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Abstract 17 

Antibiotic resistance genes (ARGs) have emerged in pathogens and arousing a 18 

worldwide concern, which is estimated to cause millions of deaths each year globally. 19 

Accurately identifying and classifying ARGs is a formidable challenge in studying the 20 

generation and spread of antibiotic resistance. Current methods could identify close 21 

homologous ARGs, have limited utility for discovery of novel ARGs, thus rendering 22 

the profiling of ARGs incomprehensive. Here, an ontology-aware neural network 23 

(ONN) approach, ONN4ARG, is proposed for comprehensive ARG discovery. 24 

Systematic evaluation shows ONN4ARG is advanced than previous methods such as 25 

DeepARG in efficiency, accuracy, and comprehensiveness. Experiments using 200 26 

million candidate microbial genes collected from 815 microbial community samples 27 

from diverse environments or hosts have resulted in 120,726 candidate ARGs, out of 28 

which more than 20% are not yet present in public databases. These comprehensive 29 

set of ARGs have clarified the environment-specific and host-specific patterns. The 30 

wet-experimental functional validation, together with structural investigation of 31 

docking sites, have also validated a novel streptomycin resistance gene from oral 32 

microbiome samples, confirming ONN4ARG’s ability for novel ARGs identification. 33 

In summary, ONN4ARG is superior to existing methods in efficiency, accuracy, and 34 

comprehensiveness. It enables comprehensive ARG discovery, which is helpful 35 

towards a grand view of ARGs worldwide. ONN4ARG is available at 36 

https://github.com/HUST-NingKang-Lab/ONN4ARG, and online web service is 37 

available at http://onn4arg.xfcui.com/. 38 
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Introduction 43 

With the development of metagenomics and next-generation sequencing, many new 44 

microbial taxa and genes have been discovered, but different kinds of “unknowns” 45 

remain. For instance, the microbes found in the human gut microbiome involve 25 46 

phyla, more than 2,000 genera, and 5,000 species [1]. However, the functional 47 

diversity of microbiomes has not been fully explored, and about 40% of microbial 48 

gene functions remain to be discovered [2]. A typical example is the antibiotic 49 

resistance gene (ARG), which is an urgent and growing threat to public health [3]. In 50 

the past few decades, problems caused by antibiotic resistance have drawn the 51 

public’s attention [4]. Antimicrobial resistance genomic data is an ever-expanding 52 

data source, with many new ARG families discovered in recent years [5, 6]. The 53 

discovery of resistance genes in diverse environments offers possibilities for early 54 

surveillance, actions to reduce transmission, gene-based diagnostics, and improved 55 

treatment [7]. 56 

 57 

Existing annotated ARGs have been curated manually or automatically for decades. 58 

Presently, there are 4,661 annotated ARGs in the reference database CARD [5, 6] 59 

(v3.2.5, released in September 2022), 3,131 in the ResFinder database [8] (as of 60 

December 2022), and 2,476 in SwissProt [9] (as of December 2022). These annotated 61 

ARGs are categorized into antibiotic resistance types, which are organized in an 62 

ontology structure (Methods, Supplementary Figure S1), in which higher-level 63 

ARG types cover lower-level ARG types. Current ARG databases are far from 64 

complete: though no ARG database contains more than 4,000 well-annotated ARGs, 65 

NCBI non-redundant database searches yielded more than 7,000 putative genes 66 

annotated with “antibiotic resistance” as of May 2021. Therefore, we deemed that 67 

there is a large gap between the genes annotated in ARG databases and the possible 68 

ARGs that already exist in general databases, not to mention ARGs that are not yet 69 

annotated. 70 

 71 
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Many ARG prediction tools have been proposed in the past few years [8, 10-20]. 72 

These tools can generally be divided into two approaches. One approach is 73 

sequence-alignment, such as BLAST [21], USEARCH [22], and Diamond [23], which 74 

uses homologous genes to annotate unclassified genes. A confident prediction requires 75 

a homolog with sequence identity greater than 80% in many programs, such as 76 

ResFinder [8, 11]. The other approach is deep learning, such as DeepARG [12] and 77 

HMD-ARG [16], which uses neural network models to predict and annotate ARGs. 78 

 79 

Several limitations still preclude comprehensive profiling of ARGs. A more 80 

comprehensive set of ARGs could be roughly defined as having more ARGs in type 81 

and number with less false-positive entries, regardless of the homology with known 82 

ARGs, and many of these ARGs could be experimentally validated. Based on this 83 

definition, existing tools fall short in comprehensive profiling of ARGs. First, existing 84 

tools are limited to a few types of ARGs due to the fact that the datasets used for 85 

building models are specialized. For example, HMD-ARG [16] identifies only 15 86 

types of resistance genes, and PATRIC [13] is limited to identifying ARGs encoding 87 

resistance to carbapenem, methicillin, and beta-lactam antibiotics. Second, existing 88 

tools fall short in discovering novel ARGs, which usually lack homology to known 89 

sequences in the reference databases. For instance, the gene POCOZ1 (VraR) that 90 

confers resistance to vancomycin has a sequence identity of only 24% to the homolog 91 

from the CARD [12]. Therefore, there is an urgent need for a new approach to address 92 

these limitations. 93 

 94 

Here, we propose an ontology-aware deep learning approach, ONN4ARG, which 95 

allows comprehensive identification of ARGs. Systematic evaluation based on the 96 

ONN4ARG-DB, CARD, and ResFinder datasets shows that the ONN4ARG model 97 

outperforms state-of-the-art models such as DeepARG, especially for the detection of 98 

remotely homologous ARGs. Experiments based on more than 200 million candidate 99 

microbial genes collected from 815 samples in various environments have resulted in 100 

120,726 candidate ARGs, out of which more than 20% are not yet present in public 101 
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databases. Our experiments confirmed that ARGs are both environment-specific and 102 

host-specific, exemplified by the rifamycin resistance genes which are enriched in 103 

Actinobacteria and in soil environment. Case study of a recently experimentally 104 

validated ARG gene GAR [7] have also verified the ability of ONN4ARG for novel 105 

ARG discovery. We also validated a novel streptomycin resistance gene from oral 106 

microbiome samples by wet-lab experiment. In summary, ONN4ARG enables 107 

comprehensive ARG discovery, which provides a relatively complete picture of the 108 

prevalence of ARGs, as well as leads a way towards a grand view of ARGs 109 

worldwide. 110 

 111 

Results 112 

ONN4ARG model employs an ontology-aware neural network for ARG 113 

identification and classification 114 

To address the large gap between the genes annotated in ARG databases and the 115 

possible ARGs that already exist in general databases along with the ARGs that are 116 

not yet annotated, we propose ONN4ARG, which is an ontology-aware neural 117 

network model (Figure 1, Supplementary Figure S1) that predict ARGs in a 118 

comprehensive manner. ONN4ARG takes similarities (e.g., identity, e-value, bit-score) 119 

between the query gene sequence and ARG gene sequences and profiles (i.e., PSSM) 120 

as inputs and predicts ARG annotations (Figure 1B). These sequence-alignment 121 

similarities and profile-alignment similarities are pre-processed by calling Diamond 122 

[23] and HHblits [24]. ONN4ARG generates hierarchical annotations of antibiotic 123 

resistance types, which are compatible with the antibiotic resistance ontology 124 

structure (Figure 1A, C). One advantage of ONN4ARG over state-of-the-art models 125 

is that ONN4ARG employs a novel ontology-aware layer that incorporates ancestor 126 

and descendent annotations to enhance annotation accuracies (Methods). To train and 127 

evaluate our ONN4ARG model and for rapid deployment of ARG discovery in 128 

multiple contexts, we also built an ARG database (Figure 1D), namely, 129 

ONN4ARG-DB, which comprises ARGs from CARD and UniProt (see Methods). 130 
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 131 

Systematic evaluation and comparison 132 

Systematic evaluation based on the ONN4ARG-DB showed our model’s high 133 

efficiency, high accuracy, and comprehensiveness for ARG identification. ONN4ARG 134 

is fast since it could complete ARG identification for all genes in the testing dataset 135 

within four hours, which is equivalent to one second per gene identification. As 136 

shown in Figure 2A, ONN4ARG was more accurate for ARG identification (overall 137 

accuracy of 97.70%, Table 1) compared to sequence alignment (overall accuracy of 138 

69.11%), and ONN4ARG has a slight advantage over DeepARG (overall accuracy of 139 

96.39%). Moreover, ONN4ARG achieved an overall precision of 75.59% and an 140 

overall recall of 89.93%, which were higher than DeepARG’s overall precision of 141 

68.30% and overall recall of 77.84% (Figure 2B, Table 2). It is natural that 142 

ONN4ARG could not outperform DeepARG in all resistance types and this is 143 

exemplified by results on pleuromutilin due to the small number of sequences for 144 

pleuromutilin in the ONN4ARG-DB. ONN4ARG demonstrates an advantage over 145 

other methods in identification of remotely homologous ARGs whose sequences are 146 

not similar to existing ARG sequences (Tables 2 and 3). In this context, when testing 147 

with only remotely homologs (i.e., the masking threshold of testing set equal to 0.4, 148 

see Methods), ONN4ARG achieves an accuracy of 94.26%, which is largely 149 

improved from 89.85% of DeepARG. These results validate ONN4ARG’s better 150 

generalization abilities than sequence-alignment and DeepARG, which makes 151 

ONN4ARG especially suitable for identification of remotely homologous ARGs and 152 

indicates ONN4ARG’s ability for novel ARG discovery (Tables 1–3). 153 

 154 

We have also tested ONN4ARG on a verification set built from the CARD database 155 

version 3.1.3. Results showed our model outperformed other methods in terms of 156 

accuracy and efficiency, i.e., high accuracy and less time usage, given that the 157 

memory usage is acceptable for a regular laptop (Supplementary Table S1). We have 158 

also evaluated ONN4ARG on the ResFinder database version 4.1, which involves 159 

thousands of manually curated ARGs [8]. Results showed that ONN4ARG achieved 160 
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an accuracy higher than 90% for most types of resistance, while DeepARG was less 161 

accurate than ONN4ARG, except for the fosfomycin resistance (Supplementary 162 

Table S2). 163 

 164 

Applications of ONN4ARG on metagenomic data 165 

We collected metagenomic samples from several published studies [25, 26]. These 166 

samples were mainly from “marine,” “soil,” and “human” environments. 167 

Human-associated samples consisted of two gut groups (one group from Madagascar, 168 

i.e., GutM; the other group from Denmark, i.e., GutD), one oral group, and one skin 169 

group (both oral and skin groups were from the HMP project). For details on these 170 

samples, see Supplementary Table S3. Then, genes were obtained by calling 171 

Prodigal [27] with default parameters. The ONN4ARG model was used to predict 172 

whether these unclassified genes were ARGs and their corresponding resistance types. 173 

In total, 120,726 ARGs were identified from microbiome samples, many of which are 174 

novel, which greatly expands the existing ARG repositories. 175 

 176 

Broad-spectrum profile of predicted ARGs among diverse environments 177 

We investigated the broad-spectrum profile of these predicted ARGs among diverse 178 

environments. First, we investigated the proportion of predicted ARGs for different 179 

sequence lengths. The distribution shows that about half of the predicted ARGs have a 180 

length of 128–256 amino acid residues (Figure 3A). We also analyzed the protein 181 

domain of these predicted ARGs by searching the conserved domain database (CDD, 182 

last update Aug 2022) using RPS-BLAST tool version 2.9.0. Results showed that 183 

most of these predicted ARGs (over 97%) have protein domains that resemble those 184 

with known catalytic activity and/or may bind to the antimicrobials they are predicted 185 

to elicit resistance against (Supplementary Table S4). Second, we found that 186 

human-associated microbiome samples carry a higher abundance of ARGs, especially 187 

for the oral group, in which more than one resistance gene could be observed out of a 188 

hundred genes on average (Figure 3B, Supplementary Table S5). Third, we tested 189 

the novelty of these predicted ARGs. We found that about a third of them (42,848 out 190 
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of all 120,726 ARGs) had sequence identity of less than 40% to their homologs in the 191 

ONN4ARG-DB (Figure 3C). We define these ARGs as candidate novel ARGs, which 192 

have low sequence identities when aligned to their homologs in the reference database 193 

(i.e., ONN4ARG-DB). For example, we found 45% of predicted ARGs in the marine 194 

group were candidate novel ARGs (Figure 3C). 195 

 196 

In total, 31 ARG types were detected in these various environments (Figure 3D, 197 

Supplementary Figure S2). The number of predicted ARG sequences for different 198 

types varied greatly, from a few (i.e., nitrofuran) to thousands (i.e., fluoroquinolone). 199 

In general, fluoroquinolone and tetracycline resistance genes were more abundant 200 

than other types (Figure 3D). As expected, these abundant ARGs were usually 201 

associated with the antibiotics used extensively in human medicine or veterinary 202 

medicine, including growth promotion [28]. 203 

 204 

Enrichment of predicted ARGs among diverse hosts and environments 205 

Rapid deciphering of potential antimicrobial-resistant pathogens is necessary for 206 

effective public health monitoring. The host-tracking of ARGs allows for accurate 207 

identification of pathogens. Therefore, we conducted taxonomy analysis to track the 208 

hosts of these predicted ARGs by using Kraken2 [29]. Results showed that there are 209 

949 genera, each genus carries at least one type of ARG (Supplementary Table S6). 210 

The host composition and distribution of all classified ARGs for the most abundant 20 211 

genera are displayed in Supplementary Figure S3. The host distribution shows that 212 

these ARGs are primarily affiliated with Proteobacteria (38.2%). The most abundant 213 

ARGs carried by the 20 genera were resistance types of fluoroquinolone, macrolide, 214 

peptide, penam, and tetracycline, accounting for about half of the total ARGs. 215 

Network inference based on strong (Spearman’s ρ > 0.8) and significant (Welch’s 216 

t-test, P-value < 0.01) correlations showed the co-occurrence patterns among ARGs 217 

and microbial taxa (Supplementary Figure S4, Supplementary File S1). For 218 

example, ARGs that belong to beta-lactam resistance type (e.g., cephamycin, penam, 219 

penem, and monobactam) were observed to appear together in Proteobacteria. 220 
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 221 

Enrichment analyses showed that ARGs are both environment-specific and 222 

host-specific (Figure 4). We found that the proportion of certain types of ARGs was 223 

higher in certain environments than in others. For example, rifamycin resistance genes 224 

were found enriched in the soil environment (with proportion of 0.1%) and enriched 225 

in the Actinobacteria (with proportion of 4.7%) (Figure 4). Rifamycin is an important 226 

antibacterial agent active against gram-positive bacteria, and it has a wide range of 227 

applications [30, 31]. The enrichment results were not surprising because 228 

Actinomycetes is a representative genus widely distributed in various soil 229 

environments, and its rifamycin resistance is compatible with its ability for rifamycin 230 

production [32-35]. 231 

 232 

Evaluation of the ability for novel ARG identification using a recently annotated 233 

ARG 234 

We further evaluated ONN4ARG’s ability for novel ARG identification based on a 235 

newly annotated aminoglycoside resistance gene, GAR, which has been reported in a 236 

previous study by Böhm et al [7]. GAR is a recently reported aminoglycoside 237 

resistance gene, which is not present in CARD (v3.2.5), UniProt (as of December 238 

2022), DEEPARG-DB (v1.0.2), HMD-ARG-DB (as of December 2022), and 239 

ONN4ARG-DB. We searched the sequence of GAR with both DeepARG and 240 

HMD-ARG models, and the results showed that both of these models indicated it as 241 

non-ARG. We searched the sequence of GAR against all the sequences in 242 

ONN4ARG-DB using Diamond and did not find any homologous gene as well. 243 

Reassuringly, the prediction by ONN4ARG identified GAR as an ARG resistant to 244 

non-beta-lactam with high confidence (probability score = 100%). We should 245 

emphasize that though ONN4ARG predict GAR as non-beta-lactam and not as 246 

sub-type of aminoglycoside, ONN4ARG can give information about ancestors (or 247 

categories at higher levels) of the novel ARG, provide clues about novel knowledge. 248 

 249 

Functional verification of candidate novel resistance genes 250 
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To identify promising putative novel resistance genes, we used four criteria: (i) 251 

remotely homologs to reference ARGs, (ii) prediction with high confidence, (iii) 252 

predicted to be single-type resistance, and (iv) the host is known. Despite the large 253 

number of candidate genes discovered by the ONN4ARG model, only 4,365 ARGs 254 

fulfilled all mentioned criteria (Supplementary Table S7). 255 

 256 

To showcase the actual function of the predicted ARGs, we analyzed tens of ARGs 257 

belonging to the streptomycin resistance, and all of these ARGs have high confidence 258 

predicted by the ONN4ARG model. The experiment results showed that the 259 

Candi_60363_1 is one of the most promising ARG, which showed a high minimal 260 

inhibitory concentration (MIC) compared to negative control. Thus, we selected the 261 

Candi_60363_1 for further experimental validation (Supplementary Table S8 and 262 

S9). Candi_60363_1, detected in Streptococcus in the oral environment, was predicted 263 

to confer resistance to streptomycin (belonging to aminoglycoside). One positive 264 

control from CARD (AHE40557.1, streptomycin resistance) was used for verification 265 

of the experimental system. All these genes were heterologously expressed in the E. 266 

coli BL21 (DE3) host by the induction of Isopropyl β-D-1-thiogalactopyranoside 267 

(IPTG) and tested for minimal inhibitory concentration (MIC) (Figure 5A). Results 268 

showed that the mRNA level of the genes increased with the addition of 1 mM IPTG 269 

compared with that without IPTG (Figure 5B), which verified the expression of the 270 

genes induced by IPTG. Furthermore, the MIC of the strain containing the positive 271 

control gene AHE40557.1 was more than 1,024 μg/ml (Supplementary Figure S5), 272 

which is consistent with previous reports [36, 37]. This verified that our MIC 273 

measuring experimental system works well. Our results showed that the MIC of the 274 

strain containing Candi_60363_1 was significantly higher than the negative control 275 

containing no insert (Welch’s t-test, one-tailed, P-value = 3.5e-3), which demonstrated 276 

the increased resistance to streptomycin of the novel candidate gene Candi_60363_1 277 

(Figure 5C, Supplementary Figure S5). 278 

 279 

Phylogeny and structure of Candi_60363_1 280 
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There are remotely similarities between Candi_60363_1 and all known ARGs in the 281 

reference database, including aminoglycoside resistance genes. The InterPro search 282 

results showed the protein family matching to Candi_60363_1 is IPR007530, which is 283 

also known as aminoglycoside 6-adenylyltransferase that confers resistance to 284 

aminoglycoside antibiotics. Then, we used BLAST to search homologs of 285 

Candi_60363_1 from the NCBI non-redundant protein database. The BLAST result 286 

showed that there are 44 homologs with sequence identity greater than 80%, and they 287 

are from various organisms (Supplementary Table S10), such as Streptococcus 288 

oralis, Peptoniphilus lacrimalis DNF00528, and Mycobacteroides abscessus subsp. 289 

Abscessus. Considering that Candi_60363_1 is harbored by distantly related species, 290 

it obviously has mobility. Notably, the most similar protein of Candi_60363_1 from 291 

the NCBI non-redundant protein database (87.5% identity, SHZ78752.1) is also 292 

annotated as aminoglycoside adenylyltransferase (Supplementary Table S10). Taken 293 

together, Candi_60363_1 is highly likely to be an ARG that confers resistance to 294 

aminoglycoside antibiotics. 295 

 296 

Aminoglycoside modifying enzymes are the most clinically important resistance 297 

mechanism against aminoglycosides [38]. They are divided into three enzymatic 298 

classes, namely, aminoglycoside N-acetyltransferase (AAC), O-nucleotidyltransferase 299 

(ANT), and O-phosphotransferase (APH). We investigated the phylogenetic 300 

relationship between Candi_60363_1 and the known aminoglycoside modifying 301 

enzymes. The phylogenetic tree of Candi_60363_1 and related proteins (Figure 6A) 302 

shows that Candi_60363_1 is clearly separated from the known aminoglycoside 303 

modifying enzymes and is located among proteins mostly annotated as 304 

aminoglycoside adenylyltransferase. Phylogenetic analysis indicated its evolutionarily 305 

close relationships with known aminoglycoside adenylyltransferase. 306 

 307 

Protein structure prediction results confirmed the anti-microbial functionality of 308 

Candi_60363_1. The optimal Candi_60363_1-streptomycin complex structure and the 309 

corresponding interaction details are described in Figure 6B. The optimal binding 310 
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affinity between the Candi_60363_1 and streptomycin is -7.7 kcal/mol 311 

(Supplementary Table S11), which is 1.6 kcal/mol lower than the negative control. 312 

From wet-lab experiments, phylogenetic analysis, and protein structure docking, we 313 

consider that Candi_60363_1 predicted by ONN4ARG is highly likely a real ARG 314 

gene. 315 

 316 

Discussion 317 

In this study, we proposed an ontology-aware deep learning method, ONN4ARG, for 318 

the detection and understanding of ARGs. To complement ONN4ARG for ARG 319 

mining applications, we have also created a custom ARG database, ONN4ARG-DB, 320 

that contains 28,396 well-curated ARGs. The application of ONN4ARG uncovered 321 

120,726 ARGs from microbiome samples, out of which 42,848 are novel, which 322 

substantially expands the existing ARGs repositories. 323 

 324 

The novelty of this work is in three contexts. First, ONN4ARG has the potential for 325 

detection of remotely homologous ARGs and thus generates a more comprehensive 326 

set of ARGs. The ability of ONN4ARG to identify remotely homologs allows more 327 

accurate prediction. The antibiotic resistance ontology used in the ONN4ARG model 328 

consists of four levels and more than 100 resistance subtypes (i.e., terms in the most 329 

informative level on the ontology), which substantially expand the classification space 330 

of current tools (e.g., 30 types supported for DeepARG and 15 types supported for 331 

HMD-ARG). Therefore, ONN4ARG greatly reduces false negatives and offers a 332 

powerful approach for accurate and comprehensive profiling of ARGs. 333 

 334 

Second, it enabled the comprehensive enrichment analysis of ARGs, species-wise and 335 

environment-wise. The environment-specific and host-specific enrichment of ARGs 336 

may be caused by specific bacteria evolving to possess specific types of ARGs in 337 

response to specific environments, and horizontal gene transfer may be one of the 338 

mediating pathways of this process. For example, one published study has reported 339 
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that Amycolatopsis in the soil environment produces rifamycin and thus gains 340 

ecological advantages over other bacteria [32]. 341 

 342 

Third, our study demonstrates the importance and potential of complementing the 343 

computational work with wet-lab experimental validation of gene function. Functional 344 

verification of a novel streptomycin resistance gene (i.e., Candi_60363_1) with 345 

wet-lab experiments demonstrated the ability of the ONN4ARG model for novel ARG 346 

discovery. Moreover, phylogenetic analysis and protein structure docking further 347 

confirmed that Candi_60363_1 is highly likely to be an ARG that confers resistance 348 

to aminoglycoside antibiotics. Another validation of a recently annotated ARG (i.e., 349 

GAR) also indicated the ability of the ONN4ARG model for novel ARG discovery. 350 

 351 

Conclusions 352 

We proposed an ontology-aware deep learning approach, ONN4ARG, which is 353 

superior to existing methods such as DeepARG in efficiency, accuracy, and 354 

comprehensiveness. It enables comprehensive ARG discovery. It has detected novel 355 

ARGs that are remotely homologous to existing ARGs. Whereas ONN4ARG has 356 

provided one of the most comprehensive profiles of ARGs, it could be further 357 

optimized. For more comprehensive ARG prediction, continuous improvement of 358 

curating ARG nomenclature and annotation databases is required. For novel ARG 359 

prediction, especially those belonging to entirely new ARG families, deep learning 360 

models might need to consider more information other than sequence alone, such as 361 

protein structure. We believe these efforts could lead to a holistic view about ARGs in 362 

diverse environments around the globe. 363 

 364 

Methods 365 

Dataset 366 

The ARGs we used in this study for model training and testing were from the 367 

Comprehensive Antibiotic Resistance Database, CARD v3.0.3 [5, 6]. We also used 368 
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protein sequences from the UniProt (SwissProt and TrEMBL) database to expand our 369 

training dataset. First, genes with ARG annotations were collected from CARD (2,587 370 

ARGs) and SwissProt (2,261 ARGs). Then, their close homologs (sequence identity > 371 

90% and coverage > 98%) were collected from TrEMBL (23,728 homologous genes). 372 

These annotated and homologous ARGs made up our ARG dataset. The non-ARG 373 

dataset was made from non-ARG genes that had relatively low sequence similarities 374 

to ARG genes (sequence identity < 90% and bit-scores < alignment lengths) but not 375 

annotated as ARG genes in SwissProt (17,937 non-ARG genes). Finally, redundant 376 

genes with identical sequences were filtered out. As a result, our ARG gene dataset, 377 

namely, ONN4ARG-DB, contained 28,396 ARG genes and 17,937 non-ARG genes.  378 

The gene clustering of the 681 newly added ARGs in CARD v3.1.3 was performed 379 

using the MMseqs2 tool (version 10) with an identity of 90% and coverage of 98%. 380 

The ResFinder dataset was obtained in Jun 2022 from 381 

https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/. 382 

 383 

Antibiotic resistance ontology 384 

The antibiotic resistance ontology was organized into an ontology structure, which 385 

contains four levels (Figure 1A). The root (first level) is a single node, namely, “arg” 386 

(Supplementary Table S12). There are 1, 2, 34, and 277 nodes from the first level to 387 

the fourth level, respectively. For instance, there are “beta-lactam” and 388 

“non-beta-lactam” in the second level, “acridine dye” and “aminocoumarin” in the 389 

third level, and “acriflavine” and “clorobiocin” in the fourth level. 390 

 391 

Framework of ONN4ARG 392 

ONN4ARG model 393 

Considering a query gene � represented by its protein sequence, as well as its 394 

potential resistance categories represented by the antibiotic resistance ontology �, to 395 

predict resistance categories ���  of query gene � , we employed ontology-aware 396 

neural network to learn a mapping � from a set of base genes � � 	 to their 397 

resistance categories ��� 
 ���
�, ��

� , ��
� , ��

�
. Here, 	 is the set of base genes (i.e., 398 
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ONN4ARG-DB), ��
� is the resistance category for base gene � in the first level of 399 

the antibiotic resistance ontology. Then, we apply � on � to determine the potential 400 

resistance categories of query gene. 401 

��� 
  ���������� 
 ���
 

 402 

Feature encoding 403 

The task of feature encoding is to abstract the homologous signal of a query gene. 404 

ONN4ARG takes homologous signals (e.g., identity, e-value, bit-score) between the 405 

protein sequence of query gene and protein sequences and profiles (i.e., 406 

position-specific scoring matrix) of base genes as features. The homologous signal 407 

abstraction works as following. First, a protein sequence library of base genes was 408 

made by using “makedb” function of Diamond software. Then, protein sequences of 409 

query genes and base genes were aligned by using “blastp” function of Diamond 410 

program (Figure 1B). Second, profile hidden Markov models (HMMs) of base genes 411 

were generated by using “HHblits” function of HH-suite3 software (version 3.2.0). 412 

Then, protein sequence of query genes and profile HMMs of base genes were aligned 413 

by using “HHblits” function of HH-suite3 software (Figure 1B). Third, these 414 

homologous signals were normalized (i.e., divided by alignment length) and saved as 415 

vectors. The vector sizes at the two-layers of feature embedding network are decided 416 

based on the number of sequences and profiles in the ONN4ARG-DB. The vector size 417 

of the sequence features is 25,868, and 9,564 for the profile HMMs features. 418 

 419 

Architecture of the ontology-aware neural network 420 

PyTorch version 1.7.1 was used for generating the ONN model. The architecture of 421 

the ontology-aware neural network could be described in four functional layers, 422 

including feature embedding layer, residual layer, compress layer and ontology-aware 423 

layer (Supplementary Figure S1). Details about the four functional layers are 424 

available at Supplementary File S1. 425 

 426 
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Training and testing 427 

We performed 4-fold cross-validation in the systematic evaluation of ONN4ARG 428 

model. In each fold, we divided the ONN4ARG-DB into training set and testing set, 429 

the training set contains 75% randomly selected genes from the ONN4ARG-DB, 430 

whereas the remaining 25% genes were selected as testing set. We create binary label 431 

vector for each protein sequence. If a protein sequence is annotated with a resistance 432 

type from the ontology, then we assign 1 to the type’s position in the binary label 433 

vector. Otherwise, we assign 0. 434 

 435 

Masking threshold 436 

To simulate remotely homologous ARG genes in our experiments, homologous 437 

signals between the query protein and its close homologs with sequence identities 438 

greater than a threshold were masked as zeros (i.e., no signals). For instance, when the 439 

masking threshold of testing set equaled 0.4, homologous signals between the query 440 

protein (in the testing set) and its close homologs (in the training set) with sequence 441 

identities greater than 40% were masked as zeros. Occasionally, all homologs were 442 

masked for a query protein, and such query proteins were removed during testing 443 

(Table 1). For example, if query X had two homologs, M and N, and assuming the 444 

identity of M is 0.45 and the identity of N is 0.95, when the masking threshold of the 445 

testing set equaled 0.9, homologous signals between query X and homolog N were 446 

masked as zeros. When the masking threshold of the testing set equaled 0.4, query X 447 

was removed during testing (see Table 1 for details). 448 

 449 

Other methods 450 

We used Diamond (version 0.9.0) [23] as the sequence-alignment tool for comparison. 451 

We used the same training and testing sets as in the ONN4ARG model to evaluate the 452 

sequence-alignment method. For queries in the testing set, we searched them against 453 

the training set. The target with the highest identity was defined as the closest 454 

homologous gene for each query. Then, we compared whether the actual annotation of 455 

the query was consistent with the annotation of its closest homologous gene to 456 
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evaluate the performance. DeepARG [12] is a newly developed tool that applies a 457 

plain neural network (e.g., several fully connected layers) to predict ARGs. Here, we 458 

reconstructed the DeepARG model with PyTorch by using the same architecture of 459 

original DeepARG model, and used the same training and testing sets as in the 460 

ONN4ARG model to train and test the DeepARG model. For queries in the testing set, 461 

we used the reconstructed DeepARG model to predict their ARG annotations, and 462 

compared whether the actual annotations were consistent with the predicted 463 

annotations to evaluate the performance. 464 

 465 

Performance measures 466 

To assess the performance of ONN4ARG model and other methods, we used accuracy 467 

measure with the following formula: 468 

�������� 
  
�	
��

���
�

 

where �	
�� is the number of correct predictions, and ���
� is the number of total 469 

predictions. Notably, a prediction was defined to be correct if and only if all ARG 470 

annotations (including ancestor annotations from ARG ontology) were correctly 471 

predicted. 472 

 473 

Furthermore, we used precision, recall, F1, AUROC, and AUPRC measures to assess 474 

the performance of ONN4ARG model and other methods on each antibiotic resistance 475 

type: 476 

���������	
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��	
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where �  represents one resistance type, ����
  is the number of true positive 478 

predictions of resistance type �, ����
 is the number of false positive predictions of 479 

resistance type �, ����
 is the number of true negative predictions of resistance 480 

type �, and ����
 is the number of false negative predictions of resistance type �. 481 

AUROC is the area under the ��� -���  curve, and AUPRC is the area under the 482 

���������-������ curve. 483 

 484 

Taxonomy annotation 485 

Kraken2 (version 2.1.2) [29] program with default parameters was used to identify the 486 

host of gene contigs. Then, each ARG predicted by ONN4ARG was annotated 487 

according to the host of its gene contigs. 488 

 489 

Phylogenetic tree 490 

Protein sequences of the most closely related to Candi_60363_1 were collected using 491 

BLASTP with default parameters on the NCBI non-redundant protein database. The 492 

retrieved proteins, Candi_60363_1 and all aminoglycoside resistance proteins from 493 

ResFinder [8] (https://bitbucket.org/genomicepidemiology/resfinder_db/src/master, 494 

last update Jun 2022), were aligned with ClustalW. The phylogenetic tree was 495 

calculated by MEGA [39] (v10) using the maximum likelihood algorithm with default 496 

parameters. The Interactive Tree of Life (iTOL v6) online tool [40] was used to 497 

prepare the phylogenetic tree for display. 498 

 499 

Protein model and docking 500 

Rosetta [41] was utilized to predict the protein structure using ab initio protein folding 501 

(http://robetta.bakerlab.org/). The top five protein pockets were generated for docking 502 

calculation with Surface Topography of proteins [42] (CASTp). We used the 503 

Cambridge Structure Database [43] to generate streptomycin conformers. The 3D 504 

protein-ligand complexes were obtained from AutoDock Vina [44]. 505 

 506 

ARG candidate gene expression plasmids construction and expression 507 
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verification 508 

The candidate resistance gene Candi_60363_1 and a positive control resistance gene 509 

AHE40557.1 were synthesized and subcloned into pUC19 vector, replacing lacZ’ 510 

gene. The recombinant plasmids were then transformed into E. coli BL21 (DE3). The 511 

expression of resistance genes was induced by Isopropyl β-D-1-thiogalactopyranoside 512 

(IPTG) and verified by quantitive Real-time PCR (qRT-PCR) assay. Briefly, bacteria 513 

were grown in LB supplemented with ampicillin (100 μg/ml) to OD600 of 0.5-0.6 by 514 

incubation at 37 °C with 220 rpm agitation, and the bacterial cultures were continued 515 

to grow until OD600 reached to 1.0 by adding or without adding 1 mM IPTG. The 516 

cells were harvested and total RNAs were purified using Bacterial RNA Extraction 517 

Kit (Vazyme Biotech). RNA reverse transcription was performed by using HiScript® 518 

II Q Select RT SuperMix for qPCR kit (Vazyme Biotech). qRT-PCR was performed 519 

by using SYBR Green Master Mix-High ROX Premixed (Vazyme Biotech) in a 520 

Stepone Plus system (Applied Biosystems). The ldh gene was used as internal control 521 

in all reactions. The relative fold changes were determined using the 2-ΔΔCt method, in 522 

which ldh was used for normalization. The protein sequences of the synthesized genes 523 

and the primer sequences for qRT-PCR were listed in Supplementary Table S8 and 524 

S9. 525 

 526 

MIC determination 527 

Minimal inhibitory concentrations (MICs) of the antibiotic for the strains containing 528 

resistance genes were determined using E-tests (three repeats). Single colonies of the 529 

strains were incubated in 3 ml Mueller-Hinton (MH) medium with the addition of 100 530 

μg/ml ampicillin at 35 oC for 4 hours, and the cells equal to 1.5X108 cells/ml were 531 

spread on MH agar plates with the addition of 100 μg/ml ampicillin and 1 mM IPTG, 532 

and streptomycin MIC Test Strips (Liofilchem®) were put in the middle of the plates. 533 

The plates were incubated at 35 oC for 18-24 hours, and the MICs were read. The 534 

strain containing empty vector was used as a negative control. 535 

 536 

Statistical test 537 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


According to the normality of the data distribution verified by the Shapiro–Wilk test 538 

and Levene’s test, the ARG abundance data distribution is Gaussian and unequal 539 

variance. Thus, statistical test of the enrichment analysis was performed utilizing the 540 

Welch’s t-test (one-tailed), at the significance level of�0.005 [45]. For all the tests, 541 

when the P value associated is lower than the significance level, one should reject the 542 

null hypothesis H0 (ARGs are not enriched in the environment or host), and accept 543 

the alternative hypothesis Ha (ARGs are enriched in the environment or host). 544 

 545 

Key Points 546 

� We developed an ontology-aware deep learning approach, ONN4ARG, which is 547 

superior to existing methods such as DeepARG in efficiency, accuracy. 548 

� ONN4ARG has the potential for detection of remotely homologous ARGs and 549 

thus generates a more comprehensive set of ARGs. 550 

� ONN4ARG enabled the comprehensive enrichment analysis of ARGs, 551 

species-wise and environment-wise. 552 

� Our study demonstrates the importance and potential of complementing the 553 

computational work with wet-lab experimental validation of gene function. 554 
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Data availability 566 

We collected metagenomic samples from several published studies [25, 26], and these 567 

samples are mainly from marine, soil and human associated environments. For human 568 

associated samples, including two gut groups (one group from Madagascar, i.e., GutM, 569 

the other group from Denmark, i.e., GutD), one oral group and one skin group (both 570 

oral and skin groups are from HMP project). Details and links about these samples are 571 

shown in Supplementary Table S3. The ONN4ARG-DB dataset could be accesses at: 572 

https://github.com/HUST-NingKang-Lab/ONN4ARG. 573 
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Code availability 575 

All source codes have been uploaded to the website at: 576 

https://github.com/HUST-NingKang-Lab/ONN4ARG, and online web service can be 577 

accessed at: http://onn4arg.xfcui.com/. 578 
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Figure Legends 747 

Figure 1. Overview of the ONN4ARG model and its use for novel ARG discovery. 748 

(A) The antibiotic resistance gene ontology contains four levels. The root (first level) 749 

is a single node, namely, “arg”. There are 1, 2, 34, and 277 nodes from the first level 750 

to the fourth level, respectively. (B) The feature encoding procedure of ONN4ARG 751 

model. The sequence alignment features and profile HMMs features are encoded by 752 

calling Diamond and HHblits. (C) The architecture of the ontology-aware neural 753 

network could be described in four functional layers, including feature embedding 754 

layer, residual layer, compress layer and ontology-aware layer. The ontology-aware 755 

layer is a partially connected layer which encourage annotation predictions satisfying 756 

the ontology rules (i.e., the ontology tree structure). Specially, weight between nodes 757 

with relationship (e.g., parent and child) satisfying the ontology rules would be saved 758 

in the partially connected layer, and weights between irrelevant nodes would be 759 

masked. (D) Building the dataset for training and testing, and applying ONN4ARG 760 

model on metagenomic samples to discover candidate novel ARGs. 761 

 762 

Figure 2. Systematic evaluation and comparison between sequence-alignment, 763 

DeepARG, and ONN4ARG. (A) The accuracy of three models on ARG 764 

classification was assessed using a box plot. Diamond was used for 765 

sequence-alignment; significance test was based on the t-test. (B) The precision and 766 

recall of DeepARG and ONN4ARG on ARG classification for each antibiotic 767 

resistance type. The masking threshold of testing set equaled 0.4 (details of masking 768 

threshold are provided in Methods). 769 

 770 

Figure 3. Broad-spectrum profile of predicted ARGs among diverse 771 

environments. (A) The proportion of predicted ARGs for different protein sequence 772 

lengths. (B) The abundance ratio of predicted ARGs among diverse environments. 773 

Abundance ratio was defined as the number of ARGs divided by the number of total 774 

genes. (C) The proportion of predicted ARGs for different sequence identities among 775 
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diverse environments. (D) Number of genes in ONN4ARG-DB (left), predicted 776 

homologous ARGs (middle), and predicted novel ARGs (right) for various resistance 777 

types. The horizontal axis indicates the logarithmic number of genes, and the vertical 778 

axis indicates different antibiotic resistance types. We collected metagenomic samples 779 

from several published studies; these samples were mainly from “marine,” “soil,” and 780 

“human” environments. Human-associated samples consisted of two gut groups (one 781 

group from Madagascar, i.e., GutM; the other group from Denmark, i.e., GutD), one 782 

oral group, and one skin group (both oral and skin groups were from the HMP 783 

project). 784 

 785 

Figure 4. Enrichment of predicted ARGs among diverse environments and hosts. 786 

(A) Relative abundance and enrichment of ARGs among diverse environments. 787 

Abundance ratio was defined as the number of ARGs divided by the number of total 788 

genes. (B) Proportion and enrichment of ARGs among diverse hosts. Colors indicate 789 

the proportion of ARGs for each phylum and resistance type. Results for the most 790 

abundant five phyla that carry ARGs are shown. “+”: P-value < 0.005 (Welch’s t-test, 791 

one-tailed). 792 

 793 

Figure 5. Functional validation of a predicted candidate novel ARG. (A) A 794 

diagram showing the procedure of heterologous expression and functional analysis of 795 

the predicted candidate ARG in the E. coli BL21 (DE3) host. (B) Gene expression 796 

validation of the predicted candidate ARG. The vertical axis indicates the relative 797 

mRNA level. (C) The MIC of the predicted candidate ARG and negative control. The 798 

vertical axis indicates the MIC value. The MIC of the predicted candidate novel ARG 799 

is significantly higher than the negative control (Welch’s t-test, one-tailed, P-value = 800 

3.5e-3). 801 

 802 

Figure 6. Phylogenetic analysis and structure investigation of Candi_60363_1. (A) 803 

Phylogenetic tree of aminoglycoside resistance enzymes, Candi_60363_1, and its 804 

homologs from the NCBI non-redundant protein database. ANT: 805 
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O-nucleotidyltransferase, AAC: N-acetyltransferase, APH: O-phosphotransferase, 806 

AADT: aminoglycoside adenylyltransferase. (B) The optimal 807 

Candi_60363_1-streptomycin complex structure (left), and the local interactions 808 

between ligand and neighboring residues (right). The docking experiment indicates 809 

there are six neighboring residues whose distances are less than three angstroms. 810 

 811 

Table 1. Accuracy comparison of sequence-alignment, DeepARG and ONN4ARG 812 

based on different masking threshold of testing set. 813 

 814 

Table 2. Evaluation results of ONN4ARG for ARGs identification at different 815 

masking threshold of testing set. 816 

 817 

Table 3. Evaluation results of DeepARG for ARGs identification at different 818 

masking threshold of testing set. 819 

  820 
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Supplementary Materials 821 

Supplementary Figure S1. The architecture of the ontology-aware neural 822 

network. (A) The architecture of the ontology-aware neural network could be 823 

described in four functional layers, including feature embedding layer, residual layer, 824 

compress layer and ontology-aware layer. The ontology-aware layer is a partially 825 

connected layer which encourage annotation predictions satisfying the ontology rules 826 

(i.e., the ontology tree structure). Specially, weight between nodes with relationship 827 

(e.g., parent and child) satisfying the ontology rules would be saved in the partially 828 

connected layer, and weights between irrelevant nodes would be masked. (B) The 829 

weight matrix derived from the antibiotic resistance ontology and the ontology-aware 830 

layer. 831 

 832 

Supplementary Figure S2. The number of pan and core ARG types among 833 

various environments, and gene mobility analysis for predicted ARGs. (A) The 834 

number of pan and core ARG types change as more groups are included. For core/pan 835 

counts, we only counted ARG types with the relative abundance ratio greater than 836 

1e-4. The pan ARGs refer to the ARG types that are included in any environments. 837 

The core ARGs refer to the ARG types that are included in all environments. (B) The 838 

venn diagram shows the ARG types relationship among marine, soil and gut groups. 839 

(C) The venn diagram shows the ARG types relationship among gut, oral and skin 840 

groups. (D) The distribution of acquired and intrinsic ARGs in various environments. 841 

(E) The line regression analysis indicates no significant correlation (P > 0.05) 842 

between the abundances of MGEs and ARGs. The horizontal axis indicates the 843 

abundance ratio of predicted ARGs and the vertical axis indicates the abundance ratio 844 

of MGEs. Each point represents a group. 845 

 846 

Supplementary Figure S3. The host range of all classified ARGs and the 847 

resistance composition of the most abundant 20 genera. (A) The Sankey diagram 848 

shows the host composition and distribution of all classified ARGs (the most abundant 849 
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20 genera carrying ARGs were used for display). (B) The bar chart indicates the 850 

diversity and relative abundance of ARGs for the most abundant 20 genera carrying 851 

ARGs. 852 

 853 

Supplementary Figure S4. The network analysis revealing the co-occurrence 854 

patterns among ARG types and microbial taxa, the nodes were represented by 855 

pie charts which shows the taxonomic compositions of ARG types. A connection 856 

represents a strong (Spearman’s � > 0.8) and significant (P-value < 0.01) correlation. 857 

The size of each node is proportional to the number of connections, that is, the degree. 858 

 859 

Supplementary Figure S5. The MIC experiment for predicted candidate ARG 860 

(top), negative control (middle) and positive control (bottom). The MIC values are 861 

tested for three repeats. 862 

 863 

Supplementary Table S1. Comparison of ONN4ARG and other methods for 864 

ARG identification on the verification set. 865 

 866 

Supplementary Table S2. Evaluation of ONN4ARG and DeepARG on the 867 

ResFinder dataset. 868 

 869 

Supplementary Table S3. Metagenomic samples using for resistance gene mining 870 

are collected from published studies. 871 

 872 

Supplementary Table S4. The number of predicted ARGs by ONN4ARG that 873 

have protein domains with known catalytic activity and/or may bind to the 874 

antimicrobials they are predicted to elicit resistance against. 875 

 876 

Supplementary Table S5. Data distribution during the pipeline of ARGs 877 

prediction. 878 

 879 
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Supplementary Table S6. The hosts of predicted ARGs at different taxonomic 880 

level. 881 

 882 

Supplementary Table S7. The predicted ARGs which fulfilling all mentioned 883 

criteria. 884 

 885 

Supplementary Table S8. Protein sequences of the synthesized genes. 886 

 887 

Supplementary Table S9. Real-time PCR primer sequences. 888 

 889 

Supplementary Table S10. The BLAST result of Candi_60363_1 when search 890 

against the NCBI non-redundant protein database. 891 

 892 

Supplementary Table S11. The binding affinity of protein–ligand complexes 893 

using the top five pockets. 894 

 895 

Supplementary Table S12. The antibiotic resistance ontology used in the 896 

ONN4ARG model. 897 

 898 

Supplementary File S1. Supplemental information about experiments. 899 
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