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Abstract: The development and diversity of neuronal subtypes in the human hypothalamus has 

been insufficiently characterized. We sequenced the transcriptomes of 40,927 cells from the 

prenatal human hypothalamus spanning from 6 to 25 gestational weeks and 25,424 mature 

neurons in regions of the adult human hypothalamus, revealing a temporal trajectory from 

proliferative stem cell populations to mature neurons and glia. Developing hypothalamic neurons 

followed branching trajectories leading to 170 transcriptionally distinct neuronal subtypes in ten 
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hypothalamic nuclei in the adult. The uniqueness of hypothalamic neuronal lineages was 

examined developmentally by comparing excitatory lineages present in cortex and inhibitory 

lineages in ganglionic eminence from the same individuals, revealing both distinct and shared 

drivers of neuronal maturation across the human forebrain. Cross-species comparisons to the 

mouse hypothalamus identified human-specific POMC populations expressing unique 

combinations of transcription factors and neuropeptides. These results provide the first 

comprehensive transcriptomic view of human hypothalamus development at cellular resolution.  

 

One-Sentence Summary: Using single-cell genomics, we reconstructed the developmental 

lineages by which precursor populations give rise to 170 distinct neuronal subtypes in the human 

hypothalamus. 

 

Main Text:  

The hypothalamus is a small but anatomically complex brain region that controls a large 

variety of evolutionally requisite physiological and homeostatic functions, including body 

temperature, circadian rhythms, sleep, stress responses, satiety, and hunger, and aspects of mood, 

social behavior, and memory(1–3). These functions are subdivided amongst specialized neuronal 

subtypes, which are organized into distinct anatomical nuclei(4–11). Environmental and genetic 

perturbations to hypothalamic development result in long-lasting changes in physiology and 

behavior(12–20) and are thought to contribute to risk for human diseases including obesity, 

anxiety, and depression(21, 22). These clinical consequences motivate deeper investigation into 

the timing and regulation of hypothalamic development. However, much of what we know about 

hypothalamic development is derived from animal models(2–12, 23, 24). While many of these 

functions are thought to be evolutionarily conserved, the molecular identities of human 
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hypothalamic cells and the timing and regulation of their development remain inadequately 

characterized(25, 26). Here, we sought to address this deficiency through single-cell 

transcriptomics of the prenatal and adult human hypothalamus to define its transcriptional cell 

types and developmental trajectories. 

 

Results 

 

An atlas of neuronal and non-neuronal lineages in the developing human hypothalamus 

We performed 10x Genomics single-cell RNA sequencing (scRNA-seq) of prenatal 

hypothalamus from 11 human fetuses (4 female, 7 male) at ~6 to 25 gestational weeks (GW); 

Carnegie Stages (CS) 13-15, CS22, GW16, GW18-20, GW22, GW25), yielding 40,927 high-

quality single-cell transcriptomes (Fig. 1A and tables S1). These samples were collected in 

parallel with samples from several additional brain regions in the same fetuses, and scRNA-seq 

of cortical samples from these fetuses has been reported previously(27–30).  In addition, we 

performed single-nucleus RNA sequencing (snRNA-seq) of neurons from the post-mortem 

hypothalamus of a neurotypical donor (male, 50 years of age) (Fig. 1A and fig. S1), yielding 

22,365 high-quality single-nucleus transcriptomes. 

We integrated the 40,927 prenatal hypothalamic cells (Fig. 1B and fig. S2) and annotated 

the resulting cell clusters using a curated, comprehensive list of literature-based marker genes 

(tables S2 and S3). We identified 24 broad cell classes, including radial glia, dividing cells, 

neuronal, oligodendrocyte, and astrocyte lineages, as well as other supporting cell types (Fig. 1, 

C to H and table S4). Cell type distributions shifted over developmental time (Fig. 1, B to D). 

The earliest timepoints – CS13, 14 and 15 – were composed largely of dividing progenitors 
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(MKI67+) and vascular leptomeningeal cells (LUM+). Radial glia (HOPX+) cells were identified 

at GW16 and onward. Neuronal and oligodendrocyte progenitor populations were present from 

the earliest time point. Post-mitotic neurons (STMN2+) emerged as early as CS22 and were 

abundant starting at GW16. Oligodendrocyte populations (PDGFRA+/OLIG2+/MKI67-) were 

detected by GW16 and began to reach maturation (MAG+/MOG+) by GW22. Astrocytes 

(GFAP+/AQP4+/HOPX-), ependymocytes (CCDC153+), and tanycytes (CRYM+) were established 

by CS22. 

  Most neurons in the prenatal samples appeared immature, with weak expression of many 

canonical markers. To better annotate these populations and define their developmental 

trajectories, we integrated the 11,446 prenatal hypothalamic neurons (CS22 to GW25) with 

22,365 adult hypothalamic neurons (Fig. 2, A and B, and table S5). Using Monocle3, we 

reconstructed a branching pseudotime trajectory, rooted at the earliest timepoint (CS22) (Fig. 2, 

B and C). We identified branch points where the lineages diverge, and ‘leaves’ where the 

lineages terminate and followed the trajectories of these branches and leaves to generate a 

lineage tree (Fig. 2D). The highest-order branch points distinguish GABAergic (SLC32A1+) and 

glutaminergic (SLC17A6+) neurons (Fig. 2E). At the next level, branches could primarily be 

assigned to specific hypothalamic nuclei (Fig. 2, F and G and tables S6 and S7). Ten 

hypothalamic nuclei were identified, including the Arcuate (ARC; TBX3+), Tuberomammillary 

Terminal (TM; HDC+), Paraventricular Nucleus of the Hypothalamus (PVH; SIM1+), 

Ventromedial Nucleus of the Hypothalamus (VMH; FEZF1+), Lateral Hypothalamus (LH; 

LHX9+), Suprachiasmatic Nucleus (SCN; LHX8+/SIX6+), Supramammillary Nucleus (SMN; 

LMX1A+), Mammillary Nucleus (MN; FOXB1+), Zona Incerta (ZI; MEIS2+) and 

Intrahypothalamic Diagonal (ID; LHX6+). The transcription factor signature for these nuclei 
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could be detected by CS22 (first trimester), except for the SMN where robust expression could 

be detected in the second trimester (Fig. 2, G to J and fig. S3).  

The expression of canonical hypothalamic neuropeptides demarcated the maturation of 

each nucleus, revealing variation across cell types. In the Arcuate nucleus, POMC and GHRH 

were expressed at low levels in the first semester and increased to robust levels by the second 

trimester. Other Arcuate neuropeptides such as AGRP, NPY (co-expressed in AGRP neurons), 

and CARTPT (co-expressed in POMC neurons) were expressed only starting in the second 

trimester. AVP, a canonical neuropeptide of the PVH could be detected by CS22, while other 

PVH neuropeptides such as OXT and CRH were not expressed until the second trimester (Figure 

2G).   

We applied a hierarchical iterative clustering approach (scrattch.hicat package) to obtain 

a more detailed atlas of neuronal subtypes. This revealed 170 transcriptionally distinct cell 

clusters in adult neurons. 147 of which could be mapped to a specific nucleus (Fig. 2, K and L), 

including all ten nuclei represented in our lineage tree and three additional nuclei that were more 

sparsely represented in the data (fig. S4 and tables S3 and S8). 74 clusters were glutaminergic, 

67 were GABAergic and 6 were histaminergic (table S9). Most clusters could be assigned to 

established neuronal subtypes by the expression of neuropeptides and other canonical markers. 

For instance, we identified discrete neuronal populations expressing POMC, AGRP, OXT, 

GHRH, and AVP, each of which was restricted to just 1-2 clusters. Our data also support diverse 

subpopulations expressing certain neuropeptides, including CRH, and TRH, and SST, each of 

which was expressed in ten or more clusters. In summary, our data define the development and 

diversity of neuronal subtypes in the human hypothalamus in unprecedented detail. 
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Cross-species comparison of neuronal subtypes in humans and mice 

Major classes of hypothalamic neurons are shared in humans and mice, but species 

differences in more refined neuronal subtypes are poorly understood. We integrated our 

sc/snRNA-seq data from human prenatal and adult hypothalamic neurons with existing scRNA-

seq from developing(11) and adult mouse hypothalamus(4–6, 8, 9, 11)  to create a 

comprehensive atlas of hypothalamic neurons (n = 175,754, Fig. 3A and table S10). As 

expected, human and mouse neurons co-clustered within major groups corresponding to 

immature (prenatal) neurons, GABAergic neurons, glutamatergic neurons, and histaminergic 

neurons (Fig. 3, B and C). Louvain clustering revealed 28 neuronal sub-classes, most of which 

could be annotated to established subtypes and nuclei (Fig. 3, D and E and fig. S5 and table 

S11). Most sub-classes contained both human and mouse cells, consistent with the evolutionary 

conservation of most hypothalamic neuronal sub-classes. While certain clusters of adult neurons 

appeared more abundant in one species than the other, we believe this most likely results from 

sampling differences in the human vs. mouse datasets rather than true species differences at this 

sub-class level. Thus, our analysis supports dozens of evolutionary conserved neuronal sub-

classes and describes their marker genes. 

 To explore species differences in more refined sub-populations, we focused on POMC 

neurons, which were well represented in both the human and mouse datasets (Fig. 3F). Sub-

clustering of POMC neurons revealed 11 sub-clusters (Fig. 3G and tables S12 and S13). 

Overall, cells from mouse and human samples were well mixed (Fig. 3I). However, cluster 11 

(POMC/PCSK1/LEPR/NPY1R/TBX3+) was over-represented for human cells (79% human), 

while clusters 1, 4, 7, 8 and 10 were over-represented for mouse cells (95%, 98%, 82%, 100% 

and 100% respectively) (Fig. 3, H to J). We used co-expression patterns of transcription factors 

and neuropeptides within POMC neurons to gain insight into both conserved and species-specific 
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regulatory networks (tables S14 to S18). This analysis predicted a core set of TFs as master 

regulators shared by mouse and human POMC neurons, including ISL1, KLF6, SIX3, PRDM12, 

NHLH2 and PROX1. However, human POMC neurons also utilize TBX3, JUND, CXXC4, YBX1, 

ZFHX4, MEIS3, and POU2F2, whereas mouse POMC neurons utilize PEG3, SIX3, PLAGL1 and 

NFE2L1 (Fig. 3K). Thus, our data provide preliminary evidence for human-specific POMC 

neuron subtypes and their regulatory networks, which may merit further investigation. 

 

Unique and shared features of hypothalamic vs. cortical germinal zones in the human 

forebrain 

 Little is known about the genes and trajectories distinguishing neurogenesis in the 

hypothalamus versus other forebrain regions. To address this, we obtained matched samples 

from the cortex, ganglionic eminence (the source of telencephalic inhibitory neurons), and 

hypothalamus from the same individuals at GW18, GW19 and GW20. Co-embedding these 

samples in a shared low-dimensional space enabled direct comparisons among the progenitor 

populations and excitatory and inhibitory neuron lineages (n=95,107, Fig. 4 A and B and fig. S6 

A and B). Both neuronal and non-neuronal lineages emanate from a large cluster of radial glia 

that were abundantly represented in all three stem cell niches. Radial glia give rise to multiple 

neuronal and numerous non-neuronal progenitor populations. Of these, among the non-neuronal 

populations, we identified tanycytes and ependymal cells that were specific to the hypothalamus, 

as well as astrocytes and oligodendrocytes that were abundant in both the hypothalamus and 

cortex. A large population of dividing progenitor cells formed a distinct barrel shape in 3D 

UMAP space indicative of actively cycling cells (cell cycle stage, fig. S6C, seurat clusters 6, 9, 

10, fig. S6 D).  These dividing progenitors, along with the radial glia, feed into a neuronal 
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lineage that split between excitatory and inhibitory lineages and further subdivided into major 

neuron sub-classes. While cortex and GE samples split mid-way along the developmental lineage 

between progenitors and mature neuron populations in a largely expected way, we took a keen 

interest in similarities and differences among these lineages and how progenitors from the 

hypothalamus fit into this framework.   

The co-embedded neurogenic map retains well-known features of cortical neurogenesis. 

Excitatory neurons of the cortex branched off from inhibitory neurons about halfway along the 

bridge from early neuron progenitors into mature neuron populations. This lineage led directly 

into intratelencephalic (IT) excitatory neuron populations and reflected the temporal ordering 

with which deep layer vs. superficial layer IT neurons are born: newborn neurons at the 

beginning of the lineage proximal to progenitor cells primarily expressed markers for later-born 

superficial layer excitatory neurons such as CUX2, while more mature neurons at the lineage 

terminus primarily expressed markers of earlier-born deep layer 5/6 neurons such as RORB. A 

distinct branch in the trajectory expressed markers of extratelencephalic (ET) excitatory neurons. 

Separately, inhibitory neuron lineages led into three distinct inhibitory neuron clusters, which 

expressed markers of medial ganglionic eminence-derived (LHX6+), caudal ganglionic 

eminence-derived (CALB2+), and lateral ganglionic eminence-derived (FOXP1+) sub-

populations. The hypothalamic germinal zone is distinct from germinal zones of the cortex and 

GE in that it gives rise to both excitatory and inhibitory neurons, and these locally born neurons 

represent most of the mature neurons within the hypothalamus. Most of the hypothalamic cells 

were distributed among excitatory and inhibitory lineages that also included cortical and GE-

derived cells. This suggests that at a high level of organization the development of excitatory vs. 

inhibitory neurons in the hypothalamus involves shared regulatory programs with the 

development of excitatory vs. inhibitory lineages in the cortex and GE. 
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The high-level similarity of the developmental trajectories in the cortex, GE, and 

hypothalamus enabled direct comparisons of the lineages to reveal finer-scale distinctions. 

Region-specific gene expression differences were already apparent at early stages of 

development. In radial glia and actively dividing progenitor populations (clusters 4, 6, 9, 10), we 

found region-specific expression for developmental transcription factors such as PAX6 and 

POU3F2 in the cortex, DLX1 and DLX5 in the GE, and FOXB1 and SIX6 in hypothalamus (Fig. 

4D and tables S19 and S20). We also identified shared regulators, including HES1 and EGR1 

(Fig. 4E). At a later stage of development, in neural progenitors (cluster 11), we found 

hypothalamus-specific expression for the transcription factor TSHZ2, which remained elevated in 

mature neuron populations. GE-specific transcripts in neural progenitors included COL1A2, a 

collagen, along with elevated expression of the NOTCH signaling ligand DLL1 and the cell-cell 

signaling mediator LGALS1. We confirmed cortex-specific expression for canonical progenitor 

marker genes such as EOMES and NEUROD2. Many other genes showed complex 

spatiotemporal patterns in neural progenitors. For instance, neural progenitors of the 

hypothalamus and cortex had high expression (compared to GE) for cytoskeletal proteins such as 

MYO10, CALD1, and VIM, whereas neural progenitors in the hypothalamus and GE (but not 

cortex) had shared expression of RBP1, involved in retinoic acid signaling(31).  Other genes had 

different temporal patterns or different cell type specificity. For example, PPP1R17, a 

phosphatase regulatory subunit, was identified as a neuroprogenitor marker within the 

cortex(30). However, in the hypothalamus, PPP1R17 is instead expressed most highly in radial 

glia. These results provide insight into the unique regulatory programs that give rise to 

specialized neuronal populations. 

We applied a network-biology approach to gain further insight into the shared vs. unique 

drivers of neuronal development across lineages. Gene co-expression network modeling 
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identified 28 gene co-expression modules, many of which were expressed in region- and stage-

specific patterns across the development of excitatory and inhibitory neuronal lineages (fig. 

S6E). In addition, we reconstructed a gene regulatory network (GRN) model(32) to predict the 

target genes for 1317 TFs in each germinal zone and the key regulator TFs for each gene co-

expression module. We found both region-specific and shared TF-gene associations, where the 

extent of overlap across models provides a measure for the re-wiring of these networks across 

brain regions. We illustrate this concept for the 20 most highly-connected ‘hub’ transcription 

factors (Fig. 4F). For these TFs, we detect many TF-gene edges that are reproducible within 

different samples from the same brain region but not across brain regions, suggesting substantial 

re-wiring. Interestingly, network edges detected in the hypothalamus appear to be split between 

cortical and GE-derived groups, suggesting an early lineage difference not distinguished in the 

UMAP in Fig. 4A. Gene network modeling also provided insights into the regulation of specific 

neuronal lineages. The gene co-expression module M73 (fig. S6E) was expressed across the 

entire excitatory neuron lineage from dividing progenitor cells to mature neurons, enabling us to 

compare the regulators of excitatory neuron development across regions. Several TFs were 

identified as key regulators of excitatory neuron development in both hypothalamus and cortex, 

including NEUROD6, ANK2, MYT1L, and CSRNP3. Strikingly, we also identified region-

specific regulators of excitatory neurons, including hypothalamus-specific (e.g., CSRNP3, 

ARID4A, PEG3, BASP1) and cortex-specific TFs (MEF2C, ZBTB18, NEUROD2, SATB2). 

Similarly, module M70 was expressed across the entire inhibitory lineage, and we used this 

module to compare the regulators of inhibitory lineages in hypothalamus and GE (fig. S6E). We 

identified SP9, DLX5, DLX2, SOX11, and SOX4 as shared regulators of inhibitory neuron 

development across regions, in addition to hypothalamus-specific (SCAND1, ZNF428, YBX1, 

and PTMA) and GE-specific TFs (CITED2, TCF4, LHX6, and ARX). This same pattern of shared 
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and region-specific regulators could be identified in several additional modules, including M42, 

which is activated at later stages of excitatory neuron development (fig. S6E). These results 

suggest that there are shared “core” regulatory programs that govern the development of 

excitatory and inhibitory neurons in multiple brain regions, which may be refined by region-

specific regulatory programs that give rise to the unique properties of each region’s excitatory 

and inhibitory populations. 

 

Discussion 

Here, we have described the development and diversity of neuronal and non-neuronal cell 

types of the human hypothalamus across prenatal stages to adulthood at single-cell resolution. 

The window into prenatal development starting at ~6 GW and including 25 GW is the largest to 

date, and our data represent the first single-nucleus transcriptomic atlas for the adult human 

hypothalamus. Our comparisons of hypothalamic cells in humans vs. mice expands knowledge 

about both shared and human-specific aspects of hypothalamic development. Comparisons 

among matched prenatal brain samples provided a unique opportunity to evaluate specializations 

of neurodevelopmental trajectories in the hypothalamus vs. other forebrain regions. 

 Our analysis revealed a sequential specification of hypothalamic neurons. First, 

developing neurons attain a unique transcriptional identity corresponding to the nucleus in which 

they reside. Later, specific neuronal subtypes differentiate. This process was well underway by 

Carnegie Stage 22, just ~10 weeks of gestational age, at which time we were able to discern most 

nuclei by the expression of established markers. We confidently identified ten hypothalamic 

nuclei in our human prenatal data, and human cells from three more nuclei could be identified 

after including complementary data from human adult. Notably, certain nuclei appeared to 
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mature at different rates. Distinct developmental dynamics among hypothalamic nuclei are 

consistent with previous reports using immunohistochemistry(33) as well as a recently published 

single-cell transcriptomics study of the human prenatal hypothalamus covering GW7 - 20(34). 

Differentiation of neuronal subtypes occurred primarily in the second trimester samples, 

with evidence that the maturation of many hypothalamic neurons continues into the third 

trimester and beyond. Our results confirm previous observations that OXT is detectable by 

GW14(35–37) and CRH and AVP as early as GW12(38), although we observe AVP as early as 

GW10. However, even late in the second trimester, many neuronal subtypes were identifiable 

primarily by the expression of key transcription factors, while the expression of some 

neuropeptides remained sparse, such as KISS1. Such sparse expression of neuropeptides in the 

second trimester might be interpreted as still ongoing differentiation, diversification, and 

maturation of the various peptidergic subtypes.  

We detected 170 transcriptionally distinct neuronal populations in the adult 

hypothalamus, 147 of which could be mapped to specific nuclei. These numbers are within the 

range of detected neuronal cell types by scRNA-seq at postnatal timepoints in mice(4–11), and 

more than three times the number of distinct populations described previously for the human 

hypothalamus(34). The increased resolution of our dataset can be attributed to adult timepoints 

with more mature neurons. However, future large-scale studies will be needed to better define 

some of the rare subtypes.  

As noted above, variation in the prenatal environment can have lasting consequences on 

many hypothalamic functions(12, 13, 22), but it is not well understood why adverse prenatal 

environments lead to worse or different outcomes in some individuals and not others. Precisely 

delineating the timing at which hypothalamic nuclei mature could provide insight into these 
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exposures and outcomes, including the possibility that differences in the developmental timing 

among hypothalamic nuclei could produce distinct sensitive periods within the developmental 

trajectory and different disease risks. 

 Mouse models have been used extensively to study the relationships between the prenatal 

environment, the development of the hypothalamus, and the emergence of behavioral and 

physiological variation in hypothalamic functions. Thus, a critical question is whether these 

developmental processes are strongly conserved in mice vs. humans. Overall, we found that 

patterns of cell type-specific gene expression were quite similar in mouse vs. human. Known 

markers from mice enabled us to assign nucleus and cell type identities for all nuclei and many 

neuronal subtypes(11, 39–46). However, numerous human-specific gene expression patterns 

were identified, including human-specific utilization of certain transcription factors, which could 

provide a substrate for subtle changes in regulation and function. Therefore, as has been 

demonstrated in other brain regions, many cell type-specific gene expression programs for 

neuronal subtypes are conserved from mice to humans. For example, among the conserved genes 

are the transcription factors ISL1 and NHLH2 which have been implicated in the regulation of 

body weight via hypothalamic circuitry in mice and humans(41, 47–49). Nonetheless, results in 

mice should be interpreted cautiously when specific genes show divergent patterns across 

species. 

Our comparison of forebrain neurogenic niches revealed shared lineages leading to 

excitatory and inhibitory neurons in the hypothalamus, cortex, and GE. However, gene 

expression differences were detectable between regions starting at early stages of development in 

radial glia. Gene regulatory network models suggested that the differentiation of excitatory vs. 

inhibitory neurons occurs early in hypothalamic development and involves ‘core’ regulatory 

programs that are shared, respectively, by excitatory and inhibitory neuronal lineages in the 
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cortex and GE. We present evidence that these core programs are refined by region-specific TFs 

that may give rise to the unique properties of the excitatory and inhibitory programs in each brain 

region. While some of these predicted regulators have been described previously, our models 

make many novel predictions for the roles of key regulator TFs, and these should be tested 

experimentally. As some of these networks are predicted to be human-specific, testing their 

functions will likely require the further development of human cell culture systems that enable 

direct comparisons across forebrain stem cell niches. 

      Several limitations should be noted, setting the stage for future work. As with most 

human studies, information on the third trimester is lacking. Additional scRNA-seq data from 

late gestation and early postnatal time points could improve the resolution to characterize the 

maturation of nuclei and cell types. In addition, there is a need for more spatially-resolved 

human transcriptomic data to more fully annotate neuronal subtypes to the nuclei in which they 

reside. Finally, there is limited information about the prenatal environment experienced by the 

fetuses that we studied. An exciting future direction will be to expand our analysis to human and 

model organism samples with known variation in the prenatal environment, enabling a more 

direct evaluation of sensitive periods and their developmental consequences. It is our expectation 

that continuing to characterize human-specific patterns of gene expression in the hypothalamus 

will enable researchers to more precisely evaluate genes and hypothalamic cell types in the 

pathophysiology of human diseases.  
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Figure 1. Neuronal and non-neuronal lineages across the developing human hypothalamus.  

A. Overview of sample collection, including single-cell RNAseq analysis of Trimester 1 and 2 

prenatal hypothalamus, plus single-nucleus RNAseq from adult hypothalamic neurons dissected 

into four regions. B. 3D UMAP showing integrated samples of the prenatal hypothalamic 

samples including Trimester 1 (CS13, CS14, CS15 and CS22) and Trimester 2 (GW15, GW18, 

GW19, GW20, GW22 and GW25).  C. 3D UMAP showing samples after clustering to show cell 

subpopulations. D. Stacked plot showing distribution of cell subpopulation across samples. E. 3D 

visualization of the neuronal lineage.  F. 3D visualization of the astro-ependymal lineage. G. 3D 

visualization of the oligodendrocyte lineage. H. Dot Plot showing expression of marker genes. 

 

Figure 2. Neuronal trajectories across development and the adult human hypothalamus. A. 

scRNAseq data from embryonic postmitotic neurons (CS22-GW25) and neurons from the 50YO 

adult hypothalamus. B. 3D UMAP showing overlay of samples by timepoint. C. Monocle3 was 

used to run pseudotime analysis of both prenatal and adult neurons starting with the node 
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containing the highest percentage of cells from CS22. D. The pseudotime trajectory highlighting 

branch points (green) and the terminal leaves (orange) E. The pseudotime trajectory can be used 

to generate a 2D lineage tree. The lineage tree can be overlaid with gene expression (red). 

GABAergic (GAD1), glutaminergic (SLC17A6) and histaminergic (HDC) expression demarcates 

cell populations. F. Nuclei were annotated using the marker genes in fig. S4 and table S3. G. Dot 

Plot showing expression of marker genes and neuropeptides split between Trimester 1 and 2 and 

adult. H. The lineage tree was subdivided into 24 nodes to check sample distribution across tree. 

I. The 24 nodes were plotted to show the temporal distribution of nodes by time point. J. 

Temporal expression was also plotted to show distribution across trimester 1, 2 and adult 

samples. K. Hicat was used to generate 170 clusters on the adult neurons. 147/170 clusters 

generated by Hicat could be assigned to nuclei. The number of individual nuclei are shown in 

parentheses, with nuclei visualized in shades within the Monocle3 lineage. L. Heatmap showing 

mean log2 fold change in expression of key marker genes for each individual subpopulation. 

 

Figure 3. Cross-species comparison of mouse and human hypothalamic neurons. A. UMAP 

of single-cell RNAseq data from the human and mouse hypothalamus neurons, including 

prenatal and adult samples. Mammill, mammillary dissection; PO, preoptic dissection; SO, 

Supraoptic dissection;  Tub, Tuberal dissection, ARC, Arcuate; SCN, Suprachiasmatic Nucleus; 

VMH, Ventromedial Nucleus of the Hypothalamus; LH, Lateral Hypothalamus. B. Split UMAP 

showing cell distribution across human/mouse and prenatal/adult samples. C. FeaturePlots 

showing localization of GABAergic (SLC32A1 and GAD1), Glutaminergic (SLC17A6) and 

histaminergic (HDC) neurons. D. Louvain clustering generates 28 cell clusters. Anatomical 

nuclei annotations are indicated for clusters based on sample dissection and gene expression 
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profile. E. Stacked plot showing the percentage of samples contributing to each cluster. 

Percentage is normalized to the number of cells in the input, with legend shown on right. F. 

FeaturePlot showing localization of POMC neurons. G. Subclustering of POMC neurons reveals 

11 unique POMC+ clusters. H. Stacked plot showing the percentage of input samples 

contributing to each POMC cluster. Percentage is normalized to the number of cells in the input, 

with legend shown Fig. 3E above. I. DotPlot showing expression of genes localized within 

POMC subclusters. J. Transcription factor co-expression analysis across human/mouse and 

fetal/adult samples. Transcription factors coexpressing with POMC cells with a co-expression 

value three standard deviations above the mean are highlighted for each category. Dot size 

indicates relative the expression level for the gene of interest. 

 

Figure 4. Developmental principles across distinct human brain regions. A. scRNAseq data 

from hypothalamus, cortex and ganglionic eminence for three matched human embryonic 

samples at GW18, GW19 and GW20. Cell types presented in 3D UMAP, inset panels are 

rotations of UMAP showing additional clusters. B. 3D UMAP showing overlay of samples by 

brain region. C. Distribution of cells within cell-type cluster by brain region. D. Polar plot of TF 

expression across three brain regions for dividing progenitor cells. Points off-axis reflect shared 

expression between regions. Grey points indicate no significant difference between regions. E. 

Heatmap depicting genes with similar or divergent expression patterns across neuronal lineages. 

Colors represent scaled expression of cells only within a given cell-type and brain region, as 

described in x-axis legend. F. Subsets of gene regulatory networks for hypothalamus, cortex and 

ganglionic eminence were created based on genes expressed in neural progenitor cells, radial glia 

and dividing progenitors. Resulting overlapping networks show edges from hypothalamus 
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network (blue) are roughly evenly split and adjacent to the ganglionic eminence network (green) 

and cortex network (red). Shared edges follow the color scheme introduced in Fig. 4D. Top 20 

TFs with the greatest number of connections are highlighted in white. 
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Materials and Methods 
 

Prenatal sample collection and processing. Acquisition of all primary human tissue samples 

was approved by the UCSF Human Gamete, Embryo and Stem Cell Research Committee 
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(approval nos. 10-03379 and 10-05113). All experiments were performed in accordance with 

protocol guidelines. Informed consent was obtained before sample collection and use for this 

study. First and second trimester human hypothalamus tissue was collected from elective 

pregnancy termination specimens from San Francisco General Hospital and the Human 

Developmental Biology Resource (HDBR). Cortical and ganglionic eminence tissue was 

collected in parallel from the same specimens, as previously described(29, 30). Hypothalamic 

tissue samples were dissociated using Papain (Worthington) containing DNase. Samples were 

grossly chopped and then placed in 1mL of Papain and incubated at 37C for 15 min. Samples 

were inverted three times and continued incubating for another 15 min. Next, samples were 

triturated by manually pipetting with a glass pasteur pipette approximately ten times. Dissociated 

cells were spun down at 300g for 5min and Papain removed. 

 

Adult sample collection and processing. Adult hypothalamus tissue was obtained by the Allen 

Institute from a 50 year old Male donor (subject ID H18.30.002, Right hemisphere, Cause of 

death = Cardiovascular, PMI = 10hr, Tissue RIN score = 8.2 +/- 0.4) with no history of 

neuropsychiatric or neurological disorders and negative for infectious disease. Tissue collection 

was performed in accordance with the provisions of the United States Uniform Anatomical Gift 

Act of 2006 described in the California Health and Safety Code section 7150 (effective 1/1/2008) 

and other applicable state and federal laws and regulations. The Western Institutional Review 

Board reviewed tissue collection procedures and determined that they did not constitute human 

subjects research requiring institutional review board (IRB) review. The de-identified 

postmortem brain sample was obtained after receiving permission from the decedent’s legal 

next-of-kin and prepared as described previously (full methods described in Hodge 2019(50) 

(dx.doi.org/10.17504/protocols.io.bf4ajqse) and Bakken 2021(51) describes subject ID 
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H18.30.002 sample). Briefly, coronal brain slabs of 1cm thickness were frozen in dry-ice cooled 

isopentane, and transferred to vacuum-sealed bags for storage at -80°C until the time of further 

use. To isolate the brain regions of interest, tissue slabs were briefly transferred to -20°C and the 

region of interest was removed and subdivided into smaller blocks on a custom temperature 

controlled cold table. Tissue blocks were stored at -80°C in vacuum-sealed bags until later use. 

fig. S1 details the four broad regions – preoptic, supraoptic, tuberal and mammillary, identified 

by gross anatomical landmarks for the hypothalamus dissections. Nucleus isolation for 10x 

Chromium Single Cell 3’ RNA sequencing V3 was conducted as described 

(dx.doi.org/10.17504/protocols.io.y6rfzd6). Gating on DAPI and NeuN fluorescence intensity 

was carried out as described previously(50). NeuN+ and NeuN- nuclei were sorted into separate 

tubes and were pooled at a defined ratio after sorting. Sorted samples were centrifuged, frozen in 

a solution of 1X PBS, 1% BSA, 10% DMSO, and 0.5% RNAsin Plus RNase inhibitor (Promega, 

N2611), and stored at -80°C until the time of shipment on dry ice from the Allen Institute to the 

Karolinska Institute for 10x chip loading. 

 

Sequencing. For prenatal samples, single-cell capture was performed following the 10X v2 

Chromium manufacturer’s instructions. Each sample was its own batch. For each batch, 10,000 

cells were targeted for capture and 12 cycles of amplification for each of the complementary 

DNA and library amplifications were performed. Libraries were sequenced according to the 

manufacturer’s instructions on the Illumnia NovaSeq 6000 S2 flow cell (RRID:SCR_016387). 

For adult samples, immediately before loading on the 10x Chromium instrument, frozen nuclei 

were thawed at 37°C, washed, and quantified for loading as described 

(dx.doi.org/10.17504/protocols.io.nx3dfqn). In brief, suspensions were thawed in a 37˚C water 

bath, spun down briefly, and pipetted several times to mix. Nuclei were then processed according 
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to the 10X Genomics protocol, targeting 5000 cells. We aimed to sequence two replicates per 

sample. Nearly all samples were processed with the 10X Genomics V3 kit. Samples were first 

sequenced to a shallow depth (approximately 1000 reads/cell) on the Illumina NextSeq platform 

to validate sample concentrations. Samples were then sequenced to approximately 100,000 

reads/cell on the Illumina NovaSeq platform. After sequencing, saturation was calculated for 

each sample using the Preseq package (https://github.com/smithlabcode/preseq). Any samples 

that were not saturated to 60% were sequenced more deeply using Preseq predictions. 

 

Quality filtering and integration. All fetal samples were quality filtered to include cells with 

the number of detected genes between 200 & 4000, a total UMI between 1,000 and 15,000 and a 

maximum 10 percent of reads mapping to mitochondrial genes. Adult neurons were filtered to 

include cells with at least 500 reads, and total UMI above 1000. For published datasets, cells 

passing quality filters defined in publication were used in this study. Doublets were detected 

using scDblFinder (default parameters, clust.method='overcluster') and discarded from the 

analysis. Unless otherwise noted, the Seurat package v4.0.5(52) was used for normalization, 

sample integration, clustering, differential gene expression analysis and plotting. Prior to 

integration, samples were normalized using SCT transform, regressing on percent mitochondrial 

content.   

 

Cell type assignments. Integrated prenatal samples (n cells = 40,927) were subject to dimension 

reduction with PCA and were visualized in the 3D UMAP space. Cells were clustered using 

Louvain clustering and identified using established markers from published studies(2, 4–11, 23, 

53–57). Aberrant cells were manually reassigned based on UMAP coordinates to best reflect 
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gene expression in feature plots. Extrahypothalamic cells such as FOXG1+ cells (Telencephalon) 

and NEUROD6+ cells (forebrain) were removed prior downstream analysis. For the adult sample 

etrahypothalamic cells such as PPP1R1B/DRD1/PDYN/DRD2/ADORA2A+ cells (Nucleus 

accumbens) were removed from the anterior samples (preoptic and supraoptic) prior downstream 

analysis. 

 

Neuronal lineage analysis. Prenatal and adult hypothalamic neurons (CS22-Adult; n= 33,811) 

were integrated. Seurat was then used for dimension reduction using PCA and generation of a 

3D UMAP. The scrattch.hicat package was used to generate 170 neuronal clusters from the adult 

hypothalamic neurons. Nuclei were identified based on expression of marker genes for each 

nuclei based on previously published studies (table S3) and/or colocalization in the Allen Brain 

Atlas (fig. S4). 

Monocle3(58) was used to generate pseudotime lineages encompassing both prenatal and adult 

neurons. The Monocle3 trajectory generated 438 vertexes. Vertex 8 was chosen as the starting 

node as it contained the highest proportion of the earliest time point - the CS22 cells (66%). 

Using this pseudotime lineage, we identified branch points where the lineages diverge, and 

‘leaves’ where the lineages terminate. Using the all_simple_paths function in Monocle3 and the 

igraph package, we were able to generate 2D lineage trees to represent the lineage. Gene 

expression was overlaid onto these lineage trees which showed the cells organizing into distinct 

lineages representing 10 anatomically distinct regions.  

 

Comparison across human/mouse and adult/prenatal neurons. Human adult hypothalamic 

neurons (n=34,662) and human fetal neurons (n= 16,451) were merged with mouse fetal samples 
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(n=71,149) from Kim et al. 2020(11), and human adult data either from the whole mouse adult 

hypothalamus (n = 17,416) from Kim et al. 2020(11) and Chen et al. 2017(5), or specific nuclei 

from the adult mouse including Arcuate (n = 9,368) from Campbell et al. 2017(4), Preoptic 

nucleus (n=10,314) from Moffitt et al. 2018(6), Suprachiasmatic Nucleus (n=2,015) from Wen et 

al. 2020(9), Ventromedial Hypothalamus (n=12,062) from Kim et al. 2019(7), and the Lateral 

Hypothalamus (n=2,317) from Mickelsen et al. 2019(8). Louvain clustering was used to assign 

cells to 28 clusters. The distribution of cell types across these clusters was determined by first 

normalizing to the number of cells in each sample of the input. 

 The POMC+ cluster was cleaned and then subclustered using louvain clustering. 11 

clusters were determined based on distribution of arcuate marker genes (table S7). Transcription 

factors with high correlations to neuropeptides were determined for each sample type by co-

occurance analysis using the quanteda package(59) in R and calculating the log likelihood 

significance for each pair of transcription factors and neuropeptides. From each of these 

matrices, the top transcription factors were determined as genes with co-expression above one 

standard deviation above the average of all correlations. If a gene appeared as a top transcription 

factor in all four matrices, they were considered conserved. Genes conserved in human were top 

transcription factors in both human datasets, but not in at least one of the mouse datasets. The 

transcription factors expressed in mouse, adult and fetal data were calculated accordingly. 

 

Comparison across brain regions during human development. Three fetuses from gestational 

week 18, 19 and 20 were chosen for their broad range of dissections covering the hypothalamus, 

three regions of the ganglionic eminence and five regions of the cortex. Adult neurons were 

filtered to include cells with at least 1000 reads (maximum 15000), number of genes 500 - 4000, 
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a maximum 10 percent of reads mapping to mitochondrial genes and total UMI above 1000. The 

95,107 cells passing these filters were integrated using the Seurat package in R with the same 

parameters as used for other datasets in this study. Cell type assignments were determined by a 

mixture of our work with the hypothalamus and cortex assignments previously reported(57). 

Three dimensional UMAP projections assisted in identification of multiple excitatory and 

inhibitory lineages as well as distinguishing ET and IT excitatory neurons and the three 

inhibitory neuron populations. Identification of IT and ET neuron types were further confirmed 

using projectR package and the DeCoN dataset(60). Seurat clustering at a resolution of 0.5 

largely delineated major cell types. The Seurat function FindAllMarkers was used to both find 

top marker genes for each Seurat cluster as well as identifying brain region differences among 

Seurat clusters. Polar coordinate plots and Z-scores were calculated using the volcano3D (v2.0.1) 

package(61) and were used to identify top transcription factor differences among dividing 

progenitor cells. Genes selected for the heatmap in Figure 4E were a combination of top marker 

genes per Seurat cluster that were both similar across brain regions and as well different. Gene 

regulatory networks were reconstructed using the Genie3 package(32). Networks were first built 

for each individual sample then edge weights were averaged across samples to identify region-

specific networks. For summary analysis of networks in dividing cells, networks were combined 

by finding common edges and the resulting network was plotted using the iGraph package. 

Transcription factors with the greatest number of connections were displayed in white in figure 

4F. Gene modules were created using K-means clustering starting with a K=100 and resulting in 

28 groups, with gene eigenvalues calculated with the WGCNA package(62). Counts tables for 

both Genie3 and K-means clustering analysis were imputed using K nearest neighbors 

smoothing, where K = 5. We then compared gene regulatory networks across brain regions to 

identify region specific transcription factor drivers for each gene module. Transcription factors 
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with poor correlation between the transcription factor expression and the gene module 

eigenvalue were discarded. Lists of transcription factor drivers per gene module word compared 

across brain regions and similarities and differences were reported. 
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Fig. S1. Dissection of the human adult hypothalamus. Coronal sections were taken from a 50 year old healthy male. 
Anatomical landmarks were used to locate the preoptic hypothalamus (HyTHpo), supraoptic hypothalamus 
(HyTHso), tuberal hypothalamus (HyTHtub) and mammillary hypothalamus (MM). 
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Fig. S2. Distribution of samples throughout UMAP space. 2D UMAP representation of integrated human embryonic 
samples, each plot depicts the coordinates of cells in each sample.  
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Fig. S3. Expression of nuclei markers in embryonic and adult neuronal lineages. 2D lineage trees for all marker 
genes, with high expression indicated in red. 
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Fig. S4. Localization of marker genes within the Allen Brain Atlas. In situ hybridization of marker genes used to 
discern neuronal lineages. Arrows show localization within the region of interest. Scale bar is 1000 microns.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2022. ; https://doi.org/10.1101/2021.07.20.453090doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453090
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

42 
 

 
 
Fig. S5. Expression of nuclei markers across species and development. Louvain clustering was performed on the 
integrated data from mouse and human, prenatal and adult samples. Nuclei specific markers are localized with 
Seurat clusters.   
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Fig. S6. Gene module activity across cell-types and neuronal lineages. A. Major cell types determined by marker 
genes and boundaries defined by Seurat clustering. (3D UMAP) B. Integration of cells from across the hypothalamus, 
ganglionic eminence and cortex are presented in a 2 dimensional UMAP. C. Cell cycle stage as calculated using the 
Seurat program. (3D UMAP) D. Louvain clustering of cells calculated using the FindClusters function in Seurat, default 
resolution set to 0.5. (3D UMAP) E. Gene modules were created using imputed counts and grouping genes by K-
means clustering. Eigengene values were calculated using the WGCNA package and these values were plotted for 
each gene module.  
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