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Abstract 27 
 28 
Perception of magnitudes such as duration or distance is often found to be systematically biased. 29 
The biases, which result from incorporating prior knowledge in the perceptual process, can vary 30 
considerably between individuals. The variations are commonly attributed to differences in 31 
sensory precision and reliance on priors. However, another factor not considered so far is the 32 
implicit belief about how successive sensory stimuli are generated: independently from each 33 
other or with certain temporal continuity. The main types of explanatory models proposed so 34 
far - static or iterative - mirror this distinction but cannot adequately explain individual biases. 35 
Here we propose a new unifying model that explains individual variation as combination of 36 
sensory precision and beliefs about temporal continuity and predicts the experimentally found 37 
changes in biases when altering temporal continuity. Thus, according to the model, individual 38 
differences in perception depend on beliefs about how stimuli are generated in the world. 39 
 40 
Introduction 41 
 42 
Magnitude estimates are pervasive in our daily activities, such as predicting forthcoming 43 
events, estimating the travel distance, and precisely controlling our movements. However, we 44 
also make perceptual errors. Some of these errors have been found to be systematic biases, 45 
which have been investigated throughout the history of psychophysics. Two perceptual biases, 46 
the central tendency effect (Vierordt 1868; Hollingworth 1910) and the sequential dependence 47 
(Holland & Lockhead 1968; Cross 1973), are still hotly debated till today (Shi et al. 2013; 48 
Fischer & Whitney 2014; Petzschner et al. 2015). The central tendency effect refers to a 49 
systematic overestimation of small magnitudes and underestimation of large magnitudes, 50 
whereas the sequential dependence (or ‘serial dependence’, Fischer & Whitney 2014) 51 
designates that the current perceptual estimate depends not just on the current stimulus, but also 52 
on stimuli given in the past. While both biases have long been accepted as inevitable properties 53 
of magnitude perception, several quantitative theoretical accounts only emerged in the last 54 
decade that linked them to perception being a form of Bayesian inference (Jazayeri & Shadlen 55 
2010; Petzschner & Glasauer 2011; Cicchini et al. 2012; Roach et al. 2017). The concept of 56 
Bayesian inference also provides an operational explanation for interindividual differences seen 57 
in perception: Bayesian inference considers a perceptual estimate to result from a near-optimal 58 
combination of sensory inputs and prior knowledge. The extent to which sensory input and 59 
prior knowledge are weighted depends on the accuracy of sensory measurement and the 60 
certainty of prior knowledge. When driving through fog, prior knowledge of the road ahead is 61 
more important than on a sunny day. Thus, under the Bayesian framework, individual sensory 62 
accuracy and precision about the prior knowledge (formalized as width of the prior distribution) 63 
is commonly thought to explain inter-individual differences (Petzschner & Glasauer 2011; 64 
Powell et al. 2016). For example, individual differences in color perception may reflect 65 
different properties of the eye and retina (sensor) or contextual influences such as the 66 
experienced environment (prior) (Mollon et al. 2017).  67 
 68 
However, Bayesian perception offers an alternative account of individual differences: the prior 69 
knowledge that is used to improve the sensory input depends on our implicit assumptions about 70 
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how sensory stimuli are caused, or generated, in the external world. These assumptions, or 71 
beliefs, are essential for predictions, which serve as prior knowledge: for example, if asked 72 
what tomorrow’s temperature will be, we might answer something like ‘a little warmer/colder 73 
than today’. That is, we assume that daily temperature changes by a random amount each day, 74 
but that it will be similar on successive days. In contrast, in a standard psychophysical 75 
experiment the stimuli presented to our participants are often drawn randomly from a fixed 76 
distribution, just like numbers in a lottery, and they are thus independent from trial to trial. 77 
Thus, a good guess (in the sense of small error) of predicting the value presented at the next 78 
trial would be the mean of the stimulus distribution. In other words, when it comes to daily 79 
temperature, a good estimator would use today’s temperature as prior knowledge for 80 
tomorrow’s value. In contrast, when the stimulus value presented in a psychophysical 81 
experiment is concerned, a useful prior knowledge would be the distribution of possible values. 82 
 83 
Thus, when a sensory input is combined with prior knowledge using these two cases of 84 
generative assumptions, the final estimate might differ substantially (Fig. 1)1. Hence, two 85 
individuals that have such different beliefs about how sensory events are, or are not, linked over 86 
time, may exhibit different perceptual biases. Bayesian theory suggests this possibility, but to 87 
our knowledge this has not yet been investigated. 88 
 89 

 90 
Figure 1: Two estimation models (static and iterative) for magnitude perception. The static model uses static time-91 
independent prior knowledge (blue prior distribution), while the iterative model dynamically updates the prior 92 
knowledge in each trial. In trial 1 (upper row), in both cases the prior knowledge (blue) and the stimulus (orange 93 
line), to which a likelihood distribution (orange) is attached, are the same for both models. Thus, the estimate, 94 
shown as posterior distribution (yellow) and computed by multiplying prior and likelihood, is also equal for both 95 
cases, already showing the characteristic overestimation of small amplitudes. The black dashed line serves as 96 
visual reference and is aligned with the mean of the initial prior. In trial 2 (middle row), the stimulus and likelihood 97 
are again the same for both models, but the prior differs: the static model takes the same prior as in trial 1, because 98 

 
1 In the Bayesian estimation process, the estimate of the current stimulus is based on a posterior distribution, 
which is the product between the likelihood distribution (describing the sensory uncertainty that is inherited from 
the current sensory input) and the prior distribution (describing prior knowledge). The estimate can be the most 
likely value from the posterior distribution, the maximum of the distribution, or other measures such as the 
mean, and its uncertainty can also be derived. 
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the underlying assumption is that all stimuli come from that distribution. In contrast, the iterative model uses the 99 
estimate from the previous trial to predict the next stimulus distribution, which is used as new prior knowledge, 100 
because it assumes that the new stimulus is similar to the old except for some random change. The two resulting 101 
posterior distributions (yellow), and thus the perceptual estimates, differ considerably with the one for the static 102 
model showing much smaller underestimation than that of the iterative estimate, even though the stimuli and 103 
sensory accuracy is the same in both cases. The third row shows trial 3, in which the estimates of both models 104 
come much closer again. 105 

 106 
Both cases, however, are mirrored by explanatory perceptual estimation models found in the 107 
literature. For example, Jazayeri and Shadlen (2010) proposed a model to account for the central 108 
tendency in duration reproduction in which prior knowledge was formalized as fixed stimulus 109 
distribution (as depicted in Fig. 1 as static model). By contrast, Petzschner & Glasauer (2011) 110 
in a distance reproduction study proposed that the central tendency is a consequence of an 111 
iterative Bayesian process, in which prior knowledge is iteratively based on the perceptual 112 
estimate of the previous trial (like in the iterative model in Fig. 1), rather than assuming a fixed 113 
prior. In the following years, various other similar explanations have been proposed, some of 114 
them using iterative updating (Dyjas et al. 2012; Thurley 2016), others assuming static priors 115 
(Cicchini et al. 2012; Roach et al. 2017). The common idea of these models is that the central 116 
tendency bias is a by-product of optimizing the perceptual estimates using prior knowledge 117 
when sensory input is uncertain.  118 
 119 
While both types of models can successfully explain the central tendency bias, they make very 120 
different predictions about sequential dependence, the second type of bias: only the iterative 121 
updating models predict sequential dependence for randomly distributed stimuli. In a model 122 
with static prior, the perceptual estimates are independent from trial to trial. 123 
 124 
In the present paper, we show that experimental results from duration estimation and distance 125 
estimation show sequential dependence and thus favour iterative models of perceptual 126 
estimation. However, we demonstrate that neither the static nor the iterative mathematical 127 
models found in the current literature can fully explain the interindividual differences. We thus 128 
propose a Bayesian model that not only explains these differences, but also allows to predict 129 
individual behaviour in a novel experimental situation. Our results thus clearly support the idea 130 
that individual variations in perceptual biases are indeed a consequence of differing beliefs 131 
about the temporal continuity of stimulus generation.  132 
 133 
Results 134 
 135 
We examined central tendency and sequential dependence in three experimental data sets of 136 
magnitude estimation: one from duration reproduction (Glasauer & Shi 2019, 2021; data 137 
published as Glasauer & Shi 2021b), and two from linear and angular distance reproduction 138 
(Petzschner & Glasauer 2011, data set published as Petzschner & Glasauer 2020). 139 
 140 
The first dataset comes from a duration reproduction study (preliminary data were presented in 141 
Glasauer & Shi 2019, 2021; data are published as Glasauer & Shi 2021b). In the experiment, 142 
subjects (n=14, 7 female, average age 27.4) had to reproduce a visually presented stimulus 143 
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duration by pressing and holding a key (see Fig. 2, inset). Each subject received a random 144 
sequence of 400 stimulus durations between 400 and 1900 ms. We quantified both the 145 
sequential dependence and the central tendency effect using simple linear regression (see 146 
Materials and Methods for the detailed method). Fig. 2 shows an example of individual raw 147 
results plotted for evaluation of central tendency (Fig. 2A) and sequential dependence (Fig. 148 
2B). The relation of sequential dependence and central tendency for all individual participants 149 
is depicted in Fig. 2C. Note that, as mentioned in the introduction, perceptual estimation with 150 
a fixed prior (see the static model in Fig. 1) would predict that sequential dependence is zero 151 
independently of central tendency. 152 

 153 
Figure 2: Central tendency and sequential dependence in a duration reproduction experiment. Inset: schematic 154 
procedure of a single trial. A visual cue is shown on a screen to indicate stimulus duration (production phase). 155 
Reproduction is performed by pressing a button (see also Glasauer & Shi 2019, 2020, and Materials and Methods 156 
for details). A & B: Raw data (blue dots) from one subject (400 trials). Stimuli were presented in random order. 157 
A: Reproduced duration plotted over stimulus duration; the central tendency is shown by the regression line (blue). 158 
B: Error (response-stimulus) in the current trial plotted over the stimulus duration of the previous trial. The 159 
sequential dependence is shown by the blue line. C: Sequential dependence plotted over central tendency for all 160 
subjects (n=14). Error bars denote standard error of the mean. The data point resulting for the single subject data 161 
presented in A and B is indicated by a purple circle. The orange parabola shows the predicted relation for the 162 
iterative model depicted in Fig. 1 (see SI Appendix A3: Serial dependence for an iterative Bayesian model). 163 
 164 
However, individual responses show a large scatter for both central tendency and sequential 165 
dependence. The mean sequential dependence was 0.108 ± 0.056 (mean ± SD), which is 166 
significantly different from zero (p < .0001; t-test, n = 14) and thus ruled out the static model 167 
as valid explanation for the results. In fact, all data points show higher sequential dependence 168 
than predicted by the static model (zero). We also conducted a partial correlation analysis and 169 
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calculated the correlation coefficient between current error and previous stimulus after 170 
controlling for the current stimulus. The average partial correlation coefficient was 0.197 ± 171 
0.068 and significantly different from zero (p < .0001; t-test, n = 14). For comparison, the 172 
corresponding partial correlation coefficient between error and current stimulus, after 173 
controlling for the previous stimulus, was -0.623 ± 0.156 (p < .0001; t-test, n = 14), again 174 
revealing the central tendency. 175 
 176 
As mentioned before, the sequential dependence larger than zero rules out the static prior as an 177 
explanation for the central tendency. However, in the iterative model (Fig. 1), sequential 178 
dependence is expected to occur, because the last posterior distribution is used as new prior in 179 
the next trial, thus introducing a temporal dependence across trials. When using this updating 180 
procedure (Glasauer 2019; see Materials & Methods for the model definition), the model 181 
predicts a fixed parabola relation between central tendency and serial dependence, shown in 182 
Fig. 2C (for a derivation see SI Appendix A3).  However, individual serial dependence not only 183 
shows values higher than zero (the prediction of the static model), but also lower than the 184 
prediction of the iterative model. The average difference between the observed sequential 185 
dependence and that predicted by the iterative model was significant, (mean ± SD: -0.112 ± 186 
0.053, p < .0001; t-test, n = 14), showing that also the iterative model cannot adequately predict 187 
the sequential dependence. It should be noted that the steady state of the iterative updating is 188 
equivalent to the “internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014) proposed 189 
for duration estimation. 190 
 191 
We also analysed a publicly available data set on distance reproduction (Petzschner & Glasauer 192 
2020) published previously (Petzschner & Glasauer 2011), using the same method. The data 193 
come from two separate experiments on visual path integration, one on linear distance 194 
reproduction and one on reproduction of angular distance (see Materials and Methods). While 195 
Petzschner and Glasauer (2011) showed that their iterative model could well capture the central 196 
tendency, they did not analyse sequential dependence. Fig. 3 shows the equivalent analysis as 197 
above for the two path-integration experiments (Petzschner & Glasauer 2011). For the linear 198 
distance reproduction, the average sequential dependence is 0.100 ± 0.045 (mean ± SD). For 199 
the angular distance reproduction, it is 0.119 ± 0.057 (mean ± SD). As for duration 200 
reproduction, the data for the two distance reproduction experiments confirms that neither the 201 
static nor the iterative model can capture the sequential dependence sufficiently well (all ps < 202 
0.0001). 203 
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Figure 3: Sequential dependence for distance (A) and angular (B) reproduction plotted over central tendency for 206 
all subjects. Distance and angular reproduction data come from Petzschner & Glasauer 2011, data published as 207 
Petzschner & Glasauer 2020, each point corresponds to 540 trials. Error bars denote standard error of the mean. 208 
The same analysis was applied as in Fig. 2C. 209 
 210 
The present data also show that the individual variation in biases cannot be explained by 211 
individually different levels of sensory uncertainty: under the assumption of a static model, 212 
changing sensory uncertainty would not lead to different levels of sequential dependence; if 213 
the iterative model was underlying perceptual estimation, variation of sensory uncertainty 214 
would still confine the individual biases to the orange line in Figs. 2C, 3A, and 3B. 215 
 216 
From Figs. 2 and 3 we can see that for all individual data points the predictions of the two 217 
models considered so far seem to be boundary conditions. Neither is any of the individual bias 218 
values located below zero for sequential dependence, nor is any of them above the orange 219 
parabola denoting the iterative model. The obvious conclusion is that individual participants 220 
seem to follow beliefs that lie between the two extremes expressed by the static and simple 221 
iterative models, which assume 1) the sampled stimuli are random and independent, or 2) the 222 
current stimulus is equal to the previous plus some random change. An intermediate belief about 223 
stimulus generation can be described as follows: assume that the stimulus on the current trial 224 
has been drawn from a stimulus distribution, but that the mean of that distribution is allowed to 225 
change randomly from trial to trial. Regarding our first example of daily temperature changes, 226 
this assumption is also reasonably applicable. 227 
 228 
From this assumption we can now construct a new estimation model, which requires two 229 
variables to be estimated: in addition to estimating the current stimulus, the perceptual process 230 
also needs to estimate the mean of the current stimulus distribution. Therefore, the model 231 
requires two internal states. The new model is an extended iterative model, more flexible than 232 
the simple iterative model depicted in Fig. 1. Since it comprises the static and iterative models 233 
of Fig. 1 as boundary conditions, the model is capable of simulating the individual biases of all 234 
three experiments (Fig 2C, 3A, 3B), but it comes with an increase of the number of free 235 
parameters from two to three (see Materials & Methods for model equations). 236 
To find out whether the new model is indeed superior in fitting the experimental data, we fitted2 237 
the extended (two-state) iterative model (3 free parameters per subject) to the individual data 238 
of the duration experiment to evaluate whether the model would capture not only the central 239 
tendency but also the sequential dependence better than the simpler alternatives. An example 240 
time course of raw data (stimulus and response) together with best-fit simulation is shown in 241 
Fig 4A (see also SI Appendix C: fits to mean responses in Fig. S4A). Note that the fit minimizes 242 
the least-squares distance between the individual responses and the model simulation, with the 243 
models receiving as input the trial-to-trial time course of the stimuli in the same order as 244 
presented to the individual participant. 245 
 246 

 
2 Model simulation performed after transforming the stimulus data to the log-domain, as done previously 
(Petzschner & Glasauer 2011; Roach et al. 2017), to account for the dependence of the variance on stimulus size 
(Weber-Fechner law). Fitting was done by minimizing the least-squares distance between trial-wise response and 
simulation in the linear domain. 
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 247 
Figure 4: A: Time course of stimulus (magenta) and reproduction (green) from one participant (same data as in 248 
Fig. 2A,B) together with best fit of the two-state model (light blue). The model fitting minimized the least-249 
squares distance between reproduction (green) and simulation (light blue). The input to the model was the trial-250 
by-trial stimulus time course (magenta). The few outliers (e.g., around trial 105 or 320) were not removed for 251 
model fitting. B, C: Comparison of experimental data (x-axis) and model simulation (y-axis) for central 252 
tendency (B) and absolute sequential dependence (C) for all three models and all participants. Each dot 253 
represents one participant. The central tendency is captured correctly by all three models (values close to the 254 
diagonal), whereas the model values for sequential dependence are too small for the static model (blue dots, 255 
close to zero), and too large for the simple iterative model (red dots). Values for the two-state model lie closer to 256 
the diagonal in most cases. Cases for which the two-state model was the best model according to cross-validation 257 
are highlighted by circles: for 8 of 14 participants, the two-state model was superior, while in the remaining 6 258 
cases the static model was sufficient to explain the data. 259 
 260 
The static model and the simple iterative model are special cases of the new two-state model: 261 
both are nested within the two-state model. Therefore, one can determine whether the 262 
parameters that are set to zero for the simpler models differ significantly from zero in the full 263 
model. On average, both parameters (Parameter 1: the relative variability of the stimulus 264 
distribution, and Parameter 2: the relative variability of the additive change of the mean) of the 265 
full model were significantly different from zero (Parameter 1: 1.03 ± 0.28, mean ± SEM, t-test 266 
p < .01; Parameter 2: 0.14 ± 0.05, mean ± SEM, t-test p = 0.025; both n = 14). In individual 267 
participants, the relative variability of the stimulus distribution differed significantly from zero 268 
(assessed via confidence intervals of the parameters) for all subjects (range 0.20 to 4.12), while 269 
the variability of the additive change differed from zero only for 6 of 14 subjects (range 0 to 270 
0.66). To determine which model was more appropriate for fitting the data, we used an out-of-271 
sample cross validation procedure specifically suited for model selection in time series (Arlot 272 
& Celisse 2010). According to this cross-validation procedure (see Materials and Methods), the 273 
two-state model is the preferable model for 8 of 14 participants, while for the remaining 6 274 
participants the static model is sufficient (Fig. 4B,C). A comparison of the values for central 275 
tendency and absolute sequential dependence derived from the data and from respective model 276 
simulations is presented in Fig 4B and 4C. In case of perfect fit, all points should lie on the 277 
diagonal. While all three models capture well the central tendency (Fig. 4B), the simulated 278 
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serial dependence is too small for the static model but too large for the simple iterative model 279 
(Fig. 4C), while the two-state model matches the data reasonably well.  280 
 281 
While the results so far confirm that the two-state model provides a quantitative explanation 282 
for central tendency and sequential dependence at lag one (i.e., dependence on the previous 283 
stimulus), due to its iterative nature the two-state model also predicts dependence of the 284 
current error on stimuli further in the past. That this is indeed the case also experimentally can 285 
be shown by cross correlation analysis: for duration reproduction, the cross correlation 286 
between stimulus and reproduction is, on average, significantly different from zero up to lag 3 287 
(t-test; lag 2: p = 0.0007; lag 3: p = 0.039; n = 14; supplementary Fig. S5).  288 
 289 

 290 
Figure 5: Average data for the duration reproduction experiment (black dots) together with average simulation 291 
result for the best fit iterative two-state model (open dots). Stimuli were presented in randomized order. A: 292 
Reproduction error as a function of the current target duration (R2=0.964). B: Sequential dependence shown as 293 
reproduction error plotted over previous target duration (i.e., R2=0.803). C: Reproduction error as a function of 294 
the target duration two trials in the past (R2=0.834). Data points are averages of 7 to 14 subjects (only 7 subjects 295 
received long durations above 1.7 s); error bars denote SEM. For the model simulation, the model (three free 296 
parameters) was fitted individually to the trial-by-trial time course of the responses of each subject (same fits as 297 
for Figure 4). From theses individual simulated response time courses, the average simulation was computed in 298 
the same way as for the real response time courses. Note that not only average mean data and simulated responses 299 
match, but that also the size of the error bars is captured quite well by the model.  300 
 301 
The averaged experimental results for duration reproduction together with the averaged model 302 
results for dependence of error on current and previous stimuli is shown in Fig. 5 (see also SI 303 
Fig. S4). Note that the model was fitted to each individual trial-by-trial reproduction time 304 
course separately by minimizing the trial-wise least-squares distance between experimental 305 
reproduction and model simulation. Thus, the good match shown in Fig. 5B and 5C, 306 
quantified by a high coefficient of determination R2, is caused by the model mimicking the 307 
experimental sequential dependence without explicitly including it in the fitting procedure. 308 
This is not a trivial consequence of the model fit, as shown by the fact that both static and 309 
simple iterative models can fit the central tendency equally well (i.e., the dependence shown 310 
in Fig. 5A), but fail to correctly exhibit the sequential dependence shown in Fig. 5B and 5C 311 
(see SI Appendix C1).  312 
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 313 
Figure 6: Sequences of stimuli generated by the three models. The sequences for the iterative and two-state model 314 
have been generated such that their histograms resemble that of the static sequence. A: histograms. B: 315 
autocorrelation. C: first 200 samples of all three sequences. The variances of the two-state model were chosen so 316 
that the autocorrelation at lag 1 equals approx. 0.66. 317 
 318 
As explained above, the models (static, iterative, two-state) make different assumptions about 319 
how stimuli are generated, e.g., the static model assumes independent and identically 320 
distributed (i.i.d.) random variables. Fig. 6 shows histograms, autocorrelation, and time course 321 
of exemplary stimulus sequences generated according to the assumptions of the three models. 322 
The stimulus sequences of the iterative models (iterative, two-state) have been generated so that 323 
their histograms are similar to the histogram of the static model’s sequence (quantified by 324 
minimizing the Kullback-Leibler divergence). While the histograms are reasonably similar 325 
(Fig. 6A, KL divergence < 0.01), the autocorrelation differs considerably (Fig. 6B). As 326 
expected, the sequence for the static model, which is a Gaussian noise sequence, shows no 327 
sequential dependence between current and previous values, while the two iterative models 328 
generate sequences with autocorrelation at higher lags. The sequence generated by the simple 329 
iterative model is a Wiener process or random walk, while the sequence of the two-state model 330 
is a superposition of a random walk and Gaussian noise. The corresponding exemplary time 331 
courses are shown in Fig. 6C: the blue time course (i.i.d. stimuli) would be optimal for the static 332 
model, the red random walk time course is optimal for the simple iterative model, and the 333 
yellow trace, being a compromise between randomness and slow drift would be optimal for the 334 
two-state model.  335 
 336 
This implies that the result of the estimation process depends on how well the stimulus sequence 337 
is matched to the model assumptions about stimulus generation. Using an iterative model is 338 
suboptimal for an i.i.d. sequence, and, vice versa, using the static model is not the best solution 339 
for estimation a random walk sequence. 340 
 341 
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 342 

 343 
Figure 7: Example data from one participant and model results. A: Data (blue) and model simulation (best fit to 344 
two-state model, red) for the ‘randomized’ condition of the duration reproduction experiment. Same data as in Fig. 345 
4A. Lines are linear least squares fits to the data showing that the model replicates the central tendency. B: Data 346 
(blue) and model prediction (red, model and parameters same as in A) for the ‘random walk’ condition, in which 347 
successive stimuli were similar. It can clearly be seen that in this subject the central tendency dramatically changed, 348 
which was predicted by the model. C: Data from A and B plotted over trial. The same stimuli were used in both 349 
conditions. 350 
 351 
We tested this implication by analysing the second condition of the duration reproduction 352 
experiment, in which the same stimuli as analysed above, were presented in a random walk 353 
order to the same participants (see also Materials and Methods). Since we suspected that the 354 
remaining central tendency in the random walk condition and the change in sequential 355 
dependence could be explained by the new two-state model introduced above, we used the 356 
individually fitted model parameters obtained from the randomized condition to predict the 357 
individual time courses of the random walk condition. In this condition, subsequent stimuli are 358 
similar to each other (example in Fig. 7C), just as supposed by the generative model of the 359 
simple iterative Bayes (see Fig. 6C, red time course, for an example of such a random walk). 360 
As explained in our previous paper (Glasauer & Shi 2021), this condition tests the prediction 361 
of the simple iterative and the Petzschner & Glasauer (2011) explanatory models, which both 362 
predict that the central tendency vanishes in the random walk condition. An example of the 363 
effect of changed stimulus order on central tendency is shown in Fig. 7A (randomized 364 
condition, replotted from Fig. 2A). and Fig. 7B (random walk condition) for one participant. In 365 
this participant, the central tendency seen for randomized stimulus order (Fig. 7A) almost 366 
vanishes for the random walk stimulus order (Fig. 7B). 367 
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On average the data show that the central tendency indeed decreased substantially and was 369 
significantly smaller during random walk (t(13) = 7.32, p < .0001; see Fig. 8A). However, it 370 
did not completely vanish and was still larger than predicted by these previous models 371 
(Glasauer & Shi 2021). For some subjects, the central tendency was no longer different from 372 
zero (see example data in Fig. 7), while for others it clearly was still visible. Sequential 373 
dependence also changed and became on average negative with a significant difference between 374 
conditions (Fig. 8B; t(13) = 5.25, p < .001). 375 
 376 

 377 
Figure 8: Summary of average results for both conditions of the duration reproduction experiment. Blue: data; 378 
orange: model. Error bars indicate standard error of the mean. A: Central tendency is significantly smaller during 379 
random walk (t-test, n = 14, p < 0.0001). B: Sequential dependence becomes on average negative with a significant 380 
difference between conditions (t-test, n=14, p = 0.00016). In A and B, the model values for the randomized 381 
condition are averages from the fitted simulation, while model values for the random walk condition are averaged 382 
predictions using the model parameters from the randomized condition. 383 
 384 
Figure 9 shows the averaged experimental results together with the averaged model prediction. 385 
Both central tendency (Fig. 9A) and sequential dependence (Fig. 9B and 9C) are well-predicted 386 
by the model, showing that the central tendency remaining in the random walk condition is 387 
explained by the generative assumption of the two-state model (see also red model results in 388 
Fig. 8). Note that the similarity of the error dependence on current and previous stimuli in the 389 
random walk condition shown in Fig. 9 is expected, since stimuli in this condition are highly 390 
autocorrelated, i.e., the current stimulus is indeed similar to the stimuli preceding it (and thus 391 
the reproduction error is similar when plotted over current or previous stimuli). 392 
  393 

 394 
 395 
Figure 9: Average data for the ‘random walk’ condition of the duration reproduction experiment (black dots), in 396 
which successive stimuli were similar, presented together with averaged model predictions (not fits) of the iterative 397 
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two-state models used in Fig. 5 (open dots). Stimuli are the same as in Fig. 5 except for the order of presentation. 398 
Model parameters were determined from fitting the ‘randomized’ condition and are the same as used in Fig. 5. A: 399 
Reproduction error as a function of the current target duration (R2=0.629). B: Reproduction error as a function of 400 
the previous target duration (R2=0.544). C: Reproduction error as a function of the target duration two trial in the 401 
past (R2=0.428). Data points are averages of 7 to 14 subjects (only 7 subjects received long durations above 1.7 402 
s); error bars denote SEM. Average model predictions are calculated from trial-by-trial predicted individual time 403 
courses using the parameters corresponding to Fig. 5. 404 
 405 
Discussion  406 
 407 
In this paper, we analysed the relation between the central tendency and sequential dependence 408 
for magnitude reproduction with two aims: to distinguish between static and iterative models 409 
proposed in the literature to explain the central tendency bias, and to reveal the origin of 410 
individual differences seen experimentally. We analysed three datasets, one from duration 411 
reproduction and two from path integration, to evaluate which model can better explain 412 
magnitude reproduction regarding both the sequential dependence, quantified as current error 413 
depending on previous stimulus magnitude, and the central tendency effects. Effects of 414 
immediate prior experience on current decisions have been reported for various cases in the 415 
psychological literature (e.g., Cross 1973, Fischer & Whitney 2014, Liberman et al. 2014), and, 416 
as we show here, they are also clearly visible in experiments on magnitude reproduction. The 417 
average sequential dependence found in duration and distance reproduction differed 418 
significantly from zero, which clearly demonstrates that the response error of the current trial 419 
depends on the stimulus from the last trial. This contradicts static models as explanation for 420 
perceptual biases because they imply no influence of the previous trial. Consequently, several 421 
previously published static trial-independent models can be ruled out (Jazayeri & Shadlen 2010, 422 
Roach et al. 2017, Lakshminarasimhan et al. 2018). Even though the static models fit the central 423 
tendency well in experiments with random stimulus presentation (see Fig. 4B), the explanation 424 
for this bias offered by the static models is only partially correct. The fundamental assumption 425 
of the static models, a fusion of the sensed stimulus with prior information about the stimulus 426 
range, is not completely wrong, except that the prior is not static, as shown by the significant 427 
sequential dependence. Rather, the prior is updated trial-by-trial so that information from the 428 
immediate previous trial is used for the current estimate. Due to the iterative nature of Bayesian 429 
estimation with the posterior as basis for the new prior, not just the previous stimulus (as 430 
proposed by Cicchini et al. 2018), but also stimuli further in the past can still exert an influence 431 
on the present response. This difference between static and iterative models has important 432 
consequences for understanding the processes that lead to the perceptual results: while the 433 
results of static and iterative models look similar with respect to the central tendency, the 434 
internally represented priors, the underlying assumptions about stimulus generation, and the 435 
predictions for the sequential dependence are completely different. 436 
 437 
Like the static prior model, the simple iterative model proposed previously (e.g., Dyjas et al. 438 
2012; Glasauer 2019) predicts the central tendency effect very well but falls short in accounting 439 
for the experimentally observed sequential dependence. The simple iterative model assumes 440 
that stimuli remain similar from trial to trial with a random fluctuation. This assumption 441 
corresponds to stimuli being generated by a random walk or discrete Wiener process. According 442 
to this assumption, the overall variance of the stimuli builds up over the trials. By contrast, the 443 
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static model assumes that the stimulus distribution has a fixed variance, and a fixed mean. The 444 
generative assumption for the iterative model also implies a stimulus sequence that differs 445 
considerably from that of the static model: it resembles Brownian motion or a diffusion process 446 
in one dimension rather than a random sequence (see Fig. 6C for examples). Both the static and 447 
the simple iterative models provide predictions concerning the sequential dependence: the static 448 
model predicts zero sequential dependence, the iterative model predicts that, in case of random 449 
stimuli, sequential dependence depends on central tendency in a predictable way (see red curve 450 
in Figs. 2C and 3). The empirical data, however, showed that neither of these two models 451 
captures the experimental relation between central tendency and sequential dependence. 452 
 453 
Therefore, we proposed the two-state model that combines the static and the simple iterative 454 
models and assumes that the stimulus at each trial comes from a distribution with fixed variance, 455 
but that the mean of that distribution changes from trial to trial. By merging the assumptions of 456 
static and simple iterative models about stimulus generation, both the central tendency effect 457 
and the absolute sequential dependence can be well explained. According to the two-state 458 
model, the considerable variations between participants are not only caused by different impact 459 
of noise on sensory measurement, but also because of different beliefs concerning the sequential 460 
structure of the stimuli. As an example, in Fig. 2C, of two participants with approximately the 461 
same central tendency of 0.42, one had a sequential dependence of 0.03, the other of 0.17. This 462 
difference reflects the observers’ own supposition about the sequential structure: the participant 463 
with a low sequential dependence assumed the world is volatile and trusted only the current 464 
stimulus together with a hypothesis about the limited range of stimuli for perceptual estimates. 465 
By contrast, the participant with a large sequential dependence agreed about the randomness of 466 
the world but further assumed that things change over time with some continuity. For perceptual 467 
decision-making task, it has recently been suggested that individual differences are due to 468 
different implicit assumptions about the complexity of a sequence (Glaze et al. 2018). In their 469 
study, participants had to infer from which of two possible Gaussian sources the current visual 470 
stimulus was drawn. The true source was randomly switched with a hazard rate that could 471 
change. The authors proposed that a bias-variance trade-off was the underlying reason for 472 
differences in choice variability. While this study is very different from ours, both have in 473 
common that the implicit beliefs of participants about the temporal volatility of stimulus 474 
generation are the reason for individual differences. 475 
 476 
The present investigation also suggests that an observer’s belief about the world’s sequential 477 
structure is carried over from one experimental condition to another instead of being adapted 478 
to an individual condition: the model parameters derived from the randomized condition of 479 
duration reproduction provided an excellent prediction of the experimental results of the 480 
random walk condition, even though both conditions varied exactly (and only) by their 481 
sequential structure. Thus, participants in these experiments did apparently not adapt their 482 
beliefs to the actual temporal structure of the stimuli but relied on their individual hypothesis. 483 
However, whether these beliefs can be altered, for example by feedback, or reflect intrinsic 484 
personality traits warrants further investigation. A recent study on the perception of probability 485 
emphasized that average results do not provide the full picture and that individuals deviated 486 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2022. ; https://doi.org/10.1101/2021.07.13.452167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452167
http://creativecommons.org/licenses/by/4.0/


15 
 

substantially from optimal performance, with these idiosyncratic deviations persisting over a 487 
long time (Khaw et al. 2021).  488 
 489 
Another question is whether the two-state model can encompass the full spectrum of empirical 490 
values for central tendency and sequential dependence. The two-state model predicts that 491 
sequential dependence should, with randomized stimuli, not exceed the value predicted by the 492 
simple iterative model, that is, the quadratic relationship with central tendency (red curve in 493 
Figs. 2C and 3), which has a maximum at 0.25. Indeed, this is the case for the three experiments 494 
we validated here. Note, however, that this is not a trivial result: for example, a model proposed 495 
previously to explain sequential dependence in visual orientation reproduction (Cicchini et al. 496 
2018) predicts sequential dependence that is approximately equal to central tendency and can 497 
assume values as large as 0.5 (see SI Appendix D). While their model cannot explain the data 498 
presented here, it shows that there are alternatives to the two-state model, which would allow 499 
sequential dependence larger than 0.25. However, in our experiments, sequential dependence 500 
did not, for any of the tested participants, exceed the theoretical maximum postulated by the 501 
two-state model across three different tasks, which again suggests that our model provides a 502 
good explanation for the participants’ behaviour. 503 
 504 
One might wonder about the purpose of integrating immediate prior information into a current 505 
decision, given that it may cause an estimation bias. One common explanation is that the 506 
regularity of our environment is relatively stable, so that integrating prior knowledge will boost 507 
the reliability of the estimation and facilitate performance (Petzschner et al. 2015, Shi et al. 508 
2013). For a visual orientation reproduction task (Cicchini et al. 2018), the authors argued that 509 
sequential dependence provides a behavioural advantage manifesting with low reaction times 510 
and high accuracy. When the stimuli are similar between trials, it is useful to use the last 511 
perceived stimulus as prior. This assumption about the sequential structure is included in the 512 
generative assumption of the two-state model: the stimulus of the current trial is assumed to be 513 
similar to that of the last trial, since it comes from a distribution with a similar mean. However, 514 
the mean of the sampled stimuli also fluctuates over time, which makes the two-state model 515 
more flexible than a static model. That is, observers do not assume that the randomness of the 516 
external environment is strictly stable, but rather expect variations and changes.  517 
 518 
Next, the question arises whether the proposed two-state model is optimal for the usual 519 
experimental situations with standard randomization. That is, stimuli are randomly generated 520 
as i.i.d. process from a fixed, pre-defined distribution, which has become a ‘standard’ 521 
experimental procedure since Vierordt’s work in 1868. The answer is obvious: the two-state 522 
model is not optimal, given that the stimuli are randomly drawn from a fixed distribution.  Using 523 
the last trial to estimate the current would deteriorate rather than improve the quality of the 524 
estimate. However, as evidenced by the significant sequential dependence, instead of believing 525 
the stimuli are randomly generated, most of our participants assumed that there is at least some 526 
temporal continuity in the stimulus sequence. According to both the simple iterative model and 527 
the two-state model, for these participants, the overall central tendency bias should be smaller, 528 
if the stimulus sequence is changed so that stimuli are indeed similar from trial to trial. This 529 
was validated by showing in our previous study (Glasauer & Shi 2021) that the central tendency 530 
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in sequences with complete random stimulus order was larger than in sequences with random-531 
walk fluctuation. Here we showed that this decrease in central tendency and, more importantly, 532 
the remaining central tendency, is well-predicted by the two-state model on an individual basis. 533 
The model also predicts the experimentally found reversal of sequential dependence (compare 534 
the positive dependence in Fig. 5B and the negative dependence in 9B). Consequently, our 535 
model simulations together with the experimental data show that the individual assumptions 536 
about stimulus generation are stable over experimental conditions and are not adapted to the 537 
true temporal continuity (or transition probability) between stimuli. 538 
 539 
Finally, our results show that the individual differences that are expressed in different values of 540 
central tendency and sequential dependence are not only due to differences in sensory noise, 541 
but reflect major differences in the underlying generative model, that is, in the assumptions 542 
about how stimuli are generated in the world. While some participants behave as if stimuli are 543 
generated almost independently from each other, just like when sampling from a random 544 
distribution, others show strong sequential dependence and thus assume that subsequent stimuli 545 
are similar in magnitude and depend on each other. While, on average, the perceptual system 546 
of participants seems to be optimized for random stimuli the distribution of which slowly 547 
changes over the time, the individual differences in belief about stimulus generation are not 548 
negligible.  549 
 550 
In summary, our two-state iterative model assumes that the magnitude percept is an integration 551 
of sensory input and an updating prior knowledge. This updating can be conceived as assuming 552 
that stimuli come from a distribution the mean of which fluctuates from trial to trial. The model 553 
explains the individually different link between sequential dependence and central tendency as 554 
resulting from distinctive assumptions about the sequence structure, which differ among 555 
participants. It thus allows not only modelling the average responses of participants but also 556 
elucidates the reason for their variability: the assumptions behind the perceptual estimation 557 
process vary from person to person. The same world looks different for each of us, even when 558 
considering such a basic ability as perceiving magnitudes.  559 
 560 
Materials and Methods 561 
 562 
Duration reproduction 563 
 564 
14 naïve volunteers (7 female, 7 male, average age 27.4) participated in the experiment, which 565 
was approved by the ethics committee of the Department of Psychology at LMU Munich. A 566 
yellow disk (diameter 4.7°, 21.7 cd/m2) was presented as visual stimulus on a 21-inch monitor 567 
(100 Hz refresh rate) at 62 cm viewing distance using the Psychtoolbox 568 
(http://psychtoolbox.org). Each trial started after 500 ms presentation of a fixation cross 569 
followed by the stimulus which appeared for a pre-defined duration. After a short break of 500 570 
ms participants were prompted to reproduce the duration of the stimulus by pressing and 571 
holding a key. The visual stimulus was shown again during key press. At the end of the trial, a 572 
coarse visual feedback was given for 500 ms (5 categories from < -30% to > 30% error). Each 573 
participant performed two blocked sessions in balanced order. In the random walk condition, 574 
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participants received 400 stimuli generated by cumulative summation (integration) of randomly 575 
distributed values from a normal distribution with zero mean and a SD that was chosen to yield 576 
stimuli between 400 ms and 1900 ms. In the randomized condition, the same 400 stimuli were 577 
used in scrambled order. Each participant received a different sequence (see Fig. 4A for an 578 
example). The data have been used previously (Glasauer & Shi 2021) and are publicly available 579 
(Glasauer & Shi 2021b). 580 
 581 
Distance reproduction 582 
 583 
The experimental procedure has been published previously (Petzschner & Glasauer 2011) and 584 
the data are publicly accessible (Petzschner & Glasauer 2020). Briefly, 14 volunteers (7 female, 585 
7 male, aged 22–34 years) participated. Stimuli were presented in darkness on a computer 586 
monitor as real-time virtual reality using Vizard 3.0 (Worldviz) depicting an artificial stone 587 
desert consisting of a textured ground plane, 200 scattered stones placed randomly, and a 588 
textured sky. Participants used a joystick to navigate. Estimation of travelled distances and of 589 
turning angles was tested separately under three different conditions (different ranges of 590 
distances or angles, see Fig. S5 and S6, 200 trials per condition) in a production-reproduction 591 
task. For distance estimation, participants were instructed to move forward on a linear path until 592 
movement was stopped when reaching the randomly selected production distance (same 593 
sequence for all subjects) and then had to reproduce the perceived distance in the same direction 594 
using the joystick and indicate their final position via button press. Velocity was kept constant 595 
during movement but randomized up to up to 60% to exclude time estimation strategies. No 596 
feedback was given. For angular turning estimation, the procedure was the same except that 597 
subjects had to turn. 598 
 599 
Data analysis: central tendency and sequential dependence 600 
 601 
To quantify central tendency, a linear least-squares regression was fitted to stimulus 602 
reproduction plotted over stimulus duration for each participant individually using Matlab (The 603 
Mathworks, Natick MA, USA). Central tendency was defined as 1-slope of the regression line. 604 
Sequential dependence was assessed by fitting a linear least-squares regression to the error in 605 
trial k plotted over the stimulus in trial k-1 (Holland and Lockhead 1968). Note that in the 606 
literature the sequential dependence (also called serial dependence) is often quantified as 607 
current error plotted over the difference between previous and current stimulus (e.g., Fischer & 608 
Whitney 2014, Bliss et al. 2017, Kiyonaga et al. 2017, Clifford et al. 2018, Cicchini et al. 2018). 609 
However, this method is not appropriate for stimuli on an open linear scale as in the present 610 
work (see SI Appendix A). 611 
 612 
Modelling: Static Bayesian model 613 
 614 
Given a set of stimuli 𝑥! drawn from a normal distribution on an open scale with mean 𝑥̅, a 615 
simple static model for the perceptual response 𝑦! would be: 616 

𝑦! = 𝑤𝑥! + (1 − 𝑤)𝑥̅          (1) 617 
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with the weight 𝑤 being determined by using the variance of the stimulus distribution and the 618 
variance of the measurement noise. Note that the model assumes that 𝑦! only depends on the 619 
current stimulus 𝑥!, but not on the previous one. The fixed prior of the model could be the mean 620 
of the stimulus distribution 𝑥̅. In this model, the central tendency is given as 𝑐 = 1 − 𝑤. Since 621 
in this model the current response does not depend on the previous stimulus, the sequential 622 
dependence is zero regardless of the central tendency (see SI Appendix A2). 623 
  624 
Modelling: Iterative Bayesian model 625 
 626 
For an iterative or dynamic model, the quantification of sequential dependence should yield an 627 
effect, given that in such a model the actual response is defined to depend on both the current 628 
and the previous magnitudes. The simplest iterative Bayesian model (Fig. 1) can be derived 629 
from two assumptions for the underlying generative process (Glasauer 2019): 1) the stimulus 630 
at the current trial is the same as the one on the previous trial plus some random fluctuation and 631 
2) the sensation of the stimulus is corrupted by measurement noise. For normally distributed 632 
fluctuations and noise, the Bayesian optimal estimator model can be written as Kalman filter. 633 
When the Kalman gain 𝑘 of the model reaches its steady state (usually after few trials), its 634 
equations simplify to a weighted average, so that the response 𝑦!  at trial 𝑖 becomes 635 

𝑦! = 𝑘𝑥! + (1 − 𝑘)𝑦!"#     (2) 636 
with 𝑥!  being the current measurement of the stimulus and 𝑦!"# the estimate at the preceding 637 
trial 𝑖 − 1 (Glasauer 2019). Note that for a fixed 𝑘 this model is equivalent to the so-called 638 
“internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014). 639 
 640 
For this iterative model, the relationship between the central tendency and the sequential 641 
dependence 𝑠 can be determined analytically for randomly presented stimuli (see SI Appendix 642 
A3) as 643 

𝑠 = (1 − 𝑐) ∙ 𝑐      (3) 644 
According to Eqn. 2, the central tendency is given as 𝑐 = 1 − 𝑘. Intuitively, the extreme case 645 
with 𝑘 = 0 causes the current response to completely depend on the initial response 𝑦$ (which 646 
may be arbitrary) and does not change at all; therefore, the sequential dependence becomes 647 
zero. On the other extreme, with 𝑘 = 1 the response is veridical (𝑦! = 𝑥!), always equal to the 648 
current stimulus, and independent of the previous, which also yields zero sequential 649 
dependence. The maximum expected sequential dependence is 0.25 for central tendency 0.5 650 
(see Fig. 2C, orange curve). Thus, for central tendencies found experimentally, there exists a 651 
distinct testable difference between the static model (sequential dependence 0 and independent 652 
of central tendency) and the simple iterative model.  653 
 654 
Generative assumptions 655 
 656 
Here we reconsider the difference between the generative assumptions of the static and iterative 657 
models. In both models, measurement noise 𝑟 corrupts the actual sensory input. Thus, it is 658 
helpful to estimate the stimulus using additional prior information.  659 

- The static model assumes that the stimulus 𝑥! in trial 𝑖 comes from a distribution 660 
𝐷(𝑚, 𝑣) with a constant mean 𝑚 and variance 𝑣. We thus can write the generative 661 
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model as 𝑥! = 𝑚 + 𝜀% with 𝜀% being a random number coming from a distribution 662 
𝐷(0, 𝑣). 663 

- The iterative model assumes that the stimulus 𝑥! in trial 𝑖 is the same as in trial 𝑖 − 1 664 
except for some random change with variance 𝑞. In other words, the generative model 665 
is 𝑥! =	𝑥!"# + 𝜀& with 𝜀& coming from a distribution 𝐷(0, 𝑞). 666 

 667 
From these assumptions we can construct a third generative model, the two-state model, that 668 
combines advantages of both models: 669 

- The two-state model assumes that the stimulus 𝑥! in trial 𝑖 comes from a random 670 
distribution 𝐷(𝑚!"#, 𝑣) with mean 𝑚!"# and variance 𝑣. The mean of this distribution 671 
in trial 𝑖 is the same as in trial 𝑖 − 1 except for some random change with variance 𝑞. In 672 
other words, the stimulus distribution in the current trial depends on that in the previous 673 
trial. The generative model now has two states: the randomly changing mean of the 674 
stimulus distribution 𝑚! = 𝑚!"# + 𝜀& and the actual stimulus 𝑥! = 𝑚!"# + 𝜀%, drawn 675 
from this distribution. 676 
 677 

For an illustration of the generative models see SI Appendix C. 678 
 679 
Modelling: The two-state model 680 
 681 
Thus, the generative equations for the two-state model are given as follows: 682 

𝑥! = 𝑚!"# + 𝜀% 683 
𝑚! = 𝑚!"# + 𝜀&     (4) 684 
𝑧! = 𝑥! + 𝜂 685 

with 𝑥! being the stimulus at trial 𝑖 that is drawn from a distribution with mean 𝑚!"# and 686 
variance 𝑣	(here expressed by the random number 𝜀%, which is normally distributed as 𝑁(0, 𝑣)). 687 
The mean of this stimulus distribution 𝑚! at the trial i is the same as in the trial before except 688 
for the random fluctuation 𝜀& (𝜀& is normally distributed as 𝑁(0, 𝑞)). The actual sensory 689 
measurement (or sensation) 𝑧! is the stimulus corrupted by the sensory noise 𝜂, which is 690 
normally distributed as 𝑁(0, 𝑟). 691 

We can rewrite these equations in matrix notation with 𝑋! = =
𝑥!
𝑚!
> and 𝜀 = =

𝜀%
𝜀&>, so that 692 

𝑋! = 𝐹 ∙ 𝑋!"# + 𝜀 693 
𝑧! = 𝐻 ∙ 𝑋! + 𝜂 694 

𝐹 = =0 1
0 1> 695 

𝐻 = [1 0	] 696 
The optimal estimator for this model can be written as time-discrete Kalman filter with the 697 

covariance matrix 𝑄 = D𝑣 0
0 𝑞E and noise variance 𝑟:  698 

𝑋F!|!"# = 𝐹𝑋F!"# 699 
𝑃!|!"# = 𝐹𝑃!"#𝐹( + 𝑄 700 

𝐾! = 𝑃!|!"#𝐻(I𝐻𝑃!|!"#𝐻( + 𝑟J"# 701 
𝑋F! = 𝑋F!|!"# + 𝐾!I𝑧! − 𝐻𝑋F!|!"#J 702 
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𝑃) = (𝐼 − 𝐾)𝐻)𝑃)|)"# 703 
The steady state with constant matrix K thus becomes 704 

𝑋F! = 𝐹𝑋F!"# + 𝐾!I𝑧! − 𝐻𝐹𝑋F!"#J 705 
Written as states x and m, this can be expressed as 706 

𝑥L! = 𝑚M !"# + 𝑘#(𝑧! −𝑚M !"#) 707 
𝑚M ! = 𝑚M !"# + 𝑘*(𝑧! −𝑚M !"#) 708 

Free parameters of the model so far are the variance ratios 𝑣/𝑟 and 𝑞/𝑟.  709 
 710 
It should be noted that the model operates in log space (Petzschner & Glasauer 2011; Roach et 711 
al. 2017) to account for the Weber-Fechner law. Raw sensory input 𝑑! is thus transformed 712 

logarithmically to yield 𝑧! with 𝑧! = ln R1 + +!
+"
S. The stimulus estimate 𝑥L! is finally back-713 

transformed to yield 𝑑T! with 𝑑T! = 𝑑$ ∙ 𝑒%,!-.%. The shift term Δ𝑥 accounts for possible choices 714 
of the cost function and is the third free parameter of the full model.  715 
 716 
To summarize, the two-state model has three free parameters:  717 

1) the ratio of the variances v and r indicating the variability of the stimulus distribution 718 
relative to the sensory noise,  719 

2) the ratio of variances q and r indicating the variability of the additive random shift 720 
relative to the sensory noise, and  721 

3) a shift parameter that accounts for global over- or underestimation (see also Petzschner 722 
& Glasauer 2011).  723 

 724 
For all three models (static, simple iterative, two-state) the same model equations and the same 725 
Kalman filter can be applied. The three models differ by the free parameters: 726 

1) static model: 𝜀& = 0, therefore variability 𝑞 = 0. Free parameters: 𝑣/𝑟 and Δ𝑥. 727 
2) iterative model: 𝜀% = 0, therefore variability 𝑣 = 0. Free parameters: 𝑞/𝑟 and Δ𝑥. 728 
3) two-state model: full model. Free parameters: 𝑞/𝑟, 𝑣/𝑟, and Δ𝑥. 729 

 730 
Model fitting and model selection 731 
 732 
For model simulation, the individual stimulus sequences were used to fit the model separately 733 
for each participant. Thus, the model received the sequence of stimuli in exactly the same order 734 
as the participant and computed a sequence of responses. Model fitting was performed in linear 735 
stimulus space, that is, for model fitting, the least-squares distance between stimulus sequence 736 
and responses was minimized. The Matlab function lsqnonlin was used to estimate the 737 
parameters, and nlparci was applied to estimated confidence intervals.  738 
The coefficient of determination R2 for average data was calculated as 𝑅* = 1 − //#$%

//&'&
, with 739 

SSres being the residual sum-of-squares and SStot the total sum-of-squares. If a model perfectly 740 
captures the data, 𝑅* = 1. Models with negative R2 are worse than the baseline model, which 741 
predicts the average of the data and which has 𝑅* = 0. 742 
 743 
To compare models, we used a leave-one-out (LOO) cross-validation procedure (Arlot & 744 
Celisse 2010) adapted to time series. In LOO, each of the n data points is successively “left 745 
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out” from the sample and used for validation by fitting the model to the remaining data points 746 
and recording the error of the left-out data point. The criterion is the average validation error of 747 
the n model fits: the best model is the one with the minimal validation error. To account for the 748 
trial-to-trial dependence of data or model, in the modified LOO instead of leaving out just one 749 
data point, k values around this data point are left out, while the validation error is only 750 
computed for the data point in the center of this leave-out window. Here we selected k=11, 751 
which was assumed to be large enough to account for trial-to-trial dependencies. The same 752 
result (8x two-state model selected) was already achieved with k=3, while for k=1 the two-state 753 
model was best in 9 cases. 754 
 755 
References 756 
 757 
Arlot, S. & Celisse, A. Cross-validation procedures for model selection. Stat. Surv. 4, 40-79 758 

(2010) 759 
Bausenhart, K. M., Dyjas, O. & Ulrich, R. Temporal reproductions are influenced by an internal 760 

reference: Explaining the Vierordt effect. Acta Psychol 147, 60–67 (2014) 761 
Bliss, D. P., Sun, J. J., D'Esposito, M. Serial dependence is absent at the time of perception but 762 

increases in visual working memory. Sci Rep 7, 14739 (2017) 763 
Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M. & Burr, D. C. Optimal encoding of 764 

interval timing in expert percussionists. J. Neurosci. 32, 1056–1060 (2012) 765 
Cicchini, G. M., Mikellidou, K., & Burr, D. C. The functional role of serial dependence. Proc. 766 

Biol. Sci. 285, 20181722 (2018) 767 
Clifford, C. W. G., Watson, T. L. & White, D. Two sources of bias explain errors in facial age 768 

estimation. R. Soc. Open Sci. 5, 180841 (2018) 769 
Cross, D. V. Sequential dependencies and regression in psychophysical judgments. Percept. 770 

Psychophys. 14, 547-552 (1973). 771 
Dyjas, O., Bausenhart, K. M. & Ulrich, R. Trial-by-trial updating of an internal reference in 772 

discrimination tasks: Evidence from effects of stimulus order and trial sequence. Atten. 773 
Percept. Psychophys. 74, 1819–1841 (2012) 774 

Ernst, M. O. & Bülthoff, H. H. Merging the senses into a robust percept. Trends Cogn. Sci. 775 
8,162-169 (2004) 776 

Fischer, J. & Whitney, D. Serial dependence in visual perception. Nat. Neurosci. 17, 738-743 777 
(2014) 778 

Glasauer, S. & Shi, Z. “Central tendency as consequence of experimental protocol” in 779 
Proceedings of the 2019 Conference on Cognitive Computational Neuroscience, 780 
(2019), pp. 268-271. doi: 10.32470/CCN.2019.1148-0 781 

Glasauer, S. & Shi, Z. The origin of Vierordt's law: the experimental protocol matters. PsyCh 782 
J 10, (2021) https://doi.org/10.1002/pchj.464  783 

Glasauer, S. & Shi, Z. Duration reproduction data. G-Node https://doi.org/10.12751/g-784 
node.hdsam3 (2021b) 785 

Glasauer, S. Sequential Bayesian updating as a model for human perception. Prog. Brain. Res. 786 
249, 3-18 (2019) 787 

Glaze, C.M., Filipowicz, A.L.S., Kable, J.W., Balasubramanian, V. & Gold J. I.. A bias–788 
variance trade-off governs individual differences in on-line learning in an unpredictable 789 
environment. Nat Hum Behav. 2, 213–224 (2018) 790 

Holland, M. K. & Lockhead, G. R. Sequential effects in absolute judgments of loudness. 791 
Percept. Psychophys. 3, 409–414 (1968). 792 

Hollingworth, H. L. The central tendency of judgment. J. Phil. Psychol. Sci. Meth. 7, 461-469 793 
(1910). 794 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2022. ; https://doi.org/10.1101/2021.07.13.452167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452167
http://creativecommons.org/licenses/by/4.0/


22 
 

Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 795 
1020-1026 (2010) 796 

Khaw, M. W., Stevens, L. & Woodford, M. Individual differences in the perception of 797 
probability. PLoS Comput Biol, 17, e1008871 (2021) 798 

Kiyonaga, A., Scimeca, J. M., Bliss, D. P. & Whitney D. Serial dependence across perception, 799 
attention, and memory. Trends Cogn. Sci. 21, 493-497 (2017) 800 

Lakshminarasimhan, K. J., et al. A dynamic Bayesian observer model reveals origins of bias in 801 
visual path integration. Neuron 99, 194-206 (2018) 802 

Liberman, A., Fischer, J. & Whitney, D. Serial dependence in the perception of faces. Curr. 803 
Biol. 24, 2569-2574 (2014) 804 

Mollon, J. D., Jenny M. Bosten, J. D., David H. Peterzell, D. H., & Webster, M. A. Individual 805 
differences in visual science: What can be learned and what is good experimental 806 
practice? Vision Research, 141, 4-15, (2017) 807 

Petzschner, F. & Glasauer, S. Magnitude estimation data. G-Node https://doi.org/10.12751/g-808 
node.21796b (2020) 809 

Petzschner, F. H. & Glasauer, S. Iterative Bayesian estimation as an explanation for range and 810 
regression effects: a study on human path integration. J. Neurosci. 31, 17220–17229 811 
(2011) 812 

Petzschner, F. H., Glasauer, S. & Stephan, K. E. A Bayesian perspective on magnitude 813 
estimation. Trends Cogn. Sci. 19, 285-293 (2015) 814 

Powell, G., Meredith, Z., McMillin, R. & Freeman T. C. Bayesian models of individual 815 
differences. Psychol. Sci. 27, 1562-1572 (2016) 816 

Roach, N. W., McGraw, P. V., Whitaker, D. J. & Heron, J. Generalization of prior information 817 
for rapid Bayesian time estimation. Proc. Natl. Acad. Sci. U. S. A. 114, 412-417 (2017) 818 

Shi, Z. & Burr, D. Predictive coding of multisensory timing. Curr Opin. Behav. Sci. 8, 200–819 
206 (2016) 820 

Shi, Z., Church, R. M. & Meck, W. H. Bayesian optimization of time perception. Trends Cogn. 821 
Sci. 17, 556-564 (2013) 822 

Thurley, K. Magnitude estimation with noisy integrators linked by an adaptive reference. Front. 823 
Integr. Neurosci. 10, 6 (2016) 824 

Vierordt, K. Der Zeitsinn nach Versuchen. (H. Laupp’sche Buchhandlung, Tübingen, 1868). 825 
 826 
Acknowledgements 827 
This work was supported by German Research Foundation (DFG) grants GL 342/3-2 and SH 828 
166/3-2. We thank Mauro Manassi, David Whitney, and Jason Fischer for pointing out that for 829 
stimuli on a circular scale the RSD is valid without causing artifacts, and that for the RSD 830 
permutation tests should be run as statistical sanity check.  831 
 832 
Data availability statement  833 
Data used in this publication are freely available as Glasauer & Shi (2021b) 834 
https://doi.org/10.12751/g-node.hdsam3 and Petzschner & Glasauer (2020), 835 
https://doi.org/10.12751/g-node.21796b. 836 
 837 
Author contributions 838 
SG and ZS wrote the main manuscript text and prepared the figures. All authors reviewed the 839 
manuscript. 840 
 841 
Competing interests 842 
The authors declare no competing interests. 843 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2022. ; https://doi.org/10.1101/2021.07.13.452167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452167
http://creativecommons.org/licenses/by/4.0/

