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ABSTRACT 
 
Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) 
gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are 
characterized by changes in the composition and regulation of HSPCs. In this study, we used single cell 
RNA sequencing (scRNAseq) to characterize an enriched population of human hematopoietic stem and 
progenitor cells (HSPC) obtained from young and elderly healthy individuals.  
 
Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments 
during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. 
Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, 
which could explain age-associated changes in hematopoiesis. Next, we focused on key regulators of 
transcription by constructing gene regulatory networks and detected regulons that were specifically active 
in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data 
obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the 
expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. 
In addition, the comparison between transcriptional programs and GRN regulating normal HSPCs and MDS 
HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, 
HOXA6, POU2F2 and RUNX1 suggesting a role of these TF in the pathogenesis of the disease.  
 
In summary, we demonstrate that the combination of single cell technologies with computational analysis 
tools enable the study of a variety of cellular mechanisms involved in early hematopoiesis and can be used 
to dissect perturbed differentiation trajectories associated with aging and malignant transformation. 
Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies 
could be exploited for personalized therapeutic approaches in individual patients. 
 
 
 
INTRODUCTION 

Mature blood and immune cells are generated by hematopoiesis, which is a well-characterized process that 
has been studied for more than a century (1). Classically, hematopoiesis has been modeled as a stepwise 
differentiation process, at the core of which reside hematopoietic stem cells (HSCs), which are common 
precursors with self-renewal capacity. A tree-like hierarchy arises from HSCs, in which lineage 
commitment occurs at binary branching points, giving rise to functionally and phenotypically homogeneous 
progenitor populations (2,3) . However, recent single cell studies have questioned the validity of the classical 
model of hematopoiesis and have revealed heterogeneity within the HSC compartment and within 
progenitor populations that were previously considered homogeneous (4). Furthermore, it is difficult to 
establish boundaries between populations, which has led to the replacement of this concept by the idea of 
smooth transitions. Thus, early hematopoiesis is now viewed as a continuous landscape composed of 
undifferentiated hematopoietic stem and progenitor cells (HSPCs) with a variable degree of priming toward 
specific lineages (lymphoid, myeloid, or erythroid) (5–8). 
 
During aging, the hematopoietic system undergoes various changes. There is evidence of an age-related 
increase in the relative number of HSCs, that presumably aims to compensate for a loss of repopulation 
ability (9,10). Despite this increase in the number of HSCs, the total bone marrow cellularity decreases (11). 
Additionally, a loss of lymphocyte production and a skewing toward myeloid differentiation have been 
demonstrated  (12). Moreover, recent studies have revealed an increase in the number of platelet primed 
HSCs (13). A general loss of immune function that affects both innate and adaptive immunity has also been 
associated with aging (14). The molecular basis of these phenotypic changes includes an increased rate of 
random mutations in hematopoietic progenitors. Clonal hematopoiesis is a common trait of elderly 
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individuals, in which blood cell subpopulations are clonally derived from a single HSC or progenitor with 
acquired mutations. Notably, some of these mutations are also associated with hematopoietic malignancies 

(15–18). Additionally, aging is also accompanied by transcriptional dysregulation. Gene expression analyses 
have revealed changes in cell cycle regulators (19), higher expression of myeloid signatures (13,19) and genes 
associated with leukemia (20), stronger response to inflammatory stimuli (21,22), and upregulation of pathways 
such as nuclear factor kappa beta (NF-κB) or tumor necrosis factor alpha (TNF-α) and downregulation of 
DNA repair (23). Lastly, epigenetic modifications that are in line with the transcriptional lesions detected 
have been observed in HSPCs obtained from elderly individuals (24).   
 
Aging is associated with a higher risk of developing myeloid malignancies (25,26), suggesting a strong 
predisposition of hematopoietic cells from elderly individuals to lead to further alterations. Myelodysplastic 
syndromes (MDS) are among the main age-related hematological disorders. MDS are characterized by 
ineffective hematopoiesis and predisposition to transformation into acute myeloid leukemia (27), a highly 
aggressive neoplasm. 
 
Collectively, previous evidence suggests the existence of a progressive decline in the hematopoietic system 
with age, which can result in disease if certain pathological events occur. HSC damage is the primary 
consequence of this process and its outcomes range from lineage bias to differentiation blockade and 
leukemic transformation (28). In this study, we examined these successive alterations in detail by considering 
hematopoiesis as a continuous process and analyzing the single cell transcriptional profile of early 
hematopoietic progenitors. We aimed to characterize key regulators of hematopoiesis in young and aged 
hematopoiesis and to apply this knowledge to identify specific perturbations occurring in patients with 
myelodysplastic syndromes. These regulators have the potential to predict, in a personalized manner, what 
abnormalities to expect and to identify potential therapeutic targets even at the early stages of 
transformation. 
 

RESULTS 

Transcriptional profiling of human young and elderly hematopoietic progenitor systems 
To investigate the age-dependent changes in the hematopoietic system, we performed single-cell RNA 
sequencing (scRNA-seq) of bone marrow CD34+ cells obtained from five young (18-20-year-old) and three 
elderly (>65-year-old) healthy donors (Figure 1a). Briefly, single-cell libraries were prepared using a 
Chromium controller instrument (10x Genomics) and sequenced up to an average depth of 30,000 reads 
per cell. A total of 34,590 and 40,641 cells were profiled from young and elderly donors, respectively. We 
first constructed an integrated dataset with cells from both young and elderly donors using an integration 
procedure implemented in the Seurat R package (29). Subsequently, we subjected the integrated dataset to 
quality control filtering and dimensional reduction to obtain a reference map for visualization 
(Supplemental Table 1). Secondary analyses including unsupervised clustering, identification of cluster 
markers, trajectory inference and gene regulatory network (GRN) reconstruction were performed 
independently for each group. 
 
After integration, we extracted the cells obtained from young donors and subjected them to unsupervised 
clustering and differential expression analysis to identify cluster markers for manual cell type annotation 
and labeling (Supplemental Table 2). This analysis identified 14 cellular subpopulations comprising the 
landscape of HSCs, early progenitors (MEP, LMPP, CLP, and GMP cells), and cells already committed to 
specific lineages (Pro-B cells, monocytic, erythroid, megakaryocytic, basophil and dendritic cell 
progenitors) (Figure 1b). Early progenitors were characterized by the expression of genes such as CRHBP, 
HOPX (initial lympho-myeloid differentiation), and PBX1 (initial megakaryocyte and erythroid lineage). 
More mature progenitors presented myeloid (MPO, CTSG, PRTN3, LYZ, and IRF8), lymphoid (DNTT, 
VPREB1, and EBF1), erythroid (HBD, and CA1) and basophil (HDC, and MS4A2)-specific markers (Figure 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2021.07.30.454542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454542
http://creativecommons.org/licenses/by-nc-nd/4.0/


1c). Once cellular subpopulations from the young donors were identified, we labeled cells of elderly 
individuals using a classification method based on a logistic regression with elastic-net regularization (see 
Materials and Methods). Regularized logistic regression has been previously applied to scRNA-seq data, 
due to its high interpretability and good performance with sparse input (30,31). We created binary classifiers 
that showed the probability that each cell belongs to a specific cluster (Supplemental Figure 1a) and 
assigned labels based on the highest probability. The performance of our classifier was determined by using 
a publicly available dataset containing 8,176 human CD34+ progenitors with known identities (Granja et 
al., 2019). This dataset was labeled using our method and Seurat (Supplemental Figure 1b) for 
benchmarking purposes. We obtained the proportion of cells classified within each cell type using both 
approaches (Supplemental Figure 1c). Overall, both methods provided very similar results. Seurat 
displayed issues with early progenitors as 38% of HSCs were classified as MEPs, compared to 12% with 
GLMnet. This can also be observed within LMPPs and pDC cell types. The lymphoid lineage showed the 
biggest proportion changes however, this is related to the low number of B cells in the reference. As the 
GLMnet classifier performed better among progenitor cell types, we decided to use it in the rest of analyses. 
 
  
When we applied the GLMnet classifier to the elderly individuals, we noted a significant increase in the 
proportion of HSCs and a reduction in the number of both committed lymphoid and myeloid lineages (Adj 
p.value < 0.05, Supplemental Table 3) as well as an increase in the proportion of erythroid-committed 
cells in the overall proportion, both in the integrated and individual datasets (Figure 1d and Supplemental 
Figure 2). 
 
Next, we checked for functional differences between the young and elderly populations using gene set 
enrichment analysis (GSEA) after performing differential expression per cluster (Supplemental Table 4). 
Cells from elderly donors exhibited a generalized enrichment of pathways activated in response to external 
molecules and insults, such as TNF-α, transforming growth factor beta (TGF-β), hypoxia or inflammation. 
Furthermore, the p53 pathway and apoptosis programs, which are activated by stressor stimuli, were also 
enriched in these cells (Figure 1e). In particular, the TGF-β response and apoptosis genes, together with 
genes upregulated in response to ultraviolet radiation were specially enriched in age-associated HSCs. 
These results suggested the presence of an age-related response to the known more inflammatory 
microenvironment that is present in elderly individuals (32). Shifts in the abovementioned stress-related 
pathways were associated with increased expression in the elderly of potential drivers of such pathways, 
including JUNB, FOSB, FOS ID2 or DDIT4 (Supplemental Figure 3). Hematopoietic progenitors from 
young donors were characterized by an increase in metabolism, including signatures related to glycolysis, 
fatty acid metabolism, and oxidative phosphorylation, in components of the respiratory chain (UQCR, 
NDUF, and COX), and the glycolytic enzymes PGK1 and TPI1. These findings point towards an increased 
metabolic activity in progenitors from young donors. We also found that cell cycle progression (E2F 
targets) and proliferation (MYC targets) pathways were enriched in multiple cell populations from young 
donors (Figure 1e), whereas MYC expression was generally downregulated in cells from elderly 
individuals, suggesting an age-mediated decreased proliferative activity. DNA repair was also found to be 
more active in cells isolated from young individuals. This goes in agreement with the known predisposition 
of age-associated progenitors to accumulate genetic lesions  (33–35).  
 
Overall, we found that the proportion of cell types changed with age, observing a decrease in the most 
mature lymphoid and myelomonocytic compartments. Furthermore, GSEA revealed age-related 
transcriptional alterations in all compartments, which suggests an altered biological behavior of HSPCs 
with age.   
 
Trajectory inference revealed age-specific drivers along lineages 
To study the distinct differentiation trajectories observed during hematopoiesis and, specifically, alterations 
during aging, we subjected the single-cell expression datasets to trajectory inference using STREAM (36). 
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We first inferred the differentiation trajectories of the young donors to obtain a reference that could serve 
as a basis for comparison. These trajectories revealed a common starting point that comprised early 
progenitors (HSCs, LMPPs, and MEPs). This initial root reached the branching point that divides cellular 
differentiation into the three main branches that resemble the main hematopoietic lineages: the myeloid, 
erythroid, and lymphoid lineages (Figure 2a). The identity of these branches was confirmed by plotting the 
expression profiles of previously described genes, such as IRF8, GATA1, and EBF1 (Figure 2b). Then, in 
order to identify age-dependent alterations, the elderly dataset was projected onto the reference trajectories 
using the approach described in STREAM, (Figure 2c). We observed an increased proportion of HSCs in 
the root node, a reduced number of cells biased to both the myeloid and lymphoid lineages, and an increased 
number of progenitor cells committed to the erythroid compartment (Figure 2d).  
 
Next, we aimed to identify shifts in the gene expression dynamics along differentiation trajectories. We 
applied the Palantir algorithm (37), with which we recovered a general pseudotime (Supplemental Figure 
4a) and differentiation potential (Supplemental Figure 4b) for each cell. We observed significant 
differences in the distributions of differentiation potential and pseudotime, with age-associated HSPCs 
accumulating greater differentiation potential and lower pseudotime (Supplemental Figure 4d). This 
suggested an immature cell state, which was consistent with our previous analysis. We could also define 
six trajectories corresponding to six committed compartments: i.e., erythroid, lymphoid, dendritic cells, 
monocytes, basophils, and megakaryocytes, and assigned each cell a probability of belonging to a specific 
branch (Supplemental Figure 4c).  
 
As an example of study of a particular trajectory, we focused on early monocytic differentiation, as it 
appeared to be impaired in the elderly donors. We plotted, in a per-cell basis, the associated pseudotime 
along the monocytic trajectory with the Palantir probability of reaching the final stage of the studied route 
(Figure 2e). This analysis revealed that HSCs and LMPPs from elderly donors had a higher probability of 
attaining the monocyte progenitor state, suggesting a stronger bias towards the monocytic compartment. 
However, GMPs displayed the opposite behavior which suggested that although age-associated progenitors 
appeared to have a stronger initial bias toward this lineage, a large number of more advanced progenitor 
cells lost the capacity for monocytic differentiation. This result is in line with the aged-associated decrease 
in monocytic progenitors described above.  
 
To determine the transcriptional lesions that potentially alter monocytic differentiation during aging, we 
computed gene expression trends and clustered them based on their dynamics along the monocytic 
differentiation trajectory, following the Palantir pipeline. We characterized young gene clusters by over-
representation analysis. Terms related to the immune system and monocytic function were enriched as the 
trajectory progressed, such as antimicrobial response or regulation of the actin cytoskeleton in intermediate 
stages, and antigen processing and presentation, or interferon gamma signaling, in gene clusters expressed 
near the terminal state. On computing trends for the cells of elderly donors, we observed that the overall 
behavior was similar. Nevertheless, genes with altered expression patterns in the elderly donors were visible 
(Figue 2f). Several myeloid differentiation markers (CST7, PRTN3, MPO, CD74, CALR, and GNAS) were 
expressed at lower levels across monocytic differentiation in the elderly donors, suggesting a less 
differentiated state. Accordingly, genes characteristic of stem or very early progenitor cells (MYCT1, 
MLLT3, and ALDH1A1) showed higher levels of expression in cells from the elderly donors across 
differentiation. Genes related to stress and inflammation response (FOS, JUNB, TSC22D3, DUSP1, and 
DDIT4), or monocyte chemotaxis and extravasation (ANXA1, LGALS3, and JAML), exhibited higher 
expression levels at the start of differentiation in the elderly, with several genes showing decreased 
expression at the terminal state (Figure 2g), further reinforcing the idea of a loss of capacity for monocytic 
differentiation in cells from elderly donors.  
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These analyses of the differentiation trajectory provided data regarding the genes that may be involved in 
the aberrant differentiation of age-associated HSCs. However, the regulation of these transcriptional 
programs cannot be inferred from this analysis. 
 
GRNs guiding young and elderly hematopoiesis  
To elucidate the regulatory mechanisms underlying healthy hematopoietic differentiation, we constructed 
lineage-specific GRNs using SCENIC (38) for each of the datasets independently. Briefly, we obtained the 
set of activation regulons (transcription factor and their associated targets) for each of the cellular 
subpopulations and binarized its activity (on/off) in a per-cell basis using AUC values provided by SCENIC 
(through the AUCell algorithm). This approach enabled quantification of the proportion of cells that 
displayed an activated state for each regulon in each cluster. We then selected the top ranked regulons based 
on the regulon specificity score (RSS) (Supplemental Figure 5a and 5b) to identify specific regulatory 
mechanisms per cell type. For the young donors, we obtained a series of GRNs guided by transcription 
factors known to be relevant for specific cell populations, such as HOXA9 in early progenitor cells, or 
CEBPG, PAX5, and GATA1 in the myeloid, lymphoid and erythroid compartment, respectively (Figure 
3a). For some regulons AUC values were highly correlated with the corresponding gene expression profiles 
of the guiding TF, whereas others such as CEBPG or TCF3 displayed a more specific dynamism of GRN 
activity that is not observed with gene expression. For each of the hematopoietic lineages, we observed sets 
of regulons that regulated the transcriptional state of specific cellular differentiation programs and also the 
presence of common targets among different transcription factors (Figure 3b). This observation indicates 
that a single transcription factor might not only regulate cellular differentiation toward a specific route, but 
also contribute to other regulatory elements in other differentiation trajectories. 
 
We performed the same analysis using the elderly dataset and observed that progenitor populations 
displayed a reduced proportion of cells with activated regulons. Specifically, HSCs showed a less active 
state of transcription factors, such as MECOM and GATA3, that were deemed specific to young donors 
(Figure 3c). In already committed cellular subpopulations, we observed similar proportions of activated 
cells between young and elderly donors, with the erythroid lineage showing the most similar profiles. 
However, progenitors (GMP, MEP, and CLP cells) from elderly donors showed a lower number of cells 
with specific regulons activated. Overall, we observed reduced numbers of common targets (Figure 3d) 
between transcription factors, specifically for HSCs, which could result in the loss of co-regulatory 
mechanisms in the elderly donors.  
 
We then performed gene ontology enrichment analyses using as input the genes composing the highest 
ranked regulons in early progenitor compartments (HSC, LMPP, GMP, CLP, and MEP cells). HSCs from 
young donors displayed enriched terms related to the differentiation of hematopoietic lineages, such as 
myeloid cell differentiation, lymphocyte cell differentiation and regulation of hematopoiesis, whereas 
HSCs from the elderly donors did not exhibit such enrichment, (Figure 3e), suggesting a putative alteration 
of differentiation potential among aged HSCs. Although no increase in the percentage of LMPPs was 
observed in the elderly donors, this analysis indicated a clear enrichment in terms related to DNA replication 
in the elderly but not in the young donors, suggesting   an aged-mediated alteration of the proliferative rate 
of this cell type. More mature progenitors also showed a youth-specific enrichment of differentiation 
processes such as lymphocyte differentiation, B-cell receptor signaling pathway, or T- and B-cell activation 
for CLPs, and erythrocyte differentiation and homeostasis for MEPs. This suggests that in age-associated 
progenitor cells, relevant regulators of hematopoiesis undergo functional alterations that result in the loss 
of expression of genes that are required for proper hematopoietic differentiation. Collectively, these results 
show aging-dependent alterations in the gene regulatory networks that guide hematopoiesis, which may be 
associated with the diminished differentiation capabilities that early progenitors present in the elderly. 
 
scRNA-seq analysis of MDS specimens reveals molecular lesions affecting normal hematopoietic 
differentiation 
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To further demonstrate the potential of the used computational methods in the prediction of the mechanisms 
underlying aberrant hematopoietic differentiation, we explored the transcriptional alterations that 
distinguish normal hematopoiesis during aging from abnormal hematopoiesis associated with the 
development of myelodysplastic syndromes. To this end, we performed scRNA-seq from bone marrow 
CD34+ cells obtained from four patients with MDS. In order to homogenize the group of study, and due to 
the great clinical and molecular heterogeneity of this disease, we focused our analyses in patients with a 
diagnosis of MDS with multilineage dysplasia.  
 
We recovered 41,749 cells that passed the quality control filters (Supplemental Table 5). The cell types 
were predicted using the GLMnet classification algorithm, as described previously (Figure 4a). We noted 
the absence of lymphoid compartments, considerable reduction in the number of HSCs, and increase in 
LMPPs and GMPs subpopulations compared to healthy elderly individuals. The total percentage of 
erythroid compartments varied among patients, although in general it was similar to that of normal 
counterparts (Figure 4b); nevertheless, the proportion of specific erythroid populations varied, with most 
MDS patients showing less MEPs and more late erythroid progenitors.  
 
Next, we carried out GSEA of genes differentially expressed between healthy elderly donors and each of 
the patients for the detected subpopulations. Results showed potential aberrant functionality of MDS cells. 
The most evident alteration was the enrichment of MDS patients in genes related to interferon alpha and 
gamma response, which was more evident for cases MDS1 and MDS2. This observation is in accordance 
with previous reports demonstrating increased inflammatory signaling in the disease (39–41). Interestingly, 
genes associated with oxidative phosphorylation, a process that is very relevant for the metabolism of 
several types of cancer and that is considered as an emerging target (42), were more prominent in MDS. 
MDS patients also showed alterations of hallmarks related to cell proliferation, including E2F targets, 
mitotic spindle, or G2/M checkpoint, suggesting an aberrant proliferative activity of hematopoietic 
progenitors in these patients (Figure 4c).  We also performed GSEA using the young donors as controls, 
and again found enrichment of interferon response in MDS patients. However, we observed variability in 
other potentially altered pathways, highlighting the importance of using age-matched controls for 
comparisons (Supplemental Figure 6a). 

Most MDS patients are characterized by defects in erythropoiesis, showing dysplasia and/or citopenia of 
this lineage. Thus, as an example of the applicability of the trajectory inference analyses to identify MDS-
related transcriptional alterations, we explored gene dynamics along the HSC-erythroid branch. We 
reconstructed the erythroid trajectory and computed gene trends along pseudotime using Palantir 
(Supplemental Figure 6b). Genes that were specifically expressed by any of the progenitors belonging to 
this branch (HSCs, MEPs, and erythroid progenitors) were selected and clustered according to their 
expression pattern (Supplemental Figure 6c). Although we did not detect broad changes in the 
transcriptional profiles among the conditions, we identified specific genes participating in erythroid 
differentiation that displayed different dynamics from both young and elderly healthy samples (Figure 4d). 
Examples of genes with altered dynamics included increased levels of genes with a negative role in 
erythropoiesis such as JUN and YBX1 (43,44) and NME4, previously associated with poor prognosis in MDS 
(45). Moreover, we also observed decreased expression across the trajectory of factors that promote erythroid 
differentiation, such as TRIB2, PHF6 and PDCD4 (46,47) and involved in erythroleukemia: PVT1 (48). 
Interestingly, whereas some of the genes showed aberrant dynamics in all the patients analyzed (i.e: TRIB2), 
most of them were altered in a subset or in individual patients, reinforcing the heterogeneity of MDS at the 
molecular level. Despite these changes, we observed that erythroid specific markers such as ANK1, CA2 or 
AHSP, followed trends similar to those of healthy HSPCs, which is in agreement with the apparently normal 
progression of differentiation at the progenitor stages. These results indicate that, although at very early 
progenitor stages some drivers of erythroid differentiation exhibit normal trends of expression, others show 
clear abnormalities that may manifest in more mature stages as erythroid differentiation is altered and may 
be responsible for the anemia and/or erythroid dysplasia that characterizes MDS patients. 
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Using SCENIC we analyzed the transcriptional programs regulating HSPCs and reconstructed GRNs by 
extracting those regulons that were specifically active in each of the cellular compartments (Supplemental 
table 6). We identified active GRNs that were guided by TFs characteristic of the different populations 
(Figure 4e and Supplemental Figure 6d), and observed that a great number of the most prevalent regulons 
for each cell type were different from that of healthy donors. Interestingly, MDS cases showed regulons 
that were very active in most cell types, and that were not present in HSPCs from young or elderly samples, 
such as SMAD1 (MDS1); ATF3 and HOXA6 (MDS2); POU2F2, NR4A1, and HMG20B (MDS3); 
YEATS4, E2F1, and RUNX1 (MDS4). Interestingly, despite representing the same subtype, the individual 
MDS cases showed alterations of very specific regulons, demonstrating that the heterogeneity of the disease 
also takes place at the GRN level. Furthermore, some of the TFs guiding the regulons showing aberrant 
activity had previously been involved in the regulation of hematopoietic differentiation or the development 
of myeloid malignancies. For example, SMAD1 regulon was active in most cell types in patient MDS1, 
showing its highest activity in HSCs, LMPPs and erythroid precursors. SMAD1 knockdown has been 
shown to promote erythropoiesis, suggesting that high activity of this factor may negatively impact 
erythroid differentiation (49). Furthermore, SMAD1 pathway has been shown to be active in a model of 
persisting LSCs, suggesting that this factor may be relevant in the development of myeloid malignancies 
(50). Patient MDS2 demonstrated aberrant high activity of the regulon guided by ATF3, which has been 
shown to drive cell cycle progression in AML, and of that of HOXA6, a TF which potentiates hematopoietic 
cell differentiation and self-renewal. Patient MDS3 presented a ubiquitous activity of the regulon guided 
by POU2F2/OCT2, a TF overexpressed in AML, in all the subpopulations analyzed. This patient also 
showed high activity of NR4A1, a factor that has been shown to specify a distinct subpopulation of 
quiescent myeloid-biased HSCs (51), in HSCs and LMPPs. Moreover, we also detected that HMG20B, a 
known repressor of erythropoiesis (52), was prominently active in several cell types, including erythroid 
precursors. Finally, patient MDS4 demonstrated aberrant high activity of the regulons guided by YEATS4, 
which is amplified in different tumors, and E2F1, a TF whose increased activity has been previously 
described in MDS. These results suggested that aberrant activity of specific regulons in MDS patients could 
drive aberrant gene expression and ultimately promote a myelodysplastic phenotype. 

Collectively, these data demonstrate the power of these analyses to identify novel transcriptional alterations 
in a personalized manner, and therefore to help uncover the molecular heterogeneity of the disease. 
Moreover, the approaches used do not only have the power to characterize genes with altered expression 
across MDS hematopoietic differentiation, but also to identify deregulated GRNs that could act as master 
regulators in the disease, which could be exploited therapeutically in individual patients. 

DISCUSSION 

In this study we report the generation of high-resolution scRNA maps of human HSPCs and the changes 
associated with aging. Although previous studies focused on other species (22,53) and other layers of 
information such as mutations (33), proteomics (54), and proteo-genomics (55), our study represents one of the 
first analyses that describes early human hematopoiesis based on its dynamic gene expression and 
transcriptional regulation by identifying age-related changes that may be responsible for some of the 
phenotypic modifications observed during healthy aging. Applying this knowledge to HSPCs obtained from 
patients with MDS, we show how these analyses can help identify transcriptional alterations that play 
potential roles during disease development. This may ultimately lead to the identification of therapeutic 
targets.    
 
Single-cell experiments are providing data at an unprecedented scale, which has allowed the identification 
of novel cell types and alterations that occur in biological systems. This increase in resolution has proceeded 
concurrently with the development of multiple computational tools that aspire to solve common problems 
arising with these technologies. An essential dilemma of this approach is how to establish reliable identities 
of the cells that will be used for subsequent analysis (56). In this study, we generated a reference system 
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based on the transcriptional profile of HSPCs from healthy young donors and used it to assign labels to 
cells from elderly healthy and pathological donors. We generated an in-house cell classifier that allowed us 
to reduce the effect of technical artifacts that can contribute to erroneous prediction of cell identity. This 
classifier was applied to cells that underwent the same sorting, library preparation and sequencing 
procedures; thus, we expected to identify similar cell populations in each dataset. Additionally, when 
applied to external data, we found minor differences from the originally established labels, with the three 
lineages as well as the most immature states being precisely identified.  
 
In accordance with previous studies, our analyses revealed an age-driven expansion of HSCs, which may 
represent a compensatory mechanism for less efficient hematopoiesis (9,10). We also noted a decrease in the 
proportion of lymphoid precursors, which is in agreement with the described aged-associated decrease in 
lymphoid differentiation capacity, as described previously (12). Using functional analyses, we also detected 
an enrichment of pathways related to apoptosis and inflammatory conditions in early progenitors among 
elderly donors, which can be explained by the inflammatory microenvironment known to be present in 
elderly individuals (32). Conversely, cells from young donors showed highly active differentiation and 
proliferation profiles, reinforcing the idea of the higher differentiation capacity among young individuals 
(28). In addition to these analyses, our study incorporated two other approaches: the characterization of 
transcriptional alterations across differentiation trajectories and the analysis of GRNs that guide different 
hematopoietic stages. Trajectory analyses pointed towards abnormal transcriptional dynamics across 
monocytic development during aging. We observed that although the most immature clusters (HSCs and 
LMPPs) showed an increased monocytic potential of differentiation in the elderly, more mature precursor 
cells presented reduced potential. These results would suggest that early immature cells are more primed 
toward the monocytic lineage during aging. However, alterations during later stages of differentiation result 
in a loss of monocytic differentiation capacity and, accordingly, a delay in the expression of genes that 
characterize the monocytic lineage. In agreement with our results, an age-associated skewing toward 
myeloid-biased HSCs and multipotent progenitor compartments has been described in mice (57). By focusing 
on GRNs, we observed that aged progenitor cell types showed a decrease in the activity of specific regulons, 
a lower degree of interaction between transcription factors and targets, and no enrichment of pathways 
involved in the cellular differentiation of specific lineages. Therefore, we were able to point toward 
regulatory factors guiding differentiation defects in the elderly. 

We also shed light into the molecular pathogenesis of MDS. These syndromes are characterized by a 
significant phenotypic and genomic heterogeneity. In that context, our discoveries could have a direct 
clinical application by promoting the identification of patient-specific transcriptional lesions with a 
potential involvement in the differentiation defects. Although previous studies focused on the 
transcriptional lesions of MDS exist (58–64), they were performed using bulk populations of mononuclear 
cells and, thus, provide a limited perspective of the pathology in these patients. The detailed analysis of 
erythroid differentiation in our patients with MDS, led to the identification of genes with altered expression 
dynamics, which may play a key role in promoting dyserythropoiesis. Furthermore, GRN analysis revealed 
key regulons, whose activity could contribute to the phenotype of these cells. These results highlight the 
relevance of the methods used for understanding the mechanisms underlying differentiation defects in 
patients and provide new opportunities for the application of single-cell technologies in the clinic. This 
could help infer the transcriptional alterations involved in the aberrant differentiation of specific cell 
lineages in a patient-specific manner. 

MATERIALS AND METHODS 

Sample collection 
The samples and data from the patients included in the study were provided by the Biobank of the University 
of Navarra and were processed according to standard operating procedures. Patients and healthy donors 
provided informed consent, and the study was approved by the Clinical Research Ethics Committee of the 
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Clinica Universidad de Navarra. Bone marrow aspirates were obtained from healthy controls [young 
individuals (n= 5), median age, 20 years, range, 19-23 years] or patients undergoing orthopedic surgery 
[elderly donors (n=3), median age, 72 years, range, 61-84 years]. Samples from newly diagnosed patients 
with MDS were obtained from the Clinica Universidad de Navarra and collaborating hospitals. The patient's 
clinical characteristics are shown in Supplemental Table 5. 
 
Fluorescence-activated cell sorting 
For the CD34+ cells purification, bone marrow mononuclear cells (BMMCs) were isolated by Ficoll-Paque 
Plus (GE healthcare) density gradient centrifugation and stained using CD34 (clone 8G12; BD bioscience) 
CD64 ( clone 10.1; Biolegend) CD19 (clone SJ25C1; Biolegend) CD10 (clone HI10A; Biolegend) CD3 
(clone OKT3; BIolegend) CD36 (clone CLB-IVC7; Sanquin Plesmanlaan) CD61 (clone RUU-PL7F12; 
BD bioscience) for 15 min at RT. CD34+ CD64- CD19- CD10- CD3-CD36+CD61+ cells were then sorted 
in a BD FACSAria II (BD Biosciencs). Purified CD34+ cells were directly used for scRNA seq analysis. 
 
scRNA library preparation 
The transcriptome of the bone marrow CD34+ cells were examined using NEXTGEM Single Cell 3' 
Reagent Kits v3.1 (10× Genomics) according to the manufacturer’s instructions. Between 5,000 and 17,000 
cells, depending on the donor, were loaded at a concentration of 700–1200 cells/µL onto a Chromium 
Controller instrument (10× Genomics) to generate single-cell gel bead-in-emulsions (GEMs). In this step, 
each cell was encapsulated with primers containing a fixed Illumina Read 1 sequence, a cell-identifying 16-
bp 10× barcode, a 10-bp unique molecular identifier (UMI), and a poly-dT sequence. Upon cell lysis, 
reverse transcription yielded full-length, barcoded cDNA, which was then released from the GEMs, 
amplified using polymerase chain reaction, and purified using magnetic beads (SPRIselect, Beckman 
Coulter). Enzymatic fragmentation and size selection were used to optimize the cDNA size prior to library 
construction. Fragmented cDNA was then end-repaired, A-tailed, and ligated to Illumina adaptors. A final 
polymerase chain reaction amplification using barcoded primers was performed for sample indexing. 
Library quality control and quantification were performed using a Qubit 3.0 Fluorometer (Life 
Technologies) and an Agilent 4200 TapeStation System (Agilent), respectively. Sequencing was performed 
on a NextSeq500 instrument (Illumina) (Read1: 28 cycles; Read 55 cycles; i7 index: 8 cycles) at an average 
depth of 30,000 reads/cell. 
 
scRNA preprocessing 
The demultiplexing of raw base call files (BCL) was performed using the 10× software cellranger mkfastq. 
The generated FASTQ files were aligned to the GRCh38 version of the human genome, and count matrices 
were constructed using cellranger count. The default barcode filtering was performed at this step. To 
remove doublets, we plotted the distribution of total genes and UMIs detected per cell and established a 
customized superior threshold for each sample (Supplemental table 1). Additionally, we filtered out cells 
with >5% or 10% of counts landing in mitochondrial genes, as this is an indicator of dying cells. In the 
elderly and pathological samples, we detected a small number of cells in which <1% of the mitochondrial 
genes clustered together; thus, we excluded them from the analysis. 
 
Data integration, clustering and visualization 
Samples from the same condition (young, elderly or MDS) were integrated using the Seurat pipeline. Gene 
counts were divided by the total expression per cell, multiplied by a scaling factor of 10,000, and log 
transformed. Normalized counts were scaled across cells. The 2,000 genes with highest variance were 
selected using the variance stabilizing transformation method. Next, we performed integration as described 
previously (29) using 50 dimensions. After integration, we rescaled the data, regressed the cell cycle effect, 
and conducted principal component analysis (PCA). Based on the visual exploration of the scree plot, we 
selected the appropriate number of components to continue the analysis (Supplemental table 1).  
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Next, we performed unsupervised clustering on the young integrated data, using the algorithm implemented 
in Seurat. We constructed a shared nearest neighbor graph based on Euclidean distances in the PCA space 
with the chosen dimensionality and clustered the cells using the default Louvain algorithm. We tested 
several resolutions and assessed the results by calculating the average silhouette for each cluster. We 
determined the cluster markers using the Seurat function FindAllMarkers with the MAST method. Next, 
we annotated the clusters by manually inspecting the most specific markers and searching for curated 
markers in the literature. 
 
To ease visualization, we embedded the cells from the young and elderly samples under the same 
coordinates. Thus, we integrated the young and elderly datasets using the pipeline described above. Using 
the first 30 principal components, we calculated the UMAP coordinates, as implemented in Seurat, which 
were then used in all the figures. 
 
Classification model 
We constructed a classification model to predict the cell identity of elderly and MDS single cells using the 
previously annotated young dataset as a reference. To this end, we performed logistic regression with 
elastic-net regularization in the glmnet R package. This approach is appropriate for sparse input data, and 
the elastic-net penalty allows flexible selection of variables. 
 
We constructed an individual binary prediction model for each of the 14 identities established. To train and 
validate each model, we selected all the cells from the appropriate cluster and an equal number of random 
cells from the remaining clusters. This set was then randomly divided in two: 75% was destined to training 
the model and 25% was dedicated to validation. We also performed an initial feature selection by selecting 
the subset of highly variable genes present in both the training–validation data (young) and the data to be 
classified (elderly, MDS, or AML). Initially, we trained models with different α values (1, 0.75, 0.5, 0.25, 
and 0.1). For each model, we used 10-fold cross validation, and the algorithm selected the optimal value 
for λ. Subsequently, we selected the most appropriate α value by evaluating the performance of the models 
on the validation dataset. If possible, we only retained the models that used between 20 and 150 variables. 
Among them, we selected the model with the maximum AUC and, in case of a tie, we successively searched 
for the minimum false-positive rate, minimum false-negative rate, and maximum number of variables. After 
the optimal model was selected, we used it to classify new data as positive or negative for a particular 
identity. 
 
We repeated the steps from the creation of the training and validation sets to binary prediction, 10 times 
and stored the resulting predictions: both the class (positive or negative) and its associated probability of 
being positive. Finally, we averaged the 10 resulting probabilities for each binary model and assigned the 
identity that corresponded to the highest probability. In cases in which none of the identities were associated 
with a probability of >0.5, the cell was labeled as not assigned. 
 
GSEA 
We performed differential expression analysis of cells belonging to the same identity to identify differences 
between conditions. We applied the Seurat FindMarkers function to the log-normalized counts using the 
MAST method and the options logfc.threshold = 0 and min.pct = 0. In order to control for batch effect, we 
set patients as latent variables. In addition, we tested for all genes expressed in every sample. Only cell 
types with at least 25 cells per condition were used. We ranked the genes according to their average log 
fold change. We performed GSEA using the fgsea R package and tested for hallmark gene sets. 
 
Trajectory analysis using STREAM 
We extracted the differentiation branches in our data using STREAM. We then used the young batch-
corrected matrix to establish the reference structure, onto which we then mapped the elderly cells. Using 
the STREAM pipeline, we computed the 2,000 most variable genes and 20 principal components. Then, 
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we performed nonlinear dimensionality reduction using modified locally linear embedding. We projected 
cells onto a three-dimensional space and set the algorithm to use the 30 nearest neighbors. An elastic 
principal graph was constructed by computing 20 clusters and was refined using the following parameters: 
epg_alpha = 0.02, epg_mu = 0.05, and epg_lambda = 0.01. Subsequently, mapping was performed using 
the default STREAM parameters. For this step, we used the elderly batch-corrected matrix. 
 
Trajectory analysis using Palantir 
Palantir was used to reconstruct hematopoietic lineages and recover gene expression dynamics along the 
lineages. This algorithm models differentiation and fate choice as a continuous probabilistic process. It 
orders cells along a global pseudotime, determines final states, and assigns each cell a probability to reach 
each terminal state. 
 
We used the batch-corrected matrices to infer trajectories in young and elderly conditions. PCA was 
performed, and 30 diffusion components were calculated. For the young dataset, we selected 10 HSCs 
according to their position in the UMAP coordinates. We sequentially applied the Palantir algorithm using 
each of these cells as the initial state. Terminal states were stored for each run, and we retained those that 
appeared in more than five cases. If more than one terminal state corresponded to the same cell identity, we 
randomly selected one of them. We ran Palantir a final time adding the selected terminal states as prior 
information. For the elderly dataset, we selected the HSC with the highest probability, as determined by the 
GLMnet model, as the initial state. We then searched for cells with the highest similarity to the terminal 
states found in the young dataset. To this end, we calculated the nearest neighbor in the UMAP space. In 
the case of the MDS samples, we independently analyzed each patient. We used the normalized counts 
matrices, calculated 30 diffusion components, and set 10 eigen vectors to determine the multiscale space.  
 
For each dataset, gene expression trends along pseudotime were calculated as described in Palantir using 
generalized additive models, with the addition of the branch probabilities as prior weights for the model.  
 
GRNs 
Python implementation of SCENIC was used for GRN inference. All required inputs were downloaded 
from https://resources.aertslab.org/cistarget/ and https://pyscenic.readthedocs.io/en/latest/installation.html. 
Raw UMI matrices were provided as input for the pyscenic algorithm, as described in 
https://pyscenic.readthedocs.io/en/latest/tutorial.html. Regulon specificity scores were obtained using the 
regulon_specificity_scores command. 
 
AUC matrices were imported into R and batch-corrected using the removeBatchEffect implemented in the 
limma R package. Batch-corrected AUC matrices were binarized using the BinarizeAUC function 
implemented in the AUCell R package. The percentage of active regulons per cell type was determined by 
counting the number of cells with a value of 1 in the binarized AUC matrix and dividing it by the number 
of cells per cell type. The top five regulons per cell type were selected according to the RSS scores. 
 
Networks were drawn in Cytoscape, and only edges with an importance value larger than the 3rd quartile 
(per regulon) were retained. 
 
We performed over representation analysis for the different sets of genes that compose the top 5 specific 
regulons for HSC, LMPP, GMP, CLP and MEP, both in data from young and elderly donors. We tested for 
the gene ontology biological processes gene sets.  
 
Basic statistical analysis 
We carried out pairwise comparison between pairs of proportions to test for significant differences in cell 
population proportions. We did so both among individuals from the same condition and between conditions. 
Two-samples wilcoxon test was performed to test for differences in Palantir pseudotime, differentiation 
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potential and branch probabilities between young and elderly and per cell population. It was also used to 
find significant differences in gene expression trends across pseudotime between conditions. Multiple 
testing was addressed by adjusting p values using the Bonferroni-Holm correction method.  Results were 
considered significant when adjusted p values < 0.05. 
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Figure 1. Transcriptional profiling of CD34+ cells from young and elderly healthy donors.  
a) CD34+ cells were obtained from bone marrow aspirates of young (n = 5) and elderly (n = 3) donors and 
subjected to single-cell RNA sequencing. b) UMAP plot with young cells colored according to 
unsupervised clustering results (left) and elderly cells labeled using an in-house cell classifier (right). c) 
Dot plot of cluster markers (adjusted P-value < 0.05) for the different cellular subpopulations identified. 
Dot size represents the percentage of cells that express each marker, and color represents scaled expression 
values. d) Bar plots showing the proportion of cells assigned to each cellular subpopulation for each donor 
independently. e) Dot plot of enriched terms after performing GSEA for each identified cluster. Dot color 
represents the enriched group, size indicates the NES absolute value, and transparency indicates the 
adjusted p value. 
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Figure 2. Trajectory inference of the hematopoietic lineages at single-cell resolution. a) STREAM plot 
obtained using cells from young healthy donors. Color denotes cellular subpopulations. The X-axis displays 
inferred pseudotime values. b) Expression of known cell-type markers for the different hematopoietic 
lineages projected in the STREAM plot. Color represents normalized expression values. c) STREAM plot 
of elderly differentiation trajectories projected in the young reference. Color indicates the proportion of 
cells belonging to each condition under study. d) STREAM plot of elderly differentiation trajectories 
projected in the young reference. Color represents the cell-type identity (gray color represents the 
proportion of young cells). e) Scatter plot of pseudotime vs. branch probabilities for the monocytic 
trajectory obtained using Palantir for young and elderly donors. Color represents the cellular subpopulation. 
f) Heatmap of gene expression trends for dynamic genes along the monocytic trajectory in young and 
elderly donors. The columns are arranged according to pseudotime values, and the rows are grouped 
according to gene clustering results. A summary of enriched terms for the gene clusters in young donors is 
shown. g) Expression trends in the comparison of young and elderly cells regarding the different genes 
involved in the monocytic trajectory. (NS = not significant, * adj p value < 0.05, ** adj p value < 0.01, *** 
adj p value < 0.001) 
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Figure 3. Gene regulatory network reconstruction of hematopoietic cellular populations. a) (Left) 
Heatmap showing the proportion of cells per cluster that have an activated state for different regulons in 
young cells. (Right) UMAP plots with normalized expression and AUC values for specific transcription 
factors. b) Gene regulatory network of the identified regulons for the hematopoietic system in young donors. 
Regulons were trimmed to include only targets with an importance score higher than the 3rd quartile in each 
regulon. Node shape denotes gene-type identity, and color denotes cell population. Any target that can be 
assigned to multiple transcription factors is colored in gray. c) (Left) Heatmap showing the proportion of 
cells per cluster that have an activated state for different regulons in elderly cells. (Right) UMAP plots with 
normalized expression and AUC values for specific transcription factors. d) Gene regulatory network of 
the identified regulons for the hematopoietic system in elderly donors. Regulons were trimmed to include 
only the targets with an importance score higher than the 3rd quantile in each regulon. Node shape denotes 
gene-type identity, and color denotes cell population. Any target that can be assigned to multiple 
transcription factors is colored in gray. e) Bar plot with enriched gene ontology categories after over-
representation analysis. Categories are grouped per cell type, and color denotes the enriched group. Bar 
length represents statistical significance. 
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Figure 4. Computational analysis of pathological conditions, including myelodysplastic syndromess 
and acute myeloid leukemia. a) UMAP plot of CD34+ cells from MDS (n = 4). Cells are colored according 
to identity, as assessed using a previously described cell-type classification method. b) Bar plots showing 
the proportion of cells assigned to each cellular subpopulation for each donor independently. Color denotes 
the cellular subpopulation. c) GSEA results after performing differential expression between MDS and 
elderly donors. Dot color represents enrichment direction, transparency the statistical significance and size 
NES absolute value. d) Expression trends in the comparison of healthy and pathological cells regarding the 
different genes involved in the erythroid trajectory. (NS = not significant, * adj p value < 0.05, ** adj p 
value < 0.01, *** adj p value < 0.001) e) Heatmap showing the proportion of cells per cluster that had an 
activated state for different regulons in the 4 samples of patients with MDS among AML cells. 
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