

1 Individual beliefs about temporal continuity 2 explain variation of perceptual biases

3
4
5 Stefan Glasauer^{1*} & Zhuanghua Shi²
6

7 ¹Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, 01968
8 Senftenberg, Germany

9 ²Experimental Psychology, Department of Psychology, Ludwig-Maximilians-University Munich,
10 80802 Munich, Germany

11 ORCID

12 Stefan Glasauer: 0000-0002-4313-6210

13 Zhuanghua Shi: 0000-0003-2388-6695

14 *Corresponding Author*

15 Stefan Glasauer

16 Address: BTU Cottbus-Senftenberg

17 Universitätsplatz 1

18 01968 Senftenberg

19 Deutschland

20 Phone +49 3573 85614

21 E-mail: stefan.glasauer@b-tu.de

22

23 Keywords: perceptual bias, Bayesian model, time perception, distance perception, central tendency,

24 serial dependence, sequential effect, individual differences

27 **Abstract**

28
29 Perception of magnitudes such as duration or distance is often found to be systematically biased.
30 The biases, which result from incorporating prior knowledge in the perceptual process, can vary
31 considerably between individuals. The variations are commonly attributed to differences in
32 sensory precision and reliance on priors. However, another factor not considered so far is the
33 implicit belief about how successive sensory stimuli are generated: independently from each
34 other or with certain temporal continuity. The main types of explanatory models proposed so
35 far - static or iterative - mirror this distinction but cannot adequately explain individual biases.
36 Here we propose a new unifying model that explains individual variation as combination of
37 sensory precision and beliefs about temporal continuity and predicts the experimentally found
38 changes in biases when altering temporal continuity. Thus, according to the model, individual
39 differences in perception depend on beliefs about how stimuli are generated in the world.
40

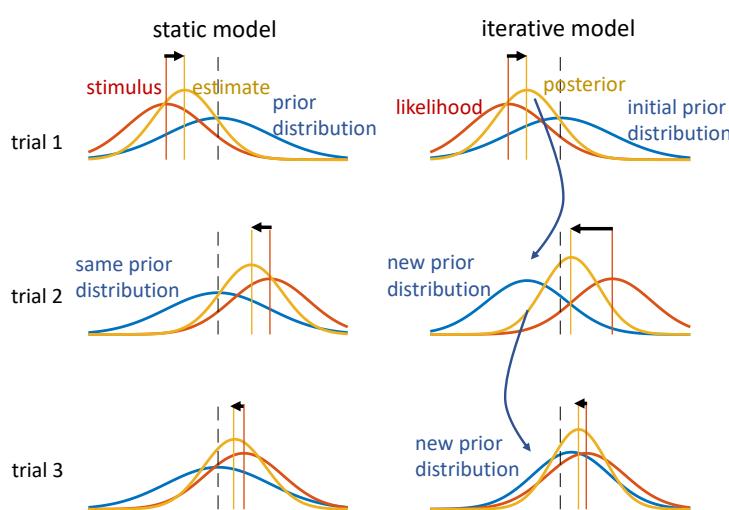
41 **Introduction**

42
43 Magnitude estimates are pervasive in our daily activities, such as predicting forthcoming
44 events, estimating the travel distance, and precisely controlling our movements. However, we
45 also make perceptual errors. Some of these errors have been found to be systematic biases,
46 which have been investigated throughout the history of psychophysics. Two perceptual biases,
47 the central tendency effect (Vierordt 1868; Hollingworth 1910) and the sequential dependence
48 (Holland & Lockhead 1968; Cross 1973), are still hotly debated till today (Shi et al. 2013;
49 Fischer & Whitney 2014; Petzschner et al. 2015). The central tendency effect refers to a
50 systematic overestimation of small magnitudes and underestimation of large magnitudes,
51 whereas the sequential dependence (or ‘serial dependence’, Fischer & Whitney 2014)
52 designates that the current perceptual estimate depends not just on the current stimulus, but also
53 on stimuli given in the past. While both biases have long been accepted as inevitable properties
54 of magnitude perception, several quantitative theoretical accounts only emerged in the last
55 decade that linked them to perception being a form of Bayesian inference (Jazayeri & Shadlen
56 2010; Petzschner & Glasauer 2011; Cicchini et al. 2012; Roach et al. 2017). The concept of
57 Bayesian inference also provides an operational explanation for interindividual differences seen
58 in perception: Bayesian inference considers a perceptual estimate to result from a near-optimal
59 combination of sensory inputs and prior knowledge. The extent to which sensory input and
60 prior knowledge are weighted depends on the accuracy of sensory measurement and the
61 certainty of prior knowledge. When driving through fog, prior knowledge of the road ahead is
62 more important than on a sunny day. Thus, under the Bayesian framework, individual sensory
63 accuracy and precision about the prior knowledge (formalized as width of the prior distribution)
64 is commonly thought to explain inter-individual differences (Petzschner & Glasauer 2011;
65 Powell et al. 2016). For example, individual differences in color perception may reflect
66 different properties of the eye and retina (sensor) or contextual influences such as the
67 experienced environment (prior) (Mollon et al. 2017).

68
69 However, Bayesian perception offers an alternative account of individual differences: the prior
70 knowledge that is used to improve the sensory input depends on our implicit assumptions about

71 how sensory stimuli are caused, or generated, in the external world. These assumptions, or
72 beliefs, are essential for predictions, which serve as prior knowledge: for example, if asked
73 what tomorrow's temperature will be, we might answer something like 'a little warmer/colder
74 than today'. That is, we assume that daily temperature changes by a random amount each day,
75 but that it will be similar on successive days. In contrast, in a standard psychophysical
76 experiment the stimuli presented to our participants are often drawn randomly from a fixed
77 distribution, just like numbers in a lottery, and they are thus independent from trial to trial.
78 Thus, a good guess (in the sense of small error) of predicting the value presented at the next
79 trial would be the mean of the stimulus distribution. In other words, when it comes to daily
80 temperature, a good estimator would use today's temperature as prior knowledge for
81 tomorrow's value. In contrast, when the stimulus value presented in a psychophysical
82 experiment is concerned, a useful prior knowledge would be the distribution of possible values.
83

84 Thus, when a sensory input is combined with prior knowledge using these two cases of
85 generative assumptions, the final estimate might differ substantially (Fig. 1)¹. Hence, two
86 individuals that have such different beliefs about how sensory events are, or are not, linked over
87 time, may exhibit different perceptual biases. Bayesian theory suggests this possibility, but to
88 our knowledge this has not yet been investigated.
89



90
91 **Figure 1:** Two estimation models (static and iterative) for magnitude perception. The static model uses static time-
92 independent prior knowledge (blue prior distribution), while the iterative model dynamically updates the prior
93 knowledge in each trial. In trial 1 (upper row), in both cases the prior knowledge (blue) and the stimulus (orange line),
94 to which a likelihood distribution (orange) is attached, are the same for both models. Thus, the estimate,
95 shown as posterior distribution (yellow) and computed by multiplying prior and likelihood, is also equal for both
96 cases, already showing the characteristic overestimation of small amplitudes. The black dashed line serves as
97 visual reference and is aligned with the mean of the initial prior. In trial 2 (middle row), the stimulus and likelihood
98 are again the same for both models, but the prior differs: the static model takes the same prior as in trial 1, because

¹ In the Bayesian estimation process, the estimate of the current stimulus is based on a posterior distribution, which is the product between the likelihood distribution (describing the sensory uncertainty that is inherited from the current sensory input) and the prior distribution (describing prior knowledge). The estimate can be the most likely value from the posterior distribution, the maximum of the distribution, or other measures such as the mean, and its uncertainty can also be derived.

99 the underlying assumption is that all stimuli come from that distribution. In contrast, the iterative model uses the
100 estimate from the previous trial to predict the next stimulus distribution, which is used as new prior knowledge,
101 because it assumes that the new stimulus is similar to the old except for some random change. The two resulting
102 posterior distributions (yellow), and thus the perceptual estimates, differ considerably with the one for the static
103 model showing much smaller underestimation than that of the iterative estimate, even though the stimuli and
104 sensory accuracy is the same in both cases. The third row shows trial 3, in which the estimates of both models
105 come much closer again.

106
107 Both cases, however, are mirrored by explanatory perceptual estimation models found in the
108 literature. For example, Jazayeri and Shadlen (2010) proposed a model to account for the central
109 tendency in duration reproduction in which prior knowledge was formalized as fixed stimulus
110 distribution (as depicted in Fig. 1 as static model). By contrast, Petzschner & Glasauer (2011)
111 in a distance reproduction study proposed that the central tendency is a consequence of an
112 iterative Bayesian process, in which prior knowledge is iteratively based on the perceptual
113 estimate of the previous trial (like in the iterative model in Fig. 1), rather than assuming a fixed
114 prior. In the following years, various other similar explanations have been proposed, some of
115 them using iterative updating (Dyjas et al. 2012; Thurley 2016), others assuming static priors
116 (Cicchini et al. 2012; Roach et al. 2017). The common idea of these models is that the central
117 tendency bias is a by-product of optimizing the perceptual estimates using prior knowledge
118 when sensory input is uncertain.

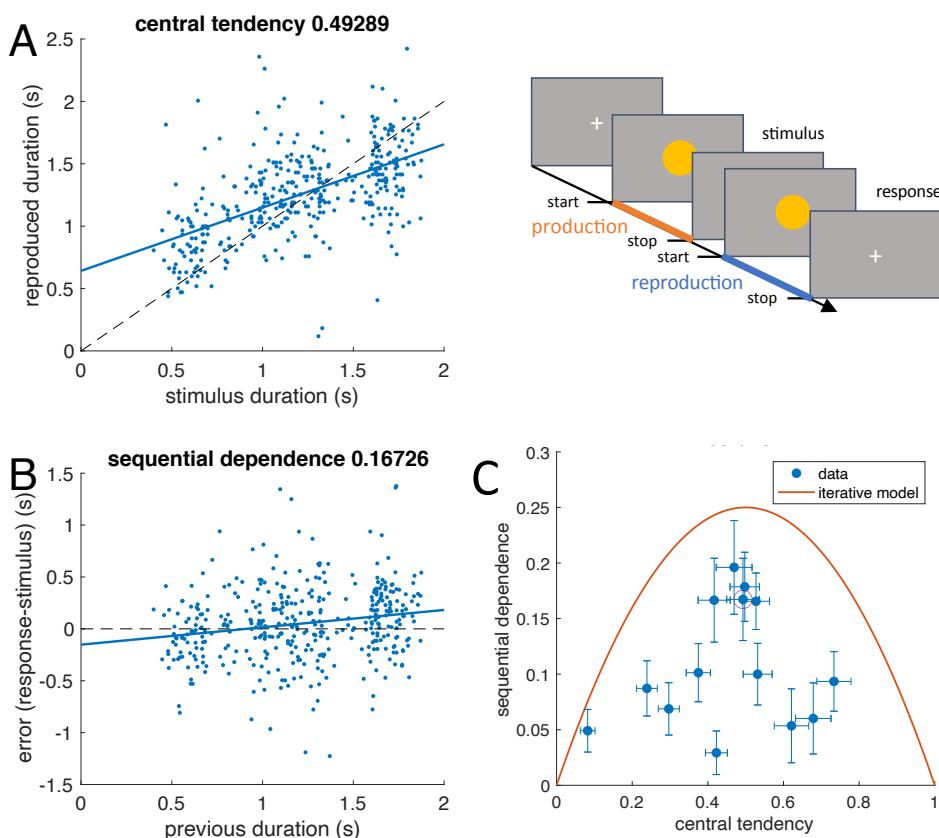
119
120 While both types of models can successfully explain the central tendency bias, they make very
121 different predictions about sequential dependence, the second type of bias: only the iterative
122 updating models predict sequential dependence for randomly distributed stimuli. In a model
123 with static prior, the perceptual estimates are independent from trial to trial.

124
125 In the present paper, we show that experimental results from duration estimation and distance
126 estimation show sequential dependence and thus favour iterative models of perceptual
127 estimation. However, we demonstrate that neither the static nor the iterative mathematical
128 models found in the current literature can fully explain the interindividual differences. We thus
129 propose a Bayesian model that not only explains these differences, but also allows to predict
130 individual behaviour in a novel experimental situation. Our results thus clearly support the idea
131 that individual variations in perceptual biases are indeed a consequence of differing beliefs
132 about the temporal continuity of stimulus generation.

133
134 **Results**
135
136 We examined central tendency and sequential dependence in three experimental data sets of
137 magnitude estimation: one from duration reproduction (Glasauer & Shi 2019, 2021; data
138 published as Glasauer & Shi 2021b), and two from linear and angular distance reproduction
139 (Petzschner & Glasauer 2011, data set published as Petzschner & Glasauer 2020).

140
141 The first dataset comes from a duration reproduction study (preliminary data were presented in
142 Glasauer & Shi 2019, 2021; data are published as Glasauer & Shi 2021b). In the experiment,
143 subjects (n=14, 7 female, average age 27.4) had to reproduce a visually presented stimulus

144 duration by pressing and holding a key (see Fig. 2, inset). Each subject received a random
 145 sequence of 400 stimulus durations between 400 and 1900 ms. We quantified both the
 146 sequential dependence and the central tendency effect using simple linear regression (see
 147 Materials and Methods for the detailed method). Fig. 2 shows an example of individual raw
 148 results plotted for evaluation of central tendency (Fig. 2A) and sequential dependence (Fig.
 149 2B). The relation of sequential dependence and central tendency for all individual participants
 150 is depicted in Fig. 2C. Note that, as mentioned in the introduction, perceptual estimation with
 151 a fixed prior (see the static model in Fig. 1) would predict that sequential dependence is zero
 152 independently of central tendency.



153
 154 **Figure 2:** Central tendency and sequential dependence in a duration reproduction experiment. Inset: schematic
 155 procedure of a single trial. A visual cue is shown on a screen to indicate stimulus duration (production phase).
 156 Reproduction is performed by pressing a button (see also Glasauer & Shi 2019, 2020, and Materials and Methods
 157 for details). **A & B:** Raw data (blue dots) from one subject (400 trials). Stimuli were presented in random order.
 158 **A:** Reproduced duration plotted over stimulus duration; the central tendency is shown by the regression line (blue).
 159 **B:** Error (response-stimulus) in the current trial plotted over the stimulus duration of the previous trial. The
 160 sequential dependence is shown by the blue line. **C:** Sequential dependence plotted over central tendency for all
 161 subjects ($n=14$). Error bars denote standard error of the mean. The data point resulting for the single subject data
 162 presented in A and B is indicated by a purple circle. The orange parabola shows the predicted relation for the
 163 iterative model depicted in Fig. 1 (see SI Appendix A3: Serial dependence for an iterative Bayesian model).
 164

165 However, individual responses show a large scatter for both central tendency and sequential
 166 dependence. The mean sequential dependence was 0.108 ± 0.056 (mean \pm SD), which is
 167 significantly different from zero ($p < .0001$; t -test, $n = 14$) and thus ruled out the static model
 168 as valid explanation for the results. In fact, all data points show higher sequential dependence
 169 than predicted by the static model (zero). We also conducted a partial correlation analysis and

170 calculated the correlation coefficient between current error and previous stimulus after
171 controlling for the current stimulus. The average partial correlation coefficient was $0.197 \pm$
172 0.068 and significantly different from zero ($p < .0001$; t -test, $n = 14$). For comparison, the
173 corresponding partial correlation coefficient between error and current stimulus, after
174 controlling for the previous stimulus, was -0.623 ± 0.156 ($p < .0001$; t -test, $n = 14$), again
175 revealing the central tendency.

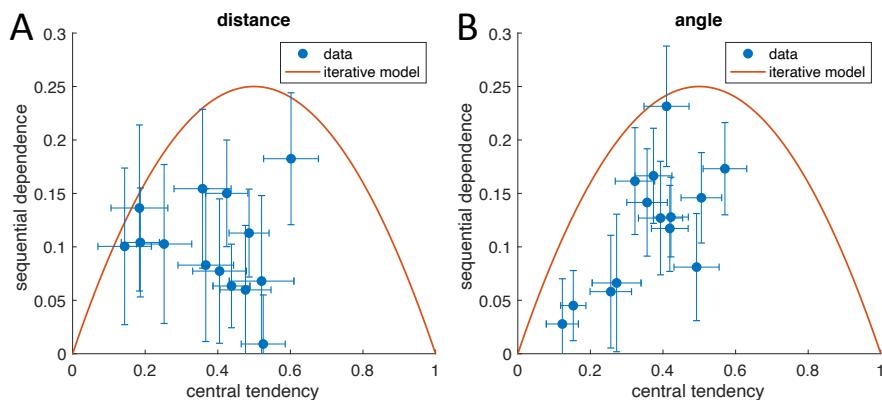
176

177 As mentioned before, the sequential dependence larger than zero rules out the static prior as an
178 explanation for the central tendency. However, in the iterative model (Fig. 1), sequential
179 dependence is expected to occur, because the last posterior distribution is used as new prior in
180 the next trial, thus introducing a temporal dependence across trials. When using this updating
181 procedure (Glasauer 2019; see Materials & Methods for the model definition), the model
182 predicts a fixed parabola relation between central tendency and serial dependence, shown in
183 Fig. 2C (for a derivation see SI Appendix A3). However, individual serial dependence not only
184 shows values higher than zero (the prediction of the static model), but also lower than the
185 prediction of the iterative model. The average difference between the observed sequential
186 dependence and that predicted by the iterative model was significant, (mean \pm SD: $-0.112 \pm$
187 0.053 , $p < .0001$; t -test, $n = 14$), showing that also the iterative model cannot adequately predict
188 the sequential dependence. It should be noted that the steady state of the iterative updating is
189 equivalent to the “internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014) proposed
190 for duration estimation.

191

192 We also analysed a publicly available data set on distance reproduction (Petzschner & Glasauer
193 2020) published previously (Petzschner & Glasauer 2011), using the same method. The data
194 come from two separate experiments on visual path integration, one on linear distance
195 reproduction and one on reproduction of angular distance (see Materials and Methods). While
196 Petzschner and Glasauer (2011) showed that their iterative model could well capture the central
197 tendency, they did not analyse sequential dependence. Fig. 3 shows the equivalent analysis as
198 above for the two path-integration experiments (Petzschner & Glasauer 2011). For the linear
199 distance reproduction, the average sequential dependence is 0.100 ± 0.045 (mean \pm SD). For
200 the angular distance reproduction, it is 0.119 ± 0.057 (mean \pm SD). As for duration
201 reproduction, the data for the two distance reproduction experiments confirms that neither the
202 static nor the iterative model can capture the sequential dependence sufficiently well (all $p <$
203 0.0001).

204



205

206 **Figure 3:** Sequential dependence for distance (A) and angular (B) reproduction plotted over central tendency for
207 all subjects. Distance and angular reproduction data come from Petzschner & Glasauer 2011, data published as
208 Petzschner & Glasauer 2020, each point corresponds to 540 trials. Error bars denote standard error of the mean.
209 The same analysis was applied as in Fig. 2C.

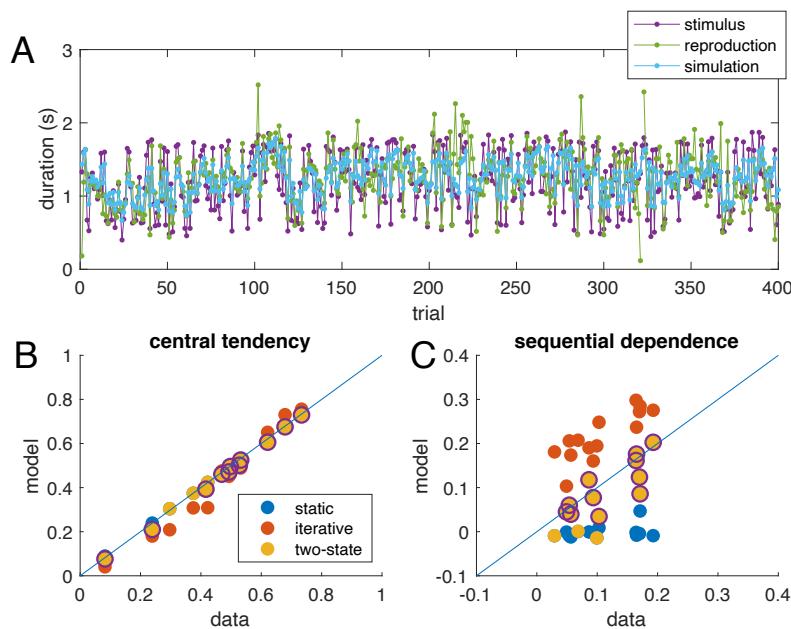
210
211 The present data also show that the individual variation in biases cannot be explained by
212 individually different levels of sensory uncertainty: under the assumption of a static model,
213 changing sensory uncertainty would not lead to different levels of sequential dependence; if
214 the iterative model was underlying perceptual estimation, variation of sensory uncertainty
215 would still confine the individual biases to the orange line in Figs. 2C, 3A, and 3B.
216

217 From Figs. 2 and 3 we can see that for all individual data points the predictions of the two
218 models considered so far seem to be boundary conditions. Neither is any of the individual bias
219 values located below zero for sequential dependence, nor is any of them above the orange
220 parabola denoting the iterative model. The obvious conclusion is that individual participants
221 seem to follow beliefs that lie between the two extremes expressed by the static and simple
222 iterative models, which assume 1) the sampled stimuli are random and independent, or 2) the
223 current stimulus is equal to the previous plus some random change. An intermediate belief about
224 stimulus generation can be described as follows: assume that the stimulus on the current trial
225 has been drawn from a stimulus distribution, but that the mean of that distribution is allowed to
226 change randomly from trial to trial. Regarding our first example of daily temperature changes,
227 this assumption is also reasonably applicable.
228

229 From this assumption we can now construct a new estimation model, which requires two
230 variables to be estimated: in addition to estimating the current stimulus, the perceptual process
231 also needs to estimate the mean of the current stimulus distribution. Therefore, the model
232 requires two internal states. The new model is an extended iterative model, more flexible than
233 the simple iterative model depicted in Fig. 1. Since it comprises the static and iterative models
234 of Fig. 1 as boundary conditions, the model is capable of simulating the individual biases of all
235 three experiments (Fig 2C, 3A, 3B), but it comes with an increase of the number of free
236 parameters from two to three (see Materials & Methods for model equations).

237 To find out whether the new model is indeed superior in fitting the experimental data, we fitted²
238 the extended (two-state) iterative model (3 free parameters per subject) to the individual data
239 of the duration experiment to evaluate whether the model would capture not only the central
240 tendency but also the sequential dependence better than the simpler alternatives. An example
241 time course of raw data (stimulus and response) together with best-fit simulation is shown in
242 Fig 4A (see also SI Appendix C: fits to mean responses in Fig. S4A). Note that the fit minimizes
243 the least-squares distance between the individual responses and the model simulation, with the
244 models receiving as input the trial-to-trial time course of the stimuli in the same order as
245 presented to the individual participant.
246

² Model simulation performed after transforming the stimulus data to the log-domain, as done previously (Petzschner & Glasauer 2011; Roach et al. 2017), to account for the dependence of the variance on stimulus size (Weber-Fechner law). Fitting was done by minimizing the least-squares distance between trial-wise response and simulation in the linear domain.



247
248
249
250
251
252
253
254
255
256
257
258
259

Figure 4: A: Time course of stimulus (magenta) and reproduction (green) from one participant (same data as in Fig. 2A,B) together with best fit of the two-state model (light blue). The model fitting minimized the least-squares distance between reproduction (green) and simulation (light blue). The input to the model was the trial-by-trial stimulus time course (magenta). The few outliers (e.g., around trial 105 or 320) were not removed for model fitting. **B, C:** Comparison of experimental data (x-axis) and model simulation (y-axis) for central tendency (**B**) and absolute sequential dependence (**C**) for all three models and all participants. Each dot represents one participant. The central tendency is captured correctly by all three models (values close to the diagonal), whereas the model values for sequential dependence are too small for the static model (blue dots, close to zero), and too large for the simple iterative model (red dots). Values for the two-state model lie closer to the diagonal in most cases. Cases for which the two-state model was the best model according to cross-validation are highlighted by circles: for 8 of 14 participants, the two-state model was superior, while in the remaining 6 cases the static model was sufficient to explain the data.

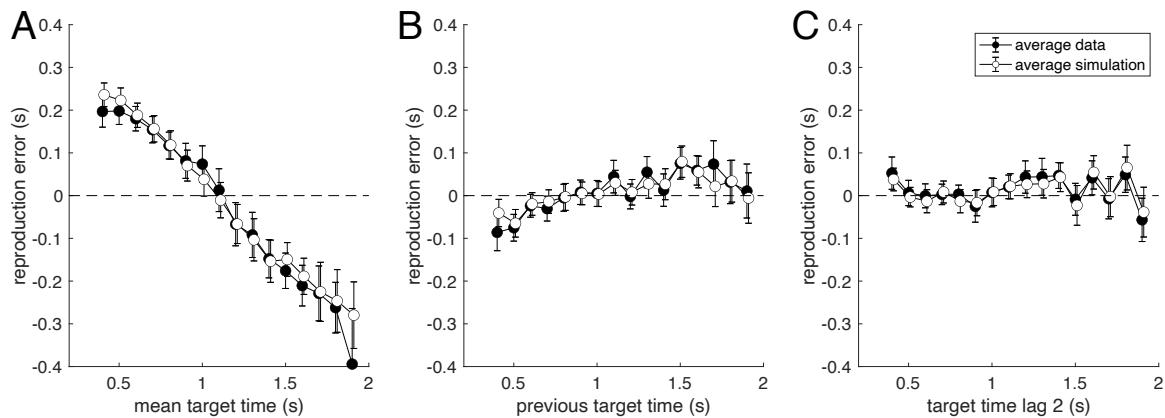
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

The static model and the simple iterative model are special cases of the new two-state model: both are nested within the two-state model. Therefore, one can determine whether the parameters that are set to zero for the simpler models differ significantly from zero in the full model. On average, both parameters (Parameter 1: the relative variability of the stimulus distribution, and Parameter 2: the relative variability of the additive change of the mean) of the full model were significantly different from zero (Parameter 1: 1.03 ± 0.28 , mean \pm SEM, *t*-test $p < .01$; Parameter 2: 0.14 ± 0.05 , mean \pm SEM, *t*-test $p = 0.025$; both $n = 14$). In individual participants, the relative variability of the stimulus distribution differed significantly from zero (assessed via confidence intervals of the parameters) for all subjects (range 0.20 to 4.12), while the variability of the additive change differed from zero only for 6 of 14 subjects (range 0 to 0.66). To determine which model was more appropriate for fitting the data, we used an out-of-sample cross validation procedure specifically suited for model selection in time series (Arlot & Celisse 2010). According to this cross-validation procedure (see Materials and Methods), the two-state model is the preferable model for 8 of 14 participants, while for the remaining 6 participants the static model is sufficient (Fig. 4B,C). A comparison of the values for central tendency and absolute sequential dependence derived from the data and from respective model simulations is presented in Fig 4B and 4C. In case of perfect fit, all points should lie on the diagonal. While all three models capture well the central tendency (Fig. 4B), the simulated

279 serial dependence is too small for the static model but too large for the simple iterative model
 280 (Fig. 4C), while the two-state model matches the data reasonably well.

281
 282 While the results so far confirm that the two-state model provides a quantitative explanation
 283 for central tendency and sequential dependence at lag one (i.e., dependence on the previous
 284 stimulus), due to its iterative nature the two-state model also predicts dependence of the
 285 current error on stimuli further in the past. That this is indeed the case also experimentally can
 286 be shown by cross correlation analysis: for duration reproduction, the cross correlation
 287 between stimulus and reproduction is, on average, significantly different from zero up to lag 3
 288 (t -test; lag 2: $p = 0.0007$; lag 3: $p = 0.039$; $n = 14$; supplementary Fig. S5).

289

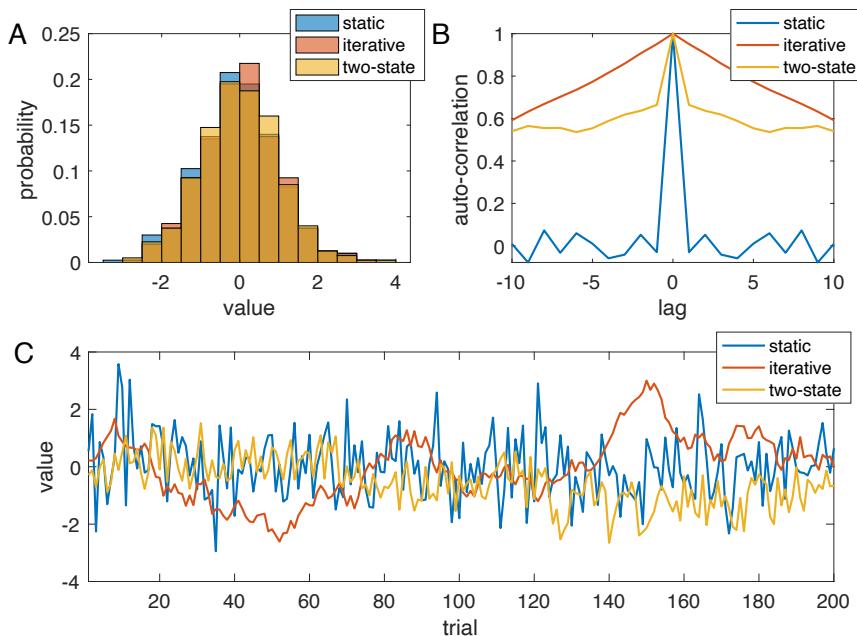


290

291 **Figure 5:** Average data for the duration reproduction experiment (black dots) together with average simulation
 292 result for the best fit iterative two-state model (open dots). Stimuli were presented in randomized order. **A:**
 293 Reproduction error as a function of the current target duration ($R^2=0.964$). **B:** Sequential dependence shown as
 294 reproduction error plotted over previous target duration (i.e., $R^2=0.803$). **C:** Reproduction error as a function of
 295 the target duration two trials in the past ($R^2=0.834$). Data points are averages of 7 to 14 subjects (only 7 subjects
 296 received long durations above 1.7 s); error bars denote SEM. For the model simulation, the model (three free
 297 parameters) was fitted individually to the trial-by-trial time course of the responses of each subject (same fits as
 298 for Figure 4). From these individual simulated response time courses, the average simulation was computed in
 299 the same way as for the real response time courses. Note that not only average mean data and simulated responses
 300 match, but that also the size of the error bars is captured quite well by the model.

301

302 The averaged experimental results for duration reproduction together with the averaged model
 303 results for dependence of error on current and previous stimuli is shown in Fig. 5 (see also SI
 304 Fig. S4). Note that the model was fitted to each individual trial-by-trial reproduction time
 305 course separately by minimizing the trial-wise least-squares distance between experimental
 306 reproduction and model simulation. Thus, the good match shown in Fig. 5B and 5C,
 307 quantified by a high coefficient of determination R^2 , is caused by the model mimicking the
 308 experimental sequential dependence without explicitly including it in the fitting procedure.
 309 This is not a trivial consequence of the model fit, as shown by the fact that both static and
 310 simple iterative models can fit the central tendency equally well (i.e., the dependence shown
 311 in Fig. 5A), but fail to correctly exhibit the sequential dependence shown in Fig. 5B and 5C
 312 (see SI Appendix C1).



313
314
315
316
317

Figure 6: Sequences of stimuli generated by the three models. The sequences for the iterative and two-state model have been generated such that their histograms resemble that of the static sequence. **A:** histograms. **B:** autocorrelation. **C:** first 200 samples of all three sequences. The variances of the two-state model were chosen so that the autocorrelation at lag 1 equals approx. 0.66.

318

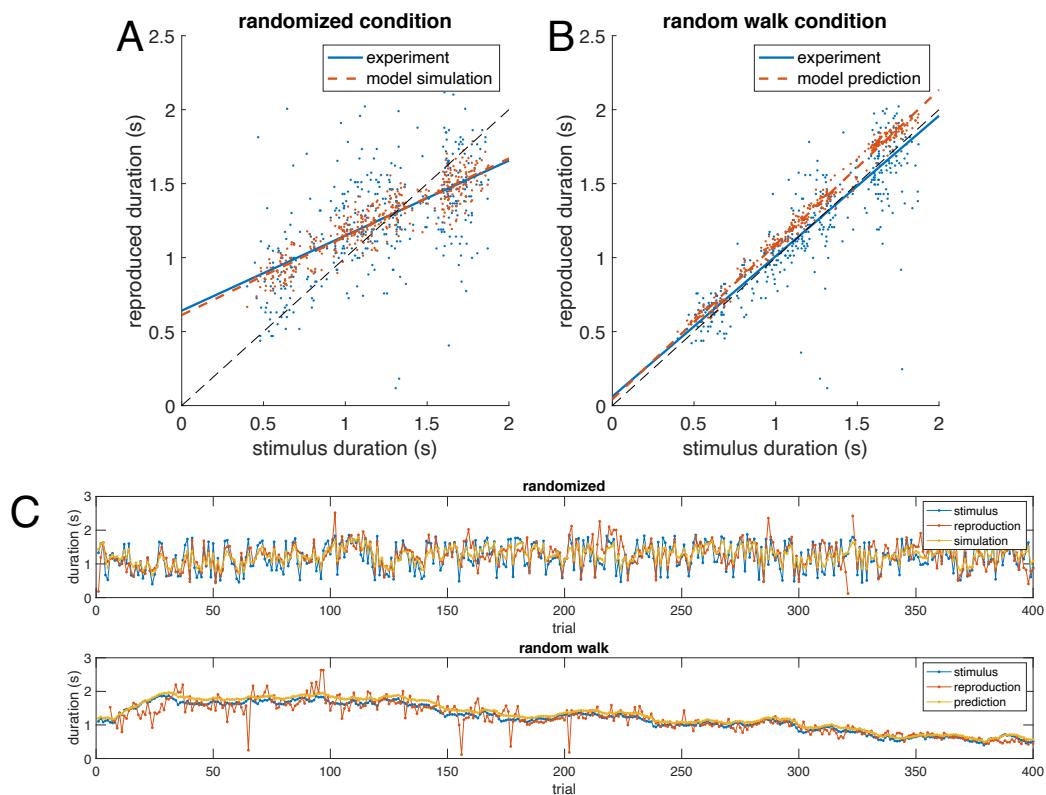
319 As explained above, the models (static, iterative, two-state) make different assumptions about
320 how stimuli are generated, e.g., the static model assumes independent and identically
321 distributed (i.i.d.) random variables. Fig. 6 shows histograms, autocorrelation, and time course
322 of exemplary stimulus sequences generated according to the assumptions of the three models.
323 The stimulus sequences of the iterative models (iterative, two-state) have been generated so that
324 their histograms are similar to the histogram of the static model's sequence (quantified by
325 minimizing the Kullback-Leibler divergence). While the histograms are reasonably similar
326 (Fig. 6A, KL divergence < 0.01), the autocorrelation differs considerably (Fig. 6B). As
327 expected, the sequence for the static model, which is a Gaussian noise sequence, shows no
328 sequential dependence between current and previous values, while the two iterative models
329 generate sequences with autocorrelation at higher lags. The sequence generated by the simple
330 iterative model is a Wiener process or random walk, while the sequence of the two-state model
331 is a superposition of a random walk and Gaussian noise. The corresponding exemplary time
332 courses are shown in Fig. 6C: the blue time course (i.i.d. stimuli) would be optimal for the static
333 model, the red random walk time course is optimal for the simple iterative model, and the
334 yellow trace, being a compromise between randomness and slow drift would be optimal for the
335 two-state model.

336

337 This implies that the result of the estimation process depends on how well the stimulus sequence
338 is matched to the model assumptions about stimulus generation. Using an iterative model is
339 suboptimal for an i.i.d. sequence, and, vice versa, using the static model is not the best solution
340 for estimation a random walk sequence.

341

342



343

344

345

346

347

348

349

350

351

Figure 7: Example data from one participant and model results. **A:** Data (blue) and model simulation (best fit to two-state model, red) for the ‘randomized’ condition of the duration reproduction experiment. Same data as in Fig. 4A. Lines are linear least squares fits to the data showing that the model replicates the central tendency. **B:** Data (blue) and model *prediction* (red, model and parameters same as in A) for the ‘random walk’ condition, in which successive stimuli were similar. It can clearly be seen that in this subject the central tendency dramatically changed, which was predicted by the model. **C:** Data from A and B plotted over trial. The same stimuli were used in both conditions.

352

353

354

355

356

357

358

359

360

361

362

363

364

365

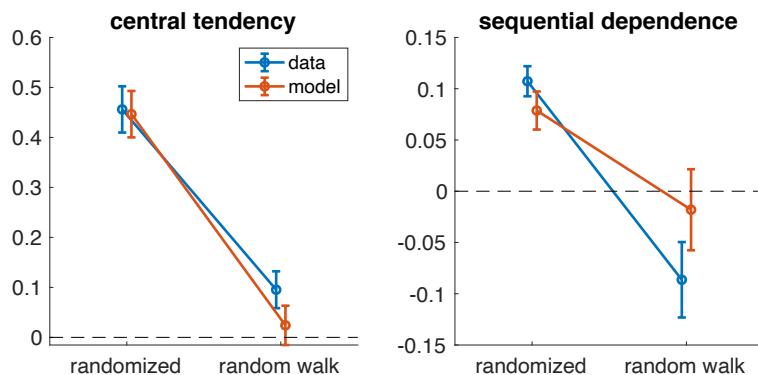
366

367

368

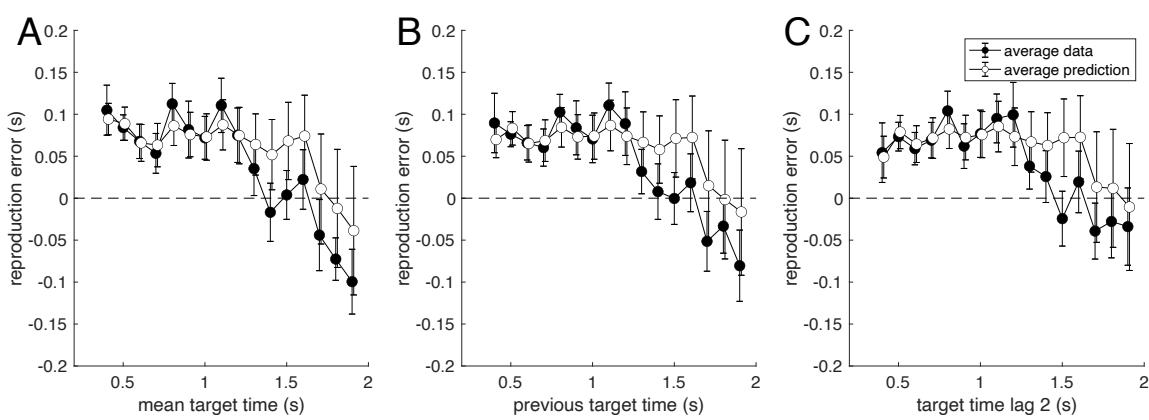
We tested this implication by analysing the second condition of the duration reproduction experiment, in which the same stimuli as analysed above, were presented in a random walk order to the same participants (see also Materials and Methods). Since we suspected that the remaining central tendency in the random walk condition and the change in sequential dependence could be explained by the new two-state model introduced above, we used the individually fitted model parameters obtained from the randomized condition to predict the individual time courses of the random walk condition. In this condition, subsequent stimuli are similar to each other (example in Fig. 7C), just as supposed by the generative model of the simple iterative Bayes (see Fig. 6C, red time course, for an example of such a random walk). As explained in our previous paper (Glasauer & Shi 2021), this condition tests the prediction of the simple iterative and the Petzschner & Glasauer (2011) explanatory models, which both predict that the central tendency vanishes in the random walk condition. An example of the effect of changed stimulus order on central tendency is shown in Fig. 7A (randomized condition, replot from Fig. 2A) and Fig. 7B (random walk condition) for one participant. In this participant, the central tendency seen for randomized stimulus order (Fig. 7A) almost vanishes for the random walk stimulus order (Fig. 7B).

369 On average the data show that the central tendency indeed decreased substantially and was
 370 significantly smaller during random walk ($t(13) = 7.32, p < .0001$; see Fig. 8A). However, it
 371 did not completely vanish and was still larger than predicted by these previous models
 372 (Glasauer & Shi 2021). For some subjects, the central tendency was no longer different from
 373 zero (see example data in Fig. 7), while for others it clearly was still visible. Sequential
 374 dependence also changed and became on average negative with a significant difference between
 375 conditions (Fig. 8B; $t(13) = 5.25, p < .001$).
 376



377
 378 **Figure 8:** Summary of average results for both conditions of the duration reproduction experiment. Blue: data;
 379 orange: model. Error bars indicate standard error of the mean. **A:** Central tendency is significantly smaller during
 380 random walk (t -test, $n = 14, p < 0.0001$). **B:** Sequential dependence becomes on average negative with a significant
 381 difference between conditions (t -test, $n=14, p = 0.00016$). In A and B, the model values for the randomized
 382 condition are averages from the fitted simulation, while model values for the random walk condition are averaged
 383 *predictions* using the model parameters from the randomized condition.

384
 385 Figure 9 shows the averaged experimental results together with the averaged model prediction.
 386 Both central tendency (Fig. 9A) and sequential dependence (Fig. 9B and 9C) are well-predicted
 387 by the model, showing that the central tendency remaining in the random walk condition is
 388 explained by the generative assumption of the two-state model (see also red model results in
 389 Fig. 8). Note that the similarity of the error dependence on current and previous stimuli in the
 390 random walk condition shown in Fig. 9 is expected, since stimuli in this condition are highly
 391 autocorrelated, i.e., the current stimulus is indeed similar to the stimuli preceding it (and thus
 392 the reproduction error is similar when plotted over current or previous stimuli).
 393



394
 395 **Figure 9:** Average data for the 'random walk' condition of the duration reproduction experiment (black dots), in
 396 which successive stimuli were similar, presented together with averaged model predictions (not fits) of the iterative
 397

398 two-state models used in Fig. 5 (open dots). Stimuli are the same as in Fig. 5 except for the order of presentation.
399 Model parameters were determined from fitting the ‘randomized’ condition and are the same as used in Fig. 5. **A:**
400 Reproduction error as a function of the current target duration ($R^2=0.629$). **B:** Reproduction error as a function of
401 the previous target duration ($R^2=0.544$). **C:** Reproduction error as a function of the target duration two trial in the
402 past ($R^2=0.428$). Data points are averages of 7 to 14 subjects (only 7 subjects received long durations above 1.7
403 s); error bars denote SEM. Average model predictions are calculated from trial-by-trial predicted individual time
404 courses using the parameters corresponding to Fig. 5.

405

406 Discussion

407

408 In this paper, we analysed the relation between the central tendency and sequential dependence
409 for magnitude reproduction with two aims: to distinguish between static and iterative models
410 proposed in the literature to explain the central tendency bias, and to reveal the origin of
411 individual differences seen experimentally. We analysed three datasets, one from duration
412 reproduction and two from path integration, to evaluate which model can better explain
413 magnitude reproduction regarding both the sequential dependence, quantified as current error
414 depending on previous stimulus magnitude, and the central tendency effects. Effects of
415 immediate prior experience on current decisions have been reported for various cases in the
416 psychological literature (e.g., Cross 1973, Fischer & Whitney 2014, Liberman et al. 2014), and,
417 as we show here, they are also clearly visible in experiments on magnitude reproduction. The
418 average sequential dependence found in duration and distance reproduction differed
419 significantly from zero, which clearly demonstrates that the response error of the current trial
420 depends on the stimulus from the last trial. This contradicts static models as explanation for
421 perceptual biases because they imply no influence of the previous trial. Consequently, several
422 previously published static trial-independent models can be ruled out (Jazayeri & Shadlen 2010,
423 Roach et al. 2017, Lakshminarasimhan et al. 2018). Even though the static models fit the central
424 tendency well in experiments with random stimulus presentation (see Fig. 4B), the explanation
425 for this bias offered by the static models is only partially correct. The fundamental assumption
426 of the static models, a fusion of the sensed stimulus with prior information about the stimulus
427 range, is not completely wrong, except that the prior is not static, as shown by the significant
428 sequential dependence. Rather, the prior is updated trial-by-trial so that information from the
429 immediate previous trial is used for the current estimate. Due to the iterative nature of Bayesian
430 estimation with the posterior as basis for the new prior, not just the previous stimulus (as
431 proposed by Cicchini et al. 2018), but also stimuli further in the past can still exert an influence
432 on the present response. This difference between static and iterative models has important
433 consequences for understanding the processes that lead to the perceptual results: while the
434 results of static and iterative models look similar with respect to the central tendency, the
435 internally represented priors, the underlying assumptions about stimulus generation, and the
436 predictions for the sequential dependence are completely different.

437

438 Like the static prior model, the simple iterative model proposed previously (e.g., Dyas et al.
439 2012; Glasauer 2019) predicts the central tendency effect very well but falls short in accounting
440 for the experimentally observed sequential dependence. The simple iterative model assumes
441 that stimuli remain similar from trial to trial with a random fluctuation. This assumption
442 corresponds to stimuli being generated by a random walk or discrete Wiener process. According
443 to this assumption, the overall variance of the stimuli builds up over the trials. By contrast, the

444 static model assumes that the stimulus distribution has a fixed variance, and a fixed mean. The
445 generative assumption for the iterative model also implies a stimulus sequence that differs
446 considerably from that of the static model: it resembles Brownian motion or a diffusion process
447 in one dimension rather than a random sequence (see Fig. 6C for examples). Both the static and
448 the simple iterative models provide predictions concerning the sequential dependence: the static
449 model predicts zero sequential dependence, the iterative model predicts that, in case of random
450 stimuli, sequential dependence depends on central tendency in a predictable way (see red curve
451 in Figs. 2C and 3). The empirical data, however, showed that neither of these two models
452 captures the experimental relation between central tendency and sequential dependence.

453

454 Therefore, we proposed the two-state model that combines the static and the simple iterative
455 models and assumes that the stimulus at each trial comes from a distribution with fixed variance,
456 but that the mean of that distribution changes from trial to trial. By merging the assumptions of
457 static and simple iterative models about stimulus generation, both the central tendency effect
458 and the absolute sequential dependence can be well explained. According to the two-state
459 model, the considerable variations between participants are not only caused by different impact
460 of noise on sensory measurement, but also because of different beliefs concerning the sequential
461 structure of the stimuli. As an example, in Fig. 2C, of two participants with approximately the
462 same central tendency of 0.42, one had a sequential dependence of 0.03, the other of 0.17. This
463 difference reflects the observers' own supposition about the sequential structure: the participant
464 with a low sequential dependence assumed the world is volatile and trusted only the current
465 stimulus together with a hypothesis about the limited range of stimuli for perceptual estimates.
466 By contrast, the participant with a large sequential dependence agreed about the randomness of
467 the world but further assumed that things change over time with some continuity. For perceptual
468 decision-making task, it has recently been suggested that individual differences are due to
469 different implicit assumptions about the complexity of a sequence (Glaze et al. 2018). In their
470 study, participants had to infer from which of two possible Gaussian sources the current visual
471 stimulus was drawn. The true source was randomly switched with a hazard rate that could
472 change. The authors proposed that a bias-variance trade-off was the underlying reason for
473 differences in choice variability. While this study is very different from ours, both have in
474 common that the implicit beliefs of participants about the temporal volatility of stimulus
475 generation are the reason for individual differences.

476

477 The present investigation also suggests that an observer's belief about the world's sequential
478 structure is carried over from one experimental condition to another instead of being adapted
479 to an individual condition: the model parameters derived from the randomized condition of
480 duration reproduction provided an excellent prediction of the experimental results of the
481 random walk condition, even though both conditions varied exactly (and only) by their
482 sequential structure. Thus, participants in these experiments did apparently not adapt their
483 beliefs to the actual temporal structure of the stimuli but relied on their individual hypothesis.
484 However, whether these beliefs can be altered, for example by feedback, or reflect intrinsic
485 personality traits warrants further investigation. A recent study on the perception of probability
486 emphasized that average results do not provide the full picture and that individuals deviated

487 substantially from optimal performance, with these idiosyncratic deviations persisting over a
488 long time (Khaw et al. 2021).

489
490 Another question is whether the two-state model can encompass the full spectrum of empirical
491 values for central tendency and sequential dependence. The two-state model predicts that
492 sequential dependence should, with randomized stimuli, not exceed the value predicted by the
493 simple iterative model, that is, the quadratic relationship with central tendency (red curve in
494 Figs. 2C and 3), which has a maximum at 0.25. Indeed, this is the case for the three experiments
495 we validated here. Note, however, that this is not a trivial result: for example, a model proposed
496 previously to explain sequential dependence in visual orientation reproduction (Cicchini et al.
497 2018) predicts sequential dependence that is approximately equal to central tendency and can
498 assume values as large as 0.5 (see SI Appendix D). While their model cannot explain the data
499 presented here, it shows that there are alternatives to the two-state model, which would allow
500 sequential dependence larger than 0.25. However, in our experiments, sequential dependence
501 did not, for any of the tested participants, exceed the theoretical maximum postulated by the
502 two-state model across three different tasks, which again suggests that our model provides a
503 good explanation for the participants' behaviour.

504
505 One might wonder about the purpose of integrating immediate prior information into a current
506 decision, given that it may cause an estimation bias. One common explanation is that the
507 regularity of our environment is relatively stable, so that integrating prior knowledge will boost
508 the reliability of the estimation and facilitate performance (Petzschner et al. 2015, Shi et al.
509 2013). For a visual orientation reproduction task (Cicchini et al. 2018), the authors argued that
510 sequential dependence provides a behavioural advantage manifesting with low reaction times
511 and high accuracy. When the stimuli are similar between trials, it is useful to use the last
512 perceived stimulus as prior. This assumption about the sequential structure is included in the
513 generative assumption of the two-state model: the stimulus of the current trial is assumed to be
514 similar to that of the last trial, since it comes from a distribution with a similar mean. However,
515 the mean of the sampled stimuli also fluctuates over time, which makes the two-state model
516 more flexible than a static model. That is, observers do not assume that the randomness of the
517 external environment is strictly stable, but rather expect variations and changes.

518
519 Next, the question arises whether the proposed two-state model is optimal for the usual
520 experimental situations with standard randomization. That is, stimuli are randomly generated
521 as i.i.d. process from a fixed, pre-defined distribution, which has become a 'standard'
522 experimental procedure since Vierordt's work in 1868. The answer is obvious: the two-state
523 model is not optimal, given that the stimuli are randomly drawn from a fixed distribution. Using
524 the last trial to estimate the current would deteriorate rather than improve the quality of the
525 estimate. However, as evidenced by the significant sequential dependence, instead of believing
526 the stimuli are randomly generated, most of our participants assumed that there is at least some
527 temporal continuity in the stimulus sequence. According to both the simple iterative model and
528 the two-state model, for these participants, the overall central tendency bias should be smaller,
529 if the stimulus sequence is changed so that stimuli are indeed similar from trial to trial. This
530 was validated by showing in our previous study (Glasauer & Shi 2021) that the central tendency

531 in sequences with complete random stimulus order was larger than in sequences with random-
532 walk fluctuation. Here we showed that this decrease in central tendency and, more importantly,
533 the remaining central tendency, is well-predicted by the two-state model on an individual basis.
534 The model also predicts the experimentally found reversal of sequential dependence (compare
535 the positive dependence in Fig. 5B and the negative dependence in 9B). Consequently, our
536 model simulations together with the experimental data show that the individual assumptions
537 about stimulus generation are stable over experimental conditions and are not adapted to the
538 true temporal continuity (or transition probability) between stimuli.

539

540 Finally, our results show that the individual differences that are expressed in different values of
541 central tendency and sequential dependence are not only due to differences in sensory noise,
542 but reflect major differences in the underlying generative model, that is, in the assumptions
543 about how stimuli are generated in the world. While some participants behave as if stimuli are
544 generated almost independently from each other, just like when sampling from a random
545 distribution, others show strong sequential dependence and thus assume that subsequent stimuli
546 are similar in magnitude and depend on each other. While, on average, the perceptual system
547 of participants seems to be optimized for random stimuli the distribution of which slowly
548 changes over the time, the individual differences in belief about stimulus generation are not
549 negligible.

550

551 In summary, our two-state iterative model assumes that the magnitude percept is an integration
552 of sensory input and an updating prior knowledge. This updating can be conceived as assuming
553 that stimuli come from a distribution the mean of which fluctuates from trial to trial. The model
554 explains the individually different link between sequential dependence and central tendency as
555 resulting from distinctive assumptions about the sequence structure, which differ among
556 participants. It thus allows not only modelling the average responses of participants but also
557 elucidates the reason for their variability: the assumptions behind the perceptual estimation
558 process vary from person to person. The same world looks different for each of us, even when
559 considering such a basic ability as perceiving magnitudes.

560

561 **Materials and Methods**

562

563 *Duration reproduction*

564

565 14 naïve volunteers (7 female, 7 male, average age 27.4) participated in the experiment, which
566 was approved by the ethics committee of the Department of Psychology at LMU Munich. A
567 yellow disk (diameter 4.7°, 21.7 cd/m²) was presented as visual stimulus on a 21-inch monitor
568 (100 Hz refresh rate) at 62 cm viewing distance using the Psychtoolbox
569 (<http://psychtoolbox.org>). Each trial started after 500 ms presentation of a fixation cross
570 followed by the stimulus which appeared for a pre-defined duration. After a short break of 500
571 ms participants were prompted to reproduce the duration of the stimulus by pressing and
572 holding a key. The visual stimulus was shown again during key press. At the end of the trial, a
573 coarse visual feedback was given for 500 ms (5 categories from < -30% to > 30% error). Each
574 participant performed two blocked sessions in balanced order. In the random walk condition,

575 participants received 400 stimuli generated by cumulative summation (integration) of randomly
576 distributed values from a normal distribution with zero mean and a SD that was chosen to yield
577 stimuli between 400 ms and 1900 ms. In the randomized condition, the same 400 stimuli were
578 used in scrambled order. Each participant received a different sequence (see Fig. 4A for an
579 example). The data have been used previously (Glasauer & Shi 2021) and are publicly available
580 (Glasauer & Shi 2021b).

581

582 *Distance reproduction*

583

584 The experimental procedure has been published previously (Petzschner & Glasauer 2011) and
585 the data are publicly accessible (Petzschner & Glasauer 2020). Briefly, 14 volunteers (7 female,
586 7 male, aged 22–34 years) participated. Stimuli were presented in darkness on a computer
587 monitor as real-time virtual reality using Vizard 3.0 (Worldviz) depicting an artificial stone
588 desert consisting of a textured ground plane, 200 scattered stones placed randomly, and a
589 textured sky. Participants used a joystick to navigate. Estimation of travelled distances and of
590 turning angles was tested separately under three different conditions (different ranges of
591 distances or angles, see Fig. S5 and S6, 200 trials per condition) in a production-reproduction
592 task. For distance estimation, participants were instructed to move forward on a linear path until
593 movement was stopped when reaching the randomly selected production distance (same
594 sequence for all subjects) and then had to reproduce the perceived distance in the same direction
595 using the joystick and indicate their final position via button press. Velocity was kept constant
596 during movement but randomized up to up to 60% to exclude time estimation strategies. No
597 feedback was given. For angular turning estimation, the procedure was the same except that
598 subjects had to turn.

599

600 *Data analysis: central tendency and sequential dependence*

601

602 To quantify central tendency, a linear least-squares regression was fitted to stimulus
603 reproduction plotted over stimulus duration for each participant individually using Matlab (The
604 Mathworks, Natick MA, USA). Central tendency was defined as 1-slope of the regression line.
605 Sequential dependence was assessed by fitting a linear least-squares regression to the error in
606 trial k plotted over the stimulus in trial $k-1$ (Holland and Lockhead 1968). Note that in the
607 literature the sequential dependence (also called serial dependence) is often quantified as
608 current error plotted over the difference between previous and current stimulus (e.g., Fischer &
609 Whitney 2014, Bliss et al. 2017, Kiyonaga et al. 2017, Clifford et al. 2018, Cicchini et al. 2018).
610 However, this method is not appropriate for stimuli on an open linear scale as in the present
611 work (see SI Appendix A).

612

613 *Modelling: Static Bayesian model*

614

615 Given a set of stimuli x_i drawn from a normal distribution on an open scale with mean \bar{x} , a
616 simple *static* model for the perceptual response y_i would be:

617
$$y_i = wx_i + (1 - w)\bar{x} \quad (1)$$

618 with the weight w being determined by using the variance of the stimulus distribution and the
619 variance of the measurement noise. Note that the model assumes that y_i only depends on the
620 current stimulus x_i , but not on the previous one. The fixed prior of the model could be the mean
621 of the stimulus distribution \bar{x} . In this model, the central tendency is given as $c = 1 - w$. Since
622 in this model the current response does not depend on the previous stimulus, the sequential
623 dependence is zero regardless of the central tendency (see SI Appendix A2).

624

625 *Modelling: Iterative Bayesian model*

626

627 For an *iterative* or *dynamic* model, the quantification of sequential dependence should yield an
628 effect, given that in such a model the actual response is defined to depend on both the current
629 and the previous magnitudes. The simplest iterative Bayesian model (Fig. 1) can be derived
630 from two assumptions for the underlying generative process (Glasauer 2019): 1) the stimulus
631 at the current trial is the same as the one on the previous trial plus some random fluctuation and
632 2) the sensation of the stimulus is corrupted by measurement noise. For normally distributed
633 fluctuations and noise, the Bayesian optimal estimator model can be written as Kalman filter.
634 When the Kalman gain k of the model reaches its steady state (usually after few trials), its
635 equations simplify to a weighted average, so that the response y_i at trial i becomes

636

$$y_i = kx_i + (1 - k)y_{i-1} \quad (2)$$

637

638 with x_i being the current measurement of the stimulus and y_{i-1} the estimate at the preceding
639 trial $i - 1$ (Glasauer 2019). Note that for a fixed k this model is equivalent to the so-called
“internal reference model” (Dyjas et al. 2012, Bausenhart et al. 2014).

640

641 For this iterative model, the relationship between the central tendency and the sequential
642 dependence s can be determined analytically for randomly presented stimuli (see SI Appendix
643 A3) as

644

$$s = (1 - c) \cdot c \quad (3)$$

645

646 According to Eqn. 2, the central tendency is given as $c = 1 - k$. Intuitively, the extreme case
647 with $k = 0$ causes the current response to completely depend on the initial response y_0 (which
648 may be arbitrary) and does not change at all; therefore, the sequential dependence becomes
649 zero. On the other extreme, with $k = 1$ the response is veridical ($y_i = x_i$), always equal to the
650 current stimulus, and independent of the previous, which also yields zero sequential
651 dependence. The maximum expected sequential dependence is 0.25 for central tendency 0.5
652 (see Fig. 2C, orange curve). Thus, for central tendencies found experimentally, there exists a
653 distinct testable difference between the static model (sequential dependence 0 and independent
654 of central tendency) and the simple iterative model.

655

656 *Generative assumptions*

657

658 Here we reconsider the difference between the generative assumptions of the static and iterative
659 models. In both models, measurement noise r corrupts the actual sensory input. Thus, it is
helpful to estimate the stimulus using additional prior information.

660

661

- The *static* model assumes that the stimulus x_i in trial i comes from a distribution
 $D(m, v)$ with a constant mean m and variance v . We thus can write the generative

662 model as $x_i = m + \varepsilon_x$ with ε_x being a random number coming from a distribution
 663 $D(0, \nu)$.

- The *iterative* model assumes that the stimulus x_i in trial i is the same as in trial $i - 1$ except for some random change with variance q . In other words, the generative model is $x_i = x_{i-1} + \varepsilon_m$ with ε_m coming from a distribution $D(0, q)$.

667

668 From these assumptions we can construct a third generative model, the two-state model, that
 669 combines advantages of both models:

- The *two-state* model assumes that the stimulus x_i in trial i comes from a random distribution $D(m_{i-1}, \nu)$ with mean m_{i-1} and variance ν . The mean of this distribution in trial i is the same as in trial $i - 1$ except for some random change with variance q . In other words, the stimulus distribution in the current trial depends on that in the previous trial. The generative model now has two states: the randomly changing mean of the stimulus distribution $m_i = m_{i-1} + \varepsilon_m$ and the actual stimulus $x_i = m_{i-1} + \varepsilon_x$, drawn from this distribution.

677

678 For an illustration of the generative models see SI Appendix C.

679

680 *Modelling: The two-state model*

681

682 Thus, the generative equations for the two-state model are given as follows:

$$\begin{aligned} 683 \quad x_i &= m_{i-1} + \varepsilon_x \\ 684 \quad m_i &= m_{i-1} + \varepsilon_m \\ 685 \quad z_i &= x_i + \eta \end{aligned} \tag{4}$$

686 with x_i being the stimulus at trial i that is drawn from a distribution with mean m_{i-1} and
 687 variance ν (here expressed by the random number ε_x , which is normally distributed as $N(0, \nu)$).
 688 The mean of this stimulus distribution m_i at the trial i is the same as in the trial before except
 689 for the random fluctuation ε_m (ε_m is normally distributed as $N(0, q)$). The actual sensory
 690 measurement (or sensation) z_i is the stimulus corrupted by the sensory noise η , which is
 691 normally distributed as $N(0, r)$.

692 We can rewrite these equations in matrix notation with $X_i = \begin{bmatrix} x_i \\ m_i \end{bmatrix}$ and $\varepsilon = \begin{bmatrix} \varepsilon_x \\ \varepsilon_m \end{bmatrix}$, so that

$$\begin{aligned} 693 \quad X_i &= F \cdot X_{i-1} + \varepsilon \\ 694 \quad z_i &= H \cdot X_i + \eta \\ 695 \quad F &= \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \\ 696 \quad H &= \begin{bmatrix} 1 & 0 \end{bmatrix} \end{aligned}$$

697 The optimal estimator for this model can be written as time-discrete Kalman filter with the
 698 covariance matrix $Q = \begin{bmatrix} \nu & 0 \\ 0 & q \end{bmatrix}$ and noise variance r :

$$\begin{aligned} 699 \quad \hat{X}_{i|i-1} &= F \hat{X}_{i-1} \\ 700 \quad P_{i|i-1} &= F P_{i-1} F^T + Q \\ 701 \quad K_i &= P_{i|i-1} H^T (H P_{i|i-1} H^T + r)^{-1} \\ 702 \quad \hat{X}_i &= \hat{X}_{i|i-1} + K_i (z_i - H \hat{X}_{i|i-1}) \end{aligned}$$

703
$$P_k = (I - K_k H)P_{k|k-1}$$

704 The steady state with constant matrix K thus becomes

705
$$\hat{X}_i = F\hat{X}_{i-1} + K_i(z_i - HF\hat{X}_{i-1})$$

706 Written as states x and m , this can be expressed as

707
$$\hat{x}_i = \hat{m}_{i-1} + k_1(z_i - \hat{m}_{i-1})$$

708
$$\hat{m}_i = \hat{m}_{i-1} + k_2(z_i - \hat{m}_{i-1})$$

709 Free parameters of the model so far are the variance ratios v/r and q/r .

710

711 It should be noted that the model operates in log space (Petzschner & Glasauer 2011; Roach et
712 al. 2017) to account for the Weber-Fechner law. Raw sensory input d_i is thus transformed
713 logarithmically to yield z_i with $z_i = \ln\left(1 + \frac{d_i}{d_0}\right)$. The stimulus estimate \hat{x}_i is finally back-
714 transformed to yield \hat{d}_i with $\hat{d}_i = d_0 \cdot e^{\hat{x}_i + \Delta x}$. The shift term Δx accounts for possible choices
715 of the cost function and is the third free parameter of the full model.

716

717 To summarize, the two-state model has three free parameters:

718 1) the ratio of the variances v and r indicating the variability of the stimulus distribution
719 relative to the sensory noise,
720 2) the ratio of variances q and r indicating the variability of the additive random shift
721 relative to the sensory noise, and
722 3) a shift parameter that accounts for global over- or underestimation (see also Petzschner
723 & Glasauer 2011).

724

725 For all three models (static, simple iterative, two-state) the same model equations and the same
726 Kalman filter can be applied. The three models differ by the free parameters:

727 1) static model: $\varepsilon_m = 0$, therefore variability $q = 0$. Free parameters: v/r and Δx .
728 2) iterative model: $\varepsilon_x = 0$, therefore variability $v = 0$. Free parameters: q/r and Δx .
729 3) two-state model: full model. Free parameters: q/r , v/r , and Δx .

730

731 *Model fitting and model selection*

732

733 For model simulation, the individual stimulus sequences were used to fit the model separately
734 for each participant. Thus, the model received the sequence of stimuli in exactly the same order
735 as the participant and computed a sequence of responses. Model fitting was performed in linear
736 stimulus space, that is, for model fitting, the least-squares distance between stimulus sequence
737 and responses was minimized. The Matlab function *lsqnonlin* was used to estimate the
738 parameters, and *nlpaci* was applied to estimated confidence intervals.

739 The coefficient of determination R^2 for average data was calculated as $R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$, with
740 SS_{res} being the residual sum-of-squares and SS_{tot} the total sum-of-squares. If a model perfectly
741 captures the data, $R^2 = 1$. Models with negative R^2 are worse than the baseline model, which
742 predicts the average of the data and which has $R^2 = 0$.

743

744 To compare models, we used a leave-one-out (LOO) cross-validation procedure (Arlot &
745 Celisse 2010) adapted to time series. In LOO, each of the n data points is successively “left

746 out" from the sample and used for validation by fitting the model to the remaining data points
747 and recording the error of the left-out data point. The criterion is the average validation error of
748 the n model fits: the best model is the one with the minimal validation error. To account for the
749 trial-to-trial dependence of data or model, in the modified LOO instead of leaving out just one
750 data point, k values around this data point are left out, while the validation error is only
751 computed for the data point in the center of this leave-out window. Here we selected k=11,
752 which was assumed to be large enough to account for trial-to-trial dependencies. The same
753 result (8x two-state model selected) was already achieved with k=3, while for k=1 the two-state
754 model was best in 9 cases.

755

756 **References**

757

758 Arlot, S. & Celisse, A. Cross-validation procedures for model selection. *Stat. Surv.* **4**, 40-79
759 (2010)

760 Bausenhart, K. M., Dyjas, O. & Ulrich, R. Temporal reproductions are influenced by an internal
761 reference: Explaining the Vierordt effect. *Acta Psychol* **147**, 60–67 (2014)

762 Bliss, D. P., Sun, J. J., D'Esposito, M. Serial dependence is absent at the time of perception but
763 increases in visual working memory. *Sci Rep* **7**, 14739 (2017)

764 Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M. & Burr, D. C. Optimal encoding of
765 interval timing in expert percussionists. *J. Neurosci.* **32**, 1056–1060 (2012)

766 Cicchini, G. M., Mikellidou, K., & Burr, D. C. The functional role of serial dependence. *Proc.
767 Biol. Sci.* **285**, 20181722 (2018)

768 Clifford, C. W. G., Watson, T. L. & White, D. Two sources of bias explain errors in facial age
769 estimation. *R. Soc. Open Sci.* **5**, 180841 (2018)

770 Cross, D. V. Sequential dependencies and regression in psychophysical judgments. *Percept.
771 Psychophys.* **14**, 547-552 (1973).

772 Dyjas, O., Bausenhart, K. M. & Ulrich, R. Trial-by-trial updating of an internal reference in
773 discrimination tasks: Evidence from effects of stimulus order and trial sequence. *Atten.
774 Percept. Psychophys.* **74**, 1819–1841 (2012)

775 Ernst, M. O. & Bülthoff, H. H. Merging the senses into a robust percept. *Trends Cogn. Sci.*
776 **8**, 162-169 (2004)

777 Fischer, J. & Whitney, D. Serial dependence in visual perception. *Nat. Neurosci.* **17**, 738-743
778 (2014)

779 Glasauer, S. & Shi, Z. "Central tendency as consequence of experimental protocol" in
780 *Proceedings of the 2019 Conference on Cognitive Computational Neuroscience*,
781 (2019), pp. 268-271. doi: 10.32470/CCN.2019.1148-0

782 Glasauer, S. & Shi, Z. The origin of Vierordt's law: the experimental protocol matters. *PsyCh
783 J* **10**, (2021) <https://doi.org/10.1002/pchj.464>

784 Glasauer, S. & Shi, Z. Duration reproduction data. G-Node [https://doi.org/10.12751/g-
785 node.hdsam3](https://doi.org/10.12751/g-node.hdsam3) (2021b)

786 Glasauer, S. Sequential Bayesian updating as a model for human perception. *Prog. Brain. Res.*
787 **249**, 3-18 (2019)

788 Glaze, C.M., Filipowicz, A.L.S., Kable, J.W., Balasubramanian, V. & Gold J. I.. A bias–
789 variance trade-off governs individual differences in on-line learning in an unpredictable
790 environment. *Nat Hum Behav.* **2**, 213–224 (2018)

791 Holland, M. K. & Lockhead, G. R. Sequential effects in absolute judgments of loudness.
792 *Percept. Psychophys.* **3**, 409–414 (1968).

793 Hollingworth, H. L. The central tendency of judgment. *J. Phil. Psychol. Sci. Meth.* **7**, 461-469
794 (1910).

795 Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. *Nat. Neurosci.* **13**,
796 1020-1026 (2010)

797 Khaw, M. W., Stevens, L. & Woodford, M. Individual differences in the perception of
798 probability. *PLoS Comput Biol.* **17**, e1008871 (2021)

799 Kiyonaga, A., Scimeca, J. M., Bliss, D. P. & Whitney D. Serial dependence across perception,
800 attention, and memory. *Trends Cogn. Sci.* **21**, 493-497 (2017)

801 Lakshminarasimhan, K. J., et al. A dynamic Bayesian observer model reveals origins of bias in
802 visual path integration. *Neuron* **99**, 194-206 (2018)

803 Liberman, A., Fischer, J. & Whitney, D. Serial dependence in the perception of faces. *Curr.
804 Biol.* **24**, 2569-2574 (2014)

805 Mollon, J. D., Jenny M. Bosten, J. D., David H. Peterzell, D. H., & Webster, M. A. Individual
806 differences in visual science: What can be learned and what is good experimental
807 practice? *Vision Research*, **141**, 4-15, (2017)

808 Petzschner, F. & Glasauer, S. Magnitude estimation data. G-Node [https://doi.org/10.12751/g-
809 node.21796b](https://doi.org/10.12751/g-node.21796b) (2020)

810 Petzschner, F. H. & Glasauer, S. Iterative Bayesian estimation as an explanation for range and
811 regression effects: a study on human path integration. *J. Neurosci.* **31**, 17220–17229
812 (2011)

813 Petzschner, F. H., Glasauer, S. & Stephan, K. E. A Bayesian perspective on magnitude
814 estimation. *Trends Cogn. Sci.* **19**, 285-293 (2015)

815 Powell, G., Meredith, Z., McMillin, R. & Freeman T. C. Bayesian models of individual
816 differences. *Psychol. Sci.* **27**, 1562-1572 (2016)

817 Roach, N. W., McGraw, P. V., Whitaker, D. J. & Heron, J. Generalization of prior information
818 for rapid Bayesian time estimation. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 412-417 (2017)

819 Shi, Z. & Burr, D. Predictive coding of multisensory timing. *Curr Opin. Behav. Sci.* **8**, 200–
820 206 (2016)

821 Shi, Z., Church, R. M. & Meck, W. H. Bayesian optimization of time perception. *Trends Cogn.
822 Sci.* **17**, 556-564 (2013)

823 Thurley, K. Magnitude estimation with noisy integrators linked by an adaptive reference. *Front.
824 Integr. Neurosci.* **10**, 6 (2016)

825 Vierordt, K. *Der Zeitsinn nach Versuchen*. (H. Laupp'sche Buchhandlung, Tübingen, 1868).

826

827 **Acknowledgements**

828 This work was supported by German Research Foundation (DFG) grants GL 342/3-2 and SH
829 166/3-2. We thank Mauro Manassi, David Whitney, and Jason Fischer for pointing out that for
830 stimuli on a circular scale the RSD is valid without causing artifacts, and that for the RSD
831 permutation tests should be run as statistical sanity check.

833 **Data availability statement**

834 Data used in this publication are freely available as Glasauer & Shi (2021b)
835 <https://doi.org/10.12751/g-node.hdsam3> and Petzschner & Glasauer (2020),
836 <https://doi.org/10.12751/g-node.21796b>.

837 **Author contributions**

838 SG and ZS wrote the main manuscript text and prepared the figures. All authors reviewed the
839 manuscript.

840 **Competing interests**

841 The authors declare no competing interests.