

1 ***De novo* mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively
2 inhibit motor activity and axonal transport of synaptic vesicle precursors**

3

4 Yuzu Anazawa^{1,5}, Tomoki Kita^{2,5}, Rei Iguchi¹, Kumiko Hayashi^{2,3} and Shinsuke Niwa^{1,4,6}

5

6

7 1 Graduate school of Life Sciences, Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi
8 980-8578, Japan

9 2 Department of Applied Physics, Graduate school of Engineering, Tohoku University,
10 Aramaki-Aoba 6-6-05, Aoba-ku, Sendai, Miyagi, Japan

11 3 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and
12 Technology Agency (JST), Tokyo, Japan

13 4 Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University,
14 Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan

15 5 These authors equally contribute to this work

16

17 # Corresponding author:

18 SHINSUKE NIWA, Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku
19 University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan

20 e-mail: shinsuke.niwa.c8@tohoku.ac.jp

21

22

23

1 **Author Contributions:**

2 S.N. designed research; Y.A., T.K and S.N. performed research; Y.A., T.K and S.N. analyzed data;
3 Y.A., T.K., K.H. and S.N. wrote the paper.

4

5

6 **Competing Interest Statement:**

7 The authors have no conflicts of interest directly relevant to the content of this article.

8

9

10 **Classification:** Biological sciences. Cell Biology

11

12

13 **Keywords:** KIF1A, KAND, axonal transport, synaptic vesicles, kinesin

14

15 **This PDF file includes:**

16 **Main Text**

17 **Figures 1 to 9**

18

19

20

21

22

23

24

25

26

27

28

29

1 **Abstract**

2 KIF1A is a kinesin superfamily molecular motor that transports synaptic vesicle precursors in axons.
3 Mutations in *Kif1a* lead to a group of neuronal diseases called KIF1A-associated neuronal disorder
4 (KAND). KIF1A forms a homodimer and KAND mutations are mostly *de novo* and autosomal
5 dominant; however, it is not known whether the function of wild-type KIF1A is inhibited by
6 disease-associated KIF1A when they are dimerized. No reliable *in vivo* model systems to analyze the
7 molecular and cellular biology of KAND caused by loss of function mutations have been developed;
8 therefore, here, we established *Caenorhabditis elegans* models for KAND using CRISPR/cas9
9 technology and analyzed defects in axonal transport. In the *C. elegans* models, heterozygotes and
10 homozygotes exhibited reduced axonal transport phenotypes. Suppressor screening using the disease
11 model worm identified a mutation that recovers the motor activity of disease-associated human
12 KIF1A. In addition, we developed *in vitro* assays to analyze the motility of single heterodimers
13 composed of wild-type KIF1A and disease-associated KIF1A. Disease-associated KIF1A
14 significantly inhibited the motility of wild-type KIF1A when heterodimers were formed. These data
15 indicate the molecular mechanism underlying the dominant nature of *de novo* KAND mutations.

16

17 Keywords: axonal transport, KAND, kinesin, UNC-104, KIF1A

18

19

20

21

22

23

24

1 **Significance Statement**

2 KIF1A is a molecular motor that transports synaptic vesicle precursors in axons. Recent studies have
3 identified many *KIF1A* mutations in congenital neuropathy patients; however, the molecular
4 mechanism of pathogenesis remains largely elusive. This study established loss of function models
5 for KIF1A-associated neuronal disorder (KAND) in *Caenorhabditis elegans* to analyze the
6 molecular and cell biology of the disease *in vivo*. Genetic screening using the disease model could
7 find a mutation that recovers the motor activity of disease-associated KIF1A. This study also
8 established *in vitro* single-molecule assays to quantitatively analyze the effect of KAND mutations
9 when mutant KIF1A forms heterodimers with wild-type KIF1A. Our findings provide a foundation
10 for future genetic screening and for drug screening to search for KAND treatments.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 **Introduction**

2 Neuronal function depends on intracellular transport system (1). Kinesin superfamily proteins
3 (KIFs) and a cytoplasmic dynein are molecular motors for anterograde and retrograde transport,
4 respectively (2, 3). Various membranous organelles and protein complexes in neurons are
5 anterogradely transported by Kinesin-1, -2 and -3 family members (4-8). Neurons transmit
6 information via synaptic vesicles that are accumulated to synapses in the axon (9). The constituents
7 of synaptic vesicles are synthesized and assembled in the cell body and transported down axons to
8 synapses by a mechanism called axonal transport. The transported organelle is called a synaptic
9 vesicle precursor (7). Kinesin superfamily 1A (KIF1A), a Kinesin-3 family member, is an axonal
10 transport motor for synaptic vesicle precursors (7, 10). KIF1A have a motor domain and a
11 cargo-binding tail domain (7). The motor domain, conserved among Kinesin superfamily members,
12 has microtubule-dependent ATPase activity that drives movement on microtubules (11, 12). The tail
13 domain of KIF1A is composed of a protein-binding stalk domain and a lipid binding
14 Pleckstrin-homology (PH) domain (10, 13-15).

15 *Caenorhabditis elegans* (*C. elegans*) is a good model animal to study axonal transport (16-23).
16 UNC-104 is a *C. elegans* orthologue of KIF1A (6, 24). Electron and light microscopy analyses
17 have shown synapses as well as synaptic vesicles are mislocalized in *unc-104* mutants (6). The
18 mechanism of axonal transport is well conserved between *C. elegans* and mammals and the
19 expression of human *Kif1a* cDNA can rescue the phenotype of *unc-104* mutant worms (25).

20 Mutations in the motor domain of KIF1A cause congenital neuropathies (26, 27). More than 60
21 mutations have been found in the motor domain of KIF1A in neuropathy patients. Some cases are
22 familial, but most are sporadic. For example, KIF1A(R11Q) was found in a spastic paraplegia
23 patient who has autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder
24 (ADHD) (28). KIF1A(R254Q) mutation was found in Japanese spastic paraplegia patients with

1 intellectual disability (29). KIF1A(R254) is a hot spot for a broad range of neuropathies.
2 KIF1A(R254W) have been described in patients from other countries (27). These broad range of
3 neuropathies, caused by KIF1A mutations, are called KIF1A-associated neuronal disorder (KAND)
4 (27). Both dominant and recessive mutations are associated with KAND. Recent *in vitro* studies
5 have shown that most of KAND mutations are loss of function. KIF1A(V8M) have defects in force
6 generation (30). KIF1A(A255V) and KIF1A(R350G) have shorter run length (31). KIF1A(P305L)
7 mutation reduces microtubule association rate of the motor (32). KIF1A(R169T) disrupted the
8 microtubule-dependent ATPase activity of the motor domain(33). KIF1A(R254W) mutation reduces
9 the velocity and run length of the motor protein (27). On the other hand, we have suggested that
10 KIF1A(V8M), KIF1A(A255V) and KIF1A(R350G) mutations, all of them are familial, are gain of
11 function (25). *In vitro* analysis using the full-length human KIF1A as well as worm models
12 established by CRISPR/cas9 suggested these mutations disrupts the autoinhibitory mechanism and
13 overactivate KIF1A, leading to increasing of the axonal transport of synaptic vesicle precursors.

14 While loss-of-function mutations have been intensively studied using *in vitro* assays,
15 reliable models to study the neuronal cell biology of loss-of-function KAND mutations *in vivo* are
16 awaited. Moreover, previous *in vitro* studies have mostly analyzed homodimers composed of
17 disease-associated KIF1A (27, 32) because it was difficult to purify heterodimers composed of
18 wild-type and disease-associated KIF1A(30). Activated KIF1A forms a homodimer to move on
19 microtubules (34); therefore, wild-type KIF1A is very likely to dimerize with disease-associated
20 KIF1A in patient neurons. However, properties of heterodimers composed of wild type KIF1A and
21 disease-associated KIF1A remains largely unknown, and it is elusive whether *de novo* KAND
22 mutations inhibit the function of wild-type KIF1A in a dominant negative fashion.

23 Here, we established worm models of *de novo* KAND mutations. Heterozygous worms, as
24 well as homozygous worms, show synaptic deficiencies that are caused by axonal transport defects.

1 Unbiased suppressor screening using the worm model identified a mutation that recovers the motor
2 activity of disease-associated KIF1A. We also established an *in vitro* single molecule analysis system
3 to measure the motility parameters of a single heterodimer composed of wild-type and
4 disease-associated KIF1A. Heterodimers composed of wild-type KIF1A and disease-associated
5 KIF1A showed reduced motility *in vitro*. Both *in vitro* and *in vivo* analysis suggest a
6 dominant-negative nature of disease-associated mutations.

7

8 **Result**

9 ***C. elegans* models of *de novo* KAND**

10 To study molecular and cellular deficiencies caused by *de novo* disease-associated KIF1A
11 mutations, we established *C. elegans* models for KAND using CRISPR/cas9 (35). *C. elegans*
12 *unc-104* gene is an orthologue of human *Kif1a*. We introduced following mutations in *unc-104* gene:
13 *unc-104(R9Q)*, *unc-104(R251Q)* and *unc-104(P298L)* (Fig 1A and B and supplementary Fig S1A).
14 These UNC-104 residues are conserved in human KIF1A and these mutations correspond to
15 KIF1A(R11Q), KIF1A(R254Q) and KIF1A(P305L) mutations, respectively. All of them are causes
16 of *de novo* and autosomal dominant KAND(28, 29, 32). Introduction of mutations was confirmed by
17 digestion with restriction enzymes and Sanger sequencing (Fig S1A). Then, we observed the
18 macroscopic phenotypes of disease model homozygous worms. As a control, a strong
19 loss-of-function allele of *unc-104*, *unc-104(e1265)*, was included. *unc-104(e1265)* is described as
20 *unc-104(lf)* in this paper. Homozygous worms showed strong uncoordinated (unc) phenotypes and
21 did not move well on the culture plate (Fig 1B). To quantitatively analyze the movement of worms,
22 the number of body bends in a water drop was counted during minute (Fig S1B). We found
23 *unc-104(R9Q)*, *unc-104(R251Q)*, *unc-104(P298L)* did not move well in the water as is the cause in
24 *unc-104(lf)*. Moreover, the body size of homozygous worms was smaller than wild type (1.09 ± 0.09

1 mm, 0.66 ± 0.06 mm, 0.64 ± 0.07 mm, 0.74 ± 0.06 mm and 0.81 ± 0.14 mm, mean \pm standard
2 deviation in length, respectively in *wild type*, *unc-104(R9Q)*, *unc-104(R251Q)*, *unc-104(P298L)* and
3 *unc-104(lf)*) (Fig 1C and S1C). These results collectively show that KIF1A(R11Q), KIF1A(R254Q)
4 and KIF1A(P305L) mutations are loss of function.

5

6 **Synaptic vesicles are mislocalized in homozygotes**

7 UNC-104 is an orthologue of human KIF1A and is a molecular motor that determines the
8 localization of synaptic vesicles in *C. elegans*; therefore, we visualized synaptic vesicles in KAND
9 model worms. The DA9 neuron in *C. elegans* is highly polarized and forms *en passant* synapses
10 along the dorsal side of the axon (36) (Fig 2A). The characteristic morphology of DA9 neuron is
11 suitable for analyzing axonal transport and synaptic localization (37). We expressed a synaptic
12 vesicle marker GFP::RAB-3 in the DA9 neuron using the *itr-1* promoter to visualize DA9 synapses
13 (Fig 2B). In KAND models, GFP::RAB-3 signals were reduced in the axon and strongly
14 misaccumulated in the dendrite (Fig 2C, 2D and supplementary Fig S2). Only a trace amount of
15 GFP::RAB-3 signal was observed in the DA9 axon in KAND models.

16 We then observed axonal transport of synaptic vesicle precursors in the proximal region of the DA9
17 axon (37) (Fig 2A, magenta circle). We used GFP::RAB-3 as a representative marker for axonal
18 transport of synaptic vesicle precursors because previous studies have shown that GFP::RAB-3
19 co-migrates with other synaptic vesicle and pre-synaptic proteins in the axon and is, therefore, a
20 good marker to visualize axonal transport (10, 23, 37). In the *wild type* worms, both anterograde and
21 retrograde transport were observed in the axon (Fig 2E and F). In contrast, the frequency of both
22 anterograde and retrograde events was significantly reduced in all three mutant strains (Fig 2E and
23 F). In more than 70% mutant worms, no vesicular movement was detected in the 30 sec time
24 window. Similar phenotypes are observed in loss of function allele of *unc-104*. These data indicate

1 that axonal transport of synaptic vesicles is strongly reduced in *unc-104(R9Q)*, *unc-104(R251Q)* and
2 *unc-104(P298L)* strains.

3 **KAND mutations disrupt the motility of motor proteins *in vitro***

4 To study the effect of KAND mutations *in vitro*, we analyzed the motility of purified
5 human KIF1A protein using total internal reflection fluorescence (TIRF) microscopy (38) (39). To
6 directly study motility parameters, regulatory domains and cargo binding domains were removed
7 (Fig 3A). The neck coiled-coil domain of mammalian KIF1A does not form stable dimers without
8 cargo binding (40); therefore, we stabilized human KIF1A dimers using a leucine zipper domain as
9 described previously (27) (32). A red fluorescent protein, mScarlet-I, was added to the C-terminal of
10 the protein to observe the movement (Fig 3A). Resultant KIF1A homodimers
11 [KIF1A(1-393)::LZ::mSca] were purified by Strep tag and gel filtration (Fig 3B and supplementary
12 Fig S3A). All the recombinant proteins were recovered from the same fractions in the gel filtration.
13 The recombinant protein was then used to analyze the motility of single KIF1A dimers on
14 microtubules (Fig 3C-J). The motility of KIF1A(1-393)::LZ::mSca dimers was detected at 10 pM
15 (Fig 3C). KIF1A(1-393)(R11Q)::LZ::mSca did not move at all on microtubules even at 100 pM (Fig
16 3D) while KIF1A(1-393)::LZ::mSca was saturated on microtubules under the same condition (Fig
17 3G). KIF1A(1-393)(R11Q)::LZ::mSca showed only one-dimensional Brownian motion on
18 microtubules. KIF1A(1-393)(R254Q)::LZ::mSca moved on microtubules at 10 pM (Fig 3E). We
19 observed a binding frequency of KIF1A(1-393)(R254Q)::LZ::mSca with microtubules is higher than
20 KIF1A(1-393)::LZ::mSca (Fig 3I) but the average velocity was 50% lower and the average run
21 length was 70 % shorter than for wild type (Fig 3H and J). The landing rate and run length of
22 KIF1A(1-393)(P305L)::LZ::mSca was significantly lower than wild type (Fig 3I), consistent with
23 previous studies (27, 32). Although affected parameters were different depending on the mutated
24 residues, these data are consistent with the reduced axonal transport phenotypes observed in KAND

1 model worms.
2 In contrast to well characterized KIF1A(P305L) mutation (32), properties of KIF1A(R11Q) and
3 KIF1A(R254Q) mutations have not been analyzed well. Then, we compared the binding of these two
4 mutants with microtubules in the presence of ADP and an AMP-PNP (ATP analogue) (Figs S3B-E).
5 The binding of KIF1A(R254Q) with microtubules is comparable to KIF1A(wt) in the presence of
6 AMP-PNP but much weaker and more unstable in the presence of ADP (Figs S3B-D).
7 KIF1A(1-393)(R11Q)::LZ::mSca did not stably bind to microtubules even in the presence of
8 AMP-PNP (Figs S3D and E). These suggest that R11Q and R254Q affect microtubule binding by
9 different mechanisms, which would account for the different behavior of these two mutants (see
10 Discussion).

11

12 **Genetic screening in model worms identified a mutation that recovers the motility of human**
13 **KIF1A**

14 We performed a genetic screening and searched for mutants that recover the movement of
15 *unc-104(R251Q)* model worms (Fig 4A). From about 10000 haploid genomes, we recovered two
16 independent suppressors. Interestingly, genomic sequencing revealed that these two independent
17 suppressor lines have the same mutation, UNC-104(D177N). While *unc-104(R251Q)* worms did not
18 move well, *unc-104(D177N,R251Q)* showed much better performance in the swimming assay (Fig
19 4B). *unc-104(D177N, R251Q)* had clear synaptic puncta in the dorsal synaptic region, while a very
20 small number of dorsal synaptic puncta were observed in *unc-104(R251Q)* worms (Fig S4A-D).
21 UNC-104(D177) in *C. elegans* is equivalent to KIF1A(D180) in human. Then, we compared the
22 activity of human KIF1A(R254Q) and KIF1A(D180N,R254Q) in the single molecule assays (Fig
23 4C-F). We found three motility parameters changed in KIF1A(R254Q) were recovered by the
24 additional KIF1A(D180N) mutation (Fig 4E-G). The data suggest phenotypes in worm model of

1 KAND is relevant to the activity of human KIF1A motor.

2

3 **Synaptic vesicles are mislocalized in heterozygous worms**

4 KAND mutations, including KIF1A(R11Q), KIF1A(R254Q) and KIF1A(P305L) studied
5 here, are *de novo* and cause neuropathies in an autosomal dominant manner. Moreover, KAND is a
6 progressive disease. We therefore analyzed neuronal phenotypes of heterozygous worms in late adult
7 stages (Fig 5A-F). Reverse transcription-polymerase chain reaction (RT-PCR) followed by
8 restriction enzyme digestion confirmed that expression level of wild type and mutant *unc-104*
9 mRNA was almost 1:1 (Fig S1A and S5A). We included a completely null allele of *unc-104*,
10 *unc-104(tm819)*, as a control. *unc-104(tm819)* have a deletion mutation in the motor-domain coding
11 region. *unc-104(tm819)* homozygotes were lethal but *unc-104(tm819)/+* was viable. *unc-104(tm819)*
12 is described as *unc-104(null)* in this paper. DA9 synapses and body movement in the water were
13 analyzed in heterozygotes at 1 day, 3 days, 6 days and 9 days after the final molt (Fig 5A-F and
14 S5B-I). No significant differences were observed at 1-day adults (Figs S5B-D). At day 3, some
15 disease-associated heterozygotes showed mislocalization of synaptic vesicles in the dendrite (Figs
16 5A, B and S5E-G). At day 6 and 9, dendritic mislocalization was clearly observed in 45 to 70 %
17 *unc-104(R9Q)/+*, *unc-104(R251Q)/+* and *unc-104(P298L)/+* (Fig 5C-E). In contrast, the
18 mislocalization of synaptic puncta in *unc-104(null)/+* was comparable to *wild type* controls in all age
19 adults (Fig 5E, S5C and S5F). More than 70% wild type and *unc-104(null)/+* worms did not show
20 misaccumulation of GFP::RAB-3 in the dendrite even at 6 and 9 days (Fig 5E). The number of
21 dorsal axonal puncta were not significantly affected in all age adults in all genotypes (Figs S5 B, E,
22 H and I). Similar to the dendritic mislocalization phenotypes, worm movement was slightly affected
23 in 6-days or 9-days adults in *unc-104(R9Q)/+*, *unc-104(R251Q)/+* and *unc-104(P298L)/+* (Fig 5F).
24 The defect is more evident at day 9. In contrast, the body movement of *unc-104(null)/+* was

1 comparable to age-matched wild type worms (Fig 5F). Overall, phenotypes of *unc-104(R9Q)/+*,
2 *unc-104(R251Q)/+* and *unc-104(P298L)/+* were heavier than *unc-104(null)/+*.

3

4 **Reduced Axonal transport in disease-associated heterozygote worms**

5 DA9 axon and dendrite have plus-end out and minus-end out microtubules, respectively (41). We
6 analyzed axonal and dendritic transport at Day 1 to exclude a possibility that disrupted neuronal
7 morphology indirectly reduce transport parameters. In *wild type*, *unc-104(R9Q)/+*,
8 *unc-104(R251Q)/+* and *unc-104(P298L)/+* and *unc-104(null)/+* worms, both anterograde and
9 retrograde movement of synaptic vesicle precursors was observed in the DA9 axon (Fig 6A-E).
10 Vesicular movement in heterozygous worms was much better than that in homozygous worms (Fig
11 2). However, in three disease-associated mutant heterozygotes, the velocity of anterograde axonal
12 transport was reduced (Fig 6B). No significant difference in anterograde velocity was detected in
13 *unc-104(null)/+* worms. In contrast, retrograde velocity, which depends on dynein motor, was not
14 significantly changed in all mutant heterozygotes (Fig 6C). The frequency of both anterograde and
15 retrograde axonal transport was reduced in disease-associated mutant heterozygotes compared with
16 than in wild type (Fig 6D and E). The directionality of vesicular transport was not significantly
17 changed in disease-associated mutants (Fig 6F). These results are consistent with previous studies
18 showing that inhibition of anterograde machineries affect retrograde transport machineries, and vice
19 versa (37, 42-44). In the dendrite, even though misaccumulation of stable puncta was not observed
20 in *wild type*, some motile vesicles could be detected as described (37) (Fig S6). While the velocity of
21 retrograde transport (i.e. transport from the dendritic tip to the cell body) was slightly reduced (Fig
22 S6B), other parameters were not strongly affected (Fig. S6). This would be because multiple motors
23 transport synaptic vesicle precursors in dendrite (37). These data are consistent with the previous
24 mathematical model showing that misaccumulation of synaptic vesicles to dendrite is caused mainly

1 by reduced anterograde transport in the proximal axon (37).

2

3 **Disease mutant/wild type heterodimers have reduced motor properties**

4 The KIF1A motor forms a homodimer for efficient anterograde axonal transport (34). In patients
5 who have autosomal dominant mutations, half of the motor complex in the neuron is expected to be
6 heterodimers composed of wild-type KIF1A and disease-associated KIF1A. But the behavior of
7 heterodimers on microtubules remains largely unanalyzed. To analyze the motility of heterodimers at
8 a single-molecule resolution, we purified heterodimers composed of wild-type KIF1A and
9 disease-associated KIF1A. Wild-type KIF1A fused with leucine zipper and mScarlet-I
10 (KIF1A(1-393)::LZ::mSca) and disease-associated KIF1A without fluorescent tag
11 (KIF1A(1-393)::LZ) were co-expressed in bacteria (Fig 7A). The two constructs were respectively
12 fused with Strep tag and His tag for purification. Tandem affinity purification using His tag and
13 Strep tag followed by gel filtration was performed to purify heterodimers. We analyzed heterodimers
14 composed of KIF1A(1-393)::LZ::mSca and KIF1A(1-393)::LZ that were recovered from the same
15 peak fractions (Fig 7B and supplementary Fig S7). The ratio between two subunits calculated from
16 band intensities and molecular weight were about 1:1, indicating heterodimers.

17 As a positive control, we compared the motility of
18 KIF1A(1-393)::LZ::mSca/KIF1A(1-393)::LZ heterodimers with KIF1A(1-393)::LZ::mSca
19 homodimers (Fig 3C and 7C). Velocity, landing rate and run length of wild-type homodimers and
20 heterodimers were statistically the same (Velocity: $1.03 \pm 0.24 \mu\text{m/sec}$ and $1.03 \pm 0.26 \mu\text{m/sec}$, Run
21 length: $7.99 \pm 6.42 \mu\text{m}$ and $8.07 \pm 6.30 \mu\text{m}$, Landing rate: $0.011 \pm 0.003 \mu\text{m}^{-1}\text{s}^{-1}$ and 0.010 ± 0.004
22 $\mu\text{m}^{-1}\text{s}^{-1}$ for homodimers and heterodimers, respectively. Mean \pm standard deviation. Statistically not
23 significant by t-test.). In contrast, heterodimers composed of wild-type KIF1A and
24 disease-associated KIF1A showed reduced motility (Fig 7C-J). Although Although

1 KIF1A(1–393)(R11Q)::LZ::mSca showed no processive movement on microtubules,
2 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R11Q)::LZ heterodimers showed processive movement
3 (Fig 7D). Other two heterodimers also showed processive movement (Figs 7E and F). Then, we
4 analyzed physical parameters of these heterodimers in detail. The velocity of
5 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R11Q)::LZ,
6 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R254Q)::LZ and
7 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(P305L)::LZ heterodimers was lower than that of
8 wild-type KIF1A (Fig 7H). The landing event of
9 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R11Q)::LZ and
10 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(P305L)::LZ heterodimers on microtubules could not be
11 observed at 10 pM (Fig 7I). At 100 pM, in which wild-type KIF1A homodimers were saturated on
12 microtubules (Fig 7G), the motility of KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R11Q)::LZ and
13 KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(P305L)::LZ dimers was observed (Fig 7D, F and I) but
14 the run lengths of these wild-type/mutant dimers were much shorter compared with that of wild-type
15 dimers (Fig 7J). The landing rate of KIF1A(1–393)::LZ::mSca/KIF1A(1–393)(R254Q)::LZ
16 heterodimers was higher than that of wild-type dimers (Fig 7I). However, run length of
17 KIF1A(1–393)LZ-mSca/KIF1A(1–393)(R254Q)LZ heterodimers was shorter than that of wild-type
18 dimers (Fig 7J). These results show that KAND mutations strongly affect the landing rate and
19 motility parameters in heterodimers with wild-type KIF1A.

20

21 **Dominant negative effects of disease-associated mutations *in vitro* and *in vivo***

22 Multiple kinesin dimers cooperatively transport cargo vesicles in the cell (30, 45, 46, 47) . Thus, it
23 is expected that the ratio of wt/wt homodimers, wt/mutant heterodimers and mutant/mutant
24 homodimers is 1:2:1 on cargo vesicles in KAND patients who have heterozygous mutations. To

1 mimic the condition, we performed microtubule gliding assays using mixed motors (45, 48) (Fig
2 8A). The velocity of wt/mutant heterodimers and mutant/mutant homodimers were significantly
3 reduced in the gliding assay (Fig 8B), that is consistent with the results of single molecule assays. In
4 the mixed condition, all three mutants inhibited the motility of wild type KIF1A (Fig 8C). As shown
5 previously, reduced concentration of KIF1A(wt) protein does not significantly affect the velocity in
6 the gliding assay (Fig S8A) (45, 48 , 49). Thus, the reduced velocity observed in the mixed condition
7 is thought to be an inhibitory effect of mutant motors. The microtubule gliding velocity showed
8 3-40% reduction, which is similar to the slower anterograde transport in heterozygous worms (Fig
9 6B). Finally, to show that KAND mutations dominant negatively inhibit the axonal transport *in vivo*,
10 *unc-104(R9Q)*, *unc-104(R251Q)* and *unc-104(P298L)* cDNA, corresponding to KIF1A(R11Q),
11 KIF1A(R254Q) and KIF1A(P305L) mutants, were overexpressed in DA9 neuron (Fig 8D-G and
12 S8B and S8C). As a result, in 70% UNC-104(R9Q), UNC-104(R251Q) and
13 UNC-104(P298L)-expressed animals, synaptic vesicles were misaccumulated to the proximal region
14 of the DA9 axon (Fig 8B, C and S8). No significant effects were observed in
15 UNC-104(wt)-overexpressed worms. These *in vitro* and *in vivo* data suggests that all three mutations
16 analyzed in this study reduces axonal transport by dominant-negative manner.

17

18 **Discussion**

19 It is important to determine heterozygous disease-associated mutations are dominant negative or
20 haploinsufficiency because the difference significantly affects treatment strategies. Our data suggest
21 *de novo* and autosomal dominant KAND mutations perturb axonal transport by two mechanisms.
22 One inhibitory mechanism is induced by heterodimerization. Axonal transport motors form
23 homodimers that move processively on microtubules (50). When a mutation in a motor protein gene
24 is dominant, and if the mutation does not affect the stability, expression or activation of the motor

1 protein, half of the motor dimers in the cell are predicted to be heterodimers composed of wild-type
2 motor and disease-associated motor. Many disease-associated mutations in motor proteins are caused
3 by autosomal dominant mutations; however, little attention has been paid to the properties of
4 heterodimers in motor-associated diseases and previous studies have mainly analyzed the properties
5 of mutant homodimers *in vitro* (26, 27, 51, 52). We show here disease-associated KIF1A inhibits the
6 motility of wild type KIF1A by forming dimers. Another inhibitory effect caused by
7 disease-associated KIF1A is caused when KIF1A motors work as a team. In the axon, multiple motor
8 dimers bind to and cooperatively transport a vesicle (Fig 9) (46, 47). Microtubule gliding assays
9 performed using mixed motors show that cooperative transport is inhibited when disease-associated
10 heterodimers and homodimers are mixed. Overexpression of mutant *unc-104* cDNAs
11 dominant-negatively induces mislocalization of synaptic vesicles in wild-type neuron (Figs 8D-G).
12 Together with the data showing that *unc-104(R9Q)/+*, *unc-104(R251Q)/+* and *unc-104(P298L)/+*
13 but not *unc-104(null)/+*, show defects in axonal transport, we suggest that these disease-associated
14 mutations cause neuronal symptoms mainly by dominant-negative mechanisms (Fig 9). *In vitro*
15 assays show KIF1A(R11Q) motor does not move on microtubules at all but KIF1A(R254Q) and
16 KIF1A(P305L) motors move to some extent (Fig 3 and Fig 8B). Similar huge variation has been
17 observed in the activity of mutant homodimers with other mutations (27). However, degree of
18 severity in some KAND patients, as well as model worms, are not always consistent with properties
19 of mutant homodimers (27-29). These may be explained by the dominant negative nature of
20 mutations. This is partially supported by the microtubule gliding assay in which the difference in the
21 mixed condition is much smaller than that of in single mutant homodimers (Fig 8). Mutations in
22 other axonal transport motors, such as KIF5A and cytoplasmic dynein heavy chain 1 genes, are
23 causes of autosomal dominant neuropathies (51-53). Similar phenomena observed here may
24 underly in the pathogenesis of these neuropathies.

1

2 We tested three mutations, R11Q, R254Q and P305L. It has been shown that KIF1A(P305) is in the
3 L12 loop which supports the binding with microtubules (32). Consistent with this, we detected
4 reduced microtubule binding in KIF1A(P305L) (Fig 3). We show here that KIF1A(R11Q) reduces
5 the binding frequency with microtubules while KIF1A(R254Q) reduces run length (Fig 3). This
6 difference would be caused because these two mutations affect different nucleotide states of KIF1A.
7 The affinity of KIF1A to the microtubules undergoes a drastic change during the hydrolysis of ATP
8 into ADP (12). KIF1A alternates between a strong binding state (ATP binding state) and a weak
9 binding state (ADP binding state) with microtubules. R11 is at the terminal of β 1 sheet that stabilizes
10 ATP binding pocket, suggesting that the R11Q mutation would affect the ADP release or binding
11 with new ATP. Another possibility is the R11Q mutation destabilizes the folding of the motor domain.
12 R254 is in the L11 loop. The L11 loop stabilizes α 4 helix, a positively-charged microtubule-binding
13 interface, in the weak binding state (ADP state) (54). Thus, R254Q mutation would destabilize the
14 α 4 helix in the weak binding state (ADP state) and cause more frequent dissociation from
15 microtubules during ATP hydrolysis, leading to the short run length. Consistent with these ideas, the
16 microtubule binding of KIF1A(R11Q) is very weak even in the presence of AMP-PNP (Fig S6). In
17 contrast, the microtubule binding of KIF1A(R254Q) is weaker than KIF1A(wt) in the presence of
18 ADP but comparable to KIF1A(wt) in the presence of AMP-PNP (Fig S6). Because the suppressor
19 mutation (D180N) reduces the negative charge on the motor surface, the mutation would strengthen
20 the binding of KIF1A(R254Q) with microtubules and would recover the run length (Fig 4).

21

22 Multiple kinesin dimers cooperatively transport cargo vesicles. Force generation is fundamental to
23 the cooperative transport (30, 45, 46). Thus, one concern is whether the single molecule assays
24 performed in unloaded conditions is relevant to the axonal transport of synaptic vesicle precursors.

1 Unbiased genetic screening using the model worm identified the *unc-104(D177N)* mutation recovers
2 the axonal transport in *unc-104(R251Q)* worms (Fig 4A and B and S4). An orthologous mutation,
3 KIF1A(D180N), significantly recovered the motility of human KIF1A(R254Q) in the single
4 molecule assays (Fig 4C-G). These suggest the activity measured by the single molecule assay is
5 relevant to the axonal transport *in vivo*. The data also suggest worm models established here reflect
6 the transport activity of human KIF1A. As far as we searched, almost all motor domain residues that
7 are mutated in KAND are conserved in *C. elegans* UNC-104. Thus, worm models, including three
8 lines established in this work, would be the foundation for future genetic screenings and drug
9 screenings to search for treatment of KAND.

10

11 **Methods**

12 **Worm experiments**

13 *C. elegans* strains were maintained as described previously (55). N2 wild-type worms and OP50
14 feeder bacteria were obtained from the *C. elegans* genetic center (CGC) (Minneapolis, MN, USA).
15 Transformation of *C. elegans* was performed by DNA injection as described (56). The swim test was
16 performed as described previously (57).

17

18 **Genome editing**

19 Target sequences for cas9 and repair templates used to make *unc-104* mutants are described in
20 **supplementary table S1**. Target sequences were inserted into pRB1017 (a gift from Andrew Fire,
21 Stanford University, addgene #59936). pDD162 (a gift from Bob Goldstein, UNC Chapel Hill,
22 addgene #47549) was used to express Cas9. These vectors and oligonucleotides were injected into
23 young adult worms as described with a slight modification (35). Genotype was confirmed by PCR
24 followed by Sanger sequencing.

1

2 ***Strains***

3 Strains used in this study are described in *supplementary table S2*. Heterozygotes that have the
4 *wyIs251* marker were generated by crossing *unc-104* homozygotes *wyIs251* males. Heterozygotes
5 with *wyIs85* markers were maintained by *mIn1* balancer. F1 worms showing non-unc phenotypes at
6 the L4 stage were picked and transferred to new plates. Next day, adult worms were transferred to
7 new plates (Day 0). Worms were transferred to new plates until the observation.

8

9 ***Statistical analyses and graph preparation***

10 Statistical analyses were performed using Graph Pad Prism version 9. Statistical methods are
11 described in the figure legends. Graphs were prepared using Graph Pad Prism version 9, exported in
12 the TIFF format and aligned by Adobe Illustrator 2021.

13

14 ***Purification of recombinant KIF1A***

15 Reagents were purchased from Nacarai tesque (Kyoto, Japan), unless described. Plasmids to express
16 recombinant KIF1A are described in *supplementary table S3*. Proteins were expressed in
17 BL21(DE3) and purified by Streptactin-XT resin (IBA Lifesciences, Göttingen, Germany) in the
18 case of homodimers and Streptactin-XT resin and TALON resin (Takara Bio Inc., Kusatsu, Japan) in
19 the case of heterodimers. Eluted fractions were further separated by NGC chromatography system
20 (Bio-Rad) equipped with a Superdex 200 Increase 10/300 GL column (Cytiva).

21

22 ***TIRF single-molecule motility assays***

23 TIRF assays were performed as described (25). Tubulin was purified from porcine brain as described
24 (58). Tubulin was labeled with Biotin-PEG₂-NHS ester (Tokyo Chemical Industry, Tokyo, Japan)

1 and AZDye647 NHS ester (Fluoroprobes, Scottsdale, AZ, USA) and polymerized as described (59).
2 An ECLIPSE Ti2-E microscope equipped with a CFI Apochromat TIRF 100XC Oil objective lens,
3 an Andor iXion life 897 camera and a Ti2-LAPP illumination system (Nikon, Tokyo, Japan) was
4 used to observe single molecule motility. NIS-Elements AR software ver. 5.2 (Nikon) was used to
5 control the system.

6

7 **Data Availability**

8 All study data are included in the article and/or supporting information.

9 **Acknowledgements**

10 YA was supported by the Advanced Graduate Program for Future Medicine and Health Care, Tohoku
11 University. KH was supported by JST PRESTO (grant No. JPMJPR1877) and FRIS Creative
12 Interdisciplinary Research Program, Tohoku University. SN was supported by JSPS KAKENHI
13 (20H03247, 19H04738, 20K21378), the Naito foundation and the Uehara foundation. Some worm
14 strains and OP50 were obtained from the CGC. *unc-104(tm819)/mIn1* was obtained from the NBRP.
15 We thank Jeremy Allen, PhD, from Edanz (<https://jp.edanz.com/ac>) for editing a draft of this
16 manuscript.

17

18 **References**

1. N. Hirokawa, Y. Noda, Y. Tanaka, S. Niwa, Kinesin superfamily motor proteins and intracellular
20 transport. *Nat Rev Mol Cell Biol* **10**, 682-696 (2009).
2. N. Hirokawa, S. Niwa, Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles
22 in brain function, development, and disease. *Neuron* **68**, 610-638 (2010).
3. J. R. Kardon, R. D. Vale, Regulators of the cytoplasmic dynein motor. *Nat Rev Mol Cell Biol* **10**,
24 854-865 (2009).
4. R. D. Vale, T. S. Reese, M. P. Sheetz, Identification of a novel force-generating protein, kinesin,
26 involved in microtubule-based motility. *Cell* **42**, 39-50 (1985).
- 27 5. Y. Tanaka *et al.*, Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in

1 abnormal perinuclear clustering of mitochondria. *Cell* **93**, 1147-1158 (1998).

2 6. D. H. Hall, E. M. Hedgecock, Kinesin-related gene unc-104 is required for axonal transport of

3 synaptic vesicles in *C. elegans*. *Cell* **65**, 837-847 (1991).

4 7. Y. Okada, H. Yamazaki, Y. Sekine-Aizawa, N. Hirokawa, The neuron-specific kinesin

5 superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of

6 synaptic vesicle precursors. *Cell* **81**, 769-780 (1995).

7 8. S. Iwata, M. Morikawa, Y. Takei, N. Hirokawa, An activity-dependent local transport regulation

8 via degradation and synthesis of KIF17 underlying cognitive flexibility. *Sci Adv* **6** (2020).

9 9. J. E. Heuser, T. S. Reese, Evidence for recycling of synaptic vesicle membrane during

10 transmitter release at the frog neuromuscular junction. *J Cell Biol* **57**, 315-344 (1973).

11 10. S. Niwa, Y. Tanaka, N. Hirokawa, KIF1Bbeta- and KIF1A-mediated axonal transport of

12 presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. *Nat Cell*

13 *Biol* **10**, 1269-1279 (2008).

14 11. M. Kikkawa *et al.*, Switch-based mechanism of kinesin motors. *Nature* **411**, 439-445 (2001).

15 12. R. Nitta, M. Kikkawa, Y. Okada, N. Hirokawa, KIF1A alternately uses two loops to bind

16 microtubules. *Science* **305**, 678-683 (2004).

17 13. O. I. Wagner *et al.*, Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3

18 UNC-104 in *C. elegans*. *Proc Natl Acad Sci U S A* **106**, 19605-19610 (2009).

19 14. D. R. Klopfenstein, R. D. Vale, The lipid binding pleckstrin homology domain in UNC-104

20 kinesin is necessary for synaptic vesicle transport in *Caenorhabditis elegans*. *Molecular Biology*

21 *of the Cell* **15**, 3729-3739 (2004).

22 15. R. Stucchi *et al.*, Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca(2+)/CaM

23 Controls DCV Binding and Liprin-alpha/TANC2 Recruits DCVs to Postsynaptic Sites. *Cell Rep*

24 **24**, 685-700 (2018).

25 16. D. T. Byrd *et al.*, UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in *C.*

26 *elegans*. *Neuron* **32**, 787-800 (2001).

27 17. Q. Zheng *et al.*, The vesicle protein SAM-4 regulates the processivity of synaptic vesicle

28 transport. *PLoS Genet* **10**, e1004644 (2014).

29 18. S. Yogev, R. Cooper, R. Fetter, M. Horowitz, K. Shen, Microtubule Organization Determines

30 Axonal Transport Dynamics. *Neuron* **92**, 449-460 (2016).

31 19. M. P. Klassen *et al.*, An Arf-like small G protein, ARL-8, promotes the axonal transport of

32 presynaptic cargoes by suppressing vesicle aggregation. *Neuron* **66**, 710-723 (2010).

33 20. S. P. Koushika *et al.*, Mutations in *Caenorhabditis elegans* cytoplasmic dynein components

34 reveal specificity of neuronal retrograde cargo. *J Neurosci* **24**, 3907-3916 (2004).

35 21. J. Kumar *et al.*, The *Caenorhabditis elegans* Kinesin-3 motor UNC-104/KIF1A is degraded upon

36 loss of specific binding to cargo. *PLoS Genet* **6**, e1001200 (2010).

- 1 22. S. Niwa *et al.*, Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and
- 2 Density of Synapses. *Cell Rep* **16**, 2129-2141 (2016).
- 3 23. S. Niwa *et al.*, BORC Regulates the Axonal Transport of Synaptic Vesicle Precursors by
- 4 Activating ARL-8. *Curr Biol* **27**, 2569-2578 e2564 (2017).
- 5 24. A. J. Otsuka *et al.*, The *C. elegans* unc-104 gene encodes a putative kinesin heavy chain-like
- 6 protein. *Neuron* **6**, 113-122 (1991).
- 7 25. K. Chiba *et al.*, Disease-associated mutations hyperactivate KIF1A motility and anterograde
- 8 axonal transport of synaptic vesicle precursors. *Proc Natl Acad Sci U S A* **116**, 18429-18434
- 9 (2019).
- 10 26. S. Esmaeli Nieh *et al.*, De novo mutations in KIF1A cause progressive encephalopathy and
- 11 brain atrophy. *Ann Clin Transl Neurol* **2**, 623-635 (2015).
- 12 27. L. Boyle *et al.*, Genotype and defects in microtubule-based motility correlate with clinical
- 13 severity in KIF1A-associated neurological disorder. *HGG Adv* **2** (2021).
- 14 28. T. Nemani *et al.*, KIF1A-related disorders in children: A wide spectrum of central and peripheral
- 15 nervous system involvement. *J Peripher Nerv Syst* **25**, 117-124 (2020).
- 16 29. C. Ohba *et al.*, De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower
- 17 limb spasticity and visual disturbance. *J Hum Genet* **60**, 739-742 (2015).
- 18 30. B. G. Budaitis *et al.*, Pathogenic mutations in the kinesin-3 motor KIF1A diminish force
- 19 generation and movement through allosteric mechanisms. *J Cell Biol* **220** (2021).
- 20 31. P. Guedes-Dias *et al.*, Kinesin-3 Responds to Local Microtubule Dynamics to Target Synaptic
- 21 Cargo Delivery to the Presynapse. *Curr Biol* **29**, 268-282 e268 (2019).
- 22 32. A. J. Lam *et al.*, A highly conserved 310 helix within the kinesin motor domain is critical for
- 23 kinesin function and human health. *Sci Adv* **7** (2021).
- 24 33. C. Aguilera *et al.*, The Novel KIF1A Missense Variant (R169T) Strongly Reduces Microtubule
- 25 Stimulated ATPase Activity and Is Associated With NESCAV Syndrome. *Front Neurosci* **15**,
- 26 618098 (2021).
- 27 34. M. Tomishige, D. R. Klopfenstein, R. D. Vale, Conversion of Unc104/KIF1A kinesin into a
- 28 processive motor after dimerization. *Science* **297**, 2263-2267 (2002).
- 29 35. J. A. Arribere *et al.*, Efficient marker-free recovery of custom genetic modifications with
- 30 CRISPR/Cas9 in *Caenorhabditis elegans*. *Genetics* **198**, 837-846 (2014).
- 31 36. M. P. Klassen, K. Shen, Wnt signaling positions neuromuscular connectivity by inhibiting
- 32 synapse formation in *C. elegans*. *Cell* **130**, 704-716 (2007).
- 33 37. C. I. Maeder, A. San-Miguel, E. Y. Wu, H. Lu, K. Shen, In vivo neuron-wide analysis of synaptic
- 34 vesicle precursor trafficking. *Traffic* **15**, 273-291 (2014).
- 35 38. R. D. Vale *et al.*, Direct observation of single kinesin molecules moving along microtubules.
- 36 *Nature* **380**, 451-453 (1996).

1 39. R. J. McKenney, W. Huynh, M. E. Tanenbaum, G. Bhabha, R. D. Vale, Activation of cytoplasmic
2 dynein motility by dynein-cargo adapter complexes. *Science* **345**, 337-341 (2014).

3 40. Y. Okada, N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A.
4 *Science* **283**, 1152-1157 (1999).

5 41. J. Yan *et al.*, Kinesin-1 regulates dendrite microtubule polarity in *Caenorhabditis elegans*. *Elife* **2**,
6 e00133 (2013).

7 42. S. T. Brady, K. K. Pfister, G. S. Bloom, A monoclonal antibody against kinesin inhibits both
8 anterograde and retrograde fast axonal transport in squid axoplasm. *Proc Natl Acad Sci U S A* **87**,
9 1061-1065 (1990).

10 43. A. Uchida, N. H. Alami, A. Brown, Tight functional coupling of kinesin-1A and dynein motors
11 in the bidirectional transport of neurofilaments. *Mol Biol Cell* **20**, 4997-5006 (2009).

12 44. S. Ally, A. G. Larson, K. Barlan, S. E. Rice, V. I. Gelfand, Opposite-polarity motors activate one
13 another to trigger cargo transport in live cells. *J Cell Biol* **187**, 1071-1082 (2009).

14 45. Q. Feng, K. J. Mickolajczyk, G. Y. Chen, W. O. Hancock, Motor Reattachment Kinetics Play a
15 Dominant Role in Multimotor-Driven Cargo Transport. *Biophys J* **114**, 400-409 (2018).

16 46. S. R. Norris *et al.*, A method for multiprotein assembly in cells reveals independent action of
17 kinesins in complex. *J Cell Biol* **207**, 393-406 (2014).

18 47. K. Hayashi, S. Hasegawa, T. Sagawa, S. Tasaki, S. Niwa, Non-invasive force measurement
19 reveals the number of active kinesins on a synaptic vesicle precursor in axonal transport
20 regulated by ARL-8. *Phys Chem Chem Phys* **20**, 3403-3410 (2018).

21 48. B. Ebbing *et al.*, Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity.
22 *Hum Mol Genet* **17**, 1245-1252 (2008).

23 49. F. Gibbons, J. F. Chauwin, M. Desposito, J. V. Jose, A dynamical model of kinesin-microtubule
24 motility assays. *Biophys J* **80**, 2515-2526 (2001).

25 50. R. D. Vale, The molecular motor toolbox for intracellular transport. *Cell* **112**, 467-480 (2003).

26 51. M. G. Marzo *et al.*, Molecular basis for dyneinopathies reveals insight into dynein regulation and
27 dysfunction. *Elife* **8** (2019).

28 52. H. T. Hoang, M. A. Schlager, A. P. Carter, S. L. Bullock, DYNC1H1 mutations associated with
29 neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.
30 *Proc Natl Acad Sci U S A* **114**, E1597-E1606 (2017).

31 53. E. Reid *et al.*, A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10).
32 *Am J Hum Genet* **71**, 1189-1194 (2002).

33 54. M. Kikkawa, N. Hirokawa, High-resolution cryo-EM maps show the nucleotide binding pocket
34 of KIF1A in open and closed conformations. *EMBO J* **25**, 4187-4194 (2006).

35 55. S. Brenner, The genetics of *Caenorhabditis elegans*. *Genetics* **77**, 71-94 (1974).

36 56. C. C. Mello, J. M. Kramer, D. Stinchcomb, V. Ambros, Efficient gene transfer in *C.elegans*:

1 extrachromosomal maintenance and integration of transforming sequences. *EMBO J* **10**,
2 3959-3970 (1991).

3 57. J. T. Pierce-Shimomura *et al.*, Genetic analysis of crawling and swimming locomotory patterns
4 in *C. elegans*. *Proc Natl Acad Sci U S A* **105**, 20982-20987 (2008).

5 58. M. Castoldi, A. V. Popov, Purification of brain tubulin through two cycles of
6 polymerization-depolymerization in a high-molarity buffer. *Protein Expr Purif* **32**, 83-88 (2003).

7 59. J. Al-Bassam, Reconstituting Dynamic Microtubule Polymerization Regulation by TOG Domain
8 Proteins. *Methods in Enzymology* **540**, 131-148 (2014).

9

10 **Figure legends**

11 **Figure 1**

12 (A) Schematic drawing of the domain organization of KIF1A motor protein. NC, neck coiled-coil
13 domain. CC1, Coiled-coil 1 domain. FHA, Forkhead-associated domain. CC2, Coiled-coil 2 domain.
14 CC3, Coiled-coil 3 domain. PH, Pleckstrin-homology domain. The three KAND mutations and
15 corresponding *C. elegans* UNC-104 mutations analyzed in this study are indicated.
16 (B) Sequence comparison between human KIF1A and *C. elegans* UNC-104.
17 (C) Macroscopic phenotypes of KAND model homozygotes at 1-day adults. Mutant worms are
18 smaller than wild type worms and do not move well on the bacterial feeder. Bars, 1 mm.
19 See also supplementary Figure S1.

20

21 **Figure 2 Synaptic vesicle localization in KAND model homozygote worms**

22 (A) Schematic drawing show the morphology of DA9 neuron. Green dots along the axon show
23 synaptic vesicle distribution. The red circle shows proximal axon.
24 (B and C) Representative images showing the distribution of synaptic vesicles in the DA9 neuron in
25 *wild type* (B) and *unc-104(R251Q)* (C). Synaptic vesicles are visualized by GFP::RAB-3.
26 Arrowheads show mislocalization of synaptic vesicles in the dendrite and proximal axon. Bars, 50
27 μ m.
28 (D) Dot plots showing the number of puncta in the dorsal axon (left panel) and ventral dendrite
29 (right panel) of DA9. Green bars represent median value. Kruskal-Wallis test followed by Dunn's
30 multiple comparison test. N = 60 worms for each genotype. ****, Adjusted P value < 0.0001.
31 (E) Representative kymographs in *wild type* (upper panel) and *unc-104(R251Q)* (lower panel). The
32 axonal transport of synaptic vesicle precursors was visualized by GFP::RAB-3. The proximal axon
33 shown in panel (A) was observed. Vertical and Horizontal bars show 10 seconds and 10 μ m,
34 respectively.
35 (F) Dot plots showing the frequency of anterograde axonal transport (left panel) and retrograde
36 axonal transport (right panel). Green bars represent median value. Kruskal-Wallis test followed by

1 Dunn's multiple comparison test. N = 14 *wild type*, 14 *unc-104(R9Q)*, 18 *unc-104(R251Q)* and 16
2 *unc-104(P298L)*, *unc-104(lf)* axons. ****, Adjusted P Value < 0.0001. See also supplementary
3 Figure S2.

4

5 **Figure 3 Single molecule behavior of disease-associated KIF1A mutants**

6 (A) Schematic drawing of the domain organization of KIF1A motor protein and recombinant protein
7 analyzed in Figure 3.

8 (B) Purified KIF1A(1–393)::LZ::mScarlet and its mutants were separated by SDS-PAGE and
9 detected by trichloroethanol staining. M represents a marker lane. Numbers on the left indicate
10 molecular weight (kDa). Arrow indicates KIF1A(1–393)::LZ::mScarlet.

11 (C-G) Representative kymographs showing the motility of 10 pM KIF1A(wt) (C), 100 pM
12 KIF1A(R11Q) (D), 10 pM KIF1A(R254Q) (E), 100 pM KIF1A(P305L) and 100 pM KIF1A(wt) (G).
13 Vertical and horizontal bars represent 5 sec and 5 μ m, respectively.

14 (H) Dot plots showing the velocity of KIF1A. Each dot indicates one datum.. Green bars represent
15 mean \pm standard deviation (S.D.). Kruskal-Wallis test followed by Dunn's multiple comparison test.
16 n = 433 (wt), 325 (R254Q) and 498 (P305L). ****, Adjusted P Value < 0.0001. Note that no
17 processive movement was detected for KIF1A(R11Q).

18 (I) Dot plots showing the landing rate of KIF1A. The number of KIF1A that bound to microtubules
19 was counted and adjusted by the time window and microtubule length. Each dot shows one datum.
20 Green bars represent median value. Kruskal-Wallis test followed by Dunn's multiple comparison test.
21 n = 30 (10 pM wt), 28 (100 pM R11Q), 29 (10 pM R254Q) and 30 (100 pM P305L) movies. ****,
22 Adjusted P Value < 0.0001. Compared with KIF1A(wt). Note that no landing event was detected in
23 10 pM KIF1A(R11Q) and KIF1A(P305L) experiments.

24 (J) Dot plots showing the run length of KIF1A. Each dot shows one datum. Green bars represent
25 median value and interquartile range. Kruskal-Wallis test followed by Dunn's multiple comparison
26 test. n = 312 (wt), 241 (R254Q) and 243 (P305L) homodimers. ****, Adjusted P Value < 0.0001.
27 Note that all KIF1A motility events were included, including those that end when the motor reaches
28 the end of an MT; thus, the reported run lengths are an underestimation of the motor's processivity.
29 See also supplementary Figure S3.

30

31 **Figure 4 Suppressor screening**

32 (A) Macroscopic phenotypes of *unc-104(R251Q)* and a suppressor mutant *unc-104(D177N, R251Q)*.
33 While *unc-104(R251Q)* worms do not move well on the bacterial feeder, *unc-104(D177N, R251Q)*
34 worms move smoothly. Bars, 1 mm.

35 (B) Dot plots showing the result of swim test. The number of body bent in a water drop was counted
36 for 1 min and plotted. Dots represents the number of bends from each worm. Green bars represent

1 median value. Kruskal-Wallis test followed by Dunn's multiple comparison test. N = 20 worms for
2 each genotype. ****, Adjusted P value < 0.0001.
3 (C and D) Representative kymographs showing the motility of 10 pM human KIF1A(R254Q)
4 protein (C) and KIF1A(D180N, R254Q) protein (D) on microtubules. Vertical and horizontal bars
5 represent 5 sec and 5 μ m, respectively.
6 (E) Dot plots showing the velocity of KIF1A. Dot shows actual value from each data point. Green
7 bars represent mean \pm S.D.. Kruskal-Wallis test followed by Dunn's multiple comparison test. n =
8 433 (wt), 325 (R254Q) and 368 (D180N, R254Q). ****, Adjusted P Value < 0.0001.
9 (F) Dot plots showing the landing rate of KIF1A. The number of KIF1A that bound to microtubules
10 was counted and adjusted by the time window and microtubule length. Green bars represent median
11 value. Kruskal-Wallis test followed by Dunn's multiple comparison test. n = 30 (10 pM wt), 29 (10
12 pM R254Q), 30 (10 pM D180N, R254Q). ****, Adjusted P Value < 0.0001.
13 (G) Dot plots showing the run length of KIF1A. Green bars represent median value and interquartile
14 range. Kruskal-Wallis test followed by Dunn's multiple comparison test. n = 312 (wt), 241 (R254Q)
15 and 312 (D180N, R254Q) homodimers. ****, Adjusted P Value < 0.0001. Note that the reported run
16 lengths are an underestimation of the motor's processivity. as described in Figure 3J and that
17 KIF1A(wt) and KIF1A(R254Q) values are the same with Figure 3. See also supplementary Figure
18 S4.
19

20 **Figure 5 Synaptic vesicle localization of heterozygotes**

21 (A-D) Representative images showing synaptic vesicle distribution in 3 days *wild-type* adult (A), 3
22 days *unc-104(R251Q)/+* adult (B), 6 days *wild-type* adult (C), and 6 days *unc-104(R251Q)/+* adult
23 (D). Synaptic vesicles are visualized by GFP::RAB-3. Arrow heads show mislocalization of synaptic
24 vesicles in the dendrite. Bars, 50 μ m.
25 (E) Dot plots showing the number of dendritic puncta at 6 and 9 days. Each dot shows the number of
26 puncta in the dendrite in each worm. Green bars represent median value. Kruskal-Wallis test
27 followed by Dunn's multiple comparison test. N = 59 (wt), 36 (R9Q/+), 46 (R251Q/+), 39 (P298L/+)
28 and 40 (null/+) (6-days adult worms); 58 (wt), 38 (R9Q/+), 49 (R251Q/+), 40 (P298L/+) and 43
29 (null/+) (9-days adult worms). ns, Adjusted P Value > 0.05 and statistically not significant. **,
30 Adjusted P Value < 0.01.
31 (F) Dot plots showing the result of swim test at 6 and 9 days. Each dot shows the number of bends in
32 each measurement. Green bars represent median value. Kruskal-Wallis test followed by Dunn's
33 multiple comparison test. N = 76 (wt), 87 (R9Q/+), 74 (R251Q/+), 65 (P298L/+) and 38 (null/+)
34 (6-days adult worms); 66 (wt), 30 (R9Q/+), 65 (R251Q/+), 67 (P298L/+) and 27 (null/+) (9-days
35 adult worms). ns, Adjusted P Value > 0.05 and statistically not significant. *, Adjusted P Value < 0.05.
36 **, Adjusted P Value < 0.01. ****, Adjusted P Value < 0.0001. See also supplementary Figure S5.

1

2 **Figure 6 Axonal transport in KAND model heterozygotes**

3 (A) Representative kymographs showing axonal transport of synaptic vesicle precursors in *wild type*
4 and *unc-104(R9Q)/+* at 1 day adults. GFP::RAB-3 was used as a marker. Vertical and Horizontal
5 bars show 10 seconds and 10 μ m, respectively.

6 (B and C) The velocity of axonal transport. The velocity of anterograde transport (B) and retrograde
7 transport (C) are shown as dot plots. (B) Kruskal-Wallis test followed by Dunn's multiple
8 comparison test. Green bars show mean \pm S.D.. n = 94 (wild type), 90 (R9Q/+), 66 (R251Q/+), 117
9 (P298L/+) and 84 (null/+) vesicles from at least 5 independent worms. ns, Adjusted P Value > 0.05
10 and no significant statistical difference. ****, Adjusted P Value < 0.0001. (C) Kruskal-Wallis test
11 followed by Dunn's multiple comparison test. Green bars show mean \pm S.D.. n = 70 (wild type), 70
12 (R9Q/+), 68 (R251Q/+), 63 (P298L/+) and 65 (null/+) vesicles from at least 5 independent worms.
13 ns, Adjusted P Value > 0.05 and no significant statistical difference.

14 (D and E) Frequency of axonal transport. The frequency of anterograde transport (D) and retrograde
15 transport (E) are shown as dot plots. (E) Kruskal-Wallis test followed by Dunn's multiple
16 comparison test. Each dot represent data from each worm. Green bars represent median value. N =
17 14 (wt), 16 (R9Q/+), 18 (R251Q/+) and 19 (P298L/+) independent worms. ****, Adjusted P Value <
18 0.0001. (E) Kruskal-Wallis test followed by Dunn's multiple comparison test. Each dot represent
19 data from each worm. Green bars represent median value. N = 14 (wt), 16 (R9Q/+), 18 (R251Q/+)
20 and 19 (P298L/+) independent worms. **, Adjusted P Value < 0.01, ****, Adjusted P Value <
21 0.0001.

22 (F) Directionality of vesicle movement. The number in the bar graph shows the actual percentage. ns,
23 Adjusted P Value > 0.05 and statistically not significant. Chi-square test. Compared to wt worms.

24 See also supplementary Figure S6.

25

26 **Figure 7 The single molecule behavior of wild type/mutant KIF1A heterodimers**

27 (A) Schematic drawing of the recombinant KIF1A heterodimer analyzed in Figure 7.

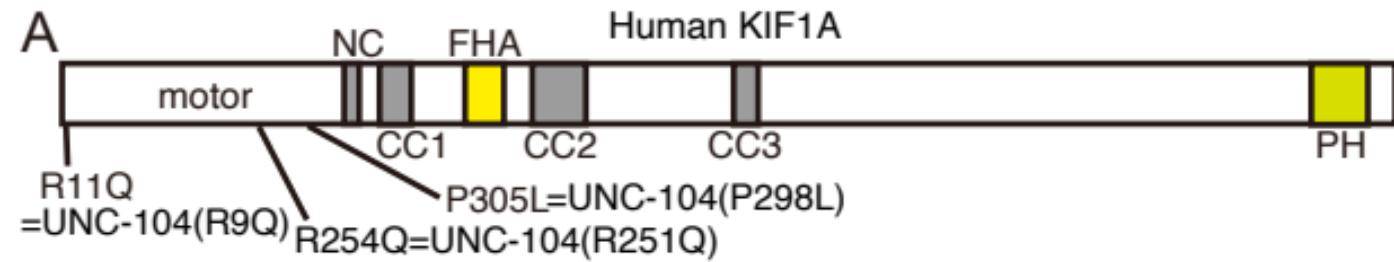
28 (B) Purified KIF1A(1–393)::LZ::mScarlet/KIF1A(1–393)::LZ heterodimers were separated by
29 SDS-PAGE and detected by Coomassie brilliant blue staining. M represents marker. Numbers on the
30 left indicate the molecular weight (kDa). Magenta and black arrows indicate
31 KIF1A(1–393)::LZ::mScarlet and KIF1A(1–393)::LZ, respectively.

32 (C-G) Representative kymographs showing the motility of 10 pM KIF1A (wt) (C), 100 pM
33 KIF1A(R11Q) (D), 10 pM KIF1A(R254Q) (E), 100 pM KIF1A(P305L) and 100 pM KIF1A (wt)
34 (G). Vertical and horizontal bars represent 5 sec and 5 μ m, respectively.

35 (H) Dot plots showing the velocity of KIF1A. Each dot shows each data. Green bars represent mean
36 \pm S.D.. Kruskal-Wallis test followed by Dunn's multiple comparison test. n = 308 (wt/wt), 315

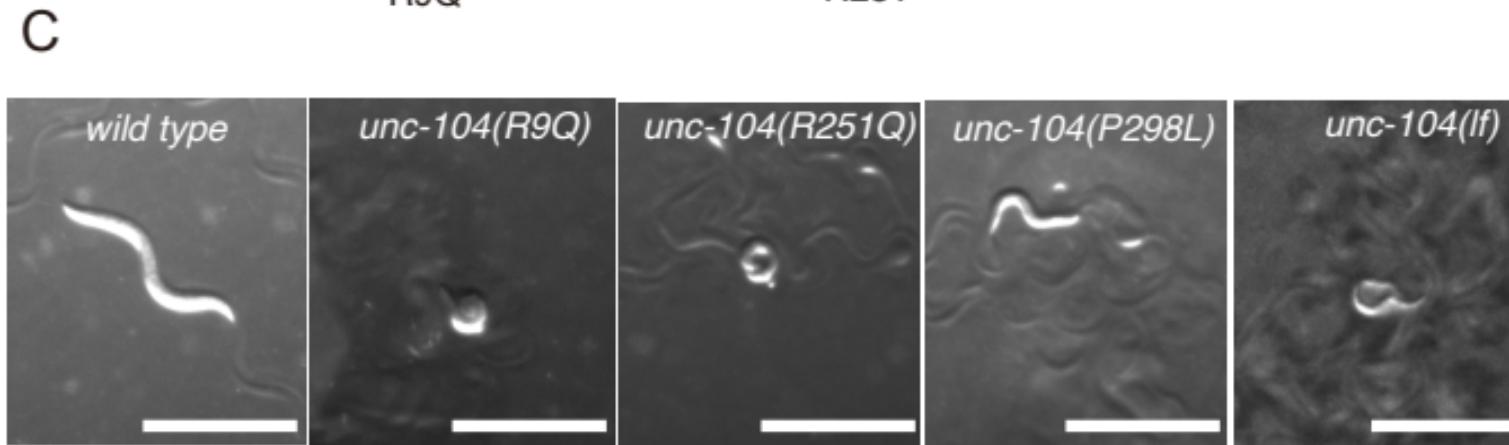
1 (wt/R11Q), 294 (wt/R254Q) and 414 (wt/P305L) heterodimers. ****, Adjusted P Value < 0.0001.
2 (I) Dot plots showing the landing rate of KIF1A. The number of KIF1A that binds to microtubules
3 was counted and adjusted by the time window and microtubule length. Each dot shows each data.
4 Green bars represent median value. Kruskal-Wallis test followed by Dunn's multiple comparison test.
5 n = 29 (10 pM wt/wt), 29 (100 pM wt/R11Q), 28 (10 pM wt/R254Q) and 38 (100 pM wt/P305L)
6 independent observations. **, Adjusted P Value < 0.01, ***, Adjusted P Value < 0.001, ****,
7 Adjusted P Value < 0.0001.
8 (J) Dot plots showing the run length of KIF1A. Each dot shows each data. Green bars represent
9 median value and interquartile range. Kruskal-Wallis test followed by Dunn's multiple comparison
10 test. n = 215 (wt/wt), 241 (wt/R11Q), 195 (wt/R254Q) and 266 (wt/P305L) heterodimers. ****,
11 Adjusted P Value < 0.0001. Note that the reported run lengths are an underestimation of the motor's
12 processivity as described in Figure 3J. See also supplementary Figure S7.
13

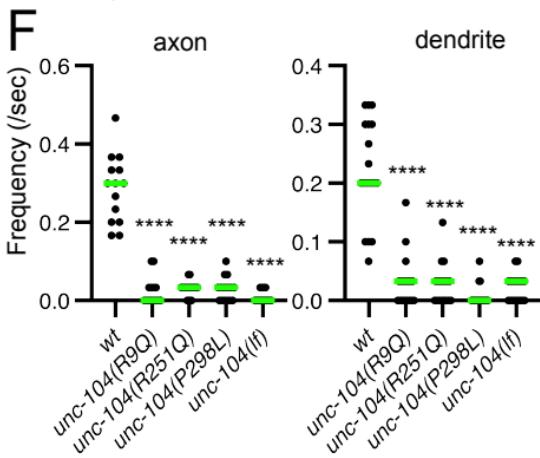
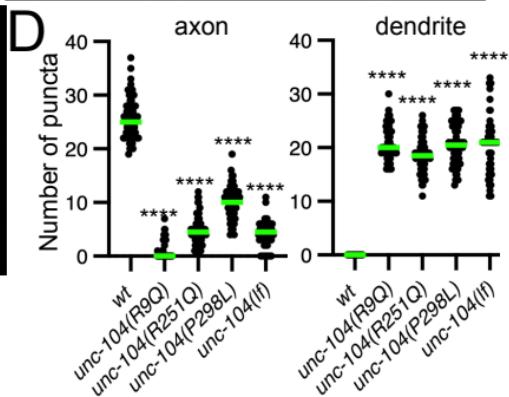
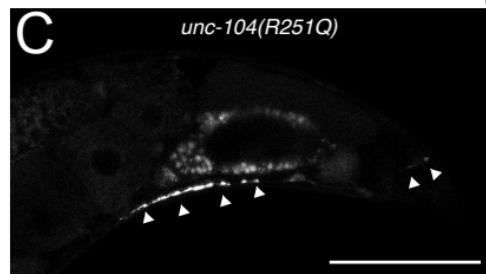
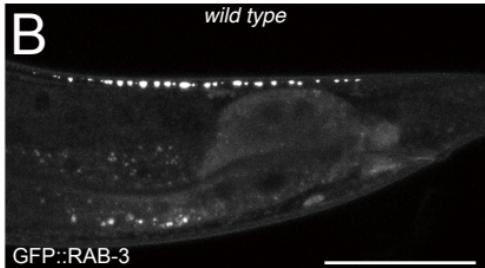
14 **Figure 8 Dominant negative nature of KAND mutations**

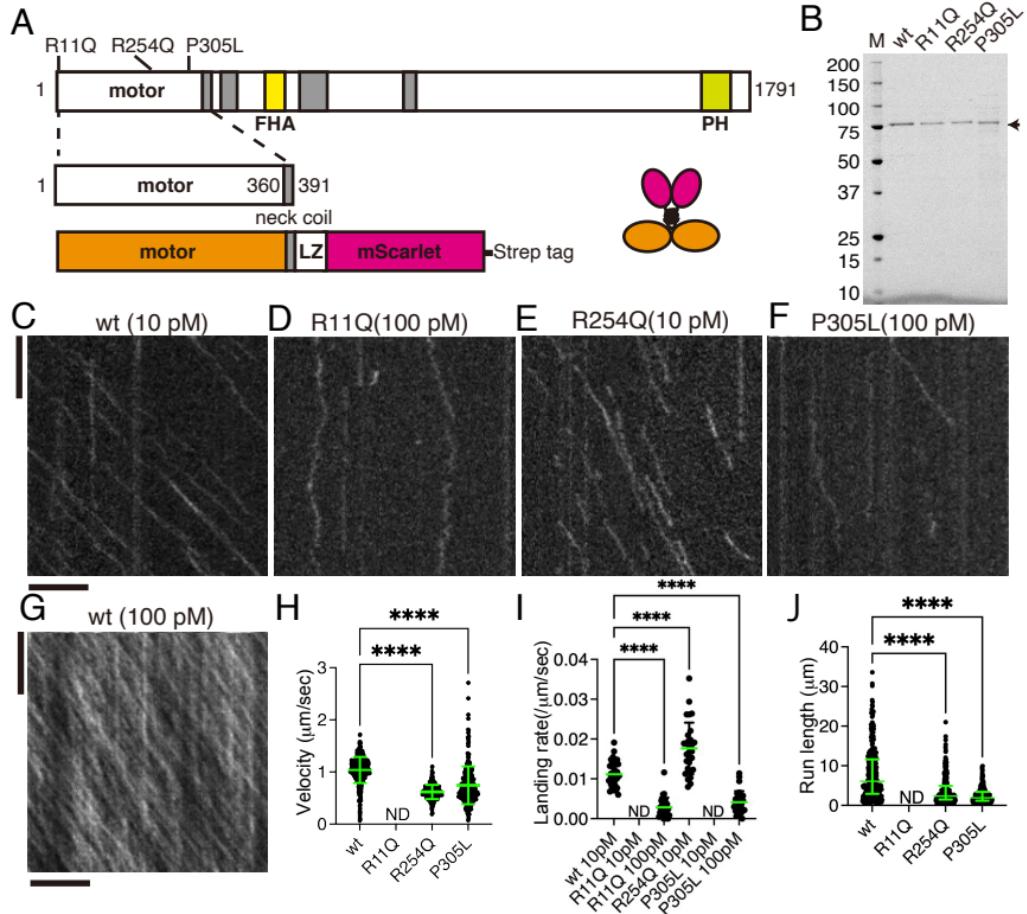

15 (A-C) Microtubule gliding assays. Shematic drawing of the microtubule gliding assay in different
16 conditions (A). (B) Microtubule gliding assays using single motors. Bars and error bars represent
17 mean and SD, respectively. N = 146 (30 nM wt homodimers), 112 (30 nM R254Q homodimers), 20
18 (100 nM P305L homodimers), 59 (30 nM wt/R11Q heterodimers), 130 (30 nM wt/R254Q
19 heterodimers) and 43 (30 nM wt/P305L heterodimers) microtubules from at least three independent
20 experiments. Note that no microtubule movement was observed in 100 nM KIF1A(R11Q)
21 homodimers. Kruskal-Wallis test followed by Dunn's multiple comparison test.****, p < 0.0001. (C)
22 Microtubule gliding assays using mixed motors. Bars and error bars represent mean and SD,
23 respectively. N = 146 (30 nM wt), 102 (30 nM R11Q mixture), 134 (30 nM R254Q mixture) and 108
24 (30 nM P305L mixture) microtubules. Kruskal-Wallis test followed by Dunn's multiple comparison
25 test. ****, p < 0.0001.
26 (D-G) UNC-104(wt), UNC-104(R9Q), UNC-104(R251Q) and UNC-104(P298L) were
27 overexpressed in the wild-type background and the localization of synaptic vesicles was observed.
28 (D and E) Representative images showing the localization of synaptic vesicles in
29 UNC-104(wt)-expressing worm (D) and UNC-104(R251Q)-expressing worm (E). Arrowheads show
30 synaptic-vesicle accumulated puncta that are mislocalized in the dendrite. Bars, 50 μ m. (F and G)
31 Dot plots showing the number of ventral axonal and dorsal dendritic puncta at 1 day. Each dot shows
32 the number of puncta in the dorsal axon (F) and ventral dendrite (G) in each worm. Green bars
33 represent median value. N = 30 worms from each strain. Kruskal-Wallis test followed by Dunn's
34 multiple comparison test. ns, Adjusted P Value > 0.05 and no significant statistical difference. *,
35 Adjusted P Value < 0.05. **, Adjusted P Value < 0.01. ****, Adjusted P Value < 0.0001. See also
36 supplementary Figure S8.

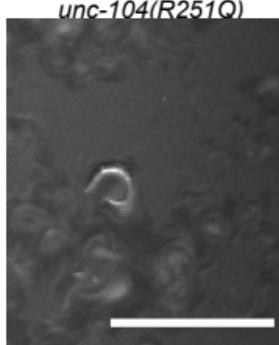
1

2 **Figure 9 Model**

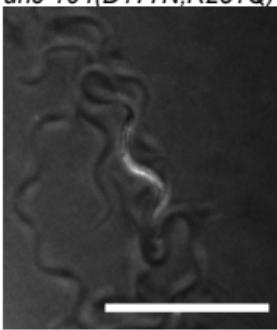
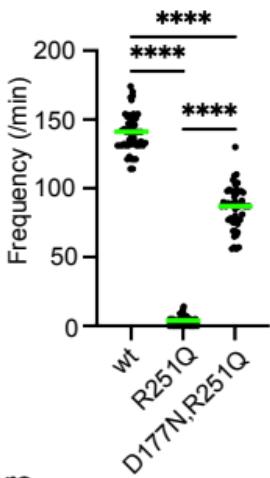
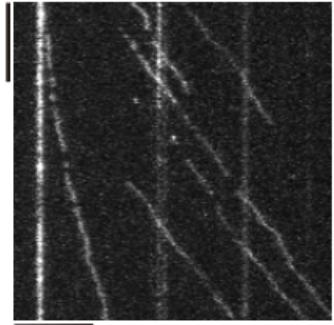
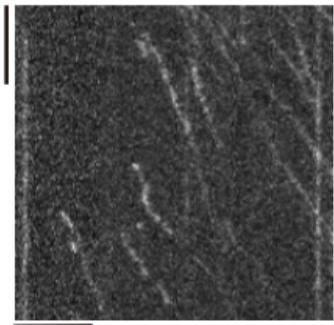
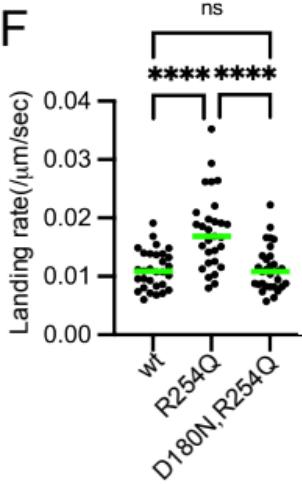
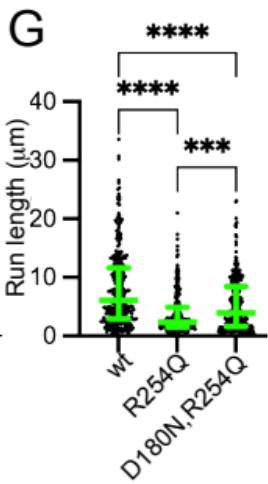

3 Schematic drawing showing how vesicular transport is suppressed in KAND patient axons. Not only
4 mutant homodimers but also wild-type/mutant heterodimers inhibit axonal transport of synaptic
5 vesicle precursors.

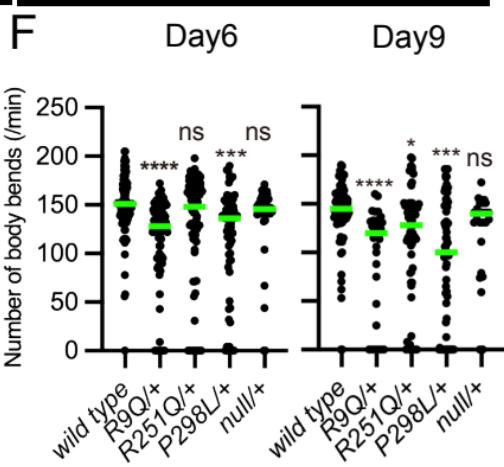
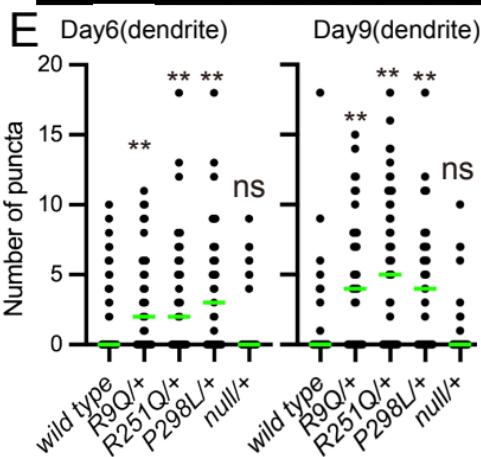
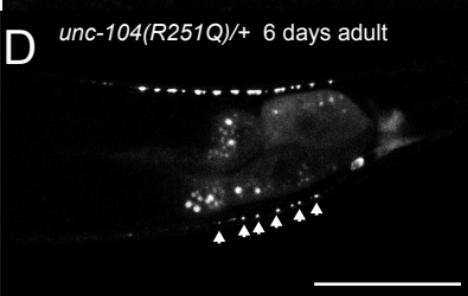
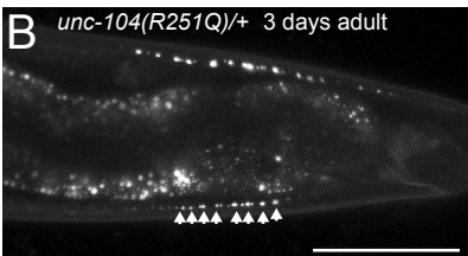




6

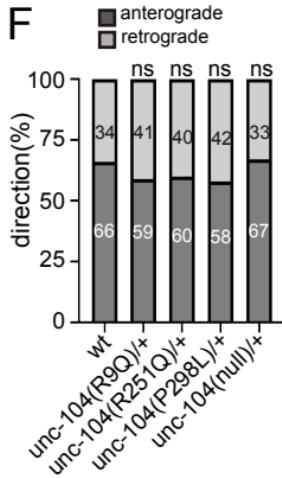
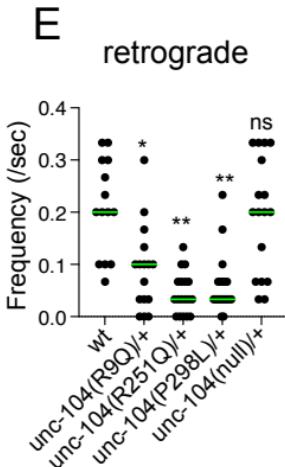
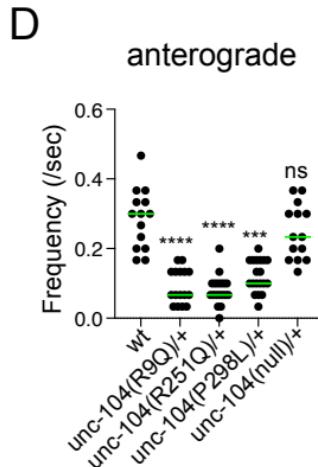
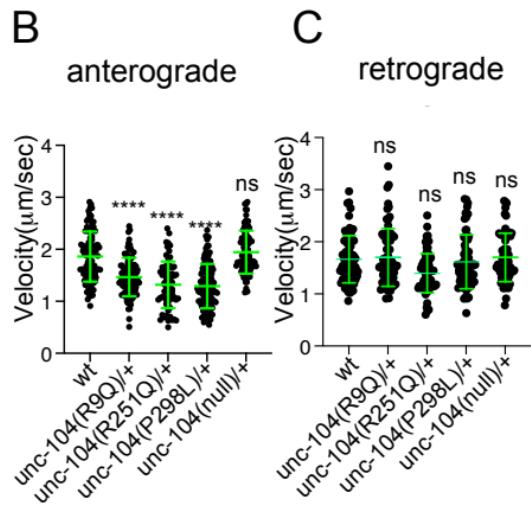
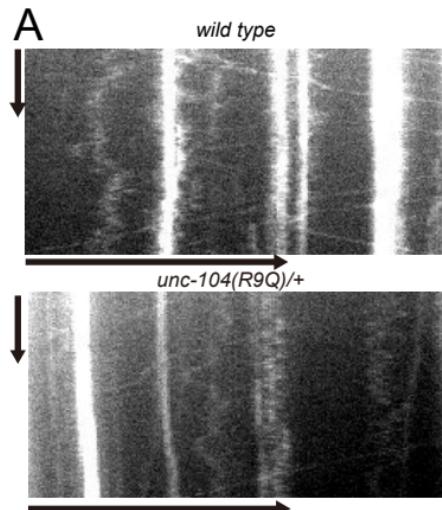


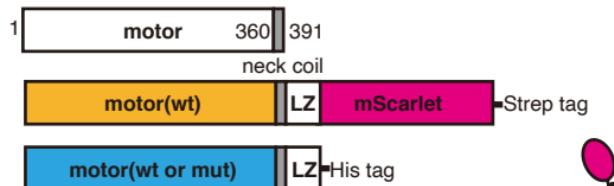
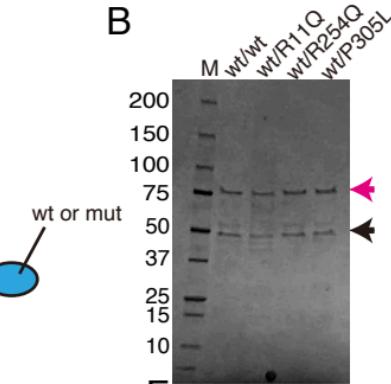
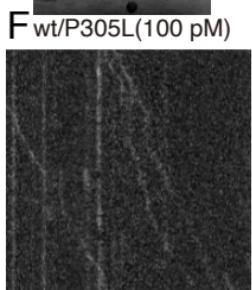
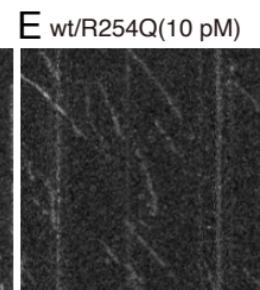
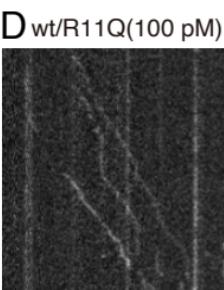
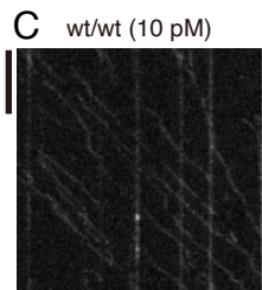
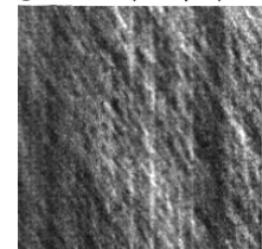
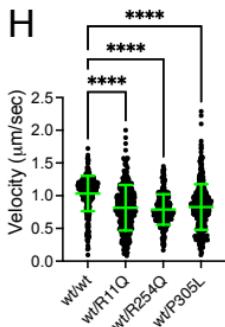
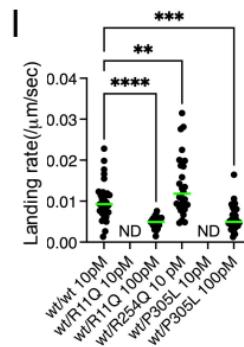
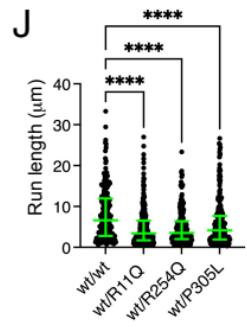

B

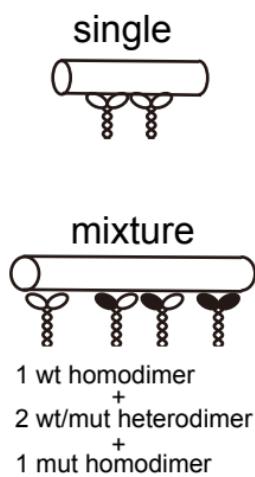
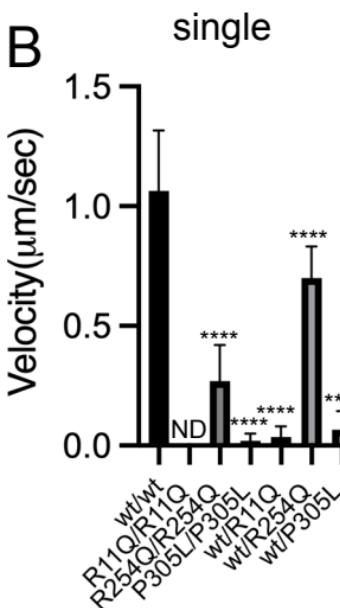
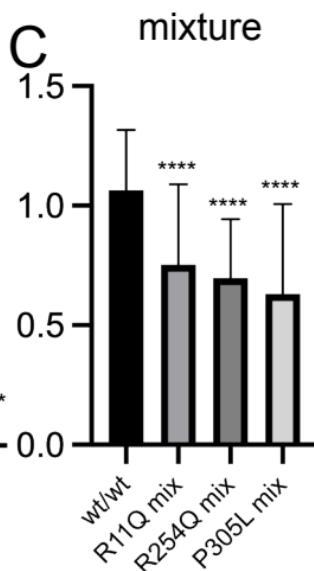
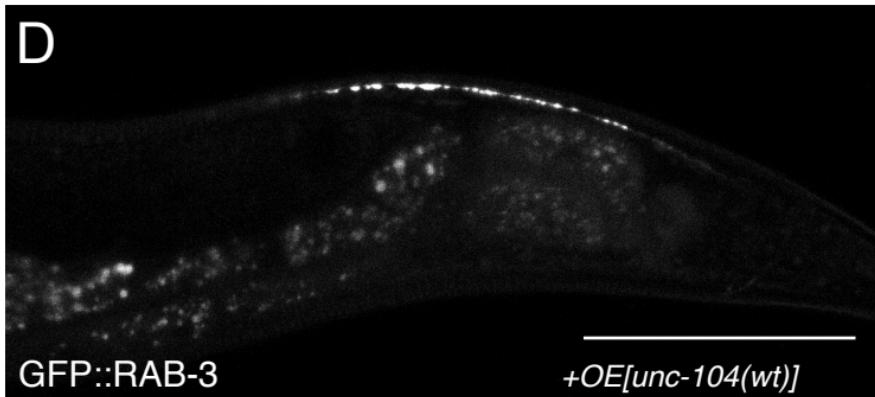
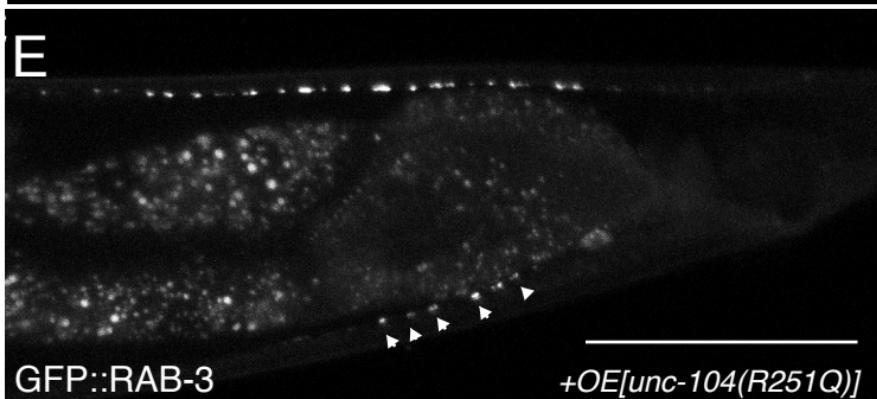
	R11Q		R254		P305
Hs KIF1A	6-VKVAV R VRPFN-16	249-LAGSER A DSTG-259	300-KTDF I PYRDSV-310		
Ce UNC-104	4-VKVAV R VRPFN-14	246-LAGSER R ANSTG-256	293-NKGVI P YRDSV-303		
	*	*	*	*	*
	R9Q	R251			P298

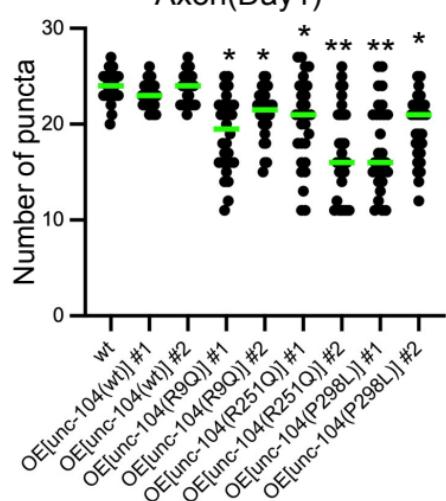





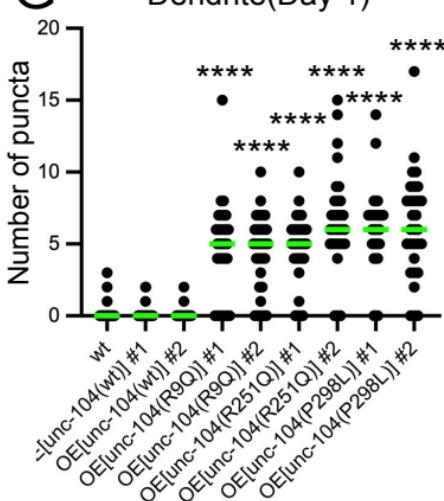
















A**Worm genetics**

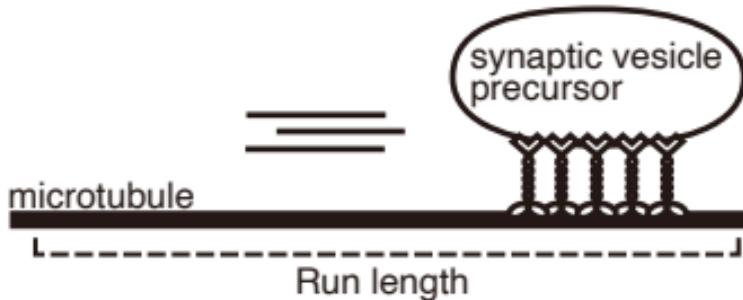





suppressor
unc-104(D177N,R251Q)

B**Motility of human KIF1A motors****E****F****G**

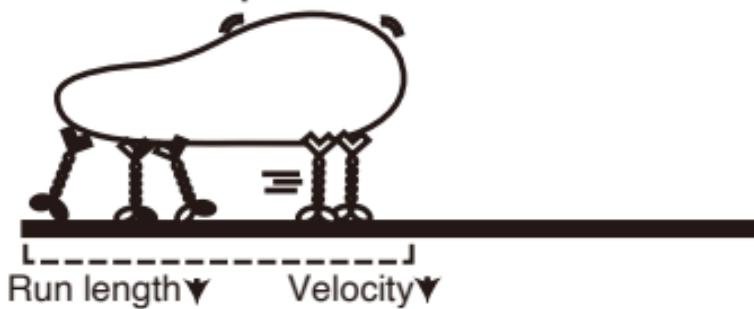



A**B****C****G** wt/wt (100 pM)**H****I****J**

A**B****C****D****E****F**


Axon(Day1)

G


Dendrite(Day 1)

Normal axonal

Axonal transport in KAND

KIF1A wt/wt

wt/mut

mut/mut