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1 Abstract 
 

With the world generating digital data at an exponential rate, DNA has emerged as a promising 

archival medium. It offers a more efficient and long-lasting digital storage solution due to its 

durability, physical density, and high information capacity. Research in the field includes the 

development of encoding schemes, which are compatible with existing DNA synthesis and 

sequencing technologies. Recent studies suggest leveraging the inherent information 

redundancy of these technologies by using composite DNA alphabets. A major challenge  in 

this approach involves the noisy inference process, which prevented the use of large composite 

alphabets. This paper introduces a novel approach for DNA-based data storage, offering a 6.5-

fold increase in logical density over standard DNA-based storage systems, with near zero 

reconstruction error. Combinatorial DNA encoding uses a set of clearly distinguishable DNA 

shortmers to construct large combinatorial alphabets, where each letter represents a subset of 

shortmers. The nature of these combinatorial alphabets minimizes mix-up errors, while also 

ensuring the robustness of the system. 

As this paper will show, we formally define various combinatorial encoding schemes and 

investigate their theoretical properties, such as information density, reconstruction probabilities 

and required synthesis, and sequencing multiplicities. We then suggest an end-to-end design 

for a combinatorial DNA-based data storage system, including encoding schemes, two-

dimensional error correction codes, and reconstruction algorithms. Using in silico simulations, 

we demonstrate our suggested approach and evaluate different combinatorial alphabets for 

encoding 10KB messages under different error regimes. The simulations reveal vital insights, 

including the relative manageability of nucleotide substitution errors over shortmer-level 

insertions and deletions. Sequencing coverage was found to be a key factor affecting the system 

performance, and the use of two-dimensional Reed-Solomon (RS) error correction has 

significantly improved reconstruction rates. Our experimental proof-of-concept validates the 

feasibility of our approach, by constructing two combinatorial sequences using Gibson 

assembly imitating a 4-cycle combinatorial synthesis process. We confirmed the successful 

reconstruction, and established the robustness of our approach for different error types. 

Subsampling experiments supported the important role of sampling rate and its effect on the 

overall performance. 

Our work demonstrates the potential of combinatorial shortmer encoding for DNA-based data 

storage, while raising theoretical research questions and technical challenges. These include 

the development of error correction codes for combinatorial DNA, the exploration of optimal 

sampling rates, and the advancement of DNA synthesis technologies that support combinatorial 

synthesis. Combining combinatorial principles with error-correcting strategies paves the way 

for efficient, error-resilient DNA-based storage solutions. 
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2 Introduction 
DNA is a promising media storage candidate for long-term data archiving, due to its high 

information density, long-term stability, and robustness. In recent years, several studies have 

demonstrated the use of synthetic DNA for storing digital information on a megabyte scale, 

exceeding the physical density of current magnetic tape-based systems by roughly six orders 

of magnitude [1] [2]. 

Research efforts in the field of DNA-based storage systems have mainly focused on the 

application of various encoding schemes, while relying on standard DNA synthesis and 

sequencing technologies. These include the development of error correcting codes for the 

unique information channel of DNA-based data storage [3] [4] [5] [6] [7]. Random access 

capabilities for reading specific information stored in DNA also require advanced coding 

schemes [8] [9] [10]. Yet, despite the enormous benefits potentially associated with capacity, 

robustness, and size, existing DNA-based storage technologies are characterized by inherent 

information redundancy. This is due to the nature of DNA synthesis and sequencing 

methodologies, which process multiple molecules that represent the same information bits in 

parallel. Recent studies suggest exploiting this redundancy to increase the logical density of 

the system, by extending the standard DNA alphabet using composite letters (also referred to 

as degenerate bases), and thereby encoding more than 2 bits per letter [11] [12]. 

In this approach, a composite DNA letter uses all four DNA bases (A, C, G, and T), combined 

or mixed in a specified predetermined ratio 𝜎 = (𝜎𝐴, 𝜎𝐶 , 𝜎𝐺 , 𝜎𝑇). A resolution parameter 𝑘 =
𝜎𝐴 + 𝜎𝐶 + 𝜎𝐺 + 𝜎𝑇  is defined, for controlling the alphabet size. The full composite alphabet of 

resolution 𝑘, denoted 𝛷𝑘, is the set of all composite letters, so that 𝛴𝑖∈(𝐴,𝐶,𝐺,𝑇}𝜎𝑖 = 𝑘. Writing 

a composite letter is done by using a mixture of the DNA bases determined by the letter’s ratio 

in the DNA synthesis cycle. Current synthesis technologies produce multiple copies, and by 

using the predetermined base mixture each copy will contain a different base, thus preserving 

the ratio of the bases at the sequence population level. 

While the use of numerical ratios supports higher logical density in composite synthesis, it also 

introduces challenges related to the synthesis and inference of exact ratios. Combinatorial 

approaches, which also consist of mixtures, address these challenges in a different way. Studies 

by Roquet et al. (2021) and Yan et al. (2023) contribute significantly to advancing DNA-based 

data storage technology. To encode and store data, Roquet et al. focus on a novel combinatorial 

assembly method for DNA. Yan et al. extend the frontiers of this technology by enhancing the 

logical density of DNA storage, using enzymatically-ligated composite motifs [13] [14].   

In this paper, we present a novel approach for encoding information in DNA, using 

combinatorial encoding and shortmer DNA synthesis. The method described herein leverages 

the advantages of combinatorial encoding schemes, while relying on existing DNA chemical 

synthesis methods with some modifications. Using shortmer DNA synthesis also minimizes 

the effect of synthesis and sequencing errors. We formally define shortmer-based 

combinatorial encoding schemes, explore different designs, and analyze their performance. We 

use computer-based simulations of an end-to-end DNA-based data storage system built on 

combinatorial shortmer encodings, and study its performance. To demonstrate the potential of 

our suggested approach and experimentally test its validity, we performed an assembly-based 

molecular implementation of the proposed combinatorial encoding scheme, and analyzed the 

resulting data. Finally, we discuss the potential of combinatorial encoding schemes and the 

future work required to enable these schemes in large-scale DNA-based data storage systems 

and other DNA data applications. All the code and data used in this study are freely available 

at: 

https://github.com/InbalPreuss/dna_storage_shortmer_simulation 

https://github.com/InbalPreuss/dna_storage_experiment 

The raw data is available in ENA (European Nucleotide Archive). 
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The datasets generated and/or analysed during the current study are available in ENA 

(European Nucleotide Archive) the  repository, Accession Number - ERR12364864 

3 Results 

3.1 Shortmer combinatorial encoding for DNA storage 

We suggest a novel method to extend the DNA alphabet while ensuring near-zero error rates.  

Let 𝛺 be a set of DNA k-mers that will serve as building blocks for our encoding scheme. 

Denote the elements in 𝛺 as 𝑋1, … , 𝑋𝑁. Elements in 𝛺 are designed to be sufficiently different 

from each other, to minimize mix-up error probability. Formally, the set is designed to satisfy 

𝑑(𝑋𝑖, 𝑋𝑗) ≥ 𝑑; ∀ 𝑖 ≠ 𝑗, with the minimal Hamming distance 𝑑 serving as a tunable parameter. 

Note that 𝑁 = |𝛺| ≤ 4𝑘. The elements in 𝛺 will be used as building blocks for combinatorial 

DNA synthesis in a method similar to the one used for composite DNA synthesis [12]. 

Examples of k-mer sets 𝛺 are presented in Supplementary Section 7.3. 

We define a combinatorial alphabet 𝛴 over 𝛺 as follows. Each letter in the alphabet represents 

a non-empty subset of the elements in 𝛺. Formally, a letter 𝜎 ∈ 𝛴 , representing a subset 𝑆 ⊆
𝛺/∅, can be written as an N-dimensional binary vector where the indices for which 𝜎𝑖 = 1 

represents the k-mers from 𝛺 included in the subset S. We denote the k-mers in 𝑆 as member 

k-mers of the letter 𝜎. For example, 𝜎 = (0,1,0,1,1,0) represents 𝑆 = {𝑋2, 𝑋4, 𝑋5} and |𝛺| =
𝑁 = 6. Fig. 1a and Fig. 1b illustrates an example of a combinatorial alphabet using 𝑁 = 16, 

in which every letter represents a subset of size 5 of Ω. Section 3.2 includes a description of 

the construction of different combinatorial alphabets. 

To write a combinatorial letter 𝜎 in a specific position, a mixture of the member k-mers of 𝜎 is 

synthesized. To infer a combinatorial letter 𝜎, a set of reads needs to be analyzed to determine 

which k-mers are observed in the analyzed position (See Section 3.2 and Section 3.3 for more 

details). This set of k-mers observed in the sequencing readout and used for inferring 𝜎 is 

referred to as inferred member k-mers.  

From a hardware/chemistry perspective, the combinatorial shortmer encoding scheme is 

potentially based on using the standard phosphonamidite chemistry synthesis technology, with 

some alterations (See Fig. 1b, and Supplementary Section 7.1) [15] [16]. First, DNA k-mers 

are used as building blocks for the synthesis [17]. Such reagents are commercially available 

for DNA trimers and were used, for example, for the synthesis of codon optimization DNA 

libraries [18] [19]. In addition, a mixing step will be added to each cycle of the DNA synthesis. 

Initially, all the member k-mers are added to a designated mixing chamber, and only then is 

the mixture introduced (for example, by injection) to the elongating molecules. Such systems 

are yet to be developed. 

Similar to composite DNA encoding, combinatorial encoding requires the barcoding of the 

sequences using unique barcodes composed of standard DNA barcodes. This design enables 

direct grouping of reads pertaining to the same combinatorial sequence. These groups of reads 

are the input for the process of reconstructing the combinatorial letters.  

The extended combinatorial alphabets allow for a higher logical density of the DNA-based 

storage system, while the binary nature of the alphabet minimizes error rates.  
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a b 

Encode legend 
 

𝑋1 = AAT 

𝑋2 = ACA 
𝑋3 = ATG 
𝑋4 = AGC 
𝑋5 = TAA 
𝑋6 = TCT 
𝑋7 = TTC 
𝑋8 = TGG 

𝑋9 = GAG 

𝑋10 = GCC 
𝑋11 = GTT 
𝑋12 = GGA 
𝑋13 = CAC 
𝑋14 = CCG 
𝑋15 = CTA 
𝑋16 = CGT 

𝜎1 =  {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5} 
𝜎99 =  {𝑋1, 𝑋2, 𝑋4, 𝑋7, 𝑋8} 
𝜎2518 =  {𝑋3, 𝑋4, 𝑋8, 𝑋11, 𝑋15} 
𝜎2311 =  {𝑋2, 𝑋9, 𝑋11, 𝑋12, 𝑋13} 
𝜎1811 =  {𝑋2, 𝑋4, 𝑋8, 𝑋13, 𝑋16} 
𝜎1740 =  {𝑋2, 𝑋4, 𝑋6, 𝑋11, 𝑋16} 
𝜎22 =  {𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋16} 
… 4096 letters in total 

 

 

 𝜎1  𝜎99 𝜎2518 𝜎2311 𝜎1811 𝜎1740 𝜎22 𝜎309 𝜎796 𝜎1348 𝜎33 𝜎5 𝜎3 𝜎1010 𝜎201 𝜎1499 

𝑋1                 

𝑋2                 

𝑋3                 

𝑋4                 

𝑋5                 

𝑋6                 

𝑋7                 

𝑋8                 

𝑋9                 

𝑋10                 

𝑋11                 

𝑋12                 

𝑋13                 

𝑋14                 

𝑋15                 

𝑋16                 
 

Fig. 1: Our combinatorial encoding and synthesis approach. a, Schematic view of a combinatorial alphabet 

(Encode legend). A set of 16 trimers, 𝑿𝟏, … , 𝑿𝟏𝟔, is used to construct 4096 combinatorial letters, each representing 

a subset of 5 trimers as indicated on the right and depicted in the grayed-out cells of the table. b, A suggested 

approach for combinatorial shortmer synthesis. A modified synthesizer would include designated containers for 

the 16 trimer building blocks and a mixing chamber. Standard DNA synthesis is used for the barcode sequence 

(1), while the combinatorial synthesis proceeds as follows: The trimers included in the synthesized combinatorial 

letter are injected into the mixing chamber and introduced into the elongating molecules (2-3). The process repeats 

for the next combinatorial letter (4-5), and finally, the resulting molecules are cleaved and collected (6). 

3.2 Binary and binomial combinatorial alphabets 

The main parameter that defines a combinatorial encoding scheme is the alphabet 𝛴. More 

specifically, it is the set of valid subsets of 𝛺 that can be used as letters. We define two general 

approaches for the construction of 𝛴. Namely, the binomial encoding and the full binary 

encoding. 

In the binomial encoding scheme, only subsets of 𝛺 of size exactly 𝐾 represent valid letters in 

𝛴, so that every letter 𝜎 ∈ 𝛴 consists of exactly 𝐾 member k-mers. Therefore, all the letters in 

the alphabet have the same Hamming weight 𝐾. 𝑤(𝜎) = 𝐾, ∀𝜎 ∈ 𝛴. This yields an effective 

alphabet of size |𝛴| = (
𝑁
𝐾

) letters, where each combinatorial letter encodes log2(|Σ|) =

log2 (
𝑁
𝐾

) bits. An r-bit binary message requires 
𝑟

log2(𝑁
𝐾

)
 synthesis cycles (and a DNA molecular 

segment with length 
𝑘𝑟

log2(𝑁
𝐾

)
 ). In practice, we would prefer working with alphabet sizes that are 

powers of two, where each letter will encode for ⌊log2 (
𝑁
𝐾

)⌋ bits. Note that this calculation 

ignores error correction redundancy, random access primers, and barcodes, which are all 

required for message reconstruction. See Supplementary Section 7.2 and Fig. 1a, which 

illustrate a trimer-based binomial alphabet with 𝑁 = 16 and 𝐾 = 5 resulting in an alphabet of 
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size |𝛴| = (
16 
5 

) = 4,368 that allows to encode ⌊𝑙𝑜𝑔2(4368)⌋ = 12 bits per letter or synthesis 

position.  

In the full binary encoding scheme, all possible nonempty subsets of 𝛺 represent valid letters 

in the alphabet. This yields an effective alphabet of size |𝛴| = 2𝑁 − 1 letters, each encoding 

for ⌊𝑙𝑜𝑔2(|𝛴|)⌋ = 𝑁 − 1 bits.  

From this point on, we focus on the binomial encoding. 

3.3 Reconstruction probabilities for binomial encoding 

In this section, the performance characteristics of binomial encoding is investigated. 

Specifically, we present a mathematical analysis of the probability of successfully 

reconstructing the intended message. In Section 3.4 and Section 3.5 results are presented from 

our simulations and from a small-scale molecular implementation of the binomial encoding, 

respectively.  

3.3.1 Reconstruction of  a single combinatorial letter 

Since every letter 𝜎 ∈ 𝛴 consists exactly of the 𝐾 member k-mers, the required number of reads 

for observing at least one read of each member k-mer in a single letter follows the coupon 

collector distribution [20]. The number of reads required to achieve this goal can be described 

as a random variable 𝑅 = ∑ 𝑅𝑖
𝐾
𝑖=1 , where 𝑅1 = 1 and 𝑅𝑖~𝐺𝑒𝑜𝑚 (

𝐾−𝑖+1

𝐾
) , 𝑖 = 2, … , 𝐾. Hence, 

the expected number of required reads, is: 

𝐸[𝑅] = ∑ 𝐸[𝑅𝑖]

𝐾

𝑖=1

= 𝐾 ∑
1

𝑖

𝐾

𝑖=1

= 𝐾𝐻𝑎𝑟(𝐾) 

where 𝐻𝑎𝑟(⋅) is the harmonic number. 
The expected number of reads required for reconstructing a single combinatorial letter thus 

remains reasonable for the relevant values of 𝐾. For example, when using a binomial encoding 

with 𝐾 = 5 the expected number of reads required for reconstructing a single combinatorial 

letter is roughly 11.5, which is very close to the experimental results presented in Section 3.5. 

By Chebyshev’s inequality (See Section 5.1), we can derive a (loose) upper bound on the 

probability of requiring more than 𝐸[𝑅] + 𝑐𝐾 reads to observe at least one read of each member 

k-mer, where 𝑐 > 1 is a parameter: 

𝑃(|𝑅 − 𝐾𝐻𝑎𝑟(𝐾)| ≥ 𝑐𝐾) ≤
𝜋2

6𝑐2
 

For example, when using a binomial encoding with 𝐾 = 5, the probability of requiring more 

than 26.5 reads (corresponding to 𝑐 = 3) is bounded by 0.18, which is consistent with the 

experimental result shown in Fig. 4d. 

3.3.2 Reconstruction of  a combinatorial sequence 

When we examine an entire 𝐾-subset binomial encoded combinatorial sequence of length 𝑙, 
we denote by 𝑅(𝑙) the required number of reads to observe 𝐾 distinct k-mers in every position. 

Assuming independence between different positions and not taking errors into account, we get 

the following relationship between 𝑐 and any desired confidence level 1 − 𝛿 (See Section 5.1 

for details): 

𝑃(|𝑅(𝑙) − 𝐾𝐻𝑎𝑟(𝐾)| ≥ 𝑐𝐾) ≤ 1 − (1 −
𝜋2

6𝑐2
)

𝑙

< 𝛿 
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And therefore: 

𝑃(𝑅(𝑙) < 𝐾𝐻𝑎𝑟(𝐾) + 𝑐𝐾) ≥ (1 −
𝜋2

6𝑐2
)

𝑙

≥ 1 − 𝛿 

The number of reads required to guarantee reconstruction of a binomial encoded message, 

at a 1 − 𝛿 probability, with 𝐾 = 5, and 𝑙 synthesized positions, is thus 𝐾𝐻𝑎𝑟(𝐾) + 𝑐𝐾 when 

𝑐 ≥ √1
6⁄ 𝜋 (1 − (1 − 𝛿)

1
𝑙⁄ )

−1
2⁄

. 

Table 4 shows several examples of this upper bound. As demonstrated in the simulations and 

the experimental results, this bound is not tight (See Section 3.4 and Section 3.5). 

 

Note that with an online sequencing technology (such as nanopore sequencing) the sequencing 

reaction can be stopped after 𝐾 distinct k-mers are confidently observed. 

To take into account the probability of observing a k-mer that is not included in Ω (e.g., due to 

synthesis or sequencing error), we can require that at least 𝑡 > 1 reads of each of the 𝐾 distinct 

k-mers will be observed. This is experimentally examined in Section 3.5, while the formal 

derivation of the number of required reads is not as trivial,  and will be addressed in future work. 

The above analysis is based only on oligo recovery, which depends solely on the sampling rate, 

ignoring possible mix-up errors (i.e., incorrect k-mer readings). This assumption is based on 

the near-zero mix-up probability attained by the construction of 𝛺, which maximizes the 

minimal Hamming distance between elements in 𝛺. In Section 3.5, this analysis is compared 

to experimental results obtained from using synthetic combinatorial DNA. 

3.4 An end-to-end combinatorial shortmer storage system 

We suggest a complete end-to-end workflow for DNA-based data storage with the 

combinatorial shortmer encoding presented in Fig. 2. The workflow begins with encoding, 

followed by DNA synthesis, storage, and sequencing, and culminates in a final decoding step. 

A two-dimensional (2D) error correction scheme, which corrects errors in the letter 

reconstruction (for example., due to synthesis, sequencing, and sampling errors) and any 

missing sequences (such as dropout errors), ensures the integrity of the system. Table 1 shows 

the encoding capacities of the proposed system, calculated on a 1GB input file with standard 

encoding and three different binomial alphabets. All calculations are based on error correction 

parameters similar to those previously described (See Section 5.4) [3] [12]. With these different 

alphabets, up to 6.5-fold increase in information capacity is achieved per synthesis cycle, 

compared to standard DNA-based data storage.  
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Type 𝑵 𝑲 (
𝑵 
𝑲 

) Bits 

per  

letter 

Alphabet 

size 
Bits 

per  

sequence 

Number 

of 

sequences 

Reed 

Solomon 

(RS) 

Bits per 

synthesis 

cycle, 

payload 

only 

Bits per 

synthesis 

cycle 

Fold 

increase 

Standard    2 4 240 33,333,334 38,095,248 1.57 1.40 1.0 

Binomial 16 3 560 9 512 1,080 7,407,408 8,465,616 7.05 6.30 4.5 

Binomial 16 5 4,368 12 4,096 1,440 5,555,556 6,349,248 9.40 8.40 6.0 

Binomial 16 7 11,440 13 8,192 1,560 5,128,206 5,860,848 10.19 9.10 6.5 

Table 1: Logical densities for selected encoding schemes. The numbers represent encoding a 1 GB binary 

message using oligos with 14nt barcodes +2nt RS (standard DNA), and 120 payload letters (from 𝚺) with 14 

extra RS for the payload (the payload and its RS is combinatorial with N and K as indicated). 

An example of the proposed approach, using a binomial alphabet with 𝑁 = 16 and 𝐾 = 5 and 

two-dimensional Reed Solomon (RS), is detailed below. A binary message is encoded into a 

combinatorial message using the 4096-letter alphabet. Next, the message is broken into 120 

letter chunks, and each chunk is barcoded. The 12nt barcodes are encoded using RS(6,8) over 

𝐺𝐹(24), resulting in 16nt barcodes. Each chunk of 120 combinatorial letters is encoded using 

RS(120,134) over 𝐺𝐹(212). Every block of 42 sequences is then encoded using RS(42,48) over 

𝐺𝐹(212) (see Section 5.2 for details).  

To better characterize the potential of this proposed system, we implemented an end-to-end 

simulation using the parameters mentioned above. We simulated the encoding and decoding of 

10KB messages with different binomial alphabets and error probabilities, and then measured 

the resulting reconstruction and decoding rates throughout the process. Fig. 3a depicts a 

schematic representation of our simulation workflow and indicates how the error rates are 

calculated (See Section 5.2.4). 
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Fig. 2: End-to-end workflow of a combinatorial DNA storage system. A binary message is broken into 

chunks, barcoded, and encoded into a combinatorial alphabet (i). RS encoding is added to each chunk and each 

column (ii). The combinatorial message is synthesized using combinatorial shormer synthesis (iii) and the DNA 

is sequenced (iv). Next, the combinatorial letters are reconstructed (v). Finally the message goes through 2D RS 

decoding (vi), followed by its translation back into the binary message (vii). 

The results of the simulation runs are summarized in Fig. 3b-d. Each run included 30 repeats 

with random input texts of 10KB encoded using 98 combinatorial sequences, each composed 

of 134 combinatorial letters and 16nt barcode, as described above. Each run simulated the 

synthesis of 1000 molecules on average per combinatorial sequence and sampling of a subset 

of these molecules to be sequenced. The subset size was drawn randomly from 

𝑁(𝜇, 𝜎 = 100), where 𝜇 is a parameter. Errors in predetermined rates were introduced during 

the simulation of both DNA synthesis and sequencing, as expected in actual usage [21] (See 
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Section 5.2.3 for details on the simulation runs). Reconstruction rates and Levenshtein 

distances are calculated throughout the simulation process, as described in Fig. 3a.  

Notably, the sampling rate is the dominant factor where even with zero synthesis and 

sequencing errors, low sampling rates yield such poor results (Fig. 3c) that the RS error 

correction is not able to overcome (Fig. 3d). The effect of substitution errors on the overall 

performance is smaller and they are also easier to detect and correct. This is because 

substitution errors occur at the nucleotide level rather than at the trimer level. The minimal 

Hamming distance 𝑑 = 2 of the trimer set 𝛺 allows for the correction of single-base 

substitutions. The use of 2D RS error correction significantly improved reconstruction rates, 

as can be observed in Fig. 3b. 

 

a b 

 
 

c d 

  

Fig. 3: Simulation of an end-to-end combinatorial shortmer encoding. a, A schematic view of the 

simulation workflow. A text message is translated into a combinatorial message (1), and encoded using RS error 

correction on the barcode and payload (2). Each block is encoded using outer RS error correction (3). DNA 

synthesis and sequencing are simulated under various error schemes, and the combinatorial letters are 

reconstructed (4-5). RS decoding is performed on each block (6) and each sequence (7) before translation back 

to text (8). The Roman numerals (i-iv) represent the different error calculations. b, Error rates in different stages 

of the decoding process. Boxplot of the normalized Levenshtein distance (See Section 5.2.4) for the different 

stages in a simulation (30 runs) of sampling 100 reads, with an insertion error rate of 0.01. The X-axis 

represents the stages of error correction (before 2D RS decoding (iv), after RS payload decoding (iii), and after 

2D RS decoding (ii)). c, and d, Sampling rate effect on overall performance. Normalized Levenshtein distance 

as a function of sampling rate before RS decoding (c) and after 2d RS decoding (ii). Different lines represent 

different error types (substitution, deletion, and insertion) introduced at a rate of 0.01.  

3.5 Experimental proof of concept  

To assess and establish the potential of large combinatorial alphabets, we also performed a 

small-scale experimental proof of concept. Gibson assembly was used to construct two 

combinatorial sequences, each containing a barcode and four payload cycles over a binomial 

 ext  ayload  ayload  ayload   

    

  

ivi ii iii
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 ayload   

    

  

   

   

 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2021.08.01.454622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454622
http://creativecommons.org/licenses/by-nc/4.0/


10 

alphabet with 𝑁 = 16 and 𝐾 = 5. The assembly was performed using DNA fragments 

composed of a 20-mer information sequence and an overlap of 20 bp between adjacent 

fragments, as shown in Fig. 4a. The assembled DNA was then stored and sequenced for 

analysis using Illumina Miseq (See Table 2 and Section 5.3 for details about the sequencing 

procedures). The sequencing output was then analyzed using the procedure described in 

Section 5.3.2. Both combinatorial sequences were successfully reconstructed from the 

sequencing reads, as presented in Fig. 4b and Supplementary Fig. 6, Fig. 7, and Fig. 8. The 

experiment also demonstrated the robustness of the binomial DNA encoding for synthesis and 

sequencing errors, as described in Fig. 4c. We observed a minor leakage between the two 

synthesized sequences, which was overcome by the reconstruction pipeline (See Fig. 4c and 

Supplementary Fig. 6, Fig. 7, and Fig. 8). Note that there is an overlap between the member k-

mers of the two sequences. 

To test the effect of random sampling on the reconstruction of combinatorial sequences, we 

performed a subsampling experiment with 𝑁 = 500 repeats, presented in Fig. 4d-f. We 

subsampled varying numbers of reads from the overall read pool and ran the reconstruction 

pipeline. Note that, as explained, the reconstruction of a single binomial position requires 

finding 𝐾 = 5 inferred k-mers. That is, observing five unique k-mers at least 𝑡 times. We tested 

the reconstruction performance using 𝑡 = 1,2,3,4 and recorded the effect on the successful 

reconstruction rate and required number of reads. 

For 𝑡 = 1, reconstruction required analyzing 12.26 reads on average. These included 0.45 reads 

that contained an erroneous sequence that could not be mapped to a valid k-mer, and thus 

ignored. Note that the design of the set 𝛺 of valid k-mers allows us to ignore only the reads for 

which the Hamming distance for a valid k-mer exceeded a predefined threshold (𝑑 = 3). If we 

ignored all the reads containing a sequence with non-zero Hamming distance to all k-mers, we 

would have skipped 2.26 extra reads, on average.  

As expected, requiring 𝑡 = 2 copies of each inferred k-mer resulted in an increase in the overall 

number of analyzed reads. Reconstruction of a single combinatorial letter required analyzing 

an average of 21.6 reads with 0.83 skipped and 3.99 non-zero Hamming distance reads. The 

complete distribution of the number of reads required for reconstruction of a single position 

using 𝑡 = 1,2 is presented as a histogram in Fig. 4d.  

To reconstruct a complete combinatorial sequence of 4 positions, we required the condition to 

hold for all positions. For 𝑡 = 1, this entailed the analysis of 55.60 reads on average, out of 

which 1.04 reads were identified as erroneous and thus ignored, and with 7.36 non-zero 

Hamming distance reads. For 𝑡 = 2, an average of 102.66 reads were analyzed with 1.97 

skipped and 13.24 non-zero Hamming distance reads. The complete distribution of the number 

of reads required for reconstructing a complete combinatorial sequence using 𝑡 = 1,2 is 

presented as a histogram in Fig. 4e. 

Note that these results correspond to the analysis presented in Section 3.3, for the 

reconstruction of a single binomial position and a complete binomial sequence. Calculating the 

bound presented in Table 4, with 𝐾 = 5 and 𝑙 = 4, yields a requirement of approximately 140 

reads to obtain 1 − 𝛿 = 0.99 probability of reconstruction. Clearly, this is well above the 

observed number of 55.60 reads. Note, as explained, the calculated bound is a loose bound. 

The reconstruction procedure ends with a set of inferred k-mers that represent the inferred 

combinatorial letter. This set is not guaranteed to be correct, especially when using  𝑡 = 1, 

which means that noisy reads may result in an incorrect k-mer included in the inferred letter. 

Fig. 4f depicts the rate of incorrect reconstructions as a function of the number of required 

copies for each inferred k-mer (𝑡 = 1,2,3,4). Note that with 𝑡 ≥ 3 results in 100% successful 

reconstruction. This, however, comes with a price, where more reads must be analyzed. 
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a 

 
b 
  

Barcode 
Combinatorial Sequence 1 

(BC1) 
Combinatorial Sequence 2 

(BC2) 

            
             Cycle    
 
Building 
Blocks 

c1 c2 c3 c4 c1 c2 c3 c4 

X1 0.271 0.000 0.002 0.000 0.372 0.000 0.102 0.000 

X2 0.001 0.000 0.123 0.256 0.191 0.000 0.004 0.011 

X3 0.000 0.000 0.004 0.179 0.000 0.000 0.208 0.008 

X4 0.001 0.218 0.000 0.000 0.193 0.005 0.000 0.000 

X5 0.001 0.000 0.127 0.003 0.077 0.000 0.004 0.091 

X6 0.000 0.208 0.000 0.000 0.000 0.005 0.000 0.000 

X7 0.271 0.000 0.000 0.006 0.003 0.000 0.000 0.210 

X8 0.000 0.000 0.152 0.123 0.000 0.000 0.005 0.204 

X9 0.270 0.003 0.000 0.208 0.003 0.222 0.000 0.010 

X10 0.000 0.120 0.344 0.000 0.000 0.100 0.489 0.000 

X11 0.000 0.002 0.002 0.000 0.000 0.193 0.082 0.000 

X12 0.095 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

X13 0.000 0.002 0.226 0.000 0.000 0.179 0.007 0.000 

X14 0.075 0.190 0.002 0.180 0.001 0.004 0.088 0.303 

X15 0.000 0.247 0.000 0.000 0.000 0.286 0.000 0.000 

X16 0.001 0.000 0.000 0.004 0.148 0.000 0.000 0.132 
 

c d 

 
 

e f 

 
 

Fig. 4: Experiment analysis. a, A schematic view of the Gibson assemby. Each combinatorial sequence consists 

of a barcode segment and four payload segments (denoted as cycle 1-4). b, Reconstruction results of the two 

combinatorial sequences. The color indicates read frequency and the member k-mers are marked with orange 
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boxes. c, The distribution of reads over the 16 k-mers in an example combinatorial letter. Overlaid histograms 

represent the percentage of reads for each of the 16 k-mers for the same position in our two combinatorial 

sequences. This in fact, is an enlarged view of the two c4 columns of panel b. d, Required number of reads for 

reconstructing a single combinatorial letter. A histogram of the number of reads required to observe at least 𝒕 =
𝟏, 𝟐 reads from 𝑲 = 𝟓 inferred k-mers. The results are based on resampling the reads 500 times, the data 

represents cycle 4. e, Required number of reads for reconstructing a four letter combinatorial sequence. Similar 

to d. f, Reconstruction failure rate as a function of the required multiplicity 𝒕. Errornous reconstruction rate shown 

for different values of required copies to observe each inferred k-mer (𝒕 = 𝟏, 𝟐, 𝟑, 𝟒). The mean required number 

of reads for reconstruction is displayed using a secondary Y-axis in the dashed lines. 

4 Discussion 
In this study we introduced combinatorial shortmer encoding for DNA-based data storage, 

which extends the approach of composite DNA by addressing its key challenges. 

Combinatorial shortmer encoding allows for increased logical density, while ensuring low error 

rates and high reconstruction rates. We explored two encoding schemes, binary and binomial, 

and evaluated some of their theoretical and practical characteristics. The inherent consistency 

of the binomial encoding scheme, where every letter in the sequence consists of exactly K 

distinct member k-mers, ensures uniformity in the encoded DNA sequences. This approach not 

only simplifies the reading process, but also allows for a more streamlined decoding. For 

instance, technologies like nanopore sequencing enable continuous sequencing until all k-mers 

at a given position are confidently observed. On the other hand, the complexities introduced 

by binary encoding, which can yield a variable number of k-mers at any position, represent a 

potential challenge. 

Similar to other DNA-based data storage systems, errors introduced to the sequences during 

the chemical and molecular stages affect the system’s performance. Our suggested approach is 

designed to inherently overcome base substitution errors, which are the most common errors 

expected in every DNA-based data storage system that includes DNA sequencing. This is 

achieved by the selection of a set of k-mers which is resilient to single-base substitutions, 

reducing the chances of letter mix-ups. Insertion and deletion errors, which usually originate 

in the synthesis process, are more challenging to overcome. We introduced a 2D RS error 

correction scheme on the shortmer level, allowing for a successful message reconstruction even 

with error levels exceeding those expected in reality. 

Our study highlights the significant effect of sampling rates on the overall performance of the 

system. The accuracy and completeness of sequence reconstruction are closely tied to the rate 

at which DNA sequences are sampled. Optimal sampling rates ensure that the diverse regions 

of the encoded DNA are sufficiently represented, facilitating accurate reconstruction. An 

insufficient sampling rate can lead to data gaps, which further complicate the reconstruction 

process and may lead to errors or incomplete data retrieval. Our subsampling experiments 

underpin this observation, underscoring the need for calibration of sampling rates to ensure the 

desired fidelity in DNA-based data storage and retrieval.  

While our proof-of-concept experiment showed success on a small scale, there are complexities 

to be addressed in considering large-scale applications. These include synthesis efficiency, 

error correction, and decoding efficiency. Nonetheless, the resilience of our binomial DNA 

encoding for both synthesis and sequencing errors highlights its practical potential and 

scalability. 

Several future directions emerge from our study. First, it is essential to advance our error 

correction methods for better handling insertion and deletion errors. One approach for 

achieving this, is to adjust sampling rates: optimizing the sampling rate, especially in large-

scale experiments, can lead to data retrieval at high accuracy. While our study highlighted the 

role of sampling rates in achieving desired outcomes, delve deeper into the underlying theory 

is necessary. By understanding the theoretical bounds of sampling rates, more concrete 

recommendations can be provided for real-world applications. Future research can further 
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expand on this, both by conducting a series of experiments with varied sampling rates and by 

aiming to define theoretical bounds for these rates. This dual approach—combining practical 

experiments with rigorous theoretical analysis—could yield more precise guidelines for DNA-

based data storage endeavors. Another future research direction, can be the development of 

error correction codes designed specifically to overcome the error types that characterize 

combinatorial encoding. Furthermore, transitioning from small-scale proof-of-concept 

experiments to larger-scale implementations is an important next step. Evaluating the 

scalability of our method across various scales and complexities will be enlightening, 

especially when considering synthesis efficiency and error rates. Finally, the consideration of 

advanced sequencing technologies could redefine the potential and efficacy of our proposed 

method. 

5 Methods 

5.1 Reconstruction probability of a binomial encoding letter 

Let the number of reads required for reconstruction be a random variable 𝑅 = ∑ 𝑅𝑖
𝐾
𝑖=1  where 

𝑅1 = 1 and 𝑅𝑖~𝐺𝑒𝑜𝑚 (
𝐾−𝑖+1

𝐾
) , 𝑖 = 2, … , 𝐾. Hence, the expected number of required reads, is: 

𝐸[𝑅] = ∑ 𝐸[𝑅𝑖]

𝐾

𝑖=1

= 𝐾 ∑
1

𝑖

𝐾

𝑖=1

= 𝐾𝐻𝑎𝑟(𝐾) 

where 𝐻𝑎𝑟(⋅) is the harmonic number. 
Using the independence of 𝑅𝑖, the variance of 𝑅 can be bound by (See [22]): 

𝑉𝑎𝑟(𝑅) = ∑ 𝑉𝑎𝑟(𝑅𝑖)

𝐾

𝑖=1

< 𝐾2 (
1

12
+

1

22
+ ⋯ +

1

𝐾2
) <

𝜋2

6
𝐾2 

By Chebyshev’s inequality, we get an upper bound (a loose bound) on the probability of 

requiring more than 𝐸[𝑅] + 𝑐𝐾 reads to observe at least one read of each member k-mer: 

𝑃(|𝑅 − 𝐸(𝑅)| ≥ 𝑏𝜎) ≤
1

𝑏2
 

𝑃 (|𝑅 − 𝐸(𝑅)| ≥ 𝑏
𝜋

√6
𝐾) ≤

1

𝑏2
 

Let 𝑐 = 𝑏
𝜋

√6
, or 𝑏 =

𝑐√6

𝜋
 and we obtain: 

𝑃(|𝑅 − 𝐸[𝑅]| ≥ 𝑐𝐾) ≤
𝜋2

6𝑐2
 

Or specifically: 

(1)    𝑃(|𝑅 − 𝐾𝐻𝑎𝑟(𝐾)| ≥ 𝑐𝐾) ≤
𝜋2

6𝑐2
 

We now turn to address the reconstruction of an entire oligo of length 𝑙. Let 𝑅(𝑙) be the random 

variable representing the number of reads required to have seen all the 𝐾 member k-mers in 

every position. Setting any 𝛿 > 0, if we show that 𝑃(𝑅(𝑙) > 𝑚) ≥ 1 − 𝛿, then we know that 

by accumulating 𝑚 reads the probability of correct full reconstruction is more than 1 − 𝛿. From 

equation (1), and assuming independence of the positions (in terms of observing all 𝐾 member 

k-mers), we get equation (2): 

(2)   𝑃(𝑅(𝑙) < 𝐾𝐻𝑎𝑟(𝐾) + 𝑐𝐾) ≥ (1 −
𝜋2

6𝑐2
)

𝑙
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From which we can extract 𝑐, so that: 

(1 −
𝜋2

6𝑐2
)

𝑙

≥ 1 − 𝛿 

Which yields: 

𝑐 ≥
𝜋

√6 (1 − (1 − 𝛿)
1
𝑙 )

 

This process allows us to evaluate the sequencing depth complexity. For example, consider 

𝑙 = 100 and 𝛿 = 0.01. We want to find 𝑐, so that using 𝐾𝐻𝑎𝑟(𝐾) + 𝑐𝐾 reads will 

reconstruct the entire sequence with 0.99 probability. We therefore set: 

(1 −
𝜋2

6𝑐2
)

100

≥ 0.99 

And get: 

c ≥
𝜋

√6(1 − (0.99)0.01)
= 127.94 

And therefore, using 128 reads guarantees reconstruction with 0.99 probability. 

5.2 An end-to-end combinatorial storage system 

In section 3.4 we propose an end-to-end combinatorial storage system, as follows. 

5.2.1 Combinatorial encoding and padding 
A binary message is encoded using a large k-mer combinatorial alphabet (e.g., trimer-based 

alphabet of size |𝛴| = 4096 letters, with 𝑁 = |𝛺| = 16), resulting in 𝑟 = 12 bits per 

combinatorial letter. The binary message is zero padded to ensure its length is divisible by 𝑟 

prior to the combinatorial encoding. The complete message is broken into sequences of set 

length 𝑙 = 120, each sequence is then marked with a standard DNA barcode and translated 

using the table presented in the Encode legend (See Section 7.2). 

The length of the complete combinatorial sequence must be divisible by the payload size 𝑙 and 

by the block size 𝐵. As described in Fig. 5, this is ensured using another padding step, and the 

padding information is included in the final combinatorial sequence. 

5.2.2 Error correction codes 
The two-dimensional (2D) error correction scheme includes using three Reed Solomon (RS) 

[23] encodings: on each barcode, on the payload part of each sequence, and an outer error 

correction code on each block of sequences. 

• Each barcode is encoded using a systematic RS(6,8) code over 𝐺𝐹(24), transforming the 

unique 12nt barcode into a 16nt sequence. 

• Each 120 combinatorial letter payload sequence is encoded using a RS(120,134) code over 

𝐺𝐹(212), resulting in a sequence of length 134 combinatorial letters.  

• To protect against sequence dropouts, outer error correction code is used on the columns 

of the matrix (See Fig. 5). Each block of 𝐵 = 42 sequences, is encoded using a RS(42,48) 

RS code 𝐺𝐹(212). This is applied in each column separately. 
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Barcode  

 
Payload 

 
Payload Inner RS 

 
Barcode RS 

 
Payload Outer RS   

Fig. 5: Example of message coding including padding and Reed-Solomon error correction. Encoding of a 

~0.1KB message to a 512 letter binomial alphabet (N= 𝟏𝟔, 𝑲 = 𝟑). First, bit padding is added, included here in 

the letter . Next, block padding is added, included here in  and . Padding information is included in 

the last sequence of all blocks. The last sequence holds the number of padding binary bits. In this example,  

represents 148 bits of padding, composed of 𝟒 + (𝟒 ∗ 𝟗) + (𝟏𝟐 ∗ 𝟗) 𝒃𝒊𝒕𝒔 , 4 bits from , 4 letters from  

and 12 letters from . 

For simplicity, Fig. 5 demonstrates the encoding of ~0.1 KB using shorter messages with 

simpler error correction codes. The following parameters are used: 

● A barcode length of 6nt encoded using RS(3,5) code over 𝐺𝐹(24) to get 10nt. 

● A payload length of 𝑙 = 12 encoded using RS(12,18) over 𝐺𝐹(29) for the (
16
3

) binomial 

alphabet. 

● A 10-sequence block encoded, column wise, using a (10,15) RS code over 𝐺𝐹(29). 

The 824 bits are first padded to be 828 = 92 ∗ 9. The 92 combinatorial letter message is split 

into 7 sequences of 12 letters and an additional sequence of 8 letters. Finally, a complete block 

of 12 sequences (total of 10 ∗ 12 = 120 letters) is created by padding with one additional 

sequence of 12 letters and including the padding information as the last sequence. 

5.2.3 Synthesis and sequencing simulation with errors 

• Simulating the synthesis process. DNA molecules pertaining to the designed sequences 

are synthesized using combinatorial k-mer DNA synthesis (See Fig. 1b). For each 

combinatorial sequence, we first determine the number of synthesized copies by sampling 
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from 𝑋~𝑁(𝜇 = 1000, 𝜎2 = 100). Let 𝑥 be the number of copies for a specific sequence.  

Next, for every position in the sequence we uniformly sample 𝑥 independent k-mers from 

the set of member k-mers of the combinatorial letter in the specific position. We 

concatenate the sampled k-mers to the already existing 𝑥 synthesized molecules. 

• Error simulation. Synthesis and sequencing error are simulated as follows. Error 

probabilities for deletion, insertion, and substitution are given as parameters denoted as 

𝑃𝑑 , 𝑃𝐼 , and 𝑃𝑠 respectively. Deletion and Insertion errors are assumed to occur during k-mer 

synthesis and thus implemented on the k-mer level (i.e., an entire k-mer is deleted or 

inserted in a specific position during the synthesis simulation). Substitution errors are 

assumed to be sequencing errors, and hence implemented on a single base level (i.e., a 

single letter is substituted, disregarding the position within the k-mer). 

• Mixing. Post synthesis, molecules undergo mixing to mirror genuine molecular 

combinations. This is achieved through a randomized data line shuffle using a SQLite 

database, enabling shuffle processes even for sizable input files [24]. 

• Reading and sampling. From the simulated synthesized molecule set, a subsample of 

predefined size 𝑆 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑠𝑒𝑞𝑒𝑢𝑛𝑐𝑒𝑠 is drawn, simulating the 

sampling effect of the sequencing process.  

5.2.4 Reconstruction 

• Barcode decoding. The barcode sequence of each read is decoded using the RS(6,8) code. 

• Grouping by barcode. The reads are then grouped by their barcode sequence to allow the 

reconstruction of the combinatorial sequences. 

• Filtering of read groups. Barcodes (set of reads) with less than 10% of the sampling rate 

𝑆 reads are discarded. 

• Combinatorial reconstruction. For each set of reads, every position is analyzed 

separately. The 𝐾 most common k-mers are identified and used to determine the 

combinatorial letter 𝜎 in this position. Let Δ be the difference between the length of the 

analyzed reads and the length of the designed sequence. Δ = 𝑙 − 𝑙𝑒𝑛(𝑟𝑒𝑎𝑑). Reads with 
|Δ| > 𝑘 − 1 are discarded from the analysis. Invalid k-mers (not in 𝛺) are replaced by a 

dummy k-mer 𝑋𝑑𝑢𝑚𝑚𝑦. 

• Missing barcodes. Missing barcodes are replaced with dummy sequences to enable correct 

outer RS decoding. 

• Normalized Levenshtein distance. Levenshtein distance between the observed sequence 

O and the expected sequence 𝐸 is calculated [25] [26]. Normalized Levenshtein distance is 

calculated by dividing the distance by the length of the expected sequence: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂, 𝐸) =
𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂, 𝐸)

|𝑂|
 

5.3 Proof of concept experiment 

The proof-of-concept experiment was performed by imitating combinatorial synthesis using 

Gibson assembly of larger DNA fragments. Each DNA fragment was composed of a 20-mer 

information sequence and an overlap of 20 bp between adjacent fragments, as depicted in Fig. 

4a. Two combinatorial sequences were designed, each composed of a barcode fragment, 4 

payload fragments, and Illumina P5 and P7 anchors at the ends. The information fragments 

included in each combinatorial position were chosen from a set of 16 sequences with sufficient 

pair-wise distance. The full list of DNA sequences and the design of combinatorial sequences 

is listed in Supplementary Section 7.5.  

No animal, or human participants were involved in the study. 
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5.3.1 DNA assembly and sequencing 

Payload, barcode, and P7 anchor fragments with 20 bp overlaps for the purpose of Gibson 

assembly were produced by annealing complementary oligonucleotides manufactured by 

Integrated DNA Technologies (IDT). Oligos were dissolved in Duplex Buffer (100 mM 

Potassium Acetate; 30 mM HEPES, pH 7.5; available from IDT) to the final concentration of 

100 micromolar. For annealing, 25 microliters of each oligo in a pair were combined to the 

final concentration of 50 micromolar. The oligo mixes were incubated for 2 min at 940 C and 

gradually cooled down to room temperature. The annealed payload oligos that belonged to the 

same cycle (5 oligos total) were mixed to the final concentration of 1 micromolar per oligo – a 

total of 5 micromolar, by adding 2 microliters of each annealed oligo into the 90 microliters of 

nuclease-free water – a final volume of 100 microliters. Annealed barcode and P7 anchor oligos 

were also diluted to the final concentration of 5 micromolar in nuclease-free water, after 

thorough mixing by vortexing. The diluted oligos were stored at -200C.  

Immediately prior to the Gibson assembly, payload oligo mixes, barcode, and P7 anchor oligos 

were further diluted 100-fold to the final working dilution of 0.05 pmol/microliter in nuclease-

free water. Gibson reaction was assembled by adding 1 microliter (0.05 pmol) of barcode, 4 x 

cycle mixes, and P7 anchor to the 4 microliters of nuclease-free water and supplemented with 

10 microliters of NEBuilder HiFi DNA assembly master mix (New England Biolabs (NEB)) 

to the final volume of 20 microliters according to the manufacturer instructions. The reactions 

were incubated for 1 hr at 500C and purified with AmpPure Beads (Thermo Scientific) at 0.8X 

ratio (16 microliters of beads per 20 microliters Gibson reaction) to remove free oligos / 

incomplete assembly products. After adding beads and thorough mixing, the reactions were 

incubated for 10 min at room temperature and then placed on a magnet for 5 min at room 

temperature. After removing the sup, the beads were washed twice with 100 microliters of 80% 

ethanol. The remaining washing solution was further removed by a 20 microliter tip and the 

beads dried for 3 min on the magnet with an open lid. After removing from the magnet, the 

beads were resuspended in 22 microliters of IDTE buffer (IDT), incubated for 5 min at room 

temperature, and then placed back on the magnet.  

20 microliter of eluate were transferred into the separate 1.7 ml tube. 5 microliters of the eluted 

DNA were used as a template for PCR amplification combined with 23 microliters of nuclease-

free water, 1 microliter of 20 micromolar indexing primer 5, 1 microliter of 20 micromolar 

indexing primer 7, and 10 microliters of rhAMPseq master mix v8.1 – a total of 40 microliters.  

After initial denaturation of 3 min at 950C, the PCR reaction proceeded with 50 cycles of 15 

sec at 950C, 30 sec at 600C, and 30 sec at 720C, followed by final elongation of 1 min at 720C 

and hold at 40C. The PCR reactions were purified with Ampure beads at 0.8X ratio (32 

microliter beads per 40 microliters of PCR reaction) as outlined above and eluted in 22 

microliters IDTE buffer. The concentration and the average size of the eluted product were 

determined by Qubit High Sensitivity DNA kit and Agilent 2200 TapeStation system with 

D1000 high-sensitivity screen tape respectively. The eluted product was diluted to 4 nanomolar 

concentration and used as an input for denatured sequencing library preparation, per 

manufacturer instructions. The sequencing was performed on Illumina Miseq apparatus (V2 

chemistry, 2 x 150 bp reads) using 6 picomolar denatured library supplemented with 40% PhiX 

sequencing control.  

5.3.2 Decoding and analysis 

This section outlines the key steps involved in our sequencing analysis pipeline, aimed at 

effectively processing and interpreting sequenced reads. The analysis pipeline gets the 

sequencing output file containing raw reads in “.fastq” format and a design file containing the 

combinatorial sequences.  
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Analysis Steps: 

1. Length Filtering. We saved reads that were 220 bp in length, retaining only those 

corresponding to our designed read length. 

2. Read Retrieval. We carefully checked each read for the presence of BCs, universals, and 

payloads. To keep our data accurate, we discarded reads where the BCs, universals, or 

payloads had a Hamming distance of more than 3 errors. 

3. Identifying inferred k-mers. For every BC and each cycle, we counted the K most common 

k-mers. We then compared these with the design file to countify those matching (Fig. 4b). 

Reads Count 

Total PF Reads 2,634,683 

Reads of length 220 2,139,071 

BC1 1,365,295 

BC2 768,755 

No BC 5,021 

Table 2: Summary of sequencing reads analyzed in the study. The table shows the total number of reads 

obtained, the number filtered by length (220 bases) for analysis, and the counts of reads associated with BC1, 

BC2, and those that did not have any recognizable barcode (No BC). 

5.4 Information capacities for selected encodings 

Table 1 illustrates the logical densities derived from encoding a 1 GB binary message using 

oligonucleotides with a 12nt barcode and an additional 4nt for standard DNA Reed-Solomon 

(RS) error correction, and a 120 letters payload with 14 extra RS for the payload in 

combinatorial encoding schemes with parameters N and K. 

The densities were calculated as follows: 

Bits per Letter = ⌊log2 ((
𝑁
𝑘

))⌋ 

Alphabet Size = 2𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝐿𝑒𝑡𝑡𝑒𝑟 

Bits per Sequence = 𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝐿𝑒𝑡𝑡𝑒𝑟 × 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ. 

Number of Sequences = ⌈
𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 𝑖𝑛 𝑏𝑖𝑡𝑠

𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
⌉ 

Number of sequences padded: Total number of sequences after padding for the block size. 

padding is = 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 − (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 % 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒) 

Number of sequences with RS=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑝𝑎𝑑𝑑𝑒𝑑

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒
× 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 𝐴𝑓𝑡𝑒𝑟 𝑅𝑆 

Synthesis Cycles = Number of sequences with RS × 𝐹𝑢𝑙𝑙 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑅𝑆  

Bits per Synthesis Cycle =
𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 𝑖𝑛 𝑏𝑖𝑡𝑠

Synthsis Cycle
 

Fold Increase =
Bits per Synthesis Cycle

𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑆𝑦𝑛𝑡ℎ𝑠𝑖𝑠 𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑐ℎ𝑒𝑚𝑒
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7 Supplementary 
All files are available here 

7.1 Combinatorial shortmer synthesis (video) 

Supplementary video, uploaded separately  in: 

Supplementary_animation_3-mers_16choose2.wmv. 

7.2 Bionomial shortmer alphabet example (Table) 

Supplementary file, uploaded separately in: 

Supplementary_table_alphabet.xlsx 

𝑵 = |𝜴| = 𝟏𝟔, 𝑲 = 𝟓. The Hamming distance of this 𝛺 is 𝒅 = 𝟐. |𝛴| = 𝟒𝟎𝟗𝟔 ≤ 𝟒𝟑𝟔𝟖 = (
𝟏𝟔

 𝟓 
) 

7.3 Example of k-mer sets 

Table 3 is an example of k-mer sets. To the left, are two sets of trimers that have a minimal 

Hamming distance of 2, with |𝛺1| = 16 𝑎𝑛𝑑 |𝛺2| = 12. To the right, is a set of 54 6-mers that 

have a minimal Hamming distance of 4.  

 
Trimers 6-mers 

𝛺1 𝛺2 𝛺3 
AAT ACG TTGACG CAGTCA GCATTA 

ACA AAA AAAAAA CATGAC GCCGGC 

ATG AGC AACCCC CCAACC GCTAAT 

AGC ATT AAGGGG CCCCAA GGAAGG 

TAA CAC AATTTT CCGGTT GGCCTT 

TCT CCA ACACGT CCTTGG GGGGAA 

TTC GAG ACCATG CGATAT GGTTCC 

TGG GCC ACGTAC CGCGCG GTACAC 

GAG GGA ACTGCA CGGCGC GTGTGT 

GCC TAT AGAGTC CGTATA GTTGTG 

GTT TTA AGCTGA CTAGGA TAATGC 

GGA  AGTCAG CTCTTC TACGTA 

CAC  ATCGAT CTTCCT TAGCAT 

CCG  ATGCTA GAAGCT TCAGAG 

CTA  ATTAGC GACTAG TCCTCT 

CGT  CAACTG GAGATC TCTCTC 

  CACAGT GATCGA TGACCA 

  TTTTAA TGTGGT TGCAAC 

Table 3: Example of k-mer sets, 𝜴. For 𝜴𝟏 and 𝜴𝟐, the minimum Hamming distance is 2. For 𝜴𝟑, the 

minimum hamming distance is 4. 

7.4 Reconstruction of  a binomial seuqence 
 Probability of unsuccessful reconstruction 

(𝛿) 

10−2 10−3 10−4 10−5 

Sequence 

length (𝑙) 

50 464 1445 4546 14351 

100 652 2039 6425 20291 

150 795 2495 7866 24848 

200 917 2879 9081 28691 

Table 4: Sufficient number of reads to reconstruct a binomial sequence. Entries in the table represent 

𝑲𝑯𝒂𝒓(𝑲) + 𝒄𝑲 where 𝒄 is derived based on the desired 𝜹, as explained in Section 5.1. 
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7.5 Proof-of-concept experimental design (Table) 

Supplementary file, uploaded separately in: 

Supplementary_table_oligo_sequences.xlsx 

7.6 Proof of concept smaller-scale experiment 

  

  

Fig. 6: Smaller-scale experiment, oligo 1. Oligo has four cycles, each with five inferred k-mers. Results 

showed the k-mers expected, according to our original design. 
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Fig. 7: Smaller-scale experiment, oligo 2. Oligo has four cycles, each with five k-mers. Results showed the k-

mers expected, according to our original design. 

For each of the two barcodes, we were able to identify and recover the barcode and their 

payloads. At each position/cycle in the sequence, the five-member k-mers were recovered, 

which are the five inferred k-mers (See Fig. 6 and Fig. 7). 
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Fig. 8: Superimposing oligo 2 (grey) over oligo 1 (blue). Leakage resulted in more than five k-mers expected, 

according to our design, where k-mers continued to assemble in each cycle due to the active enzyme, yet not 

necessarily on their designated oligo. The same applies to the second sequence that was assembled. Note that 

there is an overlap between the member k-mers of the two sequences. See for example, Payloads #10 and #15 in 

cycle C2. 
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