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Abstract 56 

 57 

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, 58 
such as signal loss due to local magnetic field inhomogeneities. This issue can be addressed with 59 
slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities 60 
using a slice-specific gradient pulse. Here, we aim to address outstanding issues regarding this 61 
technique by evaluating its effects on several aspects that are directly relevant for spinal fMRI and 62 
by developing two automated procedures in order to improve upon the time-consuming and 63 
subjective nature of manual selection of z-shims: one procedure finds the z-shim that maximizes 64 
signal intensity in each slice of an EPI reference-scan and the other finds the through-slice field 65 
inhomogeneity for each EPI-slice in field map data and calculates the required compensation 66 
gradient moment. We demonstrate that the beneficial effects of z-shimming are apparent across 67 
different echo times, hold true for both the dorsal and ventral horn, and are also apparent in the 68 
temporal signal-to-noise ratio (tSNR) of EPI time-series data. Both of our automated approaches 69 
were faster than the manual approach, lead to significant improvements in gray matter tSNR 70 
compared to no z-shimming and resulted in beneficial effects that were stable across time. While 71 
the field-map-based approach performed slightly worse than the manual approach, the EPI-based 72 
approach performed as well as the manual one and was furthermore validated on an external 73 
corticospinal data-set (N>100). Together, automated z-shimming may improve the data quality of 74 
future spinal fMRI studies and lead to increased reproducibility in longitudinal studies. 75 

 76 

Keywords: Spinal cord; fMRI; Automated z-shim; Magnetic field inhomogeneities; Signal loss; 77 
tSNR   78 
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1. Introduction 79 

 80 

The spinal cord is one of the key structures linking the brain with the peripheral nervous system 81 
and participates in numerous sensory, motor and autonomic functions (Hochman, 2007). Non-82 
invasive approaches to investigate the human spinal cord are therefore of great interest not only 83 
from a basic neuroscientific perspective, but also with regards to their possible clinical utility in 84 
order to understand pathological mechanisms in motor and sensory disorders such as multiple 85 
sclerosis and chronic pain (Wheeler-Kingshott et al., 2014). Currently, the main approach to 86 
investigate spinal cord function is based on blood-oxygen-level-dependent functional magnetic 87 
resonance imaging (BOLD fMRI; for reviews see Giove et al., 2004; Stroman et al., 2014; 88 
Summers & Brooks, 2014; Cohen-Adad, 2017). Using conventional BOLD fMRI techniques such 89 
as gradient-echo echo-planar imaging (GE EPI) is however challenging in the spinal cord due to 90 
i) its small cross-sectional diameter, ii) prominent physiological noise from cardiac and respiratory 91 
sources, and iii) magnetic field inhomogeneities. 92 

In the cervical spinal cord (i.e. the part that is easiest to access with currently available receive 93 
coils at 3T), inhomogeneities in the magnetic field occur at both large and small spatial scales 94 
(Cohen-Adad, 2017). While large-scale variations are for example due to the proximity of the 95 
lungs (and can thus vary dynamically; e.g. Verma & Cohen-Adad, 2014), small-scale variations 96 
are due to the interfaces between vertebrae and connective tissue, which have different magnetic 97 
susceptibilities (Cooke et al., 2004; Finsterbusch et al., 2012). These small-scale field 98 
inhomogeneities are reproduced spatially along the superior-inferior axis of the spinal cord and 99 
significantly affect image quality, leading to consistent patterns of signal loss (Maieron et al., 2007; 100 
Finsterbusch et al., 2012). While it would thus be imperative for reliable and reproducible fMRI 101 
of the spinal cord to mitigate these effects, standard shimming techniques implemented on 102 
common whole-body MR systems are not able to compensate these spatially repeating 103 
inhomogeneities to an adequate degree (Finsterbusch, 2014). 104 

One method that is commonly employed to overcome through-slice dephasing is slice-specific 'z-105 
shimming' (Frahm et al., 1988; Constable, 1995; Glover, 1999) where an additional gradient pulse 106 
is applied in the slice-selection direction in order to compensate the effect of susceptibility-induced 107 
gradients and resulting signal loss. In the brain, z-shimming has been applied in GE EPI studies 108 
focused on susceptibility-prone regions, i.e. those that are close to air/bone interfaces such as the 109 
orbitofrontal, the medial temporal, and the inferior temporal lobes (Yang et al., 1997; Deichmann 110 
et al., 2003; Posse et al., 2003; Weiskopf et al., 2006). Finsterbusch et al. (2012) investigated 111 
whether one could use this approach to also compensate for the periodically occurring signal drop-112 
outs (along the superior-inferior axis) on T2*-weighted GE EPI images of the spinal cord. By 113 
applying single, slice-specific compensation moments – which were manually determined based 114 
on a reference-scan acquired prior to the experimental EPI acquisition – they were able to 115 
demonstrate an improvement in spinal cord image quality: reducing the spatially repeating signal 116 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2021.07.27.454049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.454049
http://creativecommons.org/licenses/by-nc-nd/4.0/


Automated z-shimming for spinal fMRI 

 

5 

 

drop-outs via slice-specific z-shimming resulted in an increase of mean signal-intensity by ~20% 117 
and a reduction of signal-intensity variability along the cord by ~80%. 118 

While the slice-specific z-shimming protocol developed by Finsterbusch and colleagues has 119 
already been used in numerous spinal (e.g. Sprenger et al., 2012; Geuter & Buchel, 2013; Kong et 120 
al., 2014; van de Sand et al., 2015; Eippert et al., 2017; Sprenger et al., 2018) and cortico-spinal 121 
fMRI studies (e.g. Sprenger et al., 2015; Tinnermann et al., 2017; Vahdat et al., 2020; Oliva et al., 122 
2022), the impact of slice-specific z-shimming on EPI time-series data has not been investigated 123 
systematically, as Finsterbusch and colleagues only evaluated its effects on single volumes of GE 124 
EPI data, but not on time-series metrics such as tSNR (Welvaert & Rosseel, 2013). Even more 125 
important – and already argued for by Finsterbusch and colleagues – would be an automated way 126 
to determine the slice-specific z-shims, as these are currently determined manually by the scanner 127 
operator: either visually by going through each slice and z-shim value obtained in a reference-scan 128 
or by manually placing a region of interest on each slice of this reference scan and evaluating the 129 
extracted signal intensity. This procedure is time-consuming, requires expertise in judging the 130 
quality of spinal EPI data, and contains a subjective component, thus also limiting its potential in 131 
terms of reproducibility. 132 

In this study, we aim to develop an automated and user-friendly procedure for determining slice-133 
specific z-shims in order to improve the quality of spinal fMRI. In a first step, we aim to replicate 134 
the results of Finsterbusch et al. using twice the original sample size (N=48). Next, we aim to 135 
extend their findings by probing the relevance of slice-specific z-shimming for fMRI through 136 
investigating its effects a) across different echo times, b) in distinct anatomical regions, and c) on 137 
a time-series metric (tSNR). Most importantly, we propose two different automated methods for 138 
determining slice-specific z-shims (each based on a sample size of N=24). The first method is 139 
based on a z-shim reference-scan acquisition and determines z-shim values by analyzing EPI signal 140 
intensity within the spinal cord for each combination of slice and z-shim value. The second method 141 
is based on a field map acquisition and determines z-shim values by estimating the strength of the 142 
gradient field needed to compensate for the local through-slice inhomogeneity for each slice. In a 143 
final step, we use an independently-acquired external data-set (N>100; Oliva et al., 2022) in order 144 
to validate our candidate approach for automating the selection of slice-specific z-shims.  145 
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2. Material and Methods 146 

 147 

2.1 Participants 148 

48 healthy participants (22 females, mean age: 27.17 years, range 20-37 years) participated in this 149 
study. All participants provided written informed consent and the study was approved by the ethics 150 
committee at the Medical Faculty of the University of Leipzig. The sample size was determined 151 
based on a study by Finsterbusch et al. (2012): as we wanted to replicate and extend their findings 152 
(which were based on a sample of N=24), we chose the same sample size for each of our two sub-153 
groups, resulting in an overall sample size of N=48. 154 

 155 

2.2 Study design 156 

All participants underwent the following scans in the order described below (for details of scans, 157 
see section ‘2.3 Data acquisition’). 158 

After an initial localizer scan, the EPI slice stack and the adjust volume were prescribed and a 159 
single EPI volume was acquired in order to initialize the scanner’s ‘Advanced shim mode’ – this 160 
shim was then employed in all the following EPI acquisitions by using the same adjust volume. 161 
An EPI z-shim reference scan was performed next in order to allow for the manual as well as EPI-162 
based automated selection of the optimal z-shim moment for each slice. Two sagittal field maps 163 
(vendor-based and in-house versions, respectively) were then acquired to obtain the B0 static 164 
magnetic field distribution, of which the vendor-based one was used for the field map based 165 
automated z-shim selection due to it being widely available. This was followed by the acquisition 166 
of a high-resolution T2-weighted image in order to allow for spinal cord segmentation as needed 167 
for the field map based automated z-shim selection. 168 

In order to compare the signal characteristics under different z-shimming conditions, EPI data were 169 
acquired with three different EPI protocols for each participant: without z-shim gradient 170 
compensation (condition “no z-shim”), with z-shim gradient compensation based on manual z-171 
shim selection (condition “manual z-shim”), and with z-shim gradient compensation based on 172 
automated z-shim selection (condition “automated z-shim”). For one-half of the participants (24 173 
participants), the automated selection was based on the EPI reference scan, whereas for the other 174 
half, the automated selection was based on the vendor-based field map. Both single EPI volumes 175 
(as in Finsterbusch et al., 2012), as well as 250 EPI volumes (in order to assess effects on time-176 
series data), were acquired for each condition; the order of the EPI scans under different conditions 177 
was pseudo-randomized across participants. 178 

We also wanted to assess the benefits of slice-specific z-shimming at different echo times (TE), 179 
and therefore acquired 25 EPI volumes under three different TEs (30, 40, and 50ms, each with a 180 
repetition time (TR) of 2552ms) for each of the three conditions (please note that the z-shim indices 181 
chosen reflect gradient fields to be compensated – rather than moments of the compensation 182 
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gradient pulse – and thus scale the pulsed gradient moment with the TE such that a determined 183 
index is valid for all TEs). The order of the EPI scans acquired with different TEs were also 184 
pseudo-randomized across participants. 185 

The EPI reference scan and the in-house field map acquisitions were repeated at the end of the 186 
scanning session in order to assess the stability of z-shimming across time. 187 

 188 

2.3 Data acquisition 189 

All measurements were performed on a 3T whole-body Siemens Prisma MRI System (Siemens, 190 
Erlangen, Germany) equipped with a whole-body radio-frequency (RF) transmit coil and 64-191 
channel RF head-and-neck coil and a 32-channel RF spine-array, using the head coil element 192 
groups 5–7, the neck coil element groups 1 and 2, and spine coil element group 1 (all receive-193 
only). 194 

EPI acquisitions were based on the z-shim protocol developed by Finsterbusch et al. (2012) that 195 
employed a single, slice-specific gradient pulse for compensating through-slice signal dephasing. 196 
EPI volumes covered the spinal cord from the 2nd cervical vertebra to the 1st thoracic vertebra 197 
and were acquired with the following parameters: slice orientation: transverse oblique; number of 198 
slices: 24; slice thickness: 5mm; field of view: 128×128mm2, in-plane resolution: 1×1mm2; TR: 199 
2312ms; TE: 40ms; flip angle: 84°; GRAPPA acceleration factor: 2; partial Fourier factor: 7/8, 200 
phase-encoding direction: anterior-to-posterior (AP), echo spacing: 0.93ms, bandwidth per pixel: 201 
1220 Hz/Pixel; additionally, fat saturation was employed. The EPI reference scan (TE: 40ms, total 202 
acquisition time: 55 seconds) was acquired with 21 equidistant z-shim moments compensating 203 
field inhomogeneities between +21 and -21 mT m-1ms (in steps of 2.1 mT m-1ms). 204 

The vendor-based field map (total acquisition time: 4.31min) was obtained using the 2D GRE 205 
sequence provided by Siemens with two echoes per shot (TE 1: 4.00ms; TE 2: 6.46ms; slice 206 
orientation: sagittal (parallel to the normal vector of the axial EPI slices); slice number: 32; slice 207 
thickness: 2.2mm; field-of-view: 180×180mm2; in-plane resolution: 1×1mm2; TR: 500ms; flip 208 
angle: 50°, bandwidth per pixel of 1030 Hz/pixel). Additionally, an in-house field map based on a 209 
3D multi-echo FLASH sequence with multiple gradient echoes acquired at short inter-TEs was 210 
acquired, which yielded a superior signal-to-noise ratio at a reduced overall scan time. This 211 
contained 12 bipolar gradient echoes (which allowed for shorter inter-echo spacings; note that 212 
potential image shifts were avoided by a multi-echo navigator scan without phase encoding right 213 
at the start of image acquisition; a phase correction between the odd and even echoes was 214 
performed by the vendor’s Ice reconstruction pipeline), a TE increment/difference of 1.3ms, fat 215 
suppression RF pulses with corresponding spoiler gradients before each slab-selective excitation, 216 
a repetition time of 32ms, a flip angle of 15°, bandwidth per pixel of 1030 Hz/pixel, and sagittal 217 
slice orientation (parallel to the normal vector of the axial EPI slices). The in-plane and partition 218 
resolutions of this in-house field map were 1×1mm2 and 2.2mm, respectively, with corresponding 219 
fields-of-view of 180×180×70.4mm3. A total scan time of less than 2min was achieved by the 220 
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application of GRAPPA (an acceleration factor of 2 was used in PE dimension). The frequency 221 
offset ∆𝜈𝜈0 in each voxel was extracted from a linear fit to the unwrapped phases of all echoes 222 
(unwrapping of phase jumps exceeding +/- Pi was performed using a simple algorithm; due to the 223 
employed short echo and inter-echo times, this unwrapping could be applied because problems of 224 
noisy phase jumps or an undersampling of the phase evolution were largely absent).  225 

A high-resolution T2-weighted image was acquired using a 3D sagittal SPACE sequence as 226 
recently recommended (Cohen-Adad et al., 2021; 64 sagittal slices; resolution: 0.8×0.8×0.8mm3; 227 
field-of-view 256×256mm2; TE: 120ms; flip angle: 120°; TR: 1500ms; GRAPPA acceleration 228 
factor: 3; acquisition time: 4.02min). 229 

 230 

2.4 Selection of slice-specific z-shim moments 231 

2.4.1 Manual selection 232 

The researcher carrying out the data acquisition (MK) determined the z-shim moment with the 233 
highest signal intensity in the spinal cord for each slice by visual inspection (i.e. for each of the 24 234 
slices, the researcher looked at all 21 volumes – each volume reflecting an acquisition with one z-235 
shim moment – in order to determine the “optimal” z-shim moment for each slice). This selection 236 
process took ~10 minutes per participant and was carried out for all 48 participants, i.e. in both 237 
sub-groups of 24 participants. 238 

 239 

2.4.2 Automated selection 240 

The necessary scans for the automated selection (EPI reference-scan for EPI-based selection; 241 
vendor-based field map and T2-weighted scan for field map based selection) were sent from the 242 
scanner console to the online calculation computer (OS: Ubuntu 18.04, CPU: Intel Core(TM) i7-243 
3770K 3.50GHz, RAM: 16 GB, Mainboard: Gigabyte Z77X-UD3H) using the scanner console’s 244 
in-built network connection. In-house MATLAB (The Mathworks Inc, 2019) scripts utilizing tools 245 
from dcm2niix (version 1.0.20180622; Li et al., 2016; https://github.com/rordenlab/dcm2niix), 246 
SCT (version 3.2.7; De Leener et al., 2017; https://spinalcordtoolbox.com/en/stable/), and FSL 247 
(version 5.0; Jenkinson et al., 2012; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) were employed to 248 
determine the optimal z-shim moment for each slice. These values were then sent back to the 249 
scanner console in a text file that is read by the z-shim sequence. An overview of the automated 250 
methods is given in Figure 1 (please note that the z-shim selection process is automated and does 251 
not require any input from the user). 252 

 253 

2.4.2.1 EPI-based selection 254 

In a subsample of 24 participants, the EPI z-shim reference-scan was used to determine the 255 
optimum z-shim moments. The EPI z-shim reference-scan – consisting of 21 volumes (each 256 
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volume corresponding to one z-shim moment) with 24 slices each – was then averaged over the 257 
21 volumes (i.e. over all z-shim moments) and the resulting mean image was automatically 258 
segmented using the PropSeg approach implemented in SCT (De Leener et al., 2014). Based on 259 
experience from pilot experiments, we built in several fail-safes (i.e. systematically changing the 260 
arguments of SCT’s PropSeg function that affect the propagation in the z-direction) in order to 261 
ensure that the segmentation would propagate across the entire slice stack; this possibility to 262 
automatically adjust parameters in case of failure was also the reason that – out of SCT’s 263 
segmentation algorithms – we chose PropSeg instead of DeepSeg. We used the mean image for 264 
segmentation because we wanted to ensure that image quality was sufficient for automatic 265 
segmentation of the spinal cord and because the averaging of volumes acquired during different 266 
breathing cycles avoids a bias towards one respiratory state as could occur with single volumes. 267 
In post-hoc investigations regarding the suitability of using the mean EPI image for segmentation, 268 
we i) used a maximum image instead of a mean image as the input for segmentation and ii) used a 269 
segmentation obtained from the T2-weighted image (registered to the EPI segmentation), but both 270 
of these alternative approaches resulted in highly similar results compared to our original approach 271 
(data not shown). Using the automatically generated spinal cord mask, the mean signal intensities 272 
for each slice and z-shim moment were extracted, resulting in a 24×21 matrix, from which the z-273 
shim moment yielding the maximum intensity across the cord mask was determined for each slice. 274 
The average run-time for the execution of the selection code was 15.6 seconds (range across the 275 
entire sample: 7.7- 62.3 seconds), with the variation mostly being due to the number of PropSeg 276 
runs needed to achieve complete propagation. The interested reader can assess the quality of the 277 
EPI-based spinal cord segmentation via a quality-control HTML-report shared together with our 278 
data-set (see section 2.8). 279 

 280 

2.4.2.2 Field map (FM) based selection 281 

In another subsample of 24 participants, sagittal field maps (acquired with the same angulation as 282 
EPI data) were used to determine the optimum z-shim moments; note that field maps had 283 
anisotropic voxels, as i) a high in-plane resolution of the sagittal field map is necessary in order to 284 
obtain sufficient information about the gradient in the through-slice direction of the EPI (i.e. foot-285 
head) and ii) the left-right direction (where voxels were largest) is expected to have the least field 286 
variation and is thus least sensitive to resolution. First, a spinal cord mask was generated via a 287 
PropSeg-based automatic segmentation of each participant’s T2-weighted image because a high-288 
quality segmentation of the field map magnitude image was not possible due to the sagittal slice 289 
thickness of 2.2mm as well as the poor image contrast between spinal cord and cerebrospinal fluid 290 
(note that since the T2-weighted image and field map were well aligned and acquired right after 291 
each other we did not carry out a separate registration step). Field map based (from now on referred 292 
to as FM-based) z-shim moments were then calculated for each EPI slice using a linear least-293 
squares fit of a set of spatial basis functions to the measured field map (which was smoothed with 294 
an isotropic 1mm Gaussian kernel prior to the calculation). The spatial basis functions consisted 295 
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of three linear field terms along the main imaging axes and a spatially homogenous field term, 296 
representing a field offset (although obtaining x- and y-gradients is not necessary for calculating 297 
the through-slice field component, their inclusion can be seen as a step towards full slice-wise 298 
shimming [see also Islam et al., 2019] and obtaining y-gradients is necessary for determining the 299 
effective TE [see below]). Only voxels within the spinal cord mask contributed to the fitting 300 
procedure, which included voxels within a 9mm thick slab (i.e. 9 transversal field map slices) 301 
centered on the center of the corresponding EPI slice. The slab was chosen to be thicker than the 302 
EPI slice (i.e. an additional 2mm either side) in order to give more robust estimates of the through-303 
slice field gradient. The fitted through-slice linear field term (𝐺𝐺𝑧𝑧) was taken to represent the local 304 
field gradient causing through-slice signal dephasing within the corresponding EPI slice. The 305 
resulting dephasing gradient moment of 𝐺𝐺𝑧𝑧 ∙ 𝑇𝑇𝑇𝑇 was rounded to the nearest of the 21 z-shim 306 
compensations available in the EPI protocol and then used for subsequent EPI acquisitions. The 307 
average time for the execution of the selection code was 36.1 seconds (range across the entire 308 
sample: 31.5- 53.3 seconds). 309 

 310 

Figure 1. Schematic depiction of automated z-shim methods. After the acquisition of the 311 
necessary scans for each method (z-shim reference EPI for EPI-based approach, T2-weighted 312 
image and field map for field map based approach), DICOM images were exported to an online 313 
calculation computer, and converted to NIfTI format before further processing. A. EPI-based 314 
selection. The z-shim reference scan was then averaged across its 21 volumes (one volume per z-315 
shim moment; three volumes are depicted here as mid-sagittal sections to illustrate the varying 316 
signal loss) and the resulting mean image was segmented (the segmentation is shown here as a 317 
transparent red overlay for display purposes).  The mean signal intensities for each slice and z-318 
shim moment were extracted from the segmented cord, resulting in a 24×21 signal intensity matrix 319 
(slices×volumes). For each slice, the z-shim value (i.e., the corresponding index in the reference 320 
scan) resulting in the maximum intensity was selected. B. Field map based selection. A high-321 
resolution T2-weighted image was segmented and used to determine the field map voxels to be 322 
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included in the fitting procedure (the segmentation is shown as a transparent red overlay for display 323 
purposes). The gray and the black boxes depict the EPI coverage on the T2-weighted image and 324 
phase map, respectively. Voxels within a 9mm thick slab (i.e. 9 transversal field map slices, 325 
corresponding to a 5mm EPI slice + 2mm on each side) were included in a slice-wise fitting 326 
procedure. The green lines on the phase map indicate the input volume for fitting an exemplary 327 
target slice (dashed green line). Exemplary transversal slices are also shown, with the red line 328 
outlining the spinal cord. Slice-wise fitting, including three linear field coefficients (Gx, Gy and 329 
Gz) along the main axes of the imaging volume and a spatially homogenous field term (field offset), 330 
was repeated over slices and the z-shim (Gz) moments corresponding to the center ofthe EPI slices 331 
were selected. 332 

 333 

2.5 Preprocessing 334 

All images were visually inspected before the analysis for potential artefacts. Preprocessing steps 335 
were performed using MATLAB (version 2021a), FSL (version 6.0.3), and SCT (version 4.2.2; 336 
please note that a more recent version of SCT was used for preprocessing (4.2.2) compared to the 337 
automated analysis during data acquisition (3.2.7), due to the availability of releases at the 338 
respective times). The reason we carried out preprocessing steps and did not work only on the raw 339 
data is two-fold: i) we were interested in z-shim effects on time-series metrics (tSNR) and thus 340 
needed to motion-correct the EPI time-series data and ii) we were performing most analyses in 341 
template space and thus need to bring structural and functional data to this space (requiring 342 
segmentation and registration-to-template steps). Please note that – depending on context – we are 343 
using the terms “fMRI data” and “EPI time-series data” interchangeably. 344 

 345 

2.5.1 Motion-correction of EPI time-series data 346 

A two-step motion correction procedure (with spline interpolation) was applied to the EPI time-347 
series data. Initially, the mean of 750 volumes (250 volumes under each of the three different 348 
conditions, i.e. no z-shim | manual z-shim | automated z-shim) was calculated in order to serve as 349 
the target image for the first step of motion correction; averaging across all three conditions 350 
eliminates a bias towards any one condition with respect to the target image. Based on this mean 351 
image, the spinal cord was automatically segmented in order to provide a spinal cord centerline 352 
that then served as input for creating a cylindrical mask (with a diameter of 30mm). This mask 353 
was employed during the motion-correction procedure in order to ensure that image regions 354 
moving independently from the cord would not adversely affect motion estimation. Slice-wise 355 
motion correction with a 2nd degree polynomial regularization in the z-direction was then 356 
performed (De Leener et al., 2017). In the second step, a new target image was obtained by 357 
calculating the mean of motion-corrected images from the first step and the raw images were 358 
realigned to this new target image, using the identical procedure as described above. Please note 359 
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that the data obtained under different TEs (25 images per TE and condition) were also registered 360 
to this target image using the same procedure. 361 

Under the “no z-shim” condition, especially the inferior slices suffered from severe signal drop-362 
outs that hampered the quality of the slice-wise motion correction algorithm by inducing 'artificial’ 363 
movements that were indeed not present in the raw data. This could impact the tSNR calculation 364 
negatively by artificially increasing the standard deviation across time and thus give an inflated 365 
estimate of the beneficial effects of z-shimming. Therefore, in a control analysis, we also 366 
performed a ‘censoring’ of outlier volumes before the tSNR calculation. The outlier volumes were 367 
defined using dVARS (the root mean square difference between successive volumes) and refRMS 368 
(root mean square intensity difference of each volume to the reference volume) as metrics using 369 
FSL’s ‘fsl_motion_outliers’ tool. Volumes presenting with dVARS or refRMS values two 370 
standard deviations above the mean values of each run were selected as outliers. These outlier 371 
volumes were then individually modelled as regressors of no interest. 372 

 373 

2.5.2 Segmentation 374 

T2-weighted images were initially segmented using the DeepSeg approach implemented in SCT 375 
(Gros et al., 2019). This initial segmentation was used for smoothing the cord along its centerline 376 
using an anisotropic kernel with 8mm sigma. The smoothed image was again segmented in order 377 
to improve the robustness of segmentation. The quality of the segmentations was assessed visually 378 
and further manual corrections were not deemed to be necessary in any participant. 379 

For functional images, a manual segmentation was used instead of an automated procedure, as the 380 
registration to template space relied on segmentations and we therefore aimed to make this 381 
preprocessing step as accurate as possible. For the single-volume EPIs, the single volumes under 382 
the three different z-shimming conditions were averaged and this across-condition mean image 383 
was used to manually draw a spinal cord mask. For the EPI time-series, all motion-corrected 384 
volumes were averaged and a spinal cord mask was manually drawn based on this mean image 385 
(please note that this mask was also used for the normalization of the volumes with different TEs). 386 
These manually drawn masks were also used to calculate results in native space. 387 

 388 

2.5.3 Registration to template space 389 

SCT was utilized for registering the EPI images to the PAM50 template space (De Leener et al., 390 
2018); PAM50 is an MRI template of the spinal cord and brainstem available in SCT for multiple 391 
MRI contrasts. The T2-weighted image of each participant was brought into template space using 392 
three consecutive registration steps: i) using the spinal cord segmentation, the spinal cord was 393 
straightened, ii) the automatically determined labels of vertebrae between C2-C7 (manually 394 
corrected where necessary) were used for vertebral alignment between the template and the 395 
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individual T2-weighted image, and iii) the T2-weighted image was registered to the template using 396 
non-rigid segmentation-based transformations. 397 

In order to bring the functional images to template space, the template was registered to the 398 
functional images using non-rigid transformations (with the initial step using the inverse warping 399 
field obtained from the registration of the T2-weighted image to the template image). The resulting 400 
inverse warping fields obtained from this registration (from native EPI space to template space) 401 
were then applied to the respective functional images (e.g. single EPI volumes, mean EPI volume, 402 
tSNR maps) to bring them into template space where statistical analyses were carried out. 403 

Finally, we also brought each participant’s field map into template space in order to visualize the 404 
average B0 field variation across participants. Each participant’s field map was first resampled to 405 
the resolution of the T2-weighted image before the warping field obtained from the registration to 406 
template space was applied to the field map. 407 

 408 

2.5.4 EPI signal extraction 409 

In order to assess the effects of z-shimming, we obtained signal intensity data from each EPI slice. 410 
When analyses were carried out in native space and were based on the entire spinal cord cross-411 
section, we used the above-mentioned hand-drawn masks of the spinal cord and obtained one value 412 
per slice (average across the entire slice). In contrast, when analyses were carried out in template 413 
space or were based on gray matter regions only, we made use of the available PAM50 template 414 
masks of the entire spinal cord or the gray matter (with the probabilistic gray matter masks 415 
thresholded at 90%); again, we obtained one average value per mask and slice. Please note that in 416 
addition to reporting p-values from statistical tests, we also report (where appropriate) the 417 
percentage difference between conditions and the associated 95% confidence interval (CI) as 418 
estimated via bootstrapping. 419 

 420 

2.6 Statistical analysis 421 

2.6.1 Replication and extension of previous findings 422 

2.6.1.1 Direct replication 423 

In a first set of analyses (across all 48 participants), we aimed to replicate the findings of 424 
Finsterbusch et al. (2012). We, therefore, used template space single-volume EPI data acquired 425 
under no z-shim and manual z-shim conditions, calculated the individual EPI signal intensity per 426 
slice and reported the mean of signal intensity across all slices as well as the variation of signal 427 
intensity across all slices; for the latter, we initially used the variance (as done by Finsterbusch et 428 
al., 2012), but after the replication of their results we employed the coefficient of variation for the 429 
remainder of the manuscript (due to it being a standardized measure of variability). Both 430 
descriptive changes (percent increase / decrease), as well as statistical values (based on paired t-431 
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tests), were reported for the condition comparison. To additionally investigate how robust these 432 
findings were, we complemented these single-volume analyses – that might be affected by various 433 
noise sources – by the same analysis approach, but now carried out on an EPI volume that is the 434 
average of a time-series of 250 motion-corrected EPI volumes (acquired both for no z-shim and 435 
manual z-shim; Supplementary Material). In order to demonstrate that neither of these results were 436 
impacted by registration to template space, we also reported native space results in the 437 
Supplementary Material. 438 

 439 

2.6.1.2 Slice-by-slice characterization of z-shim effects 440 

Finsterbusch et al. (2012) already demonstrated that the improvement due to slice-specific z-441 
shimming varies spatially along the rostro-caudal direction. We therefore reasoned that it might 442 
be informative to also quantify the benefit for slices with various degrees of signal-loss (obviously, 443 
such an analysis could only be performed in native space). We first did this in a descriptive manner 444 
by reporting i) the maximally found percentage increase in signal intensity due to z-shimming and 445 
ii) the proportion of slices that differed by 0, 1, 2, 3, and >3 z-shim steps from the ‘neutral’ setting 446 
of no z-shim. In the Supplementary Material, we then followed this up more formally with an 447 
analysis where we categorized slices according to the manually chosen z-shim value and compared 448 
the signal intensity in these categories between no z-shim and manual z-shim both descriptively 449 
(using % signal intensity difference) and inferentially using a 2×5 repeated-measures ANOVA 450 
(factor 1: condition with two levels: no z-shim, manual z-shim; factor 2: step-difference with five 451 
levels: 0, 1, 2, 3, >3). We tested for a main effect of condition, a main effect of step-difference and 452 
an interaction between these two factors; post-hoc t-tests were Bonferroni corrected. To estimate 453 
the robustness of the results from these analyses (which were based on single EPI volumes), we 454 
repeated them on the average across the 250 motion-corrected EPI volumes (Supplementary 455 
Material). 456 

 457 

2.6.1.3 z-shim effects across different TEs 458 

We also aimed to assess the effects of z-shimming at TEs clearly shorter (30ms; fastest TE possible 459 
with the employed partial-Fourier factor of 7/8) and longer (50ms; same distance to our standard 460 
TE of 40ms) than the estimated T2* in the cervical spinal cord at 3T (~40ms; Barry et al., 2019), 461 
considering that such choices might often be necessary in fMRI studies. We, therefore repeated 462 
the analyses described in section 2.6.1.1 (assessing the mean of signal intensity across all slices as 463 
well as the variation of signal intensity across all slices for no z-shim and manual z-shim 464 
conditions) on the template-space EPI data obtained with TEs of 30ms and 50ms, both for single-465 
volume data and (in the Supplementary Material) for an average of the 25 volumes acquired at 466 
each of the different TEs. 467 

 468 
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2.6.1.4 z-shim effects in gray matter regions 469 

The effects reported in Finsterbusch et al. (2012) were obtained from averages across the entire 470 
cross-section of the spinal cord, thus mixing gray and white matter signals. However, with the 471 
availability of probabilistic gray matter maps (via SCT, see 472 
https://github.com/spinalcordtoolbox/PAM50; De Leener et al., 2017) it is now possible to 473 
investigate whether the signal-drop outs and their mitigation via z-shimming are also present in 474 
the gray matter (which is the relevant tissue for fMRI) and might even vary spatially (i.e. between 475 
dorsal and ventral horns). In order to address these two questions, we ran a 2×2 repeated-measures 476 
ANOVA (factor 1: condition with two levels: no z-shim, manual z-shim; factor 2: anatomical 477 
location: dorsal horn, ventral horn) where we tested for a main effect of condition, a main effect 478 
of location and an interaction between the two factors (Supplementary Material); this was followed 479 
up by post-hoc Bonferroni-corrected t-tests (where we also report % increase for the direct 480 
comparisons). As underlying metrics, we tested both the mean of signal intensity across all slices 481 
and the variation of signal intensity across slices. To assess robustness, the above-described 482 
analyses (based on single-volume EPIs) were repeated based on the average across the 250 motion-483 
corrected volumes. As a negative control, we also performed the same analyses as above, but now 484 
splitting the spinal cord gray matter into left and right parts. 485 

 486 

2.6.1.5 z-shim effects on time-series data 487 

The analyses described above, as well as the results reported by Finsterbusch et al. (2012) were 488 
solely based on measures of signal intensity. In order to directly investigate the potential benefit 489 
of z-shimming for spinal cord fMRI, we also investigated its effect on the temporal signal-to-noise 490 
ratio (tSNR, i.e. temporal mean divided by temporal standard deviation on a voxel-by-voxel basis) 491 
of motion-corrected data (250 volumes). We are aware that effects on tSNR do not allow for a 492 
perfect one-to-one extrapolation to effects on BOLD sensitivity, but we nevertheless believe this 493 
to be an adequate proxy measure due to the following reasoning (Deichmann et al., 2002; De 494 
Panfilis & Schwarzbauer, 2005; Poser et al., 2006): since the contrast-to-noise ratio (CNR) of 495 
BOLD responses is proportional to the product of the effective TE and tSNR and the effective TE 496 
does not depend on the magnetic field gradient in the z-direction, any tSNR gain obtained by z-497 
shimming should reflect a corresponding relative gain in BOLD-CNR in arbitrary task-based fMRI 498 
studies. 499 

Following up on section 2.6.1.4, we only assessed this in the region most relevant for fMRI, i.e. 500 
the gray matter of the spinal cord. We compared mean tSNR across all slices, as well as variation 501 
of tSNR across slices, between no z-shim and manual z-shim conditions: we descriptively reported 502 
% increase and also tested for significant differences using paired t-tests. 503 

Since signal loss in the most caudal (inferior) slices in the no z-shimming condition could 504 
negatively impact the motion correction (as this is regularized along z using a 2nd-degree 505 
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polynomial), we performed the above-mentioned analyses also after “censoring” of outlier 506 
volumes (Supplementary Material; see also section 2.5.1). 507 

As we only acquired 25 volumes for the short and long TEs due to time constraints, we did not 508 
calculate TE-dependent z-shim effects on tSNR (as these would be based on unstable tSNR 509 
estimates). 510 

 511 

2.6.2 Automating slice-specific z-shimming 512 

2.6.2.1 EPI-based automation 513 

Next, we investigated the performance of the EPI-based automated approach for selecting z-shim 514 
values, both in comparison to the conditions of no z-shim and manual z-shim; this was carried out 515 
in a sub-group of 24 participants. For the sake of brevity, we i) only reported our effects of interest 516 
– signal intensity based on single EPI volumes (Supplementary Material) and tSNR based on EPI 517 
time-series – in the spinal cord gray matter (i.e. ignoring whole-cord data) and ii) employed direct 518 
comparisons of conditions without using an initial omnibus test. Thus, in this sub-group of 24 519 
participants we investigated: i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii) 520 
manual z-shim vs auto z-shim. We reported % differences, as well as Bonferroni-corrected p-521 
values from paired t-tests, again using mean and variation metrics. 522 

 523 

2.6.2.2 FM-based automation 524 

We investigated the performance of the FM-based automated approach for selecting z-shim values 525 
(based on a different sub-group of 24 participants) using the identical procedure as outlined in the 526 
previous paragraph. 527 

However, since we discovered that the performance of the FM-based approach was slightly 528 
inferior compared to the manual approach, we followed this up with several post-hoc 529 
investigations (detailed in the Supplementary Material). Briefly, we first used the vendor-based 530 
field map and assessed the contributions of i) the choice of mask for identifying the spinal cord in 531 
the field map phase data, ii) various choices of parameters employed in the fitting process of the 532 
gradient field, iii) field-gradients in the AP-direction, and iv) inhomogeneity-induced mis-533 
localizations between EPIs and field map. Second, we substituted the vendor-based field map by 534 
the in-house field map and compared their performance. Third, we assessed the general reliability 535 
of estimating z-shim values from field map data by repeating the fitting process on a second in-536 
house field map that was acquired at the end of the experiment. While all these attempts aimed to 537 
improve the estimation of the through-slice field inhomogeneity, a final modification of the 538 
approach involved a histogram-based evaluation of the observed field gradients in order to improve 539 
the resulting signal intensity. 540 

 541 
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2.6.2.3 Comparing all three approaches 542 

So far, the automated approaches were compared to the manual approach within each sub-group 543 
of 24 participants. We next turned to directly comparing the approaches, using all 48 participants. 544 

First, we used two-sample t-tests (with Bonferroni-corrected two-tailed p-values) in order to assess 545 
the following, based on gray matter tSNR from EPI time-series (using both the mean as well as 546 
the variation of tSNR across all slices): i) comparing the baselines of no z-shim between the two 547 
groups, ii) comparing the improvement of manual z-shim vs no z-shim between the two groups, 548 
iii) comparing the improvement of auto z-shim vs no z-shim between the two groups and iv) 549 
comparing the difference of manual z-shim vs auto z-shim between the two groups. In 550 
complementary analyses, we also assessed the similarity between the automated approaches and 551 
the manual approach in terms of the actually chosen z-shim step using rank-based correlation and 552 
Euclidean distance (Supplementary Material). 553 

Second, we assessed the stability of z-shim effects (based on either of the automated approaches 554 
as well as the manual approach) over time in all 48 participants. We were able to do this since we 555 
acquired an EPI reference-scan not only at the beginning of the experiment, but also at the end 556 
(~60 minutes later). Using these reference scans, we ‘artificially reconstructed’ an EPI volume 557 
from each of the reference scans by selecting the corresponding volume for each slice based on 558 
the chosen z-shim values, no matter whether a participant was in the EPI-based or FM-based 559 
automation group. Importantly, we chose the ‘originally’ determined z-shim values to reconstruct 560 
‘artificial volumes’ from both the first and the second reference scan. These volumes were then 561 
realigned to the mean of the motion-corrected time series. The warping fields that were obtained 562 
during the normalization of motion-corrected mean image to the template space were used to bring 563 
these volumes to the template space. We then compared gray matter signal characteristics (mean 564 
and variation of signal intensity across slices, respectively) for both time points using the various 565 
conditions via paired t-tests with Bonferroni correction. 566 

 567 

2.7 Validation of EPI-based automation approach 568 

In order to validate the EPI-based automation method (which performed at least as well as the 569 
manual approach), we obtained an independent, externally acquired data set of spinal GE-EPI data. 570 
These data were acquired by VO, RHD, and JCWB as part of a larger project on pharmacological 571 
aspects of cortico-spinal pain modulation (Oliva et al., 2022). Here, we report results based on 572 
analyzing the z-shim reference data from 117 acquisitions (39 participants, each with three visits). 573 

The EPI reference scan (total acquisition time: 54 seconds) was acquired using a 2D EPI sequence 574 
with the following parameters: slice orientation: axial; slice number: 43 (20 slices for the spinal 575 
cord and 23 slices for the brain, i.e. concurrent cortico-spinal data acquisition); slice thickness: 576 
4mm; slice gap: 25-50% (depending on the length of neck / size of head); field of view: 577 
170×170mm2; in-plane resolution: 1.77×1.77mm2; TR: 3000ms; TE: 39ms; flip angle: 90°; 578 
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GRAPPA acceleration factor: 2; z-shim resolution and range: 15 equidistant moments 579 
between -4.9 and 4.9 mT m-1ms (in steps of  0.7 mT m-1ms). The high-resolution T1-weighted 580 
images that were used for registration to template space were acquired with a 3D sagittal MPRAGE 581 
sequence with the following parameters: 260 sagittal slices; field-of-view: 320×260mm2; 582 
percentage phase field of view: 81.25%; voxel size: 1×1×1mm3; TE: 3.72ms; flip angle: 9°; TR: 583 
2000ms; inversion time: 1000ms; GRAPPA acceleration factor: 3. All measurements were 584 
conducted on 3T whole body Siemens Skyra system. 585 

As the validation dataset did not include volumes that were acquired under different z-shimming 586 
conditions, for each participant we ‘artificially reconstructed’ an EPI volume from their reference 587 
scan by selecting the corresponding volume for each slice based on the chosen z-shim values (see 588 
also section 2.6.2.3). We created three different EPI volumes for each participant and visit: i) a ‘no 589 
z-shim’ volume (based on an index of 8 for each slice, which corresponds to a z-shim moment of 590 
0 mT m-1ms), ii) a ‘manual z-shim’ volume (based on the z-shim values manually selected by VO 591 
when the experiment was carried out) and iii) an ‘automated z-shim’ volume (based on the above-592 
described EPI-based automation carried out post-hoc). 593 

To bring these volumes to template space for each participant and visit, we applied the following 594 
steps to the T1-weighted anatomical data: i) segmenting the T1 image using SCT’s DeepSeg 595 
approach (Gros et al., 2019), ii) automatically labelling the vertebral levels C2-C7, and iii) bringing 596 
the T1 image to template space using non-rigid transformations. Then, we applied the following 597 
steps to the reconstructed EPI volumes: i) calculating the average of these three volumes (one 598 
volume for no z-shim, manual z-shim and automated z-shim each), ii) segmenting the average 599 
(using the PropSeg approach), iii) registering this average EPI to the template space (with the 600 
initial step of using the inverse warping field obtained from the registration of the T1-weighted 601 
image to the template image), iv) registering individual EPI volumes to the template space using 602 
the warps obtained from the previous step (in order to be unbiased), and v) in template space 603 
obtaining the signal over slices using the PAM50 cord mask. 604 

Four individual data sets were excluded due to artifacts in the images (three data sets) and a wrong 605 
placement of the slice stack (one data set). Our final sample thus consisted of 113 measurements 606 
from 38 participants. Please also note that for preprocessing of data from one individual data set, 607 
we used a more recent version of SCT (version 5.2.0) due to a bug present in version 4.2.2. 608 

Finally, we compared whole cord signal characteristics (mean and variation of signal intensity 609 
across slices) for i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii) manual z-610 
shim vs auto z-shim via paired t-tests with Bonferroni-correction and also reported % differences. 611 
For sake of simplicity, we treated each visit as a separate data point, thus ignoring the within-612 
subject dependency structure. We also reported the results of the same analyses for gray matter 613 
signal characteristics (Supplementary Material). 614 

 615 

2.8 Open science 616 
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The code that was run during the experiment for the automated selection of z-shim moments (both 617 
EPI-based and FM-based), as well as all the code necessary to reproduce the reported results, is 618 
publicly available on GitHub (https://github.com/eippertlab/zshim-spinalcord). Please also see the 619 
file Methods.md in this repository for a version of the Methods section with links to specific parts 620 
of the processing and analysis code. The underlying data are available in BIDS-format via 621 
OpenNeuro (https://openneuro.org/datasets/ds004068), with the exception of the external 622 
validation dataset obtained by VO, RHD and JCWB. The intended data-sharing via OpenNeuro 623 
was mentioned in the Informed Consent Form signed by the participants and approved by the 624 
ethics committee of the University of Leipzig. 625 

Please note that during peer-review, the link to data will not yet work, as these will only be made 626 
public upon acceptance of the manuscript. 627 
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Results 628 

 629 

3.1 Replication and extension of previous findings 630 

3.1.1 Direct replication 631 

Our first aim was to replicate earlier findings that demonstrated a significant increase of mean 632 
signal intensity and a decrease of signal intensity variation across slices via z-shimming. In our 633 
data set we were able to replicate these findings (Figure 2A), by also showing a significant increase 634 
of mean signal intensity (t(47) = 19.97, p < .001, difference of 14.8%, CI: 13.4-16.2%) and a 635 
significant reduction of signal intensity variation across slices, either using the variance as a metric 636 
(as the to-be-replicated study did; t(47) = 18.03, p < .001, difference of 67.8%, CI: 64-71.2%) or 637 
using the coefficient of variation (as we did in all further analyses; t(47) = 23.97, p < .001, difference 638 
of 51%, CI: 47.7-53.8%). 639 

 640 

3.1.2 Slice-by-slice characterization of z-shim effects 641 

As depicted in Figure 2A, the improvement afforded by slice-specific z-shimming periodically 642 
varies along the rostro-caudal direction in a consistent manner across participants (for a depiction 643 
of individual data, see Supplementary Figure 1). In a next step, we thus investigated not only what 644 
the average benefit of z-shimming is across the entire slice-stack, but also quantified the benefit 645 
for slices with various degrees of signal-loss due to dropouts. We first asked what the maximal 646 
signal intensity gain is per participant and observed that this varied between 72% and 209%, with 647 
an average across participants of 122% (note that this analysis is based on the most-affected slice 648 
per participant). To descriptively characterize how many slices were affected by signal drop-out 649 
to what degree across participants, we quantified for each slice by how much the manually chosen 650 
z-shim value (between 1 and 21) differs from that of the no z-shim condition (a constant value of 651 
11). We observed that on average 20% of slices had no difference, 32% of slices had a 1-step 652 
difference, 22% of slices had a 2-step difference, 11% of slices had a 3-step difference, and 16% 653 
of slices had more than a 3-step difference. In this last category, the most extreme possibly value 654 
(i.e. a 10-step difference) occurred only in 1% of the slices across the whole sample, demonstrating 655 
that the range chosen here for the z-shim reference scan is appropriate. As expected, signal 656 
intensity improvements became more pronounced with the increasing z-shim step size: 0% 657 
difference for a 0-step-difference, 5% different for a 1-step-difference, 18% difference for a 2-658 
step-difference, 41% difference for a 3-step-difference and 122% difference for a >3-step-659 
difference (Figure 2B); a statistical characterization of this relation can be found in the 660 
Supplementary Material. 661 

 662 

3.1.3 z-shim effects across different TEs 663 
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In addition to the TE of 40ms (which was the default across this study), we also investigated the 664 
effects of z-shimming at shorter (30ms) and longer (50ms) TEs. Focusing on mean signal intensity 665 
and signal intensity variation across slices, we observed a beneficial effect of z-shimming at the 666 
TE of 30ms (mean signal intensity: t(47) = 18.82, p < .001, difference of 9.5%, CI: 8.6-10.5%; 667 
signal intensity variation across slices: t(47) = 21.42, p < .001, difference of 48%, CI: 44.2-50.7% 668 
as well as at the TE of 50ms (mean signal intensity: t(47) = 16.09, p < .001, difference of 11.6%, 669 
CI: 10.2-12.9%; signal intensity variation across slices: t(47) = 22.20, p < .001, difference of 44.7%, 670 
CI: 41.4-47.7%). 671 

 672 

3.1.4 z-shim effects in gray matter regions 673 

Next, we assessed whether z-shim effects might be present in the spinal cord gray matter and might 674 
even vary between the dorsal and ventral horns. An initially performed analysis of variance already 675 
indicated significant effects of z-shimming in the gray matter, as well as location-dependent effects 676 
of z-shimming (Figure 2C and Supplementary Material). Direct comparisons via Bonferroni-677 
corrected paired t-tests revealed that there was a significant beneficial effect of z-shimming on 678 
mean signal intensity in the dorsal horn (t(47) = 18.39, p < .001, difference of 18.2%, CI: 16.3-679 
20.3%), as well as in the ventral horn (t(47) = 17.05, p < .001, difference of 10.9%, CI: 9.8-12.1%), 680 
but that the beneficial effect of z-shimming was more evident in the dorsal horn than in the ventral 681 
horn (t(47) = 7.43, p < .001). These results are also in line with what can be observed visually in 682 
Figure 2A, where drop-outs seem to be most pronounced in the dorsal part of the cervical spinal 683 
cord (with the exception of caudal slices, where the whole cord is affected). As a negative control, 684 
we also performed the same analyses as above, but now splitting the spinal cord gray matter into 685 
left and right parts: as expected, there were no significant differences between these two regions. 686 

 687 

3.1.5 z-shim effects on time-series data 688 

Moving away from reporting single-volume signal intensity measures, we next investigated the 689 
effect of z-shimming on the gray matter temporal signal-to-noise ratio (tSNR) of motion-corrected 690 
time-series data (250 volumes, acquired under no z-shim and manual z-shim, respectively). We 691 
observed a significant increase in mean tSNR (t(47) =10.64, p < .001, difference of 11.9%, CI: 9.7-692 
14.2%), as well as a significant reduction of tSNR variation across slices (t(47) = 11.01, p < .001, 693 
difference of 26%, CI: 21.9-30%), directly highlighting the benefits for spinal fMRI (Figure 2D). 694 
In the most-affected slices, z-shimming increased the tSNR by 28% on average, ranging from 1% 695 
to 155% across participants (this analysis also revealed that there was one outlier where tSNR 696 
decreased by 26% for manual z-shimming compared to no z-shimming). 697 

 698 
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 699 

Figure 2. Replication and extension of previous results. A. Direct replication of Finsterbusch 700 
et al. (2012). The mid-sagittal EPI sections consist of the group-average single volume EPI data 701 
in template space of 48 participants acquired under different conditions (no z-shim and manual z-702 
shim); red lines indicate the spinal cord outline. On the right side, group-averaged signal intensity 703 
in the spinal cord is shown for no (red) and manual (blue) z-shim sequences along the rostro-caudal 704 
axis of the cord. The solid line depicts the mean value and the shaded area depicts the standard 705 
error of the mean. B. Slice-by-slice characterization of z-shim effects. Bar graphs are grouped 706 
according to the absolute step size difference in the z-shim indices (x-axis) between no z-shim 707 
(red) and manual z-shim (blue) selections. The bars depict the mean signal intensity in the spinal 708 
cord for 48 participants for no and manual z-shim single volume acquisitions in native space. The 709 
vertical lines depict the standard error of the mean and the gray lines indicate participant-specific 710 
mean signal intensity changes between the no and manual z-shim conditions. C. Z-shim effects 711 
in gray matter regions. Signal intensity changes in different gray matter regions (dorsal horn, 712 
ventral horn) under different conditions (no z-shim, manual z-shim) are depicted via box-plots and 713 
raincloud plots. For the box plots, the median is denoted by the central mark and the bottom and 714 
top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers 715 
encompassing ~99% of the data and outliers being represented by red dots. The circles represent 716 
individual participants and half-violin plots show the distribution of the gray matter intensity 717 
values across participants. The thick gray lines show the mean signal intensity across participants 718 
in the dorsal and ventral gray matter under different conditions. D. Z-shim effects on time-series 719 
data. Group-average coronal tSNR maps for the no z-shim and manual z-shim conditions as 720 
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obtained from the motion-corrected EPI data in template space. The maps are overlaid onto the 721 
group-average mean image of the motion-corrected EPI data and depict a tSNR range from 11-20. 722 
The green line marks the outline of the gray matter. In the right panel, the participant-specific mean 723 
gray matter tSNR of the data acquired with and without z-shim are shown. Box plots are identical 724 
to those in C, the gray lines indicate individual tSNR changes between both conditions and the 725 
half-violin plots show the distribution across participants. 726 

 727 

3.2 Automation of z-shimming 728 

The previous results were all obtained using manually determined z-shim values and we now turn 729 
to results obtained when automating the z-shim selection process, for which we propose two 730 
methods: one is based on obtaining these values from the EPI z-shim reference scan (EPI-based) 731 
and one relies on calculating the necessary z-shim values based on a field map (FM-based). 732 

 733 

3.2.1 EPI-based automation 734 

In a sub-group of 24 participants, we first confirmed – using gray matter tSNR as obtained from 735 
motion-corrected time-series data – that also in this sub-sample manual z-shimming resulted in a 736 
significant increase in mean tSNR (t(23) = 7.37, p < .001, difference of 10%, CI: 7.4-12.7%) and a 737 
significant decrease in tSNR variation across slices (t(23) = 7.03, p < .001, difference of 27.2%, CI: 738 
20.5-33.8%). Most importantly, we found a similarly beneficial effect when using our automated 739 
approach (Figure 3 upper panel; see also Supplementary Figure 3), i.e. a significant increase in 740 
mean tSNR (t(23) = 8.69, p < .001, difference of 11.3%, CI: 8.9-13.9%) and a significant decrease 741 
in tSNR variation across slices (t(23) = 7.04, p < .001, difference of 26%, CI: 19.4-32.7%). When 742 
directly comparing the two approaches to determine z-shim values, we observed no significant 743 
difference, neither for mean tSNR (t(23) = 1.23, p = 0.70), nor for  tSNR variation across slices (t(23) 744 
= 0.61, p = 1), though a very slight benefit for the automated compared to the manual method was 745 
apparent. 746 

 747 

3.2.2 FM-based automation 748 

Field map data demonstrate that the source of the signal drop-outs z-shimming aims to compensate 749 
are B0 field inhomogeneities in the slice direction that i) are present where one would expect them 750 
based on anatomical and theoretical grounds (i.e. close to the intervertebral junctions and at the 751 
bottom of the field of view where the shim is poorer) and ii) are also consistent across participants 752 
(Supplementary Figure 2). In the FM-based approach, we therefore used field map data for z-shim 753 
calculation in a sub-group of 24 participants (different from the ones used for the EPI-based 754 
approach described above). We first confirmed – using gray matter tSNR as obtained from motion-755 
corrected time-series data – that also in this sub-sample manual z-shimming resulted in a 756 
significant increase in mean tSNR (t(23) = 7.99, p < .001, difference of 13.8%, CI: 10.6-17.4%) and 757 
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a significant decrease in tSNR variation across slices (t(23) = 9.36,  p< .001, difference of 24.6%, 758 
CI: 20.4-29%). As expected, we also observed a beneficial effect of our FM-based approach, which 759 
resulted in a significant increase in mean tSNR (t(23) = 6.41, p < .001, difference of 9.6%, CI: 6.9-760 
12.9%) and a significant decrease in tSNR variation across slices (t(23) = 8.30, p < .001, difference 761 
of 21.8%, CI: 17.4-26.2%). 762 

Unexpectedly though, despite this clear benefit, the performance of the FM-based approach was 763 
slightly worse than using manually determined z-shims (Figure 3 lower panel; see also 764 
Supplementary Figure 3): this occurred for mean tSNR (t(23) = 3.86, p = .002), but not for tSNR 765 
variation across slices (t(23) = 1.07, p = .88); please note that all p-values shown here and in the 766 
paragraph above are Bonferroni-corrected for three tests. 767 

In post-hoc analyses carried out after the complete data-set was acquired, we investigated several 768 
possibilities that might account for this slightly poorer performance – all of these are explained in 769 
detail in the Supplemental Material. Briefly, we investigated the influence of i) the choice of mask 770 
for data extraction, ii) the choice of parameters for the fitting process, iii) the influence of field- 771 
gradients in the AP-direction, and iv) inhomogeneity-induced mis-localizations between EPIs and 772 
field map. We also investigated whether the type of field map played a role and whether z-shims 773 
could be reliably derived at all from field map data. These investigations aimed to improve the 774 
estimation of the through-slice field inhomogeneities in the field map. However, it should be noted 775 
that compensating the mean through-slice field inhomogeneity of a slice may not result in the 776 
optimum signal intensity: a few extreme values of the field inhomogeneity may shift the mean 777 
value significantly, thereby decreasing the signal of the majority of these voxels significantly; on 778 
the other hand, this shift may also not recover significant signal in the voxels with the extreme 779 
values, yielding an overall lower signal amplitude. To address this issue, a different approach of 780 
determining the z-shim value was used that was based on a histogram of the field gradients and 781 
aimed to reduce the influence of extreme values. This approach led to a consistent improvement 782 
in performance, although even this method still did not achieve the performance of the manual 783 
selection. 784 
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 785 

Figure 3. Performance of both automated methods. Top panel. EPI-based automation. 786 
Bottom panel. FM-based automation. In both panels, the left-most plots show the group-787 
averaged gray-matter tSNR for no (red), manual (blue), and automated (green) z-shim sequences 788 
along the rostro-caudal axis of the cord. The solid line depicts the mean value and the shaded area 789 
depicts the standard error of the mean. Condition-wise group-average tSNR maps of the transversal 790 
slices at the middle of each segment are shown in the second graphs from the left. The maps are 791 
overlaid onto the group-average mean image of the motion-corrected EPI data and depict a tSNR 792 
range from 11-20. The outlines of the thresholded gray matter mask are marked by green lines. 793 
The scatter plots to the right show gray matter tSNR for manual (x-axis) and automated z-shim 794 
sequences (y-axis) plotted against each other (N = 24 for each automation sub-group). Bland-795 
Altman plots show the gray matter tSNR for manual z-shim plotted as the ground truth (x-axis) 796 
and the difference in gray matter tSNR between automated and manual sequences plotted on the 797 
y-axis. The horizontal solid gray line represents the mean difference in the gray matter tSNR 798 
between the two (automated and manual) sequences, and the dotted lines show the 95% limits of 799 
agreement (1.96×standard deviation of the differences). 800 

 801 

3.2.3 Comparing all three approaches 802 

To extend the within-group analyses reported above (each with N = 24) we next i) formally 803 
compared the three approaches based on the entire set of participants (N = 48) and ii) investigated 804 
the general question of how stable z-shim effects obtained via the three methods are across an 805 
experiment. 806 
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First, and most relevant for fMRI, we used mean gray matter tSNR to test for differences between 807 
the EPI-based and FM-based groups. These analyses (using Bonferroni corrected two-sample t-808 
tests) revealed that there was neither a significant difference between the baselines of no z-809 
shimming in the two groups (p = 1), nor a significant difference between the improvement 810 
compared to no z-shimming for either the manual (p = 0.38) or the automated approaches in the 811 
two groups (p = 1). However, we did observe a significant difference between manual z-shim vs 812 
auto z-shim in the two groups (p = 0.003), indicating the slightly worse performance of FM-based 813 
approach (see also Supplementary Figure 5). A second set of analyses based on tSNR variation 814 
across slices showed no significant differences between any of the approaches with all p-values > 815 
.9. The results of complementary analyses on how well the selected z-shim values matched 816 
between the manual approach and each of the automated approaches are reported in the 817 
Supplementary Material. 818 

Second, we investigated how stable the beneficial effects of z-shimming are across time. When 819 
comparing how well each of the three z-shim methods performed against the case of no z-820 
shimming in terms of mean signal intensity, we observed that despite some differences the 821 
beneficial effect of z-shimming was rather stable across time. More specifically, we observed that 822 
i) there was a significant difference between the two time-points in the baseline condition of no z-823 
shim (t(47) = 5.59, p < .001, with the first time point having significantly higher mean signal 824 
compared to second one), ii) that there was a slight degradation in performance when comparing 825 
z-shim benefits against no z-shimming between the 2nd and the 1st reference scan (manual: t(47) = 826 
8.44, p < .001; EPI-based: t(47) = 9.70, p < .001; FM-based: t(47) = 9.84, p < .001; thus similar across 827 
all three approaches) and iii) that all z-shim methods led to significant benefits not only in the data 828 
acquired at the beginning (manual vs no z-shimming: t(47) = 22.35, p < .001, difference of 14%; 829 
EPI-based vs no z-shimming: t(47) = 22.38, p < .001, difference of 14%; FM-based vs no z-830 
shimming: t(47) = 19.36, p < .001, difference of 11%) but also in the data acquired temporally later 831 
from when the z-shims were determined (manual vs no z-shimming: t(47) = 18.52, p < .001, 832 
difference of 11%; EPI-based vs no z-shimming: t(47) = 18.63, p < .001, difference of 11%; FM-833 
based vs no z-shimming: t(47) = 14.12, p < .001, difference of 8%). 834 

 835 

3.3 Validation of EPI-based automation approach 836 

In order to validate the EPI-based automation approach, we obtained an externally acquired 837 
corticospinal GE-EPI dataset consisting of 113 EPI z-shim reference scans acquired on a different 838 
MR-system (Oliva et al. 2022), which also allowed us to investigate the generalizability of the 839 
EPI-based automated approach in a dataset in which the manual selection was conducted by a 840 
different researcher (VO). Using this independently acquired data set, we observed that – 841 
compared to no z-shim – manual z-shimming resulted in a significant increase in mean signal 842 
intensity (t(112) = 19.24, p < .001, difference of 22.1%, CI: 19.7-24.4%) and a significant decrease 843 
in signal intensity variation across slices (t(112) = 8.83, p < .001, difference of 37.1%, CI: 29.7-844 
43.9%). Most importantly, the automated EPI-based approach resulted in a significant increase in 845 
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mean signal intensity (t(112) = 25.93, p < .001, difference of 28.3%, CI: 26.2-30.6%) and a 846 
significant decrease in signal intensity variation across slices (t(112) = 10.98, p < .001, difference of 847 
43.1%, CI: 36.4-49.3%). When we directly compared the automated and manual approaches, we 848 
observed that the automated method performed significantly better than the manual method both 849 
for mean signal intensity (t(112) = 11.85, p < .001), and signal intensity variation across slices (t(122) 850 
= 4.79, p < .001), demonstrating that the proposed EPI-based automated method can even 851 
outperform the manual selection (Figure 4). 852 

 853 

Figure 4. Validation of EPI-based automation on an independent data-set. The mid-sagittal 854 
EPI sections on the left consist of the group-average reconstructed z-shim reference scan EPI data 855 
in template space for the three different conditions (note that ‘EPI reconstruction’ was carried out 856 
via creating a single volume for each participant from the corresponding 15-volume z-shim 857 
reference scan by selecting for each slice the volume in which the z-shim moment maximized the 858 
signal intensity; for no z-shim reconstruction, the 8th volume of the z-shim reference scan was 859 
selected, which corresponds to the central/neutral z-shim moment, as this acquisition had a range 860 
of 15 moments). The line plots in the middle depict the group-averaged spinal cord signal intensity 861 
(obtained from the reconstructed z-shim reference-scan EPIs) along the rostro-caudal axis of the 862 
cord for the different conditions. The solid lines depict the group-mean values and the shaded areas 863 
depict the standard error of the mean. The box plots on the right show the group-mean spinal cord 864 
signal intensity averaged over the entire slice-stack. The median values are denoted by the central 865 
marks and the bottom and top edges of the boxes represent the 25th and 75th percentiles, 866 
respectively. The whiskers encompass approximately 99% of the data and outliers are represented 867 
by red dots. The gray lines indicate the participant-specific data (N=113) upon which the box-plots 868 
are based.  869 
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4. Discussion 870 

 871 

One of the main challenges in fMRI of the human spinal cord is the occurrence of spatially varying 872 
signal loss due to local magnetic field inhomogeneities. Here, we addressed this issue by 873 
employing the technique of slice-specific z-shimming. First, we aimed to replicate the results from 874 
the initial study on z-shimming in the spinal cord by investigating whether slice-specific z-shims 875 
mitigate signal loss in spinal cord GE-EPI data. Next, we probed the direct relevance of z-876 
shimming to studies measuring spinal cord activity with fMRI, by investigating its benefits with 877 
respect to different TEs, gray-matter signals and EPI time-series metrics. Most importantly, we 878 
aimed to improve upon the typical implementation of slice-specific z-shimming (user-dependent 879 
shim selection) by developing two automated approaches: one based on data from an EPI 880 
reference-scan and one based on data from a field map acquisition. 881 

 882 

4.1 Replication and extension of z-shim effects 883 

The first demonstration of the benefits obtainable with slice-specific z-shimming in T2*-weighted 884 
imaging of the human spinal cord was provided by Finsterbusch et al. (2012), who developed a z-885 
shim protocol tailored to the peculiarities of spinal cord imaging and assessed its effects on single 886 
volume GE-EPI data. Here, our first aim was to provide a direct replication of their results in a 887 
larger cohort of participants (N = 48) on a different MR-system. Similar to Finsterbusch and 888 
colleagues, we observed that z-shimming led to a significant and meaningful increase of average 889 
signal intensity (15%) and decrease of signal intensity variation over slices (68%) compared to the 890 
baseline of no z-shimming. In order to provide some detail on the expected benefits afforded by 891 
this method, we also performed a slice-by-slice characterization: while in ~20% of the slices no z-892 
shimming was needed, in the rest of the slices the application of a slice-specific z-shim resulted in 893 
a significant signal increase which could be as large as ~200% in the most extreme cases. 894 
Comparing these effects to those obtained with slice-specific z-shimming in the brain (Deichmann 895 
et al. 2003; Weiskopf et al., 2006; Volz et al., 2019) – where z-shimming is critically important 896 
for signal recovery in susceptibility-prone regions such as the orbitofrontal cortex – it becomes 897 
clear that they are at least as prominent in the spinal cord and their compensation is thus critical in 898 
spinal cord fMRI. 899 

The above-discussed results were obtained with a TE of 40ms in order to be close to the estimated 900 
T2* in the gray matter of the cervical spinal cord at 3T (41ms; Barry et al., 2019) and the TE 901 
considered by Finsterbusch and colleagues (44ms). Similar to Finsterbusch et al. (2012), we 902 
however also investigated the effect of z-shimming over different TEs (30ms, 40ms, 50ms), though 903 
now quantitatively and at the group-level. We observed that the beneficial effect of z-shimming 904 
was present to a similar degree across TEs, which is of direct relevance for fMRI. Longer TEs may 905 
be hard to avoid when covering lower cord sections due to the larger field of view required to 906 
avoid aliasing, in particular as higher in-plane acceleration factors may not be reasonable for the 907 
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standard receive coils available. Conversely, shorter TEs might be desirable with respect to 908 
increasing the temporal resolution or optimizing BOLD sensitivity (Menon et al., 1993; Gati et al., 909 
1997). In this respect, the consistent effect across TEs bodes well for using this technique flexibly 910 
in various settings. 911 

In addition to the choice of TE in different scenarios of spinal fMRI, another important factor to 912 
consider is the anatomical region-of-interest. While this is typically the gray matter of the spinal 913 
cord – with studies on motor function likely focusing on the ventral horn and studies on 914 
somatosensation likely focusing on the dorsal horn – the specific effects of z-shimming on these 915 
structures are currently unclear, as Finsterbusch et al. (2012) only evaluated the entire spinal cord 916 
cross-section, thus averaging gray and white matter signals. There is indeed the possibility that z-917 
shim effects might be rather negligible for the spinal cord gray matter, considering that field 918 
variations are most pronounced at the edge of the cord (Cooke 2004, Finsterbusch 2012, Cohen-919 
Adad 2017), which largely consists of white matter. With the recent availability of probabilistic 920 
gray matter maps via SCT (De Leener et al., 2018), we were in a position to address this question 921 
in this study. We observed that the beneficial effects of z-shimming were highly significant and of 922 
appreciable magnitude in the gray matter. While these effects were already prominent in the ventral 923 
horns (11% increase), they were much stronger in the dorsal horns (18% increase) where signal 924 
losses were more severe (see also Cooke et al., 2004). Together, these results demonstrate the 925 
relevance of z-shimming for spinal fMRI and highlight its necessity specifically in studies of dorsal 926 
horn function, such as somatosensation and nociception. It should be mentioned though that it is 927 
currently unclear whether such a pattern will also hold outside of the cervical spinal cord, i.e. in 928 
thoracic and lumbar segments (see e.g. Finsterbusch, 2014). It is also important to note that in the 929 
current study, we aimed to optimize the signal in the entire spinal cord cross-section, but one might 930 
also consider optimizing the z-shim moments based on a gray matter region of interest. However, 931 
this approach would be more time-consuming (and might require user intervention), as for 932 
obtaining the gray matter masks it is necessary to first register the participant’s native-space data 933 
to template space and then warp the probabilistic gray-matter masks back to native space. Such a 934 
two-step approach is necessary since with the current spatial resolution and signal quality of EPI 935 
data at 3T it is not possible to automatically segment the gray matter robustly in every slice of 936 
every participant (in our experience, this also holds for T2*-weighted ME-GRE protocols in lower 937 
cervical segments). 938 

The improvement in signal intensity we have discussed so far might in the worst case not directly 939 
translate into improved fMRI data quality (as indexed e.g. by tSNR): this might for example 940 
happen if physiological noise dominates the time-series or if participants move strongly in the z-941 
direction and thus render the chosen z-shim moment for a slice incorrect. We therefore quantified 942 
the beneficial effect of z-shimming on gray matter tSNR, by acquiring time-series data under 943 
different z-shimming conditions, and observed a 12% increase in the mean tSNR and a 26% 944 
decrease of tSNR variability over slices. It is important to note that as none of the data analysed 945 
here were high-pass filtered or corrected for the presence of physiological noise (Brooks et al., 946 
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2008), it is likely that the absolute tSNR values observed (range across participants for manually 947 
z-shimmed data in template space: 11.4 to 18.1) represent a worst case. By acquiring z-shim 948 
reference scans at the beginning and at the end of our experiment (separated by ~60 minutes), we 949 
were furthermore able to demonstrate that the effect of z-shimming was sufficiently stable across 950 
time, which is another important consideration for fMRI studies, as they usually require long 951 
scanning sessions. It should be mentioned however that participant-movement in the slice direction 952 
may reduce the performance of the z-shim compensation, although we deem this unlikely to 953 
happen frequently, considering the slice thickness used (5mm) and the distance of the vertebral 954 
disks that define the modulation of the magnetic flux density (~15mm, see e.g. Wilke et al. 1997 955 
for an overview and Busscher et al., 2010 for more recent data). 956 

 957 

4.2 Automation of z-shimming 958 

While the above-mentioned results demonstrate the utility of z-shimming for fMRI of the spinal 959 
cord, this approach requires detailed manual intervention in order to select the slice-specific z-960 
shim moments. In order to overcome this drawback, in this study, we developed two different 961 
automated methods for the selection of the z-shim moments Although such approaches have been 962 
developed for fMRI of the brain (Weiskopf et al., 2007a; Marshall et al., 2009; Tang & Huang, 963 
2011; Volz et al., 2019), they are lacking for fMRI of the spinal cord (with one notable exception 964 
to be discussed later, i.e. Islam et al., 2019) despite being desirable for a number of reasons. First, 965 
an automated method would be more time-efficient by reducing the time needed for selecting the 966 
z-shim moments. Second, it might enable more sites to perform spinal fMRI studies, as it reduces 967 
the need for extensive experience in judging spinal cord EPI data quality. Third, due to its 968 
automated nature it would eliminate the subjective (and error-prone) component involved in z-969 
shim selection and thus increase reproducibility, which is especially important in longitudinal or 970 
multi-center studies. In the following, we describe the two different automated z-shim approaches 971 
we developed, with one being EPI-based and the other being field map based (FM-based). 972 

The first automated method is based on the acquisition of an EPI z-shim reference scan – which is 973 
also employed for the manual selection – and relies on finding the z-shim moment that leads to the 974 
highest spinal cord EPI signal in each slice. This simple method achieved an at least identical 975 
performance in terms of all the investigated signal characteristics compared to the manual z-shim 976 
moment selection. In addition to that, the EPI-based approach was much faster compared to the 977 
manual selection: the calculations were completed in 15 seconds on average, whereas the manual 978 
selection took approximately 10 minutes for our set-up (24 slices and 21 z-shim values). The 979 
acquisition time of the z-shim reference scan was 55 seconds, but this could be shortened by 980 
limiting the range of the acquired z-shim moments. With the current set-up, we observed that the 981 
range of the acquired z-shim moments could indeed be restricted to achieve shorter acquisition 982 
times, as the most extreme z-shim moments were chosen quite rarely (lower-most moment of z-983 
shim range chosen only in 1% of the slices, upper-most moment never). A drawback of the EPI-984 
based approach is that it does not provide the flexibility to obtain slice-specific x- and y-shim 985 
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settings at the same time in order to account for field gradients in the read and phase direction 986 
simultaneously (Volz et al., 2019). To obtain those, additional reference scans would be necessary 987 
and thus prolong the scan-time significantly (Finsterbusch et al., 2012). This drawback could be 988 
overcome by basing the slice-specific shim selection on a field map, which would allow for 989 
estimating x-, y-, and z-shims for each slice simultaneously – as already suggested by Finsterbusch 990 
et al. (2012) and Islam et al. (2019) – and this was the second approach we employed. 991 

The FM-based approach was motivated by the fact that the source of the signal drop-outs which 992 
slice-specific z-shimming aims to compensate are B0 field inhomogeneities in the slice direction. 993 
The optimum z-shim value should thus be derivable from a field map, and we therefore fit a 994 
spatially linear gradient field in the slice direction to the measured field map data in order to 995 
estimate the gradient moment that will compensate the local through-slice field inhomogeneity. 996 
This FM-based approach provided highly significant benefits when compared to no z-shimming 997 
in terms of all the investigated signal characteristics. Similar to the EPI-based approach, the FM-998 
based approach was clearly advantageous over manual z-shim selection in terms of the selection 999 
time (36 seconds on average). Compared to the EPI-based approach, it was however more time-1000 
consuming in terms of the time needed to acquire the different scans. First, we acquired a vendor-1001 
based field map, which took ~5 minutes (though quicker field map acquisitions could be used). 1002 
Second, we acquired a standard high-resolution T2-weighted image (which also took 1003 
approximately 5 minutes to acquire; Cohen-Adad et al., 2021) for automated segmentation of the 1004 
spinal cord, instead of the magnitude image from the field map. This choice was motivated by not 1005 
wanting our results to be affected by the quality of the segmentation as neither the image 1006 
resolution, nor the contrast of the magnitude image was optimal for the currently employed 1007 
automated segmentation. However, the increased acquisition time for field map and T2-weighted 1008 
image should be considered against the background that such images are acquired routinely in 1009 
spinal fMRI experiments (e.g. for registration purposes). We thus believe that in typical research 1010 
settings (where a few additional minutes of scan time might be negligible), the choice between the 1011 
EPI-based and FM-based should in principle be guided by the slice-specific shim sets one needs 1012 
to obtain (z-shim only: EPI-based; x-, y-, and z-shim: FM-based, though one would ideally want 1013 
to acquire a field-map with higher resolution in the x-direction than done here). 1014 

However, we currently recommend using the automated EPI-based approach, as the performance 1015 
of the automated FM-based approach was slightly inferior compared to the manual approach. 1016 
While this difference was significant, it was small (~4%) and limited to only some of the 1017 
investigated metrics. We initially investigated several possibilities for this slightly worse 1018 
performance (such as i) the choice of mask for data extraction, ii) the choice of parameters for the 1019 
fitting process, iii) the influence of field-gradients in the AP-direction, iv) inhomogeneity-induced 1020 
mis-localizations between EPIs and field map, and v) the reliability of FM-based z-shim 1021 
calculation), but were not able to determine any factor that would improve the FM-based approach 1022 
meaningfully. A slight but noticeable improvement was however brought about when substituting 1023 
the vendor-based field map with a more robust in-house field map. A more significant 1024 
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improvement could be obtained by employing a histogram-based evaluation of the field gradients. 1025 
Approximating the most probable field gradient values, this method aims to optimize the 1026 
compensation for the majority of the voxels that contribute most to the signal, at the expense of 1027 
more extreme values for which a significant compensation could only be achieved by sacrificing 1028 
the compensation of most other voxels. While an improvement with this approach is observed, it 1029 
still does not perform as well as the approach based on the reference scan which may have several 1030 
reasons. On one hand, the relative intensities of the voxels as relevant in the EPI images are not 1031 
appropriately considered. On the other hand, while the EPI-based approach is based on the same 1032 
pulse sequence and has identical acquisition parameters as the target data (i.e. it exactly reflects 1033 
the signal intensity achieved with the fMRI protocol), the FM-based approach is based on a 1034 
different pulse sequence that is less prone to artifacts, but comes with a different voxel size as well 1035 
as image orientation and position. These data could thus theoretically be expected to have a better 1036 
quality and be more accurate, but may be less consistent with the EPI data (e.g. in terms of effects 1037 
arising from in-plane field gradients (Deichmann et al., 2002; Weiskopf et al., 2007b) or slice 1038 
thickness/profile modifications due to field inhomogeneities (Epstein & Magland, 2006) and most 1039 
importantly are not determined from the EPI signal intensity. 1040 

It is also important to note that there are several ways of calculating the optimal z-shim moments 1041 
from field map data and other approaches have for example taken the route of directly optimizing 1042 
BOLD sensitivity in the brain based on EPI BOLD contrast models (e.g. Balteau et al., 2010; Volz 1043 
et al., 2019). In the spinal cord, Islam et al. (2019) recently proposed an FM-based automated z-1044 
shim selection method for simultaneous brain and spinal fMRI. However, their implementation 1045 
was aimed at compensating spatially broader field variations, as they fit a quadratic field term 1046 
using voxels from slices that were ±4 cm distant from the target slice (which would cover 16 EPI 1047 
slices in our case). In our study, we aimed to compensate for more localized field variations along 1048 
the superior-inferior axis of the cord and therefore only included voxels from slices that were ±4 1049 
mm distant from the target slice. While comparing the performance of our approach directly to 1050 
these approaches is beyond the scope of the current work, with the open availability of our code 1051 
and data, this should be possible for the interested reader. 1052 

 1053 

4.3 Validation of EPI-based z-shim automation 1054 

Finally, we demonstrated the validity of our EPI-based automation approach in an independently 1055 
acquired large-scale cortico-spinal dataset (N > 100; Oliva et al., 2022). In this case, the automated 1056 
approach exceeded the performance of manual selection (though we were not able to test this 1057 
performance advantage in a further independent data-set). Such a pattern of results might be 1058 
expected for studies where manual z-shim selection has to be performed rather fast due to time 1059 
constraints (such as in the validation dataset, where a pharmacological challenge of the opioidergic 1060 
and noradrenergic systems took place) – in our methodologically oriented study, particular 1061 
emphasis was placed on the manual z-shim selection being as precise as possible, thus making the 1062 
advantage of the automated approach possibly less apparent. This also hints at the potential of this 1063 
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approach to make z-shim selection more reliable and homogenous in complex studies where 1064 
personnel might vary (e.g. in longitudinal or multi-site projects) and thus have different levels of 1065 
experience that could detrimentally influence manual z-shim selection. Finally, since the cortico-1066 
spinal dataset naturally suffered from more severe signal drop-outs and acquisition artefacts such 1067 
as ghosting (e.g. due to the large acquisition volume), the performance of the EPI-based 1068 
automation approach demonstrates the robustness of this method with regards to varying levels of 1069 
data quality. 1070 

 1071 

4.4 Limitations 1072 

We would also like to point out several limitations of the presented work. First, the slice-wise z-1073 
shim approach is only applicable to axially acquired single-shot GE-EPI data. While this type of 1074 
acquisition is used by numerous groups when studying somatomotor (e.g. Maieron et al., 2007; 1075 
Vahdat et al., 2015; Weber et al., 2016; Kinany et al., 2019), somatosensory (Brooks et al. 2012; 1076 
Tinnermann et al., 2017; Weber et al., 2020; Oliva et al., 2022) or resting-state spinal cord 1077 
responses (Kong et al., 2014; San Emeterio Nateras, 2016; Kinany et al, 2020), there is also a 1078 
strong tradition of using spin-echo approaches (for reviews, see e.g. Stroman, 2005 and Powers et 1079 
al., 2018) and a more recent development in using multi-shot acquisitions (e.g. Barry et al., 2014; 1080 
Barry et al., 2021; note that while the use of short TEs makes these acquisitions less affected by 1081 
signal-dropout, in principle z-shimming might also be beneficial here). Second, although previous 1082 
studies have demonstrated a high correlation of tSNR and signal intensity with BOLD sensitivity 1083 
(particularly when effects of echo shifting are considered; e.g. Deichmann et al., 2003; Weiskopf 1084 
et al., 2005; Poser et al., 2006), we cannot make direct extrapolations from the here-observed 1085 
beneficial effects of z-shimming on tSNR to similar effects on task-based BOLD responses. In 1086 
future methodological studies, it would thus be interesting to also acquire task-based spinal fMRI 1087 
data under different z-shimming conditions to demonstrate the effect of z-shimming on the 1088 
detection of BOLD responses – while this has been demonstrated in brain fMRI studies (Gu et al., 1089 
2002; Du et al., 2007), such evidence is currently lacking for the spinal cord (for a first step in this 1090 
direction, see Islam et al., 2019). Third, the FM-based approach could be optimized e.g. by 1091 
improving field-map quality to a degree where an automated segmentation of the magnitude image 1092 
is possible (thus precluding any possible mismatch between the field-map and the T2-weighted 1093 
image that is used for spinal cord identification) and increasing the spatial resolution of the field-1094 
map (currently limited at ~2mm in x-direction) in order to allow for full xyz-shimming (see also 1095 
Islam et al., 2019).  1096 
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5. Conclusions 1097 

 1098 

Spinal cord fMRI suffers from magnetic field inhomogeneities that negatively affect data quality, 1099 
particularly via signal loss. In the current study, we extensively characterized the performance of 1100 
slice-specific z-shimming in mitigating the effects of these inhomogeneities and developed two 1101 
automated slice-specific z-shim approaches. We believe that our automated approaches will be 1102 
beneficial for future spinal cord fMRI studies since they i) are less time-consuming than the 1103 
traditional approach, ii) do not require extensive experience in judging data quality, and iii) are 1104 
expected to increase reproducibility by eliminating the subjective component in the z-shim 1105 
selection processes. This latter point is particularly important for longitudinal fMRI studies as they 1106 
could be envisioned in the clinical setting where disease progression and treatment effects could 1107 
be monitored.  1108 
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Supplementary Material 1335 

 1336 

Please note that for sake of readability, the numbering of the headers in the Supplementary Material 1337 
was kept consistent with the Results section in the main text. 1338 

 1339 

3.1 Replication and extension of previous findings 1340 

3.1.1 Direct replication 1341 

To additionally investigate how robust the findings in the main manuscript are, we supplement the 1342 
single-volume analyses (that might be affected by various noise sources) by the same analysis 1343 
approach, but now carried out on an EPI volume that is the average of a time-series of 250 motion 1344 
corrected EPI volumes (acquired both for no z-shim and manual z-shim). We observed a 1345 
significant increase of mean signal intensity (t(47) = 19.03, p < .001, difference of 12%) and a 1346 
significant reduction of signal intensity variation across slices (t(47) = 27.22, p < .001, difference 1347 
of 51%) for manual z-shim compared to no z-shim. 1348 

We also conducted the same analysis in native space (both for single-volume data and the average 1349 
of a time-series of 250 motion corrected EPI volumes)  instead of template space and observed 1350 
very similar results demonstrating the benefit of z-shimming: for the single-volume data, we 1351 
observed a significant increase of mean signal intensity (t(47) = 21.07, p < .001, difference of 19%) 1352 
and a significant reduction of signal intensity variation across slices (t(47) = 25.55, p < .001, 1353 
difference of 55%). For the average of a time-series of 250 motion corrected EPI volumes, we also 1354 
observed a significant increase of mean signal intensity (t(47) = 20.14, p < .001, difference of 16%) 1355 
and a significant reduction of signal intensity variation across slices (t(47) = 26.15, p < .001, 1356 
difference of 54%). All of these results mirror those reported in the main manuscript. 1357 

 1358 

3.1.2 Slice-by-slice characterization of z-shim effects 1359 

Here, we complement the qualitative results reported in the main text by a more formal approach: 1360 
we first carried out an analysis where we categorized each slice of the single-volume EPIs 1361 
according to the step-difference between the manually chosen z-shim value and that of no z-shim 1362 
(value 11) and compared the signal intensity in these categories between no z-shim and manual z-1363 
shim using a 2x5 repeated-measures ANOVA (factor 1: condition with levels no z-shim and 1364 
manual z-shim; factor 2: step-difference of 0, 1, 2, 3, >3). We observed a significant main effect 1365 
of condition (F(1,88) = 222.74, p < .001), a significant main effect of step-difference (F(4,352) = 355.8, 1366 
p < .001) and a significant interaction (F(4,352) = 204.66, p < .001). Post-hoc Bonferroni-corrected 1367 
t-tests then revealed that the signal intensity improvement by z-shimming was not significant in 1368 
those slices that had no step-difference and thus served as a negative control (t(47) = 1.16, p = 1), 1369 
but that it increased with increasing step-difference (step-difference of 1: t(47) = 11.48 p < .001; 1370 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2021.07.27.454049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.454049
http://creativecommons.org/licenses/by-nc-nd/4.0/


Automated z-shimming for spinal fMRI 

 

43 

 

step-difference of 2: t(47) = 19.84, p < .001; step-difference of 3: t(47) = 18.02, p < .001; step-1371 
difference of >3: t(47) = 35.13, p < .001). 1372 

In order to assess the robustness of these effects, we also repeated the same analysis on the average 1373 
of 250 motion corrected EPI volumes. The ANOVA showed a significant main effect of condition 1374 
(F(1,88) = 145.99, p < .001), a significant main effect of step-difference (F(4,352) = 311.18, p < .001) 1375 
and a significant interaction (F(4,352) = 184.72, p < .001). Post-hoc Bonferroni-corrected t-tests 1376 
revealed that the signal intensity in the no z-shimming condition unexpectedly was minimally (but 1377 
consistently) higher in those slices that had no step-difference control (t(47) = -4.95, p < .001, 1378 
difference of 1%), but more importantly  that the beneficial effect of z-shimming increased with 1379 
increasing step-difference (step-difference of 1: t(47) = 5.35 p < .001, difference of 3%; step-1380 
difference of 2: t(47) = 16.91, p < .001, difference of 16%; step-difference of 3: t(47) = 13.45, p < 1381 
.001, difference of 32%; step-difference of >3: t(47) = 32.79, p < .001, difference of 115%). 1382 

 1383 

3.1.3 z-shim effects across different TEs 1384 

When we repeated the analysis from the main text on the average of 25 motion-corrected volumes 1385 
we observed very similar results. The effects of z-shimming were highly significant both at the TE 1386 
of 30ms (mean signal intensity: t(47) = 21.40, p < .001, difference of 10%; signal intensity variation 1387 
across slices: t(47) = 22.60, p < .001, difference of 48%) and at the TE of 50ms (mean signal 1388 
intensity: t(47) = 16.70 , p < .001, difference of 12%; signal intensity variation across slices: t(47) = 1389 
20.80, p < .001, difference of 44%). 1390 

 1391 

3.1.4 z-shim effects in gray matter regions 1392 

In order to formally compare the mean of signal intensity in different gray matter regions, we used 1393 
a 2x2 repeated-measures ANOVA (factor 1: condition with levels no z-shim and manual z-shim; 1394 
factor 2: anatomical location with levels dorsal horn and ventral horn). We observed a significant 1395 
main effect of condition (F(1,94) = 621.33, p < .001), a significant main effect of anatomical location 1396 
(F(1,94) = 39.70, p < .001) and a significant interaction (F(1,94) = 21.31, p< .001); note that post-hoc 1397 
t-tests are reported in the main text. 1398 

When we investigated the variation of signal intensity using the same ANOVA approach, we 1399 
observed a significant main effect of condition (F(1,94) = 1024.40, p < .001), a significant main 1400 
effect of anatomical location (F(1,94) = 30.32, p < .001) and a significant interaction (F(1,94) = 9.60, 1401 
p = .003). Following this up with post-hoc Bonferroni-corrected t-tests revealed there was a 1402 
significant beneficial effect of z-shimming in the dorsal horn (t(47) = 21.43, p < .001, difference of 1403 
48%), as well as in the ventral horn (t(47) = 25.18, p < .001, difference of 47%), but that the 1404 
beneficial effect of z-shimming was more evident in the dorsal horn than in the ventral horn (t(47) 1405 
= 4.06, p < .001). 1406 
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As a negative control analysis, we carried out the same ANOVA approach, but now using the mean 1407 
of signal intensity from the left vs right parts of the cord, where no differential effects should occur. 1408 
As expected, we observed a significant main effect of condition (F(1,94) = 690.05, p < .001), no 1409 
significant main effect of location (F(1,94) = 0.01, p = 0.90) and no significant interaction (F(1,94) = 1410 
0.09, p = 0.76). 1411 

We repeated the above analyses (which are based on single-volume EPIs) with an average of the 1412 
250 motion-corrected volumes. A 2x2 repeated-measures ANOVA (factor 1: condition with levels 1413 
no z-shim and manual z-shim; factor 2: anatomical location with levels dorsal horn and ventral 1414 
horn) showed a significant a significant main effect of condition (F(1,94) = 629.52, p < .001), a 1415 
significant main effect of anatomical location (F(1,94) = 36.55, p < .001) and a significant interaction 1416 
(F(1,94) = 4.90, p = .03). Post-hoc Bonferroni-corrected t-tests revealed there was a significant 1417 
beneficial effect of z-shimming in terms of the signal intensity in the dorsal horn (t(47) = 18.85, p 1418 
< .001, difference of 15%), as well as in the ventral horn (t(47) = 16.59, p < .001, difference of 1419 
11%), but that the beneficial effect of z-shimming was more evident in the dorsal horn than in the 1420 
ventral horn (t(47) = 4.87, p < .001). With respect to variation of signal intensity, the ANOVA 1421 
resulted in a significant main effect of condition (F(1,94) = 1300.20, p < .001), a significant main 1422 
effect of anatomical location (F(1,94) = 27.78, p < .001) and a significant interaction (F(1,94) = 4.08, 1423 
p = .046). Post-hoc Bonferroni-corrected t-tests revealed there was a significant beneficial effect 1424 
of z-shimming in terms of reduction in the signal intensity variation over slices in the dorsal horn 1425 
(t(47) = 24.95, p < .001, difference of 46%), as well as in the ventral horn (t(47) = 26.33, p < .001, 1426 
difference of 48%), but that the beneficial effect of z-shimming was more evident in the dorsal 1427 
horn than in the ventral horn (t(47) = 2.69, p = 0.01). 1428 

 1429 

3.1.5 z-shim effects on time-series data 1430 

When we investigated the effects of z-shimming on tSNR using motion-censored time-series data, 1431 
we observed a significant increase in mean tSNR (t(47) = 10.73, p < .001, difference of 9%), as well 1432 
as a significant reduction of tSNR variation across slices (t(47) = 10.94, p < .001, difference of 1433 
25%). In the most-affected slices, z-shimming increased the tSNR by 26% on average, ranging 1434 
from 6% to 116% across participants (this analysis revealed that there were 3 outliers where tSNR 1435 
decreased by 1% (for two of the outliers) and 29% (for one of the outliers) for manual z-shimming 1436 
compared to no z-shimming), again similar to what is reported in the main manuscript. 1437 

 1438 

3.2 Automation of z-shimming 1439 

3.2.1 EPI-based automation 1440 

When analyzing single-volume EPI gray matter signal intensity (in order to relate these effects to 1441 
those from the direct replication performed earlier), we observed a significant increase of mean 1442 
signal intensity (t(23) = 12.51, p < .001, difference of 13%) and a significant decrease in signal 1443 
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intensity variation across slices (t(23) = 16.89, p < .001, difference of 51%) for manual z-shimming 1444 
against no z-shimming. Most importantly, we found a similarly beneficial effect when using our 1445 
automated approach, i.e. a significant increase in mean signal intensity (t(23) = 12.18, p < .001, 1446 
difference of 14%) and a significant decrease in signal intensity variation across slices (t(23) = 1447 
16.97, p < .001, difference of 48%). When directly comparing the two approaches to determine z-1448 
shim values, we observed no significant difference, neither for mean signal intensity (t(23) = 0.31, 1449 
p = 1), nor for  signal variation across slices (t(23) = 2.49, p = 0.06), though in both cases the 1450 
performance of the automated approach was slightly superior. Overall, these results strongly 1451 
mirror those based on tSNR reported in the main manuscript. 1452 

 1453 

3.2.2 Field map based (FM-based) automation 1454 

When analyzing single-volume EPI gray matter signal intensity, we observed a significant increase 1455 
of mean signal intensity (t(23) = 15.39, p < .001, difference of 15%) and a significant decrease in 1456 
signal intensity variation across slices (t(23) = 20.81, p < .001, difference of 52%) for manual z-1457 
shimming against no z-shimming. Most importantly, we found a similarly beneficial effect when 1458 
using our automated approach, i.e. a significant increase in mean signal (t(23) = 13.59, p < .001, 1459 
difference of 12%) and a significant decrease in signal variation across slices (t(23) = 17.42, p < 1460 
.001, difference of 49%). When directly comparing the two approaches to determine z-shim values, 1461 
we observed a significant difference for the mean signal intensity (t(23) = 3.82, p = 0.003), but not 1462 
for variation across slices (t(23) = 1.52, p =  0.43), again showing the slightly inferior performance 1463 
of this automated approach compared to manual z-shimming, congruent with the tSNR-based 1464 
results in the main manuscript. 1465 

In the following, we detail the post-hoc investigations we undertook in order to determine possible 1466 
reasons for the unexpected sub-optimal performance of the FM-based approach. Briefly, we first 1467 
used the vendor-based field map and assessed the contributions of i) the choice of mask for 1468 
identifying the spinal cord in the field map phase data, ii) various choices of parameters employed 1469 
in the fitting process of the gradient field, iii) field-gradients in the AP-direction, and iv) 1470 
inhomogeneity-induced mis-localizations between EPIs and field map. Second, we substituted the 1471 
vendor-based field map by the more robust in-house field map and compared their performance. 1472 
Third, we assessed the general reliability of estimating z-shim values from field map data by 1473 
repeating the fitting process on a second in-house field map that was acquired at the end of the 1474 
experiment. Finally, we calculated the optimum z-shim values using a histogram-based evaluation 1475 
instead of a linear fit to reduce the influence of extreme values. In order to determine whether the 1476 
performance of FM-based z-shim selection would improve with the different post-hoc approaches 1477 
we undertook, we i) calculated the chosen z-shim values, ii) based on those we then artificially 1478 
‘reconstructed’ the EPI z-shim reference scan for each approach (see Methods section 2.7.3 for 1479 
details), and iii) compared the gray matter signal characteristics (mean and coefficient of variation) 1480 
between the new implementation and the original implementation. Please note that since we have 1481 
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a directional hypothesis (new FM-approach better than main manuscript FM-approach), we only 1482 
test for an improvement compared to our original implementation. 1483 

 1484 

3.2.2.1 Choice of mask for identifying the spinal cord in the field map phase data 1485 

In our original implementation, the fitting of the linear gradient field was performed only on voxels 1486 
within the spinal cord. This voxel selection was determined by a mask that was obtained from a 1487 
segmentation of the T2-weighted image. While visual inspection of the mask overlaid onto the 1488 
field map magnitude image did not give cause for concern in any of the 48 participants (i.e. due to 1489 
possible participant movement between T2 and field map acquisitions), we nevertheless asked 1490 
whether a change of the mask might improve performance. We therefore re-ran the original fitting 1491 
procedure, but now based on a mask that was either eroded by 1 voxel or dilated by 1 voxel. When 1492 
comparing the results based on these new masks to the standard mask, we observed that neither of 1493 
these changes resulted in a meaningful and significant change in gray matter mean signal intensity 1494 
(11% increase against no z-shim for all three masks) or signal intensity variation across slices 1495 
(50% decrease for original and dilated masks, 49% decrease for eroded mask compared to no z-1496 
shimming). In line with these descriptive results, when directly comparing the original and new 1497 
approaches statistically, we observed no significant differences (all puncorrected > 0.30). 1498 

 1499 

3.2.2.2 Choice of parameters employed in the fitting process of the gradient field 1500 

In our original implementation, we chose the following parameters based on pilot acquisitions: we 1501 
smoothed the field map data with an isotropic 1mm kernel, used 9mm slab thickness (i.e. 9 1502 
transversal field map slices) for each fit and gave equal weight to all voxels in the fitting procedure. 1503 
We next investigated whether variations of these parameters might have an influence on the 1504 
performance: the smoothing kernel width (sigma) was set to 0, 1 or 2mm; the slab thickness was 1505 
set to 5, 9 or 13mm, either with equal weighting or weighted by a raised cosine kernel of full-width 1506 
half-maximum equal to the slab thickness and a roll-off factor beta of 0.5 (the purpose of the 1507 
weighting was to down-weight voxels further away from the corresponding EPI slice). However, 1508 
none of these choices seemed to make a meaningful difference, although out of these 17 additional 1509 
variations (3 smoothing options crossed with 3 slab-thickness options and 2 weighting options) 1510 
one showed a slight improvement for mean signal intensity and one showed a slight improvement 1511 
for signal intensity variation along slices compared to our initial parameter set of choice that we 1512 
used throughout the experiment (maximum improvement for mean signal intensity observed with 1513 
parameter set “slab thickness = 9, beta = 0.5, smoothing sigma = 1”: t(47) = 1.64, puncorreced = 0.054, 1514 
pcorrected = 1, difference of 0.2%; maximum improvement for signal intensity variation over slices 1515 
observed with parameter set “slab thickness = 9, beta = 0, smoothing sigma = 0”: t(47) = 2.92, 1516 
puncorrected = 0.003, pcorrected = 0.05, difference of 2%).Thus, the slightly worse performance of the 1517 
FM-based approach reported in the main manuscript – which was based on a significant difference 1518 
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for mean signal intensity – does not seem to be due to the choice of parameters employed in the 1519 
fitting process. 1520 

 1521 

3.2.2.3 Field gradients in the AP-direction 1522 

Another possible explanation for the slightly inferior performance of the FM-based approach is 1523 
that field inhomogeneities in the A-P (y) direction may shift the center of k-space in the EPI 1524 
acquisitions which – depending on their polarity – would result in a shorter or longer effective TE. 1525 
Because the calculation of the required z-shim gradient moment from the field map assumes that 1526 
the echo forms up at the nominal TE, any shift of the effective TE would lead to an imperfect 1527 
compensation of the through-slice dephasing and would cause a signal loss. This is in contrast to 1528 
the EPI-based approach, which rests on an EPI acquisition where the effective TE is inherently 1529 
considered by just picking the best z-shim moment tested. 1530 

In the presence of a susceptibility-induced field gradient in the phase encoding direction, 𝐺𝐺𝑆𝑆𝑆𝑆, 1531 
refocusing happens at an effective TE given by: 1532 

𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑇𝑇𝑇𝑇
𝑄𝑄

, 1533 

where 1534 

𝑄𝑄 = 1 −
𝐺𝐺𝑆𝑆𝑆𝑆
𝐺𝐺𝑃𝑃𝑃𝑃

. 1535 

𝐺𝐺𝑃𝑃𝑃𝑃 is the effective phase encoding gradient: 1536 

𝐺𝐺𝑃𝑃𝑃𝑃 =
1
𝛾𝛾
∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 1537 

where 𝑑𝑑𝑑𝑑 is the echo spacing (Deichmann et al., 2002). Based on the fitted linear field gradient in 1538 
the AP direction, we calculated 𝑄𝑄 for each slice, and adjusted the z-shim gradient moment to 1539 
account for the effective TE. We then investigated how the adjustment of the z-shim moments 1540 
(please note that we considered both positive and negative polarities of EPI phase-encoding) 1541 
affected the gray matter signal characteristics compared to our original implementation. We neither 1542 
observed a meaningful increase in mean signal intensity (negative polarity vs original 1543 
implementation: t(47) = -0.59, puncorreced = 0.72, pcorrected = 1, <0.1% decrease; positive polarity vs 1544 
original implementation: t(47) = 0.08, puncorreced = 0.47, pcorrected = 0.94, <0.1% increase) nor a 1545 
meaningful decrease in signal intensity variation over slices (negative polarity vs original 1546 
implementation: t(47) = -0.93, puncorreced = 0.82, pcorrected = 1, 0.8% increase; positive polarity vs 1547 
original implementation: t(47) = -1.58, puncorreced = 0.06, pcorrected = 0.12, 1% decrease). It thus seems 1548 
that the influence of AP gradients is rather negligible with respect to the slightly inferior 1549 
performance of the FM-based approach. 1550 

 1551 
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3.2.2.4 Inhomogeneity-induced mis-localizations between EPIs and field map  1552 

The FM-based z-shim selection relies on spatial congruency between the field map and the EPI 1553 
acquisitions in the through-slice direction of the axial EPI volume. Local susceptibility-induced 1554 
field offsets can however affect the spatial congruency in different ways. In the sagittal field map 1555 
acquisitions, local field offsets will result in a shift along the readout direction, i.e. superior-1556 
inferior. The readout bandwidth of the field map acquisition was 630 Hz/pixel at a voxel resolution 1557 
of 1 mm. Except for the region most inferior, the local field offsets were below 100 Hz, which 1558 
results in voxel shifts of less than 0.16 mm. In the EPI-acquisitions, the field offset affects the 1559 
effective slice localization. The EPI excitation bandwidth was ~2 kHz at a 5 mm slice thickness. 1560 
Field offsets <100 Hz would thus correspond to slice shifts <0.25 mm. In the worst-case scenario, 1561 
where both effects are superimposed, an effective relative spatial shift of <0.4 mm is obtained 1562 
which was deemed small enough to have a negligible impact on the z-shim selection. 1563 

However, to additionally empirically investigate whether an inhomogeneity-induced mis-1564 
localization between the EPI and the field map might be a driving factor for the slightly inferior 1565 
performance of the FM-based approach, we selected the participants for which the FM-based 1566 
automated selection of z-shim values led to a step-size difference of at least three steps in at least 1567 
one slice compared to the manual z-shim values (N = 10). In other words, we tried to identify a 1568 
sub-group with the most extreme differences, since higher step size differences compared to 1569 
manual z-shim implies that the field map selection of z-shim values was unsuccessful or ‘off’. In 1570 
those participants, we plotted the local field offset and the absolute difference between automated 1571 
and manually selected z-shim values (Supplementary Figure 4) and then visually investigated 1572 
whether there would be any detectable relationship between a high step size difference and high 1573 
field offset. However, these plots do not indicate that higher step size differences generally 1574 
coincide with high local field offsets. 1575 

 1576 

3.2.2.5 Use of different field map 1577 

We also investigated whether the quality of our default field map protocol might have led to the 1578 
slightly inferior performance of the FM-based approach. In order to assess this, we calculated z-1579 
shim values not only based on the originally chosen field map (vendor-provided with 2 echoes), 1580 
but also based on a separate in-house field map (with 12 echoes) which was acquired directly after 1581 
the vendor-based one. When we quantified the signal characteristics, we observed that both 1582 
methods led to a similar increase in mean signal intensity (11% for vendor-based and 12% for in-1583 
house field map) and decrease in signal intensity variation across slices (50% for vendor-based 1584 
field map and 52% for in-house field map). In line with these descriptive results, when directly 1585 
comparing the performance of the vendor-based and in-house approaches statistically (e.g. auto-1586 
vendor compared to auto-in-house; note that the baseline of no z-shimming is identical between 1587 
the two), we observed a slight benefit of the in-house field map (for mean signal intensity: t(47) = 1588 
2.34, p =  0.01, difference of 0.5%, for signal intensity variation over slices: t(47) = 1.84, p =  0.04, 1589 
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difference of 4%). In order to test whether this improvement would lead to a change in the pattern 1590 
reported in the main text (i.e. the FM-based approach performing worse when comparing mean 1591 
tSNR for the automated compared to the manual approach), we followed up on this by comparing 1592 
the performance of both approaches against manual approach and still observed a slightly inferior 1593 
performance for FM-based approaches for the mean signal intensity (auto-vendor compared to 1594 
manual: t(47) = 7.14, p < .001, difference of 2.0%; auto-in-house compared to manual: t(47) = 8.20, 1595 
p < .001, difference of 1.5%) but not for the coefficient of variation (auto-vendor compared to 1596 
manual: t(47) = 0.46, p = 0.65; auto-in-house compared to manual: t(47) = 1.40, p = .17), which is 1597 
consistent with the results reported in the main text. 1598 

 1599 

3.2.2.6 Assessing the reliability of z-shim selection based on FM-based automation 1600 

To probe how reliably z-shims can in general be determined via field maps, we also acquired a 1601 
second in-house field map near the end of our experiment (please note that due to technical 1602 
problems the second field map was not acquired for three participants) and investigated whether 1603 
this would result in similar automatically chosen z-shim values: across participants, we observed 1604 
a mean Spearman rank-correlation of rs = 0.88, range: 0.50-0.98), suggesting that the robustness 1605 
of the FM-based determination is unlikely to be a driving factor in the slightly inferior 1606 
performance. 1607 

 1608 

3.2.2.7 Evaluating a histogram-based method of determining z-shims  1609 

In a further approach, we used a histogram-based method for automatically determining the slice-1610 
specific z-shim values from the field map data. This was based on the idea that for a broad 1611 
distribution of field inhomogeneities, the chosen compensation gradient may only be able to 1612 
recover significant signal for those voxels with a field inhomogeneity similar to that perfectly 1613 
compensated. For a skewed distribution, the mean value may be shifted towards inhomogeneities 1614 
that are less frequent which may reduce the overall signal accordingly. Thus, the chosen approach 1615 
was based on the histogram of inhomogeneities and considered particularly the most frequent 1616 
values. We first calculated the B0 z-gradient for all x- and y-values of each 1mm sub-slice of the 1617 
vendor-based B0 map (swapped to the orientation of the EPI space) using the IDL procedure 1618 
“gradient.pro” which, after proper scaling, resulted in a gradB0,z map of the same resolution as the 1619 
B0 map in mT/m. A histogram of gradB0,z was then calculated for each EPI slice in a region-of-1620 
interest containing the spinal cord (as with all FM-based procedures, this was obtained from a 1621 
segmentation of the T2-weighted image) of all of its five 1-mm sub-slices using a bin size of 0.01 1622 
mT/m. The resulting histogram was then smoothed with a kernel width of 1/20 of the total number 1623 
of bins. Next, the main peak in the histogram was determined by comparing the surrounding of the 1624 
three most frequent bins using the average of the respective center +/- 2 points. The final 1625 
processing step for calculating a z-shim value for each EPI-slice was an weighted summation of 1626 
the gradB0,z bins within the range of the center +/- 10 points (corresponding to +/- 0.1 mT/m) 1627 
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around the resulting main peak with the constraint that the actual summation range was limited to 1628 
points possessing more than 25% of the center’s intensity. 1629 

To demonstrate the improvement afforded by this method, we first show data from a single 1630 
participant in which the original FM-based automation worked poorly in several slices. The left 1631 
panel of Figure 6A shows that in an exemplary problematic slice, the z-gradient of the B0 map is 1632 
not homogeneous across the spinal cord, leading to an asymmetric distribution of z-gradients and 1633 
a sub-optimal choice of the z-shim value for this slice if the original approach is used (green line), 1634 
differing also from the z-shim value determined by manual or EPI-based selection. Using the 1635 
histogram-based method described above, the most probable value of gradB0,z (gray line) is 1636 
obtained by the intensity-weighted summation of the histogram around the main peak. As a 1637 
consequence, the z-shim value obtained by this method better fits to that of the manual or EPI-1638 
based selection. In slices with more homogenous z-gradients across the spinal cord cross-section, 1639 
both the original method and the histogram method provide virtually identical results (Figure 6A 1640 
right panel). 1641 

We also assessed the improvement in signal quality offered by this method at the group-level, 1642 
where we used the above-mentioned ‘reconstruction’ of the z-shim reference scan of each 1643 
participant, using the slice-specific z-shim values suggested by the histogram-based method. 1644 
Figure 6B shows that while this method did not completely eliminate the inferior performance of 1645 
the FM-based approach, it led to a substantial improvement in signal quality across the group. 1646 
When directly comparing the performance of the original FM-based approach to the histogram-1647 
based approach statistically, we observed a significant benefit of the histogram-based approach 1648 
(mean signal intensity: t(47) = 5.05, p < .001, difference of 1.3%; signal intensity variation over 1649 
slices: t(47) = 0.17, p = n.s.). We then followed up on this by comparing the performance of the 1650 
histogram-based approach against the manual approach and still observed a slightly inferior 1651 
performance for FM-based approach for the mean signal intensity (histogram-based compared to 1652 
manual: t(47) = 4.05, p < .001, a difference of 0.75% ) but not for the coefficient of variation, in 1653 
line with previous results. This minor penalty of the FM-based approach may be related to the fact 1654 
that the relative signal intensities of the individual voxels as they contribute to the EPI image were 1655 
not considered – this is in contrast to the approach based on the EPI reference scan. Together, this 1656 
demonstrates that the evaluation of gradB0,z by considering the corresponding histograms is 1657 
capable of reducing the error in FM-based z-shim selection, even if it does not reach the 1658 
performance of the manual approach. 1659 

 1660 

3.2.3 Comparing all three approaches 1661 

In order to compare how close the automated and manual (current ‘gold standard’) shim selection 1662 
processes were, we calculated rank-based correlations and Euclidian distances between the chosen 1663 
z-shim values in each of the two groups of 24 participants. This was done on a participant-by-1664 
participant basis for both metrics, which were based on the same input: slice-wise (i.e. 24) z-shim 1665 
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values from 1 to 21 (with 11 designating the neutral state of no z-shim) in the manual condition 1666 
and in an automated condition. In both cases, we used two-sample t-tests to compare the two sub-1667 
groups (i.e. EPI-based automation and FM-based automation). 1668 

First, we calculated rank-based correlations between the values chosen for the manual and the 1669 
automated approach.  We observed very high correlations of z-shim values in the EPI-based group 1670 
(average correlation: rs = 0.95, t(23) = 33.28, p < .001; range of correlations across participants: 1671 
0.85 - 0.99), as well as in the FM-based group (average correlation: rs = 0.91, t(23) = 26.04, p < 1672 
.001; range of correlations across participants: 0.62 - 0.97). When directly comparing the two 1673 
groups, we observed that the correlations were significantly higher in the EPI-based group (t(46) = 1674 
2.67, p = .01).  1675 

Second (and overcoming the inherent limitations of a correlation-based approach, i.e. the fact that 1676 
a perfect correlation might be obtained if the pattern of z-shim values were the same across slices, 1677 
even if there was a constant shift in z-shim values), we employed the Euclidean distance – the 1678 
square root of the sum of squared differences between the corresponding elements of the two 1679 
vectors of z-shim values across slices – between the values chosen for the manual and the 1680 
automated approach. We observed that while the average Euclidean distance for the EPI-based 1681 
group was 3.40 (range across participants: 2.24–4.80), it was 5.21 for the FM-based group (range 1682 
across participants: 3.61– 8.94), leading to a significant difference (t(46) = 7.19, p < .001). 1683 

 1684 

3.3 Validation of EPI-based automation approach 1685 

In the independently acquired data set, we observed that for gray matter signal intensity, manual 1686 
z-shimming resulted in a significant increase in mean signal intensity (t(112) = 22.04, p < .001, 1687 
difference of 25%) and a significant decrease in signal intensity variation across slices (t(112) = 1688 
8.29, p < .001, difference of 40%). When we investigated the performance of our automated EPI-1689 
based selection approach, we observed a significant increase in mean signal intensity (t(112) = 28.44, 1690 
p < .001, difference of 32%) and a significant decrease in signal intensity variation across slices 1691 
(t(112) = 10.32, p < .001, difference of 47%). When we directly compared the automated and manual 1692 
approaches, we observed that the automated method outperformed the manual method both for 1693 
mean signal intensity (t(112) = 12.14, p < .001) and for signal intensity variation across slices (t(112) 1694 
= 5.63, p < .001).  1695 
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Supplementary Figures 1696 

 1697 

 1698 

Supplementary Figure 1. Slice-wise individual signal intensity data. Based on single volume 1699 
EPIs acquired without z-shim and with manual z-shim, we calculated the mean signal intensity of 1700 
each slice in native space. The heat-maps show signal intensity in axial slices (y-axis; 24 slices) 1701 
for each participant (x-axis; 48 participants).  1702 
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 1703 

Supplementary Figure 2. Relationship between field-variations and EPI signal loss. The line 1704 
graph on the very left shows the group-averaged (N = 48) template-space spinal cord signal 1705 
intensity along the rostro-caudal axis of the cord in acquisitions without z-shimming. The solid 1706 
line depicts the group-mean value and the shaded area depicts the standard error of the mean. The 1707 
mid-sagittal section on the left shows the group-average template-space single-volume EPI data 1708 
acquired without z-shimming. The mid-sagittal section on the right shows the group-average 1709 
template-space field map in order to depict the consistent field variations along the rostro-caudal 1710 
axis of the cord. On the very right, there are three exemplary axial sections from the “no z-shim’ 1711 
group-average template-space EPIs in order to demonstrate the influence of field variations on the 1712 
EPI image quality in terms of signal loss.   1713 
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 1714 

Supplementary Figure 3. tSNR for different sequence variants. The mid-sagittal EPI sections in 1715 
the background consist of the group-average mean of motion-corrected time-series data in template 1716 
space for each sub-group of participants (EPI-based and FM-based, each of those with N=24) and 1717 
condition (no z-shim, manual z-shim, automated z-shim). Condition-wise group-average 1718 
tSNRmaps (based on the motion-corrected EPI data) are overlaid onto these mid-sagittal images 1719 
(depicted tSNR range: 11-20).1720 
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 1721 
Supplementary Figure 4. Relationship between field-offset and differential z-shim indices. 1722 
Each subplot shows the field offset in Hz (black line; plotted on left y-axis) and the absolute 1723 
difference in z-shim indices between the FM-based and the manual z-shim selection (gray circles; 1724 
plotted on right y-axis). Depicted are those participants who had a difference of at least 3 steps 1725 
between the FM-based and the manual z-shim selection (N = 10). Five FM slices (120 slices in 1726 
total, 1mm slice thickness) correspond to a single EPI slice (24 slices in total, 5 mm slice thickness) 1727 
with the black filled dots representing the corresponding center of each EPI slice in the FM 1728 
resolution.  1729 
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 1730 

Supplementary Figure 5. Mean gray matter tSNR of automated and manual approaches. We 1731 
calculated the mean gray matter tSNR based on motion-corrected time series data acquired with 1732 
different sequences (N = 24 for each group). The median is denoted by the central mark and the 1733 
bottom and top edges of the boxes represent the 25th and 75th percentiles, respectively. The 1734 
whiskers encompass approximately 99% of the data and outliers are represented by red dots. The 1735 
gray lines indicate participant-specific tSNR in each condition and its change across conditions. 1736 

  1737 
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 1738 

Supplementary Figure 6. Histogram-based evaluation of field-map. A. Exemplary problematic 1739 
& unproblematic slices. In both panels, five axial slices show the gradient map (gradB0,z) overlaid 1740 
on the first magnitude image (for participant ZS030; in native space) corresponding to one EPI 1741 
slice (problematic slice 13 and unproblematic slice 15, for left and right panels, respectively). The 1742 
outlines of the cord mask (based on the T2-weighted image) are marked by green lines. The 1743 
histograms show the gradB0,z for these slices. On the lowermost part, the EPI volumes 1744 
(corresponding to the selected z-shim indices) from the first z-shim reference image were taken 1745 
for manual selection, original implementation, histogram-based implementation, and no z-shim 1746 
condition for the relevant EPI slice. For slices with substantial field variation (problematic slice 1747 
13) the histogram-based shim offset selection offers clear improvement over the original 1748 
automated approach. B. Group-level signal intensity. The line graph shows the group-averaged 1749 
(N = 48) template-space spinal cord signal intensity along the rostro-caudal axis of the gray matter 1750 
in the reconstructed EPIs (normalized) based on original FM-based implementation (green line), 1751 
the manual selection (blue line), and based on histogram-based evaluation. The solid lines depict 1752 
the group-mean value and the shaded areas depict the standard error of the mean. 1753 

  1754 
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