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ABSTRACT  Agoal of modern biology is to develop the genotype-phenotype (G—P) map, a predictive understanding of how
genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome
research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed
by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building
a reliable G—P map therefore requires accounting for the multitude of interacting genes and even genomes involved in sym-
biosis. Here we use naturally-occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti
paired with two genotypes of the host Medicago truncatula in four genome-wide association studies to study the genomic ar-
chitecture of a key symbiotic extended phenotype - partner quality, or the fitness benefit conferred to a host by a particular
symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci
in rhizobium genomes that must be accounted for if we want to build a reliable G—P map of partner quality; namely, 1) loci
whose identities depend on the environment, 2) those that depend on the host genotype with which rhizobia interact, and 3)
universal loci that are likely important in all or most environments.

IMPORTANCE Giventherapidrise of research on how microbiomes can be harnessed to improve host health, understanding
the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the
evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive
context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the
genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this
context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus,
serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.

KEYWORDS: GWAS, mapping, Medicago truncatula, Sinorhizobium meliloti, symbiosis, partner quality, rhizobium, G x E, G x G,
genotype-phenotype map, G—P map, root nodule, nodulation, symbiotic nitrogen fixation

INTRODUCTION

e live in a symbiotic world. It is increasingly recognized that many important traits, including human metabolism, insect

diet and defense, and plant nutrient foraging, are actually symbiotic extended phenotypes governed (at least in part) by
cryptic variation in their microbial symbionts (e.g., 1, 2, 3, 4, 5, 6, 7; reviewed by 8, 9, 10, 11, 12). Incorporating the complex
genetics arising from these interactions, however, has lagged behind understanding their ecological outcomes. Characterizing
the genetic basis of these cross-domain relationships represents a symbiotic extension of the genotype-phenotype (G—P) map
(13, 14, 15), wherein genetic variation present in symbionts (G) presents as phenotypic variation (P) expressed by the host. In
symbiosis, as in all organisms, the G—P map is a crucial step towards a predictive understanding of evolution (e.g., a trait's
genomic architecture influences the rates and trajectories of its response to selection), and for bioengineering, where we must
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know not only which genes to target and exactly how to edit them, but also anticipate how consistent the knock-on effects will
be across diverse environments and/or genetic backgrounds (16, 17).

A key lesson from studies of the G—P map within single organisms is that phenotypic variation fundamentally arises
in non-additive ways as genomic variation is filtered through “layer(s) of context-dependence” (14) including genotype-by-
environment (G x E) interactions, epistasis, and pleiotropy (15, 18, 19, 20, 21, 22, 23). The role of context-dependency in the
G—Pis particularly relevant for symbiotic extended phenotypes, given the potential for higher-order interactive genetic effects.
For example, interacting genomes can generate genotype-by-genotype interactions between host and symbiont (intergenomic
epistasis, or G x G: 24, 25, 26, 27, 28, 29) and even G x G x E whereby trait values depend not only on the interaction of alleles in
both partners, but on the environmental context (30, 31, 32). Such complex context-dependent effects are critical for evolution;
for example, G x G x E for fitness is the statistical expression of the coevolutionary selection mosaic (27, 33, 34). Additionally,
genes that consistently affect symbiotic extended phenotypes arising in plant-microbe interactions, independent of these
layers of context dependency, are important targets for breeding and bioengineering (9, 16, 35, 36, 37). Fine-scale mapping of
the loci contributing to symbiotic extended phenotypes across partner genotype and environmental contexts using multiple
genome-wide association studies (GWAS) can therefore generate a more holistic picture of both types of genetic effects (i.e.,
the genes that universally contribute and those that are context-dependent), and thus, provides insights both for natural
(co)evolutionary processes and sustainable agriculture.

The symbiosis between nitrogen-fixing rhizobia and leguminous plants has been a key model for addressing both addi-
tive and interactive genetic effects in symbiosis (i.e., G x G, G x E: 38, 39, 40, 41, 42), with resequencing projects, germplasm
collections, and many genetic and genomic tools, particularly in Medicago-Sinorhizobium interactions (43, 44, 45, 46, 47). These
symbioses are also major drivers of the terrestrial nitrogen (N) cycle, contributing up to 21 million tonnes of fixed N each
year (48, 49). In their specialized root nodules, legumes trade photosynthetically-derived fixed carbon in exchange for N fixed
by the rhizobia, making legumes keystone members of natural plant communities and sustainable agriculture (reviewed by
50, 51). Rhizobial genomes themselves have been studied as models of bacterial genome evolution, reflecting the dynamic
tension between the core set of genes, often on the main chromosome, and the more flexible genes, often found on mobile
plasmids, islands, and other elements that contain the canonical symbiosis genes (i.e., nod, fix, nif; 52, 53, 54, 55, 56). Sym-
biosis plasmids often show abundant recombination (45, 57, 58), allowing genome-wide association studies (GWAS) to detect
associations between individual genomic variants and traits of interest (45, 56, 59, 60, 61). This symbiosis is thus well poised
for understanding the genetic basis of important symbiotic extended phenotypes.

Decades of functional genetic studies have resolved several symbiosis genes, mostly those that disrupt symbiosis when
knocked out (reviewed by 62, 63), enabling increasingly well-resolved models for how interactions establish and how trade
is coordinated (64). Nevertheless, GWAS in legume-rhizobium symbiosis, which leverage standing genetic variation, indicate
that a much broader set of genes and genetic pathways contribute to the quantitative variation in traits that we know to be
important in natural and managed systems (45, 46, 59, 65, 66), especially partner quality - or the fitness benefit a particular
symbiont genotype confers to its host. Partner quality not only impacts plant fitness, but also the nutritional composition of
leaves as high-quality rhizobia fix more atmospheric N that plants incorporate into their tissues. Thus, results from GWAS can
illuminate the G—P map of partner quality and generate novel candidate genes associated with variation in this ecologically
and economically important trait.

Here we conduct multiple GWAS to study the complex genetic architecture and layers of context-dependency in the G—P
map of partner quality. Because symbiotic extended phenotypes by definition have a multi-genomic basis (i.e., are influenced
by multiple loci in both the host and symbiont), these traits are likely governed by many genomic variants, each with small
effects. Results from a single GWAS may therefore be under-powered to identify the causal loci governing these traits. By
examining associations that overlap across multiple GWAS using different host and symbiont genotypes, we can identify can-
didate loci that are consistently associated with traits regardless of environmental or genetic contexts, and thus, are good
targets for subsequent functional validation, genetic engineering and coevolutionary studies. Using data from four separate
GWAS that paired two lines of the host Medicago truncatula with 191 strains of the model rhizobium Sinorhizobium meliloti, we
ask whether the genetic architecture of rhizobium partner quality differs across environments and across host genotypes (i.e.,
associations are “conditional”, governed by G x E and/or G x G), or alternatively, if variation at a core set of rhizobium genes
control partner quality in all contexts (i.e., associations are “universal”, consistent in direction and magnitude across experi-
ments and host genotypes). If the underlying genes that contribute to variation in partner quality are largely conditional, then
predicting how partner quality evolves under different conditions will be more challenging. Additionally, we examine how the
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three genomic elements of S. meliloti contribute to partner quality variation across two host genotypes and in multiple envi-
ronments, validating the functional division of labour of these elements in nature. Although the canonical symbiosis genes
located on the symbiosis plasmids are likely to contribute, additional loci on the chromosome may be just as important for
determining quantitative variation in partner quality. Finally, we suggest candidate metabolic functions and genetic loci that
are responsible for both context-dependency as well as universally-beneficial effects that are consistent across environments.

RESULTS

Using a panel of 191 strains of the model rhizobium Sinorhizobium meliloti isolated from natural populations in the native
range, we conducted four separate GWAS that involved inoculating plants individually with each strain across two “replicate”
experiments for two host lines of Medicago truncatula: for experiments 1 and 3, we used host line DZA (planted in March and
September, respectively), while for experiments 2 and 4, we used A17 (planted May and November, respectively). Conditions
between replicate experiments were kept as consistent as possible, the only major difference being the time of year they were
planted. Our phenotypic and genetic analyses for these four experiments suggest important roles for context-dependency
in the genetic control of symbiotic extended phenotypes. Based on our permutation method to determine significance, we
found a total of 1,453 variants (Supp. Dataset S1, 67) in 746 (Supp. Dataset S2, 67) unique coding genes associated with
shoot biomass, our focal rhizobium partner quality phenotype, while 5,402 variants (Supp. Dataset S3, 67) and 1,770 coding
genes (Supp. Dataset S4, 67) were associated with at least one partner quality phenotype analyzed in this study (i.e., shoot
biomass, leaf chlorophyll A content, plant height, leaf number); an additional 572 variants fell into 369 distinct non-coding
regions (Supp. Dataset S3, 67). However, consistent with an a priori expectation that symbiotic extended phenotypes are
governed by many variants with small effects, we indeed found that within a single GWAS, variant effect sizes tended to be
small, with few approaching significance after controlling for the family-wise error rate (Supp. Fig. S1). Thus, the causal variants
underlying partner quality are unlikely to be determined from a single GWAS, highlighting the need for multiple GWAS or other
corroborating evidence before pursuing functional validation of particular candidate loci.

Our permutation approach nonetheless allows us to characterize the genetic architecture of partner quality by quantifying
the number and location of associations across experiments and host genotypes, and thus, the degree to which these associ-
ations are conditional or universal. Three categories of G—P associations emerged from our analyses (Fig. 1; see Supp. Fig.
S2in 68 for other traits). First were conditional associations that depended on the experiment (G x E: comparing experiments
within host lines, Fig. 1A); 510 (68%) were found in only one of the four experiments. Second were “G x G genes”, the 51
(7%) genes that were associated with partner quality in both experiments with one host genotype but were found in neither
experiment with the other host genotype (Fig. 1A). Specifically, 18 A17-specific genes were found in both experiments with
this host (but never with DZA), while 33 DZA-specific genes were found in both experiments with this host (but never with A17).
Last, but not least, were “universal” genes, the 60 (8%) genes that were found to be associated with rhizobium partner quality
independent of host genotype or experiment (union in the center of Fig. 1A). Specifically, while only five of these genes were
associated with partner quality in all four experiments, 55 additional genes were found in three of the four experiments and
thus are strong candidates for contributing to partner quality in many conditions. We discuss these three types of genetic
effects in turn, at the phenotypic, genomic (three elements in the tripartite genome), gene, and variant level, then conclude
with the general implications of our findings for plant-microbe interactions and symbiosis evolution more broadly.

Genotype-by-environment interactions in the G—P map of symbiotic partner quality. Because our different “envi-
ronments” are actually replicate experiments, our goal here was to capture how reproducible associations are across experi-
ments, rather than to track the specific environmental differences that contribute to conditional associations. We found that
environmental dependence was a pervasive pattern at both the phenotypic, genomic, and individual gene levels, suggesting
that different sets of rhizobium genes contribute to symbiotic partner quality under different environmental conditions. At the
phenotypic level, ANOVA indicated abundant genetic variance in partner quality traits, including both significant main effects
of strain as well as strong strain-by-experiment (G x E) interactions (see Table 1 and within-experiment heritabilities in Table
2). Cross-experiment genetic correlations (r) of strain means between experiments within a host line were generally significant
(Table 2), consistent with strain main effects (some strains had consistently higher partner quality than others; see Supp. Figs.
S3 & S4 in 68 for all within and between experiment trait correlations). Nevertheless, for most traits in both hosts, G x E was
driven by changes in the rank order of strain means across experiments (Table 2 crossing (%); see Supp. Fig. S5 in 68 for reac-
tion norms). Rhizobium strains varied considerably in cross-experiment plasticity for shoot biomass, with some strains having
consistently low/high partner quality (i.e., resulting in small/large plant biomass, respectively) independent of the experiment,
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while others responded strongly to the environmental differences between experiments (Supp. Fig. S6, 68).

At the genomic-level, our evidence indicates that G x E was driven by small-scale shifts in the identity, and estimated allelic
effects, of individual loci across experiments rather than large shifts in which genomic elements have contributed to partner
quality variation (Supp. Fig. S7, 68). The vast majority of genes contributing to partner quality variation were located on the
symbiotic elements (megaplasmid pSymA or chromid pSymB; Fig. 2; Supp. Dataset S2, 67; see Supp. Fig. S8 in 68 for other
traits), although some environmentally-dependent loci were found on the chromosome (i.e., G x E and plasticity). Within host
lines, 330 total genes were mapped with host line DZA (186 and 144 in experiments 1 and 3, respectively), while only 180 total
genes mapped to host line A17 (104 and 76 in experiments 2 and 4, respectively; Fig. 1A).

At the gene-level, for experiment 1 in host line DZA, the INTERPRO terms “Transcription regulator hth, lacl” and “Lambda
repressor-like, DNA-binding domain” were marginally significantly enriched (p = 0.00101 and 0.00482, respectively), as was the
“Oxidative phosphorylation” KEGG pathway (p = 0.00959; Supp. Dataset S5, 67), whereas for experiment 3 in host line DZA,
the “Benzoate degradation” KEGG pathway was significantly enriched (FDR-corrected p = 0.00880), while the GO terms “3,4-
dihydroxybenzoate catabolic process” and “transmembrane transport” were marginally significantly enriched (p = 0.00204 and
0.00376, respectively; Supp. Dataset S5, 67). For experiment 2 in host line A17, the GO terms “transcription, DNA-templated”
were significantly enriched (FDR corrected p = 0.00143), as were the related UNIPROT keywords for “transcription regulation”
(FDR corrected p = 0.00310) and “DNA-binding” (p = 0.00310; Supp. Dataset S5, 67), whereas for experiment 4 in host line
A17, the INTERPRO term “Amidohydrolase 1" was marginally significantly enriched (p = 0.0307; Supp. Dataset S5, 67). Overall,
many of the underlying molecular processes important for driving variation in partner quality appear to be environmentally-
dependent, making it harder to predict which genes and pathways will be important for determining symbiotic outcomes
under different conditions.

At the variant-level, for each host (DZA or A17), we used correlations of the estimated allelic effects to assess the degree to
which the individual effects of rhizobium alleles on partner quality were consistent in direction and/or magnitude, or whether
they depended on the experiment. When variants were significantly associated with partner quality in both experiments (Fig. 3
dark points), they tended to have inconsistent effects on host line DZA (Fig. 3A), while being more consistent on A17 (dFig. 3B).
In fact, on A17, all of the nearly-universal variants (Fig. 3B black dots) had concordant (i.e., same-sign) effects on shoot biomass
between experiments, whereas the opposite was true for DZA (Fig. 3A black dots) - all nearly-universal variants had discordant
(i.e., opposite-sign) effects between experiments. For host line DZA, 12 particularly interesting variants had significant but
opposing effects on plant biomass across the two experiments (Fig. 3A; Supp. Dataset S1, (67)). Such associations might
point to interesting environmentally-dependent genes. Regardless of host line, however, the vast majority of variants in our
studies had conditionally-neutral effects, even those with large magnitude (Fig. 3; see Supp. Fig. S9 in 68 for other traits), and
for both hosts, we rejected the global null hypothesis that allelic effects were the same across experiments (both p < 0.0001;
Supp. Fig. S10, 63).

Next we mapped the among-strain differences in plasticity (Supp. Fig. S6, 68) to identify specific loci contributing to G
x E. At the genomic-level, most (63%) plasticity loci were found on pSymB (Fig. 2; Supp. Fig. 7B, 68). Of 576 genes, 400
(69%) were also associated with shoot biomass variation within at least one of the four experiments when each was mapped
independently, indicating abundant overlap in the genetic architecture of both within- and among-experiment partner quality
variation (Supp. Dataset S6, 67). Plasticity loci were marginally significantly enriched for the INTERPRO terms “Ti-type conjuga-
tive transfer relaxase traA” (p = 0.0292) and “mobA/mobL protein” (p = 0.0292), as well as several INTROPRO terms containing
“tetratricopeptide-repeat” (p range: 0.006 to 0.0310), among others (Supp. Dataset S6, 67). Of 576 total plasticity genes, only
93 (16%) were mapped in both host genotypes (Fig. 1B, Fig. 2; Supp. Dataset S7, 67). Perhaps most interesting are the 14
of these plasticity genes that were not associated with variation within any of the four experiments when mapped separately
(Supp. Dataset S6, 67); these loci are particularly strong candidates for understanding how G x E in rhizobia scales up to alter
host growth, and none to our knowledge have known functional roles in symbiosis.

The genetic architecture of rhizobium partner quality depends on host genotype. Given our four-experiment design,
we used the conservative approach of only considering G x G genes to be those that were associated with partner quality in
both experiments with one host genotype and neither of the other. We found 33 genes that contributed to partner quality but
only in DZA, and 18 that contributed but only in A17 (Fig. 1; Supp. Dataset S2, 67). These genes split evenly across the two
symbiosis plasmids of the genome (pSymA: N = 24; pSymB: N = 27). Below, we discuss our results at the gene-level for each
host line separately.

In the list of A17-only G x G genes, analyses of UNIPROT keywords indicated that “Selenium” was marginally significantly
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overrepresented (p = 0.00771), while GO terms for “transferase activity, transferring glycosyl groups” were marginally over-
represented (p = 0.0417; Supp. Dataset S5, 67). Notably, these genes include both exoU (SMb20948/ NP_437611.1) and
exoW (SMb21690/NP_437613.1; Supp. Dataset S2, 67), two glucosyltransferases critical for adding the 6" and 7" sugars (re-
spectively) on the succinoglycan molecule, an exopolysaccharide required for infection thread formation and thus host plant
invasion for effective symbiosis (69, 70, 71). Non-functional exo genes are known to result in less-efficient, though sometimes
not entirely deficient, symbiosis (72). Together with this prior knowledge, our finding that variants in two succinoglycan biosyn-
thesis enzymes affected host biomass production in host A17 suggests a strong role for succinoglycan-mediated host invasion
in determining symbiotic benefits in natural populations. Future studies of coevolution between succinoglycan structure and
host plant detection would likely be fruitful. Also notable is se/A (SMa0011/NP_435251.1; Supp. Dataset S2, 67), a transferase
required for the biosynthesis of selenocysteine, a less-used amino acid incorporated into select proteins in only about 20% of
bacterial genomes (73, 74, 75). To our knowledge, nothing is known about the role of selenocysteine in rhizobia or in legume-
rhizobium symbiosis.

By contrast, the list of DZA-only G x G genes was dominated by GO terms “transcription factor activity, sequence-specific
DNA binding” (p = 0.0247) and “cellular amino acid metabolic process” (p = 0.0425; Supp. Dataset S5, 67). Notably this list
contains three lysR transcriptional regulators (Supp. Dataset S2, 67) of at least 90 in the genome: SMa2287 (NP_436477.2)
on pSymA plus SM_b20494 (NP_437016.1) and SM_b21434 (NP_437803.1) on pSymB are not well-studied, and had weak
(SM_b20494) or undetectable effects in a plasmid insertion mutagenesis screen compared to the named /srA and IsrB (76).
This class of loci is well-known to control expression of genes for symbiosis, both mutualistic and pathogenic (77). Beyond
those discovered in knockdown studies, our results suggest additional symbiotic roles for natural variation at these lysR regu-
lators in S. meliloti. Interestingly, one metabolic process gene (gdhA: SMa0228/NP_435368.1 on pSymA; Supp. Dataset S2, 67),
part of one bacterial pathway for assimilation of ammonium into glutamate (78), was identified in a comparative genomics
study of five Sinorhizobium (formerly Sinorhizobium) species as specific to S. meliloti (79). The role of gdhA in rhizobial symbiosis
is not well-known, though interestingly it was found to increase ammonium assimilation when the E. coli copy was expressed
transgenically in tobacco (80).

Universal associations highlight transport functions and secretion systems. Despite these layers of context-dependency,

we did find significant main effects of strain for all phenotypes (Table 1). Concomitantly we resolved a number of loci that were
consistently associated with shoot biomass, being mapped in either three experiments (55 nearly-universal genes) or even all
four experiments (5 universal genes) (Fig. 1). At the genomic and gene-levels, the set of 60 universal/nearly-universal genes
were split between pSymA and pSymB (38 and 22 loci, respectively; Fig. 2 mauve dots; Supp. Dataset S2, 67) and featured
marginally-enriched INTERPRO terms for “Tetratricopeptide-like helical” (p < 0.001) and “Tetratricopeptide repeat-containing
domain” (p = 0.00160) as well as UNIPROT keywords “Transmembrane” (p = 0.0190) and “Transmembrane helix” (p = 0.0407),
though none of these terms were significant after FDR-correction (Supp. Dataset S5, 67).

Of the five truly universal genes (mapped in all 4 experiments; Supp. Dataset S2, 67), most do not have known functions
in symbiosis. This includes a cax gene (SMa0675/ NP_435603.2) putatively involved in calcium/proton exchange. Though cax
genes are widespread in bacteria and eukaryotes (81), and the importance of calcium both in nodule establishment and trade of
benefits is known (82, 83), it is difficult to hypothesize on the function of this particular gene or its genetic variants in symbiosis
currently. Given their as-yet unknown functions and lack of context-dependency in our studies, the five universal candidates
might hold the most potential for novel functional information and consistent phenotypic effects, which might make them
ideal candidates both for validation and for symbiosis improvement.

Like the five universal genes, the “nearly-universal” set of genes associated with shoot biomass in three (of four) experi-
ments highlights the existence of segregating natural variation in several interesting metabolic pathways, only some of which
have established roles in symbiosis. We found five loci annotated as involved in transmembrane transport (Supp. Dataset S2,
67), including kdpA (SMa2333/NP_436501.1), potE (SMa0678/NP_435605.1), and msbA1 (SM_b20813/NP_437093.2) - in addi-
tion to the nodulation protein gimS/nodM (SMa0878/NP_435728.1) and the universally-associated cax transporter (discussed
above). The role of potassium transporters such as kdpA in osmoregulation during symbiosis is not well understood (84). The
potE locus codes for a putrescine/ornithine antiporter, while another nearby nearly-universal locus
(SMa0682/NP_435607.4) is a predicted amino acid decarboxylase in the putrescine biosynthesis pathway, potentially suggest-
ing a role for variation in putrescine metabolism, which is known to vary in S. meliloti (45), in symbiotic partner quality (45, 85).

Finally, we interrogated the gene sets from two key studies that have associated natural variation in S. meliloti genomes
with symbiotic partner quality (see Supp. Dataset S2, "overlap" column; 45, 66). Our nearly-universal gene set contained eight
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loci that overlapped with the top 100 associations with A17 biomass from Epstein et al. (45). Most notable is the fructose-6-
phosphate aminotransferase nodM/gimS (SMa0878/NP_435728.1) that catalyzes a precursor of both peptidoglycan and Nod
factor in the glucosamine biosynthesis pathway. This locus is located in the symbiosis gene region of pSymA, though a paralog
exists on the chromosome (SMc00231/NP_385762.1; 86). Knockout mutants of nodM are known to decrease N-fixation of S.
meliloti on alfalfa (87) and Rhizobium leguminosarum (88); together with Epstein et al. (45), our studies highlight the role of
natural variation in bacterial glucosamine metabolism in determining plant health. We also found six genes in this nearly-
universal set that were also associated with symbiotic partner quality, rhizobium fitness, or both in the experimental evolution
study of Batstone et al. (66). Most notable are two tra (transfer) loci (traA2 on pSymB and traG on pSymA), potentially part
of a Type IV Secretion System (T4SS) responsible for targeting proteins to host cells (89, 90). While the variants we found in
these loci are segregating in natural populations in the native range of S. meliloti, these loci also evolved de novo in response
to passaging through the same host for multiple generations (66), making them strong candidates for a consistent role in
symbiosis.

DISCUSSION

Understanding our symbiotic world requires a genetically-accurate appreciation of the symbiotic extended phenotypes upon
which selection acts. While evolutionary ecology has long recognized the importance of genetic variation in symbiosis while
ignoring the underlying mechanisms, functional geneticists have traditionally resolved mechanisms without taking into account
natural variation. Synthesis of these two perspectives has started to resolve ecologically-relevant quantitative variation at the
nucleotide level (45, 46, 47, 60, 91, 92). Here we quantify multiple symbiotic extended phenotypes in four GWAS using a model
plant-microbe symbiosis and find that the genetic architecture of symbiotic partner quality is complex, underlain by networks
of numerous interacting loci and environmental-dependence. We find that some loci in the microbial symbiont have consistent
effects on host growth across experiments, contributing to the overall differences in mutualistic partner quality that have been
the focus of many empirical and theoretical studies of mutualism to date (reviewed by 40, 93, 94, 95, 96). Nonetheless, most
loci identified in our study were significantly associated with variation in partner quality in specific environments (G x E effects),
or with specific host genotypes (G x G effects). We first discuss the roles of environmentally-dependent loci, versus universal
loci that are found consistently. Next we discuss the coevolutionary implications of genotype-dependence (G x G interactions),
then wrap up with a call for further synthesis with metabolic network models towards systems genetics of symbiosis.

Environmental context-dependency in the G—P map of symbiosis. Ecological effects of context-dependency in mutu-
alism have been recognized for a long time, i.e., traits and mutualism benefits often shift across environmental conditions such
as nutrient availability or light environments (97, 98, 99), although not ubiquitously for all traits (e.g., 100, 101). More recent
studies have begun to document the evolutionary changes that can result from these ecological effects, e.g., divergence of host
and/or symbiont symbiosis traits across strong ecological gradients (59, 102, 103, 104, 105). Evolutionary change in response
to environments implies that the loci underlying selected traits have differential effects on fitness across environments. Here
we identify the loci that generate important trait variation both within and among environments, the trait variation upon which
selection acts in nature.

The majority of context-dependent partner quality genes we identified might be viewed much like the conditionally-neutral
variation so often found in studies of local adaptation (106, 107, 108, 109, 110), contributing significantly to variation in partner
quality in some contexts but having a range of weaker effects (both in the same or opposing direction) in another context. For
example, by experimentally-evolving strains of S. meliloti on five M. truncatula lines, Batstone et al. (66) found that local adap-
tation was largely governed by conditional neutrality (beneficial on local host, neutral on non-local hosts) or mildly deleterious
effects on non-local hosts, likely due to drift in the local context. Yet, in nature where rhizobium population sizes are much
larger and more diverse, and gene flow is present, the extent to which local adaptation occurs has rarely been tested but might
be unlikely (28, 111, 112), except for populations differentiated by strong ecological gradients (e.g., 102). Moreover, the host
genotypes used in our study, DZA and A17, are unlikely to share an evolutionary history with our strains, and so it remains
unclear whether stronger trade-offs (and less conditional neutrality) would be present if our strains shared an evolutionary
history with the host lines being tested.

Despite widespread conditional neutrality, a handful of interesting variants had strong effects on host growth, but in
opposing directions across experiments within a single host genetic background. These sorts of antagonistic effects can favour
different variants in different environments, and thus, potentially help explain the maintenance of mutualism variation in
nature (95, 113, 114, 115). Nevertheless we note that these sorts of G x E variants were rare in our study, despite strong
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rank-order effects among strain means at the organismal level (Table 2); moreover, because our “environments” were simply
different greenhouse experiments, relating such antagonistic effects to adaptation in the wild will require the type of in situ
studies that are common in plants (e.g., 104, 107, 116) but more difficult in soil microbes.

We nevertheless found several genes and pathways that are ideal for functional follow-up studies aimed at identifying
consistent associations, or loci which might benefit from “fine-tuning” symbiotic benefits towards improving plant health. The
strengths of GWAS (capturing genetic variation, ecological relevance) also lead to weaknesses (imprecision due to confounding
population structure, false negatives and false positives). Thus our strongest recommendations for functional hypotheses for
validation in follow up studies are the universal genes identified here that overlap with candidate genes identified in separate
GWAS using different genomic backgrounds and environments (e.g., 45, 66).

Overall we find that the loci underlying quantitative variation in symbiotic extended phenotypes often (but not always)
depend on the environment, and therefore that a nuanced understanding of how complex traits interact with environmental
variables will be necessary for many of the lofty goals in plant microbiome and symbiosis research (9, 35). This point has been
made before (117), as the presence of G x E as studied at the phenotypic level has been recognized for decades; what is novel
here is our ability to interrogate this variation at the genomic level and for multiple host lines (see below).

Coevolutionary implications of genotype-dependence. Uncovering the complex genetics of how two (or more) genomes
interact with each other to generate trait variation is an important step to better understanding how these traits (co)evolve
(6) and how to better manipulate traits in the future to address societal challenges (37, 118). For example, identifying the loci
underlying mutualistic traits allows us to address longstanding debates within mutualism theory (119), including how readily
conflict evolves (120), and how genetic variation is maintained despite host selection for the 'best’ symbiont (95).

Previous mapping efforts in the legume-rhizobium system have focused on the Medicago HapMap collections, which max-
imize host diversity using a range-wide sample. Our study focuses on the segregating natural variation within a symbiont at
a smaller geographic scale, a scale at which pSymA and pSymB segregate (112); thus the G x G-driven variation we find here
would be available to local evolutionary and/or coevolutionary processes. G x G interactions for fitness outcomes have long
been of interest in the legume-rhizobium symbiosis (25, 121, 28, 102, 122) and other interactions (123, 124, 125) because such
statistical interactions generate the fitness variation that drives coevolution. Additionally, G x G interactions have implications
for breeding and agricultural production because the functional effects of symbiont variation are likely to depend on the crop
genotype (126, 127). Recent molecular genetic and transcriptomic approaches on a handful of genotypes have begun to re-
solve the mechanistic underpinnings of G x G (128, 129, 130, 131, 132, 133), while biparental or GWAS mapping approaches
(45, 46, 134) provide broader insight into the genetic architecture underlying G x G (i.e., the number, average effect size, and
consistency of loci). The picture emerging from ours and others’ studies is that G x G, like symbiotic partner quality itself, has
a complex, polygenic basis and will require both statistically sophisticated and metabolically-informed models to unravel.

Symbiotic extended phenotypes as quantitative traits. In the age of rapid microbiome sequencing and expanding
efforts to characterize the loci in plant genomes that contribute to microbiome variation among cultivars or genotypes (e.g.,
rice, Lotus, Medicago), our results present an important juxtaposition, as the abundant and context-dependent genetic variation
characterized in detail here occurs within a set of 191 rhizobia strains with > 98% average nucleotide identity (well above
the typical threshold for delineating and enumerating operational taxonomic units, or OTUs, in metagenomic studies). At
the same time, functional genetic studies have made much progress identifying loci critical to symbiosis establishment and
downstream processes by creating knock-out or knock-down mutants and comparing their associated symbiotic phenotypes to
a wildtype strain (e.g., dnf mutants in legumes, 135; fix+/fix- mutants of rhizobia, 136), but these loci are often viewed as on-or-
off switches for symbiosis more generally, or cooperation more specifically in models of mutualism theory (137, 138, 139, 140).
Our study demonstrates that most loci within the symbiont genome act more like dials than on-and-off switches, generating
the quantitative variation in symbiotic extended phenotypes observed in nature.

While our approach allows us to generate novel candidate loci that are consistently associated with partner quality across
contexts, in silico modelling of both plant (141) and rhizobium (142) metabolism that links together genetic information with
metabolic pathways could then be used to simulate key symbiotic processes under a wide range of conditions (143). Ulti-
mately combining transcriptomic, genomic, and metabolomic datasets will be required for a synthetic understanding of how
nucleotide variation percolates up through shared symbiotic metabolic networks (17, 144, 145). Efforts to reintegrate research
on symbiosis genetics and (co)evolution with plant-microbiome work (reviewed in 37, 118) will be fruitful in revealing additional
intraspecific variation driving patterns of genotype-dependence and coevolution and resolving mechanisms of host control of
the microbiome.
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MATERIALS AND METHODS

Full details are available in the Supplemental Materials (Supp. Methods, 68). We performed four greenhouse experiments to
estimate partner quality phenotypes in S. meliloti. In each experiment, plants from one of two host lines (either A17 or DZA)
were grown in single inoculation with each of 191 S. meliloti strains, with three to four replicates per strain per experiment (six
to eight total replicates for each plant line x strain combination, N = 2,825 plants total). Experiments were planted in 2018, in
March (I: DZA), May (1I: A17), Sept (lll: DZA), and Nov (IV: A17). Uninoculated controls (40 per experiment) were included to gauge
contamination, which was minimal overall, and limited to the first two experiments (Supp. Fig. S11, 68). We measured multiple
proxies of partner quality, namely leaf chlorophyll A content, plant height, number of leaves, and above-ground dried shoot
biomass, although we focus on the latter in the main text (see Supplemental Materials for all others). We conducted multiple
phenotypic analyses to determine how much variation in partner quality was due to strain, experiment, and the interaction of
both, among other questions.

We sequenced the entire genomes of all 191 S. meliloti strains, called single nucleotide polymorphisms (SNPs, henceforth
referred to as variants), and performed four separate GWAS that accounted for rhizobium population structure and included
only unlinked variants. We determined which variants were significantly associated with partner quality using a permutation
method (45) that involved generating 1000 randomized datasets (i.e., genotypes randomized with respect to phenotypes)
and running a linear mixed model (LMM) on each. In all models, we included the same set of variants as well as the kinship
matrix as a random effect to account for associations that arise due to population structure. However, because we conducted
our experiments under controlled greenhouse conditions, unmeasured variables that are population-stratified are unlikely to
confound our results. We then tagged variants from the non-randomized run that fell above the 95% false discovery rate cut off
based on the combined randomized runs. Although more computationally demanding and less conservative than conventional
Bonferroni correction, the advantage of our permutation approach is that it better captures the unique properties specific to
each dataset such as trait distributions, patterns of linkage disequilibrium, and missing data, while also controlling for the per-
variant false positive rate in the presence of associations at other loci. Thus, despite the inherent challenges associated with
determining the causal variants underlying highly polygenic traits (i.e., numerous variants with small effects), our permutation
approach nonetheless allows us to characterize the genetic architecture of partner quality, determine the degree to which
associations are conditional or universal, and even identify candidate loci that are most likely to contribute to variation in
partner quality across conditions by comparing the variants we identified as “universal” with those highlighted in other GWAS
using different experimental conditions and host and symbiont genotypes.

Based on our permutation method, we binned the resulting significant variants into three categories based on the context-
dependency of their phenotypic effects, and thus, their contribution to the layers of the G—P map for each of our symbiotic
extended phenotypes. First, “nearly-universal genes” were those found to have significant effects in at least three of the four
experiments for a particular trait (“universal genes” were mapped in all four experiments). Second, we used a conservative
approach to call “G x G genes” as those mapped in both experiments for one host genotype but neither of the experiments
for the other host genotype (i.e., “DZA G x G" genes were significant in both experiments | and Il with DZA but neither Il nor IV
with host A17). Third were genes significantly associated with partner quality in a single experiment, and never in another (i.e.,
“G x E” genes). Finally, we conducted candidate gene functional analyses to understand how loci within different categories
differed from one another functionally, or whether they were part of the same networks/metabolic pathways.

Data Availability. Strains and plant lines are available upon request. All raw data and analysis code are available on
GitHub (see “Complex_genetics” folder). Once raw sequence reads and assemblies are archived and made available on NCBI,
accession numbers will be added to this manuscript.

SUPPLEMENTAL MATERIAL

Detailed methods and thirteen (13) supplementary figures are available on Zenodo (68) (doi: https://doi.org/10.5281/zenodo.
5550958). Seven (7) supplementary datasets are available on Dryad (68) (doi: https://doi.org/10.5061/dryad.5dv41nsér). All sup-
plemental material, in addition to the main text, is also available at bioRyiv (doi: https://doi.org/10.1101/2021.08.03.454976).
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TABLE 1 Linear mixed model genotype by environment (G x E) ANOVAs for square-root transformed traits measured
on plant lines A17 (left) and DZA (right). Numbers outside of and within parantheses in columns "A17" and "DZA" represent y?
values and degrees of freedom. Rack included as a random effect, while all other terms are fixed. Significance of rack determined by
calculating the log likelihood ratio between models with and without the random effect of rack.
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Trait Model term A17 DZA
Chlorophyll Intercept 619.4(1)*** 1447.65(1)***
Strain 252.6(190)** 361.67(190)***
Experiment 0.15(1) 0(1)
Strain X Experiment 191.38(182) 205.16(183)
Rack 30.86(1)*** 23.91(1)***
Plant height Intercept 373.58(1)*** 355.55(1)***
Strain 340.68(190)***  268.05(190)***
Experiment 20.24(1)*** 2.5(1)
Strain X Experiment  308.63(185)*** 177.71(183)
Rack 38.35(1)*** 54.12(1)***
Leaves Intercept 207.69(1)*** 164.09(1)***
Strain 355.37(190)*** 207.58(190)
Experiment 7.85(1)** 0.45(1)
Strain X Experiment ~ 243.88(185)** 218.54(183)*
Rack 27.51(1)*** 41.67(1)%**
Shoot biomass Intercept 97.65(1)*** 179.32(1)%**
Strain 544.81(190)***  499.67(190)***
Experiment 10.08(1)** 6.93(1)**
Strain X Experiment  330.06(185)***  262.2(183)***
Rack 11.32(1)*** 155.67(1)***

Significance: p < 0.001 =***" p < 0.01 ="**, p < 0.05 ="*
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TABLE 2 Within-experiment broad-sense heritabilities (H?) and cross-experiment genetic correlations (r). G x E inter-
actions were partitioned into changes in variance versus rank order (i.e., crossing), and the percent due to crossing is presented.
Experiments (exps.) 1 and 3 for DZA, 2 and 4 for A17.

Trait Plant line H? (exps. 10or2) H? (exps. 3 or 4) r Crossing (%)
DZA Exp. 1 Exp. 3
Shoot biomass 0.248*** 0.253*** 0.265*** 87.19
Chlorophyll 0.118** 0.141%** 0.297*** 99.06
Plant height 0.131** 0.065* 0.175% 99.97
Leaves 0.05 0.084** -0.071 63.96
A17 Exp. 2 Exp. 4
Shoot biomass 0.303*** 0.262%** 0.221** 99.83
Chlorophyll 0 0.093** 0.201** 0
Plant height 0.181*** 0.173*** 0.1 73.37
Leaves 0.173*** 0.127*** 0.173* 94.13

Significance: p < 0.001 ="***; p < 0.01 ="**; p < 0.05 =¥
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FIG 1 Association mapping of partner quality reveals strong signatures of environmental-dependence. Venn diagram showing
number of rhizobium (S. meliloti) genes significantly associated with plant (M. truncatula) aboveground biomass (one metric of symbiotic
partner quality) in A) each of four separate mapping experiments with either host line DZA (I and Il in green) or host line A17 (Il and IV
in pink). Green and pink unions represent genes contributing to plant biomass in both experiments with either DZA or A17, respectively,
while the mauve oval in the center represents universal genes found to contribute to plant aboveground biomass in at least three of the
four experiments. B) Genes significantly associated with cross-experiment plasticity in plant aboveground biomass for host genotype DZA
in green (experiments | vs. lll), A17 in pink (experiments Il vs. IV), or independently associated with plasticity in both hosts (central mauve
triangle).
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FIG 2 Loci associated with partner quality are mostly limited to the symbiosis plasmids. Circos plot showing positions of genes
(dots) significantly associated with shoot biomass. Each ring represents a different gene category, outermost to innermost: 1) Gx E, 2) G x
G, 3) partially universal and universal, 4) plasticity, while 5) depicts a histogram based on the total number of significant genes across 100
kbp-sized windows. The x- and y-axes for rings 1-4 represent genomic position (Mbp) and average absolute effect sizes of variants within
each gene, respectively. The colours reflect categories in the Venn Diagrams: for rings 1, 2, and 4, genes associated with DZA-only traits
are represented by shades of green, on A17-only with shades of purple, and both hosts in mauve (ring 4). For ring 3, genes associated with
both hosts in more than three environments are represented in mauve (i.e., “partially universal”), and universal genes in black. Relevant
loci are highlighted in blue, with abbreviations for clusters on the outer circle as specified in Supp. Fig. S8 (67).
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FIG 3 Allelic effects are more consistent between experiments for A17, but not for DZA. Correlations between the estimated allelic
effects of individual S. meliloti variants on plant shoot biomass (from GWAS) in each of two experiments for either A) host DZA (green) or
B) A17 (pink). Only allelic effects that were significant in one (lighter colours) or both (dark points) environments are shown, while black
dots represent nearly universal variants, i.e., associated with the same trait in three experiments. Linear relationships and R? values are
depicted for all variants (solid coloured line) or variants significant in both experiments (dotted coloured line). Counts of significant variants
for one or both environments appear in the corners of each quadrant within or outside the parentheses, respectively.
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