

Genome-wide association studies across environmental and genetic contexts reveal complex genetic architecture of symbiotic extended phenotypes

Rebecca T. Batstone,^{a,*} Hanna Lindgren,^b Cassandra M. Allsup,^b Laura A. Goralka,^b Alex B. Riley,^b Michael A. Grillo,^c Amy Marshall-Colon,^{a,b} Katy D. Heath,^{a,b,*}

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801 USA^a; Department of Plant Biology, University of Illinois at Urbana-Champaign, 286 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801 USA^b; Department of Biology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60618 USA^c

R. Batstone and H. Lindgren contributed equally. Author order was determined based on overall contribution, particularly time spent analyzing the data, as well as writing and compiling feedback.

ABSTRACT A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here we use naturally-occurring genetic variation in 191 strains of the model microbial symbiont *Sinorhizobium meliloti* paired with two genotypes of the host *Medicago truncatula* in four genome-wide association studies to study the genomic architecture of a key symbiotic extended phenotype – partner quality, or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, 1) loci whose identities depend on the environment, 2) those that depend on the host genotype with which rhizobia interact, and 3) universal loci that are likely important in all or most environments.

IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.

KEYWORDS: GWAS, mapping, *Medicago truncatula*, *Sinorhizobium meliloti*, symbiosis, partner quality, rhizobium, G x E, G x G, genotype-phenotype map, G→P map, root nodule, nodulation, symbiotic nitrogen fixation

¹ INTRODUCTION

² **W**e live in a symbiotic world. It is increasingly recognized that many important traits, including human metabolism, insect
³ diet and defense, and plant nutrient foraging, are actually *symbiotic extended phenotypes* governed (at least in part) by
⁴ cryptic variation in their microbial symbionts (e.g., [1](#), [2](#), [3](#), [4](#), [5](#), [6](#), [7](#); reviewed by [8](#), [9](#), [10](#), [11](#), [12](#)). Incorporating the complex
⁵ genetics arising from these interactions, however, has lagged behind understanding their ecological outcomes. Characterizing
⁶ the genetic basis of these cross-domain relationships represents a symbiotic extension of the genotype-phenotype (G→P) map
⁷ ([13](#), [14](#), [15](#)), wherein genetic variation present in symbionts (G) presents as phenotypic variation (P) expressed by the host. In
⁸ symbiosis, as in all organisms, the G→P map is a crucial step towards a predictive understanding of evolution (e.g., a trait's
⁹ genomic architecture influences the rates and trajectories of its response to selection), and for bioengineering, where we must

Batstone et al.

10 know not only which genes to target and exactly how to edit them, but also anticipate how consistent the knock-on effects will
11 be across diverse environments and/or genetic backgrounds (16, 17).

12 A key lesson from studies of the G→P map within single organisms is that phenotypic variation fundamentally arises
13 in non-additive ways as genomic variation is filtered through “layer(s) of context-dependence” (14) including genotype-by-
14 environment (G x E) interactions, epistasis, and pleiotropy (15, 18, 19, 20, 21, 22, 23). The role of context-dependency in the
15 G→P is particularly relevant for symbiotic extended phenotypes, given the potential for higher-order interactive genetic effects.
16 For example, interacting genomes can generate genotype-by-genotype interactions between host and symbiont (intergenomic
17 epistasis, or G x G: 24, 25, 26, 27, 28, 29) and even G x G x E whereby trait values depend not only on the interaction of alleles in
18 both partners, but on the environmental context (30, 31, 32). Such complex context-dependent effects are critical for evolution;
19 for example, G x G x E for fitness is the statistical expression of the coevolutionary selection mosaic (27, 33, 34). Additionally,
20 genes that consistently affect symbiotic extended phenotypes arising in plant-microbe interactions, independent of these
21 layers of context dependency, are important targets for breeding and bioengineering (9, 16, 35, 36, 37). Fine-scale mapping of
22 the loci contributing to symbiotic extended phenotypes across partner genotype and environmental contexts using multiple
23 genome-wide association studies (GWAS) can therefore generate a more holistic picture of both types of genetic effects (i.e.,
24 the genes that universally contribute and those that are context-dependent), and thus, provides insights both for natural
25 (co)evolutionary processes and sustainable agriculture.

26 The symbiosis between nitrogen-fixing rhizobia and leguminous plants has been a key model for addressing both additive
27 and interactive genetic effects in symbiosis (i.e., G x G, G x E: 38, 39, 40, 41, 42), with resequencing projects, germplasm
28 collections, and many genetic and genomic tools, particularly in *Medicago-Sinorhizobium* interactions (43, 44, 45, 46, 47). These
29 symbioses are also major drivers of the terrestrial nitrogen (N) cycle, contributing up to 21 million tonnes of fixed N each
30 year (48, 49). In their specialized root nodules, legumes trade photosynthetically-derived fixed carbon in exchange for N fixed
31 by the rhizobia, making legumes keystone members of natural plant communities and sustainable agriculture (reviewed by
32 50, 51). Rhizobial genomes themselves have been studied as models of bacterial genome evolution, reflecting the dynamic
33 tension between the core set of genes, often on the main chromosome, and the more flexible genes, often found on mobile
34 plasmids, islands, and other elements that contain the canonical symbiosis genes (i.e., nod, fix, nif: 52, 53, 54, 55, 56). Sym-
35 biosis plasmids often show abundant recombination (45, 57, 58), allowing genome-wide association studies (GWAS) to detect
36 associations between individual genomic variants and traits of interest (45, 56, 59, 60, 61). This symbiosis is thus well poised
37 for understanding the genetic basis of important symbiotic extended phenotypes.

38 Decades of functional genetic studies have resolved several symbiosis genes, mostly those that disrupt symbiosis when
39 knocked out (reviewed by 62, 63), enabling increasingly well-resolved models for how interactions establish and how trade
40 is coordinated (64). Nevertheless, GWAS in legume-rhizobium symbiosis, which leverage standing genetic variation, indicate
41 that a much broader set of genes and genetic pathways contribute to the quantitative variation in traits that we know to be
42 important in natural and managed systems (45, 46, 59, 65, 66), especially **partner quality** - or the fitness benefit a particular
43 symbiont genotype confers to its host. Partner quality not only impacts plant fitness, but also the nutritional composition of
44 leaves as high-quality rhizobia fix more atmospheric N that plants incorporate into their tissues. Thus, results from GWAS can
45 illuminate the G→P map of partner quality and generate novel candidate genes associated with variation in this ecologically
46 and economically important trait.

47 Here we conduct multiple GWAS to study the complex genetic architecture and layers of context-dependency in the G→P
48 map of partner quality. Because symbiotic extended phenotypes by definition have a multi-genomic basis (i.e., are influenced
49 by multiple loci in both the host and symbiont), these traits are likely governed by many genomic variants, each with small
50 effects. Results from a single GWAS may therefore be under-powered to identify the causal loci governing these traits. By
51 examining associations that overlap across multiple GWAS using different host and symbiont genotypes, we can identify can-
52 didate loci that are consistently associated with traits regardless of environmental or genetic contexts, and thus, are good
53 targets for subsequent functional validation, genetic engineering and coevolutionary studies. Using data from four separate
54 GWAS that paired two lines of the host *Medicago truncatula* with 191 strains of the model rhizobium *Sinorhizobium meliloti*, we
55 ask whether the genetic architecture of rhizobium partner quality differs across environments and across host genotypes (i.e.,
56 associations are “conditional”, governed by G x E and/or G x G), or alternatively, if variation at a core set of rhizobium genes
57 control partner quality in all contexts (i.e., associations are “universal”, consistent in direction and magnitude across experi-
58 ments and host genotypes). If the underlying genes that contribute to variation in partner quality are largely conditional, then
59 predicting how partner quality evolves under different conditions will be more challenging. Additionally, we examine how the

The complex genetics of symbiotic extended phenotypes

60 three genomic elements of *S. meliloti* contribute to partner quality variation across two host genotypes and in multiple environments, validating the functional division of labour of these elements in nature. Although the canonical symbiosis genes 61 located on the symbiosis plasmids are likely to contribute, additional loci on the chromosome may be just as important for 62 determining quantitative variation in partner quality. Finally, we suggest candidate metabolic functions and genetic loci that 63 are responsible for both context-dependency as well as universally-beneficial effects that are consistent across environments. 64

65 RESULTS

66 Using a panel of 191 strains of the model rhizobium *Sinorhizobium meliloti* isolated from natural populations in the native 67 range, we conducted four separate GWAS that involved inoculating plants individually with each strain across two "replicate" 68 experiments for two host lines of *Medicago truncatula*: for experiments 1 and 3, we used host line DZA (planted in March and 69 September, respectively), while for experiments 2 and 4, we used A17 (planted May and November, respectively). Conditions 70 between replicate experiments were kept as consistent as possible, the only major difference being the time of year they were 71 planted. Our phenotypic and genetic analyses for these four experiments suggest important roles for context-dependency 72 in the genetic control of symbiotic extended phenotypes. Based on our permutation method to determine significance, we 73 found a total of 1,453 variants (**Supp. Dataset S1, 67**) in 746 (**Supp. Dataset S2, 67**) unique coding genes associated with 74 shoot biomass, our focal rhizobium partner quality phenotype, while 5,402 variants (**Supp. Dataset S3, 67**) and 1,770 coding 75 genes (**Supp. Dataset S4, 67**) were associated with at least one partner quality phenotype analyzed in this study (i.e., shoot 76 biomass, leaf chlorophyll A content, plant height, leaf number); an additional 572 variants fell into 369 distinct non-coding 77 regions (**Supp. Dataset S3, 67**). However, consistent with an *a priori* expectation that symbiotic extended phenotypes are 78 governed by many variants with small effects, we indeed found that within a single GWAS, variant effect sizes tended to be 79 small, with few approaching significance after controlling for the family-wise error rate (**Supp. Fig. S1**). Thus, the causal variants 80 underlying partner quality are unlikely to be determined from a single GWAS, highlighting the need for multiple GWAS or other 81 corroborating evidence before pursuing functional validation of particular candidate loci.

82 Our permutation approach nonetheless allows us to characterize the genetic architecture of partner quality by quantifying 83 the number and location of associations across experiments and host genotypes, and thus, the degree to which these associations 84 are conditional or universal. Three categories of G→P associations emerged from our analyses (**Fig. 1**; see **Supp. Fig. S2** in 85 **68** for other traits). First were conditional associations that depended on the experiment (G × E: comparing experiments 86 within host lines, **Fig. 1A**); 510 (68%) were found in only one of the four experiments. Second were "G × G genes", the 51 87 (7%) genes that were associated with partner quality in both experiments with one host genotype but were found in neither 88 experiment with the other host genotype (**Fig. 1A**). Specifically, 18 A17-specific genes were found in both experiments with 89 this host (but never with DZA), while 33 DZA-specific genes were found in both experiments with this host (but never with A17). 90 Last, but not least, were "universal" genes, the 60 (8%) genes that were found to be associated with rhizobium partner quality 91 independent of host genotype or experiment (union in the center of **Fig. 1A**). Specifically, while only five of these genes were 92 associated with partner quality in all four experiments, 55 additional genes were found in three of the four experiments and 93 thus are strong candidates for contributing to partner quality in many conditions. We discuss these three types of genetic 94 effects in turn, at the phenotypic, genomic (three elements in the tripartite genome), gene, and variant level, then conclude 95 with the general implications of our findings for plant-microbe interactions and symbiosis evolution more broadly.

96 **Genotype-by-environment interactions in the G→P map of symbiotic partner quality.** Because our different "environments" 97 are actually replicate experiments, our goal here was to capture how reproducible associations are across experiments, rather than to track the specific environmental differences that contribute to conditional associations. We found that 98 environmental dependence was a pervasive pattern at both the phenotypic, genomic, and individual gene levels, suggesting 99 that different sets of rhizobium genes contribute to symbiotic partner quality under different environmental conditions. At the 100 phenotypic level, ANOVA indicated abundant genetic variance in partner quality traits, including both significant main effects 101 of strain as well as strong strain-by-experiment (G × E) interactions (see **Table 1** and within-experiment heritabilities in **Table 102 2**). Cross-experiment genetic correlations (r) of strain means between experiments within a host line were generally significant 103 (**Table 2**), consistent with strain main effects (some strains had consistently higher partner quality than others; see **Supp. Figs. 104 S3 & S4** in **68** for all within and between experiment trait correlations). Nevertheless, for most traits in both hosts, G × E was 105 driven by changes in the rank order of strain means across experiments (**Table 2** crossing (%); see **Supp. Fig. S5** in **68** for reac- 106 tion norms). Rhizobium strains varied considerably in cross-experiment plasticity for shoot biomass, with some strains having 107 consistently low/high partner quality (i.e., resulting in small/large plant biomass, respectively) independent of the experiment, 108

Batstone et al.

109 while others responded strongly to the environmental differences between experiments (**Supp. Fig. S6, 68**).

110 At the genomic-level, our evidence indicates that $G \times E$ was driven by small-scale shifts in the identity, and estimated allelic
111 effects, of individual loci across experiments rather than large shifts in which genomic elements have contributed to partner
112 quality variation (**Supp. Fig. S7, 68**). The vast majority of genes contributing to partner quality variation were located on the
113 symbiotic elements (megaplasmid pSymA or chromid pSymB; **Fig. 2; Supp. Dataset S2, 67**; see **Supp. Fig. S8** in **68** for other
114 traits), although some environmentally-dependent loci were found on the chromosome (i.e., $G \times E$ and plasticity). Within host
115 lines, 330 total genes were mapped with host line DZA (186 and 144 in experiments 1 and 3, respectively), while only 180 total
116 genes mapped to host line A17 (104 and 76 in experiments 2 and 4, respectively; **Fig. 1A**).

117 At the gene-level, for experiment 1 in host line DZA, the INTERPRO terms “Transcription regulator *hth, lacI*” and “Lambda
118 repressor-like, DNA-binding domain” were marginally significantly enriched ($p = 0.00101$ and 0.00482 , respectively), as was the
119 “Oxidative phosphorylation” KEGG pathway ($p = 0.00959$; **Supp. Dataset S5, 67**), whereas for experiment 3 in host line DZA,
120 the “Benzoate degradation” KEGG pathway was significantly enriched (FDR-corrected $p = 0.00880$), while the GO terms “3,4-
121 dihydroxybenzoate catabolic process” and “transmembrane transport” were marginally significantly enriched ($p = 0.00204$ and
122 0.00376 , respectively; **Supp. Dataset S5, 67**). For experiment 2 in host line A17, the GO terms “transcription, DNA-templated”
123 were significantly enriched (FDR corrected $p = 0.00143$), as were the related UNIPROT keywords for “transcription regulation”
124 (FDR corrected $p = 0.00310$) and “DNA-binding” ($p = 0.00310$; **Supp. Dataset S5, 67**), whereas for experiment 4 in host line
125 A17, the INTERPRO term “Amidohydrolase 1” was marginally significantly enriched ($p = 0.0307$; **Supp. Dataset S5, 67**). Overall,
126 many of the underlying molecular processes important for driving variation in partner quality appear to be environmentally-
127 dependent, making it harder to predict which genes and pathways will be important for determining symbiotic outcomes
128 under different conditions.

129 At the variant-level, for each host (DZA or A17), we used correlations of the estimated allelic effects to assess the degree to
130 which the individual effects of rhizobium alleles on partner quality were consistent in direction and/or magnitude, or whether
131 they depended on the experiment. When variants were significantly associated with partner quality in both experiments (**Fig. 3**
132 dark points), they tended to have inconsistent effects on host line DZA (**Fig. 3A**), while being more consistent on A17 (d**Fig. 3B**).
133 In fact, on A17, all of the nearly-universal variants (**Fig. 3B** black dots) had concordant (i.e., same-sign) effects on shoot biomass
134 between experiments, whereas the opposite was true for DZA (**Fig. 3A** black dots) - all nearly-universal variants had discordant
135 (i.e., opposite-sign) effects between experiments. For host line DZA, 12 particularly interesting variants had significant but
136 opposing effects on plant biomass across the two experiments (**Fig. 3A; Supp. Dataset S1, 67**). Such associations might
137 point to interesting environmentally-dependent genes. Regardless of host line, however, the vast majority of variants in our
138 studies had conditionally-neutral effects, even those with large magnitude (**Fig. 3**; see **Supp. Fig. S9** in **68** for other traits), and
139 for both hosts, we rejected the global null hypothesis that allelic effects were the same across experiments (both $p < 0.0001$;
140 **Supp. Fig. S10, 68**).

141 Next we mapped the among-strain differences in plasticity (**Supp. Fig. S6, 68**) to identify specific loci contributing to G
142 $\times E$. At the genomic-level, most (63%) plasticity loci were found on pSymB (**Fig. 2; Supp. Fig. 7B, 68**). Of 576 genes, 400
143 (69%) were also associated with shoot biomass variation *within* at least one of the four experiments when each was mapped
144 independently, indicating abundant overlap in the genetic architecture of both within- and among-experiment partner quality
145 variation (**Supp. Dataset S6, 67**). Plasticity loci were marginally significantly enriched for the INTERPRO terms “Ti-type conjugative
146 transfer relaxase *traA*” ($p = 0.0292$) and “*mobA/mobL* protein” ($p = 0.0292$), as well as several INTROPRO terms containing
147 “tetraericopeptide-repeat” (p range: 0.006 to 0.0310), among others (**Supp. Dataset S6, 67**). Of 576 total plasticity genes, only
148 93 (16%) were mapped in both host genotypes (**Fig. 1B, Fig. 2; Supp. Dataset S7, 67**). Perhaps most interesting are the 14
149 of these plasticity genes that were *not* associated with variation within any of the four experiments when mapped separately
150 (**Supp. Dataset S6, 67**); these loci are particularly strong candidates for understanding how $G \times E$ in rhizobia scales up to alter
151 host growth, and none to our knowledge have known functional roles in symbiosis.

152 **The genetic architecture of rhizobium partner quality depends on host genotype.** Given our four-experiment design,
153 we used the conservative approach of only considering $G \times G$ genes to be those that were associated with partner quality in
154 *both* experiments with one host genotype and *neither* of the other. We found 33 genes that contributed to partner quality but
155 only in DZA, and 18 that contributed but only in A17 (**Fig. 1; Supp. Dataset S2, 67**). These genes split evenly across the two
156 symbiosis plasmids of the genome (pSymA: $N = 24$; pSymB: $N = 27$). Below, we discuss our results at the gene-level for each
157 host line separately.

158 In the list of A17-only $G \times G$ genes, analyses of UNIPROT keywords indicated that “Selenium” was marginally significantly

The complex genetics of symbiotic extended phenotypes

159 overrepresented ($p = 0.00771$), while GO terms for “transferase activity, transferring glycosyl groups” were marginally over-
160 represented ($p = 0.0417$; **Supp. Dataset S5, 67**). Notably, these genes include both *exoU* (SMB20948/ NP_437611.1) and
161 *exoW* (SMB21690/NP_437613.1; **Supp. Dataset S2, 67**), two glucosyltransferases critical for adding the 6th and 7th sugars (re-
162 spectively) on the succinoglycan molecule, an exopolysaccharide required for infection thread formation and thus host plant
163 invasion for effective symbiosis (69, 70, 71). Non-functional *exo* genes are known to result in less-efficient, though sometimes
164 not entirely deficient, symbiosis (72). Together with this prior knowledge, our finding that variants in two succinoglycan biosyn-
165 thesis enzymes affected host biomass production in host A17 suggests a strong role for succinoglycan-mediated host invasion
166 in determining symbiotic benefits in natural populations. Future studies of coevolution between succinoglycan structure and
167 host plant detection would likely be fruitful. Also notable is *selA* (SMa0011/NP_435251.1; **Supp. Dataset S2, 67**), a transferase
168 required for the biosynthesis of selenocysteine, a less-used amino acid incorporated into select proteins in only about 20% of
169 bacterial genomes (73, 74, 75). To our knowledge, nothing is known about the role of selenocysteine in rhizobia or in legume-
170 rhizobium symbiosis.

171 By contrast, the list of DZA-only G × G genes was dominated by GO terms “transcription factor activity, sequence-specific
172 DNA binding” ($p = 0.0247$) and “cellular amino acid metabolic process” ($p = 0.0425$; **Supp. Dataset S5, 67**). Notably this list
173 contains three *lysR* transcriptional regulators (**Supp. Dataset S2, 67**) of at least 90 in the genome: SMa2287 (NP_436477.2)
174 on pSymA plus SM_b20494 (NP_437016.1) and SM_b21434 (NP_437803.1) on pSymB are not well-studied, and had weak
175 (SM_b20494) or undetectable effects in a plasmid insertion mutagenesis screen compared to the named *lsrA* and *lsrB* (76).
176 This class of loci is well-known to control expression of genes for symbiosis, both mutualistic and pathogenic (77). Beyond
177 those discovered in knockdown studies, our results suggest additional symbiotic roles for natural variation at these *lysR* regu-
178 lators in *S. meliloti*. Interestingly, one metabolic process gene (*gdhA*: SMa0228/NP_435368.1 on pSymA; **Supp. Dataset S2, 67**),
179 part of one bacterial pathway for assimilation of ammonium into glutamate (78), was identified in a comparative genomics
180 study of five *Sinorhizobium* (formerly *Sinorhizobium*) species as specific to *S. meliloti* (79). The role of *gdhA* in rhizobial symbiosis
181 is not well-known, though interestingly it was found to increase ammonium assimilation when the *E. coli* copy was expressed
182 transgenically in tobacco (80).

183 **Universal associations highlight transport functions and secretion systems.** Despite these layers of context-dependency,
184 we did find significant main effects of strain for all phenotypes (**Table 1**). Concomitantly we resolved a number of loci that were
185 consistently associated with shoot biomass, being mapped in either three experiments (55 nearly-universal genes) or even all
186 four experiments (5 universal genes) (**Fig. 1**). At the genomic and gene-levels, the set of 60 universal/nearly-universal genes
187 were split between pSymA and pSymB (38 and 22 loci, respectively; **Fig. 2** mauve dots; **Supp. Dataset S2, 67**) and featured
188 marginally-enriched INTERPRO terms for “Tetratricopeptide-like helical” ($p < 0.001$) and “Tetratricopeptide repeat-containing
189 domain” ($p = 0.00160$) as well as UNIPROT keywords “Transmembrane” ($p = 0.0190$) and “Transmembrane helix” ($p = 0.0407$),
190 though none of these terms were significant after FDR-correction (**Supp. Dataset S5, 67**).

191 Of the five truly universal genes (mapped in all 4 experiments; **Supp. Dataset S2, 67**), most do not have known functions
192 in symbiosis. This includes a *cax* gene (SMa0675/ NP_435603.2) putatively involved in calcium/proton exchange. Though *cax*
193 genes are widespread in bacteria and eukaryotes (81), and the importance of calcium both in nodule establishment and trade of
194 benefits is known (82, 83), it is difficult to hypothesize on the function of this particular gene or its genetic variants in symbiosis
195 currently. Given their as-yet unknown functions and lack of context-dependency in our studies, the five universal candidates
196 might hold the most potential for novel functional information and consistent phenotypic effects, which might make them
197 ideal candidates both for validation and for symbiosis improvement.

198 Like the five universal genes, the “nearly-universal” set of genes associated with shoot biomass in three (of four) experi-
199 ments highlights the existence of segregating natural variation in several interesting metabolic pathways, only some of which
200 have established roles in symbiosis. We found five loci annotated as involved in transmembrane transport (**Supp. Dataset S2,**
201 **67**), including *kdpA* (SMa2333/NP_436501.1), *potE* (SMa0678/NP_435605.1), and *msbA1* (SM_b20813/NP_437093.2) – in addi-
202 tion to the nodulation protein *glmS/nodM* (SMa0878/NP_435728.1) and the universally-associated *cax* transporter (discussed
203 above). The role of potassium transporters such as *kdpA* in osmoregulation during symbiosis is not well understood (84). The
204 *potE* locus codes for a putrescine/ornithine antiporter, while another nearby nearly-universal locus
205 (SMa0682/NP_435607.4) is a predicted amino acid decarboxylase in the putrescine biosynthesis pathway, potentially suggest-
206 ing a role for variation in putrescine metabolism, which is known to vary in *S. meliloti* (45), in symbiotic partner quality (45, 85).

207 Finally, we interrogated the gene sets from two key studies that have associated natural variation in *S. meliloti* genomes
208 with symbiotic partner quality (see **Supp. Dataset S2**, “overlap” column; 45, 66). Our nearly-universal gene set contained eight

Batstone et al.

209 loci that overlapped with the top 100 associations with A17 biomass from Epstein et al. (45). Most notable is the fructose-6-
210 phosphate aminotransferase *nodM/glmS* (SMa0878/NP_435728.1) that catalyzes a precursor of both peptidoglycan and Nod
211 factor in the glucosamine biosynthesis pathway. This locus is located in the symbiosis gene region of pSymA, though a paralog
212 exists on the chromosome (SMc00231/NP_385762.1; 86). Knockout mutants of *nodM* are known to decrease N-fixation of *S.*
213 *meliloti* on alfalfa (87) and *Rhizobium leguminosarum* (88); together with Epstein et al. (45), our studies highlight the role of
214 natural variation in bacterial glucosamine metabolism in determining plant health. We also found six genes in this nearly-
215 universal set that were also associated with symbiotic partner quality, rhizobium fitness, or both in the experimental evolution
216 study of Batstone et al. (66). Most notable are two *tra* (transfer) loci (*traA2* on pSymB and *traG* on pSymA), potentially part
217 of a Type IV Secretion System (T4SS) responsible for targeting proteins to host cells (89, 90). While the variants we found in
218 these loci are segregating in natural populations in the native range of *S. meliloti*, these loci also evolved *de novo* in response
219 to passing through the same host for multiple generations (66), making them strong candidates for a consistent role in
220 symbiosis.

221 DISCUSSION

222 Understanding our symbiotic world requires a genetically-accurate appreciation of the symbiotic extended phenotypes upon
223 which selection acts. While evolutionary ecology has long recognized the importance of genetic variation in symbiosis while
224 ignoring the underlying mechanisms, functional geneticists have traditionally resolved mechanisms without taking into account
225 natural variation. Synthesis of these two perspectives has started to resolve ecologically-relevant quantitative variation at the
226 nucleotide level (45, 46, 47, 60, 91, 92). Here we quantify multiple symbiotic extended phenotypes in four GWAS using a model
227 plant-microbe symbiosis and find that the genetic architecture of symbiotic partner quality is complex, underlain by networks
228 of numerous interacting loci and environmental-dependence. We find that some loci in the microbial symbiont have consistent
229 effects on host growth across experiments, contributing to the overall differences in mutualistic partner quality that have been
230 the focus of many empirical and theoretical studies of mutualism to date (reviewed by 40, 93, 94, 95, 96). Nonetheless, most
231 loci identified in our study were significantly associated with variation in partner quality in specific environments (G × E effects),
232 or with specific host genotypes (G × G effects). We first discuss the roles of environmentally-dependent loci, versus universal
233 loci that are found consistently. Next we discuss the coevolutionary implications of genotype-dependence (G × G interactions),
234 then wrap up with a call for further synthesis with metabolic network models towards systems genetics of symbiosis.

235 **Environmental context-dependency in the G→P map of symbiosis.** Ecological effects of context-dependency in mutualism
236 have been recognized for a long time, i.e., traits and mutualism benefits often shift across environmental conditions such
237 as nutrient availability or light environments (97, 98, 99), although not ubiquitously for all traits (e.g., 100, 101). More recent
238 studies have begun to document the evolutionary changes that can result from these ecological effects, e.g., divergence of host
239 and/or symbiont symbiosis traits across strong ecological gradients (59, 102, 103, 104, 105). Evolutionary change in response
240 to environments implies that the loci underlying selected traits have differential effects on fitness across environments. Here
241 we identify the loci that generate important trait variation both within and among environments, the trait variation upon which
242 selection acts in nature.

243 The majority of context-dependent partner quality genes we identified might be viewed much like the conditionally-neutral
244 variation so often found in studies of local adaptation (106, 107, 108, 109, 110), contributing significantly to variation in partner
245 quality in some contexts but having a range of weaker effects (both in the same or opposing direction) in another context. For
246 example, by experimentally-evolving strains of *S. meliloti* on five *M. truncatula* lines, Batstone et al. (66) found that local adaptation
247 was largely governed by conditional neutrality (beneficial on local host, neutral on non-local hosts) or mildly deleterious
248 effects on non-local hosts, likely due to drift in the local context. Yet, in nature where rhizobium population sizes are much
249 larger and more diverse, and gene flow is present, the extent to which local adaptation occurs has rarely been tested but might
250 be unlikely (28, 111, 112), except for populations differentiated by strong ecological gradients (e.g., 102). Moreover, the host
251 genotypes used in our study, DZA and A17, are unlikely to share an evolutionary history with our strains, and so it remains
252 unclear whether stronger trade-offs (and less conditional neutrality) would be present if our strains shared an evolutionary
253 history with the host lines being tested.

254 Despite widespread conditional neutrality, a handful of interesting variants had strong effects on host growth, but in
255 *opposing directions* across experiments within a single host genetic background. These sorts of antagonistic effects can favour
256 different variants in different environments, and thus, potentially help explain the maintenance of mutualism variation in
257 nature (95, 113, 114, 115). Nevertheless we note that these sorts of G × E variants were rare in our study, despite strong

The complex genetics of symbiotic extended phenotypes

rank-order effects among strain means at the organismal level (**Table 2**); moreover, because our “environments” were simply different greenhouse experiments, relating such antagonistic effects to adaptation in the wild will require the type of *in situ* studies that are common in plants (e.g., 104, 107, 116) but more difficult in soil microbes.

We nevertheless found several genes and pathways that are ideal for functional follow-up studies aimed at identifying consistent associations, or loci which might benefit from “fine-tuning” symbiotic benefits towards improving plant health. The strengths of GWAS (capturing genetic variation, ecological relevance) also lead to weaknesses (imprecision due to confounding population structure, false negatives and false positives). Thus our strongest recommendations for functional hypotheses for validation in follow up studies are the universal genes identified here that overlap with candidate genes identified in separate GWAS using different genomic backgrounds and environments (e.g., 45, 66).

Overall we find that the loci underlying quantitative variation in symbiotic extended phenotypes often (but not always) depend on the environment, and therefore that a nuanced understanding of how complex traits interact with environmental variables will be necessary for many of the lofty goals in plant microbiome and symbiosis research (9, 35). This point has been made before (117), as the presence of $G \times E$ as studied at the phenotypic level has been recognized for decades; what is novel here is our ability to interrogate this variation at the genomic level and for multiple host lines (see below).

Coevolutionary implications of genotype-dependence. Uncovering the complex genetics of how two (or more) genomes interact with each other to generate trait variation is an important step to better understanding how these traits (co)evolve (6) and how to better manipulate traits in the future to address societal challenges (37, 118). For example, identifying the loci underlying mutualistic traits allows us to address longstanding debates within mutualism theory (119), including how readily conflict evolves (120), and how genetic variation is maintained despite host selection for the ‘best’ symbiont (95).

Previous mapping efforts in the legume-rhizobium system have focused on the *Medicago* HapMap collections, which maximize host diversity using a range-wide sample. Our study focuses on the segregating natural variation within a symbiont at a smaller geographic scale, a scale at which pSymA and pSymB segregate (112); thus the $G \times G$ -driven variation we find here would be available to local evolutionary and/or coevolutionary processes. $G \times G$ interactions for fitness outcomes have long been of interest in the legume-rhizobium symbiosis (25, 121, 28, 102, 122) and other interactions (123, 124, 125) because such statistical interactions generate the fitness variation that drives coevolution. Additionally, $G \times G$ interactions have implications for breeding and agricultural production because the functional effects of symbiont variation are likely to depend on the crop genotype (126, 127). Recent molecular genetic and transcriptomic approaches on a handful of genotypes have begun to resolve the mechanistic underpinnings of $G \times G$ (128, 129, 130, 131, 132, 133), while biparental or GWAS mapping approaches (45, 46, 134) provide broader insight into the genetic architecture underlying $G \times G$ (i.e., the number, average effect size, and consistency of loci). The picture emerging from ours and others’ studies is that $G \times G$, like symbiotic partner quality itself, has a complex, polygenic basis and will require both statistically sophisticated and metabolically-informed models to unravel.

Symbiotic extended phenotypes as quantitative traits. In the age of rapid microbiome sequencing and expanding efforts to characterize the loci in plant genomes that contribute to microbiome variation among cultivars or genotypes (e.g., rice, *Lotus*, *Medicago*), our results present an important juxtaposition, as the abundant and context-dependent genetic variation characterized in detail here occurs within a set of 191 rhizobia strains with > 98% average nucleotide identity (well above the typical threshold for delineating and enumerating operational taxonomic units, or OTUs, in metagenomic studies). At the same time, functional genetic studies have made much progress identifying loci critical to symbiosis establishment and downstream processes by creating knock-out or knock-down mutants and comparing their associated symbiotic phenotypes to a wildtype strain (e.g., *dnf* mutants in legumes, 135; fix+/fix- mutants of rhizobia, 136), but these loci are often viewed as on-or-off switches for symbiosis more generally, or cooperation more specifically in models of mutualism theory (137, 138, 139, 140). Our study demonstrates that most loci within the symbiont genome act more like dials than on-and-off switches, generating the quantitative variation in symbiotic extended phenotypes observed in nature.

While our approach allows us to generate novel candidate loci that are consistently associated with partner quality across contexts, *in silico* modelling of both plant (141) and rhizobium (142) metabolism that links together genetic information with metabolic pathways could then be used to simulate key symbiotic processes under a wide range of conditions (143). Ultimately combining transcriptomic, genomic, and metabolomic datasets will be required for a synthetic understanding of how nucleotide variation percolates up through shared symbiotic metabolic networks (17, 144, 145). Efforts to reintegrate research on symbiosis genetics and (co)evolution with plant-microbiome work (reviewed in 37, 118) will be fruitful in revealing additional intraspecific variation driving patterns of genotype-dependence and coevolution and resolving mechanisms of host control of the microbiome.

Batstone et al.

308 MATERIALS AND METHODS

309 Full details are available in the Supplemental Materials (**Supp. Methods**, 68). We performed four greenhouse experiments to
310 estimate partner quality phenotypes in *S. meliloti*. In each experiment, plants from one of two host lines (either A17 or DZA)
311 were grown in single inoculation with each of 191 *S. meliloti* strains, with three to four replicates per strain per experiment (six
312 to eight total replicates for each plant line x strain combination, N = 2,825 plants total). Experiments were planted in 2018, in
313 March (I: DZA), May (II: A17), Sept (III: DZA), and Nov (IV: A17). Uninoculated controls (40 per experiment) were included to gauge
314 contamination, which was minimal overall, and limited to the first two experiments (**Supp. Fig. S11**, 68). We measured multiple
315 proxies of partner quality, namely leaf chlorophyll A content, plant height, number of leaves, and above-ground dried shoot
316 biomass, although we focus on the latter in the main text (see Supplemental Materials for all others). We conducted multiple
317 phenotypic analyses to determine how much variation in partner quality was due to strain, experiment, and the interaction of
318 both, among other questions.

319 We sequenced the entire genomes of all 191 *S. meliloti* strains, called single nucleotide polymorphisms (SNPs, henceforth
320 referred to as variants), and performed four separate GWAS that accounted for rhizobium population structure and included
321 only unlinked variants. We determined which variants were significantly associated with partner quality using a permutation
322 method (45) that involved generating 1000 randomized datasets (i.e., genotypes randomized with respect to phenotypes)
323 and running a linear mixed model (LMM) on each. In all models, we included the same set of variants as well as the kinship
324 matrix as a random effect to account for associations that arise due to population structure. However, because we conducted
325 our experiments under controlled greenhouse conditions, unmeasured variables that are population-stratified are unlikely to
326 confound our results. We then tagged variants from the non-randomized run that fell above the 95% false discovery rate cut off
327 based on the combined randomized runs. Although more computationally demanding and less conservative than conventional
328 Bonferroni correction, the advantage of our permutation approach is that it better captures the unique properties specific to
329 each dataset such as trait distributions, patterns of linkage disequilibrium, and missing data, while also controlling for the per-
330 variant false positive rate in the presence of associations at other loci. Thus, despite the inherent challenges associated with
331 determining the causal variants underlying highly polygenic traits (i.e., numerous variants with small effects), our permutation
332 approach nonetheless allows us to characterize the genetic architecture of partner quality, determine the degree to which
333 associations are conditional or universal, and even identify candidate loci that are most likely to contribute to variation in
334 partner quality across conditions by comparing the variants we identified as “universal” with those highlighted in other GWAS
335 using different experimental conditions and host and symbiont genotypes.

336 Based on our permutation method, we binned the resulting significant variants into three categories based on the context-
337 dependency of their phenotypic effects, and thus, their contribution to the layers of the G→P map for each of our symbiotic
338 extended phenotypes. First, “nearly-universal genes” were those found to have significant effects in at least three of the four
339 experiments for a particular trait (“universal genes” were mapped in all four experiments). Second, we used a conservative
340 approach to call “G × G genes” as those mapped in both experiments for one host genotype but neither of the experiments
341 for the other host genotype (i.e., “DZA G × G” genes were significant in both experiments I and III with DZA but neither II nor IV
342 with host A17). Third were genes significantly associated with partner quality in a single experiment, and never in another (i.e.,
343 “G × E” genes). Finally, we conducted candidate gene functional analyses to understand how loci within different categories
344 differed from one another functionally, or whether they were part of the same networks/metabolic pathways.

345 **Data Availability.** Strains and plant lines are available upon request. All raw data and analysis code are available on
346 GitHub (see “Complex_genetics” folder). Once raw sequence reads and assemblies are archived and made available on NCBI,
347 accession numbers will be added to this manuscript.

348 SUPPLEMENTAL MATERIAL

349 Detailed methods and thirteen (13) supplementary figures are available on Zenodo (68) (doi: <https://doi.org/10.5281/zenodo.5550958>). Seven (7) supplementary datasets are available on Dryad (68) (doi: <https://doi.org/10.5061/dryad.5dv41ns6r>). All sup-
350 351 352 353 354 355

352 ACKNOWLEDGMENTS

353 We thank greenhouse staff (esp. Debbie Black). We acknowledge funding from the National Science Foundation (IOS-1645875
354 and NPGI-1401864), a Carl R. Woese Institute for Genomic Biology postdoctoral fellowship to R.T. Batstone, strain sequencing
355 by Joint Genome Institute (CSP-1223795), as well as analytical advice from B. Epstein.

REFERENCES

1. **Klironomos JN.** 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. *Ecology* 84 (9):2292–2301.
2. **Oliver KM, Moran NA, Hunter MS.** 2005. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. *Proc Natl Acad Sci* 102 (36):12795–12800.
3. **Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, et al.** 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. *Science* 341 (6150).
4. **Brock DA, Jones K, Queller DC, Strassmann JE.** 2016. Which phenotypic traits of *Dictyostelium discoideum* farmers are conferred by their bacterial symbionts? *Symbiosis* 68 (1-3):39–48.
5. **Gilbert JA, Lynch SV.** 2019. Community ecology as a framework for human microbiome research. *Nat Med* 25 (6):884–889.
6. **O'Brien AM, Jack CN, Friesen ML, Frederickson ME.** 2021. Whose trait is it anyways? Coevolution of joint phenotypes and genetic architecture in mutualisms. *Proc Royal Soc B* 288 (1942):20202483.
7. **Afkhami ME, Friesen ML, Stinchcombe JR.** 2021. Multiple Mutualism Effects generate synergistic selection and strengthen fitness alignment in the interaction between legumes, rhizobia and mycorrhizal fungi. *Ecol Lett* .
8. **Brundrett MC.** 2002. Coevolution of roots and mycorrhizas of land plants. *New Phytol* 154 (2):275–304.
9. **Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E.** 2011. Microbially mediated plant functional traits. *Annu Rev Ecol Evol Syst* 42:23–46.
10. **Hurst GD.** 2017. Extended genomes: symbiosis and evolution. *Interface Focus* 7 (5):20170001.
11. **Hawkes CV, Bull JJ, Lau JA.** 2020. Symbiosis and stress: how plant microbiomes affect host evolution. *Philos Trans Royal Soc B* 375 (1808):20190590.
12. **Moeller AH, Sanders JG.** 2020. Roles of the gut microbiota in the adaptive evolution of mammalian species. *Philos Trans Royal Soc B* 375 (1808):20190597.
13. **Hansen TF.** 2006. The evolution of genetic architecture. *Annu Rev Ecol. Evol. Syst.* 37:123–157.
14. **Orgogozo V, Morizot B, Martin A.** 2015. The differential view of genotype–phenotype relationships. *Front Genet* 6:179.
15. **Mackay TF, Huang W.** 2018. Charting the genotype–phenotype map: lessons from the *Drosophila melanogaster* Genetic Reference Panel. *Wiley Interdiscip Rev Dev Biol* 7 (1):e289.
16. **Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, et al.** 2018. Creation and characterization of a genetically hybrid strain in the nitrogen-fixing symbiotic bacterium *Sinorhizobium meliloti*. *ACS Synth Biol* 7 (10):2365–2378.
17. **Marshall-Colón A, Kliebenstein DJ.** 2019. Plant networks as traits and hypotheses: moving beyond description. *Trends Plant Sci* 24 (9):840–852.
18. **Cheverud JM.** 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. *Evolution* p 499–516.
19. **Cheverud JM.** 1996. Developmental integration and the evolution of pleiotropy. *Am Zool* 36 (1):44–50.
20. **Hansen TF.** 2013. Why epistasis is important for selection and adaptation. *Evolution* 67 (12):3501–3511.
21. **Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ, Thapar A, Goddard ME, Witte JS, et al.** 2013. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. *Nat Genet* 45 (9):984–995.
22. **Campbell-Staton SC, Chevron ZA, Rochette N, Catchen J, Losos JB, Edwards SV.** 2017. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. *Science* 357 (6350):495–498.
23. **Saltz JB, Hessel FC, Kelly MW.** 2017. Trait correlations in the genomics era. *Trends Ecol & Evol* 32 (4):279–290.
24. **Frank S.** 1992. Models of plant-pathogen coevolution. *Trends Genet* 8 (6):213–219.
25. **Parker MP.** 1995. Plant fitness variation caused by different mutualist genotypes. *Ecology* 76 (5):1525–1535.
26. **Lambrechts L, Fellous S, Koella JC.** 2006. Coevolutionary interactions between host and parasite genotypes. *Trends Parasitol* 22 (1):12–16.
27. **Wade MJ.** 2007. The co-evolutionary genetics of ecological communities. *Nat Rev Genet* 8 (3):185–195.
28. **Heath KD.** 2010. Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. *Evolution* 64 (5):1446–1458.
29. **Parker BJ, Hrček J, McLean AH, Godfray HCJ.** 2017. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. *Evolution* 71 (5):1222–1231.
30. **Piculell BJ, Hoeksema JD, Thompson JN.** 2008. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics. *BMC Biol* 6 (1):1–11.
31. **Heath KD, Stock A, Stinchcombe J.** 2010. Mutualism variation in the nodulation response to nitrate. *J Evol Biol* 23 (11):2494–2500.
32. **Wendling CC, Fabritzek AG, Wegner KM.** 2017. Population-specific genotype x genotype x environment interactions in bacterial disease of early life stages of pacific oyster larvae. *Evol Appl* 10 (4):338–347.
33. **Thompson JN.** 2005. The geographic mosaic of coevolution. University of Chicago Press.
34. **Thompson JN.** 2009. The coevolutionary process. University of Chicago press.
35. **Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL.** 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. *PLoS Biol* 15 (3):e2001793.
36. **Porter SS, Sachs JL.** 2020. Agriculture and the disruption of plant-microbial symbiosis. *Trends Ecol & Evol* 35 (5):426–439.
37. **Batstone RT.** 2021. Genomes within Genomes: nested symbiosis and its implications for plant evolution. *New Phytol* (in review).
38. **Cook DR.** 1999. *Medicago truncatula*—a model in the making! *Curr Opin Plant Biol* 2 (4):301–304.
39. **Heath KD, Grillo MA.** 2016. Rhizobia: tractable models for bacterial evolutionary ecology: Models for bacterial evolutionary ecology. *Environ Microbiol* 18 (12).
40. **Sachs JL, Quides KW, Wendlandt CE.** 2018. Legumes versus rhizobia: a model for ongoing conflict in symbiosis. *New Phytol* 219 (4):1199–1206.
41. **diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A.** 2019. Multidisciplinary approaches for studying rhizobium-legume symbioses. *Can J Microbiol* 65 (1):1–33.
42. **Burghardt LT.** 2020. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. *New Phytol* 228 (1):28–34.
43. **Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S.** 2005. Sequencing the genespaces of *Medicago truncatula*

and *Lotus japonicus*. *Plant Physiol* 137 (4):1174–1181.

44. **Epstein B, Branca A, Mudge J, Bharti AK, Briskeine R, Farmer AD, Sugawara M, Young ND, Sadowsky MJ, Tiffin P.** 08 2012. Population Genomics of the Facultatively Mutualistic Bacteria *Sinorhizobium meliloti* and *S. medicae*. *PLoS Genet* 8:1–10. doi: [10.1371/journal.pgen.1002868](https://doi.org/10.1371/journal.pgen.1002868).
45. **Epstein B, Abou-Shanab RA, Shamseldin A, Taylor MR, Guhlin J, Burghardt LT, Nelson M, Sadowsky MJ, Tiffin P.** 2018. Genome-wide association analyses in the model *Rhizobium Ensifer meliloti*. *MSphere* 3 (5).
46. **Stanton-Geddes J, Paape T, Epstein B, Briskeine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, et al.** 2013. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in *Medicago truncatula*. *PloS One* 8 (5):e65688.
47. **Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR, Young ND, Sadowsky MJ, Tiffin P.** 2018. Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. *Proc Natl Acad Sci* 115 (10):2425–2430.
48. **Graham PH, Vance CP.** 2003. Legumes: importance and constraints to greater use. *Plant Physiol* 131 (3):872–877.
49. **Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, et al.** 2016. Neglecting legumes has compromised human health and sustainable food production. *Nat Plants* 2 (8):1–10.
50. **Fustec J, Lesuffleur F, Mahieu S, Cliquet JB.** 2010. Nitrogen rhizodeposition of legumes. A review. *Agron for Sustain Dev* 30 (1):57–66.
51. **Duchene O, Vian JF, Celette F.** 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. *Agric Ecosyst & Environ* 240:148–161.
52. **Harrison PW, Lower RP, Kim NK, Young JPW.** 2010. Introducing the bacterial 'chromid': not a chromosome, not a plasmid. *Trends Microbiol* 18 (4):141–148.
53. **Young ND, Zhou P, Silverstein KA.** 2016. Exploring structural variants in environmentally sensitive gene families. *Curr Opin Plant Biol* 30:19–24.
54. **Dicenzo GC, Finan TM.** 2017. The divided bacterial genome: structure, function, and evolution. *Microbiol Mol Biol Rev* 81 (3):e00019–17.
55. **Misra HS, Maurya GK, Kota S, Charaka VK.** 2018. Maintenance of multipartite genome system and its functional significance in bacteria. *J Genet* 97 (4):1013–1038.
56. **Cavassim MIA, Moeskjær S, Moslemi C, Fields B, Bachmann A, Vilhjálmsson BJ, Schierup MH, Young JPW, Andersen SU.** 2020. Symbiosis genes show a unique pattern of introgression and selection within a *Rhizobium* leguminosarum species complex. *Microb Genom* 6 (4).
57. **Nelson M, Guhlin J, Epstein B, Tiffin P, Sadowsky MJ.** 2018. The complete replicons of 16 *Ensifer meliloti* strains offer insights into intra-and inter-replicon gene transfer, transposon-associated loci, and repeat elements. *Microb Genom* 4 (5).
58. **Epstein B, Tiffin P.** 2021. Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. *Proc Royal Soc B* 288 (1942):20201804.
59. **Klinger CR, Lau JA, Heath KD.** 2016. Ecological genomics of mutualism decline in nitrogen-fixing bacteria. *Proc Royal Soc B* 283 (1826):20152563.
60. **Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML.** 2017. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic *Mesorhizobium*. *The ISME J* 11 (1):248–262.
61. **Power RA, Parkhill J, de Oliveira T.** 2017. Microbial genome-wide association studies: lessons from human GWAS. *Nat Rev Genet* 18 (1):41–50.
62. **Wang D, Yang S, Tang F, Zhu H.** 2012. Symbiosis specificity in the legume-rhizobial mutualism. *Cell Microbiol* 14 (3):334–342.
63. **Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pisariu CI, Frugoli J, Dickstein R, Udvardi MK.** 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. *The Plant Cell* 32 (1):15–41.
64. **diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M.** 2020. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. *Nat Commun* 11 (1):1–11.
65. **Porter SS, Faber-Hammond J, Montoya AP, Friesen ML, Sackos C.** 2019. Dynamic genomic architecture of mutualistic cooperation in a wild population of *Mesorhizobium*. *The ISME J* 13 (2):301–315.
66. **Batstone RT, O'Brien AM, Harrison TL, Frederickson ME.** 2020. Experimental evolution makes microbes more cooperative with their local host genotype. *Science* 370 (6515):476–478.
67. **Batstone R, Lindgren H, Allsup CM, Goralka LA, Riley AB, Grillo MA, Marshall-Colon A, Heath KD.** 2021. Supplemental datasets for "The complex genetics of symbiotic extended phenotypes across multiple environments in a model mutualism". <https://doi.org/10.5061/dryad.5dv41ns6r>.
68. **Batstone R, Lindgren H, Allsup CM, Goralka LA, Riley AB, Grillo MA, Marshall-Colon A, Heath KD.** 2021. Supplemental material for "The complex genetics of symbiotic extended phenotypes across multiple environments in a model mutualism". <https://doi.org/10.5281/zenodo.5550958>.
69. **Becker A, Kleickmann A, Küster H, Keller M, Arnold W, Pühler A.** 1993. Analysis of the *Rhizobium meliloti* genes exoU, exoV, exoW, exoT, and exoL involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. *Mol Plant-Microbe Interactions: MPMI* 6 (6):735–744.
70. **Reuber TL, Walker GC.** 1993. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of *Rhizobium meliloti*. *Cell* 74 (2):269–280.
71. **Nogales J, Muñoz S, Olivares J, Sanjuán J.** 2006. *Sinorhizobium meliloti* genes involved in tolerance to the antimicrobial peptide protamine. *FEMS Microbiol Lett* 264 (2):160–167.
72. **Mendis HC, Madzima TF, Queiroux C, Jones KM.** 2016. Function of succinoglycan polysaccharide in *Sinorhizobium meliloti* host plant invasion depends on succinylation, not molecular weight. *MBio* 7 (3):e00606–16.
73. **Copeland PR.** 2005. Making sense of nonsense: the evolution of selenocysteine usage in proteins. *Genome Biol* 6 (6):1–5.
74. **Peng T, Lin J, Xu YZ, Zhang Y.** 2016. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. *The ISME J* 10 (8):2048–2059.
75. **Wells M, Stolz JF.** 2020. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. *FEMS Microbiol Ecol* 96 (12):fiaa209.
76. **Luo L, Yao SY, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP.** 2005. Two new *Sinorhizobium meliloti* LysR-type transcriptional regulators required for nodulation. *J Bacteriol* 187 (13):4562–4572.
77. **Schell MA.** 1993. Molecular biology of the LysR family of transcriptional regulators. *Annu Rev Microbiol* 47 (1):597–626.
78. **Merrick M, Edwards R.** 1995. Nitrogen control in bacteria. *Microbiol Rev* 59 (4):604–622.
79. **Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J.**

The complex genetics of symbiotic extended phenotypes

Gyaneshwar P, Denny R, Mudge J, Bharti AK, et al. 2013. Comparative genomics of the core and accessory genomes of 48 *Sinorhizobium* strains comprising five genospecies. *Genome Biol* 14 (2):1–20.

80. **Ameziane R, Bernhard K, Lightfoot D.** 2000. Expression of the bacterial *gdhA* gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. *Plant Soil* 221 (1):47–57.

81. **Shigaki T, Rees I, Nakhleh L, Hirschi K.** 2006. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. *J Mol Evol* 63 (6):815–825.

82. **Oldroyd GE, Downie JA.** 2004. Calcium, kinases and nodulation signalling in legumes. *Nat Rev Mol Cell Biol* 5 (7):566–576.

83. **Clarke VC, Loughlin PC, Day DA, Smith P.** 2014. Transport processes of the legume symbosome membrane. *Front Plant Sci* 5:699.

84. **Domínguez-Ferreras A, Muñoz S, Olivares J, Soto MJ, Sanjuán J.** 2009. Role of potassium uptake systems in *Sinorhizobium meliloti* osmoadaptation and symbiotic performance. *J Bacteriol* 191 (7):2133–2143.

85. **Becerra-Rivera VA, Dunn MF.** 2019. Polyamine biosynthesis and biological roles in rhizobia. *FEMS Microbiol Lett* 366 (7):fnz084.

86. **Barnett MJ, Long SR.** 2018. Novel genes and regulators that influence production of cell surface exopolysaccharides in *Sinorhizobium meliloti*. *J Bacteriol* 200 (3):e00501–17.

87. **Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A.** 1992. *Rhizobium nodM* and *nodN* genes are common nod genes: *nodM* encodes functions for efficiency of nod signal production and bacteroid maturation. *J Bacteriol* 174 (23):7555–7565.

88. **Marie C, Barny MA, Downie J.** 1992. *Rhizobium leguminosarum* has two glucosamine syntheses, *gimS* and *nodM*, required for nodulation and development of nitrogen-fixing nodules. *Mol Microbiol* 6 (7):843–851.

89. **Cao Y, Miller SS, Dornbusch MR, Castle SS, Lenz P, Ferguson J, Sadowsky MJ, Nelson MS, Klatt C, Samac DA.** 2018. Widespread occurrence of *Sinorhizobium meliloti* strains with a type IV secretion system. *Symbiosis* 75 (2):81–91.

90. **Paço A, da Silva J, Eliziário F, Brígido C, Oliveira S, Alexandre A.** 2019. *traG* Gene Is Conserved across *Mesorhizobium* spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates. *BioMed Res Int* 2019.

91. **Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, et al.** 2011. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume *Medicago truncatula*. *Proc Natl Acad Sci* 108 (42):E864–E870.

92. **Friesen ML, von Wettberg EJ, Badri M, Moriuchi KS, Barhoumi F, Chang PL, Cuellar-Ortiz S, Cordeiro MA, Vu WT, Arraouadi S, et al.** 2014. The ecological genomic basis of salinity adaptation in Tunisian *Medicago truncatula*. *BMC Genom* 15 (1):1160.

93. **Simms EL, Taylor DL.** 2002. Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. *Integr Comp Biol* 42 (2):369–380.

94. **Denison RF.** 2000. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. *The Am Nat* 156 (6):567–576.

95. **Heath KD, Stinchcombe JR.** 2014. Explaining mutualism variation: a new evolutionary paradox? *Evolution* 68 (2):309–317.

96. **Stoy KS, Gibson AK, Gerardo NM, Morran LT.** 2020. A need to consider the evolutionary genetics of host-symbiont mutualisms. *J Evol Biol* 33 (12):1656–1668.

97. **Chamberlain SA, Bronstein JL, Rudgers JA.** 2014. How context dependent are species interactions? *Ecol Lett* 17 (7):881–890.

98. **Bronstein JL.** 2015. Mutualism. Oxford University Press, USA.

99. **Hoeksema JD, Bruna EM.** 2015. Context-Dependent Outcomes of Mutualistic Interactions, p 181–202. *In* Bronstein JL (ed), Mutualism. Oxford University Press, Oxford, UK.

100. **Regus JU, Gano KA, Hollowell AC, Sachs JL.** 2014. Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization. *Proc Royal Soc B: Biol Sci* 281 (1781):20132587.

101. **Grillo MA, Stinchcombe JR, Heath KD.** 2016. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis. *Am J Bot* 103 (10):1763–1770.

102. **Porter SS, Stanton ML, Rice KJ.** 2011. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis. *PloS One* 6 (12):e27935.

103. **Weese DJ, Heath KD, Dentinger BT, Lau JA.** 2015. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. *Evolution* 69 (3):631–642.

104. **Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, et al.** 2016. Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. *BMC Evol Biol* 16 (1):1–15.

105. **Piculell BJ, José Martínez-García P, Nelson CD, Hoeksema JD.** 2019. Association mapping of ectomycorrhizal traits in loblolly pine (*Pinus taeda* L.). *Mol Ecol* 28 (8):2088–2099.

106. **Anderson JT, Willis JH, Mitchell-Olds T.** 2011. Evolutionary genetics of plant adaptation. *Trends Genet* 27 (7):258–266.

107. **Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T.** 2013. Genetic trade-offs and conditional neutrality contribute to local adaptation. *Mol Ecol* 22 (3):699–708.

108. **Des Marais DL, Hernandez KM, Juenger TE.** 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. *Annu Rev Ecol Evol Syst* 44:5–29.

109. **Wadgymar SM, Lowry DB, Gould BA, Byron CN, Mactavish RM, Anderson JT.** 2017. Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. *Methods Ecol Evol* 8 (6):738–749.

110. **Mee JA, Yeaman S.** 2019. Unpacking conditional neutrality: genomic signatures of selection on conditionally beneficial and conditionally deleterious mutations. *The Am Nat* 194 (4):529–540.

111. **Harrison TL, Wood CW, Borges IL, Stinchcombe JR.** 2017. No evidence for adaptation to local rhizobial mutualists in the legume *Medicago lupulina*. *Ecol Evol* 7 (12):4367–4376.

112. **Riley A, Grillo M, Epstein B, Tiffin P, Heath K.** 2021. Partners in space: Discordant population structure between legume hosts and rhizobium symbionts in their native range. <https://www.biorxiv.org/content/10.1101/2021.06.30.449460>.

113. **Frederickson ME.** 2013. Rethinking mutualism stability: cheaters and the evolution of sanctions. *The Q Rev Biol* 88 (4):269–295.

114. **Pahua V, Stokes P, Hollowell A, Regus J, Gano-Cohen K, Wendlandt C, Quides K, Lyu J, Sachs J.** 2018. Fitness variation among host species and the paradox of ineffective rhizobia. *J Evol Biol* 31 (4):599–610.

115. **Vaidya P, Stinchcombe JR.** 2020. The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume–Rhizobia Mutualism. *Plant Commun* 1 (6):100114.

116. **Popovic D, Lowry DB.** 2020. Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower (*Mimulus guttatus*). *Am J Bot* 107 (2):298–307.

117. **Mackay TF, Stone EA, Ayroles JF.** 2009. The genetics of quantitative traits: challenges and prospects. *Nat Rev Genet* 10 (8):565–577.

118. **Wagner MR.** 2021. Prioritizing host phenotype to understand microbiome heritability in plants. *New Phytol* (Accepted article).

Batstone et al.

119. **Batstone RT, Burghardt LT, Heath KD.** 2021. The genetic basis of cooperation and conflict in natural populations of a model symbiont. <https://www.biorxiv.org/content/10.1101/2021.07.19.452989>.

120. **Jones EI, Afkhami ME, Akçay E, Bronstein JL, Bshary R, Frederickson ME, Heath KD, Hoeksema JD, Ness JH, Pankey MS, et al..** 2015. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. *Ecol Lett* 18 (11):1270–1284.

121. **Burdon J, Thrall P.** 1999. Spatial and temporal patterns in coevolving plant and pathogen associations. *The Am Nat* 153 (S5):S15–S33.

122. **Barrett LG, Broadhurst LM, Thrall PH.** 2012. Geographic adaptation in plant-soil mutualisms: tests using *Acacia* spp. and rhizobial bacteria. *Funct Ecol* 26 (2):457–468.

123. **Vale PF, Little TJ.** 2010. CRISPR-mediated phage resistance and the ghost of coevolution past. *Proc Royal Soc B* 277 (1691):2097–2103.

124. **Hoeksema JD.** 2010. Ongoing coevolution in mycorrhizal interactions. *New Phytol* 187 (2):286–300.

125. **Chong RA, Moran NA.** 2016. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. *Proc Natl Acad Sci* 113 (46):13114–13119.

126. **Wallace JG, Rodgers-Melnick E, Buckler ES.** 2018. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. *Annu Rev Genet* 52:421–444.

127. **Clouse KM, Wagner MR.** 2021. Plant genetics as a tool for manipulating crop microbiomes: Opportunities and challenges. *Front Bioeng Biotechnol* 9.

128. **Heath KD, Burke PV, Stinchcombe JR.** 2012. Coevolutionary genetic variation in the legume-rhizobium transcriptome. *Mol Ecol* 21 (19):4735–4747.

129. **Guefrachi I, Nagymihaly M, Pislaru CI, Van de Velde W, Ratet P, Mars M, Udvardi MK, Kondorosi E, Mergaert P, Alunni B.** 2014. Extreme specificity of NCR gene expression in *Medicago truncatula*. *BMC Genom* 15 (1):1–16.

130. **Burghardt LT, Guhlin J, Chun CL, Liu J, Sadowsky MJ, Stupar RM, Young ND, Tiffin P.** 2017. Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. *Mol Ecol* 26 (21):6122–6135.

131. **Wang Q, Liu J, Zhu H.** 2018. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. *Front Plant Sci* 9:313.

132. **Walker L, Lagunas B, Gifford ML.** 2020. Determinants of host range specificity in legume-rhizobia Symbiosis. *Front Microbiol* 11:3028.

133. **Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A.** 2021. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. *MSystems* 6 (1):e00974–20.

134. **Gorton AJ, Heath KD, Pilet-Nayel ML, Baranger A, Stinchcombe JR.** 2012. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in *Medicago truncatula*. *G3: Genes | Genomes | Genet* 2 (11):1291–1303.

135. **Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Lévy J, Debelle F, Baek JM, Kalo P, et al..** 2004. *Medicago truncatula dmi1* required for bacterial and fungal symbioses in legumes. *Science* 303 (5662):1364–1367.

136. **Wheatley RM, Ford BL, Li L, Aroney ST, Knights HE, Ledermann R, East AK, Ramachandran VK, Poole PS.** 2020. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. *Proc Natl Acad Sci* 117 (38):23823–23834.

137. **Bull JJ, Rice W.** 1991. Distinguishing mechanisms for the evolution of co-operation. *J Theor Biol* 149 (1):63–74.

138. **West S, Kiers ET, Pen I, Denison R.** 2002. Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? *J Evol Biol* 15 (5):830–837.

139. **West SA, Kiers ET, Simms EL, Denison RF.** 2002. Sanctions and mutualism stability: why do rhizobia fix nitrogen? *Proc Royal Soc B* 269 (1492):685–694.

140. **Foster KR, Kokko H.** 2006. Cheating can stabilize cooperation in mutualisms. *Proc Royal Soc B* 273 (1598):2233–2239.

141. **Pfau T, Christian N, Masakapalli SK, Sweetlove LJ, Poolman MG, Ebenhöh O.** 2018. The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. *Sci Reports* 8 (1):1–11.

142. **Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M, et al..** 2016. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in *Sinorhizobium meliloti*. *Nat Commun* 7 (1):1–10.

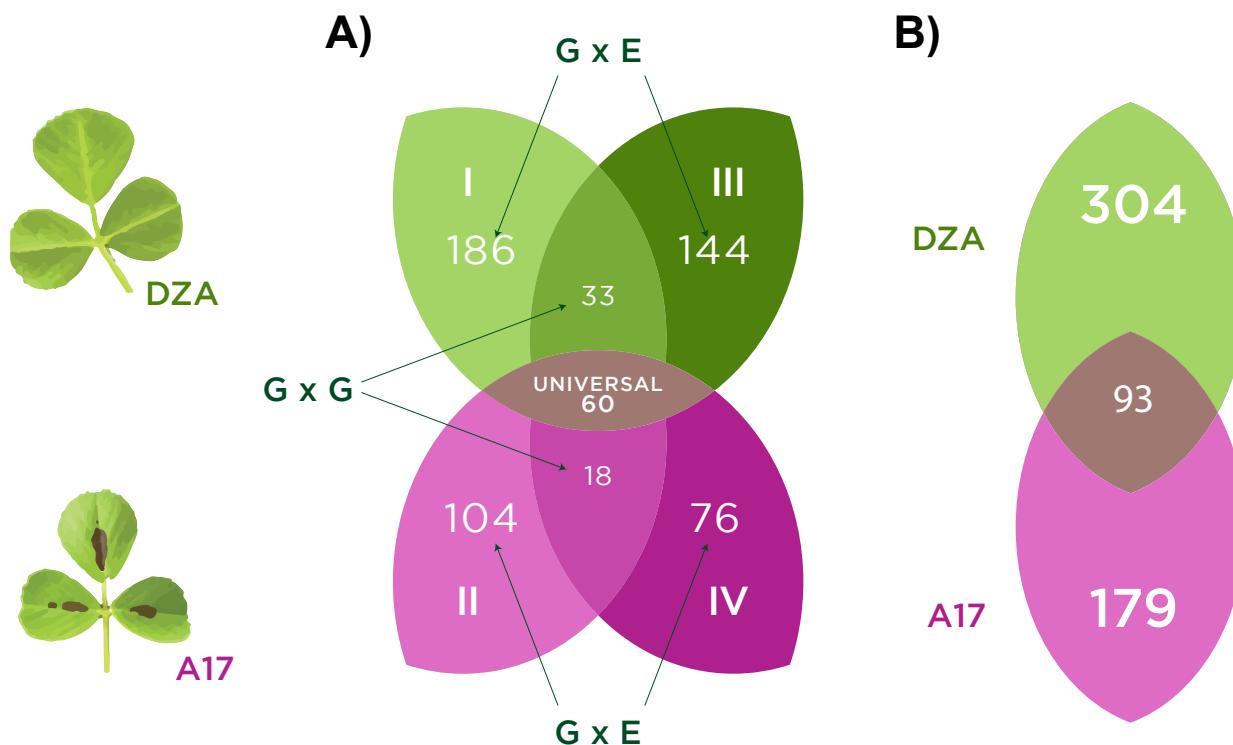
143. **diCenzo GC, Finan TM.** 2018. Techniques for large-scale bacterial genome manipulation and characterization of the mutants with respect to *in silico* metabolic reconstructions, p 291–314. *In Metabolic Network Reconstruction and Modeling*. Springer.

144. **Civelek M, Lusis AJ.** 2014. Systems genetics approaches to understand complex traits. *Nat Rev Genet* 15 (1):34–48.

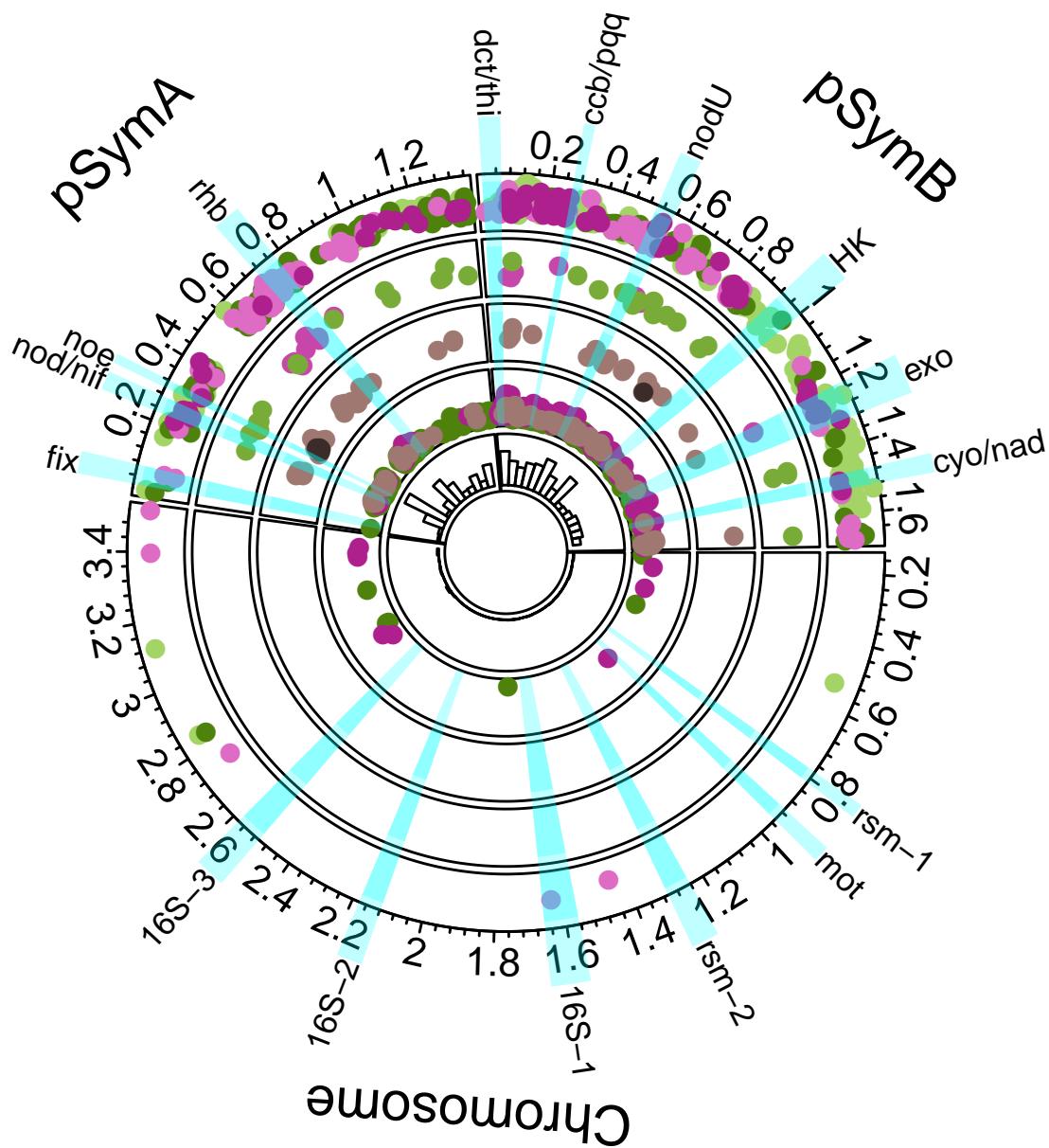
145. **Kliebenstein D.** 2004. Secondary metabolites and plant/environment interactions: a view through *Arabidopsis thaliana* tinted glasses. *Plant, Cell & Environ* 27 (6):675–684.

The complex genetics of symbiotic extended phenotypes

TABLE 1 Linear mixed model genotype by environment (G x E) ANOVAs for square-root transformed traits measured on plant lines A17 (left) and DZA (right). Numbers outside of and within parentheses in columns "A17" and "DZA" represent χ^2 values and degrees of freedom. Rack included as a random effect, while all other terms are fixed. Significance of rack determined by calculating the log likelihood ratio between models with and without the random effect of rack.


Trait	Model term	A17	DZA
Chlorophyll	Intercept	619.4(1)***	1447.65(1)***
	Strain	252.6(190)**	361.67(190)***
	Experiment	0.15(1)	0(1)
	Strain X Experiment	191.38(182)	205.16(183)
	Rack	30.86(1)***	23.91(1)***
Plant height	Intercept	373.58(1)***	355.55(1)***
	Strain	340.68(190)***	268.05(190)***
	Experiment	20.24(1)***	2.5(1)
	Strain X Experiment	308.63(185)***	177.71(183)
	Rack	38.35(1)***	54.12(1)***
Leaves	Intercept	207.69(1)***	164.09(1)***
	Strain	355.37(190)***	207.58(190)
	Experiment	7.85(1)**	0.45(1)
	Strain X Experiment	243.88(185)**	218.54(183)*
	Rack	27.51(1)***	41.67(1)***
Shoot biomass	Intercept	97.65(1)***	179.32(1)***
	Strain	544.81(190)***	499.67(190)***
	Experiment	10.08(1)**	6.93(1)**
	Strain X Experiment	330.06(185)***	262.2(183)***
	Rack	11.32(1)***	155.67(1)***

Significance: $p < 0.001 = '***'$; $p < 0.01 = '**'$; $p < 0.05 = '*'$


TABLE 2 Within-experiment broad-sense heritabilities (H^2) and cross-experiment genetic correlations (r). G × E interactions were partitioned into changes in variance versus rank order (i.e., crossing), and the percent due to crossing is presented. Experiments (exp.) 1 and 3 for DZA, 2 and 4 for A17.

Trait	Plant line	H^2 (exp. 1 or 2)	H^2 (exp. 3 or 4)	r	Crossing (%)
Shoot biomass	DZA	Exp. 1	Exp. 3		
		0.248***	0.253***	0.265***	87.19
		0.118**	0.141***	0.297***	99.06
		0.131**	0.065*	0.175*	99.97
Chlorophyll	A17	0.05	0.084**	-0.071	63.96
Plant height		Exp. 2	Exp. 4		
Leaves		0.303***	0.262***	0.221**	99.83
Shoot biomass		0	0.093**	0.201**	0
Chlorophyll	A17	0.181***	0.173***	0.1	73.37
Plant height		0.173***	0.127***	0.173*	94.13
Leaves					

Significance: $p < 0.001 = '***'$; $p < 0.01 = '**'$; $p < 0.05 = '*'$

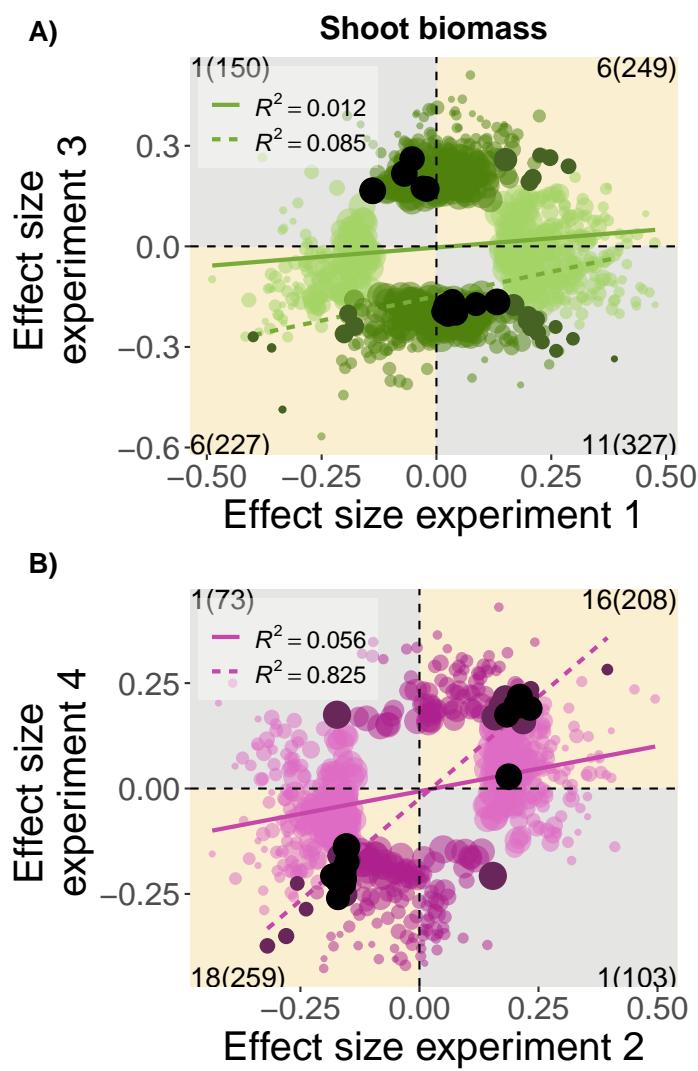


FIG 1 Association mapping of partner quality reveals strong signatures of environmental-dependence. Venn diagram showing number of rhizobium (*S. meliloti*) genes significantly associated with plant (*M. truncatula*) aboveground biomass (one metric of symbiotic partner quality) in **A**) each of four separate mapping experiments with either host line DZA (I and III in green) or host line A17 (II and IV in pink). Green and pink unions represent genes contributing to plant biomass in both experiments with either DZA or A17, respectively, while the mauve oval in the center represents universal genes found to contribute to plant aboveground biomass in at least three of the four experiments. **B)** Genes significantly associated with cross-experiment plasticity in plant aboveground biomass for host genotype DZA in green (experiments I vs. III), A17 in pink (experiments II vs. IV), or independently associated with plasticity in both hosts (central mauve triangle).

FIG 2 Loci associated with partner quality are mostly limited to the symbiosis plasmids. Circos plot showing positions of genes (dots) significantly associated with shoot biomass. Each ring represents a different gene category, outermost to innermost: 1) G x E, 2) G x G, 3) partially universal and universal, 4) plasticity, while 5) depicts a histogram based on the total number of significant genes across 100 kbp-sized windows. The x- and y-axes for rings 1-4 represent genomic position (Mbp) and average absolute effect sizes of variants within each gene, respectively. The colours reflect categories in the Venn Diagrams: for rings 1, 2, and 4, genes associated with DZA-only traits are represented by shades of green, on A17-only with shades of purple, and both hosts in mauve (ring 4). For ring 3, genes associated with both hosts in more than three environments are represented in mauve (i.e., “partially universal”), and universal genes in black. Relevant loci are highlighted in blue, with abbreviations for clusters on the outer circle as specified in **Supp. Fig. S8 (67)**.

The complex genetics of symbiotic extended phenotypes

FIG 3 Allelic effects are more consistent between experiments for A17, but not for DZA. Correlations between the estimated allelic effects of individual *S. meliloti* variants on plant shoot biomass (from GWAS) in each of two experiments for either **A)** host DZA (green) or **B)** A17 (pink). Only allelic effects that were significant in one (lighter colours) or both (dark points) environments are shown, while black dots represent nearly universal variants, i.e., associated with the same trait in three experiments. Linear relationships and R^2 values are depicted for all variants (solid coloured line) or variants significant in both experiments (dotted coloured line). Counts of significant variants for one or both environments appear in the corners of each quadrant within or outside the parentheses, respectively.