

1 **Title: Dicamba drift alters plant-herbivore interactions at the agro-ecological interface**

2 **Authors:** Nia M Johnson¹ and Regina S Baucom¹

3 ¹Ecology and Evolutionary Biology Department, 4034 Biological Sciences Building, University of
4 Michigan, Ann Arbor, MI 48109

5 *Corresponding author: nmjo@umich.edu

6 Data are provided as private-for-peer review via the following link:

7 https://github.com/najohnson1/DicambaDrift_20182019.git

8 **Abstract**

9 Natural populations evolve in response to biotic and abiotic changes in their environment, which shape
10 species interactions and ecosystem dynamics. Agricultural systems can introduce novel conditions via
11 herbicide exposure to non-crop habitats in surrounding fields. While herbicide drift is known to produce a
12 variety of toxic effects in plants, little is known about its impact on non-target wildlife species
13 interactions. In a two-year study, we investigated the impact of herbicide drift on plant-herbivore
14 interactions with common weed velvetleaf (*Abutilon theophrasti*) as the focal species. The findings reveal
15 a significant increase in the phloem feeding silverleaf whitefly (*Bermisia tabaci*) abundance on plants
16 exposed to herbicide at drift rates of 0.5% and 1% of the field dose. We also identified a significant
17 phenotypic tradeoff between whitefly resistance and herbicide resistance in addition to whitefly resistance
18 and relative growth rate in the presence of dicamba drift after increasing the populations grown in year
19 two. In a follow-up greenhouse study, we found evidence that dicamba drift at 0.5% of the field dose
20 significantly increased average chlorophyll content (mg/cm²) along with a positive correlation between
21 whitefly abundance and chlorophyll content. Overall, these findings suggest herbicide exposure to non-
22 target communities can significantly alter herbivore populations, potentially impacting biodiversity and
23 community dynamics of weed populations found at the agro-ecological interface.

24

25 **Keywords:** agroecology, eco-evolution, plant-insect interactions, herbicide drift, weed adaptations

26 **Introduction**

27 Biotic and abiotic interactions influence species assemblage and evolution throughout ecosystems
28 (Thompson 1999, Klanderud et al. 2015). Often a source of atypical abiotic factors, agricultural practices
29 are largely dependent on pesticide use for increased crop yield and labor efficiency (Gianessi 2013).
30 Despite the economic benefits of herbicides for weed control, however, their use can lead to unintentional
31 impacts on non-target wildlife if the herbicide ‘drifts’ or migrates outside of the target area during or after
32 the initial application (Freemark and Boutin 1995, Carlsen et al. 2006a, Carlsen et al. 2006b). Though
33 herbicide drift is known to produce a variety of toxic effects on non-target vegetation (Marrs et al. 1991,
34 Fletcher et al. 1996, Marrs and Frost 1997, Gove et al. 2007, Boutin et al. 2014, Cederlund 2017), and can
35 lead to significant plant phenotypic and compositional changes (Iriart, Baucom, and Ashman 2020), few
36 studies have evaluated how herbicide drift may disrupt or influence the interactions between plants and other
37 community members such as pollinators and herbivores.

38

39 Weeds and other non-crop plants found at the edges of crops serve as important reservoirs of insect
40 biodiversity (Egan and Mortensen 2012), which provides crucial ecosystem services for agriculture such
41 as pollination and pest control (Daily 1997). The plant- insect interactions that occur at the agro-
42 ecological interface are key determinants for the movement of energy and nutrients as well as drivers of
43 ecological and evolutionary dynamics (Ehrlich and Raven 1964, Futuyma and Agrawal 2009). However,
44 weed communities at the agro-ecological interface can be exposed to herbicide drift rates between 0.1%
45 and 5% of the normal field application rate of herbicide (Cessna et al. 2005), and we currently understand
46 very little about how this drift may influence ecological interactions and potentially lead to subsequent
47 evolutionary responses. For example, does herbicide drift change herbivore abundance or damage, and/or
48 lead to altered patterns of plant investment in resistance to either herbicide or herbivore damage?

49

50 One herbicide known for non-target damage is dicamba (3,6-dichloro-2-methoxybenzoic acid) (Jones et al.
51 2019). Dicamba is a broadleaf selective synthetic auxin that is on an upwards trajectory in agriculture due to
52 a substantial increase in the adoption of dicamba-tolerant crops (USDA-ERA, 2019), which is evident by an
53 estimated 600% increase of use in the US between 2014 and 2019 (Baker, 2021). Dicamba is absorbed by
54 plant leaves and mimics the deformative and growth-altering effects caused by overdoses of the natural plant
55 auxin, indole-3- acetic acid (IAA) (Grossman 2010). Dicamba drift can cause a shift in plant and arthropod
56 diversity (Egan et l. 2014), delay the onset of flowering, reduce the number of flowers, and even reduce the
57 amount of pollinator visits (Bohneblust et al. 2016). However, we have very little information on how
58 dicamba drift may impact plant-herbivore interactions. A broad expectation is that exposure to a synthetic
59 auxin, such as dicamba, could alter plant allocation towards growth and defense, and potentially lead to
60 increased vulnerability to herbivores, in line with growth-defense tradeoff framework (Coley, Bryant, Chapin
61 1985). Recent work has shown that exposure to drift rates of herbicides like dicamba can lead to the
62 evolution of reduced herbicide sensitivity (Vieria et al. 2020) and recurrent selection of low dose herbicides
63 can lead to non-target site resistance (Busi et al. 2013), however, there is little understanding of how this
64 process may influence selection for allocation herbivory defense.

65
66 Here we examined the impact of dicamba drift on plant herbivory, dominated by naturally occurring
67 populations of the phloem feeding silverleaf whitefly (*Bermisia tabaci*) in the field, using the crop weed
68 velvetleaf, *Abutilon theophrasti*. First introduced to the United States from Asia in the late 17th century,
69 this annual species is now one of the most common broad-leaved species in and around corn and soybean
70 agricultural fields located in Canada, Europe, and the United States (Spencer 1984). While past work in
71 *Amaranthus hybridus* has shown that lines with evolved herbicide resistance (defined by survival given
72 application of herbicide at the recommended field dose) can exhibit reduced herbivory resistance
73 depending on light availability (Gassman 2005), there is a striking lack of information on how such a

74 phenotypic tradeoff evolves when populations are exposed to drift rates under natural field conditions.

75 We performed field experiments to address this gap in our knowledge, and specifically asked the

76 following questions: Does the application of dicamba drift influence herbivory in the common weed

77 *Abutilon theophrasti* (velvetleaf)? Does the amount of herbicide damage, which reflects resistance to

78 herbicide, influence the amount of herbivory, which reflects resistance to herbivory? (i.e., is there a

79 trade-off between these two forms of defense in the presence of dicamba drift)? Is either herbicide or

80 herbivore resistance negatively correlated with relative growth rate, indicating a growth- defense

81 tradeoff? Is there evidence of selection acting directly on herbicide resistance, herbivory resistance, or

82 relative growth rate or evidence of correlative selection acting on the interactions of these focal traits? Does

83 herbicide drift impact leaf chlorophyll levels, and if so, does that correlate with whitefly abundance?

84

85 **Methods**

86 *Field Experimental Design*

87 We performed two consecutive field experiments to characterize the extent of herbicide drift damage and

88 herbivory response in *A. theophrasti*. In the first experiment, we planted replicate seeds from 23 maternal

89 lines originally sampled from a single population (Dexter, MI) in the summer of 2018. We increased the

90 number of populations from 1 to 8 for a total of 50 maternal lines in the second field experiment (SFig 1),

91 including the 23 maternal lines from the originally sampled population and 2-5 maternal lines from the

92 subsequently sampled populations. All seeds were collected in the Fall prior to each summer in and around

93 soybean fields located in Dexter, MI.

94

93 In the first field experiment (2018) we scarified and planted 276 total seeds in a randomized block design

94 (23 maternal lines x 3 treatments x 2 replications x 2 blocks) with each treatment randomized within each

95 block, and two replicate plants per maternal line present within each treatment/block combination. Our

96 three experimental treatments were two levels of a drift exposure (1% and 0.5% of the recommended field

97 dose of dicamba (3,6-dichloro-2-methoxybenzoic acid) (2.8 g ae/ ha dicamba, 5.6 g ae/ha dicamba) and
98 water as the control. For the second field experiment (2019), we scarified and planted 450 total seeds in a
99 randomized block design with the same treatments as the previous field experiment (50 maternal lines x 3
100 treatments x 3 blocks). Treatments were randomized in each block, and one replicate of each maternal
101 line was present within each treatment/block combination. We recorded leaf count, height, and largest
102 leaf width for all plants biweekly in both experiments. We recorded flower count weekly and sampled all
103 seeds at the end of the season for an estimate of fitness. Five weeks after seed germination, when the
104 average plant height was 11 cm tall, we applied 1% and 0.5% dicamba to plants in each respective
105 treatment with a hand-held pressurized prayer for roughly 3 seconds which ensured adequate coverage of the
106 entire plant.

107
108 *Herbicide Damage* – We assessed herbicide damage two weeks following herbicide application by
109 recording the proportion of leaves exhibiting visual deformation (curling or cupping), and proportion of
110 the plant damage was determined by evaluating the number of leaves with a cupping or curling pattern
111 divided by the total number of leaves.

112
113 *Herbivory Damage* – To estimate resistance to herbivory in 2018, we assessed both physical damage from
114 chewing insects and the abundance of phloem-feeding insects (dominated by silverleaf whiteflies).
115 Because there was little evidence of chewing insects, only whitefly abundance was assessed in 2019. We
116 assessed chewing herbivory damage five weeks after herbicide application using the imaging software,
117 Fiji ImageJ version 3.0 (Schindelin et al. 2012). To do this, we collected 3 leaves at random from each
118 plant and scanned them using the Canon CanoScan L110. To obtain the total surface area, we converted
119 each image to binary format and used the particle analysis tool which quantifies total pixel number into
120 centimeters. We then used a macro plug-in to place a grid with 0.1cm² spacing over each image to
121 estimate the amount of chewing herbivore damage per leaf.

122 Visual estimates of whitefly abundance were sampled in both field experiments by selecting 10 leaves at
123 random per plant. Because most whiteflies feed and oviposit at the same location (Van Lenteren and
124 Noldus 1990), estimates of percentage of leaf area covered by whitefly oviposits were captured by
125 visually partitioning each leaf into quarters and evaluated for each section, as suggested in Johnson et al
126 2015. We estimated whitefly abundance on a scale from 0 – 5 (adapted from Banks 1954). A score of 0
127 meant no whitefly oviposits were present, 1 was 1 - 20% leaf coverage by whitefly oviposits, two was
128 between 21 – 40 % leaf coverage, three was 41 - 60 % leaf coverage, four representing 61 - 80% leaf
129 coverage, and five representing 81 - 100% leaf coverage.

130

131 *Photosynthetic carbon dioxide response* – To determine if there was a link between herbicide resistance
132 and photosynthetic response to dicamba drift, we estimated photosynthetic efficiency by examining
133 variation in photosynthetic carbon dioxide response curves (A-Ci Curve) using the Li-Cor 6400 portable
134 photosynthesis system (Open System Vers, 4.0, Li-Cor, Inc., Lincoln NE) in 2018. During gas exchange
135 measurements, we maintained cuvette conditions at a photosynthetic photon flux density (PPFD) of 1500
136 $\mu\text{mol}/\text{m}^2\text{s}$, air flow rate at 500 $\mu\text{mol}/\text{s}$, and leaf chamber block temperature being 30°C to match ambient
137 air temperature. In order to measure the gas exchange, we first set the CO₂ concentration reference at 400
138 $\mu\text{mol}/\text{mol}$, and we maintained the leaf under such conditions for ten minutes for adaptation and
139 stabilization of leaf photosynthesis. We set a loop of changing reference CO₂ concentration at 400, 300,
140 200, 100, and 50 $\mu\text{mol}/\text{mol}$. We controlled CO₂ concentration in the cuvette with a CO₂ mixer across this
141 series and measurements were recorded after equilibration to a steady state. We then set another loop of
142 changing reference CO₂ concentration at 400, 600, 800, 1000, 1300, and 1500 $\mu\text{mol}/\text{mol}$ and again logged
143 at each iteration. Between each group of measurements, we set the reference CO₂ concentration back to
144 400 $\mu\text{mol}/\text{mol}$ for 5 minutes. These measurements were made four to five weeks after herbicide

145 application, within a ten-day period. We recorded these data on a leaf area of 2 cm², from 2 leaves on
146 each of three plants from each treatment. For plants growing in drift treatments, we included one leaf that
147 developed prior to herbicide application (Leaf 1), and one leaf that developed after herbicide application
148 which as a result exhibited a deformation in shape (Leaf 2). The purpose of taking measurements on
149 leaves with different times of development was to investigate if potential herbicide sequestration impacts
150 photosynthetic efficiency of leaves exhibiting damage, potentially impacting herbivore resistance
151 mechanisms for the entire plant. Measurements for each leaf per plant were taken on the same day.

152

153 *Greenhouse Experimental Design*

154 With the goals of understanding treatment effects on whitefly abundance (*i.e.* impacts on host-plant
155 selection), we conducted a greenhouse experiment in the summer of 2021. We planted 6 replicates of 20
156 maternal lines randomly selected from 5 of the populations used in the 2019 field experiment totaling 240
157 seeds (20 maternal lines x 6 experimental replicate seeds x 2 treatments). Half of the plants were directly
158 treated with dicamba at 0.5% of the field dose, while the other half was treated with water 4 weeks
159 following planting. In preparation for herbicide application, plants were placed in rows outside of the
160 greenhouse in order to prevent herbicide drift. We subsequently applied the herbicide solution in the same
161 manner as in the field experiments and relocated the plants back into the greenhouse once they had visually
162 dried. We elected to treat plants with the herbicide one week prior to the field experiment
163 due to observed accelerated growth in the greenhouse. Because whiteflies are common pests in many
164 greenhouses, and the origin of the whitefly population in the field had previously been connected to crops
165 transplanted from the greenhouse in plots adjacent to our own, we elected to allow whiteflies to naturally
166 migrate to velvetleaf plants without manipulation or introduction.

167

168 *Chlorophyll Content* – We estimated whitefly abundance with the same methodology as above. Since
169 whitefly host selection has previously been linked to leaf wavelength emissions (Mound 1962), using the
170 atLEAF Plus Digital Chlorophyll Meter, we measured the chlorophyll levels (mg/cm²) of 3 leaves per plant

171

172

173 **Data Analysis**

174 *Herbivory Response to Drift*

175 We conducted all statistical analyses in R studio (version 3.4.1, R Development Core Team). For each
176 type of herbivory measurement in the field experiments (chewing damage and whitefly abundance), we
177 performed analysis of variance to determine whether herbivory resistance differed in response to dicamba
178 application for each year separately. Prior to performing ANOVAs, we transformed response variables
179 using Tukey's Ladder of Powers in the rcompanion package (Mangiafico 2016) to correct for non-
180 normality of residuals. In 2018 ($n = 118$), we fit the following mixed linear model using lmer function of
181 the lmer4 package (Bates et al. 2011):

$$182 y = u + \text{treatment} + \text{block} + (\text{treatment} \times \text{block}) + (1|\text{maternal line}) + (1|\text{maternal line} \times \text{treatment}) + e$$

183

184 where, y , the response variable, is chewing damage or whitefly abundance, u is the intercept or mean of
185 the model, treatment and block are fixed-effect terms, maternal line and maternal by treatment are random
186 effect terms. In 2019 ($n = 240$), we nested maternal line into population and added population as a random
187 effect to the existing model: $y = u + \text{treatment} + \text{block} + (\text{treatment} \times \text{block}) + (1|\text{population}) + (1|\text{population}:$
188 $\text{maternal line}) + (1|\text{population: maternal line}) \times \text{treatment} + e$. We determined the significance of the predictor
189 variables using F -statistics for the fixed effects with Kenward-Roger to estimate the degrees of freedom and
190 used a log-likelihood ratio test to estimate χ^2 for the random effect. We then used a Welch two sample t-test
191 to determine if there were significant differences between the two dicamba drift treatments.

192

193 *Plant Performance in Response to Drift*

194 To determine how drift treatments influenced plant performance in the field, we ran separate mixed linear
195 models as described above by year. In 2018, we fit separate models for each plant trait (height, leaf count,
196 leaf width, and flower number): $y = u + \text{treatment} + \text{block} + (\text{treatment} \times \text{block}) + (1|\text{maternal line}) +$
197 $(1|\text{maternal line} \times \text{treatment}) + e$; where each trait was the response variable, block, treatment, and block

198 by treatment interactions were fixed effects, and maternal line, and maternal by treatment interactions
199 were random effects. In 2019, we nested maternal line into population and added population as random
200 effects to the existing model: $y = u + \text{treatment} + \text{block} + (\text{treatment} \times \text{block}) + (1|\text{population}: \text{maternal}$
201 $\text{line}) + (1|\text{population}: \text{maternal line}) \times \text{treatment} + (1|\text{population}) + (1|\text{population}) \times \text{treatment} + e$. We
202 transformed each trait again using Tukey's Ladder of Powers to meet the assumptions of normality. We
203 performed separate analyses for each year because preliminary analysis revealed a significant difference
204 in plant growth between years.

205
206 Additionally, photosynthetic carbon dioxide response means were analyzed for 2018 using a Kruskal-
207 Wallis test with treatment as the independent variable. We performed exact Wilcoxon rank sum tests on
208 photosynthetic carbon dioxide response means of individuals grown in each drift treatment separately to
209 determine if time of leaf development impacted photosynthetic carbon dioxide response among leaves
210 with and without deformation by including leaf developmental time as the independent variable.

211
212 *Genetic Variation for Herbicide Resistance*
213 We examined herbicide resistance for each year separately and were explicitly interested in determining if
214 there was evidence for genetic variation for resistance to herbicide drift *via* a population or maternal line
215 by treatment interaction. We fit the following separate mixed linear models for proportion of plant
216 damaged from herbicide: $y = u + \text{treatment} + \text{block} + (\text{treatment} \times \text{block}) + (1|\text{population}: \text{maternal line})$
216 $+ (1|\text{population}: \text{maternal line}) \times \text{treatment} + (1|\text{population}) + (1|\text{population}) \times \text{treatment} + e$; where each
217 type of resistance was the response variable, block, treatment, and block by treatment interactions were
218 fixed effects, and maternal line, maternal by treatment interactions, population, and population by
219 treatment interactions were random effects. We determined if there was evidence of genetic variation for
220 herbicide resistance and whitefly resistance by performing log-likelihood ratio tests to estimate χ^2 for
221 maternal, maternal line by treatment, population, and population by treatment interactions for each
222 resistance type. Finally, because we are interested in potential growth-defense trade-offs, we used a

223 similar mixed linear model to examine genetic variation in relative growth rate.

224

225 *Operational Definition of Resistance*

226 We define herbicide resistance operationally as 1 minus the proportion of leaves exhibiting damage from
227 the herbicide, which was observed as yellowing and curling/deformation of leaves. Because there was
228 limited damage from chewing herbivores, we elected to focus on phloem-feeding herbivory, dominated
229 by whiteflies. Whitefly resistance was defined as 1 minus the amount of whitefly larvae coverage per
230 individual (as described previously).

231

232 *Phenotypic Correlations*

233 In order to test for correlations between herbicide resistance and whitefly resistance (defined
234 operationally as above), we performed Pearson's correlation test. We examined correlations for each
235 experimental year separately.

236

237 *Phenotypic Selection*

238 In accordance with the Lande–Arnold approach (e.g., Arnold et al. 2001; Arnold 2003; Hereford et al.
239 2004), we used phenotypic measurements to quantify natural selection on whitefly resistance, herbicide
240 resistance and relative growth rate. Here, we report selection gradients rather than differentials to understand
241 whether direct selection is acting on individual traits by controlling for any indirect selection
242 present. Relative fitness was calculated as the final seed count per individual divided by mean seed count
243 for each treatment per year (2018: n = 118; 2019: n = 240). We estimated linear (directional) selection
244 gradients (β) within drift environments (0.5% and 1% the field dose of dicamba) by performing multiple
245 linear regressions of relative fitness on whitefly resistance, herbicide resistance, relative growth rate
246 (calculated as change in leaf count plus change in height divided by the number of weeks spent growing)
247 and their interactions separately for each year. We also estimated nonlinear selection gradients (γ) in a full

248 model that included linear terms, quadratic terms, and the cross product terms of focal traits. Quadratic
249 regression coefficients were doubled to estimate nonlinear selection gradients. Nonlinear selection
250 gradients examined the potential for selection on phenotypic variance of a trait (quadratic selection) or
251 phenotypic covariance (correlated selection) between focal traits, as there is evidence of relationships
252 between plant stress, defense, and growth (Huot et al. 2014, Zust and Agrawal 2017). For all selection
253 analysis we mean standardized focal traits (i.e., subtracted the mean and divided by the standard
254 deviation) and used untransformed values of relative fitness. Furthermore, we estimated linear and
255 nonlinear selection on whitefly resistance in the absence of herbicide drift in order to determine whether
256 herbicide altered the pattern of selection. We compared selection gradients between the two treatment
257 types using an ANCOVA to perform a regression for relative fitness on whitefly resistance, treatment,
258 and their interaction.

259

260 *Greenhouse Experiment - Chlorophyll Content*

261 To investigate the effects of dicamba on chlorophyll content in the greenhouse, we performed analysis of
262 variance on the plants grown in the greenhouse. We fit the following simple linear model: $y = u +$
263 treatment + e ; where, y , the response variable, is chlorophyll average, u is the intercept or mean of the
264 model, and e is the error term. In order to test for correlations between chlorophyll averages and whitefly
265 abundance, we performed Pearson's correlation test.

266

267 **Results**

268 *Herbivory Response to Drift Exposed Host*

269 We found no evidence that dicamba drift influenced the amount of chewing damage experienced by *A.*
270 *theophrasti* (Fig 1A; STable 1) but we did find a significant increase in whitefly abundance on dicamba
271 treated plants (F -value = 12.01, p -value < 0.01, Fig 1B; STable 1). This effect was also present in the
272 second field season in which we included five more *A. theophrasti* populations (F -value = 5.30, p -value <
273 0.01, Fig 1C; STable 1). Both levels of dicamba drift -- 0.5% and 1% of the suggested field dose --

274 exhibited higher whitefly abundance than the controls. Plants exposed to 0.5% dicamba had significantly

275 higher whitefly abundance than 1% dicamba treatments across both years (2018: $t = 2.74$, $p < 0.01$, Fig

276 IB; 2019: $t = 2.06$, $p = 0.04$, Fig 1C).

277

278 *Plastic Response to Herbicide Drift on Plants*

279 We examined several plant traits in response to dicamba drift in order to determine how drift impacts

280 velvetleaf growth and physiology, which may underscore herbivory responses. Across both experimental

281 years, we found that leaf count increased following the application of dicamba drift (Treatment effect for

282 2018: $F\text{-value} = 28.01$, $p\text{-value} < 0.01$, Fig 2; STable2; 2019: $F\text{-value} = 5.11$, $p\text{-value} < 0.01$, Fig 2; STable

283 3), whereas leaf width decreased significantly in 2018 but not 2019 (Treatment effect for 2018: $F\text{-value} =$

284 8.25, $p\text{-value} < 0.01$, Fig 2; STable 2; 2019: $F\text{-value} = 0.79$, $p\text{-value} = 0.46$, Fig 2; STable 3), which may

285 be a result of significant population variation in 2019 for leaf width ($\chi^2 = 5.11$, $p\text{-value} = 0.02$, STable 3).

286 Both plant height and flower count decreased as a result of dicamba drift in both experiments (Treatment

287 effect: Height 2018: $F\text{-value} = 220.56$, $p\text{-value} < 0.01$; Flower Count 2018: $F\text{-value} = 7.28$, $p\text{-value} <$

288 0.01, Fig 2; STable 2; Treatment effect: Height 2019: $F\text{-value} = 2.84$, $p\text{-value} = 0.06$; Flower Count 2019:

289 $F\text{-value} = 6.92$, $p\text{-value} < 0.01$, Fig 2, STable 3). Typically, plant leaf number was greater, and height and

290 flower count were lower in the 1% dose of dicamba drift compared to the 0.5% dose (Fig 2, STable 2).

291 We found evidence for block effects and block by treatment effects in the first field experiment across

292 most phenotypic traits, but these effects were less evident in the second field experiment (STable 3).

293 Finally, we found no evidence for maternal line or population effects associated with dicamba drift

294 exposure, indicating that at least in this sample of 50 maternal lines, there was no evidence that the plastic

295 response for height, leaf count, leaf width, and flower count varied genetically.

296

297 Photosynthetic carbon dioxide response ($A-C_i$, umol/m^2), which was examined in the 2018 experiment,

298 differed across treatments, indicating that dicamba drift significantly impacts photosynthetic carbon

299 dioxide response overall ($\chi^2 = 37.605$, $p < 0.001$; SFig 2;). Within drift treatments, we found

300 evidence that time of leaf development significantly impacts A/Ci curves (0.5%: W = 696, p < 0.001 SFig
301 2; 1%: W = 360, p < 0.001). In general, leaves exposed directly to 0.5% of the field dose of dicamba
302 exhibited higher A/Ci responses than their counterparts that developed after dicamba treatment (SFig 2).
303 In contrast to the lower dosage, leaves treated directly with 1% of the field dose of dicamba exhibited
304 lower A/Ci responses than their counterparts that developed after dicamba exposure (SFig 2). This result
305 indicates high amounts of photosynthetic plasticity in response to dicamba, potentially associated with
306 altered herbicide translocation and metabolism contributing to resistance to drift damage.

307

308 *Chlorophyll Content*

309 In the greenhouse, we uncovered a significant treatment effect on chlorophyll levels (mg/cm^2), where
310 plants exposed to dicamba at drift levels had on average higher chlorophyll levels than the controls ($F =$
311 4.56, $p = 0.03$, Fig 3A). We also identified a significantly positive correlation between average
312 chlorophyll values and whitefly abundance ($r = 0.25$, $p < 0.001$, Fig 3B), suggesting that chlorophyll
313 content impacts whitefly host-selection on velvetleaf.

314

315 *Genetic variation for whitefly resistance, herbicide resistance, and relative growth rate*

316 We did not detect evidence of maternal line, maternal line by treatment, population, or population by
317 treatment effects on whitefly resistance, herbicide resistance or relative growth rate in either year.
318 (2018: STable 4, 2019: STable 5). This suggests there is not significant genetic variation in the
319 populations we sampled from, likely due, at least in part, to the low number of maternal lines included in
320 the study.

321

322 *Phenotypic correlations*

323 We did not detect evidence of phenotypic correlations between any of the focal traits in 2018 (*i.e.*
324 herbicide resistance, whitefly resistance, and relative growth rate), but in 2019 we found evidence of a
325 moderately strong negative phenotypic correlation between herbicide resistance and whitefly resistance
326 within drift environments ($r = -0.32$, $p > 0.001$). This suggests that both types of resistance may be

327 indirectly impacting one another. We also found a negative correlation between whitefly resistance and
328 relative growth rate in the presence of drift but not in its absence in 2019 (drift environment: $r = -0.22$, $p =$
329 0.02; control environment: $r = -0.07$, $p = 0.58$), indicating a tradeoff between growth and herbivory
330 defense when exposed to herbicide drift.

331

332 *Phenotypic selection*

333 In 2018, we did not identify evidence of linear selection on herbicide resistance nor whitefly resistance
334 (herbicide resistance: $\beta = -0.19$, $p = 0.57$; whitefly resistance: $\beta = 0.08$, $p = 0.30$; STable 4) in the
335 herbicide drift environment, though we did identify selection acting on relative growth rate ($\beta = 1.71$, $p <$
336 0.001; STable 4). We further detected marginal evidence of quadratic selection acting on whitefly
337 resistance ($\gamma = -0.19$, $p = 0.09$, STable 4) and marginal correlative selection acting on whitefly resistance
338 and relative growth rate ($\gamma = 0.82$, $p = 0.07$, STable 4). In 2019, we again found no evidence of linear
339 selection in the herbicide drift environment and identified positive selection on relative growth rate
340 (whitefly resistance, $\beta = 0.002$, $p = 0.99$; herbicide resistance, $\beta = 0.05$, $p = 0.72$; relative growth rate, $\beta =$
341 2.17, $p < 0.001$; STable 5). Patterns of correlative selection differed in 2019 compared to the 2018
342 experiment in that we detected marginal evidence of correlative selection acting on herbicide resistance
343 and relative growth rate ($\gamma = 0.66$, $p = 0.08$, STable 5). Overall, though we found a significant negative
344 phenotypic correlation between resistance to herbicide and whitefly herbivory, indicating a trade-off
345 between the two types of resistance (at least in 2019) we found no evidence of correlative selection acting
346 on the two traits in either year (2018: $\gamma = 3.36$, $p = 0.14$; STable 4; 2019: $\gamma = 0.29$, $p = 0.46$; STable 5).

347

348 **Discussion**

349 *Ecological effects -- dicamba drift increases whitefly abundance and alters plant morphology and*
350 *physiology*
351 Our study provides the first evidence that dicamba drift can increase phloem feeding herbivore abundance
352 in the field, a finding that should be of concern to agriculture more broadly given the negative effects of

353 whiteflies on crops (e.g., viral transmission mediated by whitefly – Hogemhout 2008, Legg et al. 2014,
354 Ning et al. 2015, Sundararaj et al. 2018, Moodley et al. 2019). In two separate field experiments, velvetleaf
355 exposed to dicamba drift showed higher whitefly abundance in comparison to their control counterparts.
356 These findings indicate dicamba drift can increase susceptibility to phloem feeding herbivorous insects
357 such as whitefly, which is aligned with previous work showing increased abundance of English green
358 aphids feeding on dicamba treated barley in a glasshouse experiment (Hintz 1971).

359
360 Additionally in the second year of our study, we found evidence of significant phenotypic tradeoffs between
361 whitefly resistance and herbicide resistance as well as between whitefly resistance and relative growth rate in
362 the presence of drift. Growth rate has long been linked to investment towards herbivory defense, suggesting
363 that when resources are limited competition favors fast-growing plant species that allocate less towards
364 herbivore defenses (Coley, Bryant, and Chapin 1985). In the literature, this is evident by positive correlations
365 between growth rate and herbivory damage (Coley 1987, Cebrian and Durate 1994, Fine et al. 2006) and
366 negative correlations between biomass accumulation and defense chemicals, such as salicylic acid (Meyer
367 et al. 2007), a plant hormone specifically involved in defense against phloem-feeding silverleaf whiteflies
368 (Kempema 2007). Such negative correlations suggest that pools of herbivore defenses can be depleted as
369 strong growth occurs under certain environmental conditions. While our results reveal no correlation
370 between growth rate and herbicide resistance, a significant correlation between growth rate and whitefly
371 resistance when under drift induced stress supports the growth-defense tradeoff expectations of depleted
372 reservoirs of herbivore defenses in the presence of high growth.

373
374 Because plant architecture is known to influence herbivore performance and abundance (Jaenike 1978,
375 Haysom and Coulson 1998, Schlinkert et al. 2015), we assessed the morphological and physiological
376 response of velvetleaf to dicamba drift. While our results indicate dicamba at drift levels stunts velvetleaf
377 height, this synthetic auxin also increased the number of leaves produced, although they were typically
378 smaller in size compared to non-sprayed control plants. Additionally, we examined the impact of dicamba
379 on A/Ci response curves, as photosynthetic capabilities are linked to natural auxin presence (McAdam et

380 al. 2007) and are a key driver for plant metabolism. The pattern of A/Ci response differed between drift
381 treatments and time of leaf development, indicating a high amount of photosynthetic plasticity which
382 varied over herbicide exposure and time. These findings align with a recent study that showed dicamba
383 exposure initially decreased photosynthesis by 22% in *Palmer amaranth*, which then improved over time
384 (Browne et al. 2020). Moreover, there was no evidence of maternal line nor population variation for
385 morphological or physiological responses to herbicide drift, suggesting a high level of plasticity among
386 all traits measured across individuals.

387

388 Natural auxins are involved in chlorophyll accumulation (Yuan et al. 2018). However, the addition of
389 synthetic auxins, such as dicamba applied at 50% of the field dose (280g ae) causes greater than 70%
390 reduction in chlorophyll content (Turgut 2007). Our results show that dicamba applied at drift rates (0.5%
391 the field dose, i.e., 2.8g ae) can *increase* the average amount of chlorophyll in plants which could impact
392 host- selection of whitefly. These findings are consistent with recent studies in which the greenhouse whitefly
393 laid more eggs on leaves with higher chlorophyll and higher nitrogen (Park et al. 2009, Tsueda 2014) due to
394 the highly linked nature of chlorophyll content and chloroplast thylakoids, which represent a large proportion
395 of leaf nitrogen content (Evans 1983, Evans 1989), but conflicts with past work reporting whitefly
396 attraction to yellow plants (Mound 1972, Van Lenteren and Noldus 1990). This suggests that color alone
397 may not be the primary indicator for whitefly host-selection with every species. Although further studies
398 on this dynamic are warranted, our results suggest that one mechanism behind the increase of whiteflies
399 on dicamba-drifted plants is due to the auxin-induced increase in chlorophyll content of leaves.

400

401 *Evolutionary effects -- correlated evolution between resistance and relative growth rate*

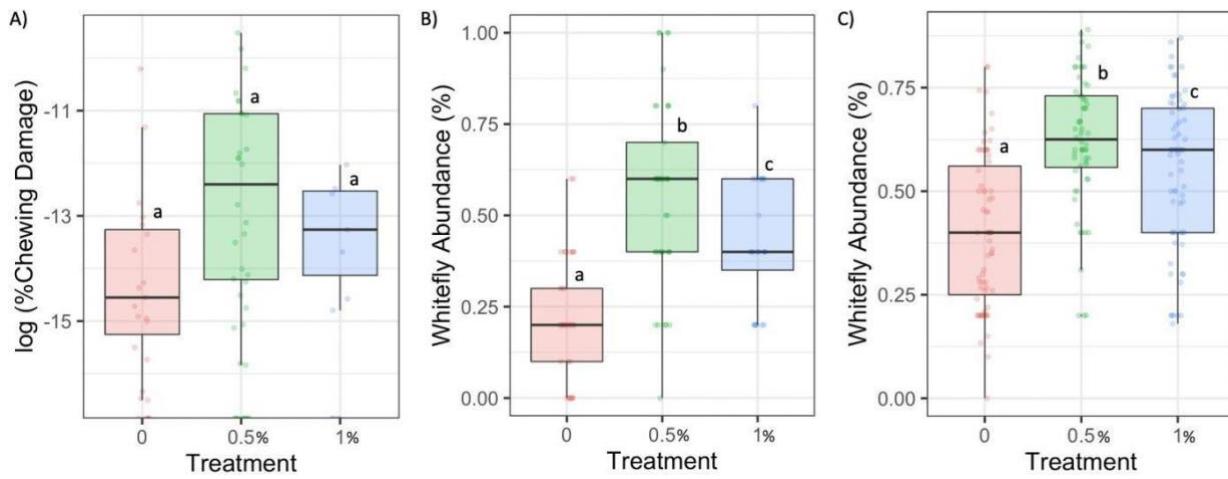
402 In addition to morphological and physiology responses, we also examined the potential that resistance to
403 both dicamba drift and whitefly damage could evolve within these populations and investigated the
404 potential for correlative selection between traits since we identified significant negative phenotypic
405 correlations between herbicide resistance and whitefly resistance along with whitefly resistance and

406 relative growth rate in 2019. In 2018, we detected marginal significance for correlative selection acting on
407 whitefly resistance and relative growth rate. Correlative selection was also marginally detected in 2019
408 between relative growth rate and herbicide resistance in the presence of drift. While this could imply
409 populations may evolve to an optimum fitness at intermediate values of relative growth rate, whitefly
410 resistance and herbicide resistance, we did not uncover evidence of genetic variation within these
411 populations. We further did not uncover significant maternal line variation for resistance traits, likely due
412 to high amounts of plasticity within this species and/or an insufficient number of individuals per maternal
413 line per treatment. Environment may also be a factor as previous studies in *Amaranthus hydrius* have
414 shown that the fitness cost of herbicide resistance associated with increased herbivore susceptibility can
415 be environmentally dependent (Gassmann 2005). Although we did not detect maternal line variation,
416 more work here should be done investigating selection acting on the relationship between herbicide
417 resistance, whitefly resistance, and relative growth rate with a greater number of maternal lines from more
418 distant populations and environments under consideration.

419

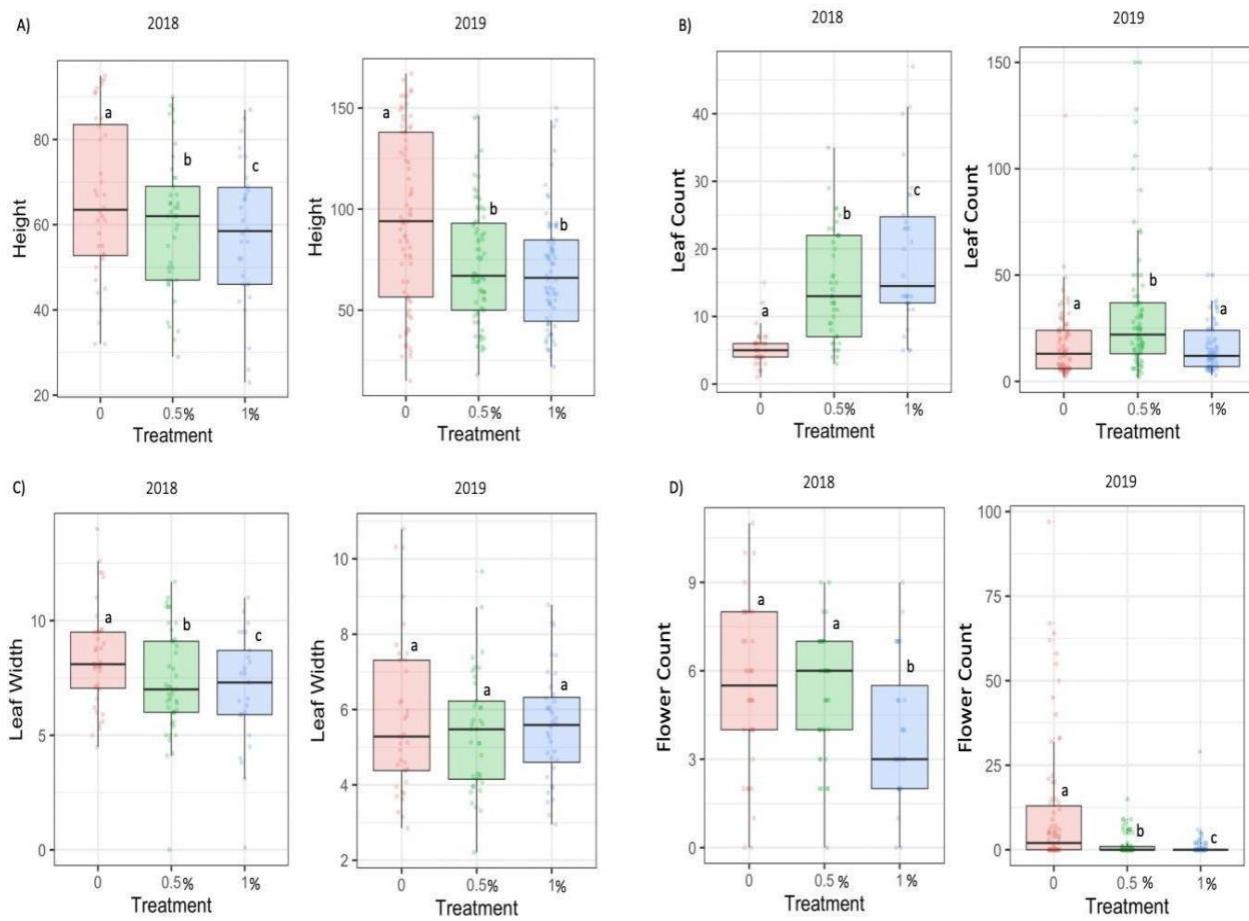
420 *Conclusion*

421 Herbicide drift from synthetic auxins can shift herbivorous insect host-selection at
422 the agro-eco interface. Such modifications of herbivore behavior have the potential to impact plant
423 community composition and nutrient dynamics (Schowalter 2006, Belovsky & Slade 2000) and may
424 likewise, reciprocally influence insect herbivore populations. Increases in insect herbivore abundance may
425 result in positive feedbacks where elevated consumption increases nutrient cycling and thus stimulates
426 insect population growth, which can directly affect the abundance of other members of the community
427 such predators and pollinators (Forkner & Hunter 2000, Hunter 2001, Ceulemans 2017).

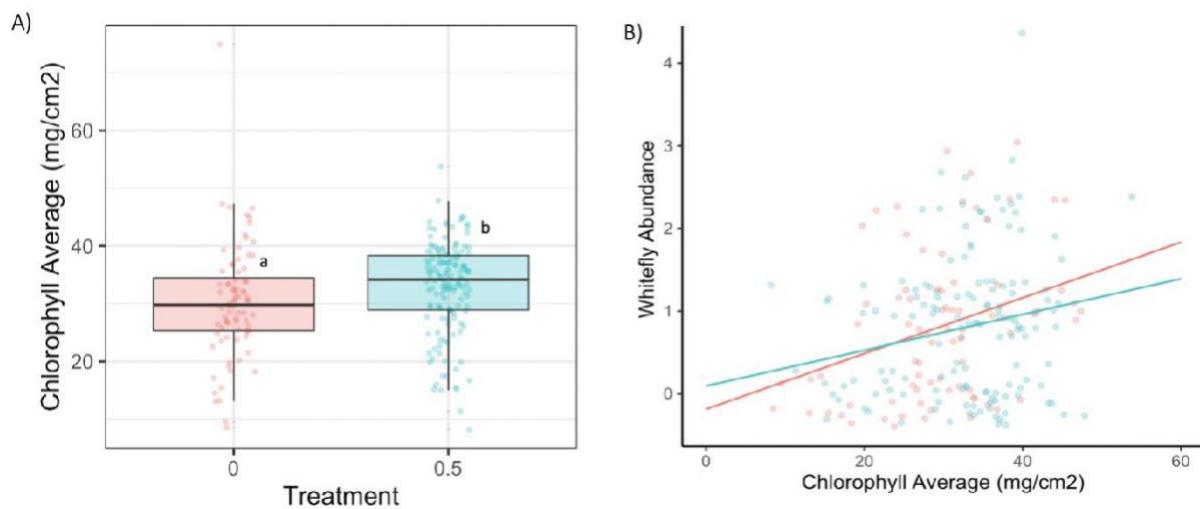

428

429 Furthermore, our finding that dicamba drift significantly increases whitefly abundance on velvetleaf
430 populations could mean dicamba-treated weeds act as a reservoir for whitefly populations, potentially
431 leading to negative impacts on agricultural yields. If our results are applicable more broadly, plants

432 exposed to dicamba drift in nature may be preferred host for whitefly populations. As agricultural pests
433 that colonize more than 600 host plants globally (Byrne and Bellows 1991), whiteflies are known vectors
434 for transmitting over 70% of the world's plant viruses (Hogenhout 2008). Given the projected expanded
435 use of dicamba, there is a clear and urgent need to examine to what extent community dynamics may shift
436 as a result of dicamba use, especially for communities existing at the intersection of natural and managed
437 vegetative system.


438 **Figures**

439



440

441 **Figure 1.** Chewing damage (A) and whitefly abundance (B and C) measurements in response to dicamba
442 drift: 0% field dose (peach), 0.5% field dose (green), and 1% field dose (blue). A) Chewing herbivory
443 damage summarized by dicamba treatment from the first field experiment in 2018. Damage was measured
444 as area with chewing damage/total leaf surface area. B) Treatment effect on Whitefly abundance
445 summarized by treatment in both the B) 2018 and C) 2019 field experiments. Whitefly abundance was
446 measured as visual estimates of percent larvae area/total leaf surface area. Each graph illustrates median
447 values and confidence intervals.

448 **Figure 2.** Plant size measurements in response to dicamba drift environments: 0% field dose (peach),
449 0.5% field dose (green), and 1% field dose (blue). Shows treatment effect for both years on velvetleaf
450 traits: A) height B) leaf count C) leaf width and D) flower count. Each graph illustrates median values and
451 confidence intervals.

452

453

454 **Figure 3. Greenhouse Experiment** A) Average chlorophyll content per individual in response to dicamba
455 application of 0.5% of the field dose ($F = 4.56$, $p = 0.03$). B) Relationship chlorophyll average and
456 whitefly abundance estimated as Pearson product-moment correlation; Control treatment (peach) $r = 0.34$,
457 $p = 0.002$; Drift treatment (blue) $r = 0.21$ $p = 0.01$. Each graph illustrates median values and confidence
458 intervals.

459

460 **Supplementary Tables and Figure**

461 Treatment and Block impact on Herbivory

462

Herbivory Response	Chewing Damage (2018)		Whitefly Abundance (2018)		Whitefly Abundance (2019)	
Fixed Effects:	F	P	F	P	F	P
Treatment (df = 2)	0.906	0.410	12.014	< 0.001	5.300	0.006
Block 2018 (df = 1) 2019 (df = 2)	1.236	0.270	1.656	0.201	1.356	0.261
Treatment X Block 2018 (df = 2) 2019 (df = 4)	0.109	0.897	0.363	0.697	1.076	0.370
Random Effects:	χ^2	P	χ^2	P	χ^2	P
Population (df = 1)					0.000	1.000
Maternal Line (df = 1)	0.498	0.480	0.000	1.000	0.535	0.464
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000

463

464

465 **STable 1.** Influence of herbicide treatment on chewing damage for 2018 and whitefly abundance for both
466 years, analyzed using *F*-statistics values showing effects of treatment, block, treatment by block
467 interactions, and likelihood ratio test statistics (χ^2) showing maternal line variation on herbivory
468 measurements. In 2019 maternal lines are nested within populations. Significant values are expressed in
469 boldface.

470

471

472 2018 Herbicide impacts on Velvetleaf Morphology

473

2018								
Trait	Height		Leaf Count		Leaf Width		Flower Count	
Fixed Effects:	<i>F</i>	P	<i>F</i>	P	<i>F</i>	P	<i>F</i>	P
Treatment (df = 2)	220.555	< 0.001	28.012	< 0.001	8.246	0.001	7.284	0.001
Block (df = 1)	0.278	0.599	7.627	0.007	6.151	0.014	5.421	0.022
Treatment X Block (df = 2)	60.804	< 0.001	15.714	< 0.001	3.554	0.032	4.287	0.016
Random Effects:	χ^2	P	χ^2	P	χ^2	P	χ^2	P
Maternal Line (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000
Maternal Line X Treatment (df = 1)	0.000	1.000	1.986	0.159	0.000	1.000	0.054	0.816

474 **STable 2.** 2018 influence of herbicide treatment on velvetleaf traits, analyzed using F-

475 statistics values showing the effects of treatment, block, treatment by block interactions, and likelihood

476 ratio test statistics (χ^2) maternal line and maternal line by treatment interactions on variation of plant

477 phenotypes. Significant values are expressed in boldface.

478 2019 Herbicide impacts on Velvetleaf Morphology

479

2019								
Trait	Height		Leaf Count		Leaf Width		Flower Count	
Fixed Effects:	F	P	F	P	F	P	F	P
Treatment (df = 2)	2.844	0.061	5.113	0.007	0.791	0.458	6.916	0.001
Block (df = 2)	0.144	0.866	0.700	0.498	2.398	0.096	1.313	0.271
Treatment X Block (df = 4)	0.551	0.699	0.506	1.697	1.763	0.188	0.470	0.758
Random Effects:	χ^2	P	χ^2	P	χ^2	P	χ^2	P
Population (df = 1)	0.000	1.000	0.632	0.427	5.112	0.024	0.397	0.528
Maternal Line (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000	0.166	0.684
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000	0.000	0.986

480

481

482 **STable 3.** Influence of herbicide treatment on velvetleaf traits, analyzed using F-statistics

483 values showing the effects of treatment, block, treatment by block interactions, and likelihood ratio test

484 statistics (χ^2) showing population, maternal line, population by treatment interactions, and maternal line

485 by treatment interactions on variation of plant phenotypes. Maternal lines were nested within populations.

486 Significant values are expressed in boldface.

487 2018 Selection Analysis

2018								
Trait	β	SE	P	γ	SE	P	r	P
Whitefly Resistance	0.081	0.077	0.299	-0.191	0.055	0.087	0.060	0.622
Herbicide Resistance	-0.191	0.330	0.565	3.464	1.056	0.107	-0.123	0.174
Relative Growth	1.715	0.218	< 0.001	3.912	0.558	< 0.001	0.750	< 0.001
Whitefly Resistance X Herbicide Resistance				0.712	0.334	0.291		
Whitefly Resistance X Relative Growth				0.816	0.222	0.072		
Herbicide Resistance X Relative Growth				3.364	1.109	0.136		

488

489 **STable 4.** 2018 Selection analysis showing direct selection on focal traits: whitefly resistance, herbicide
490 resistance, and relative growth rate. Linear (β) ($R^2 = 0.510$; $p < 0.001$) and quadratic (γ) (R
491 $^2 = 0.609$; $p < 0.001$) selection gradients with associated standard errors (SE) and P-values (P). The (r)
492 column represents correlation coefficients between trait and fitness, estimated as Pearson product-
493 moment correlations. Significant values are expressed in boldface.

494

495 2019 Selection Analysis

496

2019								
Trait	β	SE	P	γ	SE	P	r	P
Whitefly Resistance	0.002	0.190	0.990	0.232	0.230	0.526	-1.56	0.098
Herbicide Resistance	0.052	0.147	0.722	-0.133	0.116	0.759	-0.004	0.955
Relative Growth	2.169	0.245	< 0.001	0.774	0.353	0.363	0.694	< 0.001
Whitefly Resistance X Herbicide Resistance				0.285	0.190	0.455		
Whitefly Resistance X Relative Growth				-0.818	0.390	0.297		
Herbicide Resistance X Relative Growth				1.328	0.373	0.078		

497

498

499 **STable 5.** 2019 Selection analysis showing direct selection on focal traits: whitefly resistance, herbicide
500 resistance, and relative growth rate. Linear (β) ($R^2 = 0.453$; $p < 0.001$) and quadratic (γ) ($R^2 = 0.466$; $p <$
501 0.001) selection gradients, and total selection with associated standard errors (SE) and P -values (P). The
502 (r) column represents correlation coefficients between trait and fitness, estimated as Pearson product-
503 moment correlations. Significant values are expressed in boldface.

504 2018 Treatment and Block impact on Relative Growth Rate and Herbicide Damage

505

Trait	Relative Growth Rate		Herbicide Damage	
Fixed Effects:	F	P	F	P
Treatment (df = 2)	2.431	0.10	76.464	< 0.001
Block 2018 (df = 1)	7.971	0.005	107.667	1.000
Treatment X Block 2018 (df = 2)	5.239	0.007	100.918	0.340
Random Effects:	χ^2	P	χ^2	P
Maternal Line (df = 1)	0.000	1.000	0.000	1.000
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000

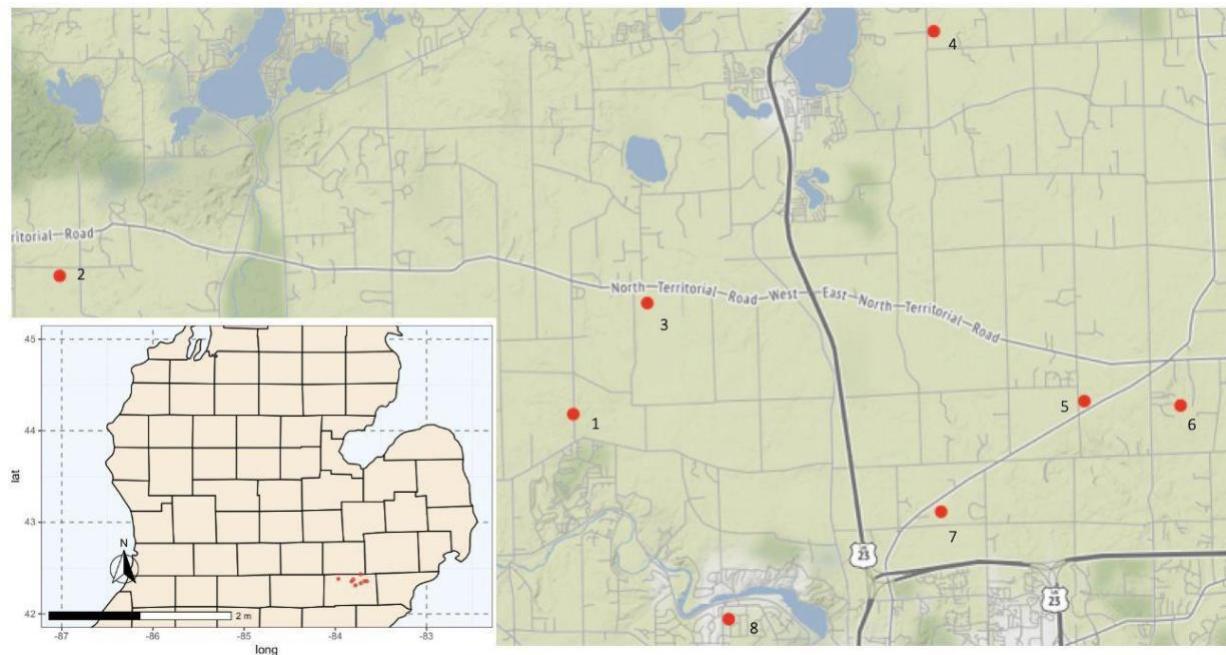
506

507 **STable 6.** 2018 Influence of treatment and block on relative growth, and herbicide damage,
508 analyzed using F-statistics values showing the effects of treatment, block, treatment by block interactions,
509 and likelihood ratio test statistics (χ^2) showing, maternal line, and maternal line by treatment interactions
510 on variation of plant phenotypes. Significant values are expressed in boldface.

511

512

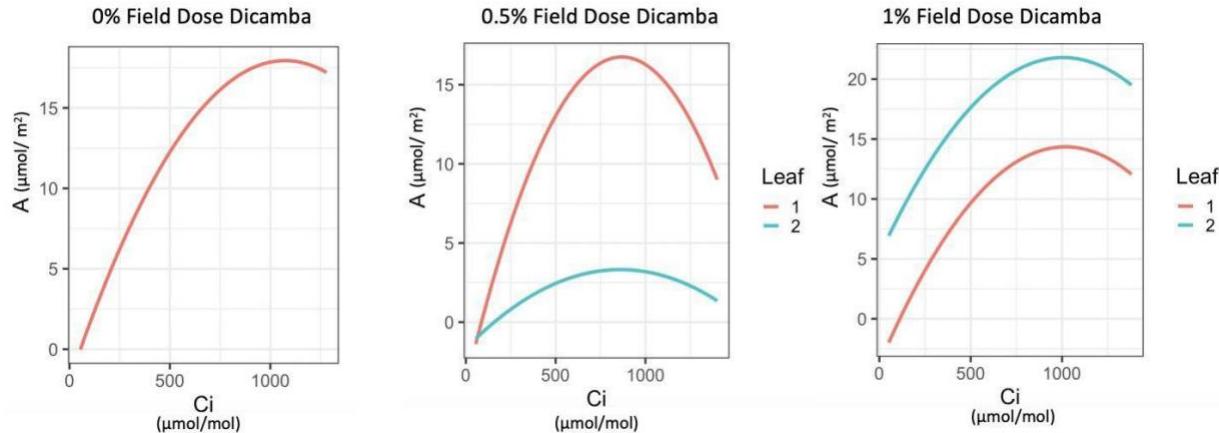
513 2019 Treatment and Block impact on Relative Growth Rate and Herbicide Damage


514

Trait	Relative Growth Rate		Herbicide Damage	
Fixed Effects:	F	P	F	P
Treatment (df = 2)	0.031	0.969	46.730	< 0.001
Block (df = 2)	0.323	0.724	0.006	0.994
Treatment X Block (df = 4)	0.259	0.904	5.982	< 0.001
Random Effects:	χ^2	P	χ^2	P
Population (df = 1)	0.000	1.000	0.190	0.663
Population X Treatment (df = 1)	0.479	0.488	2.300	0.129
Maternal Line (df = 1)	0.000	1.000	0.000	1.000
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000

515

516 **STable 7.** 2019 Influence of treatment and block on relative growth, and herbicide damage,
517 analyzed using F-statistics values showing the effects of treatment, block, treatment by block interactions,
518 and likelihood ratio test statistics (χ^2) showing population, maternal line, population by treatment
519 interactions, and maternal line by treatment interactions on variation of plant phenotypes. Significant
520 values are expressed in boldface.


521

522

523 **SFigure 1.** Locations of velvetleaf populations sampled and used for this study. In 2018, the field
524 experiment was conducted with only population one, while in 2019 the sample size was increased to all
525 eight populations. Populations 3, 4, 6, 7, and 8 were used in the 2021 greenhouse experiment.

526

527

528 **SFigure 2.** Photosynthetic carbon dioxide response curves by drift environment. A) $A-C_i$ curves measured
529 on leaves grown without drift exposure B) Comparison of $A-C_i$ curves measured on leaves that developed
530 before drift exposure (Leaf 1) and after drift exposure (Leaf 2) at 0.5% field dose. C) and at 1% field
531 dose.

532

References

533 Arnold, Stevan J. "Performance surfaces and adaptive landscapes." *Integrative and comparative biology* 43,
534 no. 3 (2003): 367-375.

535 Arnold, Stevan J., Michael E. Pfrender, and Adam G. Jones. "The adaptive landscape as a conceptual bridge
536 between micro-and macroevolution." *Microevolution rate, pattern, process* (2001): 9-32.

537 Belovsky, G. E., and J. B. Slade. "Insect herbivory accelerates nutrient cycling and increases plant
538 production." *Proceedings of the National Academy of Sciences* 97, no. 26 (2000): 14412-14417.

539 Banks, C. J. 1954. A method for estimating populations and counting large numbers of *Aphis fabae* Scop.
540 *Bull. Entomol. Res.* 45:751-756.

541 Baker, N. T. "Estimated Annual Agricultural Pesticide." 1992–2019 United States Geological Survey. (2021)
542 https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2019&map=DICAMBA&hilo=L&disp

543 Bates D, Mächler M, Bolker B, Walker S. "Fitting Linear Mixed-Effects Models Using lme4." *Journal
544 of Statistical Software* 67 no. 1 (2015): 1–48.

545 Browne, Frances B., Xiao Li, Katelyn J. Price, Ryan Langemeier, Alvaro Sanz-Saez de Jauregui, J. Scott
546 McElroy, Yucheng Feng, and Andrew Price. "Sequential applications of synthetic auxins and glufosinate for
547 escaped Palmer amaranth control." *Agronomy* 10, no. 9 (2020): 1425.

548 Bohnenblust, Eric W., Anthony D. Vaudo, J. Franklin Egan, David A. Mortensen, and John F. Tooker.
549 "Effects of the herbicide dicamba on nontarget plants and pollinator visitation." *Environmental Toxicology
550 and Chemistry* 35, no. 1 (2016): 144-151.

551 Boutin, Céline, Beate Strandberg, David Carpenter, Solveig Kopp Mathiassen, and P. J. Thomas. "Herbicide
552 impact on non-target plant reproduction: what are the toxicological and ecological implications?."
553 *Environmental Pollution* 185 (2014): 295-306.

554 Busi, Roberto, Martin M. Vila-Aiub, Hugh J. Beckie, Todd A. Gaines, Danica E. Goggin, Shiv S. Kaundun,
555 Myrtille Lacoste et al. "Herbicide-resistant weeds: from research and knowledge to future needs."
556 *Evolutionary Applications* 6, no. 8 (2013): 1218-1221.

557 Byrne, David N., and Thomas S. Bellows Jr. "Whitefly biology." *Annual review of entomology* 36, no. 1
558 (1991): 431-457.

559 Carlsen, S. C. K., N. H. Spliid, and B. Svensmark. "Drift of 10 herbicides after tractor spray application. 1.
560 Secondary drift (evaporation)." *Chemosphere* 64, no. 5 (2006a): 787-794.

561 Carlsen, S. C. K., N. H. Spliid, and B. Svensmark. "Drift of 10 herbicides after tractor spray application. 2.

562 Primary drift (droplet drift)." *Chemosphere* 64, no. 5 (2006b): 778-786.

563 Cebrian, J., and C. M. Duarte. "The dependence of herbivory on growth rate in natural plant communities."

564 *Functional Ecology* (1994): 518-525.

565 Cederlund, Harald. "Effects of spray drift of glyphosate on nontarget terrestrial plants—a critical review."

566 *Environmental toxicology and chemistry* 36, no. 11 (2017): 2879-2886.

567 Cessna, Allan J., Thomas M. Wolf, Gerald R. Stephenson, and Ralph B. Brown. "Pesticide movement to field

568 margins: routes, impacts and mitigation." *Field boundary habitats: implications for weed. Insect and Disease*

569 *Management* 1 (2005): 69-112.

570 Ceulemans, Tobias, Eva Hulsmans, Wim Vanden Ende, and Olivier Honnay. "Nutrient enrichment is

571 associated with altered nectar and pollen chemical composition in *Succisa pratensis* Moench and increased

572 larval mortality of its pollinator *Bombus terrestris* L." *Plos one* 12, no. 4 (2017): e0175160.

573 Coley, Phyllis D., John P. Bryant, and F. Stuart Chapin III. "Resource availability and plant antiherbivore

574 defense." *Science* 230, no. 4728 (1985): 895-899.

575 Coley, Phyllis D. "Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate

576 of disturbance." *New Phytologist* 106 (1987): 251-263.

577 Daily, Gretchen C. "Introduction: what are ecosystem services." *Nature's services: Societal dependence on*

578 *natural ecosystems* 1, no. 1 (1997).

579 Egan, J. Franklin, and David A. Mortensen. "A comparison of land-sharing and land-sparing strategies for

580 plant richness conservation in agricultural landscapes." *Ecological applications* 22, no. 2 (2012): 459-471.

581 Egan, J. Franklin, Eric Bohnenblust, Sarah Goslee, David Mortensen, and John Tooker. "Herbicide drift can

582 affect plant and arthropod communities." *Agriculture, Ecosystems & Environment* 185 (2014): 77-87.

583 Ehrlich, Paul R., and Peter H. Raven. "Butterflies and plants: a study in coevolution." *Evolution* (1964): 586-

584 608.

585 Evans, John R. "Nitrogen and photosynthesis in the flag leaf of wheat (*Triticum aestivum* L.)." *Plant*

586 *physiology* 72, no. 2 (1983): 297-302.

587 Evans, John R. "Photosynthesis and nitrogen relationships in leaves of C3 plants." *Oecologia* 78, no. 1

588 (1989): 9-19.

589 Fine, Paul VA, Zachariah J. Miller, Italo Mesones, Sebastian Irazuzta, Heidi M. Appel, M. Henry H. Stevens,

590 Ilari Sääksjärvi, Jack C. Schultz, and Phyllis D. Coley. "The growth–defense trade-off and habitat

591 specialization by plants in Amazonian forests." *Ecology* 87, no. sp7 (2006): S150-S162.

592 Fletcher, John S., Thomas G. Pfleeger, Hilman C. Ratsch, and Robert Hayes. "Potential impact of low levels
593 of chlorsulfuron and other herbicides on growth and yield of nontarget plants." *Environmental Toxicology
594 and Chemistry: An International Journal* 15, no. 7 (1996): 1189-1196.

595 Forkner, Rebecca E., and Mark D. Hunter. "What goes up must come down? Nutrient addition and predation
596 pressure on oak herbivores." *Ecology* 81, no. 6 (2000): 1588-1600.

597 Freemark, Kathryn, and Celine Boutin. "Impacts of agricultural herbicide use on terrestrial wildlife in
598 temperate landscapes: a review with special reference to North America." *Agriculture, Ecosystems &
599 Environment* 52, no. 2-3 (1995): 67-91.

600 Futuyma, Douglas J., and Anurag A. Agrawal. "Macroevolution and the biological diversity of plants and
601 herbivores." *Proceedings of the National Academy of Sciences* 106, no. 43 (2009): 18054-18061.

602 Gassmann, Aaron J. "Resistance to herbicide and susceptibility to herbivores: environmental variation in the
603 magnitude of an ecological trade-off." *Oecologia* 145, no. 4 (2005): 575-585.

604 Gianessi, Leonard P. "The increasing importance of herbicides in worldwide crop production." *Pest
605 management science* 69, no. 10 (2013): 1099-1105.

606 Gove, Benedict, Sally A. Power, G. Peter Buckley, and Jaboury Ghazoul. "Effects of herbicide spray drift
607 and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and
608 long-term impact assessments and field surveys." *Journal of Applied Ecology* 44, no. 2 (2007): 374-384.

609 Grossmann, Klaus. "Auxin herbicides: current status of mechanism and mode of action." *Pest Management
610 Science: formerly Pesticide Science* 66, no. 2 (2010): 113-120.

611 Haysom, K. A., and J. C. Coulson. "The Lepidoptera fauna associated with *Calluna vulgaris*: effects of plant
612 architecture on abundance and diversity." *Ecological entomology* 23, no. 4 (1998): 377-385.

613 Hereford, Joe, Thomas F. Hansen, and David Houle. "Comparing strengths of directional selection: how
614 strong is strong?." *Evolution* 58, no. 10 (2004): 2133-2143.

615 Hintz, Sherwin David. *Herbicidal influence on cereal grain aphids in North Dakota*. North Dakota State
616 University, 1971.

617 Hogenhout, Saskia A., El-Desouky Ammar, Anna E. Whitfield, and Margaret G. Redinbaugh. "Insect vector
618 interactions with persistently transmitted viruses." *Annu. Rev. Phytopathol.* 46 (2008): 327-359.

619 Hunter, Mark D. "Effects of elevated atmospheric carbon dioxide on insect-plant interactions." *Agricultural
620 and Forest Entomology* 3, no. 3 (2001): 153-159.

621 Huot, Bethany, Jian Yao, Beronda L. Montgomery, and Sheng Yang He. "Growth-defense tradeoffs in
622 plants: a balancing act to optimize fitness." *Molecular plant* 7, no. 8 (2014): 1267-1287.

623 Iriart, Veronica, Regina S. Baucom, and Tia-Lynn Ashman. "Herbicides as anthropogenic drivers of eco-evo
624 feedbacks in plant communities at the agro-ecological interface." *Molecular Ecology* 30, no. 21 (2021): 5406-
625 5421.

626 Jaenike, John. "On optimal oviposition behavior in phytophagous insects." *Theoretical population biology* 14,
627 no. 3 (1978): 350-356.

628 Jones, Gordon T., Jason K. Norsworthy, Tom Barber, Edward Gbur, and Greg R. Kruger. "Off-target
629 movement of DGA and BAPMA dicamba to sensitive soybean." *Weed Technology* 33, no. 1 (2019): 51-65.

630 Legg, James P., Rudolph Shirima, Lensa S. Tajebe, Devid Guastella, Simon Boniface, Simon Jeremiah,
631 Elibariki Nsami, Patrick Chikoti, and Carmelo Rapisarda. "Biology and management of Bemisia whitefly
632 vectors of cassava virus pandemics in Africa." *Pest management science* 70, no. 10 (2014): 1446-1453.

633 Kempema, Louisa A., Xinping Cui, Frances M. Holzer, and Linda L. Walling. "Arabidopsis transcriptome
634 changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses
635 to aphids." *Plant Physiology* 143, no. 2 (2007): 849-865.

636 Klanderud, Kari, Vigdis Vandvik, and Deborah Goldberg. "The importance of biotic vs. abiotic drivers of
637 local plant community composition along regional bioclimatic gradients." *PLoS one* 10, no. 6 (2015):
638 e0130205.

639 Mangiafico, Salvatore. "rcompanion: Functions to support extension education program evaluation." *R
640 package* version 2, no. 10 (2019).

641 Marrs, Rob H., and Alan J. Frost. "A microcosm approach to the detection of the effects of herbicide spray
642 drift in plant communities." *Journal of Environmental Management* 50, no. 4 (1997): 369-388.

643 Marrs, R. H., A. J. Frost, and R. A. Plant. "Effects of herbicide spray drift on selected species of nature
644 conservation interest: The effects of plant age and surrounding vegetation structure." *Environmental Pollution*
645 69, no. 2-3 (1991): 223-235.

646 McAdam, Scott AM, Morgane P. Eléouët, Melanie Best, Timothy J. Brodribb, Madeline Carins Murphy,

647 Sam D. Cook, Marion Dalmas et al. "Linking auxin with photosynthetic rate via leaf venation." *Plant
648 physiology* 175, no. 1 (2017): 351-360.

649 Meyer, Rhonda C., Matthias Steinfath, Jan Lisec, Martina Becher, Hanna Witucka-Wall, Ottó Törjék, Oliver
650 Fiehn et al. "The metabolic signature related to high plant growth rate in *Arabidopsis thaliana*." *Proceedings
651 of the National Academy of Sciences* 104, no. 11 (2007): 4759-4764.

652 Moodley, Vaneson, Augustine Gubba, and Paramu L. Mafongoya. "A survey of whitefly-transmitted viruses
653 on tomato crops in South Africa." *Crop Protection* 123 (2019): 21-29.

654 Mound, Laurence A. "Studies on the olfaction and colour sensitivity of *Bemisia tabaci* (Genn.)(Homoptera,
655 Aleyrodidae)." *Entomología experimentalis et applicata* 5, no. 2 (1962): 99-104.

656 Ning, Wenxi, Xiaobin Shi, Baiming Liu, Huipeng Pan, Wanting Wei, Yang Zeng, Xinpei Sun et al.
657 "Transmission of Tomato yellow leaf curl virus by *Bemisia tabaci* as affected by whitefly sex and biotype."
658 *Scientific reports* 5, no. 1 (2015): 1-8.

659 Park, Mi Kyung, Jeong Gyu Kim, Yoo Han Song, Joon-Ho Lee, Key-il Shin, and Kijong Cho. "Effect of
660 nitrogen levels of two cherry tomato cultivars on development, preference and honeydew production of
661 *Trialeurodes vaporariorum* (Hemiptera: Aleyrodidae)." *Journal of Asia-Pacific Entomology* 12, no. 4 (2009):
662 227-232.

663 Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias
664 Pietzsch, Stephan Preibisch et al. "Fiji: an open-source platform for biological-image analysis." *Nature
665 methods* 9, no. 7 (2012): 676-682.

666 Schlinkert, Hella, Catrin Westphal, Yann Clough, Zoltán László, Martin Ludwig, and Teja Tscharntke. "Plant
667 size as determinant of species richness of herbivores, natural enemies and pollinators across 21 Brassicaceae
668 species." *PloS one* 10, no. 8 (2015): e0135928.

669 Schowalter, Timothy D. *Insect ecology: an ecosystem approach*. Academic press, 2022.

670 Spencer, Neal R. "Velvetleaf, *Abutilon theophrasti* (Malvaceae), history and economic impact in the United
671 States." *Economic Botany* 38, no. 4 (1984): 407-416.

672 Thompson, John N. "The evolution of species interactions." *Science* 284, no. 5423 (1999): 2116-2118.

673 USDA. "Recent trends in GE adoption." (2016).

674 Van Lenteren, J. C. van, and L. P. J. J. Noldus. "Whitefly-plant relationships: behavioural and ecological
675 aspects." *Whiteflies: their bionomics, pest status and management* 47 (1990): 49.

676 Vieira, Bruno C., Joe D. Luck, Keenan L. Amundsen, Rodrigo Werle, Todd A. Gaines, and Greg R. Kruger.

677 "Herbicide drift exposure leads to reduced herbicide sensitivity in *Amaranthus* spp." *Scientific reports* 10,

678 no. 1 (2020): 1-11.

679 Westra, Eric P., Scott J. Nissen, Thomas J. Getts, Philip Westra, and Todd A. Gaines. "Survey reveals

680 frequency of multiple resistance to glyphosate and dicamba in *kochia* (*Bassia scoparia*)."*Weed Technology*

681 33, no. 5 (2019): 664-672.

682 Yuan, Yujin, Lihua Mei, Mengbo Wu, Wei Wei, Wei Shan, Zehao Gong, Qian Zhang et al. "SlARF10, an

683 auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development."

684 *Journal of experimental botany* 69, no. 22 (2018): 5507-5518.

685 Züst, Tobias, and Anurag A. Agrawal. "Trade-offs between plant growth and defense against insect

686 herbivory: an emerging mechanistic synthesis."*Annual review of plant biology* 68 (2017): 513-534.