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Abstract

Perception of magnitudes such as duration or distance is often found to be systematically biased.
The biases, which result from incorporating prior knowledge in the perceptual process, can vary
considerably between individuals. The variations are commonly attributed to differences in
sensory precision and reliance on priors. However, another factor not considered so far is the
implicit belief about how successive sensory stimuli are generated: independently from each
other or with certain temporal continuity. The main types of explanatory models proposed so
far - static or iterative - mirror this distinction but cannot adequately explain individual biases.
Here we propose a new unifying model that explains individual variation as combination of
sensory precision and beliefs about temporal continuity and predicts the experimentally found
changes in biases when altering temporal continuity. Thus, according to the model, individual
differences in perception depend on beliefs about how stimuli are generated in the world.

Introduction

Magnitude estimates are pervasive in our daily activities, such as predicting forthcoming
events, estimating the travel distance, and precisely controlling our movements. However, we
also make perceptual errors. Some of these errors have been found to be systematic biases,
which have been investigated throughout the history of psychophysics. Two perceptual biases,
the central tendency effect (Vierordt 1868; Hollingworth 1910) and the sequential dependence
(Holland & Lockhead 1968; Cross 1973), are still hotly debated till today (Shi et al. 2013;
Fischer & Whitney 2014; Petzschner et al. 2015). The central tendency effect refers to a
systematic overestimation of small magnitudes and underestimation of large magnitudes,
whereas the sequential dependence (or ‘serial dependence’, Fischer & Whitney 2014)
designates that the current perceptual estimate depends not just on the current stimulus, but also
on stimuli given in the past. While both biases have long been accepted as inevitable properties
of magnitude perception, several quantitative theoretical accounts only emerged in the last
decade that linked them to perception being a form of Bayesian inference (Jazayeri & Shadlen
2010; Petzschner & Glasauer 2011; Cicchini et al. 2012; Roach et al. 2017). The concept of
Bayesian inference also provides an operational explanation for interindividual differences seen
in perception: Bayesian inference considers a perceptual estimate to result from a near-optimal
combination of sensory inputs and prior knowledge. The extent to which sensory input and
prior knowledge are weighted depends on the accuracy of sensory measurement and the
certainty of prior knowledge. When driving through fog, prior knowledge of the road ahead is
more important than on a sunny day. Thus, under the Bayesian framework, individual sensory
accuracy and precision about the prior knowledge (formalized as width of the prior distribution)
is commonly thought to explain inter-individual differences (Petzschner & Glasauer 2011;
Powell et al. 2016). For example, individual differences in color perception may reflect
different properties of the eye and retina (sensor) or contextual influences such as the
experienced environment (prior) (Mollon et al. 2017).

However, Bayesian perception offers an alternative account of individual differences: the prior
knowledge that is used to improve the sensory input depends on our implicit assumptions about
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how sensory stimuli are caused, or generated, in the external world. These assumptions, or
beliefs, are essential for predictions, which serve as prior knowledge: for example, if asked
what tomorrow’s temperature will be, we might answer something like ‘a little warmer/colder
than today’. That is, we assume that daily temperature changes by a random amount each day,
but that it will be similar on successive days. In contrast, in a standard psychophysical
experiment the stimuli presented to our participants are often drawn randomly from a fixed
distribution, just like numbers in a lottery, and they are thus independent from trial to trial.
Thus, a good guess (in the sense of small error) of predicting the value presented at the next
trial would be the mean of the stimulus distribution. In other words, when it comes to daily
temperature, a good estimator would use today’s temperature as prior knowledge for
tomorrow’s value. In contrast, when the stimulus value presented in a psychophysical
experiment is concerned, a useful prior knowledge would be the distribution of possible values.

Thus, when a sensory input is combined with prior knowledge using these two cases of
generative assumptions, the final estimate might differ substantially (Fig. 1)'. Hence, two
individuals that have such different beliefs about how sensory events are, or are not, linked over
time, may exhibit different perceptual biases. Bayesian theory suggests this possibility, but to
our knowledge this has not yet been investigated.

static model iterative model
|
stimulus esmmate p@sterlor
prior likelihoo initial prior
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Figure 1: Two estimation models (static and iterative) for magnitude perception. The static model uses static time-
independent prior knowledge (blue prior distribution), while the iterative model dynamically updates the prior
knowledge in each trial. In trial 1 (upper row), in both cases the prior knowledge (blue) and the stimulus (orange
line), to which a likelihood distribution (orange) is attached, are the same for both models. Thus, the estimate,
shown as posterior distribution (yellow) and computed by multiplying prior and likelihood, is also equal for both
cases, already showing the characteristic overestimation of small amplitudes. The black dashed line serves as
visual reference and is aligned with the mean of the initial prior. In trial 2 (middle row), the stimulus and likelihood
are again the same for both models, but the prior differs: the static model takes the same prior as in trial 1, because

! In the Bayesian estimation process, the estimate of the current stimulus is based on a posterior distribution,
which is the product between the likelihood distribution (describing the sensory uncertainty that is inherited from
the current sensory input) and the prior distribution (describing prior knowledge). The estimate can be the most
likely value from the posterior distribution, the maximum of the distribution, or other measures such as the
mean, and its uncertainty can also be derived.
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99  the underlying assumption is that all stimuli come from that distribution. In contrast, the iterative model uses the
100 estimate from the previous trial to predict the next stimulus distribution, which is used as new prior knowledge,
101 because it assumes that the new stimulus is similar to the old except for some random change. The two resulting
102 posterior distributions (yellow), and thus the perceptual estimates, differ considerably with the one for the static
103 model showing much smaller underestimation than that of the iterative estimate, even though the stimuli and
104 sensory accuracy is the same in both cases. The third row shows trial 3, in which the estimates of both models
105  come much closer again.

106

107  Both cases, however, are mirrored by explanatory perceptual estimation models found in the
108 literature. For example, Jazayeri and Shadlen (2010) proposed a model to account for the central
109  tendency in duration reproduction in which prior knowledge was formalized as fixed stimulus
110 distribution (as depicted in Fig. 1 as static model). By contrast, Petzschner & Glasauer (2011)
111  in a distance reproduction study proposed that the central tendency is a consequence of an
112 iterative Bayesian process, in which prior knowledge is iteratively based on the perceptual
113 estimate of the previous trial (like in the iterative model in Fig. 1), rather than assuming a fixed
114  prior. In the following years, various other similar explanations have been proposed, some of
115  them using iterative updating (Dyjas et al. 2012; Thurley 2016), others assuming static priors
116  (Cicchini et al. 2012; Roach et al. 2017). The common idea of these models is that the central
117  tendency bias is a by-product of optimizing the perceptual estimates using prior knowledge
118  when sensory input is uncertain.

119

120 While both types of models can successfully explain the central tendency bias, they make very
121  different predictions about sequential dependence, the second type of bias: only the iterative
122 updating models predict sequential dependence for randomly distributed stimuli. In a model
123 with static prior, the perceptual estimates are independent from trial to trial.

124

125  In the present paper, we show that experimental results from duration estimation and distance
126  estimation show sequential dependence and thus favour iterative models of perceptual
127  estimation. However, we demonstrate that neither the static nor the iterative mathematical
128  models found in the current literature can fully explain the interindividual differences. We thus
129  propose a Bayesian model that not only explains these differences, but also allows to predict
130 individual behaviour in a novel experimental situation. Our results thus clearly support the idea
131  that individual variations in perceptual biases are indeed a consequence of differing beliefs
132 about the temporal continuity of stimulus generation.

133

134  Results

135

136  We examined central tendency and sequential dependence in three experimental data sets of
137  magnitude estimation: one from duration reproduction (Glasauer & Shi 2019, 2021; data
138  published as Glasauer & Shi 2021b), and two from linear and angular distance reproduction
139  (Petzschner & Glasauer 2011, data set published as Petzschner & Glasauer 2020).

140

141  The first dataset comes from a duration reproduction study (preliminary data were presented in
142 Glasauer & Shi 2019, 2021; data are published as Glasauer & Shi 2021b). In the experiment,
143 subjects (n=14, 7 female, average age 27.4) had to reproduce a visually presented stimulus
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144 duration by pressing and holding a key (see Fig. 2, inset). Each subject received a random
145  sequence of 400 stimulus durations between 400 and 1900 ms. We quantified both the
146  sequential dependence and the central tendency effect using simple linear regression (see
147  Materials and Methods for the detailed method). Fig. 2 shows an example of individual raw
148  results plotted for evaluation of central tendency (Fig. 2A) and sequential dependence (Fig.
149  2B). The relation of sequential dependence and central tendency for all individual participants
150  is depicted in Fig. 2C. Note that, as mentioned in the introduction, perceptual estimation with
151  a fixed prior (see the static model in Fig. 1) would predict that sequential dependence is zero
152 independently of central tendency.
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153

154 Figure 2: Central tendency and sequential dependence in a duration reproduction experiment. Inset: schematic
155 procedure of a single trial. A visual cue is shown on a screen to indicate stimulus duration (production phase).
156 Reproduction is performed by pressing a button (see also Glasauer & Shi 2019, 2020, and Materials and Methods
157 for details). A & B: Raw data (blue dots) from one subject (400 trials). Stimuli were presented in random order.
158 A: Reproduced duration plotted over stimulus duration; the central tendency is shown by the regression line (blue).
159  B: Error (response-stimulus) in the current trial plotted over the stimulus duration of the previous trial. The
160 sequential dependence is shown by the blue line. C: Sequential dependence plotted over central tendency for all
161 subjects (n=14). Error bars denote standard error of the mean. The data point resulting for the single subject data
162 presented in A and B is indicated by a purple circle. The orange parabola shows the predicted relation for the
163 iterative model depicted in Fig. 1 (see SI Appendix A3: Serial dependence for an iterative Bayesian model).

164

165 However, individual responses show a large scatter for both central tendency and sequential
166  dependence. The mean sequential dependence was 0.108 + 0.056 (mean = SD), which is
167  significantly different from zero (p < .0001; z-test, n = 14) and thus ruled out the static model
168  as valid explanation for the results. In fact, all data points show higher sequential dependence
169  than predicted by the static model (zero). We also conducted a partial correlation analysis and
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170  calculated the correlation coefficient between current error and previous stimulus after
171  controlling for the current stimulus. The average partial correlation coefficient was 0.197 +
172 0.068 and significantly different from zero (p < .0001; #-test, n = 14). For comparison, the
173 corresponding partial correlation coefficient between error and current stimulus, after
174  controlling for the previous stimulus, was -0.623 + 0.156 (p < .0001; #-test, n = 14), again
175  revealing the central tendency.

176

177  As mentioned before, the sequential dependence larger than zero rules out the static prior as an
178  explanation for the central tendency. However, in the iterative model (Fig. 1), sequential
179  dependence is expected to occur, because the last posterior distribution is used as new prior in
180  the next trial, thus introducing a temporal dependence across trials. When using this updating
181  procedure (Glasauer 2019; see Materials & Methods for the model definition), the model
182  predicts a fixed parabola relation between central tendency and serial dependence, shown in
183  Fig. 2C (for a derivation see SI Appendix A3). However, individual serial dependence not only
184  shows values higher than zero (the prediction of the static model), but also lower than the
185  prediction of the iterative model. The average difference between the observed sequential
186  dependence and that predicted by the iterative model was significant, (mean = SD: -0.112 +
187  0.053, p <.0001; t-test, n = 14), showing that also the iterative model cannot adequately predict
188  the sequential dependence. It should be noted that the steady state of the iterative updating is
189  equivalent to the “internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014) proposed
190  for duration estimation.

191

192 We also analysed a publicly available data set on distance reproduction (Petzschner & Glasauer
193 2020) published previously (Petzschner & Glasauer 2011), using the same method. The data
194 come from two separate experiments on visual path integration, one on linear distance
195  reproduction and one on reproduction of angular distance (see Materials and Methods). While
196  Petzschner and Glasauer (2011) showed that their iterative model could well capture the central
197  tendency, they did not analyse sequential dependence. Fig. 3 shows the equivalent analysis as
198  above for the two path-integration experiments (Petzschner & Glasauer 2011). For the linear
199  distance reproduction, the average sequential dependence is 0.100 = 0.045 (mean + SD). For
200  the angular distance reproduction, it is 0.119 £ 0.057 (mean + SD). As for duration
201  reproduction, the data for the two distance reproduction experiments confirms that neither the
202  static nor the iterative model can capture the sequential dependence sufficiently well (all ps <
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206 Figure 3: Sequential dependence for distance (A) and angular (B) reproduction plotted over central tendency for
207 all subjects. Distance and angular reproduction data come from Petzschner & Glasauer 2011, data published as
208 Petzschner & Glasauer 2020, each point corresponds to 540 trials. Error bars denote standard error of the mean.
209  The same analysis was applied as in Fig. 2C.

210

211  The present data also show that the individual variation in biases cannot be explained by

212 individually different levels of sensory uncertainty: under the assumption of a static model,
213 changing sensory uncertainty would not lead to different levels of sequential dependence; if
214 the iterative model was underlying perceptual estimation, variation of sensory uncertainty

215  would still confine the individual biases to the orange line in Figs. 2C, 3A, and 3B.

216

217  From Figs. 2 and 3 we can see that for all individual data points the predictions of the two
218  models considered so far seem to be boundary conditions. Neither is any of the individual bias
219  values located below zero for sequential dependence, nor is any of them above the orange
220  parabola denoting the iterative model. The obvious conclusion is that individual participants
221  seem to follow beliefs that lie between the two extremes expressed by the static and simple
222 iterative models, which assume 1) the sampled stimuli are random and independent, or 2) the
223 current stimulus is equal to the previous plus some random change. An intermediate belief about
224  stimulus generation can be described as follows: assume that the stimulus on the current trial
225  has been drawn from a stimulus distribution, but that the mean of that distribution is allowed to
226  change randomly from trial to trial. Regarding our first example of daily temperature changes,
227  this assumption is also reasonably applicable.

228

229  From this assumption we can now construct a new estimation model, which requires two
230  variables to be estimated: in addition to estimating the current stimulus, the perceptual process
231  also needs to estimate the mean of the current stimulus distribution. Therefore, the model
232 requires two internal states. The new model is an extended iterative model, more flexible than
233 the simple iterative model depicted in Fig. 1. Since it comprises the static and iterative models
234  of Fig. 1 as boundary conditions, the model is capable of simulating the individual biases of all
235  three experiments (Fig 2C, 3A, 3B), but it comes with an increase of the number of free
236  parameters from two to three (see Materials & Methods for model equations).

237  To find out whether the new model is indeed superior in fitting the experimental data, we fitted?
238  the extended (two-state) iterative model (3 free parameters per subject) to the individual data
239  of the duration experiment to evaluate whether the model would capture not only the central
240  tendency but also the sequential dependence better than the simpler alternatives. An example
241  time course of raw data (stimulus and response) together with best-fit simulation is shown in
242 Fig4A (see also SI Appendix C: fits to mean responses in Fig. S4A). Note that the fit minimizes
243 the least-squares distance between the individual responses and the model simulation, with the
244  models receiving as input the trial-to-trial time course of the stimuli in the same order as
245  presented to the individual participant.

246

2 Model simulation performed after transforming the stimulus data to the log-domain, as done previously
(Petzschner & Glasauer 2011; Roach et al. 2017), to account for the dependence of the variance on stimulus size
(Weber-Fechner law). Fitting was done by minimizing the least-squares distance between trial-wise response and
simulation in the linear domain.
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247

248 Figure 4: A: Time course of stimulus (magenta) and reproduction (green) from one participant (same data as in
249 Fig. 2A,B) together with best fit of the two-state model (light blue). The model fitting minimized the least-

250 squares distance between reproduction (green) and simulation (light blue). The input to the model was the trial-
251 by-trial stimulus time course (magenta). The few outliers (e.g., around trial 105 or 320) were not removed for
252 model fitting. B, C: Comparison of experimental data (x-axis) and model simulation (y-axis) for central

253 tendency (B) and absolute sequential dependence (C) for all three models and all participants. Each dot

254 represents one participant. The central tendency is captured correctly by all three models (values close to the
255 diagonal), whereas the model values for sequential dependence are too small for the static model (blue dots,
256 close to zero), and too large for the simple iterative model (red dots). Values for the two-state model lie closer to
257  the diagonal in most cases. Cases for which the two-state model was the best model according to cross-validation
258 are highlighted by circles: for 8 of 14 participants, the two-state model was superior, while in the remaining 6
259 cases the static model was sufficient to explain the data.

260

261  The static model and the simple iterative model are special cases of the new two-state model:
262  both are nested within the two-state model. Therefore, one can determine whether the
263  parameters that are set to zero for the simpler models differ significantly from zero in the full
264  model. On average, both parameters (Parameter 1: the relative variability of the stimulus
265  distribution, and Parameter 2: the relative variability of the additive change of the mean) of the
266  full model were significantly different from zero (Parameter 1: 1.03 + 0.28, mean + SEM, #-test
267  p <.01; Parameter 2: 0.14 £ 0.05, mean + SEM, #-test p = 0.025; both n = 14). In individual
268  participants, the relative variability of the stimulus distribution differed significantly from zero
269  (assessed via confidence intervals of the parameters) for all subjects (range 0.20 to 4.12), while
270  the variability of the additive change differed from zero only for 6 of 14 subjects (range 0 to
271 0.66). To determine which model was more appropriate for fitting the data, we used an out-of-
272  sample cross validation procedure specifically suited for model selection in time series (Arlot
273 & Celisse 2010). According to this cross-validation procedure (see Materials and Methods), the
274  two-state model is the preferable model for 8 of 14 participants, while for the remaining 6
275  participants the static model is sufficient (Fig. 4B,C). A comparison of the values for central
276  tendency and absolute sequential dependence derived from the data and from respective model
277  simulations is presented in Fig 4B and 4C. In case of perfect fit, all points should lie on the
278  diagonal. While all three models capture well the central tendency (Fig. 4B), the simulated
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serial dependence is too small for the static model but too large for the simple iterative model
(Fig. 4C), while the two-state model matches the data reasonably well.

While the results so far confirm that the two-state model provides a quantitative explanation
for central tendency and sequential dependence at lag one (i.e., dependence on the previous
stimulus), due to its iterative nature the two-state model also predicts dependence of the
current error on stimuli further in the past. That this is indeed the case also experimentally can
be shown by cross correlation analysis: for duration reproduction, the cross correlation
between stimulus and reproduction is, on average, significantly different from zero up to lag 3
(t-test; lag 2: p = 0.0007; lag 3: p = 0.039; n = 14; supplementary Fig. S5).
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Figure 5: Average data for the duration reproduction experiment (black dots) together with average simulation
result for the best fit iterative two-state model (open dots). Stimuli were presented in randomized order. A:
Reproduction error as a function of the current target duration (R>=0.964). B: Sequential dependence shown as
reproduction error plotted over previous target duration (i.e., R>=0.803). C: Reproduction error as a function of
the target duration two trials in the past (R?>=0.834). Data points are averages of 7 to 14 subjects (only 7 subjects
received long durations above 1.7 s); error bars denote SEM. For the model simulation, the model (three free
parameters) was fitted individually to the trial-by-trial time course of the responses of each subject (same fits as
for Figure 4). From theses individual simulated response time courses, the average simulation was computed in
the same way as for the real response time courses. Note that not only average mean data and simulated responses
match, but that also the size of the error bars is captured quite well by the model.

The averaged experimental results for duration reproduction together with the averaged model
results for dependence of error on current and previous stimuli is shown in Fig. 5 (see also SI
Fig. S4). Note that the model was fitted to each individual trial-by-trial reproduction time
course separately by minimizing the trial-wise least-squares distance between experimental
reproduction and model simulation. Thus, the good match shown in Fig. 5B and 5C,
quantified by a high coefficient of determination R?, is caused by the model mimicking the
experimental sequential dependence without explicitly including it in the fitting procedure.
This is not a trivial consequence of the model fit, as shown by the fact that both static and
simple iterative models can fit the central tendency equally well (i.e., the dependence shown
in Fig. 5A), but fail to correctly exhibit the sequential dependence shown in Fig. 5B and 5C
(see SI Appendix C1).
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314 Figure 6: Sequences of stimuli generated by the three models. The sequences for the iterative and two-state model
315 have been generated such that their histograms resemble that of the static sequence. A: histograms. B:
316 autocorrelation. C: first 200 samples of all three sequences. The variances of the two-state model were chosen so
317 that the autocorrelation at lag 1 equals approx. 0.66.

318

319  As explained above, the models (static, iterative, two-state) make different assumptions about
320 how stimuli are generated, e.g., the static model assumes independent and identically
321  distributed (i.1.d.) random variables. Fig. 6 shows histograms, autocorrelation, and time course
322 of exemplary stimulus sequences generated according to the assumptions of the three models.
323 The stimulus sequences of the iterative models (iterative, two-state) have been generated so that
324  their histograms are similar to the histogram of the static model’s sequence (quantified by
325 minimizing the Kullback-Leibler divergence). While the histograms are reasonably similar
326 (Fig. 6A, KL divergence < 0.01), the autocorrelation differs considerably (Fig. 6B). As
327  expected, the sequence for the static model, which is a Gaussian noise sequence, shows no
328  sequential dependence between current and previous values, while the two iterative models
329  generate sequences with autocorrelation at higher lags. The sequence generated by the simple
330 iterative model is a Wiener process or random walk, while the sequence of the two-state model
331 is a superposition of a random walk and Gaussian noise. The corresponding exemplary time
332 courses are shown in Fig. 6C: the blue time course (i.1.d. stimuli) would be optimal for the static
333 model, the red random walk time course is optimal for the simple iterative model, and the
334  yellow trace, being a compromise between randomness and slow drift would be optimal for the
335  two-state model.

336

337  This implies that the result of the estimation process depends on how well the stimulus sequence
338  is matched to the model assumptions about stimulus generation. Using an iterative model is
339  suboptimal for an 1.1.d. sequence, and, vice versa, using the static model is not the best solution
340  for estimation a random walk sequence.

341
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344 Figure 7: Example data from one participant and model results. A: Data (blue) and model simulation (best fit to
345 two-state model, red) for the ‘randomized’ condition of the duration reproduction experiment. Same data as in Fig.
346 4A. Lines are linear least squares fits to the data showing that the model replicates the central tendency. B: Data
347 (blue) and model prediction (red, model and parameters same as in A) for the ‘random walk’ condition, in which
348 successive stimuli were similar. It can clearly be seen that in this subject the central tendency dramatically changed,
349 which was predicted by the model. C: Data from A and B plotted over trial. The same stimuli were used in both
350  conditions.

351

352  We tested this implication by analysing the second condition of the duration reproduction
353  experiment, in which the same stimuli as analysed above, were presented in a random walk
354  order to the same participants (see also Materials and Methods). Since we suspected that the
355 remaining central tendency in the random walk condition and the change in sequential
356  dependence could be explained by the new two-state model introduced above, we used the
357  individually fitted model parameters obtained from the randomized condition to predict the
358  individual time courses of the random walk condition. In this condition, subsequent stimuli are
359  similar to each other (example in Fig. 7C), just as supposed by the generative model of the
360 simple iterative Bayes (see Fig. 6C, red time course, for an example of such a random walk).
361  As explained in our previous paper (Glasauer & Shi 2021), this condition tests the prediction
362  of the simple iterative and the Petzschner & Glasauer (2011) explanatory models, which both
363  predict that the central tendency vanishes in the random walk condition. An example of the
364  effect of changed stimulus order on central tendency is shown in Fig. 7A (randomized
365  condition, replotted from Fig. 2A). and Fig. 7B (random walk condition) for one participant. In
366 this participant, the central tendency seen for randomized stimulus order (Fig. 7A) almost
367  vanishes for the random walk stimulus order (Fig. 7B).

368
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369  On average the data show that the central tendency indeed decreased substantially and was
370  significantly smaller during random walk (#(13) = 7.32, p <.0001; see Fig. 8A). However, it
371  did not completely vanish and was still larger than predicted by these previous models
372 (Glasauer & Shi 2021). For some subjects, the central tendency was no longer different from
373  zero (see example data in Fig. 7), while for others it clearly was still visible. Sequential
374  dependence also changed and became on average negative with a significant difference between
375  conditions (Fig. 8B; #(13) =5.25, p <.001).

376
06 central tendency 015 sequential dependence
—4—data
0.5 —&—model 0.1
0.05
O [N

-0.05

-0.1

-0.15
377 randomized random walk randomized random walk

378 Figure 8: Summary of average results for both conditions of the duration reproduction experiment. Blue: data;
379  orange: model. Error bars indicate standard error of the mean. A: Central tendency is significantly smaller during
380 random walk (t-test, n= 14, p <0.0001). B: Sequential dependence becomes on average negative with a significant
381 difference between conditions (t-test, n=14, p = 0.00016). In A and B, the model values for the randomized
382  condition are averages from the fitted simulation, while model values for the random walk condition are averaged
383  predictions using the model parameters from the randomized condition.

384

385  Figure 9 shows the averaged experimental results together with the averaged model prediction.
386  Both central tendency (Fig. 9A) and sequential dependence (Fig. 9B and 9C) are well-predicted
387 by the model, showing that the central tendency remaining in the random walk condition is
388  explained by the generative assumption of the two-state model (see also red model results in
389  Fig. 8). Note that the similarity of the error dependence on current and previous stimuli in the
390 random walk condition shown in Fig. 9 is expected, since stimuli in this condition are highly
391  autocorrelated, i.e., the current stimulus is indeed similar to the stimuli preceding it (and thus
392 the reproduction error is similar when plotted over current or previous stimuli).

393
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395
396  Figure 9: Average data for the ‘random walk’ condition of the duration reproduction experiment (black dots), in
397  which successive stimuli were similar, presented together with averaged model predictions (not fits) of the iterative
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two-state models used in Fig. 5 (open dots). Stimuli are the same as in Fig. 5 except for the order of presentation.
Model parameters were determined from fitting the ‘randomized’ condition and are the same as used in Fig. 5. A:
Reproduction error as a function of the current target duration (R?>=0.629). B: Reproduction error as a function of
the previous target duration (R?=0.544). C: Reproduction error as a function of the target duration two trial in the
past (R?=0.428). Data points are averages of 7 to 14 subjects (only 7 subjects received long durations above 1.7
s); error bars denote SEM. Average model predictions are calculated from trial-by-trial predicted individual time
courses using the parameters corresponding to Fig. 5.

Discussion

In this paper, we analysed the relation between the central tendency and sequential dependence
for magnitude reproduction with two aims: to distinguish between static and iterative models
proposed in the literature to explain the central tendency bias, and to reveal the origin of
individual differences seen experimentally. We analysed three datasets, one from duration
reproduction and two from path integration, to evaluate which model can better explain
magnitude reproduction regarding both the sequential dependence, quantified as current error
depending on previous stimulus magnitude, and the central tendency effects. Effects of
immediate prior experience on current decisions have been reported for various cases in the
psychological literature (e.g., Cross 1973, Fischer & Whitney 2014, Liberman et al. 2014), and,
as we show here, they are also clearly visible in experiments on magnitude reproduction. The
average sequential dependence found in duration and distance reproduction differed
significantly from zero, which clearly demonstrates that the response error of the current trial
depends on the stimulus from the last trial. This contradicts static models as explanation for
perceptual biases because they imply no influence of the previous trial. Consequently, several
previously published static trial-independent models can be ruled out (Jazayeri & Shadlen 2010,
Roach et al. 2017, Lakshminarasimhan et al. 2018). Even though the static models fit the central
tendency well in experiments with random stimulus presentation (see Fig. 4B), the explanation
for this bias offered by the static models is only partially correct. The fundamental assumption
of the static models, a fusion of the sensed stimulus with prior information about the stimulus
range, is not completely wrong, except that the prior is not static, as shown by the significant
sequential dependence. Rather, the prior is updated trial-by-trial so that information from the
immediate previous trial is used for the current estimate. Due to the iterative nature of Bayesian
estimation with the posterior as basis for the new prior, not just the previous stimulus (as
proposed by Cicchini et al. 2018), but also stimuli further in the past can still exert an influence
on the present response. This difference between static and iterative models has important
consequences for understanding the processes that lead to the perceptual results: while the
results of static and iterative models look similar with respect to the central tendency, the
internally represented priors, the underlying assumptions about stimulus generation, and the
predictions for the sequential dependence are completely different.

Like the static prior model, the simple iterative model proposed previously (e.g., Dyjas et al.
2012; Glasauer 2019) predicts the central tendency effect very well but falls short in accounting
for the experimentally observed sequential dependence. The simple iterative model assumes
that stimuli remain similar from trial to trial with a random fluctuation. This assumption
corresponds to stimuli being generated by a random walk or discrete Wiener process. According
to this assumption, the overall variance of the stimuli builds up over the trials. By contrast, the

13


https://doi.org/10.1101/2021.07.13.452167
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452167; this version posted January 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

444  static model assumes that the stimulus distribution has a fixed variance, and a fixed mean. The
445  generative assumption for the iterative model also implies a stimulus sequence that differs
446  considerably from that of the static model: it resembles Brownian motion or a diffusion process
447  1in one dimension rather than a random sequence (see Fig. 6C for examples). Both the static and
448  the simple iterative models provide predictions concerning the sequential dependence: the static
449  model predicts zero sequential dependence, the iterative model predicts that, in case of random
450  stimuli, sequential dependence depends on central tendency in a predictable way (see red curve
451 in Figs. 2C and 3). The empirical data, however, showed that neither of these two models
452  captures the experimental relation between central tendency and sequential dependence.

453

454  Therefore, we proposed the two-state model that combines the static and the simple iterative
455  models and assumes that the stimulus at each trial comes from a distribution with fixed variance,
456  but that the mean of that distribution changes from trial to trial. By merging the assumptions of
457  static and simple iterative models about stimulus generation, both the central tendency effect
458  and the absolute sequential dependence can be well explained. According to the two-state
459  model, the considerable variations between participants are not only caused by different impact
460  ofnoise on sensory measurement, but also because of different beliefs concerning the sequential
461  structure of the stimuli. As an example, in Fig. 2C, of two participants with approximately the
462  same central tendency of 0.42, one had a sequential dependence of 0.03, the other of 0.17. This
463  difference reflects the observers’ own supposition about the sequential structure: the participant
464  with a low sequential dependence assumed the world is volatile and trusted only the current
465  stimulus together with a hypothesis about the limited range of stimuli for perceptual estimates.
466 By contrast, the participant with a large sequential dependence agreed about the randomness of
467  the world but further assumed that things change over time with some continuity. For perceptual
468  decision-making task, it has recently been suggested that individual differences are due to
469  different implicit assumptions about the complexity of a sequence (Glaze et al. 2018). In their
470  study, participants had to infer from which of two possible Gaussian sources the current visual
471  stimulus was drawn. The true source was randomly switched with a hazard rate that could
472  change. The authors proposed that a bias-variance trade-off was the underlying reason for
473  differences in choice variability. While this study is very different from ours, both have in
474  common that the implicit beliefs of participants about the temporal volatility of stimulus
475  generation are the reason for individual differences.

476

477  The present investigation also suggests that an observer’s belief about the world’s sequential
478  structure is carried over from one experimental condition to another instead of being adapted
479  to an individual condition: the model parameters derived from the randomized condition of
480  duration reproduction provided an excellent prediction of the experimental results of the
481 random walk condition, even though both conditions varied exactly (and only) by their
482  sequential structure. Thus, participants in these experiments did apparently not adapt their
483  beliefs to the actual temporal structure of the stimuli but relied on their individual hypothesis.
484  However, whether these beliefs can be altered, for example by feedback, or reflect intrinsic
485  personality traits warrants further investigation. A recent study on the perception of probability
486  emphasized that average results do not provide the full picture and that individuals deviated
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487  substantially from optimal performance, with these idiosyncratic deviations persisting over a
488  long time (Khaw et al. 2021).

489

490  Another question is whether the two-state model can encompass the full spectrum of empirical
491  wvalues for central tendency and sequential dependence. The two-state model predicts that
492  sequential dependence should, with randomized stimuli, not exceed the value predicted by the
493  simple iterative model, that is, the quadratic relationship with central tendency (red curve in
494 Figs. 2C and 3), which has a maximum at 0.25. Indeed, this is the case for the three experiments
495  we validated here. Note, however, that this is not a trivial result: for example, a model proposed
496  previously to explain sequential dependence in visual orientation reproduction (Cicchini et al.
497  2018) predicts sequential dependence that is approximately equal to central tendency and can
498  assume values as large as 0.5 (see SI Appendix D). While their model cannot explain the data
499  presented here, it shows that there are alternatives to the two-state model, which would allow
500  sequential dependence larger than 0.25. However, in our experiments, sequential dependence
501  did not, for any of the tested participants, exceed the theoretical maximum postulated by the
502  two-state model across three different tasks, which again suggests that our model provides a
503  good explanation for the participants’ behaviour.

504

505  One might wonder about the purpose of integrating immediate prior information into a current
506  decision, given that it may cause an estimation bias. One common explanation is that the
507  regularity of our environment is relatively stable, so that integrating prior knowledge will boost
508 the reliability of the estimation and facilitate performance (Petzschner et al. 2015, Shi et al.
509  2013). For a visual orientation reproduction task (Cicchini et al. 2018), the authors argued that
510  sequential dependence provides a behavioural advantage manifesting with low reaction times
511  and high accuracy. When the stimuli are similar between trials, it is useful to use the last
512 perceived stimulus as prior. This assumption about the sequential structure is included in the
513  generative assumption of the two-state model: the stimulus of the current trial is assumed to be
514  similar to that of the last trial, since it comes from a distribution with a similar mean. However,
515  the mean of the sampled stimuli also fluctuates over time, which makes the two-state model
516  more flexible than a static model. That is, observers do not assume that the randomness of the
517  external environment is strictly stable, but rather expect variations and changes.

518

519  Next, the question arises whether the proposed two-state model is optimal for the usual
520  experimental situations with standard randomization. That is, stimuli are randomly generated
521  as i.1.d. process from a fixed, pre-defined distribution, which has become a ‘standard’
522  experimental procedure since Vierordt’s work in 1868. The answer is obvious: the two-state
523 model is not optimal, given that the stimuli are randomly drawn from a fixed distribution. Using
524  the last trial to estimate the current would deteriorate rather than improve the quality of the
525  estimate. However, as evidenced by the significant sequential dependence, instead of believing
526  the stimuli are randomly generated, most of our participants assumed that there is at least some
527  temporal continuity in the stimulus sequence. According to both the simple iterative model and
528  the two-state model, for these participants, the overall central tendency bias should be smaller,
529  if the stimulus sequence is changed so that stimuli are indeed similar from trial to trial. This
530  was validated by showing in our previous study (Glasauer & Shi 2021) that the central tendency

15


https://doi.org/10.1101/2021.07.13.452167
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452167; this version posted January 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

531  insequences with complete random stimulus order was larger than in sequences with random-
532 walk fluctuation. Here we showed that this decrease in central tendency and, more importantly,
533  the remaining central tendency, is well-predicted by the two-state model on an individual basis.
534  The model also predicts the experimentally found reversal of sequential dependence (compare
535  the positive dependence in Fig. 5B and the negative dependence in 9B). Consequently, our
536  model simulations together with the experimental data show that the individual assumptions
537  about stimulus generation are stable over experimental conditions and are not adapted to the
538  true temporal continuity (or transition probability) between stimuli.

539

540  Finally, our results show that the individual differences that are expressed in different values of
541  central tendency and sequential dependence are not only due to differences in sensory noise,
542 but reflect major differences in the underlying generative model, that is, in the assumptions
543 about how stimuli are generated in the world. While some participants behave as if stimuli are
544  generated almost independently from each other, just like when sampling from a random
545  distribution, others show strong sequential dependence and thus assume that subsequent stimuli
546  are similar in magnitude and depend on each other. While, on average, the perceptual system
547  of participants seems to be optimized for random stimuli the distribution of which slowly
548  changes over the time, the individual differences in belief about stimulus generation are not
549  negligible.

550

551  In summary, our two-state iterative model assumes that the magnitude percept is an integration
552 of'sensory input and an updating prior knowledge. This updating can be conceived as assuming
553  that stimuli come from a distribution the mean of which fluctuates from trial to trial. The model
554  explains the individually different link between sequential dependence and central tendency as
555  resulting from distinctive assumptions about the sequence structure, which differ among
556  participants. It thus allows not only modelling the average responses of participants but also
557  elucidates the reason for their variability: the assumptions behind the perceptual estimation
558  process vary from person to person. The same world looks different for each of us, even when
559  considering such a basic ability as perceiving magnitudes.

560
561  Materials and Methods
562
563 Duration reproduction
564

565 14 naive volunteers (7 female, 7 male, average age 27.4) participated in the experiment, which
566  was approved by the ethics committee of the Department of Psychology at LMU Munich. A
567  yellow disk (diameter 4.7°, 21.7 cd/m?) was presented as visual stimulus on a 21-inch monitor
568 (100 Hz refresh rate) at 62 cm viewing distance wusing the Psychtoolbox
569  (http://psychtoolbox.org). Each trial started after 500 ms presentation of a fixation cross
570  followed by the stimulus which appeared for a pre-defined duration. After a short break of 500
571  ms participants were prompted to reproduce the duration of the stimulus by pressing and
572 holding a key. The visual stimulus was shown again during key press. At the end of the trial, a
573  coarse visual feedback was given for 500 ms (5 categories from < -30% to > 30% error). Each
574  participant performed two blocked sessions in balanced order. In the random walk condition,
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575  participants received 400 stimuli generated by cumulative summation (integration) of randomly
576  distributed values from a normal distribution with zero mean and a SD that was chosen to yield
577  stimuli between 400 ms and 1900 ms. In the randomized condition, the same 400 stimuli were
578  used in scrambled order. Each participant received a different sequence (see Fig. 4A for an
579  example). The data have been used previously (Glasauer & Shi 2021) and are publicly available
580  (Glasauer & Shi 2021Db).

581

582  Distance reproduction

583

584  The experimental procedure has been published previously (Petzschner & Glasauer 2011) and
585  the data are publicly accessible (Petzschner & Glasauer 2020). Briefly, 14 volunteers (7 female,
586 7 male, aged 22-34 years) participated. Stimuli were presented in darkness on a computer
587  monitor as real-time virtual reality using Vizard 3.0 (Worldviz) depicting an artificial stone
588  desert consisting of a textured ground plane, 200 scattered stones placed randomly, and a
589  textured sky. Participants used a joystick to navigate. Estimation of travelled distances and of
590 turning angles was tested separately under three different conditions (different ranges of
591  distances or angles, see Fig. S5 and S6, 200 trials per condition) in a production-reproduction
592  task. For distance estimation, participants were instructed to move forward on a linear path until
593  movement was stopped when reaching the randomly selected production distance (same
594  sequence for all subjects) and then had to reproduce the perceived distance in the same direction
595  using the joystick and indicate their final position via button press. Velocity was kept constant
596  during movement but randomized up to up to 60% to exclude time estimation strategies. No
597  feedback was given. For angular turning estimation, the procedure was the same except that
598  subjects had to turn.

599

600  Data analysis: central tendency and sequential dependence

601

602 To quantify central tendency, a linear least-squares regression was fitted to stimulus
603  reproduction plotted over stimulus duration for each participant individually using Matlab (The
604  Mathworks, Natick MA, USA). Central tendency was defined as 1-slope of the regression line.
605  Sequential dependence was assessed by fitting a linear least-squares regression to the error in
606 trial k plotted over the stimulus in trial &1 (Holland and Lockhead 1968). Note that in the
607 literature the sequential dependence (also called serial dependence) is often quantified as
608  current error plotted over the difference between previous and current stimulus (e.g., Fischer &
609  Whitney 2014, Bliss et al. 2017, Kiyonaga et al. 2017, Clifford et al. 2018, Cicchini et al. 2018).
610  However, this method is not appropriate for stimuli on an open linear scale as in the present
611  work (see SI Appendix A).

612

613  Modelling: Static Bayesian model

614

615  Given a set of stimuli x; drawn from a normal distribution on an open scale with mean x, a
616  simple static model for the perceptual response y; would be:

617 yi =wx; + (1 —w)x (1)
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618  with the weight w being determined by using the variance of the stimulus distribution and the
619  variance of the measurement noise. Note that the model assumes that y; only depends on the
620  current stimulus Xx;, but not on the previous one. The fixed prior of the model could be the mean
621  of the stimulus distribution X. In this model, the central tendency is given as ¢ = 1 — w. Since
622  in this model the current response does not depend on the previous stimulus, the sequential
623  dependence is zero regardless of the central tendency (see SI Appendix A2).

624

625  Modelling: Iterative Bayesian model

626

627  For an iterative or dynamic model, the quantification of sequential dependence should yield an
628  effect, given that in such a model the actual response is defined to depend on both the current
629  and the previous magnitudes. The simplest iterative Bayesian model (Fig. 1) can be derived
630  from two assumptions for the underlying generative process (Glasauer 2019): 1) the stimulus
631  atthe current trial is the same as the one on the previous trial plus some random fluctuation and
632 2) the sensation of the stimulus is corrupted by measurement noise. For normally distributed
633  fluctuations and noise, the Bayesian optimal estimator model can be written as Kalman filter.
634  When the Kalman gain k of the model reaches its steady state (usually after few trials), its
635  equations simplify to a weighted average, so that the response y; at trial i becomes

636 yi=kx;+ (1 —k)yi—1 (2)
637  with x; being the current measurement of the stimulus and y;_; the estimate at the preceding
638 trial i — 1 (Glasauer 2019). Note that for a fixed k this model is equivalent to the so-called
639  “internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014).

640

641  For this iterative model, the relationship between the central tendency and the sequential
642  dependence s can be determined analytically for randomly presented stimuli (see SI Appendix
643  A3)as

644 s=1-¢)-c 3)
645  According to Eqn. 2, the central tendency is given as ¢ = 1 — k. Intuitively, the extreme case
646  with k = 0 causes the current response to completely depend on the initial response y, (which
647  may be arbitrary) and does not change at all; therefore, the sequential dependence becomes
648  zero. On the other extreme, with k = 1 the response is veridical (y; = x;), always equal to the
649  current stimulus, and independent of the previous, which also yields zero sequential
650  dependence. The maximum expected sequential dependence is 0.25 for central tendency 0.5
651  (see Fig. 2C, orange curve). Thus, for central tendencies found experimentally, there exists a
652  distinct testable difference between the static model (sequential dependence 0 and independent
653  of central tendency) and the simple iterative model.

654

655  Generative assumptions

656

657  Here we reconsider the difference between the generative assumptions of the static and iterative
658 models. In both models, measurement noise r corrupts the actual sensory input. Thus, it is
659  helpful to estimate the stimulus using additional prior information.

660 - The static model assumes that the stimulus x; in trial i comes from a distribution
661 D(m,v) with a constant mean m and variance v. We thus can write the generative
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662 model as x; = m + ¢, with &, being a random number coming from a distribution
663 D(0,v).

664 - The iterative model assumes that the stimulus x; in trial i is the same as in trial i — 1
665 except for some random change with variance q. In other words, the generative model
666 isx; = x;_4 + &, with &, coming from a distribution D (0, q).

667

668  From these assumptions we can construct a third generative model, the two-state model, that
669  combines advantages of both models:

670 - The two-state model assumes that the stimulus x; in trial i comes from a random
671 distribution D (m;_, v) with mean m;_; and variance v. The mean of this distribution
672 in trial i is the same as in trial { — 1 except for some random change with variance q. In
673 other words, the stimulus distribution in the current trial depends on that in the previous
674 trial. The generative model now has two states: the randomly changing mean of the
675 stimulus distribution m; = m;_; + &, and the actual stimulus x; = m;_; + &,, drawn
676 from this distribution.

677

678  For an illustration of the generative models see SI Appendix C.

679

680  Modelling: The two-state model

681

682  Thus, the generative equations for the two-state model are given as follows:

683 X =Mi_q + &

684 m; =m;_; + &y 4)
685 Zi=%x+7n

686  with x; being the stimulus at trial i that is drawn from a distribution with mean m;_; and
687  variance v (here expressed by the random number &,, which is normally distributed as N (0, v)).
688  The mean of this stimulus distribution m; at the trial i is the same as in the trial before except
689  for the random fluctuation &, (&, is normally distributed as N(0,q)). The actual sensory
690 measurement (or sensation) z; is the stimulus corrupted by the sensory noise 1, which is
691  normally distributed as N(0, 7).

X; €
692  We can rewrite these equations in matrix notation with X; = [ml ] and € = [ Ex ], so that
4 m
693 Xl'=F'Xi_1+E
694 zi=H-X;+n
_J0 1
695 F=ly 4
696 H=[1 0]

697  The optimal estimator for this model can be written as time-discrete Kalman filter with the

. . v O . .
698  covariance matrix Q = [ q] and noise variance 1

0
699 Xi|i—1 = F)?i—l
700 Pi|i—1 = FPi_lFT + Q
701 Ki = i|i_1HT(HPi|i_1HT + T')_l
702 )?i = )?i|i—1 + Ki(zi — H)?ili—l)
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703 P, = (I — KxH)Py -1
704  The steady state with constant matrix K thus becomes

705 X, =FX_,+Ki(z; — HFX;_,)
706  Written as states x and m, this can be expressed as

707 X =My +ki(z; — M)
708 m; = My_q + ky(z; — M)

709  Free parameters of the model so far are the variance ratios v/r and q/r.

710

711 It should be noted that the model operates in log space (Petzschner & Glasauer 2011; Roach et
712 al. 2017) to account for the Weber-Fechner law. Raw sensory input d; is thus transformed

713 logarithmically to yield z; with z; = In (1 + %). The stimulus estimate X; is finally back-
0

714 transformed to yield d; with d; = d,, - e*i*2*. The shift term Ax accounts for possible choices
715  ofthe cost function and is the third free parameter of the full model.

716

717  To summarize, the two-state model has three free parameters:

718 1) the ratio of the variances v and r indicating the variability of the stimulus distribution
719 relative to the sensory noise,

720 2) the ratio of variances q and r indicating the variability of the additive random shift
721 relative to the sensory noise, and

722 3) ashift parameter that accounts for global over- or underestimation (see also Petzschner
723 & Glasauer 2011).

724

725  For all three models (static, simple iterative, two-state) the same model equations and the same
726  Kalman filter can be applied. The three models differ by the free parameters:

727 1) static model: &,, = 0, therefore variability g = 0. Free parameters: v/r and Ax.
728 2) iterative model: &, = 0, therefore variability v = 0. Free parameters: q/r and Ax.
729 3) two-state model: full model. Free parameters: q/r, v/r, and Ax.

730

731  Model fitting and model selection

732

733 For model simulation, the individual stimulus sequences were used to fit the model separately
734  for each participant. Thus, the model received the sequence of stimuli in exactly the same order
735  as the participant and computed a sequence of responses. Model fitting was performed in linear
736  stimulus space, that is, for model fitting, the least-squares distance between stimulus sequence
737  and responses was minimized. The Matlab function Isqnonlin was used to estimate the
738  parameters, and nlparci was applied to estimated confidence intervals.

739  The coefficient of determination R? for average data was calculated as R? = 1 — %, with

tot
740  SSis being the residual sum-of-squares and SSi the total sum-of-squares. If a model perfectly

741  captures the data, R> = 1. Models with negative R’ are worse than the baseline model, which

742 predicts the average of the data and which has R? = 0.

743

744  To compare models, we used a leave-one-out (LOO) cross-validation procedure (Arlot &

745  Celisse 2010) adapted to time series. In LOO, each of the n data points is successively “left
20
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out” from the sample and used for validation by fitting the model to the remaining data points
and recording the error of the left-out data point. The criterion is the average validation error of
the n model fits: the best model is the one with the minimal validation error. To account for the
trial-to-trial dependence of data or model, in the modified LOO instead of leaving out just one
data point, k values around this data point are left out, while the validation error is only
computed for the data point in the center of this leave-out window. Here we selected k=11,
which was assumed to be large enough to account for trial-to-trial dependencies. The same
result (8x two-state model selected) was already achieved with k=3, while for k=1 the two-state
model was best in 9 cases.
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