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17 Abstract

18  Antibiotic resistance genes (ARGs) have emerged in pathogens and arousing a
19  worldwide concern, which is estimated to cause millions of deaths each year globally.
20  Accurately identifying and classifying ARGs is a formidable challenge in studying the
21 generation and spread of antibiotic resistance. Current methods could identify close
22 homologous ARGSs, have limited utility for discovery of novel ARGs, thus rendering
23 the profiling of ARGs incomprehensive. Here, an ontology-aware neural network
24  (ONN) approach, ONN4ARG, is proposed for comprehensive ARG discovery.
25  Systematic evaluation shows ONN4ARG is advanced than previous methods such as
26  DeepARG in efficiency, accuracy, and comprehensiveness. Experiments using 200
27  million candidate microbial genes collected from 815 microbial community samples
28  from diverse environments or hosts have resulted in 120,726 candidate ARGs, out of
29  which more than 20% are not yet present in public databases. These comprehensive
30 set of ARGs have clarified the environment-specific and host-specific patterns. The
31 wet-experimental functional validation, together with structural investigation of
32 docking sites, have also validated a novel streptomycin resistance gene from oral
33  microbiome samples, confirming ONN4ARG's ability for novel ARGs identification.
34  In summary, ONN4ARG is superior to existing methods in efficiency, accuracy, and
35 comprehensiveness. It enables comprehensive ARG discovery, which is helpful
36 towards a grand view of ARGs worldwide. ONN4ARG is avalable at
37  https://github.com/HUST-NingKang-Lab/ONN4ARG, and online web service is
38 available at http://onndarg.xfcui.com.

39
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43 Introduction

44  With the development of metagenomics and next-generation sequencing, many new
45 microbial taxa and genes have been discovered, but different kinds of “unknowns’
46  remain. For instance, the microbes found in the human gut microbiome involve 25
47  phyla, more than 2,000 genera, and 5,000 species [1]. However, the functional
48  diversity of microbiomes has not been fully explored, and about 40% of microbial
49  gene functions remain to be discovered [2]. A typica example is the antibiotic
50 resistance gene (ARG), which is an urgent and growing threat to public health [3]. In
51 the past few decades, problems caused by antibiotic resistance have drawn the
52  public’'s attention [4]. Antimicrobia resistance genomic data is an ever-expanding
53 data source, with many new ARG families discovered in recent years [5, 6]. The
54  discovery of resistance genes in diverse environments offers possibilities for early
55  aurveillance, actions to reduce transmission, gene-based diagnostics, and improved
56  treatment [7].

57

58  Existing annotated ARGs have been curated manually or automatically for decades.
59  Presently, there are 4,661 annotated ARGs in the reference database CARD [5, 6]
60 (v3.2.5, released in September 2022), 3,131 in the ResFinder database [8] (as of
61  December 2022), and 2,476 in SwissProt [9] (as of December 2022). These annotated
62 ARGs are categorized into antibiotic resistance types, which are organized in an
63 ontology structure (Methods, Supplementary Figure S1), in which higher-level
64 ARG types cover lower-level ARG types. Current ARG databases are far from
65 complete: though no ARG database contains more than 4,000 well-annotated ARGs,
66 NCBI non-redundant database searches yielded more than 7,000 putative genes
67 annotated with “antibiotic resistance” as of May 2021. Therefore, we deemed that
68 there is alarge gap between the genes annotated in ARG databases and the possible
69 ARGs that already exist in general databases, not to mention ARGs that are not yet
70  annotated.

71
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72  Many ARG prediction tools have been proposed in the past few years [8, 10-20].
73 These tools can generaly be divided into two approaches. One approach is
74  sequence-alignment, such as BLAST [21], USEARCH [22], and Diamond [23], which
75  uses homologous genes to annotate unclassified genes. A confident prediction requires
76 a homolog with sequence identity greater than 80% in many programs, such as
77  ResFinder [8, 11]. The other approach is deep learning, such as DeepARG [12] and
78  HMD-ARG [16], which uses neural network models to predict and annotate ARGs.

79

80 Severa limitations still preclude comprehensive profiling of ARGs. A more
81  comprehensive set of ARGs could be roughly defined as having more ARGs in type
82  and number with less false-positive entries, regardless of the homology with known
83 ARGs, and many of these ARGs could be experimentally validated. Based on this
84  definition, existing tools fall short in comprehensive profiling of ARGs. First, existing
85 tools are limited to a few types of ARGs due to the fact that the datasets used for
86  building models are specialized. For example, HMD-ARG [16] identifies only 15
87  types of resistance genes, and PATRIC [13] is limited to identifying ARGs encoding
88 resistance to carbapenem, methicillin, and beta-lactam antibiotics. Second, existing
89  tools fall short in discovering novel ARGs, which usually lack homology to known
90  sequences in the reference databases. For instance, the gene POCOZ1 (VraR) that
91  confers resistance to vancomycin has a sequence identity of only 24% to the homolog
92 fromthe CARD [12]. Therefore, there is an urgent need for a new approach to address
93  theselimitations.

94

95 Here, we propose an ontology-aware deep learning approach, ONN4ARG, which
96 alows comprehensive identification of ARGs. Systematic evaluation based on the
97 ONN4ARG-DB, CARD, and ResFinder datasets shows that the ONN4ARG model
98  outperforms state-of-the-art models such as DeepARG, especially for the detection of
99 remotely homologous ARGs. Experiments based on more than 200 million candidate
100  microbia genes collected from 815 samples in various environments have resulted in

101 120,726 candidate ARGs, out of which more than 20% are not yet present in public
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102  databases. Our experiments confirmed that ARGs are both environment-specific and
103  host-specific, exemplified by the rifamycin resistance genes which are enriched in
104  Actinobacteria and in soil environment. Case study of a recently experimentally
105 validated ARG gene GAR [7] have aso verified the ability of ONN4ARG for novel
106 ARG discovery. We also validated a novel streptomycin resistance gene from oral
107  microbiome samples by wet-lab experiment. In summary, ONN4ARG enables
108  comprehensive ARG discovery, which provides a relatively complete picture of the
109 prevalence of ARGs, as well as leads a way towards a grand view of ARGs
110  worldwide.

111
112  Reaults

113  ONN4ARG mode employs an ontology-aware neural network for ARG
114 identification and classification

115 To address the large gap between the genes annotated in ARG databases and the
116  possible ARGs that already exist in general databases along with the ARGs that are
117  not yet annotated, we propose ONN4ARG, which is an ontology-aware neural
118 network model (Figure 1, Supplementary Figure S1) that predict ARGs in a
119 comprehensive manner. ONN4ARG takes similarities (e.g., identity, e-value, bit-score)
120  between the query gene sequence and ARG gene sequences and profiles (i.e., PSSM)
121 as inputs and predicts ARG annotations (Figure 1B). These sequence-alignment
122  similarities and profile-alignment similarities are pre-processed by calling Diamond
123 [23] and HHDblits [24]. ONN4ARG generates hierarchical annotations of antibiotic
124  resistance types, which are compatible with the antibiotic resistance ontology
125  dructure (Figure 1A, C). One advantage of ONN4ARG over state-of-the-art models
126  is that ONN4ARG employs a novel ontology-aware layer that incorporates ancestor
127  and descendent annotations to enhance annotation accuracies (M ethods). To train and
128 evauate our ONN4ARG model and for rapid deployment of ARG discovery in
129 multiple contexts, we also built an ARG database (Figure 1D), namely,
130 ONN4ARG-DB, which comprises ARGs from CARD and UniProt (see M ethods).
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131

132  Systematic evaluation and comparison

133  Systematic evaluation based on the ONN4ARG-DB showed our model’s high
134  efficiency, high accuracy, and comprehensiveness for ARG identification. ONN4ARG
135 isfast since it could complete ARG identification for all genes in the testing dataset
136 within four hours, which is equivalent to one second per gene identification. As
137 shown in Figure 2A, ONN4ARG was more accurate for ARG identification (overal
138  accuracy of 97.70%, Table 1) compared to sequence alignment (overall accuracy of
139  69.11%), and ONN4ARG has a slight advantage over DeepARG (overall accuracy of
140  96.39%). Moreover, ONN4ARG achieved an overall precision of 75.59% and an
141 overal recall of 89.93%, which were higher than DeepARG'’s overall precision of
142  68.30% and overal recall of 77.84% (Figure 2B, Table 2). It is natural that
143  ONN4ARG could not outperform DeepARG in al resistance types and this is
144  exemplified by results on pleuromutilin due to the small number of sequences for
145  pleuromutilin in the ONN4ARG-DB. ONN4ARG demonstrates an advantage over
146  other methods in identification of remotely homologous ARGs whaose sequences are
147  not similar to existing ARG sequences (Tables 2 and 3). In this context, when testing
148  with only remotely homologs (i.e., the masking threshold of testing set equal to 0.4,
149 see Methods), ONN4ARG achieves an accuracy of 94.26%, which is largely
150  improved from 89.85% of DeepARG. These results validate ONN4ARG's better
151  generdization abilities than sequence-alignment and DeepARG, which makes
152  ONN4ARG especialy suitable for identification of remotely homologous ARGs and
153  indicates ONN4ARG's ability for novel ARG discovery (Tables 1-3).

154

155  We have also tested ONN4ARG on a verification set built from the CARD database
156  version 3.1.3. Results showed our model outperformed other methods in terms of
157  accuracy and efficiency, i.e., high accuracy and less time usage, given that the
158  memory usage is acceptable for aregular laptop (Supplementary Table S1). We have
159  aso evaluated ONN4ARG on the ResFinder database version 4.1, which involves
160  thousands of manually curated ARGs [8]. Results showed that ONN4ARG achieved
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161  an accuracy higher than 90% for most types of resistance, while DeepARG was less
162  accurate than ONN4ARG, except for the fosfomycin resistance (Supplementary
163  Table S2).

164

165  Applications of ONN4ARG on metagenomic data

166  We collected metagenomic samples from several published studies [25, 26]. These
167 samples were mainly from “marine” *“soil,” and “human” environments.
168  Human-associated samples consisted of two gut groups (one group from Madagascar,
169 i.e, GutM; the other group from Denmark, i.e., GutD), one oral group, and one skin
170  group (both oral and skin groups were from the HMP project). For details on these
171 samples, see Supplementary Table S3. Then, genes were obtained by calling
172 Prodigal [27] with default parameters. The ONN4ARG model was used to predict
173 whether these unclassified genes were ARGs and their corresponding resistance types.
174  Intotal, 120,726 ARGs were identified from microbiome samples, many of which are
175  novel, which greatly expands the existing ARG repositories.

176

177  Broad-spectrum profile of predicted ARGs among diver se environments

178  We investigated the broad-spectrum profile of these predicted ARGs among diverse
179  environments. First, we investigated the proportion of predicted ARGs for different
180  sequence lengths. The distribution shows that about half of the predicted ARGs have a
181  length of 128-256 amino acid residues (Figure 3A). We aso analyzed the protein
182  domain of these predicted ARGs by searching the conserved domain database (CDD,
183  last update Aug 2022) using RPS-BLAST tool version 2.9.0. Results showed that
184  most of these predicted ARGs (over 97%) have protein domains that resemble those
185  with known catalytic activity and/or may bind to the antimicrobials they are predicted
186 to dlicit resistance against (Supplementary Table $4). Second, we found that
187  human-associated microbiome samples carry a higher abundance of ARGs, especially
188  for the oral group, in which more than one resistance gene could be observed out of a
189  hundred genes on average (Figure 3B, Supplementary Table S5). Third, we tested
190 the novelty of these predicted ARGs. We found that about athird of them (42,848 out
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191 of al 120,726 ARGSs) had sequence identity of less than 40% to their homologs in the
192  ONN4ARG-DB (Figure 3C). We define these ARGs as candidate novel ARGs, which
193  have low sequence identities when aligned to their homologs in the reference database
194  (i.e.,, ONN4ARG-DB). For example, we found 45% of predicted ARGs in the marine
195  group were candidate novel ARGs (Figure 3C).

196

197 In total, 31 ARG types were detected in these various environments (Figure 3D,
198  Supplementary Figure S2). The number of predicted ARG sequences for different
199  types varied greatly, from afew (i.e., nitrofuran) to thousands (i.e., fluoroquinolone).
200 In general, fluorogquinolone and tetracycline resistance genes were more abundant
201  than other types (Figure 3D). As expected, these abundant ARGs were usually
202 associated with the antibiotics used extensively in human medicine or veterinary
203  medicine, including growth promotion [28].

204

205 Enrichment of predicted ARGs among diverse hosts and environments

206 Rapid deciphering of potential antimicrobial-resistant pathogens is necessary for
207  effective public health monitoring. The host-tracking of ARGs allows for accurate
208 identification of pathogens. Therefore, we conducted taxonomy analysis to track the
209 hosts of these predicted ARGs by using Kraken2 [29]. Results showed that there are
210 949 genera, each genus carries at least one type of ARG (Supplementary Table S6).
211 The host composition and distribution of al classified ARGs for the most abundant 20
212 genera are displayed in Supplementary Figure S3. The host distribution shows that
213 these ARGs are primarily affiliated with Proteobacteria (38.2%). The most abundant
214  ARGs carried by the 20 genera were resistance types of fluoroquinolone, macrolide,
215  peptide, penam, and tetracycline, accounting for about half of the total ARGs.
216  Network inference based on strong (Spearman’s p > 0.8) and significant (Welch's
217  t-test, P-value < 0.01) correlations showed the co-occurrence patterns among ARGs
218 and microbial taxa (Supplementary Figure $4, Supplementary File Sl1). For
219 example, ARGs that belong to beta-lactam resistance type (e.g., cephamycin, penam,

220  penem, and monobactam) were observed to appear together in Proteobacteria.
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221

222  Enrichment analyses showed that ARGs are both environment-specific and
223  host-specific (Figure 4). We found that the proportion of certain types of ARGs was
224 higher in certain environments than in others. For example, rifamycin resistance genes
225  were found enriched in the soil environment (with proportion of 0.1%) and enriched
226  inthe Actinobacteria (with proportion of 4.7%) (Figure 4). Rifamycin is an important
227  antibacterial agent active against gram-positive bacteria, and it has a wide range of
228 applications [30, 31]. The enrichment results were not surprising because
229  Actinomycetes is a representative genus widely distributed in various soil
230 environments, and its rifamycin resistance is compatible with its ability for rifamycin
231 production [32-35].

232

233  Evaluation of the ability for novel ARG identification using a recently annotated
234 ARG

235  We further evaluated ONN4ARG’s ability for novel ARG identification based on a
236  newly annotated aminoglycoside resistance gene, GAR, which has been reported in a
237  previous study by Bohm et a [7]. GAR is a recently reported aminoglycoside
238  resistance gene, which is not present in CARD (v3.2.5), UniProt (as of December
239  2022), DEEPARG-DB (v1.0.2), HMD-ARG-DB (as of December 2022), and
240 ONN4ARG-DB. We searched the sequence of GAR with both DeepARG and
241 HMD-ARG models, and the results showed that both of these models indicated it as
242  non-ARG. We searched the sequence of GAR against all the sequences in
243  ONN4ARG-DB using Diamond and did not find any homologous gene as well.
244  Reassuringly, the prediction by ONN4ARG identified GAR as an ARG resistant to
245 non-beta-lactam with high confidence (probability score = 100%). We should
246  emphasize that though ONN4ARG predict GAR as non-beta-lactam and not as
247  sub-type of aminoglycoside, ONN4ARG can give information about ancestors (or
248  categories at higher levels) of the novel ARG, provide clues about novel knowledge.
249

250  Functional verification of candidate novel resistance genes
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251  To identify promising putative novel resistance genes, we used four criteria: (i)
252  remotely homologs to reference ARGs, (ii) prediction with high confidence, (iii)
253  predicted to be single-type resistance, and (iv) the host is known. Despite the large
254  number of candidate genes discovered by the ONN4ARG model, only 4,365 ARGs
255  fulfilled all mentioned criteria (Supplementary Table S7).

256

257  To showcase the actual function of the predicted ARGs, we analyzed tens of ARGs
258  belonging to the streptomycin resistance, and al of these ARGs have high confidence
259 predicted by the ONN4ARG model. The experiment results showed that the
260 Candi_60363 1 is one of the most promising ARG, which showed a high minimal
261 inhibitory concentration (MIC) compared to negative control. Thus, we selected the
262 Candi_60363_1 for further experimental validation (Supplementary Table S8 and
263 S9). Candi_60363_1, detected in Streptococcus in the oral environment, was predicted
264 to confer resistance to streptomycin (belonging to aminoglycoside). One positive
265  control from CARD (AHE40557.1, streptomycin resistance) was used for verification
266  of the experimental system. All these genes were heterologously expressed in the E.
267 coli BL21 (DE3) host by the induction of Isopropyl B-D-1-thiogalactopyranoside
268 (IPTG) and tested for minimal inhibitory concentration (MIC) (Figure 5A). Results
269 showed that the mRNA level of the genes increased with the addition of 1 mM IPTG
270  compared with that without IPTG (Figure 5B), which verified the expression of the
271 genes induced by IPTG. Furthermore, the MIC of the strain containing the positive
272 control gene AHE40557.1 was more than 1,024 ug/ml (Supplementary Figure S5),
273  which is consistent with previous reports [36, 37]. This verified that our MIC
274  measuring experimental system works well. Our results showed that the MIC of the
275 strain containing Candi_60363 1 was significantly higher than the negative control
276  containing no insert (Welch’s t-test, one-tailed, P-value = 3.5e-3), which demonstrated
277  the increased resistance to streptomycin of the novel candidate gene Candi_60363 1
278  (Figure5C, Supplementary Figure S5).

279

280 Phylogeny and structure of Candi_60363_1
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281  There are remotely similarities between Candi_60363 1 and all known ARGs in the
282  reference database, including aminoglycoside resistance genes. The InterPro search
283  results showed the protein family matching to Candi_60363 1 is IPR0O07530, which is
284 daso known as aminoglycoside 6-adenylyltransferase that confers resistance to
285 aminoglycoside antibiotics. Then, we used BLAST to search homologs of
286  Candi_60363 1 from the NCBI non-redundant protein database. The BLAST result
287  showed that there are 44 homologs with sequence identity greater than 80%, and they
288 are from various organisms (Supplementary Table S10), such as Streptococcus
289  oralis, Peptoniphilus lacrimalis DNF00528, and Mycobacteroides abscessus subsp.
290  Abscessus. Considering that Candi_60363_1 is harbored by distantly related species,
291 it obviously has mobility. Notably, the most similar protein of Candi_60363_1 from
292  the NCBI non-redundant protein database (87.5% identity, SHZ78752.1) is also
293  annotated as aminoglycoside adenylyltransferase (Supplementary Table S10). Taken
294  together, Candi_60363 1 is highly likely to be an ARG that confers resistance to
295  aminoglycoside antibiotics.

296

297  Aminoglycoside modifying enzymes are the most clinically important resistance
298 mechanism against aminoglycosides [38]. They are divided into three enzymatic
299  classes, namely, aminoglycoside N-acetyltransferase (AAC), O-nucleotidyltransferase
300 (ANT), and O-phosphotransferase (APH). We investigated the phylogenetic
301 relationship between Candi_ 60363 1 and the known aminoglycoside modifying
302 enzymes. The phylogenetic tree of Candi_60363_1 and related proteins (Figure 6A)
303 shows that Candi_ 60363 1 is clearly separated from the known aminoglycoside
304 modifying enzymes and is located among proteins mostly annotated as
305 aminoglycoside adenylyltransferase. Phylogenetic analysis indicated its evolutionarily
306  close relationships with known aminoglycoside adenylyltransferase.

307

308 Protein structure prediction results confirmed the anti-microbia functionality of
309 Candi_60363 1. The optimal Candi_60363_1-streptomycin complex structure and the

310  corresponding interaction details are described in Figure 6B. The optimal binding
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311 affinity between the Candi 60363 1 and streptomycin is -7.7 kcal/mol
312 (Supplementary Table S11), which is 1.6 kcal/mol lower than the negative control.
313  From wet-lab experiments, phylogenetic analysis, and protein structure docking, we
314  consider that Candi_60363_1 predicted by ONN4ARG is highly likely a real ARG
315 gene.

316

317 Discussion

318 In this study, we proposed an ontology-aware deep learning method, ONN4ARG, for
319 the detection and understanding of ARGs. To complement ONN4ARG for ARG
320 mining applications, we have also created a custom ARG database, ONN4ARG-DB,
321  that contains 28,396 well-curated ARGs. The application of ONN4ARG uncovered
322 120,726 ARGs from microbiome samples, out of which 42,848 are novel, which
323  substantially expands the existing ARGS repositories.

324

325  The novelty of this work is in three contexts. First, ONN4ARG has the potential for
326  detection of remotely homologous ARGs and thus generates a more comprehensive
327  set of ARGs. The ability of ONN4ARG to identify remotely homologs allows more
328  accurate prediction. The antibiotic resistance ontology used in the ONN4ARG model
329 consists of four levels and more than 100 resistance subtypes (i.e., terms in the most
330 informative level on the ontology), which substantially expand the classification space
331 of current tools (e.g., 30 types supported for DeepARG and 15 types supported for
332 HMD-ARG). Therefore, ONN4ARG greatly reduces false negatives and offers a
333  powerful approach for accurate and comprehensive profiling of ARGs.

334

335  Second, it enabled the comprehensive enrichment analysis of ARGs, species-wise and
336  environment-wise. The environment-specific and host-specific enrichment of ARGs
337 may be caused by specific bacteria evolving to possess specific types of ARGs in
338 response to specific environments, and horizontal gene transfer may be one of the

339 mediating pathways of this process. For example, one published study has reported
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340 that Amycolatopsis in the soil environment produces rifamycin and thus gains
341  ecological advantages over other bacteria[32].

342

343  Third, our study demonstrates the importance and potential of complementing the
344  computational work with wet-lab experimental validation of gene function. Functional
345  verification of a novel streptomycin resistance gene (i.e.,, Candi_60363 1) with
346  wet-lab experiments demonstrated the ability of the ONN4ARG model for novel ARG
347  discovery. Moreover, phylogenetic analysis and protein structure docking further
348  confirmed that Candi_60363 1 is highly likely to be an ARG that confers resistance
349  to aminoglycoside antibiotics. Another validation of a recently annotated ARG (i.e.,
350 GAR) asoindicated the ability of the ONN4ARG model for novel ARG discovery.

351

352 Conclusions

353 We proposed an ontology-aware deep learning approach, ONN4ARG, which is
354  superior to existing methods such as DeepARG in efficiency, accuracy, and
355  comprehensiveness. It enables comprehensive ARG discovery. It has detected novel
356 ARGs that are remotely homologous to existing ARGs. Whereas ONN4ARG has
357 provided one of the most comprehensive profiles of ARGs, it could be further
358 optimized. For more comprehensive ARG prediction, continuous improvement of
359  curating ARG nomenclature and annotation databases is required. For novel ARG
360 prediction, especially those belonging to entiredly new ARG families, deep learning
361  models might need to consider more information other than sequence aone, such as
362  protein structure. We believe these efforts could lead to a holistic view about ARGs in

363  diverse environments around the globe.

364
365 Methods
366 Dataset

367 The ARGs we used in this study for model training and testing were from the
368 Comprehensive Antibiotic Resistance Database, CARD v3.0.3 [5, 6]. We also used
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369 protein sequences from the UniProt (SwissProt and TrEMBL) database to expand our
370 training dataset. First, genes with ARG annotations were collected from CARD (2,587
371 ARGS) and SwissProt (2,261 ARGS). Then, their close homologs (sequence identity >
372 90% and coverage > 98%) were collected from TrEMBL (23,728 homologous genes).
373  These annotated and homologous ARGs made up our ARG dataset. The non-ARG
374  dataset was made from non-ARG genes that had relatively low sequence similarities
375 to ARG genes (sequence identity < 90% and bit-scores < alignment lengths) but not
376 annotated as ARG genes in SwissProt (17,937 non-ARG genes). Finaly, redundant
377  genes with identical sequences were filtered out. As a result, our ARG gene dataset,
378 namely, ONN4ARG-DB, contained 28,396 ARG genes and 17,937 non-ARG genes.
379  The gene clustering of the 681 newly added ARGs in CARD v3.1.3 was performed
380 using the MMsegs2 tool (version 10) with an identity of 90% and coverage of 98%.
381 The ResFinder dataset was  obtained in Jun 2022 from
382  https://bitbucket.org/genomicepidemiology/resfinder _db/src/master/.

383

384  Antibiotic resistance ontology

385  The antibiotic resistance ontology was organized into an ontology structure, which
386  contains four levels (Figure 1A). Theroot (first level) is a single node, namely, “arg”
387 (Supplementary Table S12). There are 1, 2, 34, and 277 nodes from the first level to
388 the fourth level, respectively. For instance, there are “betalactam” and
389  “non-beta-lactam” in the second level, “acridine dye” and “aminocoumarin” in the
390 third level, and “acriflaving” and “clorobiocin” in the fourth level.

391

392  Framework of ONN4ARG

393 ONN4ARG mode

394 Considering a query gene q represented by its protein sequence, as well as its
395  potential resistance categories represented by the antibiotic resistance ontology 0, to
396 predict resistance categories y, of query gene g, we employed ontology-aware
397 neura network to learn a mapping M from a set of base genes be S to their

398 resistance categories 9, = (yi, yZ,vi,vi). Here, S is the set of base genes (i.e.,


https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454403; this version posted December 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

399 ONN4ARG-DB), y; is the resistance category for base gene b in the first level of
400 theantibiotic resistance ontology. Then, weapply M on q to determine the potential
401  resistance categories of query gene.

9e= 8) ey =M@
402
403  Featureencoding
404  The task of feature encoding is to abstract the homologous signal of a query gene.
405 ONNJ4ARG takes homologous signals (e.g., identity, e-value, bit-score) between the
406 protein sequence of query gene and protein sequences and profiles (i.e.,
407  position-specific scoring matrix) of base genes as features. The homologous signal
408  abstraction works as following. First, a protein sequence library of base genes was
409 made by using “makedb” function of Diamond software. Then, protein sequences of
410 query genes and base genes were aligned by using “blastp” function of Diamond
411 program (Figure 1B). Second, profile hidden Markov models (HMMs) of base genes
412  were generated by using “HHblits” function of HH-suite3 software (version 3.2.0).
413  Then, protein sequence of query genes and profile HMMs of base genes were aligned
414 by using “HHblits’ function of HH-suite3 software (Figure 1B). Third, these
415  homologous signals were normalized (i.e., divided by alignment length) and saved as
416  vectors. The vector sizes at the two-layers of feature embedding network are decided
417  based on the number of sequences and profilesin the ONN4ARG-DB. The vector size
418  of the sequence featuresis 25,868, and 9,564 for the profile HMMs features.
419
420  Architecture of the ontology-aware neural network
421 PyTorch version 1.7.1 was used for generating the ONN model. The architecture of
422  the ontology-aware neural network could be described in four functiona layers,
423  including feature embedding layer, residual layer, compress layer and ontology-aware
424  layer (Supplementary Figure Sl1). Details about the four functional layers are
425 available a Supplementary File S1.
426
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427  Training and testing

428  We performed 4-fold cross-validation in the systematic evaluation of ONN4ARG
429 model. In each fold, we divided the ONN4ARG-DB into training set and testing set,
430 the training set contains 75% randomly selected genes from the ONN4ARG-DB,
431  whereas the remaining 25% genes were selected as testing set. We create binary label
432  vector for each protein sequence. If a protein sequence is annotated with a resistance
433  type from the ontology, then we assign 1 to the type's position in the binary label
434  vector. Otherwise, we assign 0.

435

436  Masking threshold

437 To simulate remotely homologous ARG genes in our experiments, homologous
438 dignals between the query protein and its close homologs with sequence identities
439  greater than athreshold were masked as zeros (i.e., no signals). For instance, when the
440  masking threshold of testing set equaled 0.4, homologous signals between the query
441  proten (in the testing set) and its close homologs (in the training set) with sequence
442  identities greater than 40% were masked as zeros. Occasionally, al homologs were
443  masked for a query protein, and such query proteins were removed during testing
444  (Table 1). For example, if query X had two homologs, M and N, and assuming the
445  identity of M is 0.45 and the identity of N is 0.95, when the masking threshold of the
446  testing set equaled 0.9, homologous signals between query X and homolog N were
447  masked as zeros. When the masking threshold of the testing set equaled 0.4, query X
448  was removed during testing (see Table 1 for details).

449

450  Other methods

451  We used Diamond (version 0.9.0) [23] as the sequence-alignment tool for comparison.
452  We used the same training and testing sets as in the ONN4ARG model to evaluate the
453  sequence-alignment method. For queries in the testing set, we searched them against
454  the training set. The target with the highest identity was defined as the closest
455  homologous gene for each query. Then, we compared whether the actual annotation of

456  the query was consistent with the annotation of its closest homologous gene to
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457  evauate the performance. DeepARG [12] is a newly developed tool that applies a
458  plain neural network (e.g., several fully connected layers) to predict ARGs. Here, we
459  reconstructed the DeepARG model with PyTorch by using the same architecture of
460 original DeepARG model, and used the same training and testing sets as in the
461  ONN4ARG modé to train and test the DeepARG model. For queries in the testing set,
462  we used the reconstructed DeepARG model to predict their ARG annotations, and
463 compared whether the actual annotations were consistent with the predicted
464  annotations to evaluate the performance.

465

466  Performance measures

467  To assess the performance of ONN4ARG model and other methods, we used accuracy

468  measure with the following formula:

NCOT
Accuracy = e

pred
469  where N, isthe number of correct predictions, and N4 isthe number of total
470  predictions. Notably, a prediction was defined to be correct if and only if all ARG
471  annotations (including ancestor annotations from ARG ontology) were correctly
472 predicted.
473
474 Furthermore, we used precision, recall, F1, AUROC, and AUPRC measures to assess

475  the performance of ONN4ARG model and other methods on each antibiotic resistance

476  type:
TP
Precision(f) = W%
_ TP
Recall(f) = TPCF) + FN(F)
2 Precision(f) x Recall(f)
F1= Precision(f) + Recall(f)
TP
TPRID) = 75 + FP(D)
_ FP(P)
FPR(f) = FP(f) + TN(f)

477
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478 where f represents one resistance type, TP(f) is the number of true positive
479  predictions of resistancetype f, FP(f) isthe number of false positive predictions of
480 resistance type f, TN(f) is the number of true negative predictions of resistance
481 type f, and FN(f) isthe number of false negative predictions of resistance type f.
482 AUROC is the area under the TPR-FPR curve, and AUPRC is the area under the
483  Precision-Recall curve.

484

485  Taxonomy annotation

486  Kraken2 (version 2.1.2) [29] program with default parameters was used to identify the
487 host of gene contigs. Then, each ARG predicted by ONN4ARG was annotated
488  according to the host of its gene contigs.

489

490 Phylogenetictree

491  Protein sequences of the most closely related to Candi_60363_1 were collected using
492  BLASTP with default parameters on the NCBI non-redundant protein database. The
493  retrieved proteins, Candi_60363 1 and all aminoglycoside resistance proteins from
494  ResFinder [8] (https://bitbucket.org/genomicepidemiology/resfinder_db/src/master,
495 last update Jun 2022), were aigned with ClustaW. The phylogenetic tree was
496  calculated by MEGA [39] (v10) using the maximum likelihood algorithm with default
497  parameters. The Interactive Tree of Life (iTOL v6) online tool [40] was used to
498  prepare the phylogenetic tree for display.

499

500 Protein model and docking

501 Rosetta[41] was utilized to predict the protein structure using ab initio protein folding
502  (http://robetta.bakerlab.org/). The top five protein pockets were generated for docking
503 calculation with Surface Topography of proteins [42] (CASTp). We used the
504 Cambridge Structure Database [43] to generate streptomycin conformers. The 3D
505  protein-ligand complexes were obtained from AutoDock Vina [44].

506

507 ARG candidate gene expression plasmids construction and expression
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508 verification

509 The candidate resistance gene Candi_60363_1 and a positive control resistance gene
510 AHE40557.1 were synthesized and subcloned into pUC19 vector, replacing lacZ’
511  gene. The recombinant plasmids were then transformed into E. coli BL21 (DE3). The
512  expression of resistance genes was induced by Isopropyl -D-1-thiogalactopyranoside
513  (IPTG) and verified by quantitive Real-time PCR (QRT-PCR) assay. Briefly, bacteria
514  were grown in LB supplemented with ampicillin (100 ug/ml) to OD600 of 0.5-0.6 by
515  incubation at 37 °C with 220 rpm agitation, and the bacterial cultures were continued
516  to grow until OD600 reached to 1.0 by adding or without adding 1 mM IPTG. The
517  cells were harvested and total RNAs were purified using Bacterial RNA Extraction
518  Kit (Vazyme Biotech). RNA reverse transcription was performed by using HiScript®
519 1l Q Select RT SuperMix for gPCR kit (Vazyme Biotech). gRT-PCR was performed
520 by using SYBR Green Master Mix-High ROX Premixed (Vazyme Biotech) in a
521  Stepone Plus system (Applied Biosystems). The |dh gene was used as internal control
522 inall reactions. The relative fold changes were determined using the 2““' method, in
523  which Idh was used for normalization. The protein sequences of the synthesized genes
524  and the primer sequences for gRT-PCR were listed in Supplementary Table S8 and
525 0.

526

527  MIC determination

528  Minimal inhibitory concentrations (MICs) of the antibiotic for the strains containing
529  resistance genes were determined using E-tests (three repeats). Single colonies of the
530  strains were incubated in 3 ml Mueller-Hinton (M H) medium with the addition of 100
531 pg/ml ampicillin at 35 °C for 4 hours, and the cells equal to 1.5X10° cells/ml were
532  spread on MH agar plates with the addition of 100 ug/ml ampicillin and 1 mM IPTG,
533  and streptomycin MIC Test Strips (Liofilchem®) were put in the middle of the plates.
534  The plates were incubated at 35 °C for 18-24 hours, and the MICs were read. The
535  dtrain containing empty vector was used as a negative control.

536

537  Statistical test
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538  According to the normality of the data distribution verified by the Shapiro-Wilk test
539 and Levene's test, the ARG abundance data distribution is Gaussian and unequal
540 variance. Thus, statistical test of the enrichment analysis was performed utilizing the
541  Welch's t-test (one-tailed), at the significance level of (10.005 [45]. For all the tests,
542  when the P value associated is lower than the significance level, one should regject the
543  null hypothesis HO (ARGs are not enriched in the environment or host), and accept

544  the aternative hypothesis Ha (ARGs are enriched in the environment or host).

545

546 Key Points

547 « We developed an ontology-aware deep learning approach, ONN4ARG, which is
548 superior to existing methods such as DeepARG in efficiency, accuracy.

549 « ONN4ARG has the potential for detection of remotely homologous ARGs and
550 thus generates a more comprehensive set of ARGs.

551 « ONN4ARG enabled the comprehensive enrichment analysis of ARGs,
552 speci es-wise and environment-wise.

553 « Our study demonstrates the importance and potential of complementing the

554 computational work with wet-lab experimental validation of gene function.
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566 Data availability

567  We collected metagenomic samples from several published studies [25, 26], and these
568  samples are mainly from marine, soil and human associated environments. For human
569  associated samples, including two gut groups (one group from Madagascar, i.e., GutM,
570  the other group from Denmark, i.e., GutD), one oral group and one skin group (both
571  ora and skin groups are from HMP project). Details and links about these samples are
572 shown in Supplementary Table S3. The ONN4ARG-DB dataset could be accesses at:
573  https://github.com/HUST-NingKang-Lab/ONN4ARG.

574

575 Code availability

576 All source codes have been uploaded to the website @ at:
577  https://github.com/HUST-NingKang-Lab/ONN4ARG, and online web service can be
578  accessed at: http://onndarg.xfcui.com/.
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747 Figure L egends

748  Figure 1. Overview of the ONN4ARG model and its use for novel ARG discovery.
749  (A) The antibiotic resistance gene ontology contains four levels. The root (first level)
750 isasingle node, namely, “arg”’. There are 1, 2, 34, and 277 nodes from the first level
751  to the fourth level, respectively. (B) The feature encoding procedure of ONN4ARG
752  model. The sequence alignment features and profile HMMs features are encoded by
753  calling Diamond and HHblits. (C) The architecture of the ontology-aware neural
754  network could be described in four functional layers, including feature embedding
755  layer, residual layer, compress layer and ontology-aware layer. The ontology-aware
756 layer is a partialy connected layer which encourage annotation predictions satisfying
757  the ontology rules (i.e., the ontology tree structure). Specially, weight between nodes
758  with relationship (e.g., parent and child) satisfying the ontology rules would be saved
759 in the partially connected layer, and weights between irrelevant nodes would be
760 masked. (D) Building the dataset for training and testing, and applying ONN4ARG
761 model on metagenomic samples to discover candidate novel ARGs.

762

763  Figure 2. Systematic evaluation and comparison between sequence-alignment,
764 DeepARG, and ONN4ARG. (A) The accuracy of three models on ARG
765 classfication was assessed using a box plot. Diamond was used for
766  sequence-alignment; significance test was based on the t-test. (B) The precision and
767  recal of DeepARG and ONN4ARG on ARG classification for each antibiotic
768  resistance type. The masking threshold of testing set equaled 0.4 (details of masking
769  threshold are provided in M ethods).

770

771 Figure 3. Broad-spectrum profile of predicced ARGs among diverse
772  environments. (A) The proportion of predicted ARGs for different protein sequence
773  lengths. (B) The abundance ratio of predicted ARGs among diverse environments.
774  Abundance ratio was defined as the number of ARGs divided by the number of total

775  genes. (C) The proportion of predicted ARGs for different sequence identities among
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776  diverse environments. (D) Number of genes in ONN4ARG-DB (left), predicted
777  homologous ARGs (middle), and predicted novel ARGs (right) for various resistance
778  types. The horizontal axis indicates the logarithmic number of genes, and the vertical
779  axisindicates different antibiotic resistance types. We collected metagenomic samples

780  from several published studies; these samples were mainly from “marine,” “soil,” and
781  “human” environments. Human-associated samples consisted of two gut groups (one
782  group from Madagascar, i.e., GutM; the other group from Denmark, i.e., GutD), one
783 ora group, and one skin group (both oral and skin groups were from the HMP
784  project).

785

786  Figure4. Enrichment of predicted ARGs among diver se environments and hosts.
787 (A) Relative abundance and enrichment of ARGs among diverse environments.
788  Abundance ratio was defined as the number of ARGs divided by the number of total
789  genes. (B) Proportion and enrichment of ARGs among diverse hosts. Colors indicate
790  the proportion of ARGs for each phylum and resistance type. Results for the most
791 abundant five phylathat carry ARGs are shown. “+": P-value < 0.005 (Welch'’s t-test,
792  one-tailed).

793

794  Figure 5. Functional validation of a predicted candidate novel ARG. (A) A
795  diagram showing the procedure of heterologous expression and functional analysis of
796  the predicted candidate ARG in the E. coli BL21 (DE3) host. (B) Gene expression
797  validation of the predicted candidate ARG. The vertical axis indicates the relative
798 mRNA level. (C) The MIC of the predicted candidate ARG and negative control. The
799  vertica axisindicates the MIC value. The MIC of the predicted candidate novel ARG
800 issignificantly higher than the negative control (Welch's t-test, one-tailed, P-value =
801 3.5e3).

802

803  Figure 6. Phylogenetic analysis and structure investigation of Candi_60363_1. (A)
804  Phylogenetic tree of aminoglycoside resistance enzymes, Candi_60363 1, and its
805 homologs from the NCBI non-redundant protein database. ANT:
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806  O-nuclectidyltransferase, AAC: N-acetyltransferase, APH: O-phosphotransferase,
807 AADT: aminoglycoside adenylyltransferase. (B) The optimal
808 Candi_60363 1-streptomycin complex structure (left), and the local interactions
809 between ligand and neighboring residues (right). The docking experiment indicates
810 thereare six neighboring residues whose distances are less than three angstroms.

811

812  Table 1. Accuracy comparison of sequence-alignment, DeepARG and ONN4ARG
813  based on different masking threshold of testing set.

814

815 Table 2. Evaluation results of ONN4ARG for ARGs identification at different
816  masking threshold of testing set.

817

818 Table 3. Evaluation results of DeepARG for ARGs identification at different
819  masking threshold of testing set.

820
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821 Supplementary Materials

822  Supplementary Figure S1. The architecture of the ontology-aware neural
823 network. (A) The architecture of the ontology-aware neural network could be
824  described in four functional layers, including feature embedding layer, residua layer,
825 compress layer and ontology-aware layer. The ontology-aware layer is a partialy
826  connected layer which encourage annotation predictions satisfying the ontology rules
827  (i.e., the ontology tree structure). Specially, weight between nodes with relationship
828 (e.g., parent and child) satisfying the ontology rules would be saved in the partialy
829  connected layer, and weights between irrelevant nodes would be masked. (B) The
830  weight matrix derived from the antibiotic resistance ontology and the ontology-aware
831 layer.

832

833 Supplementary Figure S2. The number of pan and core ARG types among
834  various environments, and gene mobility analysis for predicted ARGs. (A) The
835 number of pan and core ARG types change as more groups are included. For core/pan
836  counts, we only counted ARG types with the relative abundance ratio greater than
837 le-4. The pan ARGs refer to the ARG types that are included in any environments.
838 The core ARGs refer to the ARG types that are included in all environments. (B) The
839  venn diagram shows the ARG types relationship among marine, soil and gut groups.
840 (C) The venn diagram shows the ARG types relationship among gut, oral and skin
841  groups. (D) Thedistribution of acquired and intrinsic ARGs in various environments.
842 (E) The line regression analysis indicates no significant correlation (P > 0.05)
843  between the abundances of MGEs and ARGs. The horizontal axis indicates the
844  abundance ratio of predicted ARGs and the vertical axis indicates the abundance ratio
845  of MGEs. Each point represents a group.

846

847  Supplementary Figure S3. The host range of all classified ARGs and the
848 resistance composition of the most abundant 20 genera. (A) The Sankey diagram
849  showsthe host composition and distribution of all classified ARGs (the most abundant
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850 20 genera carrying ARGs were used for display). (B) The bar chart indicates the
851 diversity and relative abundance of ARGs for the most abundant 20 genera carrying
852 ARGs.

853

854  Supplementary Figure $4. The network analysis revealing the co-occurrence
855 patterns among ARG types and microbial taxa, the nodes were represented by
856  pie charts which shows the taxonomic compositions of ARG types. A connection
857  represents astrong (Spearman’s p > 0.8) and significant (P-value < 0.01) correlation.
858  Thesize of each nodeis proportional to the number of connections, that is, the degree.
859

860 Supplementary Figure S5. The MIC experiment for predicted candidate ARG
861  (top), negative control (middle) and positive control (bottom). The MIC values are
862 tested for three repeats.

863

864  Supplementary Table S1. Comparison of ONN4ARG and other methods for
865 ARG identification on the verification set.

866

867 Supplementary Table S2. Evaluation of ONN4ARG and DeepARG on the
868 ResFinder dataset.

869

870  Supplementary Table S3. M etagenomic samples using for resistance gene mining
871 arecollected from published studies.

872

873  Supplementary Table $4. The number of predicted ARGs by ONN4ARG that
874  have protein domains with known catalytic activity and/or may bind to the
875 antimicrobialsthey are predicted to elicit resistance against.

876

877 Supplementary Table S5. Data distribution during the pipeline of ARGs
878  prediction.

879
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Supplementary Table S6. The hosts of predicted ARGs at different taxonomic

level.

Supplementary Table S7. The predicted ARGs which fulfilling all mentioned

criteria.

Supplementary Table S8. Protein sequences of the synthesized genes.

Supplementary Table 9. Real-time PCR primer sequences.

Supplementary Table S10. The BLAST result of Candi_60363 1 when search
against the NCBI non-redundant protein database.

Supplementary Table S11. The binding affinity of protein-ligand complexes
using the top five pockets.

Supplementary Table S12. The antibiotic resistance ontology used in the
ONN4ARG modd.

Supplementary File S1. Supplemental information about experiments.
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