

Automated z-shimming for spinal fMRI

1 **Automated slice-specific z-shimming for fMRI of the human spinal cord**

2
3 Merve Kaptan ^{a*}, S. Johanna Vannesjo ^b, Toralf Mildner ^a, Ulrike Horn ^a, Ronald Hartley-Davies
4 ^c, Valeria Oliva ^d, Jonathan C.W. Brooks ^e, Nikolaus Weiskopf ^{a,f}, Jürgen Finsterbusch ^g, Falk
5 Eippert ^{a*}

6
7 ^a Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

8 ^b Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

9 ^c Department of Medical Physics, University Hospitals Bristol and Weston, Bristol, United
10 Kingdom

11 ^d School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United
12 Kingdom

13 ^e School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre
14 (UWWBIC), Norwich, United Kingdom

15 ^f Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig
16 University, Leipzig, Germany

17 ^g Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf,
18 Hamburg, Germany

19 * Corresponding authors

20
21 **Address for correspondence:** Merve Kaptan & Falk Eippert; Max Planck Research Group Pain
22 Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a,
23 04103 Leipzig, Germany, Phone: +49 341 9940 2224; mkaptan@cbs.mpg.de;
24 eippert@cbs.mpg.de

25
26 **Acknowledgements:** The authors would like to thank Torsten Schlumm for his programming
27 work regarding the development of the in-house field map, the radiographers at MPI CBS for
28 invaluable help with data acquisition and all volunteers for taking part in this study.

29

Automated z-shimming for spinal fMRI

30 **Data availability statement:** The underlying data are available in BIDS-format via OpenNeuro
31 (<https://openneuro.org/datasets/ds004068>), with the exception of the external validation dataset
32 obtained by VO, RHD, and JCWB. The intended data-sharing via OpenNeuro was mentioned in
33 the Informed Consent Form signed by the participants and approved by the ethics committee of
34 the University of Leipzig.

35

36 **Funding statement:** JB received funding from the UK Medical Research Council
37 (MR/N026969/1). FE received funding from the Max Planck Society and the European Research
38 Council (under the European Union's Horizon 2020 research and innovation programme; grant
39 agreement No 758974). VO received funding from the Wellcome Trust (203963/Z/16/Z). NW
40 received funding from the European Research Council under the European Union's Seventh
41 Framework Programme (FP7/2007-2013, ERC grant agreement No 616905), the European
42 Union's Horizon 2020 research and innovation programme (under the grant agreement No 681094)
43 and the BMBF (01EW1711A & B) in the framework of ERA-NET NEURON.

44

45 **Conflict of interest disclosure:** The Max Planck Institute for Human Cognitive and Brain
46 Sciences has an institutional research agreement with Siemens Healthcare. Nikolaus Weiskopf
47 holds a patent on acquisition of MRI data during spoiler gradients (US 10,401,453 B2). Nikolaus
48 Weiskopf was a speaker at an event organized by Siemens Healthcare and was reimbursed for the
49 travel expenses.

50

51 **Ethics approval statement:** All participants provided written informed consent and the study was
52 approved by the ethics committee at the Medical Faculty of the University of Leipzig.

53

54 Number of pages: 41, Number of figures: 4

55 Number of supplementary pages: 17, Number of supplementary figures: 6

Automated z-shimming for spinal fMRI

56

Abstract

57

58 Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges,
59 such as signal loss due to local magnetic field inhomogeneities. This issue can be addressed with
60 slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities
61 using a slice-specific gradient pulse. Here, we aim to address outstanding issues regarding this
62 technique by evaluating its effects on several aspects that are directly relevant for spinal fMRI and
63 by developing two automated procedures in order to improve upon the time-consuming and
64 subjective nature of manual selection of z-shims: one procedure finds the z-shim that maximizes
65 signal intensity in each slice of an EPI reference-scan and the other finds the through-slice field
66 inhomogeneity for each EPI-slice in field map data and calculates the required compensation
67 gradient moment. We demonstrate that the beneficial effects of z-shimming are apparent across
68 different echo times, hold true for both the dorsal and ventral horn, and are also apparent in the
69 temporal signal-to-noise ratio (tSNR) of EPI time-series data. Both of our automated approaches
70 were faster than the manual approach, lead to significant improvements in gray matter tSNR
71 compared to no z-shimming and resulted in beneficial effects that were stable across time. While
72 the field-map-based approach performed slightly worse than the manual approach, the EPI-based
73 approach performed as well as the manual one and was furthermore validated on an external
74 corticospinal data-set ($N > 100$). Together, automated z-shimming may improve the data quality of
75 future spinal fMRI studies and lead to increased reproducibility in longitudinal studies.

76

77 **Keywords:** Spinal cord; fMRI; Automated z-shim; Magnetic field inhomogeneities; Signal loss;
78 tSNR

Automated z-shimming for spinal fMRI

79 1. Introduction

80

81 The spinal cord is one of the key structures linking the brain with the peripheral nervous system
82 and participates in numerous sensory, motor and autonomic functions (Hochman, 2007). Non-
83 invasive approaches to investigate the human spinal cord are therefore of great interest not only
84 from a basic neuroscientific perspective, but also with regards to their possible clinical utility in
85 order to understand pathological mechanisms in motor and sensory disorders such as multiple
86 sclerosis and chronic pain (Wheeler-Kingshott et al., 2014). Currently, the main approach to
87 investigate spinal cord function is based on blood-oxygen-level-dependent functional magnetic
88 resonance imaging (BOLD fMRI; for reviews see Giove et al., 2004; Stroman et al., 2014;
89 Summers & Brooks, 2014; Cohen-Adad, 2017). Using conventional BOLD fMRI techniques such
90 as gradient-echo echo-planar imaging (GE EPI) is however challenging in the spinal cord due to
91 i) its small cross-sectional diameter, ii) prominent physiological noise from cardiac and respiratory
92 sources, and iii) magnetic field inhomogeneities.

93 In the cervical spinal cord (i.e. the part that is easiest to access with currently available receive
94 coils at 3T), inhomogeneities in the magnetic field occur at both large and small spatial scales
95 (Cohen-Adad, 2017). While large-scale variations are for example due to the proximity of the
96 lungs (and can thus vary dynamically; e.g. Verma & Cohen-Adad, 2014), small-scale variations
97 are due to the interfaces between vertebrae and connective tissue, which have different magnetic
98 susceptibilities (Cooke et al., 2004; Finsterbusch et al., 2012). These small-scale field
99 inhomogeneities are reproduced spatially along the superior-inferior axis of the spinal cord and
100 significantly affect image quality, leading to consistent patterns of signal loss (Maier et al., 2007;
101 Finsterbusch et al., 2012). While it would thus be imperative for reliable and reproducible fMRI
102 of the spinal cord to mitigate these effects, standard shimming techniques implemented on
103 common whole-body MR systems are not able to compensate these spatially repeating
104 inhomogeneities to an adequate degree (Finsterbusch, 2014).

105 One method that is commonly employed to overcome through-slice dephasing is slice-specific 'z-
106 shimming' (Frahm et al., 1988; Constable, 1995; Glover, 1999) where an additional gradient pulse
107 is applied in the slice-selection direction in order to compensate the effect of susceptibility-induced
108 gradients and resulting signal loss. In the brain, z-shimming has been applied in GE EPI studies
109 focused on susceptibility-prone regions, i.e. those that are close to air/bone interfaces such as the
110 orbitofrontal, the medial temporal, and the inferior temporal lobes (Yang et al., 1997; Deichmann
111 et al., 2003; Posse et al., 2003; Weiskopf et al., 2006). Finsterbusch et al. (2012) investigated
112 whether one could use this approach to also compensate for the periodically occurring signal drop-
113 outs (along the superior-inferior axis) on T2*-weighted GE EPI images of the spinal cord. By
114 applying *single*, slice-specific compensation moments – which were manually determined based
115 on a reference-scan acquired prior to the experimental EPI acquisition – they were able to
116 demonstrate an improvement in spinal cord image quality: reducing the spatially repeating signal

Automated z-shimming for spinal fMRI

117 drop-outs via slice-specific z-shimming resulted in an increase of mean signal-intensity by ~20%
118 and a reduction of signal-intensity variability along the cord by ~80%.

119 While the slice-specific z-shimming protocol developed by Finsterbusch and colleagues has
120 already been used in numerous spinal (e.g. Sprenger et al., 2012; Geuter & Buchel, 2013; Kong et
121 al., 2014; van de Sand et al., 2015; Eippert et al., 2017; Sprenger et al., 2018) and cortico-spinal
122 fMRI studies (e.g. Sprenger et al., 2015; Tinnermann et al., 2017; Vahdat et al., 2020; Oliva et al.,
123 2022), the impact of slice-specific z-shimming on EPI time-series data has not been investigated
124 systematically, as Finsterbusch and colleagues only evaluated its effects on single volumes of GE
125 EPI data, but not on time-series metrics such as tSNR (Welvaert & Rosseel, 2013). Even more
126 important – and already argued for by Finsterbusch and colleagues – would be an automated way
127 to determine the slice-specific z-shims, as these are currently determined manually by the scanner
128 operator: either visually by going through each slice and z-shim value obtained in a reference-scan
129 or by manually placing a region of interest on each slice of this reference scan and evaluating the
130 extracted signal intensity. This procedure is time-consuming, requires expertise in judging the
131 quality of spinal EPI data, and contains a subjective component, thus also limiting its potential in
132 terms of reproducibility.

133 In this study, we aim to develop an automated and user-friendly procedure for determining slice-
134 specific z-shims in order to improve the quality of spinal fMRI. In a first step, we aim to replicate
135 the results of Finsterbusch et al. using twice the original sample size (N=48). Next, we aim to
136 extend their findings by probing the relevance of slice-specific z-shimming for fMRI through
137 investigating its effects a) across different echo times, b) in distinct anatomical regions, and c) on
138 a time-series metric (tSNR). Most importantly, we propose two different automated methods for
139 determining slice-specific z-shims (each based on a sample size of N=24). The first method is
140 based on a z-shim reference-scan acquisition and determines z-shim values by analyzing EPI signal
141 intensity within the spinal cord for each combination of slice and z-shim value. The second method
142 is based on a field map acquisition and determines z-shim values by estimating the strength of the
143 gradient field needed to compensate for the local through-slice inhomogeneity for each slice. In a
144 final step, we use an independently-acquired external data-set (N>100; Oliva et al., 2022) in order
145 to validate our candidate approach for automating the selection of slice-specific z-shims.

Automated z-shimming for spinal fMRI

146 2. Material and Methods

147

148 2.1 Participants

149 48 healthy participants (22 females, mean age: 27.17 years, range 20-37 years) participated in this
150 study. All participants provided written informed consent and the study was approved by the ethics
151 committee at the Medical Faculty of the University of Leipzig. The sample size was determined
152 based on a study by Finsterbusch et al. (2012): as we wanted to replicate and extend their findings
153 (which were based on a sample of N=24), we chose the same sample size for each of our two sub-
154 groups, resulting in an overall sample size of N=48.

155

156 2.2 Study design

157 All participants underwent the following scans in the order described below (for details of scans,
158 see section ‘2.3 Data acquisition’).

159 After an initial localizer scan, the EPI slice stack and the adjust volume were prescribed and a
160 single EPI volume was acquired in order to initialize the scanner’s ‘Advanced shim mode’ – this
161 shim was then employed in all the following EPI acquisitions by using the same adjust volume.
162 An EPI z-shim reference scan was performed next in order to allow for the manual as well as EPI-
163 based automated selection of the optimal z-shim moment for each slice. Two sagittal field maps
164 (vendor-based and in-house versions, respectively) were then acquired to obtain the B_0 static
165 magnetic field distribution, of which the vendor-based one was used for the field map based
166 automated z-shim selection due to it being widely available. This was followed by the acquisition
167 of a high-resolution T2-weighted image in order to allow for spinal cord segmentation as needed
168 for the field map based automated z-shim selection.

169 In order to compare the signal characteristics under different z-shimming conditions, EPI data were
170 acquired with three different EPI protocols for each participant: without z-shim gradient
171 compensation (condition “no z-shim”), with z-shim gradient compensation based on manual z-
172 shim selection (condition “manual z-shim”), and with z-shim gradient compensation based on
173 automated z-shim selection (condition “automated z-shim”). For one-half of the participants (24
174 participants), the automated selection was based on the EPI reference scan, whereas for the other
175 half, the automated selection was based on the vendor-based field map. Both single EPI volumes
176 (as in Finsterbusch et al., 2012), as well as 250 EPI volumes (in order to assess effects on time-
177 series data), were acquired for each condition; the order of the EPI scans under different conditions
178 was pseudo-randomized across participants.

179 We also wanted to assess the benefits of slice-specific z-shimming at different echo times (TE),
180 and therefore acquired 25 EPI volumes under three different TEs (30, 40, and 50ms, each with a
181 repetition time (TR) of 2552ms) for each of the three conditions (please note that the z-shim indices
182 chosen reflect gradient fields to be compensated – rather than moments of the compensation

Automated z-shimming for spinal fMRI

183 gradient pulse – and thus scale the pulsed gradient moment with the TE such that a determined
184 index is valid for all TEs). The order of the EPI scans acquired with different TEs were also
185 pseudo-randomized across participants.

186 The EPI reference scan and the in-house field map acquisitions were repeated at the end of the
187 scanning session in order to assess the stability of z-shimming across time.

188

189 **2.3 Data acquisition**

190 All measurements were performed on a 3T whole-body Siemens Prisma MRI System (Siemens,
191 Erlangen, Germany) equipped with a whole-body radio-frequency (RF) transmit coil and 64-
192 channel RF head-and-neck coil and a 32-channel RF spine-array, using the head coil element
193 groups 5–7, the neck coil element groups 1 and 2, and spine coil element group 1 (all receive-
194 only).

195 EPI acquisitions were based on the z-shim protocol developed by Finsterbusch et al. (2012) that
196 employed a *single*, slice-specific gradient pulse for compensating through-slice signal dephasing.
197 EPI volumes covered the spinal cord from the 2nd cervical vertebra to the 1st thoracic vertebra
198 and were acquired with the following parameters: slice orientation: transverse oblique; number of
199 slices: 24; slice thickness: 5mm; field of view: $128 \times 128 \text{ mm}^2$; in-plane resolution: $1 \times 1 \text{ mm}^2$; TR:
200 2312ms; TE: 40ms; flip angle: 84° ; GRAPPA acceleration factor: 2; partial Fourier factor: 7/8,
201 phase-encoding direction: anterior-to-posterior (AP), echo spacing: 0.93ms, bandwidth per pixel:
202 1220 Hz/Pixel; additionally, fat saturation was employed. The EPI reference scan (TE: 40ms, total
203 acquisition time: 55 seconds) was acquired with 21 equidistant z-shim moments compensating
204 field inhomogeneities between +21 and -21 mT m^{-1}ms (in steps of $2.1 \text{ mT m}^{-1}\text{ms}$).

205 The vendor-based field map (total acquisition time: 4.31min) was obtained using the 2D GRE
206 sequence provided by Siemens with two echoes per shot (TE 1: 4.00ms; TE 2: 6.46ms; slice
207 orientation: sagittal (parallel to the normal vector of the axial EPI slices); slice number: 32; slice
208 thickness: 2.2mm; field-of-view: $180 \times 180 \text{ mm}^2$; in-plane resolution: $1 \times 1 \text{ mm}^2$; TR: 500ms; flip
209 angle: 50° , bandwidth per pixel of 1030 Hz/pixel). Additionally, an in-house field map based on a
210 3D multi-echo FLASH sequence with multiple gradient echoes acquired at short inter-TEs was
211 acquired, which yielded a superior signal-to-noise ratio at a reduced overall scan time. This
212 contained 12 bipolar gradient echoes (which allowed for shorter inter-echo spacings; note that
213 potential image shifts were avoided by a multi-echo navigator scan without phase encoding right
214 at the start of image acquisition; a phase correction between the odd and even echoes was
215 performed by the vendor's Ice reconstruction pipeline), a TE increment/difference of 1.3ms, fat
216 suppression RF pulses with corresponding spoiler gradients before each slab-selective excitation,
217 a repetition time of 32ms, a flip angle of 15° , bandwidth per pixel of 1030 Hz/pixel, and sagittal
218 slice orientation (parallel to the normal vector of the axial EPI slices). The in-plane and partition
219 resolutions of this in-house field map were $1 \times 1 \text{ mm}^2$ and 2.2mm, respectively, with corresponding
220 fields-of-view of $180 \times 180 \times 70.4 \text{ mm}^3$. A total scan time of less than 2min was achieved by the

Automated z-shimming for spinal fMRI

221 application of GRAPPA (an acceleration factor of 2 was used in PE dimension). The frequency
222 offset $\Delta\nu_0$ in each voxel was extracted from a linear fit to the unwrapped phases of all echoes
223 (unwrapping of phase jumps exceeding +/- π was performed using a simple algorithm; due to the
224 employed short echo and inter-echo times, this unwrapping could be applied because problems of
225 noisy phase jumps or an undersampling of the phase evolution were largely absent).

226 A high-resolution T2-weighted image was acquired using a 3D sagittal SPACE sequence as
227 recently recommended (Cohen-Adad et al., 2021; 64 sagittal slices; resolution: $0.8 \times 0.8 \times 0.8 \text{ mm}^3$;
228 field-of-view $256 \times 256 \text{ mm}^2$; TE: 120ms; flip angle: 120° ; TR: 1500ms; GRAPPA acceleration
229 factor: 3; acquisition time: 4.02min).

230

231 **2.4 Selection of slice-specific z-shim moments**

232 **2.4.1 Manual selection**

233 The researcher carrying out the data acquisition (MK) determined the z-shim moment with the
234 highest signal intensity in the spinal cord for each slice by visual inspection (i.e. for each of the 24
235 slices, the researcher looked at all 21 volumes – each volume reflecting an acquisition with one z-
236 shim moment – in order to determine the “optimal” z-shim moment for each slice). This selection
237 process took ~10 minutes per participant and was carried out for all 48 participants, i.e. in both
238 sub-groups of 24 participants.

239

240 **2.4.2 Automated selection**

241 The necessary scans for the automated selection (EPI reference-scan for EPI-based selection;
242 vendor-based field map and T2-weighted scan for field map based selection) were sent from the
243 scanner console to the online calculation computer (OS: Ubuntu 18.04, CPU: Intel Core(TM) i7-
244 3770K 3.50GHz, RAM: 16 GB, Mainboard: Gigabyte Z77X-UD3H) using the scanner console’s
245 in-built network connection. In-house MATLAB (The Mathworks Inc, 2019) scripts utilizing tools
246 from dcm2niix (version 1.0.20180622; Li et al., 2016; <https://github.com/rordenlab/dcm2niix>),
247 SCT (version 3.2.7; De Leener et al., 2017; <https://spinalcordtoolbox.com/en/stable/>), and FSL
248 (version 5.0; Jenkinson et al., 2012; <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki>) were employed to
249 determine the optimal z-shim moment for each slice. These values were then sent back to the
250 scanner console in a text file that is read by the z-shim sequence. An overview of the automated
251 methods is given in Figure 1 (please note that the z-shim selection process is automated and does
252 not require any input from the user).

253

254 **2.4.2.1 EPI-based selection**

255 In a subsample of 24 participants, the EPI z-shim reference-scan was used to determine the
256 optimum z-shim moments. The EPI z-shim reference-scan – consisting of 21 volumes (each

Automated z-shimming for spinal fMRI

257 volume corresponding to one z-shim moment) with 24 slices each – was then averaged over the
258 21 volumes (i.e. over all z-shim moments) and the resulting mean image was automatically
259 segmented using the PropSeg approach implemented in SCT (De Leener et al., 2014). Based on
260 experience from pilot experiments, we built in several fail-safes (i.e. systematically changing the
261 arguments of SCT’s PropSeg function that affect the propagation in the z-direction) in order to
262 ensure that the segmentation would propagate across the entire slice stack; this possibility to
263 automatically adjust parameters in case of failure was also the reason that – out of SCT’s
264 segmentation algorithms – we chose PropSeg instead of DeepSeg. We used the mean image for
265 segmentation because we wanted to ensure that image quality was sufficient for automatic
266 segmentation of the spinal cord and because the averaging of volumes acquired during different
267 breathing cycles avoids a bias towards one respiratory state as could occur with single volumes.
268 In post-hoc investigations regarding the suitability of using the mean EPI image for segmentation,
269 we i) used a maximum image instead of a mean image as the input for segmentation and ii) used a
270 segmentation obtained from the T2-weighted image (registered to the EPI segmentation), but both
271 of these alternative approaches resulted in highly similar results compared to our original approach
272 (data not shown). Using the automatically generated spinal cord mask, the mean signal intensities
273 for each slice and z-shim moment were extracted, resulting in a 24×21 matrix, from which the z-
274 shim moment yielding the maximum intensity across the cord mask was determined for each slice.
275 The average run-time for the execution of the selection code was 15.6 seconds (range across the
276 entire sample: 7.7- 62.3 seconds), with the variation mostly being due to the number of PropSeg
277 runs needed to achieve complete propagation. The interested reader can assess the quality of the
278 EPI-based spinal cord segmentation via a quality-control HTML-report shared together with our
279 data-set (see section 2.8).

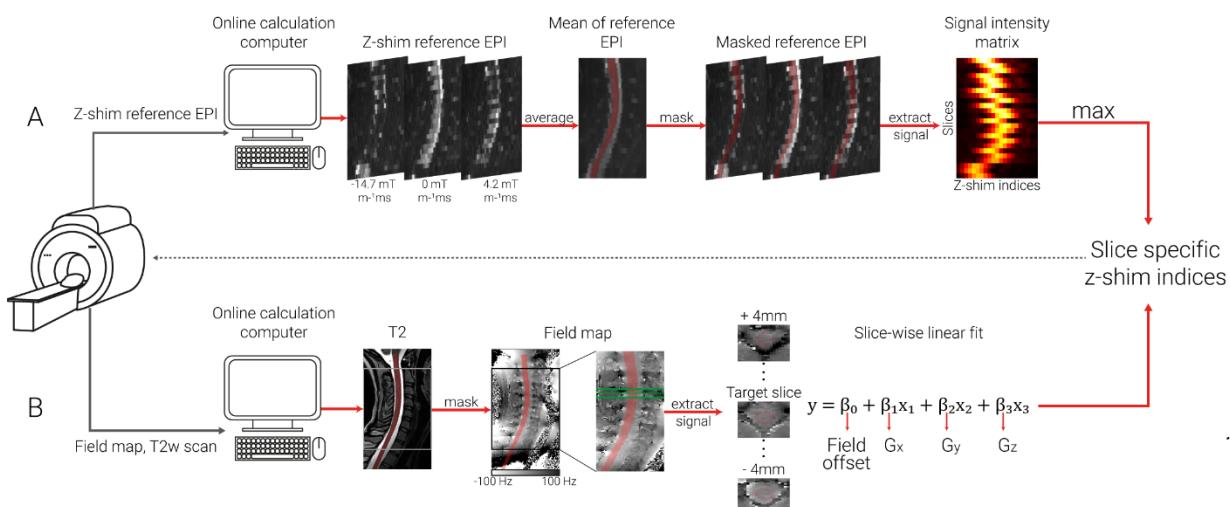
280

281 **2.4.2.2 Field map (FM) based selection**

282 In another subsample of 24 participants, sagittal field maps (acquired with the same angulation as
283 EPI data) were used to determine the optimum z-shim moments; note that field maps had
284 anisotropic voxels, as i) a high in-plane resolution of the sagittal field map is necessary in order to
285 obtain sufficient information about the gradient in the through-slice direction of the EPI (i.e. foot-
286 head) and ii) the left-right direction (where voxels were largest) is expected to have the least field
287 variation and is thus least sensitive to resolution. First, a spinal cord mask was generated via a
288 PropSeg-based automatic segmentation of each participant’s T2-weighted image because a high-
289 quality segmentation of the field map magnitude image was not possible due to the sagittal slice
290 thickness of 2.2mm as well as the poor image contrast between spinal cord and cerebrospinal fluid
291 (note that since the T2-weighted image and field map were well aligned and acquired right after
292 each other we did not carry out a separate registration step). Field map based (from now on referred
293 to as FM-based) z-shim moments were then calculated for each EPI slice using a linear least-
294 squares fit of a set of spatial basis functions to the measured field map (which was smoothed with
295 an isotropic 1mm Gaussian kernel prior to the calculation). The spatial basis functions consisted

Automated z-shimming for spinal fMRI

296 of three linear field terms along the main imaging axes and a spatially homogenous field term,
297 representing a field offset (although obtaining x- and y-gradients is not necessary for calculating
298 the through-slice field component, their inclusion can be seen as a step towards full slice-wise
299 shimming [see also Islam et al., 2019] and obtaining y-gradients is necessary for determining the
300 effective TE [see below]). Only voxels within the spinal cord mask contributed to the fitting
301 procedure, which included voxels within a 9mm thick slab (i.e. 9 transversal field map slices)
302 centered on the center of the corresponding EPI slice. The slab was chosen to be thicker than the
303 EPI slice (i.e. an additional 2mm either side) in order to give more robust estimates of the through-
304 slice field gradient. The fitted through-slice linear field term (G_z) was taken to represent the local
305 field gradient causing through-slice signal dephasing within the corresponding EPI slice. The
306 resulting dephasing gradient moment of $G_z \cdot TE$ was rounded to the nearest of the 21 z-shim
307 compensations available in the EPI protocol and then used for subsequent EPI acquisitions. The
308 average time for the execution of the selection code was 36.1 seconds (range across the entire
309 sample: 31.5- 53.3 seconds).



310
311 **Figure 1. Schematic depiction of automated z-shim methods.** After the acquisition of the
312 necessary scans for each method (z-shim reference EPI for EPI-based approach, T2-weighted
313 image and field map for field map based approach), DICOM images were exported to an online
314 calculation computer, and converted to NIfTI format before further processing. **A. EPI-based**
315 **selection.** The z-shim reference scan was then averaged across its 21 volumes (one volume per z-
316 shim moment; three volumes are depicted here as mid-sagittal sections to illustrate the varying
317 signal loss) and the resulting mean image was segmented (the segmentation is shown here as a
318 transparent red overlay for display purposes). The mean signal intensities for each slice and z-
319 shim moment were extracted from the segmented cord, resulting in a 24×21 signal intensity matrix
320 (slices \times volumes). For each slice, the z-shim value (i.e., the corresponding index in the reference
321 scan) resulting in the maximum intensity was selected. **B. Field map based selection.** A high-
322 resolution T2-weighted image was segmented and used to determine the field map voxels to be

Automated z-shimming for spinal fMRI

323 included in the fitting procedure (the segmentation is shown as a transparent red overlay for display
324 purposes). The gray and the black boxes depict the EPI coverage on the T2-weighted image and
325 phase map, respectively. Voxels within a 9mm thick slab (i.e. 9 transversal field map slices,
326 corresponding to a 5mm EPI slice + 2mm on each side) were included in a slice-wise fitting
327 procedure. The green lines on the phase map indicate the input volume for fitting an exemplary
328 target slice (dashed green line). Exemplary transversal slices are also shown, with the red line
329 outlining the spinal cord. Slice-wise fitting, including three linear field coefficients (G_x , G_y and
330 G_z) along the main axes of the imaging volume and a spatially homogenous field term (field offset),
331 was repeated over slices and the z-shim (G_z) moments corresponding to the center of the EPI slices
332 were selected.

333

334 **2.5 Preprocessing**

335 All images were visually inspected before the analysis for potential artefacts. Preprocessing steps
336 were performed using MATLAB (version 2021a), FSL (version 6.0.3), and SCT (version 4.2.2; please note that a more recent version of SCT was used for preprocessing (4.2.2) compared to the
337 automated analysis during data acquisition (3.2.7), due to the availability of releases at the
338 respective times). The reason we carried out preprocessing steps and did not work only on the raw
339 data is two-fold: i) we were interested in z-shim effects on time-series metrics (tSNR) and thus
340 needed to motion-correct the EPI time-series data and ii) we were performing most analyses in
341 template space and thus need to bring structural and functional data to this space (requiring
342 segmentation and registration-to-template steps). Please note that – depending on context – we are
343 using the terms “fMRI data” and “EPI time-series data” interchangeably.

345

346 **2.5.1 Motion-correction of EPI time-series data**

347 A two-step motion correction procedure (with spline interpolation) was applied to the EPI time-
348 series data. Initially, the mean of 750 volumes (250 volumes under each of the three different
349 conditions, i.e. no z-shim | manual z-shim | automated z-shim) was calculated in order to serve as
350 the target image for the first step of motion correction; averaging across all three conditions
351 eliminates a bias towards any one condition with respect to the target image. Based on this mean
352 image, the spinal cord was automatically segmented in order to provide a spinal cord centerline
353 that then served as input for creating a cylindrical mask (with a diameter of 30mm). This mask
354 was employed during the motion-correction procedure in order to ensure that image regions
355 moving independently from the cord would not adversely affect motion estimation. Slice-wise
356 motion correction with a 2nd degree polynomial regularization in the z-direction was then
357 performed (De Leener et al., 2017). In the second step, a new target image was obtained by
358 calculating the mean of motion-corrected images from the first step and the raw images were
359 realigned to this new target image, using the identical procedure as described above. Please note

Automated z-shimming for spinal fMRI

360 that the data obtained under different TEs (25 images per TE and condition) were also registered
361 to this target image using the same procedure.

362 Under the “no z-shim” condition, especially the inferior slices suffered from severe signal drop-
363 outs that hampered the quality of the slice-wise motion correction algorithm by inducing ‘artificial’
364 movements that were indeed not present in the raw data. This could impact the tSNR calculation
365 negatively by artificially increasing the standard deviation across time and thus give an inflated
366 estimate of the beneficial effects of z-shimming. Therefore, in a control analysis, we also
367 performed a ‘censoring’ of outlier volumes before the tSNR calculation. The outlier volumes were
368 defined using dVARS (the root mean square difference between successive volumes) and refRMS
369 (root mean square intensity difference of each volume to the reference volume) as metrics using
370 FSL’s ‘fsl_motion_outliers’ tool. Volumes presenting with dVARS or refRMS values two
371 standard deviations above the mean values of each run were selected as outliers. These outlier
372 volumes were then individually modelled as regressors of no interest.

373

374 **2.5.2 Segmentation**

375 T2-weighted images were initially segmented using the DeepSeg approach implemented in SCT
376 (Gros et al., 2019). This initial segmentation was used for smoothing the cord along its centerline
377 using an anisotropic kernel with 8mm sigma. The smoothed image was again segmented in order
378 to improve the robustness of segmentation. The quality of the segmentations was assessed visually
379 and further manual corrections were not deemed to be necessary in any participant.

380 For functional images, a manual segmentation was used instead of an automated procedure, as the
381 registration to template space relied on segmentations and we therefore aimed to make this
382 preprocessing step as accurate as possible. For the single-volume EPIs, the single volumes under
383 the three different z-shimming conditions were averaged and this across-condition mean image
384 was used to manually draw a spinal cord mask. For the EPI time-series, all motion-corrected
385 volumes were averaged and a spinal cord mask was manually drawn based on this mean image
386 (please note that this mask was also used for the normalization of the volumes with different TEs).
387 These manually drawn masks were also used to calculate results in native space.

388

389 **2.5.3 Registration to template space**

390 SCT was utilized for registering the EPI images to the PAM50 template space (De Leener et al.,
391 2018); PAM50 is an MRI template of the spinal cord and brainstem available in SCT for multiple
392 MRI contrasts. The T2-weighted image of each participant was brought into template space using
393 three consecutive registration steps: i) using the spinal cord segmentation, the spinal cord was
394 straightened, ii) the automatically determined labels of vertebrae between C2-C7 (manually
395 corrected where necessary) were used for vertebral alignment between the template and the

Automated z-shimming for spinal fMRI

396 individual T2-weighted image, and iii) the T2-weighted image was registered to the template using
397 non-rigid segmentation-based transformations.

398 In order to bring the functional images to template space, the template was registered to the
399 functional images using non-rigid transformations (with the initial step using the inverse warping
400 field obtained from the registration of the T2-weighted image to the template image). The resulting
401 inverse warping fields obtained from this registration (from native EPI space to template space)
402 were then applied to the respective functional images (e.g. single EPI volumes, mean EPI volume,
403 tSNR maps) to bring them into template space where statistical analyses were carried out.

404 Finally, we also brought each participant's field map into template space in order to visualize the
405 average B_0 field variation across participants. Each participant's field map was first resampled to
406 the resolution of the T2-weighted image before the warping field obtained from the registration to
407 template space was applied to the field map.

408

409 2.5.4 EPI signal extraction

410 In order to assess the effects of z-shimming, we obtained signal intensity data from each EPI slice.
411 When analyses were carried out in native space and were based on the entire spinal cord cross-
412 section, we used the above-mentioned hand-drawn masks of the spinal cord and obtained one value
413 per slice (average across the entire slice). In contrast, when analyses were carried out in template
414 space or were based on gray matter regions only, we made use of the available PAM50 template
415 masks of the entire spinal cord or the gray matter (with the probabilistic gray matter masks
416 thresholded at 90%); again, we obtained one average value per mask and slice. Please note that in
417 addition to reporting p-values from statistical tests, we also report (where appropriate) the
418 percentage difference between conditions and the associated 95% confidence interval (CI) as
419 estimated via bootstrapping.

420

421 2.6 Statistical analysis

422 2.6.1 Replication and extension of previous findings

423 2.6.1.1 Direct replication

424 In a first set of analyses (across all 48 participants), we aimed to replicate the findings of
425 Finsterbusch et al. (2012). We, therefore, used template space single-volume EPI data acquired
426 under no z-shim and manual z-shim conditions, calculated the individual EPI signal intensity per
427 slice and reported the *mean* of signal intensity across all slices as well as the *variation* of signal
428 intensity across all slices; for the latter, we initially used the *variance* (as done by Finsterbusch et
429 al., 2012), but after the replication of their results we employed the *coefficient of variation* for the
430 remainder of the manuscript (due to it being a standardized measure of variability). Both
431 descriptive changes (percent increase / decrease), as well as statistical values (based on paired t-

Automated z-shimming for spinal fMRI

432 tests), were reported for the condition comparison. To additionally investigate how robust these
433 findings were, we complemented these single-volume analyses – that might be affected by various
434 noise sources – by the same analysis approach, but now carried out on an EPI volume that is the
435 average of a time-series of 250 motion-corrected EPI volumes (acquired both for no z-shim and
436 manual z-shim; Supplementary Material). In order to demonstrate that neither of these results were
437 impacted by registration to template space, we also reported native space results in the
438 Supplementary Material.

439

440 **2.6.1.2 Slice-by-slice characterization of z-shim effects**

441 Finsterbusch et al. (2012) already demonstrated that the improvement due to slice-specific z-
442 shimming varies spatially along the rostro-caudal direction. We therefore reasoned that it might
443 be informative to also quantify the benefit for slices with various degrees of signal-loss (obviously,
444 such an analysis could only be performed in native space). We first did this in a descriptive manner
445 by reporting i) the maximally found percentage increase in signal intensity due to z-shimming and
446 ii) the proportion of slices that differed by 0, 1, 2, 3, and >3 z-shim steps from the ‘neutral’ setting
447 of no z-shim. In the Supplementary Material, we then followed this up more formally with an
448 analysis where we categorized slices according to the manually chosen z-shim value and compared
449 the signal intensity in these categories between no z-shim and manual z-shim both descriptively
450 (using % signal intensity difference) and inferentially using a 2×5 repeated-measures ANOVA
451 (factor 1: condition with two levels: no z-shim, manual z-shim; factor 2: step-difference with five
452 levels: 0, 1, 2, 3, >3). We tested for a main effect of condition, a main effect of step-difference and
453 an interaction between these two factors; post-hoc t-tests were Bonferroni corrected. To estimate
454 the robustness of the results from these analyses (which were based on single EPI volumes), we
455 repeated them on the average across the 250 motion-corrected EPI volumes (Supplementary
456 Material).

457

458 **2.6.1.3 z-shim effects across different TEs**

459 We also aimed to assess the effects of z-shimming at TEs clearly shorter (30ms; fastest TE possible
460 with the employed partial-Fourier factor of 7/8) and longer (50ms; same distance to our standard
461 TE of 40ms) than the estimated $T2^*$ in the cervical spinal cord at 3T (~ 40 ms; Barry et al., 2019),
462 considering that such choices might often be necessary in fMRI studies. We, therefore repeated
463 the analyses described in section 2.6.1.1 (assessing the *mean* of signal intensity across all slices as
464 well as the *variation* of signal intensity across all slices for no z-shim and manual z-shim
465 conditions) on the template-space EPI data obtained with TEs of 30ms and 50ms, both for single-
466 volume data and (in the Supplementary Material) for an average of the 25 volumes acquired at
467 each of the different TEs.

468

Automated z-shimming for spinal fMRI

469 2.6.1.4 z-shim effects in gray matter regions

470 The effects reported in Finsterbusch et al. (2012) were obtained from averages across the entire
471 cross-section of the spinal cord, thus mixing gray and white matter signals. However, with the
472 availability of probabilistic gray matter maps (via SCT, see
473 <https://github.com/spinalcordtoolbox/PAM50>; De Leener et al., 2017) it is now possible to
474 investigate whether the signal-drop outs and their mitigation via z-shimming are also present in
475 the gray matter (which is the relevant tissue for fMRI) and might even vary spatially (i.e. between
476 dorsal and ventral horns). In order to address these two questions, we ran a 2×2 repeated-measures
477 ANOVA (factor 1: condition with two levels: no z-shim, manual z-shim; factor 2: anatomical
478 location: dorsal horn, ventral horn) where we tested for a main effect of condition, a main effect
479 of location and an interaction between the two factors (Supplementary Material); this was followed
480 up by post-hoc Bonferroni-corrected t-tests (where we also report % increase for the direct
481 comparisons). As underlying metrics, we tested both the *mean* of signal intensity across all slices
482 and the *variation* of signal intensity across slices. To assess robustness, the above-described
483 analyses (based on single-volume EPIs) were repeated based on the average across the 250 motion-
484 corrected volumes. As a negative control, we also performed the same analyses as above, but now
485 splitting the spinal cord gray matter into left and right parts.

486

487 2.6.1.5 z-shim effects on time-series data

488 The analyses described above, as well as the results reported by Finsterbusch et al. (2012) were
489 solely based on measures of signal intensity. In order to directly investigate the potential benefit
490 of z-shimming for spinal cord fMRI, we also investigated its effect on the temporal signal-to-noise
491 ratio (tSNR, i.e. temporal mean divided by temporal standard deviation on a voxel-by-voxel basis)
492 of motion-corrected data (250 volumes). We are aware that effects on tSNR do not allow for a
493 perfect one-to-one extrapolation to effects on BOLD sensitivity, but we nevertheless believe this
494 to be an adequate proxy measure due to the following reasoning (Deichmann et al., 2002; De
495 Panfilis & Schwarzbauer, 2005; Poser et al., 2006): since the contrast-to-noise ratio (CNR) of
496 BOLD responses is proportional to the product of the effective TE and tSNR and the effective TE
497 does not depend on the magnetic field gradient in the z-direction, any tSNR gain obtained by z-
498 shimming should reflect a corresponding relative gain in BOLD-CNR in arbitrary task-based fMRI
499 studies.

500 Following up on section 2.6.1.4, we only assessed this in the region most relevant for fMRI, i.e.
501 the gray matter of the spinal cord. We compared *mean* tSNR across all slices, as well as *variation*
502 of tSNR across slices, between no z-shim and manual z-shim conditions: we descriptively reported
503 % increase and also tested for significant differences using paired t-tests.

504 Since signal loss in the most caudal (inferior) slices in the no z-shimming condition could
505 negatively impact the motion correction (as this is regularized along z using a 2nd-degree

Automated z-shimming for spinal fMRI

506 polynomial), we performed the above-mentioned analyses also after “censoring” of outlier
507 volumes (Supplementary Material; see also section 2.5.1).

508 As we only acquired 25 volumes for the short and long TEs due to time constraints, we did not
509 calculate TE-dependent z-shim effects on tSNR (as these would be based on unstable tSNR
510 estimates).

511

512 **2.6.2 Automating slice-specific z-shimming**

513 **2.6.2.1 EPI-based automation**

514 Next, we investigated the performance of the EPI-based automated approach for selecting z-shim
515 values, both in comparison to the conditions of no z-shim and manual z-shim; this was carried out
516 in a sub-group of 24 participants. For the sake of brevity, we i) only reported our effects of interest
517 – signal intensity based on single EPI volumes (Supplementary Material) and tSNR based on EPI
518 time-series – in the spinal cord gray matter (i.e. ignoring whole-cord data) and ii) employed direct
519 comparisons of conditions without using an initial omnibus test. Thus, in this sub-group of 24
520 participants we investigated: i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii)
521 manual z-shim vs auto z-shim. We reported % differences, as well as Bonferroni-corrected p-
522 values from paired t-tests, again using *mean* and *variation* metrics.

523

524 **2.6.2.2 FM-based automation**

525 We investigated the performance of the FM-based automated approach for selecting z-shim values
526 (based on a different sub-group of 24 participants) using the identical procedure as outlined in the
527 previous paragraph.

528 However, since we discovered that the performance of the FM-based approach was slightly
529 inferior compared to the manual approach, we followed this up with several post-hoc
530 investigations (detailed in the Supplementary Material). Briefly, we first used the vendor-based
531 field map and assessed the contributions of i) the choice of mask for identifying the spinal cord in
532 the field map phase data, ii) various choices of parameters employed in the fitting process of the
533 gradient field, iii) field-gradients in the AP-direction, and iv) inhomogeneity-induced mis-
534 localizations between EPIs and field map. Second, we substituted the vendor-based field map by
535 the in-house field map and compared their performance. Third, we assessed the general reliability
536 of estimating z-shim values from field map data by repeating the fitting process on a second in-
537 house field map that was acquired at the end of the experiment. While all these attempts aimed to
538 improve the estimation of the through-slice field inhomogeneity, a final modification of the
539 approach involved a histogram-based evaluation of the observed field gradients in order to improve
540 the resulting signal intensity.

541

Automated z-shimming for spinal fMRI

542 2.6.2.3 Comparing all three approaches

543 So far, the automated approaches were compared to the manual approach within each sub-group
544 of 24 participants. We next turned to directly comparing the approaches, using all 48 participants.

545 First, we used two-sample t-tests (with Bonferroni-corrected two-tailed p-values) in order to assess
546 the following, based on gray matter tSNR from EPI time-series (using both the mean as well as
547 the variation of tSNR across all slices): i) comparing the baselines of no z-shim between the two
548 groups, ii) comparing the improvement of manual z-shim vs no z-shim between the two groups,
549 iii) comparing the improvement of auto z-shim vs no z-shim between the two groups and iv)
550 comparing the difference of manual z-shim vs auto z-shim between the two groups. In
551 complementary analyses, we also assessed the similarity between the automated approaches and
552 the manual approach in terms of the actually chosen z-shim step using rank-based correlation and
553 Euclidean distance (Supplementary Material).

554 Second, we assessed the stability of z-shim effects (based on either of the automated approaches
555 as well as the manual approach) over time in all 48 participants. We were able to do this since we
556 acquired an EPI reference-scan not only at the beginning of the experiment, but also at the end
557 (~60 minutes later). Using these reference scans, we ‘artificially reconstructed’ an EPI volume
558 from each of the reference scans by selecting the corresponding volume for each slice based on
559 the chosen z-shim values, no matter whether a participant was in the EPI-based or FM-based
560 automation group. Importantly, we chose the ‘originally’ determined z-shim values to reconstruct
561 ‘artificial volumes’ from both the first and the second reference scan. These volumes were then
562 realigned to the mean of the motion-corrected time series. The warping fields that were obtained
563 during the normalization of motion-corrected mean image to the template space were used to bring
564 these volumes to the template space. We then compared gray matter signal characteristics (mean
565 and variation of signal intensity across slices, respectively) for both time points using the various
566 conditions via paired t-tests with Bonferroni correction.

567

568 2.7 Validation of EPI-based automation approach

569 In order to validate the EPI-based automation method (which performed at least as well as the
570 manual approach), we obtained an independent, externally acquired data set of spinal GE-EPI data.
571 These data were acquired by VO, RHD, and JCWB as part of a larger project on pharmacological
572 aspects of cortico-spinal pain modulation (Oliva et al., 2022). Here, we report results based on
573 analyzing the z-shim reference data from 117 acquisitions (39 participants, each with three visits).

574 The EPI reference scan (total acquisition time: 54 seconds) was acquired using a 2D EPI sequence
575 with the following parameters: slice orientation: axial; slice number: 43 (20 slices for the spinal
576 cord and 23 slices for the brain, i.e. concurrent cortico-spinal data acquisition); slice thickness:
577 4mm; slice gap: 25-50% (depending on the length of neck / size of head); field of view:
578 170×170mm²; in-plane resolution: 1.77×1.77mm²; TR: 3000ms; TE: 39ms; flip angle: 90°;

Automated z-shimming for spinal fMRI

579 GRAPPA acceleration factor: 2; z-shim resolution and range: 15 equidistant moments
580 between -4.9 and 4.9 mT m⁻¹ms (in steps of 0.7 mT m⁻¹ms). The high-resolution T1-weighted
581 images that were used for registration to template space were acquired with a 3D sagittal MPRAGE
582 sequence with the following parameters: 260 sagittal slices; field-of-view: 320×260mm²;
583 percentage phase field of view: 81.25%; voxel size: 1×1×1mm³; TE: 3.72ms; flip angle: 9°; TR:
584 2000ms; inversion time: 1000ms; GRAPPA acceleration factor: 3. All measurements were
585 conducted on 3T whole body Siemens Skyra system.

586 As the validation dataset did not include volumes that were acquired under different z-shimming
587 conditions, for each participant we ‘artificially reconstructed’ an EPI volume from their reference
588 scan by selecting the corresponding volume for each slice based on the chosen z-shim values (see
589 also section 2.6.2.3). We created three different EPI volumes for each participant and visit: i) a ‘no
590 z-shim’ volume (based on an index of 8 for each slice, which corresponds to a z-shim moment of
591 0 mT m⁻¹ms), ii) a ‘manual z-shim’ volume (based on the z-shim values manually selected by VO
592 when the experiment was carried out) and iii) an ‘automated z-shim’ volume (based on the above-
593 described EPI-based automation carried out post-hoc).

594 To bring these volumes to template space for each participant and visit, we applied the following
595 steps to the T1-weighted anatomical data: i) segmenting the T1 image using SCT’s DeepSeg
596 approach (Gros et al., 2019), ii) automatically labelling the vertebral levels C2-C7, and iii) bringing
597 the T1 image to template space using non-rigid transformations. Then, we applied the following
598 steps to the reconstructed EPI volumes: i) calculating the average of these three volumes (one
599 volume for no z-shim, manual z-shim and automated z-shim each), ii) segmenting the average
600 (using the PropSeg approach), iii) registering this average EPI to the template space (with the
601 initial step of using the inverse warping field obtained from the registration of the T1-weighted
602 image to the template image), iv) registering individual EPI volumes to the template space using
603 the warps obtained from the previous step (in order to be unbiased), and v) in template space
604 obtaining the signal over slices using the PAM50 cord mask.

605 Four individual data sets were excluded due to artifacts in the images (three data sets) and a wrong
606 placement of the slice stack (one data set). Our final sample thus consisted of 113 measurements
607 from 38 participants. Please also note that for preprocessing of data from one individual data set,
608 we used a more recent version of SCT (version 5.2.0) due to a bug present in version 4.2.2.

609 Finally, we compared whole cord signal characteristics (*mean* and *variation* of signal intensity
610 across slices) for i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii) manual z-
611 shim vs auto z-shim via paired t-tests with Bonferroni-correction and also reported % differences.
612 For sake of simplicity, we treated each visit as a separate data point, thus ignoring the within-
613 subject dependency structure. We also reported the results of the same analyses for gray matter
614 signal characteristics (Supplementary Material).

615

616 2.8 Open science

Automated z-shimming for spinal fMRI

617 The code that was run during the experiment for the automated selection of z-shim moments (both
618 EPI-based and FM-based), as well as all the code necessary to reproduce the reported results, is
619 publicly available on GitHub (<https://github.com/eippertlab/zshim-spinalcord>). Please also see the
620 file Methods.md in this repository for a version of the Methods section with links to specific parts
621 of the processing and analysis code. The underlying data are available in BIDS-format via
622 OpenNeuro (<https://openneuro.org/datasets/ds004068>), with the exception of the external
623 validation dataset obtained by VO, RHD and JCWB. The intended data-sharing via OpenNeuro
624 was mentioned in the Informed Consent Form signed by the participants and approved by the
625 ethics committee of the University of Leipzig.
626 Please note that during peer-review, the link to data will not yet work, as these will only be made
627 public upon acceptance of the manuscript.

Automated z-shimming for spinal fMRI

628 Results

629

630 3.1 Replication and extension of previous findings

631 3.1.1 Direct replication

632 Our first aim was to replicate earlier findings that demonstrated a significant increase of mean
633 signal intensity and a decrease of signal intensity variation across slices via z-shimming. In our
634 data set we were able to replicate these findings (Figure 2A), by also showing a significant increase
635 of mean signal intensity ($t_{(47)} = 19.97$, $p < .001$, difference of 14.8%, CI: 13.4-16.2%) and a
636 significant reduction of signal intensity variation across slices, either using the variance as a metric
637 (as the to-be-replicated study did; $t_{(47)} = 18.03$, $p < .001$, difference of 67.8%, CI: 64-71.2%) or
638 using the coefficient of variation (as we did in all further analyses; $t_{(47)} = 23.97$, $p < .001$, difference
639 of 51%, CI: 47.7-53.8%).

640

641 3.1.2 Slice-by-slice characterization of z-shim effects

642 As depicted in Figure 2A, the improvement afforded by slice-specific z-shimming periodically
643 varies along the rostro-caudal direction in a consistent manner across participants (for a depiction
644 of individual data, see Supplementary Figure 1). In a next step, we thus investigated not only what
645 the average benefit of z-shimming is across the entire slice-stack, but also quantified the benefit
646 for slices with various degrees of signal-loss due to dropouts. We first asked what the maximal
647 signal intensity gain is per participant and observed that this varied between 72% and 209%, with
648 an average across participants of 122% (note that this analysis is based on the most-affected slice
649 per participant). To descriptively characterize how many slices were affected by signal drop-out
650 to what degree across participants, we quantified for each slice by how much the manually chosen
651 z-shim value (between 1 and 21) differs from that of the no z-shim condition (a constant value of
652 11). We observed that on average 20% of slices had no difference, 32% of slices had a 1-step
653 difference, 22% of slices had a 2-step difference, 11% of slices had a 3-step difference, and 16%
654 of slices had more than a 3-step difference. In this last category, the most extreme possibly value
655 (i.e. a 10-step difference) occurred only in 1% of the slices across the whole sample, demonstrating
656 that the range chosen here for the z-shim reference scan is appropriate. As expected, signal
657 intensity improvements became more pronounced with the increasing z-shim step size: 0%
658 difference for a 0-step-difference, 5% different for a 1-step-difference, 18% difference for a 2-
659 step-difference, 41% difference for a 3-step-difference and 122% difference for a >3-step-
660 difference (Figure 2B); a statistical characterization of this relation can be found in the
661 Supplementary Material.

662

663 3.1.3 z-shim effects across different TEs

Automated z-shimming for spinal fMRI

664 In addition to the TE of 40ms (which was the default across this study), we also investigated the
665 effects of z-shimming at shorter (30ms) and longer (50ms) TEs. Focusing on mean signal intensity
666 and signal intensity variation across slices, we observed a beneficial effect of z-shimming at the
667 TE of 30ms (mean signal intensity: $t_{(47)} = 18.82$, $p < .001$, difference of 9.5%, CI: 8.6-10.5%;
668 signal intensity variation across slices: $t_{(47)} = 21.42$, $p < .001$, difference of 48%, CI: 44.2-50.7%
669 as well as at the TE of 50ms (mean signal intensity: $t_{(47)} = 16.09$, $p < .001$, difference of 11.6%,
670 CI: 10.2-12.9%; signal intensity variation across slices: $t_{(47)} = 22.20$, $p < .001$, difference of 44.7%,
671 CI: 41.4-47.7%).

672

673 3.1.4 z-shim effects in gray matter regions

674 Next, we assessed whether z-shim effects might be present in the spinal cord gray matter and might
675 even vary between the dorsal and ventral horns. An initially performed analysis of variance already
676 indicated significant effects of z-shimming in the gray matter, as well as location-dependent effects
677 of z-shimming (Figure 2C and Supplementary Material). Direct comparisons via Bonferroni-
678 corrected paired t-tests revealed that there was a significant beneficial effect of z-shimming on
679 mean signal intensity in the dorsal horn ($t_{(47)} = 18.39$, $p < .001$, difference of 18.2%, CI: 16.3-
680 20.3%), as well as in the ventral horn ($t_{(47)} = 17.05$, $p < .001$, difference of 10.9%, CI: 9.8-12.1%),
681 but that the beneficial effect of z-shimming was more evident in the dorsal horn than in the ventral
682 horn ($t_{(47)} = 7.43$, $p < .001$). These results are also in line with what can be observed visually in
683 Figure 2A, where drop-outs seem to be most pronounced in the dorsal part of the cervical spinal
684 cord (with the exception of caudal slices, where the whole cord is affected). As a negative control,
685 we also performed the same analyses as above, but now splitting the spinal cord gray matter into
686 left and right parts: as expected, there were no significant differences between these two regions.

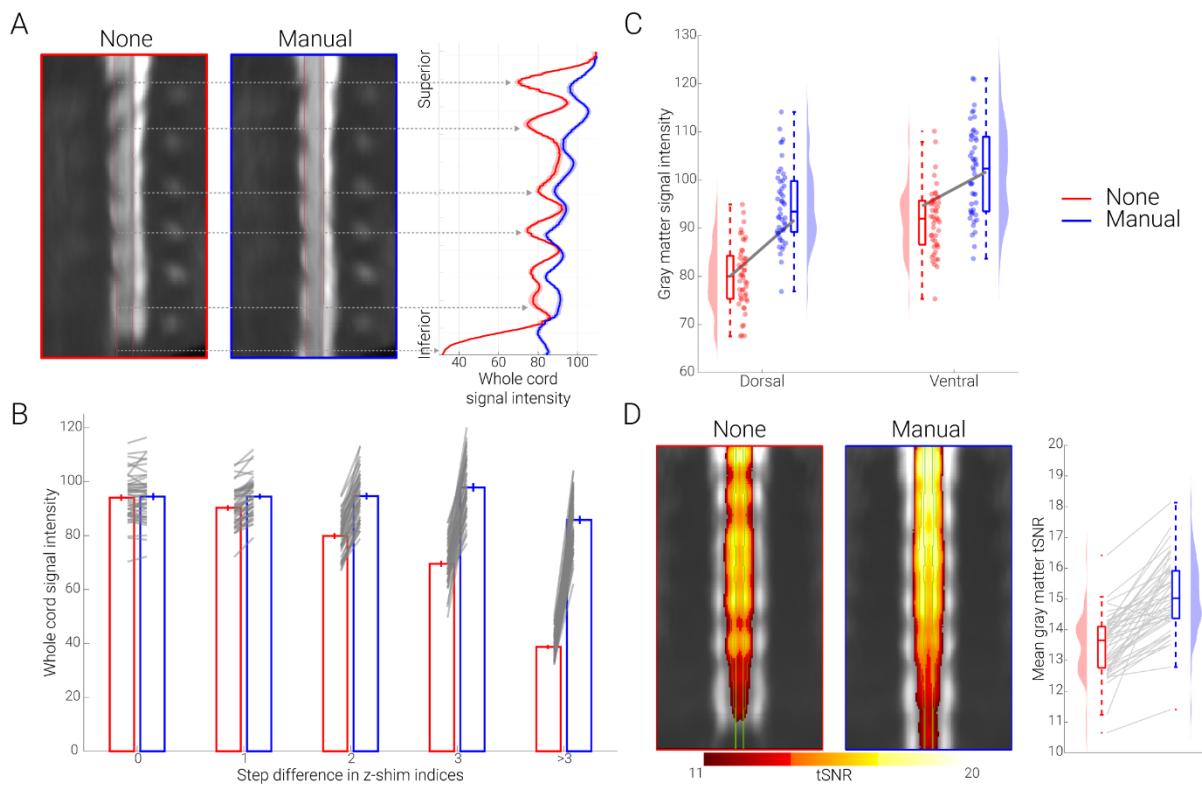
687

688 3.1.5 z-shim effects on time-series data

689 Moving away from reporting single-volume signal intensity measures, we next investigated the
690 effect of z-shimming on the gray matter temporal signal-to-noise ratio (tSNR) of motion-corrected
691 time-series data (250 volumes, acquired under no z-shim and manual z-shim, respectively). We
692 observed a significant increase in mean tSNR ($t_{(47)} = 10.64$, $p < .001$, difference of 11.9%, CI: 9.7-
693 14.2%), as well as a significant reduction of tSNR variation across slices ($t_{(47)} = 11.01$, $p < .001$,
694 difference of 26%, CI: 21.9-30%), directly highlighting the benefits for spinal fMRI (Figure 2D).
695 In the most-affected slices, z-shimming increased the tSNR by 28% on average, ranging from 1%
696 to 155% across participants (this analysis also revealed that there was one outlier where tSNR
697 decreased by 26% for manual z-shimming compared to no z-shimming).

698

Automated z-shimming for spinal fMRI



699

700 **Figure 2. Replication and extension of previous results. A. Direct replication of Finsterbusch**
701 **et al. (2012).** The mid-sagittal EPI sections consist of the group-average single volume EPI data
702 in template space of 48 participants acquired under different conditions (no z-shim and manual z-
703 shim); red lines indicate the spinal cord outline. On the right side, group-averaged signal intensity
704 in the spinal cord is shown for no (red) and manual (blue) z-shim sequences along the rostro-caudal
705 axis of the cord. The solid line depicts the mean value and the shaded area depicts the standard
706 error of the mean. **B. Slice-by-slice characterization of z-shim effects.** Bar graphs are grouped
707 according to the absolute step size difference in the z-shim indices (x-axis) between no z-shim
708 (red) and manual z-shim (blue) selections. The bars depict the mean signal intensity in the spinal
709 cord for 48 participants for no and manual z-shim single volume acquisitions in native space. The
710 vertical lines depict the standard error of the mean and the gray lines indicate participant-specific
711 mean signal intensity changes between the no and manual z-shim conditions. **C. Z-shim effects**
712 **in gray matter regions.** Signal intensity changes in different gray matter regions (dorsal horn,
713 ventral horn) under different conditions (no z-shim, manual z-shim) are depicted via box-plots and
714 raincloud plots. For the box plots, the median is denoted by the central mark and the bottom and
715 top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers
716 encompassing ~99% of the data and outliers being represented by red dots. The circles represent
717 individual participants and half-violin plots show the distribution of the gray matter intensity
718 values across participants. The thick gray lines show the mean signal intensity across participants
719 in the dorsal and ventral gray matter under different conditions. **D. Z-shim effects on time-series**
720 **data.** Group-average coronal tSNR maps for the no z-shim and manual z-shim conditions as

Automated z-shimming for spinal fMRI

721 obtained from the motion-corrected EPI data in template space. The maps are overlaid onto the
722 group-average mean image of the motion-corrected EPI data and depict a tSNR range from 11-20.
723 The green line marks the outline of the gray matter. In the right panel, the participant-specific mean
724 gray matter tSNR of the data acquired with and without z-shim are shown. Box plots are identical
725 to those in C, the gray lines indicate individual tSNR changes between both conditions and the
726 half-violin plots show the distribution across participants.

727

728 **3.2 Automation of z-shimming**

729 The previous results were all obtained using manually determined z-shim values and we now turn
730 to results obtained when automating the z-shim selection process, for which we propose two
731 methods: one is based on obtaining these values from the EPI z-shim reference scan (EPI-based)
732 and one relies on calculating the necessary z-shim values based on a field map (FM-based).

733

734 **3.2.1 EPI-based automation**

735 In a sub-group of 24 participants, we first confirmed – using gray matter tSNR as obtained from
736 motion-corrected time-series data – that also in this sub-sample manual z-shimming resulted in a
737 significant increase in mean tSNR ($t_{(23)} = 7.37$, $p < .001$, difference of 10%, CI: 7.4-12.7%) and a
738 significant decrease in tSNR variation across slices ($t_{(23)} = 7.03$, $p < .001$, difference of 27.2%, CI:
739 20.5-33.8%). Most importantly, we found a similarly beneficial effect when using our automated
740 approach (Figure 3 upper panel; see also Supplementary Figure 3), i.e. a significant increase in
741 mean tSNR ($t_{(23)} = 8.69$, $p < .001$, difference of 11.3%, CI: 8.9-13.9%) and a significant decrease
742 in tSNR variation across slices ($t_{(23)} = 7.04$, $p < .001$, difference of 26%, CI: 19.4-32.7%). When
743 directly comparing the two approaches to determine z-shim values, we observed no significant
744 difference, neither for mean tSNR ($t_{(23)} = 1.23$, $p = 0.70$), nor for tSNR variation across slices ($t_{(23)} = 0.61$,
745 $p = 1$), though a very slight benefit for the automated compared to the manual method was
746 apparent.

747

748 **3.2.2 FM-based automation**

749 Field map data demonstrate that the source of the signal drop-outs z-shimming aims to compensate
750 are B_0 field inhomogeneities in the slice direction that i) are present where one would expect them
751 based on anatomical and theoretical grounds (i.e. close to the intervertebral junctions and at the
752 bottom of the field of view where the shim is poorer) and ii) are also consistent across participants
753 (Supplementary Figure 2). In the FM-based approach, we therefore used field map data for z-shim
754 calculation in a sub-group of 24 participants (different from the ones used for the EPI-based
755 approach described above). We first confirmed – using gray matter tSNR as obtained from motion-
756 corrected time-series data – that also in this sub-sample manual z-shimming resulted in a
757 significant increase in mean tSNR ($t_{(23)} = 7.99$, $p < .001$, difference of 13.8%, CI: 10.6-17.4%) and

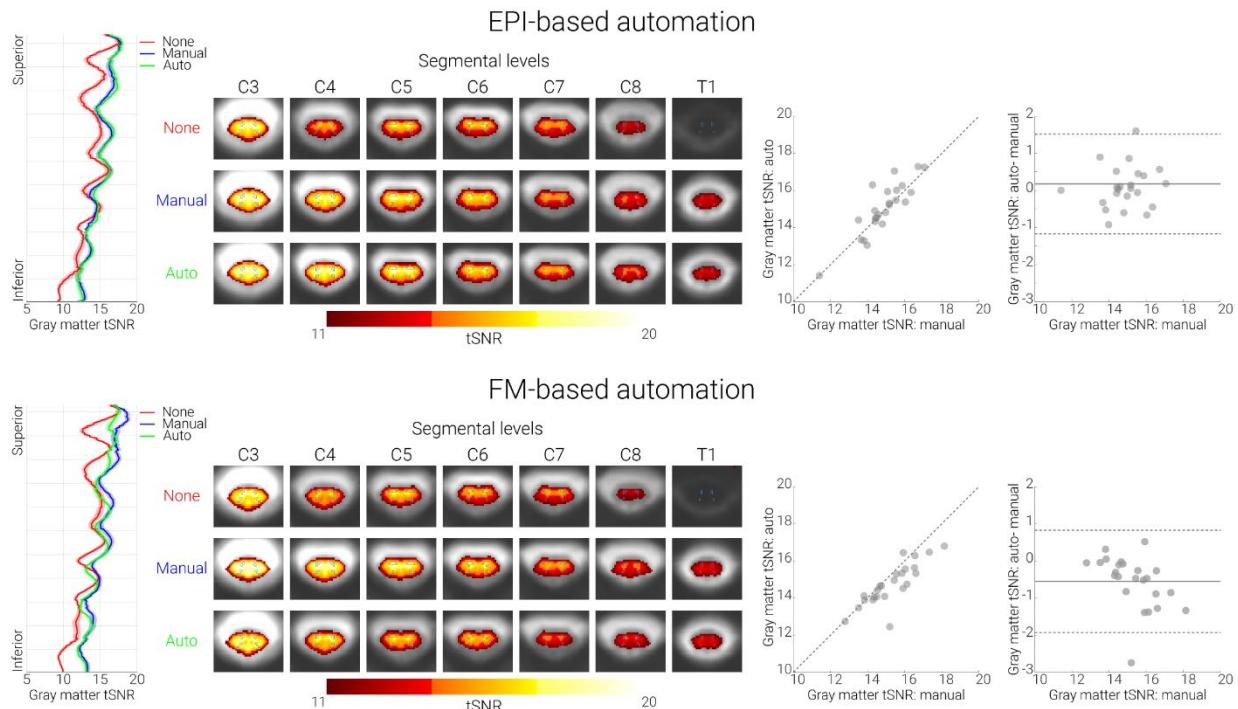
Automated z-shimming for spinal fMRI

758 a significant decrease in tSNR variation across slices ($t_{(23)} = 9.36$, $p < .001$, difference of 24.6%,
759 CI: 20.4-29%). As expected, we also observed a beneficial effect of our FM-based approach, which
760 resulted in a significant increase in mean tSNR ($t_{(23)} = 6.41$, $p < .001$, difference of 9.6%, CI: 6.9-
761 12.9%) and a significant decrease in tSNR variation across slices ($t_{(23)} = 8.30$, $p < .001$, difference
762 of 21.8%, CI: 17.4-26.2%).

763 Unexpectedly though, despite this clear benefit, the performance of the FM-based approach was
764 slightly worse than using manually determined z-shims (Figure 3 lower panel; see also
765 Supplementary Figure 3): this occurred for mean tSNR ($t_{(23)} = 3.86$, $p = .002$), but not for tSNR
766 variation across slices ($t_{(23)} = 1.07$, $p = .88$); please note that all p-values shown here and in the
767 paragraph above are Bonferroni-corrected for three tests.

768 In post-hoc analyses carried out after the complete data-set was acquired, we investigated several
769 possibilities that might account for this slightly poorer performance – all of these are explained in
770 detail in the Supplemental Material. Briefly, we investigated the influence of i) the choice of mask
771 for data extraction, ii) the choice of parameters for the fitting process, iii) the influence of field-
772 gradients in the AP-direction, and iv) inhomogeneity-induced mis-localizations between EPIs and
773 field map. We also investigated whether the type of field map played a role and whether z-shims
774 could be reliably derived at all from field map data. These investigations aimed to improve the
775 estimation of the through-slice field inhomogeneities in the field map. However, it should be noted
776 that compensating the mean through-slice field inhomogeneity of a slice may not result in the
777 optimum signal intensity: a few extreme values of the field inhomogeneity may shift the mean
778 value significantly, thereby decreasing the signal of the majority of these voxels significantly; on
779 the other hand, this shift may also not recover significant signal in the voxels with the extreme
780 values, yielding an overall lower signal amplitude. To address this issue, a different approach of
781 determining the z-shim value was used that was based on a histogram of the field gradients and
782 aimed to reduce the influence of extreme values. This approach led to a consistent improvement
783 in performance, although even this method still did not achieve the performance of the manual
784 selection.

Automated z-shimming for spinal fMRI



785

786 **Figure 3. Performance of both automated methods. Top panel. EPI-based automation.**
787 **Bottom panel. FM-based automation.** In both panels, the left-most plots show the group-
788 averaged gray-matter tSNR for no (red), manual (blue), and automated (green) z-shim sequences
789 along the rostro-caudal axis of the cord. The solid line depicts the mean value and the shaded area
790 depicts the standard error of the mean. Condition-wise group-average tSNR maps of the transversal
791 slices at the middle of each segment are shown in the second graphs from the left. The maps are
792 overlaid onto the group-average mean image of the motion-corrected EPI data and depict a tSNR
793 range from 11-20. The outlines of the thresholded gray matter mask are marked by green lines.
794 The scatter plots to the right show gray matter tSNR for manual (x-axis) and automated z-shim
795 sequences (y-axis) plotted against each other ($N = 24$ for each automation sub-group). Bland-
796 Altman plots show the gray matter tSNR for manual z-shim plotted as the ground truth (x-axis)
797 and the difference in gray matter tSNR between automated and manual sequences plotted on the
798 y-axis. The horizontal solid gray line represents the mean difference in the gray matter tSNR
799 between the two (automated and manual) sequences, and the dotted lines show the 95% limits of
800 agreement ($1.96 \times$ standard deviation of the differences).

801

802 3.2.3 Comparing all three approaches

803 To extend the within-group analyses reported above (each with $N = 24$) we next i) formally
804 compared the three approaches based on the entire set of participants ($N = 48$) and ii) investigated
805 the general question of how stable z-shim effects obtained via the three methods are across an
806 experiment.

Automated z-shimming for spinal fMRI

807 First, and most relevant for fMRI, we used mean gray matter tSNR to test for differences between
808 the EPI-based and FM-based groups. These analyses (using Bonferroni corrected two-sample t-
809 tests) revealed that there was neither a significant difference between the baselines of no z-
810 shimming in the two groups ($p = 1$), nor a significant difference between the improvement
811 compared to no z-shimming for either the manual ($p = 0.38$) or the automated approaches in the
812 two groups ($p = 1$). However, we did observe a significant difference between manual z-shim vs
813 auto z-shim in the two groups ($p = 0.003$), indicating the slightly worse performance of FM-based
814 approach (see also Supplementary Figure 5). A second set of analyses based on tSNR variation
815 across slices showed no significant differences between any of the approaches with all p-values $>$
816 .9. The results of complementary analyses on how well the selected z-shim values matched
817 between the manual approach and each of the automated approaches are reported in the
818 Supplementary Material.

819 Second, we investigated how stable the beneficial effects of z-shimming are across time. When
820 comparing how well each of the three z-shim methods performed against the case of no z-
821 shimming in terms of mean signal intensity, we observed that despite some differences the
822 beneficial effect of z-shimming was rather stable across time. More specifically, we observed that
823 i) there was a significant difference between the two time-points in the baseline condition of no z-
824 shim ($t_{(47)} = 5.59$, $p < .001$, with the first time point having significantly higher mean signal
825 compared to second one), ii) that there was a slight degradation in performance when comparing
826 z-shim benefits against no z-shimming between the 2nd and the 1st reference scan (manual: $t_{(47)} =$
827 8.44, $p < .001$; EPI-based: $t_{(47)} = 9.70$, $p < .001$; FM-based: $t_{(47)} = 9.84$, $p < .001$; thus similar across
828 all three approaches) and iii) that all z-shim methods led to significant benefits not only in the data
829 acquired at the beginning (manual vs no z-shimming: $t_{(47)} = 22.35$, $p < .001$, difference of 14%;
830 EPI-based vs no z-shimming: $t_{(47)} = 22.38$, $p < .001$, difference of 14%; FM-based vs no z-
831 shimming: $t_{(47)} = 19.36$, $p < .001$, difference of 11%) but also in the data acquired temporally later
832 from when the z-shims were determined (manual vs no z-shimming: $t_{(47)} = 18.52$, $p < .001$,
833 difference of 11%; EPI-based vs no z-shimming: $t_{(47)} = 18.63$, $p < .001$, difference of 11%; FM-
834 based vs no z-shimming: $t_{(47)} = 14.12$, $p < .001$, difference of 8%).

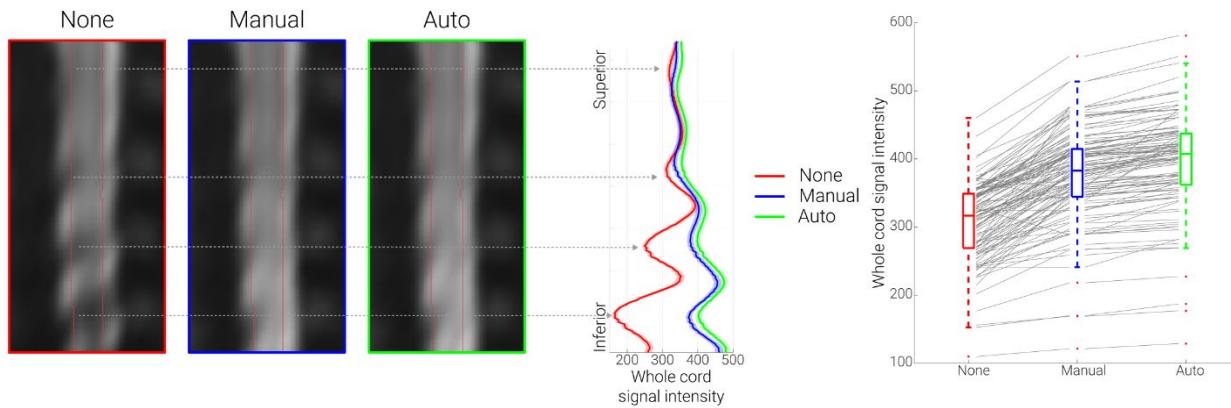
835

836 3.3 Validation of EPI-based automation approach

837 In order to validate the EPI-based automation approach, we obtained an externally acquired
838 corticospinal GE-EPI dataset consisting of 113 EPI z-shim reference scans acquired on a different
839 MR-system (Oliva et al. 2022), which also allowed us to investigate the generalizability of the
840 EPI-based automated approach in a dataset in which the manual selection was conducted by a
841 different researcher (VO). Using this independently acquired data set, we observed that –
842 compared to no z-shim – manual z-shimming resulted in a significant increase in mean signal
843 intensity ($t_{(112)} = 19.24$, $p < .001$, difference of 22.1%, CI: 19.7-24.4%) and a significant decrease
844 in signal intensity variation across slices ($t_{(112)} = 8.83$, $p < .001$, difference of 37.1%, CI: 29.7-
845 43.9%). Most importantly, the automated EPI-based approach resulted in a significant increase in

Automated z-shimming for spinal fMRI

846 mean signal intensity ($t_{(112)} = 25.93$, $p < .001$, difference of 28.3%, CI: 26.2-30.6%) and a
847 significant decrease in signal intensity variation across slices ($t_{(112)} = 10.98$, $p < .001$, difference of
848 43.1%, CI: 36.4-49.3%). When we directly compared the automated and manual approaches, we
849 observed that the automated method performed significantly better than the manual method both
850 for mean signal intensity ($t_{(112)} = 11.85$, $p < .001$), and signal intensity variation across slices ($t_{(122)} = 4.79$,
851 $p < .001$), demonstrating that the proposed EPI-based automated method can even
852 outperform the manual selection (Figure 4).



853
854 **Figure 4. Validation of EPI-based automation on an independent data-set.** The mid-sagittal
855 EPI sections on the left consist of the group-average reconstructed z-shim reference scan EPI data
856 in template space for the three different conditions (note that 'EPI reconstruction' was carried out
857 via creating a single volume for each participant from the corresponding 15-volume z-shim
858 reference scan by selecting for each slice the volume in which the z-shim moment maximized the
859 signal intensity; for no z-shim reconstruction, the 8th volume of the z-shim reference scan was
860 selected, which corresponds to the central/neutral z-shim moment, as this acquisition had a range
861 of 15 moments). The line plots in the middle depict the group-averaged spinal cord signal intensity
862 (obtained from the reconstructed z-shim reference-scan EPIs) along the rostro-caudal axis of the
863 cord for the different conditions. The solid lines depict the group-mean values and the shaded areas
864 depict the standard error of the mean. The box plots on the right show the group-mean spinal cord
865 signal intensity averaged over the entire slice-stack. The median values are denoted by the central
866 marks and the bottom and top edges of the boxes represent the 25th and 75th percentiles,
867 respectively. The whiskers encompass approximately 99% of the data and outliers are represented
868 by red dots. The gray lines indicate the participant-specific data (N=113) upon which the box-plots
869 are based.

Automated z-shimming for spinal fMRI

870 4. Discussion

871

872 One of the main challenges in fMRI of the human spinal cord is the occurrence of spatially varying
873 signal loss due to local magnetic field inhomogeneities. Here, we addressed this issue by
874 employing the technique of slice-specific z-shimming. First, we aimed to replicate the results from
875 the initial study on z-shimming in the spinal cord by investigating whether slice-specific z-shims
876 mitigate signal loss in spinal cord GE-EPI data. Next, we probed the direct relevance of z-
877 shimming to studies measuring spinal cord activity with fMRI, by investigating its benefits with
878 respect to different TEs, gray-matter signals and EPI time-series metrics. Most importantly, we
879 aimed to improve upon the typical implementation of slice-specific z-shimming (user-dependent
880 shim selection) by developing two automated approaches: one based on data from an EPI
881 reference-scan and one based on data from a field map acquisition.

882

883 4.1 Replication and extension of z-shim effects

884 The first demonstration of the benefits obtainable with slice-specific z-shimming in T2*-weighted
885 imaging of the human spinal cord was provided by Finsterbusch et al. (2012), who developed a z-
886 shim protocol tailored to the peculiarities of spinal cord imaging and assessed its effects on single
887 volume GE-EPI data. Here, our first aim was to provide a direct replication of their results in a
888 larger cohort of participants (N = 48) on a different MR-system. Similar to Finsterbusch and
889 colleagues, we observed that z-shimming led to a significant and meaningful increase of average
890 signal intensity (15%) and decrease of signal intensity variation over slices (68%) compared to the
891 baseline of no z-shimming. In order to provide some detail on the expected benefits afforded by
892 this method, we also performed a slice-by-slice characterization: while in ~20% of the slices no z-
893 shimming was needed, in the rest of the slices the application of a slice-specific z-shim resulted in
894 a significant signal increase which could be as large as ~200% in the most extreme cases.
895 Comparing these effects to those obtained with slice-specific z-shimming in the brain (Deichmann
896 et al. 2003; Weiskopf et al., 2006; Volz et al., 2019) – where z-shimming is critically important
897 for signal recovery in susceptibility-prone regions such as the orbitofrontal cortex – it becomes
898 clear that they are at least as prominent in the spinal cord and their compensation is thus critical in
899 spinal cord fMRI.

900 The above-discussed results were obtained with a TE of 40ms in order to be close to the estimated
901 T2* in the gray matter of the cervical spinal cord at 3T (41ms; Barry et al., 2019) and the TE
902 considered by Finsterbusch and colleagues (44ms). Similar to Finsterbusch et al. (2012), we
903 however also investigated the effect of z-shimming over different TEs (30ms, 40ms, 50ms), though
904 now quantitatively and at the group-level. We observed that the beneficial effect of z-shimming
905 was present to a similar degree across TEs, which is of direct relevance for fMRI. Longer TEs may
906 be hard to avoid when covering lower cord sections due to the larger field of view required to
907 avoid aliasing, in particular as higher in-plane acceleration factors may not be reasonable for the

Automated z-shimming for spinal fMRI

908 standard receive coils available. Conversely, shorter TEs might be desirable with respect to
909 increasing the temporal resolution or optimizing BOLD sensitivity (Menon et al., 1993; Gati et al.,
910 1997). In this respect, the consistent effect across TEs bodes well for using this technique flexibly
911 in various settings.

912 In addition to the choice of TE in different scenarios of spinal fMRI, another important factor to
913 consider is the anatomical region-of-interest. While this is typically the gray matter of the spinal
914 cord – with studies on motor function likely focusing on the ventral horn and studies on
915 somatosensation likely focusing on the dorsal horn – the specific effects of z-shimming on these
916 structures are currently unclear, as Finsterbusch et al. (2012) only evaluated the entire spinal cord
917 cross-section, thus averaging gray and white matter signals. There is indeed the possibility that z-
918 shim effects might be rather negligible for the spinal cord gray matter, considering that field
919 variations are most pronounced at the edge of the cord (Cooke 2004, Finsterbusch 2012, Cohen-
920 Adad 2017), which largely consists of white matter. With the recent availability of probabilistic
921 gray matter maps via SCT (De Leener et al., 2018), we were in a position to address this question
922 in this study. We observed that the beneficial effects of z-shimming were highly significant and of
923 appreciable magnitude in the gray matter. While these effects were already prominent in the ventral
924 horns (11% increase), they were much stronger in the dorsal horns (18% increase) where signal
925 losses were more severe (see also Cooke et al., 2004). Together, these results demonstrate the
926 relevance of z-shimming for spinal fMRI and highlight its necessity specifically in studies of dorsal
927 horn function, such as somatosensation and nociception. It should be mentioned though that it is
928 currently unclear whether such a pattern will also hold outside of the cervical spinal cord, i.e. in
929 thoracic and lumbar segments (see e.g. Finsterbusch, 2014). It is also important to note that in the
930 current study, we aimed to optimize the signal in the entire spinal cord cross-section, but one might
931 also consider optimizing the z-shim moments based on a gray matter region of interest. However,
932 this approach would be more time-consuming (and might require user intervention), as for
933 obtaining the gray matter masks it is necessary to first register the participant's native-space data
934 to template space and then warp the probabilistic gray-matter masks back to native space. Such a
935 two-step approach is necessary since with the current spatial resolution and signal quality of EPI
936 data at 3T it is not possible to automatically segment the gray matter robustly in every slice of
937 every participant (in our experience, this also holds for T2*-weighted ME-GRE protocols in lower
938 cervical segments).

939 The improvement in signal intensity we have discussed so far might in the worst case not directly
940 translate into improved fMRI data quality (as indexed e.g. by tSNR): this might for example
941 happen if physiological noise dominates the time-series or if participants move strongly in the z-
942 direction and thus render the chosen z-shim moment for a slice incorrect. We therefore quantified
943 the beneficial effect of z-shimming on gray matter tSNR, by acquiring time-series data under
944 different z-shimming conditions, and observed a 12% increase in the mean tSNR and a 26%
945 decrease of tSNR variability over slices. It is important to note that as none of the data analysed
946 here were high-pass filtered or corrected for the presence of physiological noise (Brooks et al.,

Automated z-shimming for spinal fMRI

947 2008), it is likely that the absolute tSNR values observed (range across participants for manually
948 z-shimmed data in template space: 11.4 to 18.1) represent a worst case. By acquiring z-shim
949 reference scans at the beginning and at the end of our experiment (separated by ~60 minutes), we
950 were furthermore able to demonstrate that the effect of z-shimming was sufficiently stable across
951 time, which is another important consideration for fMRI studies, as they usually require long
952 scanning sessions. It should be mentioned however that participant-movement in the slice direction
953 may reduce the performance of the z-shim compensation, although we deem this unlikely to
954 happen frequently, considering the slice thickness used (5mm) and the distance of the vertebral
955 disks that define the modulation of the magnetic flux density (~15mm, see e.g. Wilke et al. 1997
956 for an overview and Busscher et al., 2010 for more recent data).

957

958 **4.2 Automation of z-shimming**

959 While the above-mentioned results demonstrate the utility of z-shimming for fMRI of the spinal
960 cord, this approach requires detailed manual intervention in order to select the slice-specific z-
961 shim moments. In order to overcome this drawback, in this study, we developed two different
962 automated methods for the selection of the z-shim moments. Although such approaches have been
963 developed for fMRI of the brain (Weiskopf et al., 2007a; Marshall et al., 2009; Tang & Huang,
964 2011; Volz et al., 2019), they are lacking for fMRI of the spinal cord (with one notable exception
965 to be discussed later, i.e. Islam et al., 2019) despite being desirable for a number of reasons. First,
966 an automated method would be more time-efficient by reducing the time needed for selecting the
967 z-shim moments. Second, it might enable more sites to perform spinal fMRI studies, as it reduces
968 the need for extensive experience in judging spinal cord EPI data quality. Third, due to its
969 automated nature it would eliminate the subjective (and error-prone) component involved in z-
970 shim selection and thus increase reproducibility, which is especially important in longitudinal or
971 multi-center studies. In the following, we describe the two different automated z-shim approaches
972 we developed, with one being EPI-based and the other being field map based (FM-based).

973 The first automated method is based on the acquisition of an EPI z-shim reference scan – which is
974 also employed for the manual selection – and relies on finding the z-shim moment that leads to the
975 highest spinal cord EPI signal in each slice. This simple method achieved an at least identical
976 performance in terms of all the investigated signal characteristics compared to the manual z-shim
977 moment selection. In addition to that, the EPI-based approach was much faster compared to the
978 manual selection: the calculations were completed in 15 seconds on average, whereas the manual
979 selection took approximately 10 minutes for our set-up (24 slices and 21 z-shim values). The
980 acquisition time of the z-shim reference scan was 55 seconds, but this could be shortened by
981 limiting the range of the acquired z-shim moments. With the current set-up, we observed that the
982 range of the acquired z-shim moments could indeed be restricted to achieve shorter acquisition
983 times, as the most extreme z-shim moments were chosen quite rarely (lower-most moment of z-
984 shim range chosen only in 1% of the slices, upper-most moment never). A drawback of the EPI-
985 based approach is that it does not provide the flexibility to obtain slice-specific x- and y-shim

Automated z-shimming for spinal fMRI

986 settings at the same time in order to account for field gradients in the read and phase direction
987 simultaneously (Volz et al., 2019). To obtain those, additional reference scans would be necessary
988 and thus prolong the scan-time significantly (Finsterbusch et al., 2012). This drawback could be
989 overcome by basing the slice-specific shim selection on a field map, which would allow for
990 estimating x-, y-, and z-shims for each slice simultaneously – as already suggested by Finsterbusch
991 et al. (2012) and Islam et al. (2019) – and this was the second approach we employed.

992 The FM-based approach was motivated by the fact that the source of the signal drop-outs which
993 slice-specific z-shimming aims to compensate are B_0 field inhomogeneities in the slice direction.
994 The optimum z-shim value should thus be derivable from a field map, and we therefore fit a
995 spatially linear gradient field in the slice direction to the measured field map data in order to
996 estimate the gradient moment that will compensate the local through-slice field inhomogeneity.
997 This FM-based approach provided highly significant benefits when compared to no z-shimming
998 in terms of all the investigated signal characteristics. Similar to the EPI-based approach, the FM-
999 based approach was clearly advantageous over manual z-shim selection in terms of the selection
1000 time (36 seconds on average). Compared to the EPI-based approach, it was however more time-
1001 consuming in terms of the time needed to acquire the different scans. First, we acquired a vendor-
1002 based field map, which took ~5 minutes (though quicker field map acquisitions could be used).
1003 Second, we acquired a standard high-resolution T2-weighted image (which also took
1004 approximately 5 minutes to acquire; Cohen-Adad et al., 2021) for automated segmentation of the
1005 spinal cord, instead of the magnitude image from the field map. This choice was motivated by not
1006 wanting our results to be affected by the quality of the segmentation as neither the image
1007 resolution, nor the contrast of the magnitude image was optimal for the currently employed
1008 automated segmentation. However, the increased acquisition time for field map and T2-weighted
1009 image should be considered against the background that such images are acquired routinely in
1010 spinal fMRI experiments (e.g. for registration purposes). We thus believe that in typical research
1011 settings (where a few additional minutes of scan time might be negligible), the choice between the
1012 EPI-based and FM-based should in principle be guided by the slice-specific shim sets one needs
1013 to obtain (z-shim only: EPI-based; x-, y-, and z-shim: FM-based, though one would ideally want
1014 to acquire a field-map with higher resolution in the x-direction than done here).

1015 However, we currently recommend using the automated EPI-based approach, as the performance
1016 of the automated FM-based approach was slightly inferior compared to the manual approach.
1017 While this difference was significant, it was small (~4%) and limited to only some of the
1018 investigated metrics. We initially investigated several possibilities for this slightly worse
1019 performance (such as i) the choice of mask for data extraction, ii) the choice of parameters for the
1020 fitting process, iii) the influence of field-gradients in the AP-direction, iv) inhomogeneity-induced
1021 mis-localizations between EPIS and field map, and v) the reliability of FM-based z-shim
1022 calculation), but were not able to determine any factor that would improve the FM-based approach
1023 meaningfully. A slight but noticeable improvement was however brought about when substituting
1024 the vendor-based field map with a more robust in-house field map. A more significant

Automated z-shimming for spinal fMRI

1025 improvement could be obtained by employing a histogram-based evaluation of the field gradients.
1026 Approximating the most probable field gradient values, this method aims to optimize the
1027 compensation for the majority of the voxels that contribute most to the signal, at the expense of
1028 more extreme values for which a significant compensation could only be achieved by sacrificing
1029 the compensation of most other voxels. While an improvement with this approach is observed, it
1030 still does not perform as well as the approach based on the reference scan which may have several
1031 reasons. On one hand, the relative intensities of the voxels as relevant in the EPI images are not
1032 appropriately considered. On the other hand, while the EPI-based approach is based on the same
1033 pulse sequence and has identical acquisition parameters as the target data (i.e. it exactly reflects
1034 the signal intensity achieved with the fMRI protocol), the FM-based approach is based on a
1035 different pulse sequence that is less prone to artifacts, but comes with a different voxel size as well
1036 as image orientation and position. These data could thus theoretically be expected to have a better
1037 quality and be more accurate, but may be less consistent with the EPI data (e.g. in terms of effects
1038 arising from in-plane field gradients (Deichmann et al., 2002; Weiskopf et al., 2007b) or slice
1039 thickness/profile modifications due to field inhomogeneities (Epstein & Magland, 2006) and most
1040 importantly are not determined from the EPI signal intensity.

1041 It is also important to note that there are several ways of calculating the optimal z-shim moments
1042 from field map data and other approaches have for example taken the route of directly optimizing
1043 BOLD sensitivity in the brain based on EPI BOLD contrast models (e.g. Balteau et al., 2010; Volz
1044 et al., 2019). In the spinal cord, Islam et al. (2019) recently proposed an FM-based automated z-
1045 shim selection method for simultaneous brain and spinal fMRI. However, their implementation
1046 was aimed at compensating spatially broader field variations, as they fit a quadratic field term
1047 using voxels from slices that were ± 4 cm distant from the target slice (which would cover 16 EPI
1048 slices in our case). In our study, we aimed to compensate for more localized field variations along
1049 the superior-inferior axis of the cord and therefore only included voxels from slices that were ± 4
1050 mm distant from the target slice. While comparing the performance of our approach directly to
1051 these approaches is beyond the scope of the current work, with the open availability of our code
1052 and data, this should be possible for the interested reader.

1053

1054 4.3 Validation of EPI-based z-shim automation

1055 Finally, we demonstrated the validity of our EPI-based automation approach in an independently
1056 acquired large-scale cortico-spinal dataset ($N > 100$; Oliva et al., 2022). In this case, the automated
1057 approach exceeded the performance of manual selection (though we were not able to test this
1058 performance advantage in a further independent data-set). Such a pattern of results might be
1059 expected for studies where manual z-shim selection has to be performed rather fast due to time
1060 constraints (such as in the validation dataset, where a pharmacological challenge of the opioidergic
1061 and noradrenergic systems took place) – in our methodologically oriented study, particular
1062 emphasis was placed on the manual z-shim selection being as precise as possible, thus making the
1063 advantage of the automated approach possibly less apparent. This also hints at the potential of this

Automated z-shimming for spinal fMRI

1064 approach to make z-shim selection more reliable and homogenous in complex studies where
1065 personnel might vary (e.g. in longitudinal or multi-site projects) and thus have different levels of
1066 experience that could detrimentally influence manual z-shim selection. Finally, since the cortico-
1067 spinal dataset naturally suffered from more severe signal drop-outs and acquisition artefacts such
1068 as ghosting (e.g. due to the large acquisition volume), the performance of the EPI-based
1069 automation approach demonstrates the robustness of this method with regards to varying levels of
1070 data quality.

1071

1072 **4.4 Limitations**

1073 We would also like to point out several limitations of the presented work. First, the slice-wise z-
1074 shim approach is only applicable to axially acquired single-shot GE-EPI data. While this type of
1075 acquisition is used by numerous groups when studying somatomotor (e.g. Maier et al., 2007;
1076 Vahdat et al., 2015; Weber et al., 2016; Kinany et al., 2019), somatosensory (Brooks et al. 2012;
1077 Tinnermann et al., 2017; Weber et al., 2020; Oliva et al., 2022) or resting-state spinal cord
1078 responses (Kong et al., 2014; San Emeterio Nateras, 2016; Kinany et al., 2020), there is also a
1079 strong tradition of using spin-echo approaches (for reviews, see e.g. Stroman, 2005 and Powers et
1080 al., 2018) and a more recent development in using multi-shot acquisitions (e.g. Barry et al., 2014;
1081 Barry et al., 2021; note that while the use of short TEs makes these acquisitions less affected by
1082 signal-dropout, in principle z-shimming might also be beneficial here). Second, although previous
1083 studies have demonstrated a high correlation of tSNR and signal intensity with BOLD sensitivity
1084 (particularly when effects of echo shifting are considered; e.g. Deichmann et al., 2003; Weiskopf
1085 et al., 2005; Poser et al., 2006), we cannot make direct extrapolations from the here-observed
1086 beneficial effects of z-shimming on tSNR to similar effects on task-based BOLD responses. In
1087 future methodological studies, it would thus be interesting to also acquire task-based spinal fMRI
1088 data under different z-shimming conditions to demonstrate the effect of z-shimming on the
1089 detection of BOLD responses – while this has been demonstrated in brain fMRI studies (Gu et al.,
1090 2002; Du et al., 2007), such evidence is currently lacking for the spinal cord (for a first step in this
1091 direction, see Islam et al., 2019). Third, the FM-based approach could be optimized e.g. by
1092 improving field-map quality to a degree where an automated segmentation of the magnitude image
1093 is possible (thus precluding any possible mismatch between the field-map and the T2-weighted
1094 image that is used for spinal cord identification) and increasing the spatial resolution of the field-
1095 map (currently limited at ~2mm in x-direction) in order to allow for full xyz-shimming (see also
1096 Islam et al., 2019).

Automated z-shimming for spinal fMRI

1097 5. Conclusions

1098

1099 Spinal cord fMRI suffers from magnetic field inhomogeneities that negatively affect data quality,
1100 particularly via signal loss. In the current study, we extensively characterized the performance of
1101 slice-specific z-shimming in mitigating the effects of these inhomogeneities and developed two
1102 automated slice-specific z-shim approaches. We believe that our automated approaches will be
1103 beneficial for future spinal cord fMRI studies since they i) are less time-consuming than the
1104 traditional approach, ii) do not require extensive experience in judging data quality, and iii) are
1105 expected to increase reproducibility by eliminating the subjective component in the z-shim
1106 selection processes. This latter point is particularly important for longitudinal fMRI studies as they
1107 could be envisioned in the clinical setting where disease progression and treatment effects could
1108 be monitored.

Automated z-shimming for spinal fMRI

1109 References

1110

1111 Balteau, E., Hutton, C., & Weiskopf, N. (2010). Improved shimming for fMRI specifically
1112 optimizing the local BOLD sensitivity. *Neuroimage*, 49(1), 327–336.
1113 <https://doi.org/10.1016/j.neuroimage.2009.08.010>

1114 Barry, R. L., Smith, S. A., Dula, A. N., & Gore, J. C. (2014). Resting state functional connectivity
1115 in the human spinal cord. *ELife*, 3, e02812. <https://doi.org/10.7554/eLife.02812>

1116 Barry, R. L., & Smith, S. A. (2019). Measurement of T_2^* in the human spinal cord at 3T. *Magnetic*
1117 *resonance in medicine*, 82(2), 743–748. <https://doi.org/10.1002/mrm.27755>

1118 Barry, R. L., Conrad, B. N., Maki, S., Watchmaker, J. M., McKeithan, L. J., Box, B. A., Weinberg,
1119 Q. R., Smith, S. A., & Gore, J. C. (2021). Multi-shot acquisitions for stimulus-evoked
1120 spinal cord BOLD fMRI. *Magnetic Resonance in Medicine*, 85(4), 2016–2026.
1121 <https://doi.org/10.1002/mrm.28570>

1122 Brooks, J. C. W., Beckmann, C. F., Miller, K. L., Wise, R. G., Porro, C. A., Tracey, I., & Jenkinson,
1123 M. (2008). Physiological noise modelling for spinal functional magnetic resonance
1124 imaging studies. *NeuroImage*, 39(2), 680–692.
1125 <https://doi.org/10.1016/j.neuroimage.2007.09.018>

1126 Busscher, I., Ploegmakers, J. J. W., Verkerke, G. J., & Veldhuizen, A. G. (2010). Comparative
1127 anatomical dimensions of the complete human and porcine spine. *European Spine Journal*,
1128 19(7), 1104–1114. <https://doi.org/10.1007/s00586-010-1326-9>

1129 Cohen-Adad, J. (2017). Functional Magnetic Resonance Imaging of the Spinal Cord: Current
1130 Status and Future Developments. *Seminars in Ultrasound, CT and MRI*, 38(2), 176–186.
1131 <https://doi.org/10.1053/j.sult.2016.07.007>

1132 Cohen-Adad, J., Alonso-Ortiz, E., Abramovic, M., Arneitz, C., Atcheson, N., Barlow, L., Barry,
1133 R. L., Barth, M., Battiston, M., Büchel, C., Budde, M., Callot, V., Combes, A. J. E., De
1134 Leener, B., Descoteaux, M., de Sousa, P. L., Dostál, M., Doyon, J., Dvorak, A., ... Xu, J.
1135 (2021). Generic acquisition protocol for quantitative MRI of the spinal cord. *Nature*
1136 *Protocols*, 16(10), 4611–4632. <https://doi.org/10.1038/s41596-021-00588-0>

1137 Constable, R. T. (1995). Functional MR imaging using gradient-echo echo-planar imaging in the
1138 presence of large static field inhomogeneities. *Journal of Magnetic Resonance Imaging*,
1139 5(6), 746–752. <https://doi.org/10.1002/jmri.1880050622>

1140 Cooke, F. J., Blamire, A. M., Manners, D. N., Styles, P., & Rajagopalan, B. (2004). Quantitative
1141 proton magnetic resonance spectroscopy of the cervical spinal cord. *Magnetic resonance*
1142 *in medicine*, 51(6), 1122–1128. <https://doi.org/10.1002/mrm.20084>

Automated z-shimming for spinal fMRI

1143 De Panfilis, C., & Schwarzbauer, C. (2005). Positive or negative blips? The effect of phase
1144 encoding scheme on susceptibility-induced signal losses in EPI. *NeuroImage*, 25(1), 112–
1145 121. <https://doi.org/10.1016/j.neuroimage.2004.11.014>

1146 Deichmann, R., Josephs, O., Hutton, C., Corfield, D. R., & Turner, R. (2002). Compensation of
1147 Susceptibility-Induced BOLD Sensitivity Losses in Echo-Planar fMRI Imaging.
1148 *NeuroImage*, 15(1), 120–135. <https://doi.org/10.1006/nimg.2001.0985>

1149 Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies
1150 of the orbitofrontal cortex. *NeuroImage*, 19(2 Pt 1), 430–441.
1151 [https://doi.org/10.1016/s1053-8119\(03\)00073-9](https://doi.org/10.1016/s1053-8119(03)00073-9)

1152 De Leener, B., Kadouri, S., & Cohen-Adad, J. (2014). Robust, accurate and fast automatic
1153 segmentation of the spinal cord. *NeuroImage*, 98, 528–536.
1154 <https://doi.org/10.1016/j.neuroimage.2014.04.051>

1155 De Leener, B., Lévy, S., Dupont, S. M., Fonov, V. S., Stikov, N., Louis Collins, D., Callot, V., &
1156 Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing
1157 spinal cord MRI data. *NeuroImage*, 145(Pt A), 24–43.
1158 <https://doi.org/10.1016/j.neuroimage.2016.10.009>

1159 De Leener, B., Fonov, V. S., Collins, D. L., Callot, V., Stikov, N., & Cohen-Adad, J. (2018).
1160 PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the
1161 ICBM152 space. *NeuroImage*, 165, 170–179.
1162 <https://doi.org/10.1016/j.neuroimage.2017.10.041>

1163 Du, Y. P., Dalwani, M., Wylie, K., Claus, E., & Tregellas, J. R. (2007). Reducing susceptibility
1164 artifacts in fMRI using volume-selective z-shim compensation. *Magnetic resonance in
1165 medicine*, 57(2), 396–404. <https://doi.org/10.1002/mrm.21150>

1166 Eippert, F., Kong, Y., Winkler, A. M., Andersson, J. L., Finsterbusch, J., Büchel, C., Brooks, J.,
1167 & Tracey, I. (2017). Investigating resting-state functional connectivity in the cervical
1168 spinal cord at 3T. *NeuroImage*, 147, 589–601.
1169 <https://doi.org/10.1016/j.neuroimage.2016.12.072>

1170 Epstein, C. L., & Magland, J. (2006). A novel technique for imaging with inhomogeneous
1171 fields. *Journal of magnetic resonance*, 183(2), 183–192.
1172 <https://doi.org/10.1016/j.jmr.2006.08.012>

1173 Finsterbusch, J., Eippert, F., & Büchel, C. (2012). Single, slice-specific z-shim gradient pulses
1174 improve T2*-weighted imaging of the spinal cord. *NeuroImage*, 59(3), 2307–2315.
1175 <https://doi.org/10.1016/j.neuroimage.2011.09.038>

1176 Finsterbusch, J. (2014). Chapter 2.2—B0 Inhomogeneity and Shimming. In J. Cohen-Adad & C.
1177 A. M. Wheeler-Kingshott (Eds.), *Quantitative MRI of the Spinal Cord* (pp. 68–90).
1178 Academic Press. <https://doi.org/10.1016/B978-0-12-396973-6.00006-X>

Automated z-shimming for spinal fMRI

1179 Frahm, J., Merboldt, K.-D., & Hänicke, W. (1988). Direct FLASH MR imaging of magnetic field
1180 inhomogeneities by gradient compensation. *Magnetic Resonance in Medicine*, 6(4), 474–
1181 480. <https://doi.org/10.1002/mrm.1910060412>

1182 Gati, J. S., Menon, R. S., Uğurbil, K., & Rutt, B. K. (1997). Experimental determination of the
1183 BOLD field strength dependence in vessels and tissue. *Magnetic Resonance in Medicine*,
1184 38(2), 296–302. <https://doi.org/10.1002/mrm.1910380220>

1185 Geuter, S., & Büchel, C. (2013). Facilitation of pain in the human spinal cord by placebo
1186 treatment. *The Journal of neuroscience*, 33(34), 13784–13790.
1187 <https://doi.org/10.1523/JNEUROSCI.2191-13.2013>

1188 Giove, F., Garreffa, G., Giulietti, G., Mangia, S., Colonnese, C., & Maraviglia, B. (2004). Issues
1189 about the fMRI of the human spinal cord. *Magnetic resonance imaging*, 22(10), 1505–
1190 1516. <https://doi.org/10.1016/j.mri.2004.10.015>

1191 Glover G. H. (1999). 3D z-shim method for reduction of susceptibility effects in BOLD
1192 fMRI. *Magnetic resonance in medicine*, 42(2), 290–299.
1193 [https://doi.org/10.1002/\(sici\)1522-2594\(199908\)42:2<290::aid-mrm11>3.0.co;2-n](https://doi.org/10.1002/(sici)1522-2594(199908)42:2<290::aid-mrm11>3.0.co;2-n)

1194 Gros, C., De Leener, B., Badji, A., Maranzano, J., Eden, D., Dupont, S. M., Talbott, J.,
1195 Zhuoquiong, R., Liu, Y., Granberg, T., Ouellette, R., Tachibana, Y., Hori, M., Kamiya, K.,
1196 Chougar, L., Stawiarz, L., Hillert, J., Bannier, E., Kerbrat, A., Edan, G., ... Cohen-Adad,
1197 J. (2019). Automatic segmentation of the spinal cord and intramedullary multiple sclerosis
1198 lesions with convolutional neural networks. *NeuroImage*, 184, 901–915.
1199 <https://doi.org/10.1016/j.neuroimage.2018.09.081>

1200 Gu, H., Feng, H., Zhan, W., Xu, S., Silbersweig, D. A., Stern, E., & Yang, Y. (2002). Single-Shot
1201 Interleaved Z-Shim EPI with Optimized Compensation for Signal Losses due to
1202 Susceptibility-Induced Field Inhomogeneity at 3 T. *NeuroImage*, 17(3), 1358–1364.
1203 <https://doi.org/10.1006/nimg.2002.1274>

1204 Hochman S. (2007). Spinal cord. *Current biology*, 17(22), R950–R955.
1205 <https://doi.org/10.1016/j.cub.2007.10.014>

1206 Islam, H., Law, C. S. W., Weber, K. A., Mackey, S. C., & Glover, G. H. (2019). Dynamic per slice
1207 shimming for simultaneous brain and spinal cord fMRI. *Magnetic Resonance in Medicine*,
1208 81(2), 825–838. <https://doi.org/10.1002/mrm.27388>

1209 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012).
1210 FSL. *NeuroImage*, 62(2), 782–790. <https://doi.org/10.1016/j.neuroimage.2011.09.015>

1211 Kinany, N., Pirondini, E., Martuzzi, R., Mattera, L., Micera, S., & Van de Ville, D. (2019).
1212 Functional imaging of rostrocaudal spinal activity during upper limb motor tasks.
1213 *NeuroImage*, 200, 590–600. <https://doi.org/10.1016/j.neuroimage.2019.05.036>

Automated z-shimming for spinal fMRI

1214 Kinany, N., Pirondini, E., Micera, S., & Van De Ville, D. (2020). Dynamic Functional
1215 Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic
1216 Architecture. *Neuron*, 108(3), 424-435.e4. <https://doi.org/10.1016/j.neuron.2020.07.024>

1217 Kong, Y., Eippert, F., Beckmann, C. F., Andersson, J., Finsterbusch, J., Büchel, C., Tracey, I., &
1218 Brooks, J. C. (2014). Intrinsically organized resting state networks in the human spinal
1219 cord. *Proceedings of the National Academy of Sciences of the United States of
1220 America*, 111(50), 18067–18072. <https://doi.org/10.1073/pnas.1414293111>

1221 Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for
1222 neuroimaging data analysis: DICOM to NIfTI conversion. *Journal of neuroscience
1223 methods*, 264, 47–56. <https://doi.org/10.1016/j.jneumeth.2016.03.001>

1224 Maier, M., Iannetti, G. D., Bodurka, J., Tracey, I., Bandettini, P. A., & Porro, C. A. (2007).
1225 Functional Responses in the Human Spinal Cord during Willed Motor Actions: Evidence
1226 for Side- and Rate-Dependent Activity. *Journal of Neuroscience*, 27(15), 4182–4190.
1227 <https://doi.org/10.1523/JNEUROSCI.3910-06.2007>

1228 Marshall, H., Hajnal, J. V., Warren, J. E., Wise, R. J., & Larkman, D. J. (2009). An efficient
1229 automated z-shim based method to correct through-slice signal loss in EPI at 3T. *Magnetic
1230 Resonance Materials in Physics, Biology and Medicine*, 22(3), 187–200.
1231 <https://doi.org/10.1007/s10334-009-0164-4>

1232 Menon, R. S., Ogawa, S., Tank, D. W., & Uğurbil, K. (1993). 4 Tesla gradient recalled echo
1233 characteristics of photic stimulation-induced signal changes in the human primary visual
1234 cortex. *Magnetic Resonance in Medicine*, 30(3), 380–386.
1235 <https://doi.org/10.1002/mrm.1910300317>

1236 Oliva, V., Hartley-Davies, R., Moran, R., Pickering, A. E., & Brooks, J. C. (2022). Simultaneous
1237 brain, brainstem, and spinal cord pharmacological-fMRI reveals involvement of an
1238 endogenous opioid network in attentional analgesia. *eLife*, 11, e71877.
1239 <https://doi.org/10.7554/eLife.71877>

1240 Poser, B. A., Versluis, M. J., Hoogduin, J. M., & Norris, D. G. (2006). BOLD contrast sensitivity
1241 enhancement and artifact reduction with multiecho EPI: Parallel-acquired inhomogeneity-
1242 desensitized fMRI. *Magnetic Resonance in Medicine*, 55(6), 1227–1235.
1243 <https://doi.org/10.1002/mrm.20900>

1244 Posse, S., Shen, Z., Kiselev, V., & Kemna, L. J. (2003). Single-shot T2* mapping with 3D
1245 compensation of local susceptibility gradients in multiple regions. *NeuroImage*, 18(2),
1246 390–400. [https://doi.org/10.1016/S1053-8119\(02\)00016-2](https://doi.org/10.1016/S1053-8119(02)00016-2)

1247 Powers, J. M., Ioachim, G., & Stroman, P. W. (2018). Ten Key Insights into the Use of Spinal
1248 Cord fMRI. *Brain Sciences*, 8(9), 173. <https://doi.org/10.3390/brainsci8090173>

Automated z-shimming for spinal fMRI

1249 San Emeterio Nateras, O., Yu, F., Muir, E. R., Bazan, C., Franklin, C. G., Li, W., Li, J., Lancaster,
1250 J. L., & Duong, T. Q. (2016). Intrinsic Resting-State Functional Connectivity in the Human
1251 Spinal Cord at 3.0 T. *Radiology*, 279(1), 262–268.
1252 <https://doi.org/10.1148/radiol.2015150768>

1253 Sprenger, C., Eippert, F., Finsterbusch, J., Bingel, U., Rose, M., & Büchel, C. (2012). Attention
1254 modulates spinal cord responses to pain. *Current biology*, 22(11), 1019–1022.
1255 <https://doi.org/10.1016/j.cub.2012.04.006>

1256 Sprenger, C., Finsterbusch, J., & Büchel, C. (2015). Spinal cord-midbrain functional connectivity
1257 is related to perceived pain intensity: a combined spino-cortical fMRI study. *The Journal of
1258 neuroscience*, 35(10), 4248–4257. <https://doi.org/10.1523/JNEUROSCI.4897-14.2015>

1259 Sprenger, C., Stenmans, P., Tinnermann, A., & Büchel, C. (2018). Evidence for a spinal
1260 involvement in temporal pain contrast enhancement. *NeuroImage*, 183, 788–799.
1261 <https://doi.org/10.1016/j.neuroimage.2018.09.003>

1262 Stroman, P. W. (2005). Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord:
1263 Spinal fMRI. *Clinical Medicine and Research*, 3(3), 146–156.

1264 Stroman, P. W., Wheeler-Kingshott, C., Bacon, M., Schwab, J. M., Bosma, R., Brooks, J., Cadotte,
1265 D., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M. G.,
1266 Filippi, M., Kelley, B. J., Kollias, S., Mackay, A., Porro, C. A., Smith, S., ... Tracey, I.
1267 (2014). The current state-of-the-art of spinal cord imaging: Methods. *NeuroImage*, 84,
1268 1070–1081. <https://doi.org/10.1016/j.neuroimage.2013.04.124>

1269 Summers, P. E., Brooks, J. C. W., & Cohen-Adad, J. (2014). Chapter 4.1—Spinal Cord fMRI. In
1270 J. Cohen-Adad & C. A. M. Wheeler-Kingshott (Eds.), *Quantitative MRI of the Spinal Cord*
1271 (pp. 221–239). Academic Press. <https://doi.org/10.1016/B978-0-12-396973-6.00015-0>

1272 Tang, Y.-W., & Huang, T.-Y. (2011). Real-time feedback optimization of z-shim gradient for
1273 automatic compensation of susceptibility-induced signal loss in EPI. *NeuroImage*, 55(4),
1274 1587–1592. <https://doi.org/10.1016/j.neuroimage.2011.01.045>

1275 Tinnermann, A., Geuter, S., Sprenger, C., Finsterbusch, J., & Büchel, C. (2017). Interactions
1276 between brain and spinal cord mediate value effects in placebo hyperalgesia. *Science*,
1277 358(6359), 105. <https://doi.org/10.1126/science.aan1221>

1278 Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015).
1279 Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during
1280 Motor Sequence Learning. *PLOS Biology*, 13(6), e1002186.
1281 <https://doi.org/10.1371/journal.pbio.1002186>

1282 Vahdat, S., Khatibi, A., Lungu, O., Finsterbusch, J., Büchel, C., Cohen-Adad, J., Marchand-
1283 Pauvert, V., & Doyon, J. (2020). Resting-state brain and spinal cord networks in humans

Automated z-shimming for spinal fMRI

1284 are functionally integrated. *PLOS BIOLOGY*, 18(7), e3000789.
1285 <https://doi.org/10.1371/journal.pbio.3000789>

1286 van de Sand, M. F., Sprenger, C., & Büchel, C. (2015). BOLD responses to itch in the human
1287 spinal cord. *NeuroImage*, 108, 138–143.
1288 <https://doi.org/10.1016/j.neuroimage.2014.12.019>

1289 Verma, T., & Cohen-Adad, J. (2014). Effect of respiration on the B0 field in the human spinal cord
1290 at 3T. *Magnetic resonance in medicine*, 72(6), 1629–1636.
1291 <https://doi.org/10.1002/mrm.25075>

1292 Volz, S., Callaghan, M. F., Josephs, O., & Weiskopf, N. (2019). Maximising BOLD sensitivity
1293 through automated EPI protocol optimisation. *NeuroImage*, 189, 159–170.
1294 <https://doi.org/10.1016/j.neuroimage.2018.12.052>

1295 Weber, K. A., Chen, Y., Wang, X., Kahnt, T., & Parrish, T. B. (2016). Lateralization of cervical
1296 spinal cord activity during an isometric upper extremity motor task with functional
1297 magnetic resonance imaging. *NeuroImage*, 125, 233–243.
1298 <https://doi.org/10.1016/j.neuroimage.2015.10.014>

1299 Weber, K. A., Chen, Y., Paliwal, M., Law, C. S., Hopkins, B. S., Mackey, S., Dhaher, Y., Parrish,
1300 T. B., & Smith, Z. A. (2020). Assessing the spatial distribution of cervical spinal cord
1301 activity during tactile stimulation of the upper extremity in humans with functional
1302 magnetic resonance imaging. *NeuroImage*, 217, 116905.
1303 <https://doi.org/10.1016/j.neuroimage.2020.116905>

1304 Welvaert, M., & Rosseel, Y. (2013). On the Definition of Signal-To-Noise Ratio and Contrast-To-
1305 Noise Ratio for fMRI Data. *PLOS ONE*, 8(11), e77089.
1306 <https://doi.org/10.1371/journal.pone.0077089>

1307 Weiskopf, N., Klose, U., Birbaumer, N., & Mathiak, K. (2005). Single-shot compensation of image
1308 distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI.
1309 *NeuroImage*, 24(4), 1068–1079. <https://doi.org/10.1016/j.neuroimage.2004.10.012>

1310 Weiskopf, N., Hutton, C., Josephs, O., & Deichmann, R. (2006). Optimal EPI parameters for
1311 reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T
1312 and 1.5 T. *NeuroImage*, 33(2), 493–504.
1313 <https://doi.org/10.1016/j.neuroimage.2006.07.029>

1314 Weiskopf, N., Hutton, C., Deichmann, R., (2007a). Automated slice-dependent z-shim for fMRI:
1315 user-independent reduction of BOLD sensitivity losses. *Proceedings of the ISMRM 15th
1316 Scientific Meeting and Exhibition*, p. 3314.

1317 Weiskopf, N., Hutton, C., Josephs, O., Turner, R., & Deichmann, R. (2007b). Optimized EPI for
1318 fMRI studies of the orbitofrontal cortex: Compensation of susceptibility-induced gradients

Automated z-shimming for spinal fMRI

1319 in the readout direction. *Magnetic Resonance Materials in Physics, Biology and Medicine*,
1320 20(1), 39–49. <https://doi.org/10.1007/s10334-006-0067-6>

1321 Wheeler-Kingshott, C. A., Stroman, P. W., Schwab, J. M., Bacon, M., Bosma, R., Brooks, J.,
1322 Cadotte, D. W., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N.,
1323 Fehlings, M. G., Filippi, M., Kelley, B. J., Kollias, S., Mackay, A., Porro, C. A., Smith, S.,
1324 Strittmatter, S. M., ... Tracey, I. (2014). The current state-of-the-art of spinal cord imaging:
1325 applications. *NeuroImage*, 84, 1082–1093.
1326 <https://doi.org/10.1016/j.neuroimage.2013.07.014>

1327 Wilke, H.-J., Kettler, A., Wenger, K. H., & Claes, L. E. (1997). Anatomy of the sheep spine and
1328 its comparison to the human spine. *The Anatomical Record*, 247(4), 542–555.
1329 [https://doi.org/10.1002/\(SICI\)1097-0185\(199704\)247:4<542::AID-AR13>3.0.CO;2-P](https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P)

1330 Yang, Q. X., Dardzinski, B. J., Li, S., Eslinger, P. J., & Smith, M. B. (1997). Multi-gradient echo
1331 with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the
1332 olfactory cortex at 3.0 T. *Magnetic resonance in medicine*, 37(3), 331–335.
1333 <https://doi.org/10.1002/mrm.1910370304>

1334

Automated z-shimming for spinal fMRI

1335

Supplementary Material

1336

1337 Please note that for sake of readability, the numbering of the headers in the Supplementary Material
1338 was kept consistent with the Results section in the main text.

1339

1340 **3.1 Replication and extension of previous findings**

1341 **3.1.1 Direct replication**

1342 To additionally investigate how robust the findings in the main manuscript are, we supplement the
1343 single-volume analyses (that might be affected by various noise sources) by the same analysis
1344 approach, but now carried out on an EPI volume that is the average of a time-series of 250 motion
1345 corrected EPI volumes (acquired both for no z-shim and manual z-shim). We observed a
1346 significant increase of mean signal intensity ($t_{(47)} = 19.03$, $p < .001$, difference of 12%) and a
1347 significant reduction of signal intensity variation across slices ($t_{(47)} = 27.22$, $p < .001$, difference
1348 of 51%) for manual z-shim compared to no z-shim.

1349 We also conducted the same analysis in native space (both for single-volume data and the average
1350 of a time-series of 250 motion corrected EPI volumes) instead of template space and observed
1351 very similar results demonstrating the benefit of z-shimming: for the single-volume data, we
1352 observed a significant increase of mean signal intensity ($t_{(47)} = 21.07$, $p < .001$, difference of 19%)
1353 and a significant reduction of signal intensity variation across slices ($t_{(47)} = 25.55$, $p < .001$,
1354 difference of 55%). For the average of a time-series of 250 motion corrected EPI volumes, we also
1355 observed a significant increase of mean signal intensity ($t_{(47)} = 20.14$, $p < .001$, difference of 16%)
1356 and a significant reduction of signal intensity variation across slices ($t_{(47)} = 26.15$, $p < .001$,
1357 difference of 54%). All of these results mirror those reported in the main manuscript.

1358

1359 **3.1.2 Slice-by-slice characterization of z-shim effects**

1360 Here, we complement the qualitative results reported in the main text by a more formal approach:
1361 we first carried out an analysis where we categorized each slice of the single-volume EPIs
1362 according to the step-difference between the manually chosen z-shim value and that of no z-shim
1363 (value 11) and compared the signal intensity in these categories between no z-shim and manual z-
1364 shim using a 2x5 repeated-measures ANOVA (factor 1: *condition* with levels no z-shim and
1365 manual z-shim; factor 2: *step-difference* of 0, 1, 2, 3, >3). We observed a significant main effect
1366 of condition ($F_{(1,88)} = 222.74$, $p < .001$), a significant main effect of step-difference ($F_{(4,352)} = 355.8$,
1367 $p < .001$) and a significant interaction ($F_{(4,352)} = 204.66$, $p < .001$). Post-hoc Bonferroni-corrected
1368 t-tests then revealed that the signal intensity improvement by z-shimming was not significant in
1369 those slices that had no step-difference and thus served as a negative control ($t_{(47)} = 1.16$, $p = 1$),
1370 but that it increased with increasing step-difference (step-difference of 1: $t_{(47)} = 11.48$ $p < .001$;

Automated z-shimming for spinal fMRI

1371 step-difference of 2: $t_{(47)} = 19.84$, $p < .001$; step-difference of 3: $t_{(47)} = 18.02$, $p < .001$; step-difference of >3: $t_{(47)} = 35.13$, $p < .001$).

1373 In order to assess the robustness of these effects, we also repeated the same analysis on the average
1374 of 250 motion corrected EPI volumes. The ANOVA showed a significant main effect of condition
1375 ($F_{(1,88)} = 145.99$, $p < .001$), a significant main effect of step-difference ($F_{(4,352)} = 311.18$, $p < .001$)
1376 and a significant interaction ($F_{(4,352)} = 184.72$, $p < .001$). Post-hoc Bonferroni-corrected t-tests
1377 revealed that the signal intensity in the no z-shimming condition unexpectedly was minimally (but
1378 consistently) higher in those slices that had no step-difference control ($t_{(47)} = -4.95$, $p < .001$,
1379 difference of 1%), but more importantly that the beneficial effect of z-shimming increased with
1380 increasing step-difference (step-difference of 1: $t_{(47)} = 5.35$ $p < .001$, difference of 3%; step-
1381 difference of 2: $t_{(47)} = 16.91$, $p < .001$, difference of 16%; step-difference of 3: $t_{(47)} = 13.45$, $p <$
1382 $.001$, difference of 32%; step-difference of >3: $t_{(47)} = 32.79$, $p < .001$, difference of 115%).

1383

1384 **3.1.3 z-shim effects across different TEs**

1385 When we repeated the analysis from the main text on the average of 25 motion-corrected volumes
1386 we observed very similar results. The effects of z-shimming were highly significant both at the TE
1387 of 30ms (mean signal intensity: $t_{(47)} = 21.40$, $p < .001$, difference of 10%; signal intensity variation
1388 across slices: $t_{(47)} = 22.60$, $p < .001$, difference of 48%) and at the TE of 50ms (mean signal
1389 intensity: $t_{(47)} = 16.70$, $p < .001$, difference of 12%; signal intensity variation across slices: $t_{(47)} =$
1390 20.80 , $p < .001$, difference of 44%).

1391

1392 **3.1.4 z-shim effects in gray matter regions**

1393 In order to formally compare the mean of signal intensity in different gray matter regions, we used
1394 a 2x2 repeated-measures ANOVA (factor 1: *condition* with levels no z-shim and manual z-shim;
1395 factor 2: *anatomical location* with levels dorsal horn and ventral horn). We observed a significant
1396 main effect of condition ($F_{(1,94)} = 621.33$, $p < .001$), a significant main effect of anatomical location
1397 ($F_{(1,94)} = 39.70$, $p < .001$) and a significant interaction ($F_{(1,94)} = 21.31$, $p < .001$); note that post-hoc
1398 t-tests are reported in the main text.

1399 When we investigated the variation of signal intensity using the same ANOVA approach, we
1400 observed a significant main effect of condition ($F_{(1,94)} = 1024.40$, $p < .001$), a significant main
1401 effect of anatomical location ($F_{(1,94)} = 30.32$, $p < .001$) and a significant interaction ($F_{(1,94)} = 9.60$,
1402 $p = .003$). Following this up with post-hoc Bonferroni-corrected t-tests revealed there was a
1403 significant beneficial effect of z-shimming in the dorsal horn ($t_{(47)} = 21.43$, $p < .001$, difference of
1404 48%), as well as in the ventral horn ($t_{(47)} = 25.18$, $p < .001$, difference of 47%), but that the
1405 beneficial effect of z-shimming was more evident in the dorsal horn than in the ventral horn ($t_{(47)}$
1406 = 4.06, $p < .001$).

Automated z-shimming for spinal fMRI

1407 As a negative control analysis, we carried out the same ANOVA approach, but now using the mean
1408 of signal intensity from the left vs right parts of the cord, where no differential effects should occur.
1409 As expected, we observed a significant main effect of condition ($F_{(1,94)} = 690.05$, $p < .001$), no
1410 significant main effect of location ($F_{(1,94)} = 0.01$, $p = 0.90$) and no significant interaction ($F_{(1,94)} =$
1411 0.09 , $p = 0.76$).

1412 We repeated the above analyses (which are based on single-volume EPIs) with an average of the
1413 250 motion-corrected volumes. A 2x2 repeated-measures ANOVA (factor 1: *condition* with levels
1414 no z-shim and manual z-shim; factor 2: *anatomical location* with levels dorsal horn and ventral
1415 horn) showed a significant a significant main effect of condition ($F_{(1,94)} = 629.52$, $p < .001$), a
1416 significant main effect of anatomical location ($F_{(1,94)} = 36.55$, $p < .001$) and a significant interaction
1417 ($F_{(1,94)} = 4.90$, $p = .03$). Post-hoc Bonferroni-corrected t-tests revealed there was a significant
1418 beneficial effect of z-shimming in terms of the signal intensity in the dorsal horn ($t_{(47)} = 18.85$, p
1419 $< .001$, difference of 15%), as well as in the ventral horn ($t_{(47)} = 16.59$, $p < .001$, difference of
1420 11%), but that the beneficial effect of z-shimming was more evident in the dorsal horn than in the
1421 ventral horn ($t_{(47)} = 4.87$, $p < .001$). With respect to variation of signal intensity, the ANOVA
1422 resulted in a significant main effect of condition ($F_{(1,94)} = 1300.20$, $p < .001$), a significant main
1423 effect of anatomical location ($F_{(1,94)} = 27.78$, $p < .001$) and a significant interaction ($F_{(1,94)} = 4.08$,
1424 $p = .046$). Post-hoc Bonferroni-corrected t-tests revealed there was a significant beneficial effect
1425 of z-shimming in terms of reduction in the signal intensity variation over slices in the dorsal horn
1426 ($t_{(47)} = 24.95$, $p < .001$, difference of 46%), as well as in the ventral horn ($t_{(47)} = 26.33$, $p < .001$,
1427 difference of 48%), but that the beneficial effect of z-shimming was more evident in the dorsal
1428 horn than in the ventral horn ($t_{(47)} = 2.69$, $p = 0.01$).

1429

1430 3.1.5 z-shim effects on time-series data

1431 When we investigated the effects of z-shimming on tSNR using motion-censored time-series data,
1432 we observed a significant increase in mean tSNR ($t_{(47)} = 10.73$, $p < .001$, difference of 9%), as well
1433 as a significant reduction of tSNR variation across slices ($t_{(47)} = 10.94$, $p < .001$, difference of
1434 25%). In the most-affected slices, z-shimming increased the tSNR by 26% on average, ranging
1435 from 6% to 116% across participants (this analysis revealed that there were 3 outliers where tSNR
1436 decreased by 1% (for two of the outliers) and 29% (for one of the outliers) for manual z-shimming
1437 compared to no z-shimming), again similar to what is reported in the main manuscript.

1438

1439 3.2 Automation of z-shimming

1440 3.2.1 EPI-based automation

1441 When analyzing single-volume EPI gray matter signal intensity (in order to relate these effects to
1442 those from the direct replication performed earlier), we observed a significant increase of mean
1443 signal intensity ($t_{(23)} = 12.51$, $p < .001$, difference of 13%) and a significant decrease in signal

Automated z-shimming for spinal fMRI

1444 intensity variation across slices ($t_{(23)} = 16.89$, $p < .001$, difference of 51%) for manual z-shimming
1445 against no z-shimming. Most importantly, we found a similarly beneficial effect when using our
1446 automated approach, i.e. a significant increase in mean signal intensity ($t_{(23)} = 12.18$, $p < .001$,
1447 difference of 14%) and a significant decrease in signal intensity variation across slices ($t_{(23)} =$
1448 16.97 , $p < .001$, difference of 48%). When directly comparing the two approaches to determine z-
1449 shim values, we observed no significant difference, neither for mean signal intensity ($t_{(23)} = 0.31$,
1450 $p = 1$), nor for signal variation across slices ($t_{(23)} = 2.49$, $p = 0.06$), though in both cases the
1451 performance of the automated approach was slightly superior. Overall, these results strongly
1452 mirror those based on tSNR reported in the main manuscript.

1453

1454 3.2.2 Field map based (FM-based) automation

1455 When analyzing single-volume EPI gray matter signal intensity, we observed a significant increase
1456 of mean signal intensity ($t_{(23)} = 15.39$, $p < .001$, difference of 15%) and a significant decrease in
1457 signal intensity variation across slices ($t_{(23)} = 20.81$, $p < .001$, difference of 52%) for manual z-
1458 shimming against no z-shimming. Most importantly, we found a similarly beneficial effect when
1459 using our automated approach, i.e. a significant increase in mean signal ($t_{(23)} = 13.59$, $p < .001$,
1460 difference of 12%) and a significant decrease in signal variation across slices ($t_{(23)} = 17.42$, $p <$
1461 $.001$, difference of 49%). When directly comparing the two approaches to determine z-shim values,
1462 we observed a significant difference for the mean signal intensity ($t_{(23)} = 3.82$, $p = 0.003$), but not
1463 for variation across slices ($t_{(23)} = 1.52$, $p = 0.43$), again showing the slightly inferior performance
1464 of this automated approach compared to manual z-shimming, congruent with the tSNR-based
1465 results in the main manuscript.

1466 In the following, we detail the post-hoc investigations we undertook in order to determine possible
1467 reasons for the unexpected sub-optimal performance of the FM-based approach. Briefly, we first
1468 used the vendor-based field map and assessed the contributions of i) the choice of mask for
1469 identifying the spinal cord in the field map phase data, ii) various choices of parameters employed
1470 in the fitting process of the gradient field, iii) field-gradients in the AP-direction, and iv)
1471 inhomogeneity-induced mis-localizations between EPIs and field map. Second, we substituted the
1472 vendor-based field map by the more robust in-house field map and compared their performance.
1473 Third, we assessed the general reliability of estimating z-shim values from field map data by
1474 repeating the fitting process on a second in-house field map that was acquired at the end of the
1475 experiment. Finally, we calculated the optimum z-shim values using a histogram-based evaluation
1476 instead of a linear fit to reduce the influence of extreme values. In order to determine whether the
1477 performance of FM-based z-shim selection would improve with the different post-hoc approaches
1478 we undertook, we i) calculated the chosen z-shim values, ii) based on those we then artificially
1479 ‘reconstructed’ the EPI z-shim reference scan for each approach (see Methods section 2.7.3 for
1480 details), and iii) compared the gray matter signal characteristics (*mean* and *coefficient of variation*)
1481 between the new implementation and the original implementation. Please note that since we have

Automated z-shimming for spinal fMRI

1482 a directional hypothesis (new FM-approach better than main manuscript FM-approach), we only
1483 test for an improvement compared to our original implementation.

1484

1485 **3.2.2.1 Choice of mask for identifying the spinal cord in the field map phase data**

1486 In our original implementation, the fitting of the linear gradient field was performed only on voxels
1487 within the spinal cord. This voxel selection was determined by a mask that was obtained from a
1488 segmentation of the T2-weighted image. While visual inspection of the mask overlaid onto the
1489 field map magnitude image did not give cause for concern in any of the 48 participants (i.e. due to
1490 possible participant movement between T2 and field map acquisitions), we nevertheless asked
1491 whether a change of the mask might improve performance. We therefore re-ran the original fitting
1492 procedure, but now based on a mask that was either eroded by 1 voxel or dilated by 1 voxel. When
1493 comparing the results based on these new masks to the standard mask, we observed that neither of
1494 these changes resulted in a meaningful and significant change in gray matter mean signal intensity
1495 (11% increase against no z-shim for all three masks) or signal intensity variation across slices
1496 (50% decrease for original and dilated masks, 49% decrease for eroded mask compared to no z-
1497 shimming). In line with these descriptive results, when directly comparing the original and new
1498 approaches statistically, we observed no significant differences (all $p_{\text{uncorrected}} > 0.30$).

1499

1500 **3.2.2.2 Choice of parameters employed in the fitting process of the gradient field**

1501 In our original implementation, we chose the following parameters based on pilot acquisitions: we
1502 smoothed the field map data with an isotropic 1mm kernel, used 9mm slab thickness (i.e. 9
1503 transversal field map slices) for each fit and gave equal weight to all voxels in the fitting procedure.
1504 We next investigated whether variations of these parameters might have an influence on the
1505 performance: the smoothing kernel width (sigma) was set to 0, 1 or 2mm; the slab thickness was
1506 set to 5, 9 or 13mm, either with equal weighting or weighted by a raised cosine kernel of full-width
1507 half-maximum equal to the slab thickness and a roll-off factor beta of 0.5 (the purpose of the
1508 weighting was to down-weight voxels further away from the corresponding EPI slice). However,
1509 none of these choices seemed to make a meaningful difference, although out of these 17 additional
1510 variations (3 smoothing options crossed with 3 slab-thickness options and 2 weighting options)
1511 one showed a slight improvement for mean signal intensity and one showed a slight improvement
1512 for signal intensity variation along slices compared to our initial parameter set of choice that we
1513 used throughout the experiment (maximum improvement for mean signal intensity observed with
1514 parameter set “slab thickness = 9, beta = 0.5, smoothing sigma = 1”: $t_{(47)} = 1.64$, $p_{\text{uncorrected}} = 0.054$,
1515 $p_{\text{corrected}} = 1$, difference of 0.2%; maximum improvement for signal intensity variation over slices
1516 observed with parameter set “slab thickness = 9, beta = 0, smoothing sigma = 0”: $t_{(47)} = 2.92$,
1517 $p_{\text{uncorrected}} = 0.003$, $p_{\text{corrected}} = 0.05$, difference of 2%). Thus, the slightly worse performance of the
1518 FM-based approach reported in the main manuscript – which was based on a significant difference

Automated z-shimming for spinal fMRI

1519 for mean signal intensity – does not seem to be due to the choice of parameters employed in the
1520 fitting process.

1521

1522 3.2.2.3 Field gradients in the AP-direction

1523 Another possible explanation for the slightly inferior performance of the FM-based approach is
1524 that field inhomogeneities in the A-P (y) direction may shift the center of k-space in the EPI
1525 acquisitions which – depending on their polarity – would result in a shorter or longer effective TE.
1526 Because the calculation of the required z-shim gradient moment from the field map assumes that
1527 the echo forms up at the nominal TE, any shift of the effective TE would lead to an imperfect
1528 compensation of the through-slice dephasing and would cause a signal loss. This is in contrast to
1529 the EPI-based approach, which rests on an EPI acquisition where the effective TE is inherently
1530 considered by just picking the best z-shim moment tested.

1531 In the presence of a susceptibility-induced field gradient in the phase encoding direction, G_{SP} ,
1532 refocusing happens at an effective TE given by:

$$1533 TE_{eff} = \frac{TE}{Q},$$

1534 where

$$1535 Q = 1 - \frac{G_{SP}}{G_{PE}}.$$

1536 G_{PE} is the effective phase encoding gradient:

$$1537 G_{PE} = \frac{1}{\gamma} \cdot \frac{dk}{dt},$$

1538 where dt is the echo spacing (Deichmann et al., 2002). Based on the fitted linear field gradient in
1539 the AP direction, we calculated Q for each slice, and adjusted the z-shim gradient moment to
1540 account for the effective TE. We then investigated how the adjustment of the z-shim moments
1541 (please note that we considered both positive and negative polarities of EPI phase-encoding)
1542 affected the gray matter signal characteristics compared to our original implementation. We neither
1543 observed a meaningful increase in mean signal intensity (negative polarity vs original
1544 implementation: $t_{(47)} = -0.59$, $p_{uncorrected} = 0.72$, $p_{corrected} = 1$, $<0.1\%$ decrease; positive polarity vs
1545 original implementation: $t_{(47)} = 0.08$, $p_{uncorrected} = 0.47$, $p_{corrected} = 0.94$, $<0.1\%$ increase) nor a
1546 meaningful decrease in signal intensity variation over slices (negative polarity vs original
1547 implementation: $t_{(47)} = -0.93$, $p_{uncorrected} = 0.82$, $p_{corrected} = 1$, 0.8% increase; positive polarity vs
1548 original implementation: $t_{(47)} = -1.58$, $p_{uncorrected} = 0.06$, $p_{corrected} = 0.12$, 1% decrease). It thus seems
1549 that the influence of AP gradients is rather negligible with respect to the slightly inferior
1550 performance of the FM-based approach.

1551

Automated z-shimming for spinal fMRI

1552 3.2.2.4 Inhomogeneity-induced mis-localizations between EPIS and field map

1553 The FM-based z-shim selection relies on spatial congruency between the field map and the EPI
1554 acquisitions in the through-slice direction of the axial EPI volume. Local susceptibility-induced
1555 field offsets can however affect the spatial congruency in different ways. In the sagittal field map
1556 acquisitions, local field offsets will result in a shift along the readout direction, i.e. superior-
1557 inferior. The readout bandwidth of the field map acquisition was 630 Hz/pixel at a voxel resolution
1558 of 1 mm. Except for the region most inferior, the local field offsets were below 100 Hz, which
1559 results in voxel shifts of less than 0.16 mm. In the EPI-acquisitions, the field offset affects the
1560 effective slice localization. The EPI excitation bandwidth was ~2 kHz at a 5 mm slice thickness.
1561 Field offsets <100 Hz would thus correspond to slice shifts <0.25 mm. In the worst-case scenario,
1562 where both effects are superimposed, an effective relative spatial shift of <0.4 mm is obtained
1563 which was deemed small enough to have a negligible impact on the z-shim selection.

1564 However, to additionally empirically investigate whether an inhomogeneity-induced mis-
1565 localization between the EPI and the field map might be a driving factor for the slightly inferior
1566 performance of the FM-based approach, we selected the participants for which the FM-based
1567 automated selection of z-shim values led to a step-size difference of at least three steps in at least
1568 one slice compared to the manual z-shim values (N = 10). In other words, we tried to identify a
1569 sub-group with the most extreme differences, since higher step size differences compared to
1570 manual z-shim implies that the field map selection of z-shim values was unsuccessful or 'off'. In
1571 those participants, we plotted the local field offset and the absolute difference between automated
1572 and manually selected z-shim values (Supplementary Figure 4) and then visually investigated
1573 whether there would be any detectable relationship between a high step size difference and high
1574 field offset. However, these plots do not indicate that higher step size differences generally
1575 coincide with high local field offsets.

1576

1577 3.2.2.5 Use of different field map

1578 We also investigated whether the quality of our default field map protocol might have led to the
1579 slightly inferior performance of the FM-based approach. In order to assess this, we calculated z-
1580 shim values not only based on the originally chosen field map (vendor-provided with 2 echoes),
1581 but also based on a separate in-house field map (with 12 echoes) which was acquired directly after
1582 the vendor-based one. When we quantified the signal characteristics, we observed that both
1583 methods led to a similar increase in mean signal intensity (11% for vendor-based and 12% for in-
1584 house field map) and decrease in signal intensity variation across slices (50% for vendor-based
1585 field map and 52% for in-house field map). In line with these descriptive results, when directly
1586 comparing the performance of the vendor-based and in-house approaches statistically (e.g. auto-
1587 vendor compared to auto-in-house; note that the baseline of no z-shimming is identical between
1588 the two), we observed a slight benefit of the in-house field map (for mean signal intensity: $t_{(47)} =$
1589 2.34, $p = 0.01$, difference of 0.5%, for signal intensity variation over slices: $t_{(47)} = 1.84$, $p = 0.04$,

Automated z-shimming for spinal fMRI

1590 difference of 4%). In order to test whether this improvement would lead to a change in the pattern
1591 reported in the main text (i.e. the FM-based approach performing worse when comparing mean
1592 tSNR for the automated compared to the manual approach), we followed up on this by comparing
1593 the performance of both approaches against manual approach and still observed a slightly inferior
1594 performance for FM-based approaches for the mean signal intensity (auto-vendor compared to
1595 manual: $t_{(47)} = 7.14$, $p < .001$, difference of 2.0%; auto-in-house compared to manual: $t_{(47)} = 8.20$,
1596 $p < .001$, difference of 1.5%) but not for the coefficient of variation (auto-vendor compared to
1597 manual: $t_{(47)} = 0.46$, $p = 0.65$; auto-in-house compared to manual: $t_{(47)} = 1.40$, $p = .17$), which is
1598 consistent with the results reported in the main text.

1599

1600 3.2.2.6 Assessing the reliability of z-shim selection based on FM-based automation

1601 To probe how reliably z-shims can in general be determined via field maps, we also acquired a
1602 second in-house field map near the end of our experiment (please note that due to technical
1603 problems the second field map was not acquired for three participants) and investigated whether
1604 this would result in similar automatically chosen z-shim values: across participants, we observed
1605 a mean Spearman rank-correlation of $rs = 0.88$, range: 0.50-0.98), suggesting that the robustness
1606 of the FM-based determination is unlikely to be a driving factor in the slightly inferior
1607 performance.

1608

1609 3.2.2.7 Evaluating a histogram-based method of determining z-shims

1610 In a further approach, we used a histogram-based method for automatically determining the slice-
1611 specific z-shim values from the field map data. This was based on the idea that for a broad
1612 distribution of field inhomogeneities, the chosen compensation gradient may only be able to
1613 recover significant signal for those voxels with a field inhomogeneity similar to that perfectly
1614 compensated. For a skewed distribution, the mean value may be shifted towards inhomogeneities
1615 that are less frequent which may reduce the overall signal accordingly. Thus, the chosen approach
1616 was based on the histogram of inhomogeneities and considered particularly the most frequent
1617 values. We first calculated the B_0 z-gradient for all x- and y-values of each 1mm sub-slice of the
1618 vendor-based B_0 map (swapped to the orientation of the EPI space) using the IDL procedure
1619 “gradient.pro” which, after proper scaling, resulted in a $\text{grad}B_{0,z}$ map of the same resolution as the
1620 B_0 map in mT/m. A histogram of $\text{grad}B_{0,z}$ was then calculated for each EPI slice in a region-of-
1621 interest containing the spinal cord (as with all FM-based procedures, this was obtained from a
1622 segmentation of the T2-weighted image) of all of its five 1-mm sub-slices using a bin size of 0.01
1623 mT/m. The resulting histogram was then smoothed with a kernel width of 1/20 of the total number
1624 of bins. Next, the main peak in the histogram was determined by comparing the surrounding of the
1625 three most frequent bins using the average of the respective center \pm 2 points. The final
1626 processing step for calculating a z-shim value for each EPI-slice was an weighted summation of
1627 the $\text{grad}B_{0,z}$ bins within the range of the center \pm 10 points (corresponding to \pm 0.1 mT/m)

Automated z-shimming for spinal fMRI

1628 around the resulting main peak with the constraint that the actual summation range was limited to
1629 points possessing more than 25% of the center's intensity.

1630 To demonstrate the improvement afforded by this method, we first show data from a single
1631 participant in which the original FM-based automation worked poorly in several slices. The left
1632 panel of Figure 6A shows that in an exemplary problematic slice, the z-gradient of the B_0 map is
1633 not homogeneous across the spinal cord, leading to an asymmetric distribution of z-gradients and
1634 a sub-optimal choice of the z-shim value for this slice if the original approach is used (green line),
1635 differing also from the z-shim value determined by manual or EPI-based selection. Using the
1636 histogram-based method described above, the most probable value of $\text{grad}B_{0,z}$ (gray line) is
1637 obtained by the intensity-weighted summation of the histogram around the main peak. As a
1638 consequence, the z-shim value obtained by this method better fits to that of the manual or EPI-
1639 based selection. In slices with more homogenous z-gradients across the spinal cord cross-section,
1640 both the original method and the histogram method provide virtually identical results (Figure 6A
1641 right panel).

1642 We also assessed the improvement in signal quality offered by this method at the group-level,
1643 where we used the above-mentioned 'reconstruction' of the z-shim reference scan of each
1644 participant, using the slice-specific z-shim values suggested by the histogram-based method.
1645 Figure 6B shows that while this method did not completely eliminate the inferior performance of
1646 the FM-based approach, it led to a substantial improvement in signal quality across the group.
1647 When directly comparing the performance of the original FM-based approach to the histogram-
1648 based approach statistically, we observed a significant benefit of the histogram-based approach
1649 (mean signal intensity: $t_{(47)} = 5.05$, $p < .001$, difference of 1.3%; signal intensity variation over
1650 slices: $t_{(47)} = 0.17$, $p = \text{n.s.}$). We then followed up on this by comparing the performance of the
1651 histogram-based approach against the manual approach and still observed a slightly inferior
1652 performance for FM-based approach for the mean signal intensity (histogram-based compared to
1653 manual: $t_{(47)} = 4.05$, $p < .001$, a difference of 0.75%) but not for the coefficient of variation, in
1654 line with previous results. This minor penalty of the FM-based approach may be related to the fact
1655 that the relative signal intensities of the individual voxels as they contribute to the EPI image were
1656 not considered – this is in contrast to the approach based on the EPI reference scan. Together, this
1657 demonstrates that the evaluation of $\text{grad}B_{0,z}$ by considering the corresponding histograms is
1658 capable of reducing the error in FM-based z-shim selection, even if it does not reach the
1659 performance of the manual approach.

1660

1661 3.2.3 Comparing all three approaches

1662 In order to compare how close the automated and manual (current 'gold standard') shim selection
1663 processes were, we calculated rank-based correlations and Euclidian distances between the chosen
1664 z-shim values in each of the two groups of 24 participants. This was done on a participant-by-
1665 participant basis for both metrics, which were based on the same input: slice-wise (i.e. 24) z-shim

Automated z-shimming for spinal fMRI

1666 values from 1 to 21 (with 11 designating the neutral state of no z-shim) in the manual condition
1667 and in an automated condition. In both cases, we used two-sample t-tests to compare the two sub-
1668 groups (i.e. EPI-based automation and FM-based automation).

1669 First, we calculated rank-based correlations between the values chosen for the manual and the
1670 automated approach. We observed very high correlations of z-shim values in the EPI-based group
1671 (average correlation: $r_s = 0.95$, $t_{(23)} = 33.28$, $p < .001$; range of correlations across participants:
1672 0.85 - 0.99), as well as in the FM-based group (average correlation: $r_s = 0.91$, $t_{(23)} = 26.04$, $p <$
1673 $.001$; range of correlations across participants: 0.62 - 0.97). When directly comparing the two
1674 groups, we observed that the correlations were significantly higher in the EPI-based group ($t_{(46)} =$
1675 2.67, $p = .01$).

1676 Second (and overcoming the inherent limitations of a correlation-based approach, i.e. the fact that
1677 a perfect correlation might be obtained if the pattern of z-shim values were the same across slices,
1678 even if there was a constant shift in z-shim values), we employed the Euclidean distance – the
1679 square root of the sum of squared differences between the corresponding elements of the two
1680 vectors of z-shim values across slices – between the values chosen for the manual and the
1681 automated approach. We observed that while the average Euclidean distance for the EPI-based
1682 group was 3.40 (range across participants: 2.24–4.80), it was 5.21 for the FM-based group (range
1683 across participants: 3.61–8.94), leading to a significant difference ($t_{(46)} = 7.19$, $p < .001$).

1684

1685 3.3 Validation of EPI-based automation approach

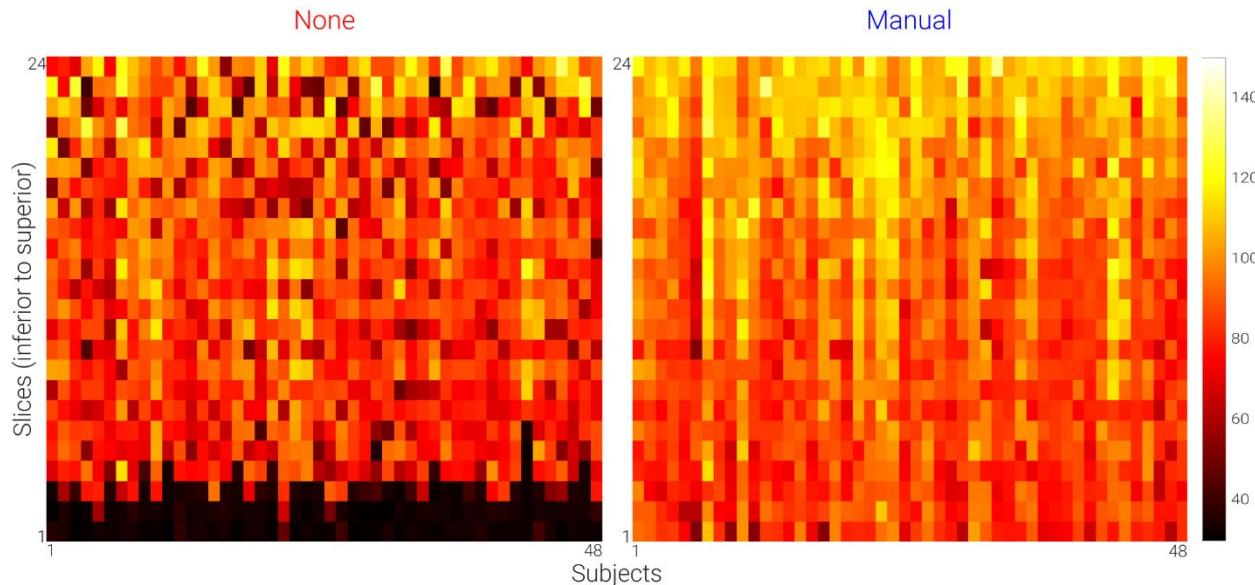
1686 In the independently acquired data set, we observed that for gray matter signal intensity, manual
1687 z-shimming resulted in a significant increase in mean signal intensity ($t_{(112)} = 22.04$, $p < .001$,
1688 difference of 25%) and a significant decrease in signal intensity variation across slices ($t_{(112)} =$
1689 8.29, $p < .001$, difference of 40%). When we investigated the performance of our automated EPI-
1690 based selection approach, we observed a significant increase in mean signal intensity ($t_{(112)} = 28.44$,
1691 $p < .001$, difference of 32%) and a significant decrease in signal intensity variation across slices
1692 ($t_{(112)} = 10.32$, $p < .001$, difference of 47%). When we directly compared the automated and manual
1693 approaches, we observed that the automated method outperformed the manual method both for
1694 mean signal intensity ($t_{(112)} = 12.14$, $p < .001$) and for signal intensity variation across slices ($t_{(112)} =$
1695 5.63, $p < .001$).

Automated z-shimming for spinal fMRI

1696

Supplementary Figures

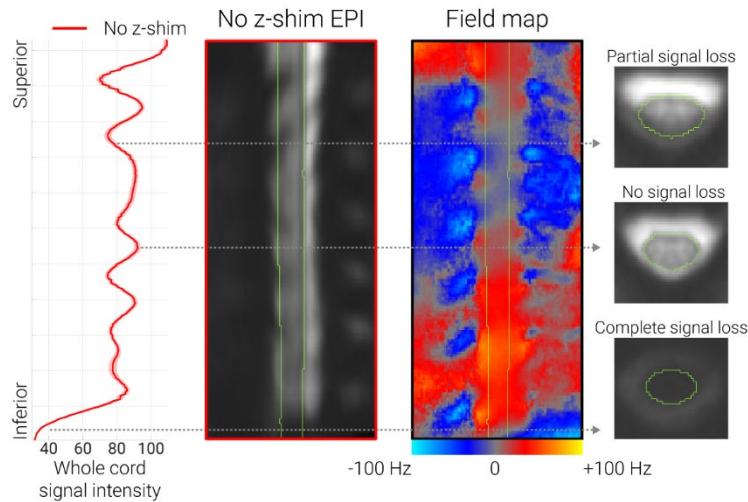
1697



1698

1699 **Supplementary Figure 1. Slice-wise individual signal intensity data.** Based on single volume
1700 EPIs acquired without z-shim and with manual z-shim, we calculated the mean signal intensity of
1701 each slice in native space. The heat-maps show signal intensity in axial slices (y-axis; 24 slices)
1702 for each participant (x-axis; 48 participants).

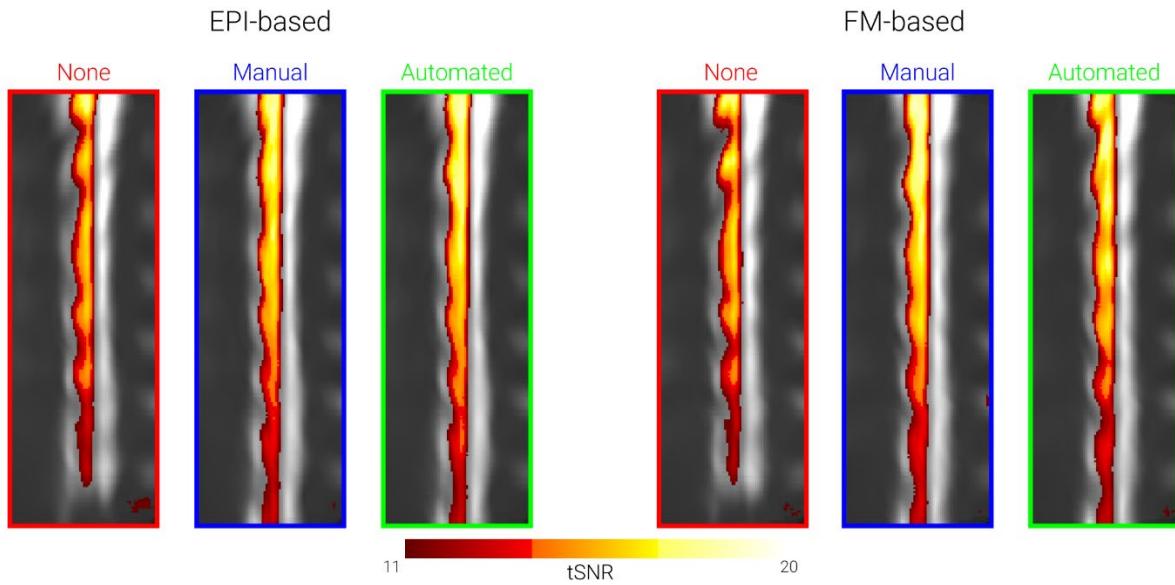
Automated z-shimming for spinal fMRI



1703

1704 *Supplementary Figure 2. Relationship between field-variations and EPI signal loss.* The line
1705 graph on the very left shows the group-averaged ($N = 48$) template-space spinal cord signal
1706 intensity along the rostro-caudal axis of the cord in acquisitions without z-shimming. The solid
1707 line depicts the group-mean value and the shaded area depicts the standard error of the mean. The
1708 mid-sagittal section on the left shows the group-average template-space single-volume EPI data
1709 acquired without z-shimming. The mid-sagittal section on the right shows the group-average
1710 template-space field map in order to depict the consistent field variations along the rostro-caudal
1711 axis of the cord. On the very right, there are three exemplary axial sections from the “no z-shim”
1712 group-average template-space EPIs in order to demonstrate the influence of field variations on the
1713 EPI image quality in terms of signal loss.

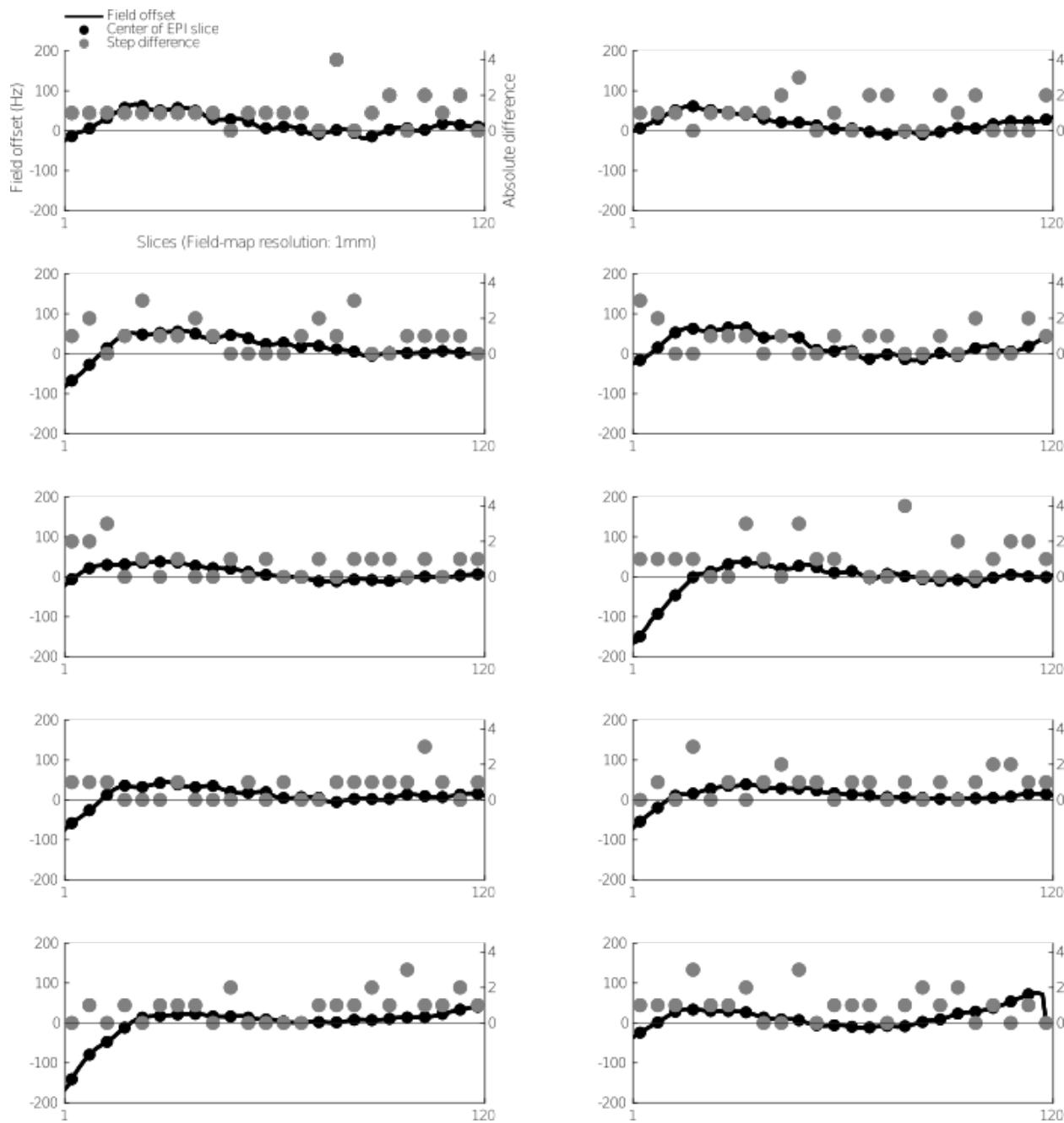
Automated z-shimming for spinal fMRI



1714

1715 *Supplementary Figure 3. tSNR for different sequence variants.* The mid-sagittal EPI sections in
1716 the background consist of the group-average mean of motion-corrected time-series data in template
1717 space for each sub-group of participants (EPI-based and FM-based, each of those with N=24) and
1718 condition (no z-shim, manual z-shim, automated z-shim). Condition-wise group-average
1719 tSNRmaps (based on the motion-corrected EPI data) are overlaid onto these mid-sagittal images
1720 (depicted tSNR range: 11-20).

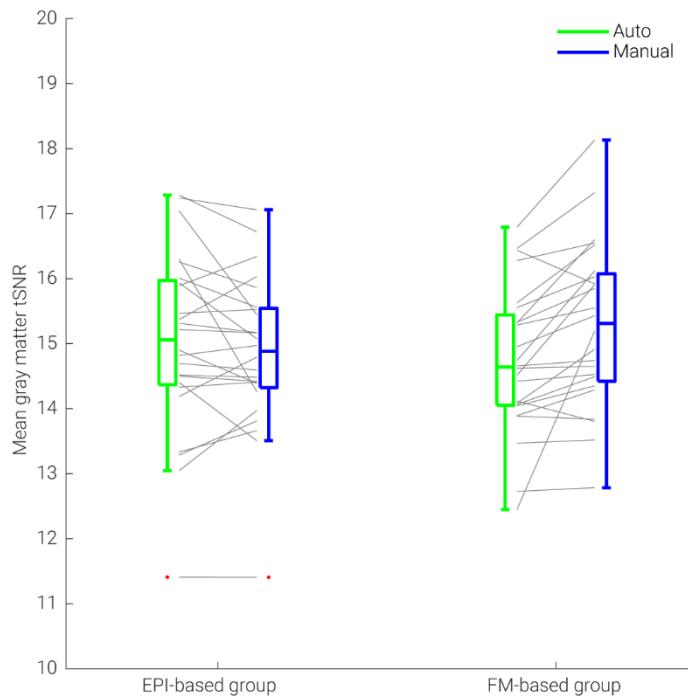
Automated z-shimming for spinal fMRI



1721

1722 **Supplementary Figure 4. Relationship between field-offset and differential z-shim indices.**
1723 Each subplot shows the field offset in Hz (black line; plotted on left y-axis) and the absolute
1724 difference in z-shim indices between the FM-based and the manual z-shim selection (gray circles;
1725 plotted on right y-axis). Depicted are those participants who had a difference of at least 3 steps
1726 between the FM-based and the manual z-shim selection ($N = 10$). Five FM slices (120 slices in
1727 total, 1mm slice thickness) correspond to a single EPI slice (24 slices in total, 5 mm slice thickness)
1728 with the black filled dots representing the corresponding center of each EPI slice in the FM
1729 resolution.

Automated z-shimming for spinal fMRI

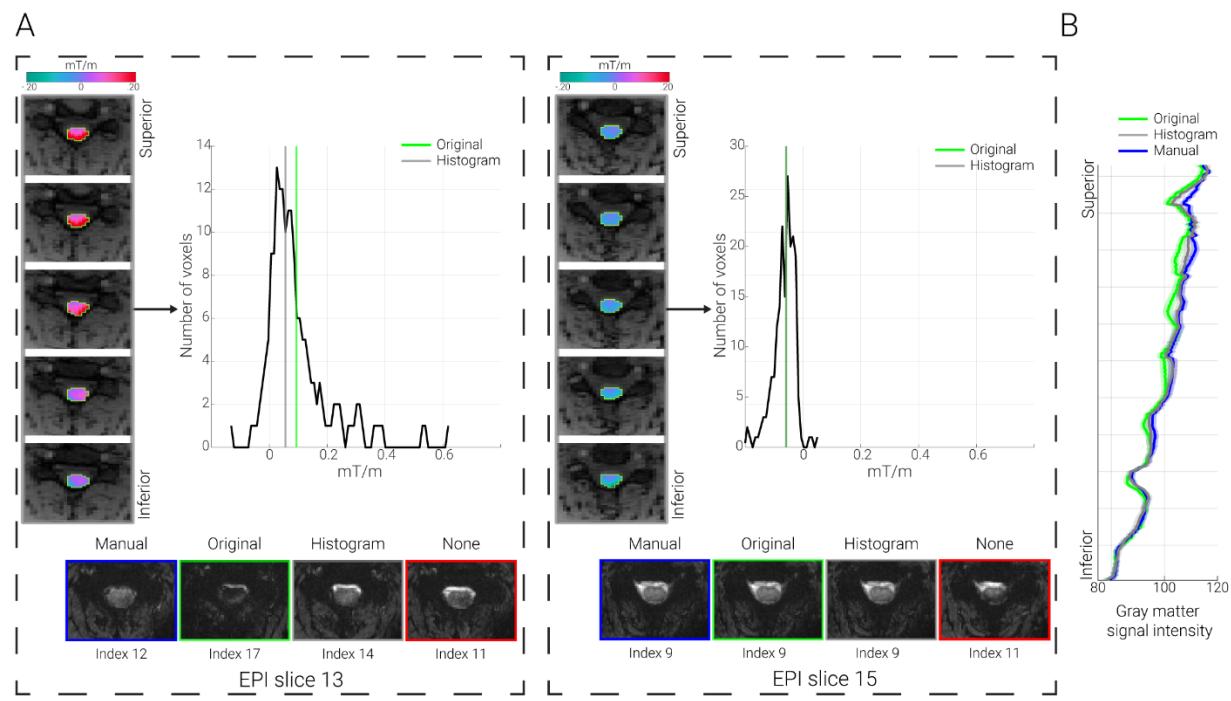


1730

1731 **Supplementary Figure 5. Mean gray matter tSNR of automated and manual approaches.** We
1732 calculated the mean gray matter tSNR based on motion-corrected time series data acquired with
1733 different sequences (N = 24 for each group). The median is denoted by the central mark and the
1734 bottom and top edges of the boxes represent the 25th and 75th percentiles, respectively. The
1735 whiskers encompass approximately 99% of the data and outliers are represented by red dots. The
1736 gray lines indicate participant-specific tSNR in each condition and its change across conditions.

1737

Automated z-shimming for spinal fMRI



1738

1739 **Supplementary Figure 6. Histogram-based evaluation of field-map. A. Exemplary problematic**
1740 **& unproblematic slices.** In both panels, five axial slices show the gradient map ($\text{gradB}_{0,z}$) overlaid
1741 on the first magnitude image (for participant ZS030; in native space) corresponding to one EPI
1742 slice (problematic slice 13 and unproblematic slice 15, for left and right panels, respectively). The
1743 outlines of the cord mask (based on the T2-weighted image) are marked by green lines. The
1744 histograms show the $\text{gradB}_{0,z}$ for these slices. On the lowermost part, the EPI volumes
1745 (corresponding to the selected z-shim indices) from the first z-shim reference image were taken
1746 for manual selection, original implementation, histogram-based implementation, and no z-shim
1747 condition for the relevant EPI slice. For slices with substantial field variation (problematic slice
1748 13) the histogram-based shim offset selection offers clear improvement over the original
1749 automated approach. **B. Group-level signal intensity.** The line graph shows the group-averaged
1750 ($N = 48$) template-space spinal cord signal intensity along the rostro-caudal axis of the gray matter
1751 in the reconstructed EPIs (normalized) based on original FM-based implementation (green line),
1752 the manual selection (blue line), and based on histogram-based evaluation. The solid lines depict
1753 the group-mean value and the shaded areas depict the standard error of the mean.

1754

Automated z-shimming for spinal fMRI

1755

References

1756

1757 Deichmann, R., Josephs, O., Hutton, C., Corfield, D.R., Turner, R., (2002). Compensation of
1758 Susceptibility-Induced BOLD Sensitivity Losses in Echo-Planar fMRI Imaging.
1759 *NeuroImage* 15, 120–135. <https://doi.org/10.1006/nimg.2001.0985>