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1 Abstract

With the world generating digital data at an exponential rate, DNA has emerged as a promising
archival medium. It offers a more efficient and long-lasting digital storage solution due to its
durability, physical density, and high information capacity. Research in the field includes the
development of encoding schemes, which are compatible with existing DNA synthesis and
sequencing technologies. Recent studies suggest leveraging the inherent information
redundancy of these technologies by using composite DNA alphabets. A major challenge in
this approach involves the noisy inference process, which prevented the use of large composite
alphabets. This paper introduces a novel approach for DNA-based data storage, offering a 6.5-
fold increase in logical density over standard DNA-based storage systems, with near zero
reconstruction error. Combinatorial DNA encoding uses a set of clearly distinguishable DNA
shortmers to construct large combinatorial alphabets, where each letter represents a subset of
shortmers. The nature of these combinatorial alphabets minimizes mix-up errors, while also
ensuring the robustness of the system.

As this paper will show, we formally define various combinatorial encoding schemes and
investigate their theoretical properties, such as information density, reconstruction probabilities
and required synthesis, and sequencing multiplicities. We then suggest an end-to-end design
for a combinatorial DNA-based data storage system, including encoding schemes, two-
dimensional error correction codes, and reconstruction algorithms. Using in silico simulations,
we demonstrate our suggested approach and evaluate different combinatorial alphabets for
encoding 10KB messages under different error regimes. The simulations reveal vital insights,
including the relative manageability of nucleotide substitution errors over shortmer-level
insertions and deletions. Sequencing coverage was found to be a key factor affecting the system
performance, and the use of two-dimensional Reed-Solomon (RS) error correction has
significantly improved reconstruction rates. Our experimental proof-of-concept validates the
feasibility of our approach, by constructing two combinatorial sequences using Gibson
assembly imitating a 4-cycle combinatorial synthesis process. We confirmed the successful
reconstruction, and established the robustness of our approach for different error types.
Subsampling experiments supported the important role of sampling rate and its effect on the
overall performance.

Our work demonstrates the potential of combinatorial shortmer encoding for DNA-based data
storage, while raising theoretical research questions and technical challenges. These include
the development of error correction codes for combinatorial DNA, the exploration of optimal
sampling rates, and the advancement of DNA synthesis technologies that support combinatorial
synthesis. Combining combinatorial principles with error-correcting strategies paves the way
for efficient, error-resilient DNA-based storage solutions.
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2 Introduction

DNA is a promising media storage candidate for long-term data archiving, due to its high
information density, long-term stability, and robustness. In recent years, several studies have
demonstrated the use of synthetic DNA for storing digital information on a megabyte scale,
exceeding the physical density of current magnetic tape-based systems by roughly six orders
of magnitude [1] [2].

Research efforts in the field of DNA-based storage systems have mainly focused on the
application of various encoding schemes, while relying on standard DNA synthesis and
sequencing technologies. These include the development of error correcting codes for the
unique information channel of DNA-based data storage [3] [4] [5] [6] [7]. Random access
capabilities for reading specific information stored in DNA also require advanced coding
schemes [8] [9] [10]. Yet, despite the enormous benefits potentially associated with capacity,
robustness, and size, existing DNA-based storage technologies are characterized by inherent
information redundancy. This is due to the nature of DNA synthesis and sequencing
methodologies, which process multiple molecules that represent the same information bits in
parallel. Recent studies suggest exploiting this redundancy to increase the logical density of
the system, by extending the standard DNA alphabet using composite letters (also referred to
as degenerate bases), and thereby encoding more than 2 bits per letter [11] [12].

In this approach, a composite DNA letter uses all four DNA bases (A, C, G, and T), combined
or mixed in a specified predetermined ratio o = (g, o¢, 0, or). A resolution parameter k =
o, + oc + o; + or is defined, for controlling the alphabet size. The full composite alphabet of
resolution k, denoted @y, is the set of all composite letters, so that Xie(4 ¢ ¢ ry0; = k. Writing
a composite letter is done by using a mixture of the DNA bases determined by the letter’s ratio
in the DNA synthesis cycle. Current synthesis technologies produce multiple copies, and by
using the predetermined base mixture each copy will contain a different base, thus preserving
the ratio of the bases at the sequence population level.

While the use of numerical ratios supports higher logical density in composite synthesis, it also
introduces challenges related to the synthesis and inference of exact ratios. Combinatorial
approaches, which also consist of mixtures, address these challenges in a different way. Studies
by Roquet et al. (2021) and Yan et al. (2023) contribute significantly to advancing DNA-based
data storage technology. To encode and store data, Roquet et al. focus on a novel combinatorial
assembly method for DNA. Yan et al. extend the frontiers of this technology by enhancing the
logical density of DNA storage, using enzymatically-ligated composite motifs [13] [14].

In this paper, we present a novel approach for encoding information in DNA, using
combinatorial encoding and shortmer DNA synthesis. The method described herein leverages
the advantages of combinatorial encoding schemes, while relying on existing DNA chemical
synthesis methods with some modifications. Using shortmer DNA synthesis also minimizes
the effect of synthesis and sequencing errors. We formally define shortmer-based
combinatorial encoding schemes, explore different designs, and analyze their performance. We
use computer-based simulations of an end-to-end DNA-based data storage system built on
combinatorial shortmer encodings, and study its performance. To demonstrate the potential of
our suggested approach and experimentally test its validity, we performed an assembly-based
molecular implementation of the proposed combinatorial encoding scheme, and analyzed the
resulting data. Finally, we discuss the potential of combinatorial encoding schemes and the
future work required to enable these schemes in large-scale DNA-based data storage systems
and other DNA data applications. All the code and data used in this study are freely available
at:

https://github.com/InbalPreuss/dna_storage shortmer_simulation
https://github.com/InbalPreuss/dna_storage_experiment

The raw data is available in ENA (European Nucleotide Archive).
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The datasets generated and/or analysed during the current study are available in ENA
(European Nucleotide Archive) the repository, Accession Number - ERR12364864

3 Results

3.1 Shortmer combinatorial encoding for DNA storage

We suggest a novel method to extend the DNA alphabet while ensuring near-zero error rates.

Let 2 be a set of DNA k-mers that will serve as building blocks for our encoding scheme.
Denote the elements in 2 as X4, ..., X. Elements in 2 are designed to be sufficiently different
from each other, to minimize mix-up error probability. Formally, the set is designed to satisfy
d(Xl-,Xj) > d; Vi # j, with the minimal Hamming distance d serving as a tunable parameter.

Note that N = |2| < 4*. The elements in 2 will be used as building blocks for combinatorial
DNA synthesis in a method similar to the one used for composite DNA synthesis [12].
Examples of k-mer sets (2 are presented in Supplementary Section 7.3.

We define a combinatorial alphabet X' over £ as follows. Each letter in the alphabet represents
a non-empty subset of the elements in Q2. Formally, a letter ¢ € X', representing a subset S ©
0/®, can be written as an N-dimensional binary vector where the indices for which g; = 1
represents the k-mers from £ included in the subset S. We denote the k-mers in S as member
k-mers of the letter . For example, ¢ = (0,1,0,1,1,0) represents S = {X,, X,, X5} and |2| =
N = 6. Fig. 1la and Fig. 1b illustrates an example of a combinatorial alphabet using N = 16,
in which every letter represents a subset of size 5 of Q. Section 3.2 includes a description of
the construction of different combinatorial alphabets.

To write a combinatorial letter ¢ in a specific position, a mixture of the member k-mers of o is
synthesized. To infer a combinatorial letter o, a set of reads needs to be analyzed to determine
which k-mers are observed in the analyzed position (See Section 3.2 and Section 3.3 for more
details). This set of k-mers observed in the sequencing readout and used for inferring o is
referred to as inferred member k-mers.

From a hardware/chemistry perspective, the combinatorial shortmer encoding scheme is
potentially based on using the standard phosphonamidite chemistry synthesis technology, with
some alterations (See Fig. 1b, and Supplementary Section 7.1) [15] [16]. First, DNA k-mers
are used as building blocks for the synthesis [17]. Such reagents are commercially available
for DNA trimers and were used, for example, for the synthesis of codon optimization DNA
libraries [18] [19]. In addition, a mixing step will be added to each cycle of the DNA synthesis.
Initially, all the member k-mers are added to a designated mixing chamber, and only then is
the mixture introduced (for example, by injection) to the elongating molecules. Such systems
are yet to be developed.

Similar to composite DNA encoding, combinatorial encoding requires the barcoding of the
sequences using unique barcodes composed of standard DNA barcodes. This design enables
direct grouping of reads pertaining to the same combinatorial sequence. These groups of reads
are the input for the process of reconstructing the combinatorial letters.

The extended combinatorial alphabets allow for a higher logical density of the DNA-based
storage system, while the binary nature of the alphabet minimizes error rates.
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Desired sequence: ATdgg Desired sequence: ATa350.7, Desired sequence: ATa39027p

Fig. 1: Our combinatorial encoding and synthesis approach. a, Schematic view of a combinatorial alphabet
(Encode legend). A set of 16 trimers, X3, ..., X146, IS used to construct 4096 combinatorial letters, each representing
a subset of 5 trimers as indicated on the right and depicted in the grayed-out cells of the table. b, A suggested
approach for combinatorial shortmer synthesis. A modified synthesizer would include designated containers for
the 16 trimer building blocks and a mixing chamber. Standard DNA synthesis is used for the barcode sequence
(1), while the combinatorial synthesis proceeds as follows: The trimers included in the synthesized combinatorial
letter are injected into the mixing chamber and introduced into the elongating molecules (2-3). The process repeats
for the next combinatorial letter (4-5), and finally, the resulting molecules are cleaved and collected (6).

3.2 Binary and binomial combinatorial alphabets

The main parameter that defines a combinatorial encoding scheme is the alphabet X. More
specifically, it is the set of valid subsets of 2 that can be used as letters. We define two general
approaches for the construction of X. Namely, the binomial encoding and the full binary
encoding.

In the binomial encoding scheme, only subsets of (2 of size exactly K represent valid letters in
2, so that every letter o € X consists of exactly K member k-mers. Therefore, all the letters in
the alphabet have the same Hamming weight K. w(o) = K,Vo € X. This yields an effective

alphabet of size |X| = (IID letters, where each combinatorial letter encodes log,(|Z]) =

log, (z) bits. An r-bit binary message requires m synthesis cycles (and a DNA molecular
K
kr

segment with length W ). In practice, we would prefer working with alphabet sizes that are
082 K

powers of two, where each letter will encode for llog2 (%)J bits. Note that this calculation
ignores error correction redundancy, random access primers, and barcodes, which are all

required for message reconstruction. See Supplementary Section 7.2 and Fig. la, which
illustrate a trimer-based binomial alphabet with N = 16 and K = 5 resulting in an alphabet of
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size |£| = (156
position.

In the full binary encoding scheme, all possible nonempty subsets of (2 represent valid letters
in the alphabet. This yields an effective alphabet of size |X| = 2V — 1 letters, each encoding
for [log,(|1Z])] = N — 1 bits.

From this point on, we focus on the binomial encoding.

) = 4,368 that allows to encode [log,(4368)| = 12 bits per letter or synthesis

3.3 Reconstruction probabilities for binomial encoding

In this section, the performance characteristics of binomial encoding is investigated.
Specifically, we present a mathematical analysis of the probability of successfully
reconstructing the intended message. In Section 3.4 and Section 3.5 results are presented from
our simulations and from a small-scale molecular implementation of the binomial encoding,
respectively.

3.3.1 Reconstruction of a single combinatorial letter
Since every letter ¢ € X consists exactly of the K member k-mers, the required number of reads

for observing at least one read of each member k-mer in a single letter follows the coupon
collector distribution [20]. The number of reads required to achieve this goal can be described

as a random variable R = ¥¥ . R;, where R, = 1 and R;~Geom (K_i“) ,i =2,...,K. Hence,
the expected number of required reads, is:

E[R] = z E[R,] = KZ% — KHar(K)

L
where Har(+) is the harmonic number.
The expected number of reads required for reconstructing a single combinatorial letter thus
remains reasonable for the relevant values of K. For example, when using a binomial encoding
with K = 5 the expected number of reads required for reconstructing a single combinatorial
letter is roughly 11.5, which is very close to the experimental results presented in Section 3.5.
By Chebyshev’s inequality (See Section 5.1), we can derive a (loose) upper bound on the
probability of requiring more than E[R] + cK reads to observe at least one read of each member
k-mer, where ¢ > 1 is a parameter:

2

T
P(JR — KHar(K)| =2 cK) £ —
(IR = KHar(i0)] = cK) < o

For example, when using a binomial encoding with K = 5, the probability of requiring more
than 26.5 reads (corresponding to ¢ = 3) is bounded by 0.18, which is consistent with the
experimental result shown in Fig. 4d.

3.3.2 Reconstruction of a combinatorial sequence

When we examine an entire K-subset binomial encoded combinatorial sequence of length [,
we denote by R (1) the required number of reads to observe K distinct k-mers in every position.
Assuming independence between different positions and not taking errors into account, we get
the following relationship between c and any desired confidence level 1 — § (See Section 5.1
for details):

N
P(IR(l) = KHar(K)| = cK) <1 — <1 _ %) <65
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And therefore:

2\ !
P(R() < KHar(K) + cK) = <1 - %) >1-6

The number of reads required to guarantee reconstruction of a binomial encoded message,
at a 1 — 6 probability, with K = 5, and [ synthesized positions, is thus KHar(K) + cK when

c> \/767'[(1 —(1- 6)1/1)_1/2.

Table 4 shows several examples of this upper bound. As demonstrated in the simulations and
the experimental results, this bound is not tight (See Section 3.4 and Section 3.5).

Note that with an online sequencing technology (such as nanopore sequencing) the sequencing
reaction can be stopped after K distinct k-mers are confidently observed.

To take into account the probability of observing a k-mer that is not included in Q (e.g., due to
synthesis or sequencing error), we can require that at least t > 1 reads of each of the K distinct
k-mers will be observed. This is experimentally examined in Section 3.5, while the formal
derivation of the number of required reads is not as trivial, and will be addressed in future work.
The above analysis is based only on oligo recovery, which depends solely on the sampling rate,
ignoring possible mix-up errors (i.e., incorrect k-mer readings). This assumption is based on
the near-zero mix-up probability attained by the construction of 2, which maximizes the
minimal Hamming distance between elements in £2. In Section 3.5, this analysis is compared
to experimental results obtained from using synthetic combinatorial DNA.

3.4 An end-to-end combinatorial shortmer storage system

We suggest a complete end-to-end workflow for DNA-based data storage with the
combinatorial shortmer encoding presented in Fig. 2. The workflow begins with encoding,
followed by DNA synthesis, storage, and sequencing, and culminates in a final decoding step.
A two-dimensional (2D) error correction scheme, which corrects errors in the letter
reconstruction (for example., due to synthesis, sequencing, and sampling errors) and any
missing sequences (such as dropout errors), ensures the integrity of the system. Table 1 shows
the encoding capacities of the proposed system, calculated on a 1GB input file with standard
encoding and three different binomial alphabets. All calculations are based on error correction
parameters similar to those previously described (See Section 5.4) [3] [12]. With these different
alphabets, up to 6.5-fold increase in information capacity is achieved per synthesis cycle,
compared to standard DNA-based data storage.
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Type [N |K (N) Bits | Alphabet|  Bits Number Reed Bits per | Bits per | Fold
K per Size per of Solomon |synthesis | synthesis | increase
letter sequence | sequences (RS) cycle, cycle

payload

only
Standard 2 4 240 33,333,334 (38,095,248 1.57 1.40 1.0
Binomial |16 3] 560 9 512 1,080( 7,407,408 8,465,616 7.05 6.30 45
Binomial |16 5| 4,368 12 4,096 1,440( 5,555,556 6,349,248 9.40 8.40 6.0
Binomial [ 16 7]11,440 13 8,192 1,560( 5,128,206 5,860,848 10.19 9.10 6.5

Table 1: Logical densities for selected encoding schemes. The numbers represent encoding a 1 GB binary
message using oligos with 14nt barcodes +2nt RS (standard DNA), and 120 payload letters (from X) with 14
extra RS for the payload (the payload and its RS is combinatorial with N and K as indicated).

An example of the proposed approach, using a binomial alphabet with N = 16 and K = 5 and
two-dimensional Reed Solomon (RS), is detailed below. A binary message is encoded into a
combinatorial message using the 4096-letter alphabet. Next, the message is broken into 120
letter chunks, and each chunk is barcoded. The 12nt barcodes are encoded using RS(6,8) over
GF(2%), resulting in 16nt barcodes. Each chunk of 120 combinatorial letters is encoded using
RS(120,134) over GF (212). Every block of 42 sequences is then encoded using RS(42,48) over
GF(2'?) (see Section 5.2 for details).

To better characterize the potential of this proposed system, we implemented an end-to-end
simulation using the parameters mentioned above. We simulated the encoding and decoding of
10KB messages with different binomial alphabets and error probabilities, and then measured
the resulting reconstruction and decoding rates throughout the process. Fig. 3a depicts a
schematic representation of our simulation workflow and indicates how the error rates are
calculated (See Section 5.2.4).
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000000000000000001100011100111010110 ...0111000100110110
Binary 11001100000000000000000100110101 - ..001100
011100100111010110 000100110101....010101000100
(i) AATAGTGGTCAA o ayy o - @y
Encode Output ATATGAGACGAA o7 5, a3y
Combinatorial AATAGTGGTCAA 010100025197 0 Oigz |
DNA Sequences Barcode STD DNA |
AATAGTGGTCAAGACC o, o ox S
(i) ATATGAGACGAAGCAT oy, o1 o o
Error Correcting -
Code Output CCAATTACGAGTAGTA o o L P
2D RS AATAGTGGTCAA GACC 0101007 2519 - O1812 T35 .- Ts
Barcode ECGF (2% ECGF(21%)
AATAGTGGTCAA:GACC AAT TGG GTT ACAE TCT .. AAT
(iii) AATAGTGGTCAAGACG AAT TTC ATG .. ACAI CGT . ACA
3-mer DNA AATAGTGGTCAAGACC ACA AGC TGG .. AGC! AAT .. ATG
Svnthesis Outout AATAGTGGTCAAGACC ATG AAT AGC .. TGG| CGT .. ATG
ynthesis Outpu AATAGTGGTCAéGACC AGC TTC CTA CACEACA . AGC
H !
Synthesized AATAGTGGTCA4GACC TAA ACA ATG . CGTEATG .. GAG
Molecules . .
= ATATGAGACGAAGCAT CGT AGC ACA o GTTIACA .. TCT
= .o E
§' CCAATTACGAGIAGTA CCG ATG TAA AAT .. AATJAGC .. GGA CGG
N - ! RS Block .
RS Barcode RS Payload
AATAGTGGTCAAGACC AAT TGG GTT . ACAVTCT .. AAT
(iV) AATAGTGGTCAA:GACC AAT TTC ATG ACAECGT .. ACA
Producing Reads AATAGTGGTCAAGACC ACA AGC TGG .. AGCIAAT .. ATG
AATAGTGGTCAABACC ATG AAT AGC .. TGGICCT .. ATG
! A OTA ]
NGS Reads AATAGTGGTCAA;GACC AGC TTC CTA .. CAC EACA . AGC
AATAGTGGTCAA:GACC TAA ACA ATG .. CCT EATG .. GAG
| 1
! [
ATATGAGACGAAGCAT CCT AGC ACA ACA .. TCT
i H

I
|
CCAATTACGAGTAGTA CCG ATG

o RS Block
RS Barcode
:
(4] AATAGTGGTCAAGACC 71 oun o
Recover ATATGAGACGAAGCAT oy o oap
H
Inference, v
. CCAATTACGAGTAGTA oy oo Oyup o Glasg oy
Including Exrror Ry e
s - RS Block I
Correction RS Barcode RS Payload
Combinatorial AATAGTGGTCAA GACC 01010002515 O 03503
DNA Sequences Bt ECGF(2) ECGF(22)
(vi) AATAGTGGTCAA o, o ouss e Oy
Error Correction| ATATCAGACGAA oy o1 g

Output AATAGTGGTCAA 0101007 2515 Oz
Combinatorial Barcode STD DNA I

v | DNA Sequences

(vii) Decode - .
000000000000000001100011100111010110 ...0111000100110110
Output 11001100000000000000000100110101 ...001100
. 011100100111010110 000100110101....010101000100
Binary

Fig. 2: End-to-end workflow of a combinatorial DNA storage system. A binary message is broken into
chunks, barcoded, and encoded into a combinatorial alphabet (i). RS encoding is added to each chunk and each
column (ii). The combinatorial message is synthesized using combinatorial shormer synthesis (iii) and the DNA
is sequenced (iv). Next, the combinatorial letters are reconstructed (v). Finally the message goes through 2D RS
decoding (vi), followed by its translation back into the binary message (vii).

The results of the simulation runs are summarized in Fig. 3b-d. Each run included 30 repeats
with random input texts of 10KB encoded using 98 combinatorial sequences, each composed
of 134 combinatorial letters and 16nt barcode, as described above. Each run simulated the
synthesis of 1000 molecules on average per combinatorial sequence and sampling of a subset
of these molecules to be sequenced. The subset size was drawn randomly from
N(u, 0 = 100), where u is a parameter. Errors in predetermined rates were introduced during
the simulation of both DNA synthesis and sequencing, as expected in actual usage [21] (See
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Section 5.2.3 for details on the simulation runs). Reconstruction rates and Levenshtein
distances are calculated throughout the simulation process, as described in Fig. 3a.

Notably, the sampling rate is the dominant factor where even with zero synthesis and
sequencing errors, low sampling rates yield such poor results (Fig. 3c) that the RS error
correction is not able to overcome (Fig. 3d). The effect of substitution errors on the overall
performance is smaller and they are also easier to detect and correct. This is because
substitution errors occur at the nucleotide level rather than at the trimer level. The minimal
Hamming distance d = 2 of the trimer set 0 allows for the correction of single-base
substitutions. The use of 2D RS error correction significantly improved reconstruction rates,
as can be observed in Fig. 3b.

a b

0.07

Text Payload Payload RS Payload R

2

0.06

0.05-
o

0.04 4

!

'
111
'
T

RS’

Liv

0.034 —]

Payload|, R

0.02+

Normalized Levenshtein distance

NIl

fe—| fe—| fe—|
0.014
Text Payload Payload RS J—
RS RS ! T :
Before 2D RS decoding  After RS payload decoding  After 2D RS decoding
(iv) [) (i)
1.0 1.0
=F= substitution 0.01 =F= substitution 0.01
deletion 0.01 deletion 0.01
= all errors 0 = all errors 0
== insertion 0.01 = insertion 0.01

Normalized Levenshtein Distance
o
e
Normalized Levenshtein Distance
o
=
S

T T T T T T = T T T T T T T T T
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
#Simulated Reads Per Sequence (Mean) #Simulated Reads Per Sequence (Mean)

Fig. 3: Simulation of an end-to-end combinatorial shortmer encoding. a, A schematic view of the
simulation workflow. A text message is translated into a combinatorial message (1), and encoded using RS error
correction on the barcode and payload (2). Each block is encoded using outer RS error correction (3). DNA
synthesis and sequencing are simulated under various error schemes, and the combinatorial letters are
reconstructed (4-5). RS decoding is performed on each block (6) and each sequence (7) before translation back
to text (8). The Roman numerals (i-iv) represent the different error calculations. b, Error rates in different stages
of the decoding process. Boxplot of the normalized Levenshtein distance (See Section 5.2.4) for the different
stages in a simulation (30 runs) of sampling 100 reads, with an insertion error rate of 0.01. The X-axis
represents the stages of error correction (before 2D RS decoding (iv), after RS payload decoding (iii), and after
2D RS decoding (ii)). ¢, and d, Sampling rate effect on overall performance. Normalized Levenshtein distance
as a function of sampling rate before RS decoding (c) and after 2d RS decoding (ii). Different lines represent
different error types (substitution, deletion, and insertion) introduced at a rate of 0.01.

3.5 Experimental proof of concept

To assess and establish the potential of large combinatorial alphabets, we also performed a
small-scale experimental proof of concept. Gibson assembly was used to construct two
combinatorial sequences, each containing a barcode and four payload cycles over a binomial
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alphabet with N =16 and K = 5. The assembly was performed using DNA fragments
composed of a 20-mer information sequence and an overlap of 20 bp between adjacent
fragments, as shown in Fig. 4a. The assembled DNA was then stored and sequenced for
analysis using lllumina Miseq (See Table 2 and Section 5.3 for details about the sequencing
procedures). The sequencing output was then analyzed using the procedure described in
Section 5.3.2. Both combinatorial sequences were successfully reconstructed from the
sequencing reads, as presented in Fig. 4b and Supplementary Fig. 6, Fig. 7, and Fig. 8. The
experiment also demonstrated the robustness of the binomial DNA encoding for synthesis and
sequencing errors, as described in Fig. 4c. We observed a minor leakage between the two
synthesized sequences, which was overcome by the reconstruction pipeline (See Fig. 4c and
Supplementary Fig. 6, Fig. 7, and Fig. 8). Note that there is an overlap between the member k-
mers of the two sequences.

To test the effect of random sampling on the reconstruction of combinatorial sequences, we
performed a subsampling experiment with N = 500 repeats, presented in Fig. 4d-f. We
subsampled varying numbers of reads from the overall read pool and ran the reconstruction
pipeline. Note that, as explained, the reconstruction of a single binomial position requires
finding K = 5 inferred k-mers. That is, observing five unique k-mers at least t times. We tested
the reconstruction performance using t = 1,2,3,4 and recorded the effect on the successful
reconstruction rate and required number of reads.

For t = 1, reconstruction required analyzing 12.26 reads on average. These included 0.45 reads
that contained an erroneous sequence that could not be mapped to a valid k-mer, and thus
ignored. Note that the design of the set 2 of valid k-mers allows us to ignore only the reads for
which the Hamming distance for a valid k-mer exceeded a predefined threshold (d = 3). If we
ignored all the reads containing a sequence with non-zero Hamming distance to all k-mers, we
would have skipped 2.26 extra reads, on average.

As expected, requiring t = 2 copies of each inferred k-mer resulted in an increase in the overall
number of analyzed reads. Reconstruction of a single combinatorial letter required analyzing
an average of 21.6 reads with 0.83 skipped and 3.99 non-zero Hamming distance reads. The
complete distribution of the number of reads required for reconstruction of a single position
using t = 1,2 is presented as a histogram in Fig. 4d.

To reconstruct a complete combinatorial sequence of 4 positions, we required the condition to
hold for all positions. For t = 1, this entailed the analysis of 55.60 reads on average, out of
which 1.04 reads were identified as erroneous and thus ignored, and with 7.36 non-zero
Hamming distance reads. For t = 2, an average of 102.66 reads were analyzed with 1.97
skipped and 13.24 non-zero Hamming distance reads. The complete distribution of the number
of reads required for reconstructing a complete combinatorial sequence using t = 1,2 is
presented as a histogram in Fig. 4e.

Note that these results correspond to the analysis presented in Section 3.3, for the
reconstruction of a single binomial position and a complete binomial sequence. Calculating the
bound presented in Table 4, with K = 5 and [ = 4, yields a requirement of approximately 140
reads to obtain 1 — & = 0.99 probability of reconstruction. Clearly, this is well above the
observed number of 55.60 reads. Note, as explained, the calculated bound is a loose bound.
The reconstruction procedure ends with a set of inferred k-mers that represent the inferred
combinatorial letter. This set is not guaranteed to be correct, especially when using t =1,
which means that noisy reads may result in an incorrect k-mer included in the inferred letter.
Fig. 4f depicts the rate of incorrect reconstructions as a function of the number of required
copies for each inferred k-mer (t = 1,2,3,4). Note that with ¢ > 3 results in 100% successful
reconstruction. This, however, comes with a price, where more reads must be analyzed.
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Fig. 4: Experiment analysis. a, A schematic view of the Gibson assemby. Each combinatorial sequence consists
of a barcode segment and four payload segments (denoted as cycle 1-4). b, Reconstruction results of the two
combinatorial sequences. The color indicates read frequency and the member k-mers are marked with orange
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boxes. ¢, The distribution of reads over the 16 k-mers in an example combinatorial letter. Overlaid histograms
represent the percentage of reads for each of the 16 k-mers for the same position in our two combinatorial
sequences. This in fact, is an enlarged view of the two c4 columns of panel b. d, Required number of reads for
reconstructing a single combinatorial letter. A histogram of the number of reads required to observe at least t =
1,2 reads from K =5 inferred k-mers. The results are based on resampling the reads 500 times, the data
represents cycle 4. e, Required number of reads for reconstructing a four letter combinatorial sequence. Similar
to d. f, Reconstruction failure rate as a function of the required multiplicity t. Errornous reconstruction rate shown
for different values of required copies to observe each inferred k-mer (t = 1, 2, 3,4). The mean required number
of reads for reconstruction is displayed using a secondary Y -axis in the dashed lines.

4 Discussion

In this study we introduced combinatorial shortmer encoding for DNA-based data storage,
which extends the approach of composite DNA by addressing its key challenges.
Combinatorial shortmer encoding allows for increased logical density, while ensuring low error
rates and high reconstruction rates. We explored two encoding schemes, binary and binomial,
and evaluated some of their theoretical and practical characteristics. The inherent consistency
of the binomial encoding scheme, where every letter in the sequence consists of exactly K
distinct member k-mers, ensures uniformity in the encoded DNA sequences. This approach not
only simplifies the reading process, but also allows for a more streamlined decoding. For
instance, technologies like nanopore sequencing enable continuous sequencing until all k-mers
at a given position are confidently observed. On the other hand, the complexities introduced
by binary encoding, which can yield a variable number of k-mers at any position, represent a
potential challenge.

Similar to other DNA-based data storage systems, errors introduced to the sequences during
the chemical and molecular stages affect the system’s performance. Our suggested approach is
designed to inherently overcome base substitution errors, which are the most common errors
expected in every DNA-based data storage system that includes DNA sequencing. This is
achieved by the selection of a set of k-mers which is resilient to single-base substitutions,
reducing the chances of letter mix-ups. Insertion and deletion errors, which usually originate
in the synthesis process, are more challenging to overcome. We introduced a 2D RS error
correction scheme on the shortmer level, allowing for a successful message reconstruction even
with error levels exceeding those expected in reality.

Our study highlights the significant effect of sampling rates on the overall performance of the
system. The accuracy and completeness of sequence reconstruction are closely tied to the rate
at which DNA sequences are sampled. Optimal sampling rates ensure that the diverse regions
of the encoded DNA are sufficiently represented, facilitating accurate reconstruction. An
insufficient sampling rate can lead to data gaps, which further complicate the reconstruction
process and may lead to errors or incomplete data retrieval. Our subsampling experiments
underpin this observation, underscoring the need for calibration of sampling rates to ensure the
desired fidelity in DNA-based data storage and retrieval.

While our proof-of-concept experiment showed success on a small scale, there are complexities
to be addressed in considering large-scale applications. These include synthesis efficiency,
error correction, and decoding efficiency. Nonetheless, the resilience of our binomial DNA
encoding for both synthesis and sequencing errors highlights its practical potential and
scalability.

Several future directions emerge from our study. First, it is essential to advance our error
correction methods for better handling insertion and deletion errors. One approach for
achieving this, is to adjust sampling rates: optimizing the sampling rate, especially in large-
scale experiments, can lead to data retrieval at high accuracy. While our study highlighted the
role of sampling rates in achieving desired outcomes, delve deeper into the underlying theory
is necessary. By understanding the theoretical bounds of sampling rates, more concrete
recommendations can be provided for real-world applications. Future research can further
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expand on this, both by conducting a series of experiments with varied sampling rates and by
aiming to define theoretical bounds for these rates. This dual approach—combining practical
experiments with rigorous theoretical analysis—could yield more precise guidelines for DNA-
based data storage endeavors. Another future research direction, can be the development of
error correction codes designed specifically to overcome the error types that characterize
combinatorial encoding. Furthermore, transitioning from small-scale proof-of-concept
experiments to larger-scale implementations is an important next step. Evaluating the
scalability of our method across various scales and complexities will be enlightening,
especially when considering synthesis efficiency and error rates. Finally, the consideration of
advanced sequencing technologies could redefine the potential and efficacy of our proposed
method.

5 Methods

5.1 Reconstruction probability of a binomial encoding letter
Let the number of reads required for reconstruction be a random variable R = ¥X , R; where
R, = 1and R;,~Geom (K_l“) ,i =2, ..., K. Hence, the expected number of required reads, is:

K K
E[R] = Z E[R,] = KZ% — KHar(K)
i=1 i=1

where Har(+) is the harmonic number.
Using the independence of R;, the variance of R can be bound by (See [22]):
K 2

,(1 1 1\ n?
Var(R) = Z Var(R;) < K (F+2_2 + - +F> < ?K
1=
By Chebyshev’s inequality, we get an upper bound (a loose bound) on the probability of
requiring more than E[R] + cK reads to observe at least one read of each member k-mer:

1
P(IR - E(R)| = bo) Sﬁ

T 1
P(IR _EQR)| > b—K) <
NG b?
Letc = b16, orb = %and we obtain:
2

I
P(|JR—E[R]| = cK) £ —
6¢?
Or specifically:
2

(1) P(IR —KHar(K)| = cK) < ”_2
6¢

We now turn to address the reconstruction of an entire oligo of length L. Let R([) be the random
variable representing the number of reads required to have seen all the K member k-mers in
every position. Setting any § > 0, if we show that P(R(l) > m) = 1 — &, then we know that
by accumulating m reads the probability of correct full reconstruction is more than 1 — §. From
equation (1), and assuming independence of the positions (in terms of observing all K member
k-mers), we get equation (2):

N
2) P(R(D) < KHar(K) + cK) = <1 — %)
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From which we can extract ¢, so that:

Which yields:

6(1 - —5)%)

This process allows us to evaluate the sequencing depth complexity. For example, consider
[ =100and § = 0.01. We want to find c, so that using KHar(K) + cK reads will
reconstruct the entire sequence with 0.99 probability. We therefore set:

2\ 100
1-2) >0099
6c2 -

T

> =
V6(1 — (0.99)0.01)
And therefore, using 128 reads guarantees reconstruction with 0.99 probability.

And get:

C 127.94

5.2 An end-to-end combinatorial storage system
In section 3.4 we propose an end-to-end combinatorial storage system, as follows.

5.2.1 Combinatorial encoding and padding

A binary message is encoded using a large k-mer combinatorial alphabet (e.g., trimer-based
alphabet of size |X| = 4096 letters, with N = || = 16), resulting in r =12 bits per
combinatorial letter. The binary message is zero padded to ensure its length is divisible by r
prior to the combinatorial encoding. The complete message is broken into sequences of set
length [ = 120, each sequence is then marked with a standard DNA barcode and translated
using the table presented in the Encode legend (See Section 7.2).

The length of the complete combinatorial sequence must be divisible by the payload size [ and
by the block size B. As described in Fig. 5, this is ensured using another padding step, and the
padding information is included in the final combinatorial sequence.

5.2.2 Error correction codes

The two-dimensional (2D) error correction scheme includes using three Reed Solomon (RS)

[23] encodings: on each barcode, on the payload part of each sequence, and an outer error

correction code on each block of sequences.

e Each barcode is encoded using a systematic RS(6,8) code over GF (2%), transforming the
unique 12nt barcode into a 16nt sequence.

e Each 120 combinatorial letter payload sequence is encoded using a RS(120,134) code over
GF(212), resulting in a sequence of length 134 combinatorial letters.

e To protect against sequence dropouts, outer error correction code is used on the columns
of the matrix (See Fig. 5). Each block of B = 42 sequences, is encoded using a RS(42,48)
RS code GF(212). This is applied in each column separately.
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. Payload

. Payload Outer RS

. Payload Inner RS

Fig. 5: Example of message coding including padding and Reed-Solomon error correction. Encoding of a
~0.1KB message to a 512 letter binomial alphabet (N= 16, K = 3). First, bit padding is added, included here in
the letter - Next, block padding is added, included here in . and . Padding information is included in
the last sequence of all blocks. The last sequence holds the number of padding binary bits. In this example,

represents 148 bits ﬁadding, composed of 4 + (4 *9) + (12 = 9) bits , 4 bits from . 4 letters from .

and 12 letters from .

For simplicity, Fig. 5 demonstrates the encoding of ~0.1 KB using shorter messages with
simpler error correction codes. The following parameters are used:
e A barcode length of 6nt encoded using RS(3,5) code over GF(24) to get 10nt.

e A payload length of I = 12 encoded using RS(12,18) over GF (2°) for the (16

3
alphabet.
e A 10-sequence block encoded, column wise, using a (10,15) RS code over GF (29).
The 824 bits are first padded to be 828 = 92 * 9. The 92 combinatorial letter message is split
into 7 sequences of 12 letters and an additional sequence of 8 letters. Finally, a complete block
of 12 sequences (total of 10 = 12 = 120 letters) is created by padding with one additional
sequence of 12 letters and including the padding information as the last sequence.

) binomial

5.2.3 Synthesis and sequencing simulation with errors
e Simulating the synthesis process. DNA molecules pertaining to the designed sequences

are synthesized using combinatorial k-mer DNA synthesis (See Fig. 1b). For each
combinatorial sequence, we first determine the number of synthesized copies by sampling
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from X~N(u = 1000,02 = 100). Let x be the number of copies for a specific sequence.
Next, for every position in the sequence we uniformly sample x independent k-mers from
the set of member k-mers of the combinatorial letter in the specific position. We
concatenate the sampled k-mers to the already existing x synthesized molecules.

e Error simulation. Synthesis and sequencing error are simulated as follows. Error
probabilities for deletion, insertion, and substitution are given as parameters denoted as
P;, P;, and P, respectively. Deletion and Insertion errors are assumed to occur during k-mer
synthesis and thus implemented on the k-mer level (i.e., an entire k-mer is deleted or
inserted in a specific position during the synthesis simulation). Substitution errors are
assumed to be sequencing errors, and hence implemented on a single base level (i.e., a
single letter is substituted, disregarding the position within the k-mer).

e Mixing. Post synthesis, molecules undergo mixing to mirror genuine molecular
combinations. This is achieved through a randomized data line shuffle using a SQL.ite
database, enabling shuffle processes even for sizable input files [24].

e Reading and sampling. From the simulated synthesized molecule set, a subsample of
predefined size S * number of synthesized seqeunces is drawn, simulating the
sampling effect of the sequencing process.

5.2.4 Reconstruction

e Barcode decoding. The barcode sequence of each read is decoded using the RS(6,8) code.

e Grouping by barcode. The reads are then grouped by their barcode sequence to allow the
reconstruction of the combinatorial sequences.

e Filtering of read groups. Barcodes (set of reads) with less than 10% of the sampling rate
S reads are discarded.

e Combinatorial reconstruction. For each set of reads, every position is analyzed
separately. The K most common k-mers are identified and used to determine the
combinatorial letter o in this position. Let A be the difference between the length of the
analyzed reads and the length of the designed sequence. A = [ — len(read). Reads with
|A] > k — 1 are discarded from the analysis. Invalid k-mers (not in Q) are replaced by a
dummy K-mer X gymmy -

e Missing barcodes. Missing barcodes are replaced with dummy sequences to enable correct
outer RS decoding.

e Normalized Levenshtein distance. Levenshtein distance between the observed sequence
O and the expected sequence E is calculated [25] [26]. Normalized Levenshtein distance is
calculated by dividing the distance by the length of the expected sequence:

Levenshtein distance(0, E)
10|

Normalized Levenshtein distance(O,E) =

5.3 Proof of concept experiment

The proof-of-concept experiment was performed by imitating combinatorial synthesis using
Gibson assembly of larger DNA fragments. Each DNA fragment was composed of a 20-mer
information sequence and an overlap of 20 bp between adjacent fragments, as depicted in Fig.
4a. Two combinatorial sequences were designed, each composed of a barcode fragment, 4
payload fragments, and Illumina P5 and P7 anchors at the ends. The information fragments
included in each combinatorial position were chosen from a set of 16 sequences with sufficient
pair-wise distance. The full list of DNA sequences and the design of combinatorial sequences
is listed in Supplementary Section 7.5.

No animal, or human participants were involved in the study.
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5.3.1 DNA assembly and sequencing

Payload, barcode, and P7 anchor fragments with 20 bp overlaps for the purpose of Gibson
assembly were produced by annealing complementary oligonucleotides manufactured by
Integrated DNA Technologies (IDT). Oligos were dissolved in Duplex Buffer (100 mM
Potassium Acetate; 30 mM HEPES, pH 7.5; available from IDT) to the final concentration of
100 micromolar. For annealing, 25 microliters of each oligo in a pair were combined to the
final concentration of 50 micromolar. The oligo mixes were incubated for 2 min at 94° C and
gradually cooled down to room temperature. The annealed payload oligos that belonged to the
same cycle (5 oligos total) were mixed to the final concentration of 1 micromolar per oligo —a
total of 5 micromolar, by adding 2 microliters of each annealed oligo into the 90 microliters of
nuclease-free water —a final volume of 100 microliters. Annealed barcode and P7 anchor oligos
were also diluted to the final concentration of 5 micromolar in nuclease-free water, after
thorough mixing by vortexing. The diluted oligos were stored at -20°C.

Immediately prior to the Gibson assembly, payload oligo mixes, barcode, and P7 anchor oligos
were further diluted 100-fold to the final working dilution of 0.05 pmol/microliter in nuclease-
free water. Gibson reaction was assembled by adding 1 microliter (0.05 pmol) of barcode, 4 x
cycle mixes, and P7 anchor to the 4 microliters of nuclease-free water and supplemented with
10 microliters of NEBuilder HiFi DNA assembly master mix (New England Biolabs (NEB))
to the final volume of 20 microliters according to the manufacturer instructions. The reactions
were incubated for 1 hr at 50°C and purified with AmpPure Beads (Thermo Scientific) at 0.8X
ratio (16 microliters of beads per 20 microliters Gibson reaction) to remove free oligos /
incomplete assembly products. After adding beads and thorough mixing, the reactions were
incubated for 10 min at room temperature and then placed on a magnet for 5 min at room
temperature. After removing the sup, the beads were washed twice with 100 microliters of 80%
ethanol. The remaining washing solution was further removed by a 20 microliter tip and the
beads dried for 3 min on the magnet with an open lid. After removing from the magnet, the
beads were resuspended in 22 microliters of IDTE buffer (IDT), incubated for 5 min at room
temperature, and then placed back on the magnet.

20 microliter of eluate were transferred into the separate 1.7 ml tube. 5 microliters of the eluted
DNA were used as a template for PCR amplification combined with 23 microliters of nuclease-
free water, 1 microliter of 20 micromolar indexing primer 5, 1 microliter of 20 micromolar
indexing primer 7, and 10 microliters of rhAMPseq master mix v8.1 — a total of 40 microliters.
After initial denaturation of 3 min at 95°C, the PCR reaction proceeded with 50 cycles of 15
sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C, followed by final elongation of 1 min at 72°C
and hold at 4°C. The PCR reactions were purified with Ampure beads at 0.8X ratio (32
microliter beads per 40 microliters of PCR reaction) as outlined above and eluted in 22
microliters IDTE buffer. The concentration and the average size of the eluted product were
determined by Qubit High Sensitivity DNA kit and Agilent 2200 TapeStation system with
D1000 high-sensitivity screen tape respectively. The eluted product was diluted to 4 nanomolar
concentration and used as an input for denatured sequencing library preparation, per
manufacturer instructions. The sequencing was performed on Illumina Miseq apparatus (V2
chemistry, 2 x 150 bp reads) using 6 picomolar denatured library supplemented with 40% PhiX
sequencing control.

5.3.2 Decoding and analysis

This section outlines the key steps involved in our sequencing analysis pipeline, aimed at
effectively processing and interpreting sequenced reads. The analysis pipeline gets the
sequencing output file containing raw reads in “.fastq” format and a design file containing the
combinatorial sequences.
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Analysis Steps:

1. Length Filtering. We saved reads that were 220 bp in length, retaining only those
corresponding to our designed read length.

2. Read Retrieval. We carefully checked each read for the presence of BCs, universals, and
payloads. To keep our data accurate, we discarded reads where the BCs, universals, or
payloads had a Hamming distance of more than 3 errors.

3. ldentifying inferred k-mers. For every BC and each cycle, we counted the K most common
k-mers. We then compared these with the design file to countify those matching (Fig. 4b).

Reads Count
Total PF Reads 2,634,683
Reads of length 220 2,139,071
BC1 1,365,295
BC2 768,755
No BC 5,021

Table 2: Summary of sequencing reads analyzed in the study. The table shows the total number of reads
obtained, the number filtered by length (220 bases) for analysis, and the counts of reads associated with BCL1,
BC2, and those that did not have any recognizable barcode (No BC).

5.4 Information capacities for selected encodings

Table 1 illustrates the logical densities derived from encoding a 1 GB binary message using
oligonucleotides with a 12nt barcode and an additional 4nt for standard DNA Reed-Solomon
(RS) error correction, and a 120 letters payload with 14 extra RS for the payload in
combinatorial encoding schemes with parameters N and K.

The densities were calculated as follows:

Bits per Letter = [logz <(1;{]))|

Alphabet Size = 2Bits per Letter
Bits per Sequence = Bits per Letter X Payload length.

M Size in bit.
Number of Sequences = |22 T lS]

Bits per Sequence

Number of sequences padded: Total number of sequences after padding for the block size.
padding is = Block Size — (Number of Sequences % Block Size)

. b dded .
Number of sequences with RS= 12" Oj;lzei";;ifs PE% % Block Size After RS

Synthesis Cycles = Number of sequences with RS X Full Sequence length with RS
Bits per Synthesis Cycle = Z22229° Size in bits

Synthsis Cycle

Bits per Synthesis Cycle
Fold Increase = Py Y

Bits per Synthsis Cycle of Standard Scheme
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7 Supplementary
All files are available here

7.1 Combinatorial shortmer synthesis (video)

Supplementary video, uploaded separately in:
Supplementary _animation_3-mers_16choose2.wmv.

7.2 Bionomial shortmer alphabet example (Table)

Supplementary file, uploaded separately in:
Supplementary_table_alphabet.xlsx

. . . . 16
N = |2| = 16, K = 5. The Hamming distance of this 2 isd = 2. |X| = 4096 < 4368 = ( 5 )

7.3 Example of k-mer sets

Table 3 is an example of k-mer sets. To the left, are two sets of trimers that have a minimal
Hamming distance of 2, with |2,| = 16 and |2,| = 12. To the right, is a set of 54 6-mers that
have a minimal Hamming distance of 4.

Trimers 6-mers
0, 0, N
AAT ACG TTGACG CAGTCA GCATTA
ACA AAA AAAAAA CATGAC GCCGGC
ATG AGC AACCCC CCAACC GCTAAT
AGC ATT AAGGGG CCCCAA GGAAGG
TAA CAC AATTTT CCGGTT GGCCTT
TCT CCA ACACGT CCTTGG GGGGAA
TTC GAG ACCATG CGATAT GGTTCC
TGG GCC ACGTAC CGCGCG GTACAC
GAG GGA ACTGCA CGGCGC GTGTGT
GCC TAT AGAGTC CGTATA GTTGTG
GTT TTA AGCTGA CTAGGA TAATGC
GGA AGTCAG CTCTTC TACGTA
CAC ATCGAT CTTCCT TAGCAT
CCG ATGCTA GAAGCT TCAGAG
CTA ATTAGC GACTAG TCCTCT
CGT CAACTG GAGATC TCTCTC
CACAGT GATCGA TGACCA
TTTTAA TGTGGT TGCAAC

Table 3: Example of k-mer sets, 2. For 24 and £2,, the minimum Hamming distance is 2. For 25, the
minimum hamming distance is 4.

7.4 Reconstruction of a binomial seugence

Probability of unsuccessful reconstruction
(6)
1072 1073 1074 1075
50 464 1445 4546 14351
Sequence 100 | 652 2039 6425 20291
length (1) 150 | 795 2495 7866 24848
200 | 917 2879 9081 28691

Table 4: Sufficient number of reads to reconstruct a binomial sequence. Entries in the table represent
KHar(K) + cK where c is derived based on the desired &, as explained in Section 5.1.
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7.5 Proof-of-concept experimental design (Table)

Supplementary file, uploaded separately in:
Supplementary _table_oligo_sequences.xlIsx

7.6 Proof of concept smaller-scale experiment
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Fig. 6: Smaller-scale experiment, oligo 1. Oligo has four cycles, each with five inferred k-mers. Results
showed the k-mers expected, according to our original design.
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Fig. 7: Smaller-scale experiment, oligo 2. Oligo has four cycles, each with five k-mers. Results showed the k-
mers expected, according to our original design.

For each of the two barcodes, we were able to identify and recover the barcode and their
payloads. At each position/cycle in the sequence, the five-member k-mers were recovered,
which are the five inferred k-mers (See Fig. 6 and Fig. 7).
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Fig. 8: Superimposing oligo 2 (grey) over oligo 1 (blue). Leakage resulted in more than five k-mers expected,
according to our design, where k-mers continued to assemble in each cycle due to the active enzyme, yet not
necessarily on their designated oligo. The same applies to the second sequence that was assembled. Note that
there is an overlap between the member k-mers of the two sequences. See for example, Payloads #10 and #15 in
cycle C2.

24


https://doi.org/10.1101/2021.08.01.454622
http://creativecommons.org/licenses/by-nc/4.0/

