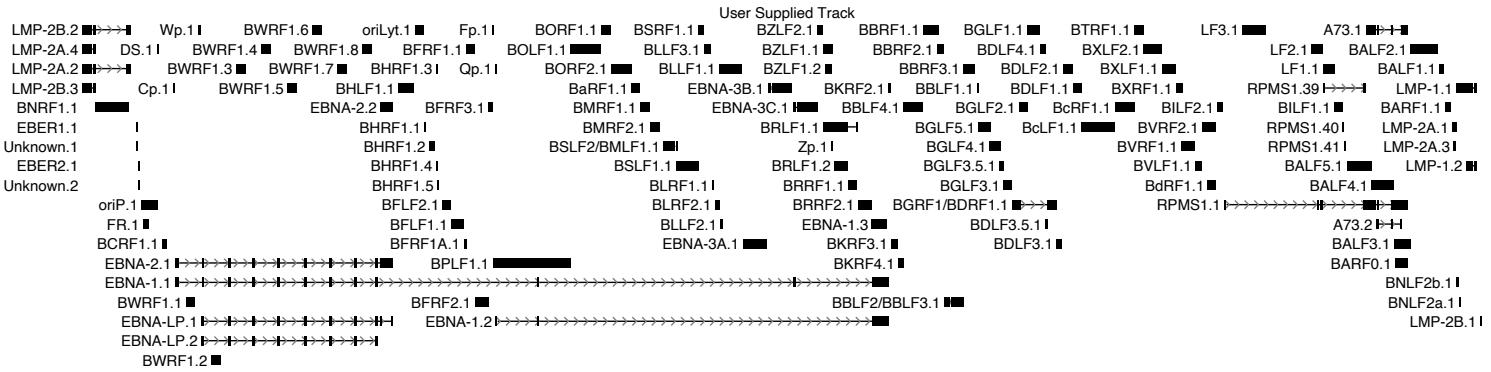
A)**B)****C)**


peaks

Mutu I

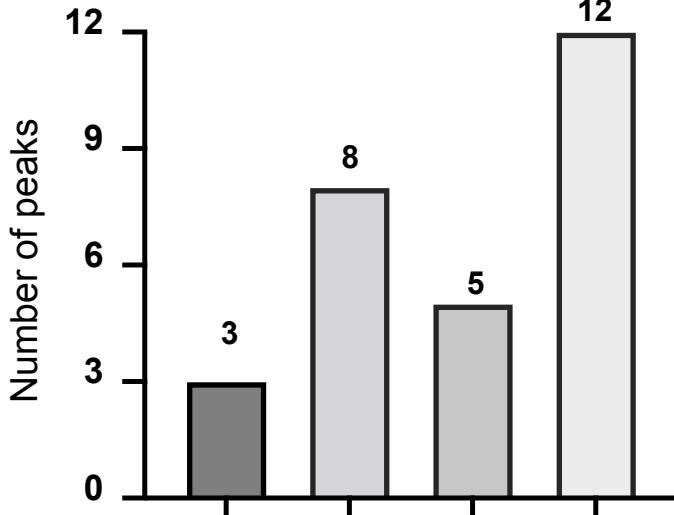
peaks

LCL



peaks

LCL



EBV:

A)

Overlap of Peaks Between Marks

Lamin B1-Mutu I

Lamin B1-LCL

Lamin A/C-LCL

B)

ChIP-seq
Lamin B1

C)

ChIP-seq
Lamin B1

D)

Mutu I

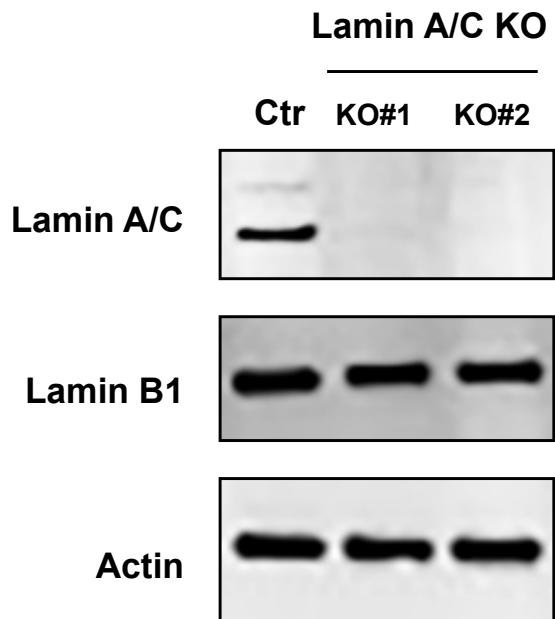
ChIP-seq
Lamin B1

LCL

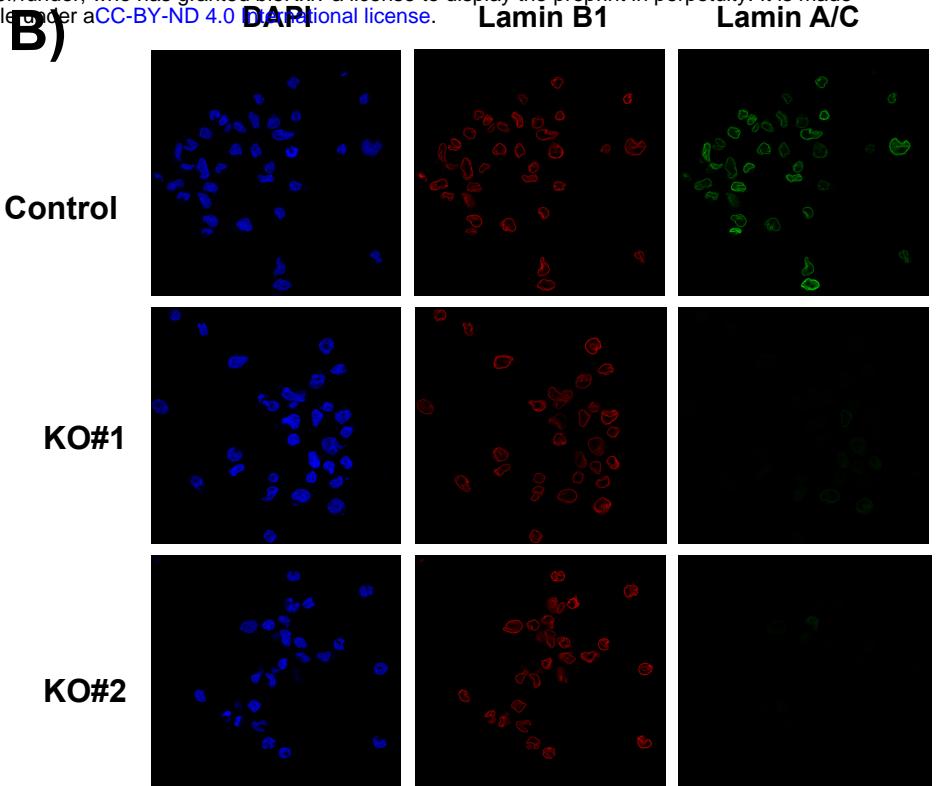
ChIP-seq
Lamin A/C

36kb 39kb

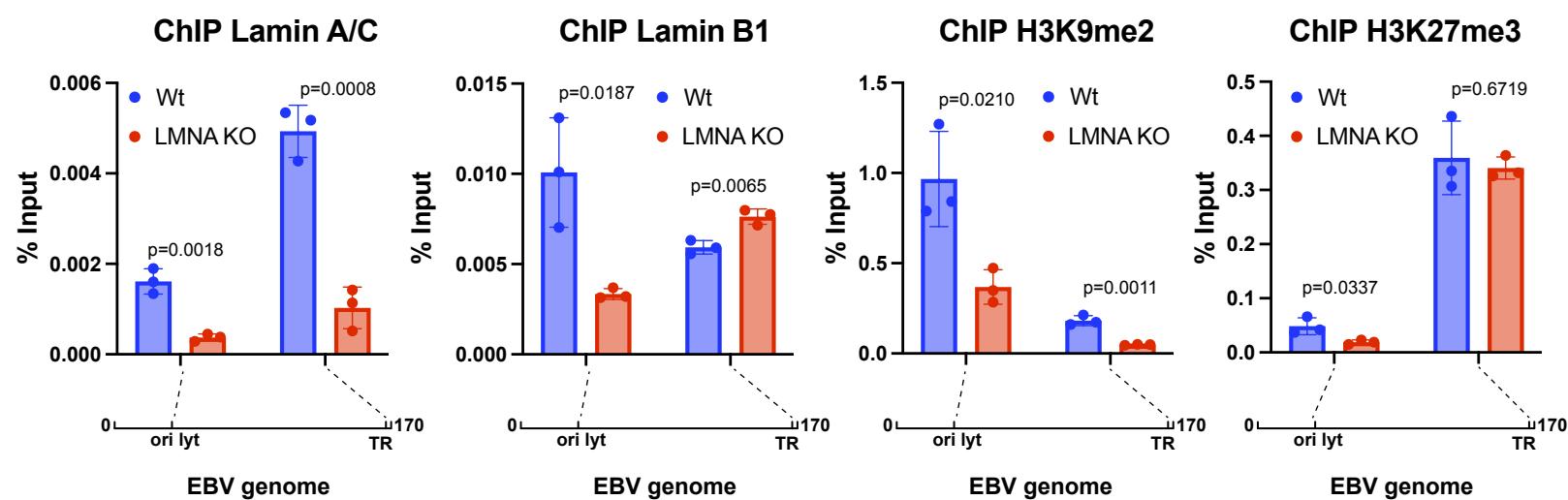
92.5 kb 94.5 kb

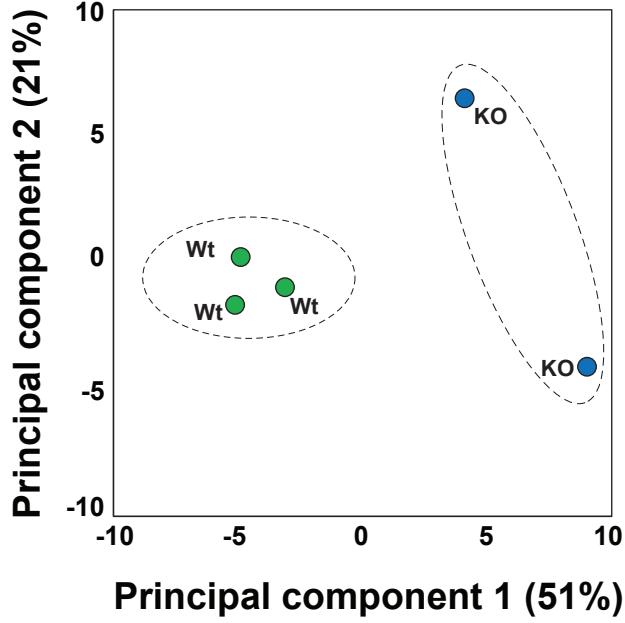

55 kb 56 kb

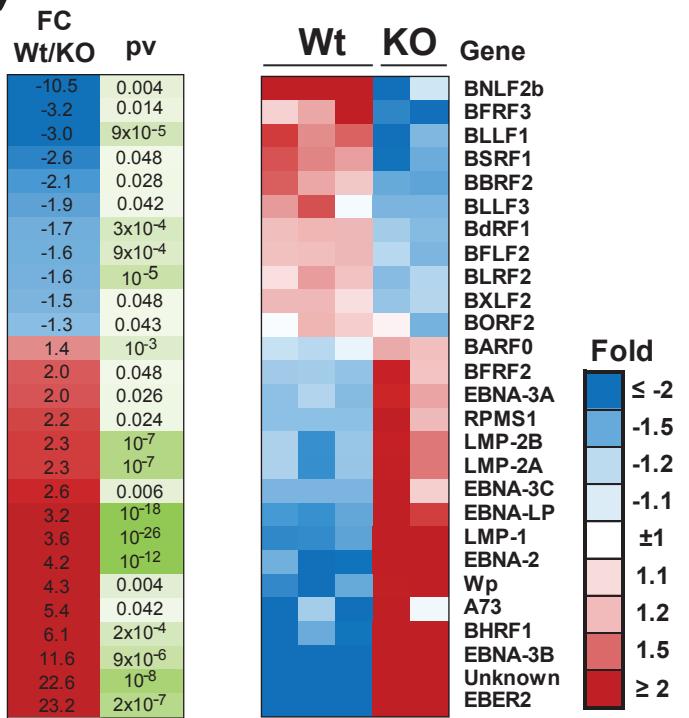
EBV genome coordinates


EBV genome coordinates

EBV genome coordinates


A)


B)


C)

A)

B)

