

1 **The genomic basis of copper tolerance in *Drosophila* is shaped by a complex interplay of**
2 **regulatory and environmental factors**

3

4

5 Llewellyn Green¹, Marta Coronado-Zamora¹, Santiago Radio¹, Gabriel E. Rech¹, Judit Salces-Ortiz¹,
6 and Josefa González¹

7

8

9 ¹Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra. Barcelona, Spain

10

11 L.G.: greenllewellyn0@gmail.com

12 M.C-Z.: marta.coronado@ibe.upf-csic.es

13 S.R.: santiago.radio@ibe.upf-csic.es

14 G.E.R.: rechgab@gmail.com

15 J.S-O.: j.salcesortiz@gmail.com

16 J.G.: josefa.gonzalez@csic.es

17

18 **Corresponding authors:**

19 Josefa González

20 josefa.gonzalez@csic.es

21

22 Llewellyn Green

23 greenllewellyn0@gmail.com

24 **ABSTRACT**

25 Increases in industrialization and anthropogenic activity have resulted in an increase of pollutants
26 released into the environment. Of these pollutants, heavy metals such as copper are particularly
27 concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its
28 dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is
29 likely shaped by a complex interplay of genetic and environmental factors.

30 In this study, we utilized the natural variation present in multiple populations of *Drosophila*
31 *melanogaster* collected across Europe to screen for variation in copper tolerance. We found that
32 latitude and the degree of urbanization at the collection sites, rather than any other combination of
33 environmental factors, were linked to copper tolerance. While previously identified copper-related
34 genes were not differentially expressed in tolerant *vs.* sensitive strains, genes involved in metabolism,
35 reproduction, and protease induction contributed to the differential stress response. Additionally, the
36 greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut; where
37 we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified
38 transposable element insertions likely to play a role in copper stress response.

39 Overall, by combining genome-wide approaches with environmental association analysis, and
40 functional analysis of candidate genes, our study provides a unique perspective on the genetic and
41 environmental factors that shape copper tolerance in natural *D. melanogaster* populations, and
42 identifies new genes, transposable elements and physiological traits involved in this complex
43 phenotype.

44

45 Keywords: transcriptomics, transposable elements, gut physiology, functional validation

46 **BACKGROUND**

47 Rapid industrialization and urbanization have had adverse impacts on biodiversity across ecosystems.
48 Of the contaminants released into the environment due to an increase in human activity, heavy metals
49 are particularly concerning due to their ability to bio-accumulate in soils. Specifically with regard to
50 copper, anthropogenic sources are thought to have a greater influence on topsoil concentrations than
51 either lithological or geographic factors [1]. Human sources of copper are characterized by many
52 point sources of contamination, which has resulted in a highly heterogeneous environmental
53 distribution [2], even across relatively short geographic distances [3]. Due to its highly heterogeneous
54 distribution, and its dual nature as both an essential micronutrient and toxic element, the genetic basis
55 of copper tolerance has the potential to be shaped by a complex interplay of environmental and
56 regulatory factors.

57

58 As a commensal species, *Drosophila melanogaster* has a well-documented history as a sentinel of
59 environmental toxins and can be readily sampled from a wide range of geographic locations, making
60 it a prime choice species for the study of copper stress response [4]. *D. melanogaster* has also served
61 as an important tool in the characterization of copper homeostasis and copper-related diseases [5, 6].
62 As copper acts as an essential micronutrient at low doses but can produce free radicals and damage
63 DNA in excess, the mediation of copper often involves a complex system of regulators, chaperones,
64 and transporters that are commonly found conserved across a wide range of species. Genetic
65 manipulation of *D. melanogaster* has been used to successfully characterize the roles of the common
66 metal-responsive transcription factor-1 (MTF-1) [7], *marvolio* and the *Ctr1* family of transporters
67 which mediate copper uptake [8, 9], the *ATP7* transporter, which regulates copper efflux [10], and the
68 cysteine-rich metallothioneins, which serve to sequester metal ions [11, 12]. Excess copper
69 accumulates in the mid-gut as the fly ages, which is thought to alter gut physiology [13]. Once copper
70 crosses the gut endothelium, it is sequestered by the metallothioneins in the morphologically distinct
71 copper cells and deposited in insoluble granules in the lysozymes [14]. Despite the name, copper cells
72 are considered ‘cuprophobic’ and are inhibited by excess copper [15]. They are also responsible for
73 stomach acid secretion, a function that is lost with age or gut damage, leading to an increase in pH
74 [13].

75

76 While many of the aforementioned genes have had their roles in copper homeostasis validated in
77 laboratory conditions, it is not known whether these same genes have an effect on the phenotype in
78 natural populations. To date, there have been several studies exploring the nature of copper tolerance
79 in natural strains of *D. melanogaster*, both with regard to individual genes [16, 17] and to broader
80 developmental and learning and memory processes [18, 19]. Recently, Everman *et al.* (2021) [20]
81 took benefit of a combination of high throughput genomic and transcriptomic approaches to uncover
82 several new copper gene candidates, using recombinant inbred lines. They found that copper

83 resistance is genetically complex and impacted by variation in copper avoidance behavior. In addition
84 to identifying natural variants involved in response to copper, their pairing of genomic data with
85 transcriptomic data also provided a greater opportunity to identify factors that regulate copper induced
86 changes in expression, beyond the well-known MTF-1 factor [20]. Prior expression analyses on metal
87 exposure also suggest that there are a number of co-regulated gene clusters linked to broader stress
88 and metabolism related pathways in response to heavy metal exposure, independent of MTF-1 [20–
89 22]. However, the factors responsible for these coordinated changes in expression have not yet been
90 identified.

91

92 To date, genome-wide studies investigating the genetic basis of tolerance to copper and other heavy
93 metals in *D. melanogaster* have focused on SNP variants or were naïve to the nature of the causal
94 variant [20, 23]. The recent availability of new whole-genome assemblies based on long-read
95 sequencing gives us the unprecedented opportunity to characterize complex forms of sequence
96 variation that may have previously been overlooked [24, 25]. This is of particular importance with
97 regard to transposable element insertions, which are often associated with changes in gene expression
98 under stressful conditions (e.g. [26–31]). Indeed, a natural transposable element insertion in the MTF-
99 1 targeted gene *kuzbanian* has been associated with increased tolerance to zinc in adult flies, although
100 the effect of the insertion was background dependent [32].

101

102 In this study, we set out to assess variation in copper tolerance between natural populations of
103 European *D. melanogaster* and investigate whether the phenotype is influenced by either geographic
104 factors, the concentration of copper in soils, atmospheric pollution, or degree of urbanization. To
105 better elucidate the genetic basis of copper tolerance in natural populations, we compared the
106 transcriptomes of three copper tolerant and three copper sensitive strains from before and after copper
107 treatment, using a combination of tissue enrichment analysis, gene ontology, and modular clustering,
108 to examine patterns of gene co-regulation. Finally, we also investigated the physiological traits
109 relevant for copper tolerance. We found that while copper tolerance is highly variable across much of
110 Western Europe, the external factors involved in shaping these phenotypes are complex, likely
111 controlled by multiple regulatory factors, and that tolerance is linked to gut physiology.

112

113

114 **RESULTS**

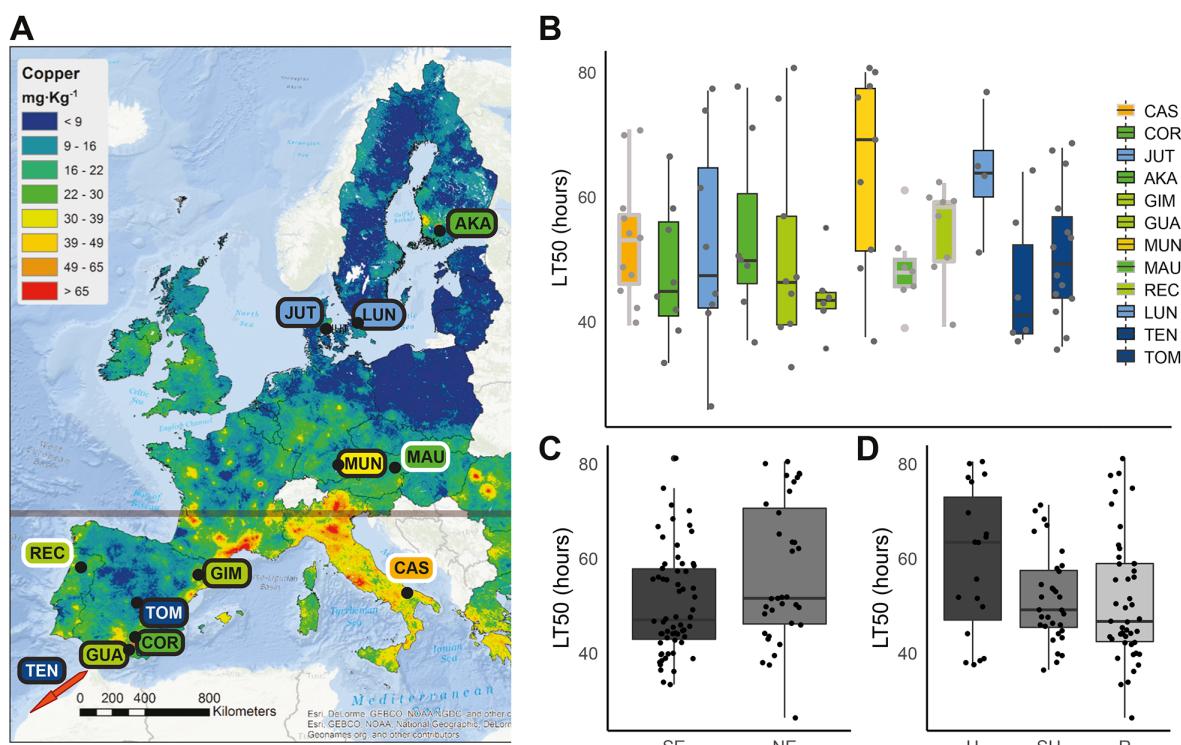
115 **Copper Tolerance is a Variable Trait Across European *D. melanogaster* Associated with 116 Latitude and Degree of Urbanization**

117 To assess the degree of copper tolerance in natural populations of *D. melanogaster* in Europe, we
118 scored a total of 71 inbred strains, collected from nine locations by the DrosEU consortium
119 (www.droseeu.net), for copper mortality on a single dose until full mortality was achieved (Fig. 1A,

120 Table S1A). LT₅₀ values ranged from 26.4 to 81.2 hours, with a median value of 49.8 hours (Fig.
121 S1A, Table S2A). We observed very little zero-dose control mortality over the course of the assay
122 (Table S2B). Although we observed a high degree of within-population variance in copper tolerance
123 (Fig. 1B), a linear regression between fly collection locations and LT₅₀ values was not significant (p-
124 value = 0.0744) (Table S2D).

125

126 As stress tolerance is frequently clinal in *Drosophila* [33–35], we compared the differences in
127 tolerance between northern and southern populations divided by the 45th parallel, as our nine
128 collections sites could be clearly divided by this feature (Fig. 1A). Although the differences in copper
129 tolerance were significant (Wilcoxon's rank-sum test, p-value = 0.0106), because all southern
130 populations were collected in Spain, we broadened the analysis by phenotyping an additional 19
131 strains from Portugal and Italy in the south of Europe, along with another 7 strains from Austria (Fig.
132 S1B). As the Portuguese and Austrian strains were caught in 2018 and the Italian strains in 2011,
133 these strains have experienced different degrees of prior laboratory adaptation compared with the
134 previously analyzed nine locations that were all collected in 2015. We found that the association
135 between tolerance and geography was still significant after the inclusion of these new data (p-value of
136 = 0.0378, Fig. 1C).


137

138 We further examined the relationship between copper tolerance and geography, copper soil
139 concentrations, atmospheric pollution, and degree of urbanization by fitting a generalized linear
140 model between these potential explanatory variables and the LT₅₀ values across all twelve locations.
141 Longitude was considered in addition to latitude, because European *D. melanogaster* have been
142 reported to exhibit population structure along this axis [36]. As our initial interest in copper was
143 spurred in part by its role as an environmental contaminant, we also tested the relationship between
144 copper tolerance and metal pollution by considering copper concentration in topsoils (mg kg⁻¹) and
145 atmospheric pollution (PM10 and PM2.5; general and metal specific), obtained from publicly
146 available data (see Material and Methods; Table S3A). Besides, and as copper contamination is often
147 the result of a complex group of contamination sources, especially around urban areas [2], we also
148 considered a more indirect measure of pollution: degree of urbanization. We classified each of the fly
149 collection locations into urban, semi-urban and rural classes, based on distance from high-, semi- and
150 low-population density areas, ([37]; Table S3A). The final model after performing a backward
151 stepwise regression to eliminate the least significant variables only kept latitude and degree of
152 urbanization ($R^2 = 12\%$, p-value = 0.0079): we found a positive correlation between latitude and LT₅₀
153 (p-value = 0.015), and we found that urban populations have a higher LT₅₀ compared with rural
154 populations (p-value = 0.0086; Table S3B).

155

156 **Figure 1. Sampling locations and variation of copper tolerance across Europe**

157 **A)** Distribution of the nine European locations from the 2015 DrosEU collection (black border), and
158 three additional collection locations (white border). Each population is labeled with the first three
159 letters of the collection location (Table S1). Label fill corresponds with the copper concentration
160 legend. The map shows the spatial variation in copper topsoil concentrations, as obtained from the
161 Land Use/Land Cover Area Frame Survey (LUCAS) topsoil database, whose samples were taken
162 from 2009 onwards. The grey line marks the 45th parallel. **B)** Boxplots of LT_{50} values by location.
163 Locations from the 2015 DrosEU collection are outlined in black, while the three additional locations
164 are outlined in grey. The full list of strains used is provided in Table S1A-B. **C)** Boxplots of LT_{50}
165 values of strains split into northern (NE) and southern (SE) European locations by the 45th parallel.
166 This point was chosen because the nine original collection sites could be clearly divided by this line
167 (Fig1A). **D)** Boxplots of LT_{50} values of strains classified by degree of urbanization, U: urban; SU:
168 semi-urban; and R: rural.
169

170
171
172
173 **Tolerant and Sensitive Strains Demonstrate Differential Expression Profiles After Copper**
174 **Exposure Mostly Concentrated in the Midgut**

175 To examine the gene regulatory changes that occur in *D. melanogaster* in response to copper
176 exposure, we compared mated female whole-body transcriptomic profiles of three tolerant (GIM-012,
177 MUN-020, MUN-008) and three sensitive strains (AKA-018, JUT-008 and COR-018), chosen
178 primarily on the basis of their position at the tails of the phenotypic distribution (Fig S1A; see

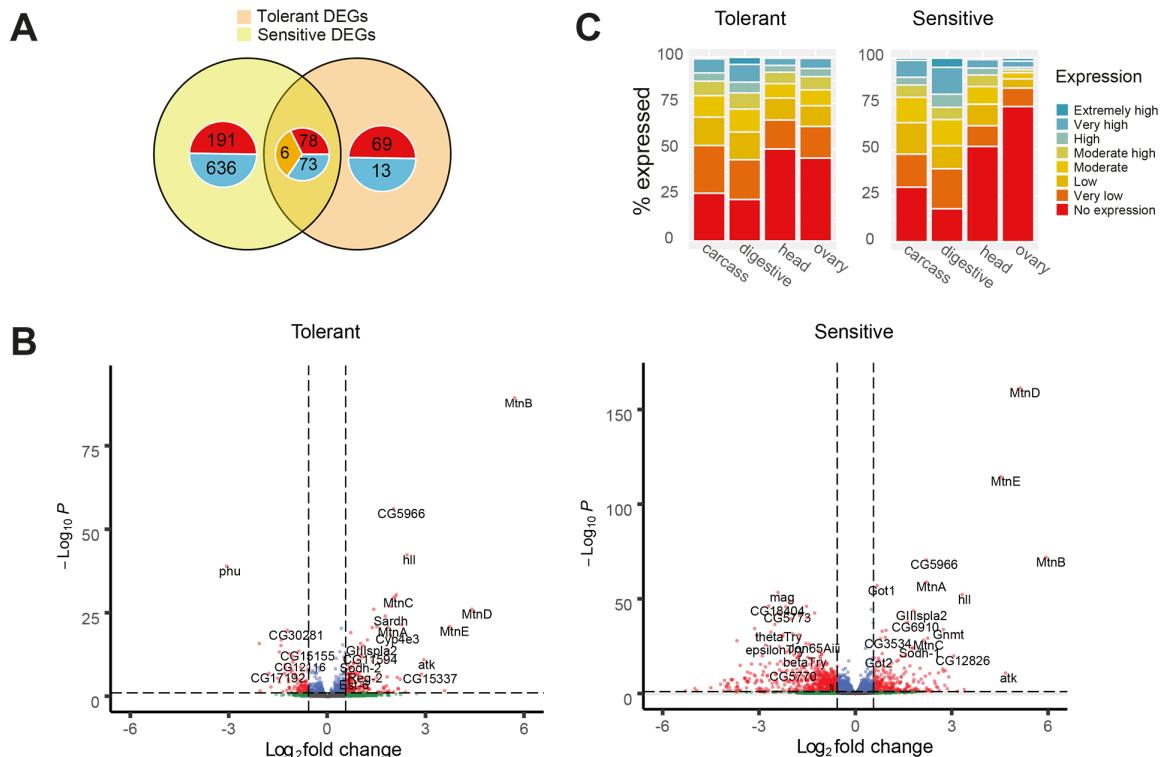
179 Material and Methods). Carrying out this analysis with strains from the ends of the distribution should
180 be informative about the genes with the greater effects on the phenotypic response. Because we are
181 interested in defining the genes that differentiate the copper tolerant from the copper sensitive strains,
182 we performed DGE analyses for tolerant and sensitive strains separately. Across the three tolerant
183 strains, 239 genes were significantly differentially expressed (> 1.5 fold change and adjusted p-value
184 < 0.05) between copper treatment and control conditions, while 984 genes were differentially
185 expressed across the three sensitive strains, with an overlap of 152 genes (Fig. 2A and Table S4A). Of
186 these 152 genes, the direction of the change was discordant in six genes, being all up-regulated in
187 tolerant strains and down-regulated in sensitive (Table 1). The proportion of down-regulated genes
188 was higher in the sensitive strains, with most of these down-regulated genes unique to sensitive strains
189 (Fig. 2A and Table S4A). These differences in DEGs between tolerant and sensitive strains are also
190 reflected in the Principal component (PC) analysis, where treated and control samples from the JUT-
191 008 and COR-018 showed a much greater separation on PC2 projection (Fig. S2A).

192

193 As expected for metal treatment, the metallothioneins *MtnA*-*MtnE* were the most significantly
194 differentially expressed genes by a large margin, both in tolerant and sensitive strains (Fig. 2B). While
195 there was no relationship between their degree of induction and tolerance, all six strains were found to
196 carry the 3' indel polymorphism in *MtnA* that had previously been linked to oxidative stress resistance
197 [17]. Other genes previously documented to play a role in copper homeostasis were notably absent
198 from the differential expression lists, including the *Ctr1* family of transporters, *ATP7*, *Ccs* and
199 *Malvolio*, suggesting that increased tolerance goes beyond metal chelation and homeostasis. Note that
200 tolerant and sensitive strains did not differ in the expression of any of these genes in basal (nonstress)
201 conditions either (Table S4B).

202

203 In order to find the tissues displaying the greatest levels of transcriptomic change after copper
204 exposure in tolerant and sensitive strains, we used the *Drosophila Gene Expression Tool* (DGET,
205 [38]). We classified our DEGs —taken from whole body samples— according to their degree of
206 expression in four of the available DGET tissue databases: head, carcass, digestive system, and
207 ovaries of four day old females (Fig. 2C). We focused on the overlap between our DEGs and those
208 from DGET found to have higher levels of expression in these tissues (those categorized as having
209 either high or extremely high expression: with RPKM values greater than 100). We found that the
210 greatest level of overlap between DEGs and highly expressed genes according to DGET was seen for
211 transcripts from the digestive system (hypergeometric test: tolerant p-value= 2.55×10^{-19} ; sensitive p-
212 value = 9.59×10^{-36}). The genes from our analysis that were highly expressed in the gut included the
213 five metallothioneins *MtnA-E* and multiple serine peptidases, where many more peptidases were
214 found significantly more down-regulated in sensitive than in tolerant strains. DEGs were also


215 enriched to a lesser degree in the carcass (hypergeometric test: tolerant p-value= 4.58×10^{-7} ; sensitive
216 p-value = 7.44×10^{-14}). No DEG enrichment was seen for either the head or ovaries.
217 Regarding gut subsections, the most notable overlap between our DEGs and highly expressed genes
218 according to DGET were found in the copper cell region and the posterior gut (Fig. S2B). Copper
219 cells are responsible for copper storage [39, 40], and changes in gut acidity [41]. One such marker of
220 gut acidity —Vacuolar-type H⁺-ATPase (*Vha100-4*) [42] — was found down-regulated by 0.6 (p-
221 value = 0.01) and 2.0 (p-value = 1.66×10^{-8}) across tolerant and sensitive strains respectively,
222 suggesting that gut acidity may be playing an important physiological role.

223

224

225 **Figure 2. Copper differential gene expression and tissue analysis**

226 **A)** Venn diagrams showing the degree of overlap between the differentially expressed genes in
227 response to copper across the three tolerant and three sensitive strains. The numbers represented in red
228 are found up-regulated, those in blue down-regulated and those in orange are the genes with
229 discordant changes in expression between tolerant and sensitive strains (Table 1). Expression data
230 obtained from mated female whole-body RNA-seq (3 replicates of 20 females each for treated and
231 control conditions). **B)** Volcano plots of gene expression in tolerant (left) and sensitive strains (right).
232 The horizontal dashed line represents the minimum adjusted p-value threshold (0.05), while the
233 vertical dashed lines represent the fold change thresholds ($\log_2(1.5) = 0.58$). **C)** Classification of the
234 tolerant DEGs and sensitive DEGs according to the levels of expression that these genes have in
235 carcass, digestive system, head and ovary according to the DGET expression database.

237

238

239 **Metabolism, Reproduction and Peptidase Inhibition Contribute to Copper Response in**
240 **Tolerant and Sensitive Strains to Different Degrees**

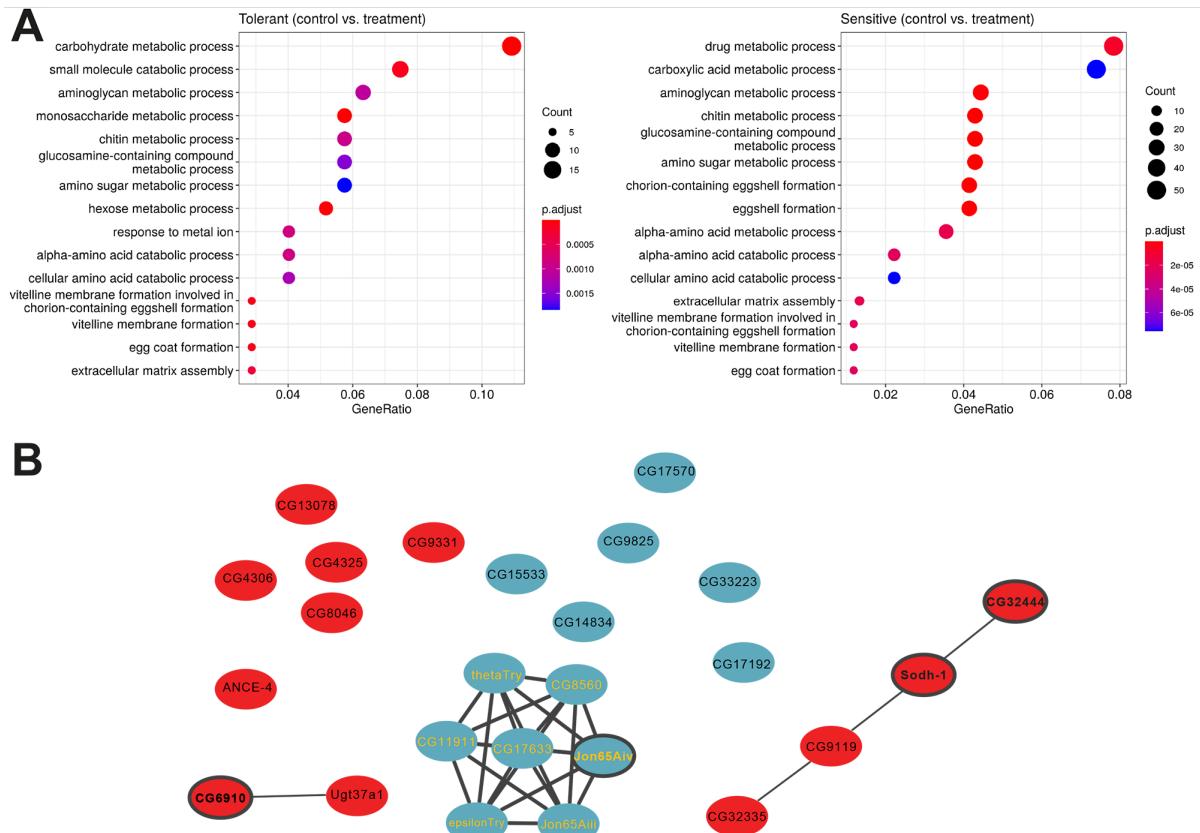
241 To determine what biological and physiological processes might differ between the tolerant and
242 sensitive strains after the same period of copper exposure, we performed gene ontology (GO)
243 enrichment analysis on tolerant and sensitive DEGs (Table S5A). Metabolism related terms were
244 commonly seen as the largest and most significantly overrepresented terms in both tolerant and
245 sensitive strains, although the exact processes often varied between the two groups (Fig. 3A). Chitin
246 metabolic process (GO:0006030, adjusted p-value <0.0001 both in tolerant and sensitive strains) and
247 Chitin binding (GO:0008061, adjusted p-value <0.0001 both in tolerant and sensitive strains) were
248 also common to both analyses (Table S5A). As expected, response to metal ion (GO:0010038,
249 adjusted p-value = 8.34×10^{-4}) was strongly overrepresented in the copper tolerant strains (Fig. 3A).
250 Additionally, several GO terms linked to reproduction and vitellogenesis—including vitelline
251 membrane formation involved in chorion-containing eggshell formation (GO:0007305) and loss of
252 vitellogenin (encompassed by GO:0030704)—were found to be overrepresented in both analyses, but
253 more so in sensitive strains (Fig. 3A and Table S5A). Note that shutdown of egg production is often a
254 consequence of heavy metal toxicity [43, 44]. The majority of these terms were also found to be
255 overrepresented in Gene Set Enrichment Analysis (GSEA) (Table S6). Further KEGG analyses also
256 emphasized the role of protein metabolism processes in copper stress response and lysosome activity
257 both in tolerant and sensitive strains (Table S7). Overall, these results suggest that under our assay
258 conditions, the more tolerant strains could be undergoing metabolic stress response after 24 hours of
259 copper treatment, while the more sensitive strains could be progressing to shutting down non-essential
260 biological processes—such as egg laying—at the same stage, as has been previously described for
261 other stress responses [45, 46].

262 Tolerant and sensitive strains also differed in basal gene expression (Table S4B), with the most
263 significantly enriched molecular functions being enzyme inhibitor activity and endopeptidase
264 inhibitor activity (Fig S3 and Table S5B). Thus, similar to other stress responses, differences in basal
265 gene expression between tolerant and sensitive strains contribute to differences in copper stress
266 responses between these strains (e.g. [47]).

267

268 Finally, we also investigated the level of gene co-regulation in response to copper of tolerant and
269 sensitive strains using modulated modularity clustering (MMC) analysis, which in contrast to previous
270 analyses does not rely on any prior gene functional annotations [48]. Tolerant strains show a high
271 level of expression coordination after copper exposure while sensitive strains showed the opposite
272 pattern (Fig. S4 and Table S8). Briefly, across the tolerant strains, we identified 24 modules with an
273 average positive correlation, $|r|$, of 0.72 in treated samples, and 17 modules with a $|r|=0.65$ in controls.

274 The higher correlations values and greater degree of partitioning observed in the treated samples
275 indicated that there are coordinated changes happening after copper exposure (Fig. S4). For sensitive
276 strains, 21 modules were identified in the treated samples, with an average $|r|=0.77$; and 40 in the
277 controls with and $|r|=0.71$, with a less pronounced degree of partitioning, indicating a less coordinated
278 response after 24 hours of copper exposure (Fig. S4). Heatmaps of the tolerant treated strains
279 suggested that genes in modules 2-5 were very closely linked (Fig. S4, Table S8). Analysis of the 25
280 genes represented by these modules in STRING [49] revealed a group of seven tightly interacting
281 serine peptidases (Fig. 3B) that are found highly expressed in the digestive system. While a number of
282 these genes were from the *Jonah* family of serine peptidases, the discordantly expressed gene in
283 tolerant vs sensitive strains, *Jon99Ci*, was not included among them (Table 1). Of these seven serine
284 proteases, four have previously been shown to be regulated by the histone and protein deacetylase
285 *Sirtin 2* (*Sir2*; [50]). On further inspection, 58 candidate DEGs from our tolerant strains and 187 from
286 our sensitive strains were previously shown to display differential expression after *Sir2* knockdown, a
287 significant overlap (hypergeometric test: tolerant p-value = 1.30×10^{-20} ; sensitive p-value = 6.87×10^{-45} ;
288 Fig. S5A) [50]. Along with its role in heterochromatin formation, *Sir 2* is thought to have many
289 additional protein targets that alter gene regulation. Among the targets of *Sir2*, gene expression
290 datasets are available for *DHR96*, *dfoxo* and *HNF4* knockouts [51–53]. While a small degree of
291 overlap was seen between our differential expression lists and that of *dfoxo* (hypergeometric test:
292 tolerant p-value = 3.10×10^{-7} ; sensitive p-value = 1.50×10^{-20}) and *DHR96* knock out analyses
293 (hypergeometric test: tolerant p-value = 3.04×10^{-7} ; sensitive p-value = 3.58×10^{-12} ; Fig. S5), the
294 greatest overlap was seen with *HNF4* knock out analyses (hypergeometric test: tolerant p-value =
295 1.45×10^{-19} ; sensitive p-value = 8.94×10^{-66} ; Fig. S5B) [51–53]. While little is known about the precise
296 role *HNF4* plays in the midgut, its inferred link to the serine peptidases suggests a potential role in gut
297 function.


298

299

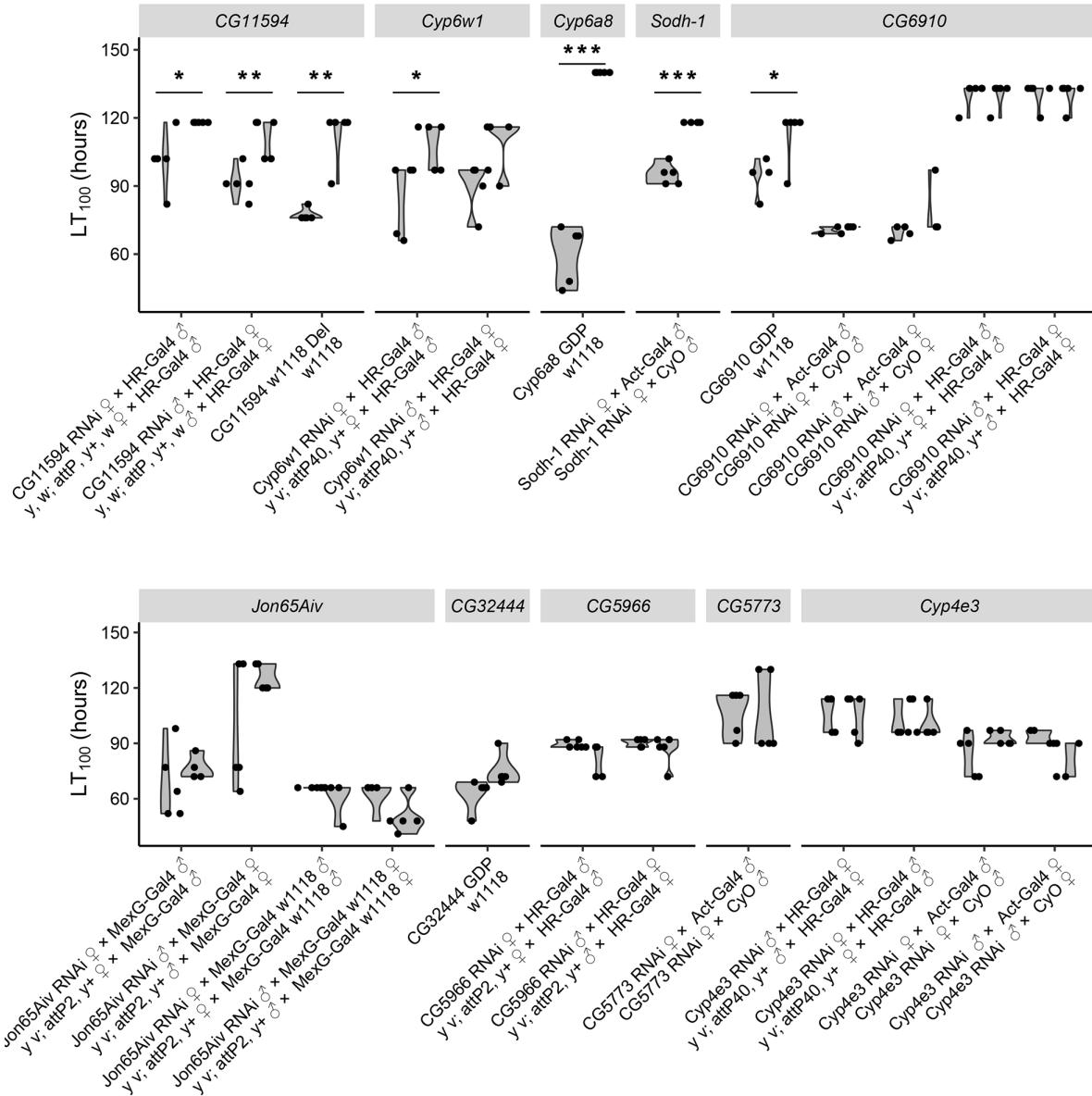
300 **Figure 3. GO enrichment and correlational clustering analysis.**

301 **A)** Top 15 enriched GO terms associated with the DEGs in tolerant and sensitive strains. The Y-axis
302 indicates gene functions, and the X-axis indicates the percentage of total DEGs in a given GO
303 category (gene ratio). **B)** String interaction network of candidate genes taken from highly correlated
304 modules (modules 2 to 5, Fig. S4) of the MCC analysis for the treated samples of the tolerant strains
305 (PPI enrichment p-value: $< 1. \times 10^{-16}$). Up-regulated genes are shown in red, down-regulated in blue.
306 The genes with yellow labels are part of the serine peptidase cluster, while those with borders in bold
307 were selected for further validation using RNAi knockdown or gene disruption lines.

308

309
310
311

312 **Eight out of 10 Copper Candidate Genes Were Confirmed to Play a Role in Copper Tolerance.**


313 Ten of the candidate genes associated with copper response based on our transcriptomic analysis were
314 chosen for further characterization. Three of these genes —*CG5966*, *CG5773*, and *Cyp4e3*— were
315 chosen on the basis of their differential expression data alone. Three other candidates—*Sodh-1*,
316 *CG6910*, and *CG32444*—have been linked to copper homeostasis previously in the literature, but
317 their exact functions have not been well characterized [12, 54, 55]. The remaining four candidate
318 genes, *CG11594*, *Cyp6w1*, *Cyp6a8*, and *Jon65Aiv* were all found to be associated with TE insertions
319 (see below). In addition, four of the ten candidates were part of the MMC cluster containing the serine
320 peptidases (*Sodh-1*, *CG6910*, *Jon65Aiv*, and *CG32444*; Fig. 3B).

321 Seven of the genes tested showed changes in phenotype (copper survival) when knocked-down or
322 disrupted in the direction that could be expected based on our RNA-seq data, *i.e.* if the gene was
323 found to be up-regulated in response to copper, the knock-down of the gene was associated with
324 decreased survival (Fig. 4, Fig S6, Table 2, Table S9). Mortality curves were significantly different
325 for six of these seven genes when comparing the gene disruption or knock-down lines with their
326 genetic background controls (Fig. S6 and Table 2), with four of them also showing significant
327 differences in LT₁₀₀ (Fig. 4 and Table 2). On the other hand, *CG6910* only showed differences in LT₁₀₀
328 (Fig. 4 and Table 2). Of these seven confirmed genes, *CG11594*, *Cyp6w1*, *Cyp6a8*, and *Jon65Aiv*, are
329 novel candidates, whose full role in copper biology is not yet understood, while the other three genes,

330 *Sodh-1*, *CG6910*, and *CG32444* have prior links to the phenotype [12, 20, 55]. On the other hand,
331 *CG5966* displayed decreased mortality when knocked-down, which was not predicted by its induction
332 on copper (Fig. 4, Fig. S6, Table 2).

333
334 *CG5773* and *Cyp4e3* did not display any changes in survivorship after knock-down (Fig. 4 and Table
335 S9, Table 2). As *Cyp4e3* was initially tested with *6gIHR-Gal4* driver, based on prior expression data
336 [56], we repeated the crosses with the *Actin5C-Gal4* driver. However, these additional assays did not
337 show any significant changes in copper survival. While it is possible that the effects of these genes on
338 copper tolerance are background sensitive, as per the example of *Cyp6g1* [57] and *Cyp12d1* [58], it is
339 also possible that these genes have little to no true impact on the phenotype at all, and are only present
340 due to co-regulation with other genes that do directly affect copper tolerance—a phenomenon that has
341 been observed with regards to the *Cnc/Keap1* pathway [59] (Fig. 4, Fig. S6, Table S9).

342
343
344 **Figure 4. Copper survival experiments for all ten copper candidate genes.**
345 LT₁₀₀ values comparing candidate gene disruption and knock-down lines with their genetic
346 background controls (3 to 5 replicates of 15 females). Significant LT₁₀₀ with p-values <0.05 are
347 shown with *, p-values < 0.01 with **, and p-values < 0.001 with ***. Del is deletion and GDP is
348 gene disruption. For RNAi knockdowns, genes thought to act in the ‘detox’ tissues—including the gut
349 fat body and Malpighian tubules—were targeted with the *6gIHR-Gal4* driver, while those genes
350 whose expression was more gut specific were targeted with *MexG-Gal4*. An ubiquitous *Actin5C-Gal4*
351 knockdown was used for all other crosses. Drivers abbreviations are as follows: *MexG-Gal4(I)* *w1118*
352 is the introgressed *w1118* version of *MexG-Gal4* driver; *HR* is the *HikoneR* driver, and *Act* is the
353 *Act5C* driver (see Table S1C).

354

355

356

357 **Copper Tolerance is Correlated with Gut Acidity and *CG11594* Activity and not Mitigated by
358 Changes in Feeding Behavior**

359 Both our DGET analysis and our GO analysis have lent evidence to the idea that there is a
360 relationship between the gut and copper tolerance (Fig. 2C and Fig. 3A). As copper accumulation in
361 *D. melanogaster* has previously been linked to changes in gut physiology [13], we assayed the
362 changes in gut pH after copper exposure. Adults from the six RNA-sequenced strains were subject to
363 copper assay conditions, and then allowed to recover for two hours on regular media supplemented
364 with a mixture of Bromophenol Blue and yeast. If the acidic copper cell region of the gut remains un-
365 inhibited by copper, this region should remain yellow under Bromophenol Blue (pH<2.3). After two

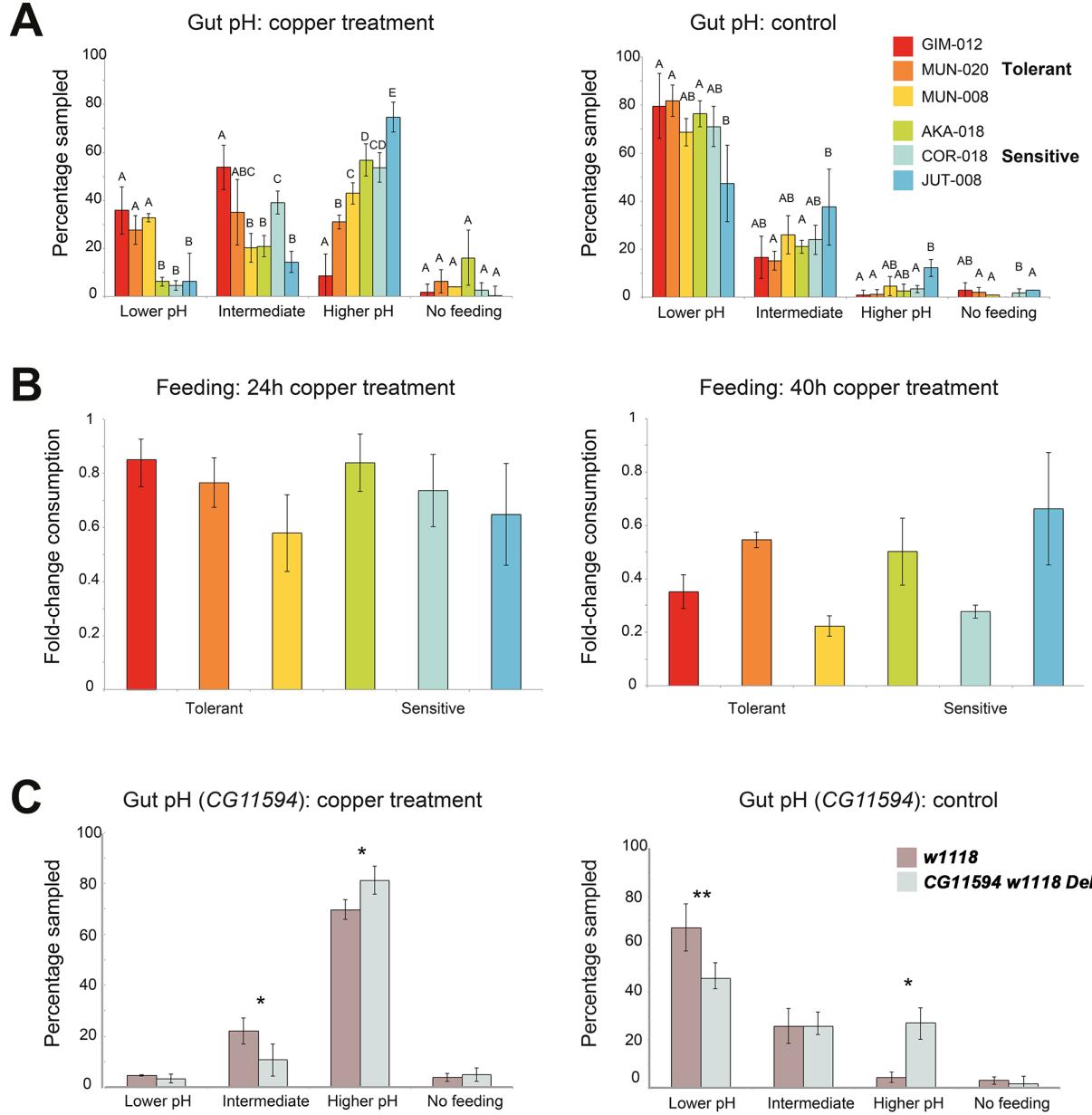
366 hours, most recovering individuals had consumed enough media for the dye to be detected in the gut.
367 Only AKA-018 had more than 10% of flies failing to feed on recovery—a phenomenon that was not
368 seen in the controls (Fig. 5A). While all six strains showed decreased acidity across the copper cell
369 region after copper treatment, the three sensitive strains showed a much higher loss of acidity than the
370 three tolerant (Fig. 5A and Table S10A). Greater than 25% of individuals across all tolerant strains
371 maintained a low pH under treated conditions compared to less than 10% of the sensitive strains (χ^2 p-
372 value = 4.815×10^{-7} , Fig. 5A). Differences were less pronounced under control conditions, with only
373 JUT-008 showing an appreciable loss of acidity in the absence of copper. From these results, we can
374 infer a link between the loss of acidity in the copper cells and a decreased ability to tolerate copper.
375

376 *D. melanogaster* often avoid food sources with high concentrations of heavy metals [60, 61]. To
377 determine if the changes in gut acidity are influenced by changes in feeding behavior, we repeated the
378 copper tolerance assays on the six RNA-sequenced strains, this time with the addition of a 1%
379 Erioglaucine Disodium Salt to both the treatment and control solutions to act as a dye. We measured
380 the level of dye consumed in both treatment and control conditions at two separate time-points to
381 determine the level of feeding avoidance. At 24 hours, the level of feeding avoidance on copper
382 across most of the lines was quite low when compared to their control counterparts, with no
383 significant differences between strains (Fig. 5B and Table S10B). Feeding avoidance was generally
384 stronger at the 40-hour mark, where both MUN-008 and COR-018 were distinguishable by their
385 greater levels of feeding avoidance (Fig. 5B and Table S10B). However, no relationship could be
386 drawn between feeding behavior and whether or not the line showed high or low copper tolerance or
387 changes in gut acidity.

388
389 If the observed changes in gut acidity are not based in behavior, they are likely physiological in
390 nature. While metallothioneins could be good candidates [14], as mentioned above we found *MtnA*-
391 *MtnE* to be up-regulated in response to copper both in tolerant and sensitive strains (Fig. 2B), and no
392 differences in *MtnA*-*MtnE* expression between tolerant and sensitive strains were found in basal
393 conditions (Table S4B). Thus, overall, changes in *MtnA*-*MtnE* expression are not likely to explain the
394 identified differences in gut acidity (Fig. 5A). We thus decided to focus on *CG11594* one of the seven
395 candidate genes that we confirmed as having a role in copper tolerance (Fig. 4 and Table 2), as this is
396 the most poorly characterized of the candidate genes, which although being associated with a number
397 of stress phenotypes it had no prior links to copper biology before this work [62, 63]. To determine if
398 *CG11594* expression alters gut acidity, similar exposure and gut staining assays were carried out over
399 a sixteen hour time period on a *CG11594* deletion strain (*w[1118]; CG11594[1]*), using *w[1118]* as
400 the background control strain. While both lines displayed a high degree of gut de-acidification after
401 treatment than any of the six natural lines, the effects seen on the *CG11594* deletion line were

402 significantly greater than those on the background control line (p-value < 0.05, Fig. 5C and Table
403 S10C).

404 Curiously, the clearest differences between the two lines were seen not in the copper treatment, but in
405 the control, where only a half of the *CG11594* deletion individuals displayed a clearly defined acidic
406 region. This is in stark comparison to the six sequenced strains, which displayed healthy guts under
407 control conditions. These results suggest that physiology, not behavior, is the main driver behind
408 midgut de-acidification after copper exposure, and that *GG11594* plays a role in this change.


409

410

411 **Figure 5. Gut acidity after copper exposure is correlated with copper tolerance and is not linked**
412 **to feeding behaviour.**

413 **A)** Gut acidity results on the six RNA-sequenced strains after 24 hours of copper treatment and 2
414 hours of recovery (left) and after 24 hours of control conditions and 2 hours of recovery (right).
415 Lower pH indicates that the dye turned yellow within the region of the gut containing copper cells;
416 intermediate pH indicates that the dye turned green-brown, but a discrete acidic region could still be
417 detected; higher pH indicates that the entire midgut was blue and the copper cell region could not be
418 detected; and no feeding (clear or pale blue). The labels above the error bars (A-D) indicate
419 significance across multiple tests - if a letter is shared between two bars in a grouping (e.g., Lower
420 pH; Intermediate pH), the differences between said bars are not significant. **B)** Feeding avoidance in
421 the presence of copper measured as a fold difference in consumption between treatment and control at
422 24 hours (left) and 40 hours (right). **C)** Gut pH of the control strain *w[1118]* (in red) and the
423 *CG11594* deletion strain (in blue) after 16 hours of copper treatment (left) and control conditions
424 (right). An asterisk (*) indicate a difference across the treatment groups at p-value < 0.05 (*) and p-
425 value < 0.01 (**). For all the plots, error bars represent the standard error of the mean of three
426 replicates containing 28-44 females each (A and C) and three replicates containing 25-30 females
427 each (B).

428

429

430

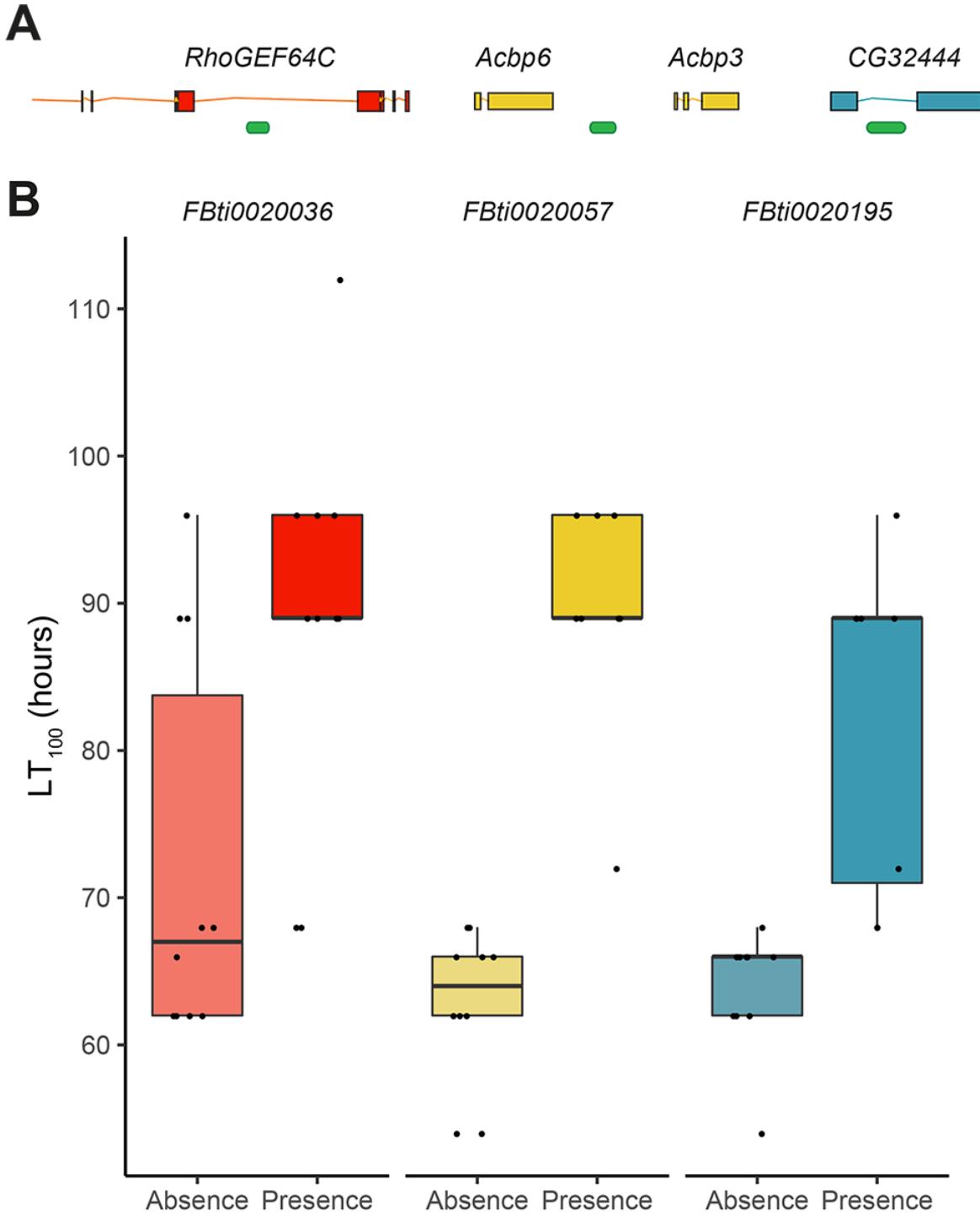
431

432 Transposable Element Insertions May Influence Copper Tolerance

433 TE insertions are often associated with changes in gene expression under stressful conditions (e.g. 434 [64]), and in *D. melanogaster*, several specific insertions have been linked to stress response including 435 zinc stress (e.g. [27–32]). However, until recently only the subset of TEs annotated in the reference 436 genome could be analyzed, thus limiting the power of genome-wide analysis to investigate this type 437 of structural variant. We took advantage of the availability of *de novo* whole genome assemblies and 438 *de novo* TE annotations for the three tolerant and three sensitive strains analyzed in this work [24], to 439 investigate the association between proximal *cis* TE insertions and gene expression levels in both 440 treated and control conditions (within 1kb of the insertion, see Material and Methods). Using

441 QTLtools [65], we identified three TE insertions that were significantly associated with changes of
442 expression in nearby genes: two in response to copper (*FBti0061509* and *FBti0063217*) and one both
443 in control and in response to copper (*FBti0060314*; Table S11A). Although the number of significant
444 associations is small, this is most probably due to the small number of genomes analyzed (six)—
445 suggesting that this approach should provide more insight with larger datasets.

446 As an alternative approach, we also investigated whether previously identified DEGs in tolerant and
447 sensitive strains were located within 1kb of a TE insertion (Table S11B). There were no significant
448 differences between the percentage of differentially expressed genes located within 1kb of a TE in
449 tolerant compared to sensitive strains (14.28% across the three tolerant strains and 11.29% in the three
450 sensitive; p-value= 0.2193). While 73.5% of the TE insertions were associated with gene up-
451 regulation in tolerant strains only 28% of the TEs were associated with up-regulation in sensitive
452 strains (Fisher's exact test p-value = 0.0014; Table S11B). Because the effect of transposable
453 elements, and other genetic variants, are often background dependent (e.g. [66]), we also investigate
454 whether TEs were associated with DEGs identified at the strain level. None of the strains showed a
455 significant enrichment of TEs nearby DEGs (test of proportions p-value > 0.05, Table S11C).


456

457 Finally, we tested three TE insertions for their effects on copper tolerance. For each of the TE
458 insertions, we constructed two outbred populations: one with the insertion and one without the insertion
459 (see Material and Methods). This strategy limited testing to those TE insertions that have been found
460 segregating in populations at a high enough level that we could obtain enough strains to construct the
461 outbred populations. We chose two insertions that besides being located nearby DEGs, showed
462 signatures of positive selection in their flanking regions suggesting that they might be adaptive:
463 *FBti0020036* and *FBti0020057* [26]. The third TE candidate, *FBti0020195*, is not present in any of
464 our six sequenced strains but garnered special interest due to its location within *CG32444*, a candidate
465 gene identified in this study and further confirmed with the use of gene disruption (Fig. S6). For each
466 of these three TE insertions, we constructed two outbred populations: one with the insertion and one
467 without the insertion (see Material and Methods). For each of the paired outbred populations, those
468 containing TE insertions demonstrated greater survivorship on copper than their negative
469 counterparts, both on LT₁₀₀ (p-value = 0.01117, p-value < 0.001 and p-value = 0.0018 for
470 *FBti0020036*, *FBti0020057* and *FBti0020195* respectively, Fig. 6 and Table S11D), and across the
471 entire survival curve (log-rank tests p-value < 0.001 for all three comparisons, Fig S7 and Table
472 S11D).

473

474 **Figure 6. Copper survival experiments for the three candidate transposable element insertions**
475 **A)** Gene structure showing where each of the candidate TEs are inserted. For *RhoGEF64C* only the 3'
476 region of the gene is depicted. **B)** Relative change in average mortality at the end of the assay

477 comparing outbred populations with and without the candidate TE (9 to 10 replicates of 10-15 females
478 in treatment and 5-10 females in control conditions).
479

480
481
482
483

484 **DISCUSSION**

485 **The Environmental Determinants of Copper Tolerance in *D. melanogaster* are Complex**

486 In this study, we undertook a survey of multiple European *D. melanogaster* populations to determine
487 how copper tolerance varies across the continent, and whether this variation could be linked to the
488 presence of copper or other environmental factors. To achieve this, we compared our phenotypic
489 values with geographic factors, copper soil levels, atmospheric pollution levels, and degree of
490 urbanization. We found a positive correlation between latitude and LT₅₀ (p-value = 0.015, Table S3B).
491 While we also found evidence of a link between urban build-up and greater tolerance, no clear
492 relationship could be drawn between tolerance and any of the direct measures of pollution available to
493 us. As Romic and Romic (2003) [2] noted, human sources of environmental copper are characterized
494 by many point sources of contamination, and while we are aware that some well-known sources —
495 such as atmospheric copper — are missing from our dataset, it is possible that there are others missing
496 as well. Moreover, it is also unknown whether the greatest effect will be from an accumulation of
497 multiple sources of the metal, or a small number that are the most bio-available. As these point
498 sources can be difficult to characterize, performing environmental sampling, e.g., soil sampling,
499 alongside fly collections may be a viable alternative [67]. The diversity of vegetation may also be
500 worthy of record as copper uptake and storage varies across plant tissues and species [68]. Although
501 we cannot discard that more extensive sampling could further help discern the relationships between
502 phenotype and environment, our results indicate that the finer details of the surrounding environment
503 should be receiving as much attention as the finer details of the genome when making sense of
504 phenotypic differences.

505

506 **The Genetic Basis to Copper Tolerance in *D. melanogaster* is Complex, and Involves Multiple
507 Regulatory Factors**

508 One of the most distinguishing features of our phenotypic dataset is the high degree of variation both
509 within and between sampling locations (Fig. 1B and Fig. S1). While high levels of phenotypic
510 variation can sometimes result from an allele of large effect segregating within a population, as seen
511 in Battlay et al. (2016) and Green et al. (2019) [58, 69]; the gradual distribution of our LT₅₀ values
512 suggest that this is not the case and that the degree of phenotypic variation seen across our strains is
513 likely an indication of the polygenic basis of the trait (Fig. S1A, [5, 20]). This was in turn backed by
514 our RNA-sequencing analysis, which indicated that copper tolerance is a trait with a complex genetic
515 architecture, involving multiple genes and regulatory factors, and with a large degree of expression
516 change occurring in the gut.

517

518 With regards to genes with prior links to metal response, variation in metallothionein expression was
519 not found linked to phenotypic variation in the six strains sequenced (Fig. 2B). However, as all six
520 strains carry the 3' indel that is believed to be linked to increased stress tolerance, and it is found to be

521 close to fixation in northern Europe [17], it is likely that metallothionein tolerant variants have already
522 been subject to selection. We also saw no significant differences in expression with regards to
523 multiple genes previously linked to copper homeostasis. While this may initially come across as
524 curious, many of the previous studies characterizing copper-related genes in genetically modified
525 lines were carried out in a small number of strains with the aim of characterizing genes that play a role
526 in human diseases [9, 55, 70], and not explicitly copper exposure in nature. While the lack of these
527 genes in our DEG lists does not necessarily mean that they are not involved in copper tolerance, it
528 does indicate that the genes contributing to the variation we see in tolerance in natural populations of
529 *D. melanogaster* are much broader than previously characterized in these studies, and that the
530 biological basis behind copper tolerance may be constrained by the need to maintain copper levels in
531 less extreme environments.

532 While it has been well documented that MTF-1 plays an important role in regulating gene expression
533 in response to metal exposure, including metallothionein induction, it is unlikely to be the only
534 regulatory factor affecting changes in expression, especially with regards to downstream metabolic
535 processes affected by copper toxicity [22]. By using a combination of DGET and gene clustering, we
536 were able to identify *Sir2* and *HNF4* as additional potential regulatory elements. *Sir2* plays a
537 multifaceted role in maintaining energy homeostasis, affecting fat mobilization [71], insulin signaling
538 [72], and energy consumption [50]. *HNF4*—a direct target of *Sir2* regulation—also influences a wide
539 range of processes involved in cellular metabolism and systemic physiology [53]. These results are
540 supported by our functional gene analysis. Of the eight confirmed candidate genes (Fig. 4), *Sodh-1*
541 and *CG32444* have both been linked to the kind of metabolic processes modulated by *HNF4* and *Sir2*,
542 while also having found associated with copper toxicity previously [20, 55]. The two cytochrome
543 P450s, *Cyp6w1* and *Cyp6a8*, are both linked to oxidative stress [58, 73], a process that has been
544 linked to metal tolerance previously [22]. *CG6910* is down-regulated in MTF-1 knockout mutants
545 [12]. The roles of the remaining three candidates in copper tolerance are more speculative. *Jon65Aiv*
546 is known to be a serine protease with a likely role in digestion [74]. Serine proteases have also been
547 shown to be down-regulated in clusters after exposure to another metal, manganese [75] and during
548 aging [76], although the reason for this perturbation remains unresolved. As copper inhibits larval
549 midgut acidification [14], a phenotype also seen in aging [13], it would be tempting to investigate the
550 relationship between acidity and serine proteases directly. This also has interesting implications for
551 cross species comparisons: While serine protease function is well conserved across species [77], the
552 degree of segmentation and the pH levels of the alimentary tracts of many other insect species (e.g.
553 lepidoptera) are not [78, 79].

554 While its role has not been well characterized, *CG5966* is involved in triglyceride breakdown [80],
555 and starvation response [81], a functional profile that fits with regulation by both *Sir2* and *HNF4*.
556 *CG5966* has also been found to be highly up-regulated during mitochondria dysfunction [82], along

557 with many other stress response genes. Finally, our pH assays give the greatest guidance to the role of
558 *CG11594*, which may prove to play a role in gut integrity.

559

560 While our individual gene candidates may not be so well conserved outside of *Drosophila*, *Sir2* and
561 *HNF4* do have well-conserved orthologs, much in the same manner as the metallothioneins. While
562 there is no previous evidence for these genes playing a role in copper toxicity in arthropods, such
563 evidence exists in mammalian cell culture: rat hepatocytes treated with copper sulfate display
564 increased expression of *Sir2* homologs *Sirt1* and *Sirt2* [83], while *HNF4-α*, influences copper
565 responsive transcription changes in HepG2 cells [84]. Furthermore, while many of our putative
566 candidates for *Sir2* and *HNF4* regulation were found highly expressed in the gut, both regulatory
567 elements have been shown to play different roles in different tissues [53], presenting us with the
568 possibility that not only might their roles in copper response be discordant in different tissues, but that
569 this may apply to the general transcriptional signature post metal exposure as well. Future assays
570 using knockdown or disruption of these factors across multiple tissues in *Drosophila* would be able to
571 confirm their specific roles in copper response.

572

573 Further changes in gene expression can potentially be traced back to transposable element insertions.
574 TE insertions are often associated with the differential expression of nearby genes under stress
575 conditions [27, 28, 64]. We identify several TE insertions located inside or nearby differentially
576 expressed genes (Table S10B). For three of these insertions we further showed that their presence is
577 associated with increased copper survival (Fig. 6). Further analysis, such as recombination mapping
578 and CRISPR based knock-outs in these genetic backgrounds could potentially assist in confirming the
579 role of these specific TE insertions in altering gene expression and their effect on phenotype.

580

581 **Gut acidity is linked to copper tolerance in *D. melanogaster*.**

582 Our analysis demonstrated that a large degree of the differential expression observed after copper
583 exposure was occurring in the gut, a key tissue when it comes to copper physiology [13–15]. A role
584 for the gut is also supported by the GO enrichment results: chitin binding and metabolic processes
585 suggest a role for the peritrophic membrane [85], which is important for gut integrity. A study on the
586 effects of Lufenuron—a chitin disrupter—in *Anthophonus grandis* showed that gut disruption could
587 lead to changes in metabolism and the down regulation of vitellogenin; also seen in our GO enrichment
588 analysis [86]. In addition, chitin binding and metabolic processes also affect the cuticle, which may
589 affect copper exposure via contact. Indeed, copper DEGs were also found to be enriched amongst
590 extremely high and highly expressed genes from the carcass in DGET (Fig. 2C). A correlation
591 between cuticle darkening and increased body copper content has also been reported in *D.*
592 *melanogaster* [75].

593

594 Our gut pH assays clearly demonstrate that copper exposure results in a loss of acidity in the copper
595 cell region—and that this effect is more sharply seen in the three sensitive strains (Fig. 5A). Our
596 subsequent feeding response assays excluded differences in copper consumption as a potential
597 explanation of varying losses in gut acidity, suggesting a more physiological process was responsible
598 for the changes observed (Fig 5B). While metallothioneins could be good candidates [14], our *Mtn*
599 expression data do not sufficiently explain the differences we observed (Fig. 2B and Table S4). This
600 opens up the possibility that one or more of our gene candidates selected for further analysis may be
601 affecting copper tolerance through changes in copper cells or gut acidity. While the function of
602 *CG11594* has mostly gone uncharacterized, its expression has been linked to both oxidative stress and
603 ER stress in the DGRP [62, 63]. While disruption of *CG11594* expression caused a strong loss in gut
604 acidity after copper treatment, there was a notable loss under control conditions as well (Fig. 5C).
605 These results imply that loss of gut acidity is a sub-phenotype to copper tolerance, and that both share
606 links to *CG11594* activity—although the exact mechanism underpinning the relationship remains
607 elusive. In light of previous studies, we can propose two tentative alternative hypotheses: regulation
608 of *CG11594* by both *Sir2* and *HNF4*, suggests that the gene plays a general role in energy and
609 metabolism [50], and it is differences in the allocation of energy and resources that affects survival.
610 Alternatively, links to ER stress [63] could indicate a role linked to lysosome function or metal
611 storage.

612
613

614 CONCLUSIONS

615 Our investigation across European natural populations of *D. melanogaster* proved copper tolerance to
616 be a highly variable trait. We confirmed the involvement of multiple new candidate genes, identified
617 two potential new regulatory factors that have previously only been seen to mediate metal responses
618 in mammals, and described physiological changes linked to this trait. Unlike previous candidates,
619 such as the metallothioneins, which are common across a wide phylogeny, it is unlikely that the exact
620 genes shown to affect copper tolerance in *D. melanogaster* will be perturbed in other species
621 vulnerable to metal toxicity. However, other, more general, molecular pathways and physiological
622 changes in the gut we observed in *D. melanogaster* are likely to prove relevant in studying the effects
623 of copper toxicity in other species.

624
625

626 MATERIAL AND METHODS

627 Fly Collections

628 Details of all the stocks used can be found in Table S1. The nine original collections were carried out
629 across the summer of 2015 by the DrosEU consortium. Each of the established isofemale strains (4 to
630 16 depending on the population, Table S1) was repeatedly inbred for up to 20 generations. Of the

631 additional strains included for geographical and environmental analysis, the Mauternbach and Recarei
632 strains were caught in 2018 and the Bari strains were caught in 2011 and have been kept as isofemale
633 strains since then [87]. All fly collection sites are documented in Fig. 1A. All strains were maintained
634 on semolina-yeast-agar media and were kept at 25 °C on a 12:12 hour light and dark cycle for at least
635 one generation before use.

636

637 **Copper tolerance assays**

638 Copper sulfate (CuSO₄) (CAT# 451657-10G) was obtained from Sigma Aldrich. Copper assays were
639 adapted from Bonilla-Ramirez *et al.* (2011) [61]. This particular method was chosen for two reasons:
640 (i) as *Drosophila* are known to show food avoidance with a high concentration of heavy metals [61]
641 both it allowed exposure via both contact and digestion; and (ii) the 4-5 day length of the assay gives
642 sufficient time to differentiate between tolerant and sensitive strains without risking high control
643 mortality.

644 Briefly, powdered CuSO₄ was reconstituted to 20mM in a 5% sucrose solution. Brilliant blue food
645 dye (E133) was added to aid visibility and even dispersal. An identical control solution without
646 CuSO₄ was prepared in the same manner. 250µl of the CuSO₄ sucrose solution was pipetted onto
647 70x17mm slips of filter paper (Whatman, CAT# 3030917), which were then placed into 15ml Falcon
648 tubes (Cultek, CAT# 352096), containing 1ml on 1% agar at the bottom. Papers were allowed to dry
649 for 15 minutes before the flies were added. To assist respiration, holes were made in the lids of the
650 falcon tubes. Number of dead flies was counted at different timepoints both in the control and treated
651 conditions, until all flies were dead in the treated conditions.

652 For each isofemale strain, 4-7 day old females were used in the copper survival assays both in control
653 and treated (20mM copper) conditions. Three replicates of up to 15 flies each were performed for the
654 treatment and for the control conditions (Table S1). LT₅₀ calculations were used to interpolate
655 measures of survival for each of the strains. Linear models were fitted to time point-mortality data on
656 a log-probit scale using the “glm” function in the R statistical package, using a script adapted from
657 Johnson *et al.* (2013) [88]. Of the 73 DrosEU strains screened, LT₅₀ values were successfully
658 calculated for 71, along with the 26 additional strains from Italy, Austria and Portugal (Table S1).

659

660 **Correlation Analysis with Geographical and Environmental Variables**

661 Copper soil concentration data was taken from The European Soil Data Centre (ESDAC:
662 <https://esdac.jrc.ec.europa.eu/content/copper-distribution-topsoils>) [3], with the exception of the
663 Tenerife data, which was taken from Fernandez-Falcon *et al.* (1994) [89]. Air pollution data was
664 taken from the European Environment Agency (EEA):
665 <https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm>. The pollutants considered included:
666 PM10 (particulate matter 10 micrometers or less in diameter), PM2.5 (particulate matter 2.5
667 micrometers or less in diameter); arsenic in PM10, cadmium in PM10 and lead in PM10 data. All

668 measures were taken from the closest research station available for each catch site. General PM10 and
669 PM2.5 data and atmospheric metal data for arsenic, cadmium and lead were available for the majority
670 of catch sites (Table S3). Data for particulate copper taken from PM10 measures had to be excluded
671 due to both insufficient geographical coverage and a lack of consistency in the measures made (PM10
672 and precipitation). All tests and linear regression models were performed in *R v3.5.1*. [90]. Regression
673 models were fitted with LT_{50} values as the dependent variable, and with geographical and pollution
674 measures as independent variables. Degree of urbanization of the fly collection locations was based
675 on whether the closest population to a collection site was a city ($> 50,000$ inhabitants: urban), a town
676 with a population $> 5,000$ inhabitants (semi-urban), or less dense populations $< 5,000$ inhabitants
677 (rural; Table S3). This degree of urbanization is based on the OECD/European Commission (2020),
678 Cities in the World: A New Perspective on Urbanisation, OECD Urban Studies, OECD Publishing,
679 Paris, available at: <https://www.oecd.org/publications/cities-in-the-world-d0efcbda-en.htm>) [37]. We
680 performed a multiple linear regression model to test the association between copper tolerance (LT_{50})
681 and the geographical and environmental variables. We first created a linear model with all the
682 measured variables (model: $LT_{50} \sim \text{Longitude} + \text{Latitude} + \text{Copper} + \text{PM10} + \text{PM2.5} + \text{Arsenic} +$
683 $\text{Cadmium} + \text{Lead} + \text{DegreeUrbanization}$). We carried out a backward stepwise regression to eliminate
684 variables using the *dropterm()* function of the MASS package in R. At each step we removed the least
685 significant variable. Only variables with a p-value < 0.1 were retained in the minimal model [91],
686 which considered Latitude and Degree of urbanization ($R^2=12\%$, p-value = 0.0079).
687

688 **RNA-seq Sample Preparation**

689 RNA-seq analysis for short-term copper exposure (24 hours) was performed on six inbred strains,
690 where those with the strain codes GIM-012, MUN-020 and MUN-008 were copper tolerant and
691 JUT-008, COR-018 and AKA-018 were copper sensitive (Appendix 1 and Table S1). To maximize
692 odds of choosing mostly homozygous strains, we prioritized those strains with a high degree of
693 inbreeding (minimum of F20), and a low degree of variation between biological replicates in the LT_{50}
694 assays.

695 Four biological replicates of 25 mated female flies 4 to 7 day-old from each line—separated 24 hours
696 beforehand on CO₂—were exposed to CuSO₄ or the equivalent control conditions, as reported above,
697 and removed after 24 hours. This timeframe allowed low levels of death in the sensitive strains, but
698 enough time to stress tolerant strains, as measured by the induction of *MtnB* detected through RT-
699 qPCR. Deceased individuals from strains COR-018 and JUT-008 were removed before whole-body
700 RNA extraction. 20 females from each biological replicate were flash frozen in liquid nitrogen and
701 total RNA was isolated using the GenElute Mammalian Genomic RNA miniprep kit (Sigma Aldrich,
702 CAT# RTN350-1KT), following the manufacturer's instructions. For each sample, the three repeats
703 with the best RNA quality based on BioAnalyzer were retained for sequencing. 1 μ g of total RNA
704 from each sample (whole female body) was used for subsequent library preparation and sequencing

705 using an Illumina Hiseq 2500. Libraries were prepared using the Truseq stranded mRNA library prep
706 according to the manufacturer protocol. Only two control samples for both AKA-018 and MUN-020
707 showed high enough quality for further sequencing analysis. Thus overall, we used 34 samples.
708

709 **Analysis of RNA-seq Data**

710 RNA-seq analysis was performed using the *rnaseq* pipeline (v1.2) from the *nf-core* community, a
711 *nextflow* collection of curated bioinformatic pipelines [92, 93]. The total number of raw reads
712 obtained per sample range between 25,16 M and 46,13M. Briefly, sequencing quality was assessed
713 using *FastQC* (v.0.11.8, [94]). *TrimGalore* (v.0.5.0) was used for adapter removal [95], and *Cutadapt*
714 v. 1.18 with default parameters was used for low-quality trimming [96]. Trimmed reads were mapped
715 to the *D. melanogaster* genome r6.15 [97] using *STAR* (v.2.6, [98]). On average, 95.9% of the reads
716 mapped to the reference genome. Technical duplications were explored using *dupRadar* [99]. Overall,
717 we found no bias towards high number of duplicates at low read counts, so we did not remove
718 duplicates from the alignments. We used *featureCounts* (v.1.6.2, [100]) for counting the number of
719 reads mapping to genes (*reverse-stranded* parameter). Multi-mapping reads and reads overlapping
720 with more than one feature were discarded. The matrix of counting data was then imported into
721 *DESeq2* [101] for differential expression (DE) analysis following the standard workflow and applying
722 the design formula: *Strain + Treatment* in the analysis of the tolerant and sensitive strains. To
723 compare resistant vs. tolerant strains in basal conditions, we used the design formula ~ *Resistance*.
724 Normalization was performed using the standard *DESeq2* normalization method, which accounts for
725 sequencing depth and RNA composition [101, 102]. Differentially expressed genes were chosen
726 based on both \log_2 fold change (> 1.5) and adjusted p-values (< 0.05). Gene counts and scripts to
727 perform the DE analyses can be found at https://github.com/GonzalezLab/Dmelanogaster_Copper.
728 Functional profile analyses of the differentially expressed genes (GO, GSEA and KEGG) were
729 performed using the R package *clusterProfiler* [103]. Breakdown of differentially expressed genes by
730 tissue was performed using the *Drosophila Gene Expression Tool* (DGET:
731 <https://www.flyrnai.org/tools/dget/web/>; [38]), with gut subsampling data taken from similar aged
732 flies from Marianes and Spradling (2013) [41].
733 Modulated Modularity Clustering (MMC) was used to group differentially expressed genes into
734 subsets of genetically correlated genes in both treated and control samples. All analyses were carried
735 out as outlined in Stone *et al.* (2009) [48], except the variance filtering, which was performed in *R*
736 v3.5.1 beforehand. The variance filter removed genes where no variance across repeats and samples
737 was found, which basically removes genes with no expression. Additional network-based analysis
738 was performed using *STRING* (v10, [49]) using a minimum interaction score of 0.7. Subsequent
739 visualizations were performed using *Cytoscape* (v.3.7.1, [104]).
740

741 **RNAi and Gene Disruption Assays**

742 Candidate genes were functionally validated using RNAi knockdown lines from the KK library of the
743 *Vienna Drosophila Resource Centre* ([105]; obtained from the VDRC) and the Transgenic RNAi
744 Project (TRiP) developed from the Harvard Medical School ([106]; obtained from the *Bloomington*
745 *Drosophila Stock Centre*). Additional gene disruptions were performed using either *Drosophila Gene*
746 *Disruption Project* (GDP) lines ([107]; obtained from the *Bloomington Drosophila Stock Centre*) and
747 one independent deletion mutant ([w1118]; CG11594[1]; *Bloomington Drosophila Stock Centre*) All
748 stock numbers are provided in Table S1.

749 The choice of *GAL4* driver was based on data obtained for each gene from *FlyAtlas 2*
750 (<http://flyatlas.gla.ac.uk/FlyAtlas2/index.html>; [56]). Three of the drivers were homozygous: the
751 *6g1HR-Gal4* driver, described by Chung *et al.* (2006) [108], and two different background versions of
752 the *MexG-Gal4* driver, originally described by Phillips and Thomas (2006) [109]. All three were
753 provided by Shane Denecke. The heterozygous *Actin:5C-Gal4/CyO* driver was obtained from
754 Bloomington Stock Centre (BDSC ID 4144).

755 For all assays using homozygous *GAL4* drivers, the mortality of all *GAL4-RNAi* crosses was
756 compared to matching control crosses using the appropriate RNAi background strain. For the KK
757 RNAi lines, comparisons were made to crosses using the KK construct-free control strain (VDSC ID
758 60100). For all assays containing TRiP RNAi lines, for those lines with the RNAi construct inserted
759 into the attP2 site, comparisons were made to the y, v; attP2, y+ construct-free control strain (BDSC
760 ID 36303) and or those lines with the RNAi construct inserted into the attP40 site, the y, v; attP40, y+
761 construct-free control strain (BDSC ID 36304). Due to difficulties maintaining the strain, for all
762 assays using crosses using the *Actin:5C-Gal4/CyO* driver, the offspring that inherited the *Gal4*
763 construct were compared to their *CyO* inheriting siblings. All GDP lines and the [w1118];
764 CG11594[1] strain were compared to w1118.

765
766 Copper survival experiments were performed as described above using 4-7 day old flies. Three to five
767 replicates of up to 15 flies for the treatment, and four to five replicates of up to 10 flies were
768 performed for control conditions. Kaplan-Meier survival analysis was chosen as the best statistical
769 comparison for comparing disrupted and control samples, and all analyses were performed using the
770 R package *Survminer* (v.0.4.8). Additionally, relative change in average mortality is also provided as
771 a proxy of the size of the effect of these genes on copper tolerance, significance was tested using a t-
772 test.

773

774 **Gut pH Assays**

775 4-5 day old flies from the six strains taken from the RNA-seq analysis were subject to the same assay
776 conditions used for the copper tolerance assays for 24 hours. Assays were performed in triplicate, with
777 each replicate consisting of 30-50 female individuals. Higher numbers were required for COR-018
778 and JUT-008 to account for the level of mortality expected during this timeframe. Flies were then

779 transferred to regular *Drosophila* media, on which 200 μ l of a mixture of 1% Bromophenol Blue, dried
780 yeast and water (at 1:1:3 ratio) had been added twenty minutes prior. Flies were permitted to feed for
781 two hours before having their mid-guts dissected in PBS and accessed for loss of acidity. 28-44
782 samples were dissected from each replicate (numbers varied as guts were often very fragile). Any
783 individuals who proceeded to die after transfer to recovery media were discarded. Samples were
784 determined to have experienced minimal loss in acidity if the cells in the acidic region of the midgut
785 remained yellow (pH < 2.3), an intermediate loss if they had faded to green or brown, and full loss if
786 they could not be distinguished from the surrounding sections (pH > 4). No feeding was recorded if
787 no media was present in the gut.

788 Similar assays were carried out on lines *w[1118]* and the *CG11594* deletion line, (*w[1118];*
789 *CG11594[1]*) (Table S1) over a shorter 16 hour time-period, to account for the greater sensitivity of
790 these lines to copper.

791

792 Feeding Avoidance Assays

793 To measure the effect that the presence of copper has on feeding avoidance, the six strains from the
794 RNA-seq analysis were assayed in similar conditions to that of the copper tolerance assay, but with
795 the addition of Erioglaucine Disodium Salt (1%, Sigma-Aldrich CAT#861146) to both the treated and
796 control solutions. Eoglaucine Disodium Salt been shown to be an effective tracer up to 48 hours in
797 *Drosophila* [110]. Assays were performed in triplicate for groups of 25-30 4-7 day old females, with
798 higher numbers used for COR-018 and JUT-008 to account for the degree of mortality expected at the
799 end of this time period. All dead individuals were discarded. Flies were homogenized using a pestle,
800 with each sample consisting of three flies in 620 μ l of distilled water. After crushing, samples were
801 spun at 14,000rpm for 10 minutes and then frozen for 24 hours. 180ul of supernatant was loaded into
802 each well of a 96 well Nunc-ImmunoTM MicroWellTM plate (Sigma-Aldrich, CAT#M9410).
803 Measurements were made using a Techan Infinite[®] 200 Microplate Reader, at 630nm, after 10
804 seconds of agitation at 9mm. Three technical replicates for six samples, for a total of 18 wells, were
805 loaded for each treatment condition. Each plate contained four water blanks and five standards
806 containing between 0.015 and 1.5×10^{-5} % of dye. The amount of dye consumed was inferred from a
807 linear model fitted from the points of the standard curve. All results are reported as the fold difference
808 in feeding between treated and control samples for each time point.

809

810 Transposable Element Analysis

811 **eQTL analysis.** The RNA-Seq data for tolerant and sensitive strains both in control and treated
812 conditions were trimmed using the fastp package (v.0.20.0) [111] with default parameters. Expression
813 levels were quantified with the salmon package (v.1.0.0) [112] against the ENSEMBL
814 (Dm.BDGP6.22.9) transcripts. Obtained transcripts per million (TPM) were summed up to gene level
815 and rlog normalized using DESeq2 (v.1.28.1) [101]. To test the association between gene expression

816 and TE variants, we used the TE annotations for each one of the six genomes analyzed available at
817 <https://github.com/sradiouy>. The genotype table with the information of the presence/absence of all
818 the TEs present in each one of the strains was created using custom script
819 (<https://github.com/sradiouy>).

820 The eQTL analysis was performed using the QTLTools package (v.1.2) [65]. Putative cis-eQTL for
821 the six strains were searched within a 1 kb window around each gene using the cis module in
822 QTLTools in control and in treated conditions separately. No trans effects were considered. We used
823 the nominal pass to evaluate the significance of the association of each gene expression level to all the
824 TE insertions within the 1kb window. This nominal pass involves the testing of all possible variant-
825 phenotype via linear regression. The variant-phenotype pair with the smallest nominal p-value is kept
826 as the best QTL for that particular TE. In addition, we also performed a permutation pass (100,000
827 permutations) to adjust for multiple testing. We focused on the significant TE-gene associations with
828 a with a nominal p-value < 0.05 and and an adjusted p-value < 0.05.

829

830 **Identification of TEs Nearby DEGs.** Reference gene annotation was lifted over to each of the six
831 strain assemblies analyzed using Liftoff (v.1.4.2, [113]), with default parameters, to produce gene
832 annotations of each strain in GFF format. Liftoff annotation was transformed to BED format with a
833 custom python script (<https://github.com/sradiouy>). Then bedtools closest (v2.29.2, [114]) was used to
834 define TE insertions within a 1kb of each gene (parameters: -k 10, -D ref) using the TE annotations
835 available at <https://github.com/sradiouy>. We used the prop.test() function of R to assess whether there
836 is an enrichment of TEs in DE genes compared to the whole genome for each strain.

837

838 **Phenotypic Validation.** TE present and TE absent outbred populations were constructed for three
839 candidate insertions: *FBti0020195*, *FBti0020057* and *FBti0020036*. Each of these outbred populations
840 was developed to have a mixed genetic background, while remaining consistently homogenous for
841 either the presence or absence of the selected element [115]. For each outbred population, ten females
842 and ten males from each of the five nominated strains (four in the case of *FBti0020195*+) were pooled
843 to establish each population (Table S1). Each outbred was maintained for 8 generations in cages
844 before being screened. Copper tolerance assays were carried out as per the prior experiments, using 4-
845 7 day old females. 9 to 10 replicas of up to 15 flies in treated and up to 10 flies in control were
846 performed for each outbred population (Table S10C). The experiment was run until all flies were
847 dead. Kaplan-Meier survival analysis was performed on present and absence pairs in the same manner
848 as above. Relative change in average mortality is also provided as a proxy of the size of the effect of
849 these genes on copper tolerance.

850

851 **DECLARATIONS**

852 **Ethics approval and consent to participate**

853 Not applicable

854

855 **Consent for publication**

856 Not applicable

857

858 **Availability of data and materials**

859 Data is available in the supplementary tables. Genome assemblies and the raw data (long and short
860 read sequencing) have been deposited in NCBI under the BioProject accession PRJNA55981. RNA-
861 sequence data is available under NCBI accession number: PRJNA646768; GEO: GSE154608. The six
862 sequenced genomes are available together with gene, TE annotations and RNA-seq coverage profiles
863 generated in this work for visualization and retrieval through the DrosOmics genome browser [116].

864

865 **Competing interests**

866 The authors declare that they have no competing interests

867

868 **Funding**

869 This project has received funding from the European Research Council (ERC) under the European
870 Union's Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900). S. R.
871 was funded by the MICINN/FSE/AEI (PRE2018-084755). J. S-O was funded by a Juan de la Cierva-
872 Formación fellowship (FJCI-2016-28380). The DrosEU consortium is funded by an ESEB Special
873 Topic Network. The funding bodies had no role in the design of the study and collection, analysis, and
874 interpretation of data or in writing the manuscript.

875

876 **Author contributions**

877 L.G. contributed to the design of the work, to the acquisition, analysis and interpretation of data and to
878 the drafting the manuscript. M.C-Z., S. R. and G.E.R. contributed to data analysis and to the revision
879 of the manuscript. J.S-O. contributed to the design of the work, to the acquisition of data and revised
880 the manuscript. J.G. conceived the study, contributed to the design of the work, to the acquisition,
881 analysis and interpretation of data and to the drafting the manuscript. All authors approved the
882 submitted version of the manuscript.

883

884 **Acknowledgments**

885 We thank DrosEU members for sharing the European strains, and Shane Denecke and Trent Perry for
886 sharing GAL-4 driver lines. We thank Joshua Schmidt for scripts related to the Kaplan-Meier
887 analysis. We thank Luciano Massetti for making us aware of the availability of the atmospheric
888 pollution data.

889

890 **REFERENCES**

- 891 1. Panagos P, Ballabio C, Lugato E, Jones A, Borrelli P, Scarpa S, et al. Potential Sources of
892 Anthropogenic Copper Inputs to European Agricultural Soils. *Sustainability*. 2018;10:2380.
- 893 2. Romic M, Romic D. Heavy metals distribution in agricultural topsoils in urban area. *Environ Geol*.
894 2003;43:795–805.
- 895 3. Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O. LUCAS Soil, the largest
896 expandable soil dataset for Europe: a review. *Eur J Soil Sci*. 2018;69:140–53.
- 897 4. Wilson TG. *Drosophila*: Sentinels of Environmental Toxicants. *Integr Comp Biol*. 2005;45:127–36.
- 898 5. Navarro JA, Schneuwly S. Copper and zinc homeostasis: Lessons from *Drosophila melanogaster*.
899 *Front Genet*. 2017;8 DEC:223.
- 900 6. Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. *Drosophila*
901 melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. *Int J Mol Sci*.
902 2017;18:1456.
- 903 7. Zhang B, Egli D, Georgiev O, Schaffner W. The *Drosophila* Homolog of Mammalian Zinc Finger
904 Factor MTF-1 Activates Transcription in Response to Heavy Metals . *Mol Cell Biol*. 2001;21:4505–
905 14.
- 906 8. Turski ML, Thiele DJ. *Drosophila Ctr1A* Functions as a Copper Transporter Essential for
907 Development. *J Biol Chem*. 2007;282:24017–26.
- 908 9. Southon A, Farlow A, Norgate M, Burke R, Camakaris J. Malvolio is a copper transporter in
909 *Drosophila melanogaster*. *J Exp Biol*. 2008;211:709–16.
- 910 10. Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, et al. Essential roles in
911 development and pigmentation for the *Drosophila* copper transporter DmATP7. *Mol Biol Cell*.
912 2006;17:475–84.
- 913 11. Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, et al. A Family
914 Knockout of All Four *Drosophila* Metallothioneins Reveals a Central Role in Copper Homeostasis
915 and Detoxification . *Mol Cell Biol*. 2006;26:2286–96.
- 916 12. Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, et al. Transcriptome
917 response to heavy metal stress in *Drosophila* reveals a new zinc transporter that confers resistance to
918 zinc. *Nucleic Acids Res*. 2006;34:4866–77.
- 919 13. Li H, Qi Y, Jasper H. Preventing Age-Related Decline of Gut Compartmentalization Limits
920 Microbiota Dysbiosis and Extends Lifespan. *Cell Host Microbe*. 2016;19:240–53.
- 921 14. McNulty M, Puljung M, Jefford G, Dubreuil RR. Evidence that a copper-metallothionein complex
922 is responsible for fluorescence in acid-secreting cells of the *Drosophila* stomach. *Cell Tissue Res*.
923 2001;304:383–9.
- 924 15. Dubreuil RR. Copper cells and stomach acid secretion in the *Drosophila* midgut. *Int J Biochem*
925 *Cell Biol*. 2004;36:742–52.
- 926 16. Maroni G, Wise J, Young JE, Otto E. Metallothionein Gene Duplications and Metal Tolerance in

927 Natural Populations of *Drosophila melanogaster*. *Genetics*. 1987;117:739–44.

928 17. Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J. An Indel Polymorphism in the
929 MtnA 3' Untranslated Region Is Associated with Gene Expression Variation and Local Adaptation in
930 *Drosophila melanogaster*. *PLOS Genet*. 2016;12:e1005987.

931 18. Pölkki M, Rantala MJ. Exposure to copper during larval development has intra- and trans-
932 generational influence on fitness in later life. *Ecotoxicol Environ Saf*. 2021;207:111133.

933 19. Zamberlan DC, Halmenschelager PT, Silva LFO, da Rocha JBT. Copper decreases associative
934 learning and memory in *Drosophila melanogaster*. *Sci Total Environ*. 2020;710:135306.

935 20. Everman ER, Cloud-Richardson KM, Macdonald SJ. Characterizing the genetic basis of copper
936 toxicity in *Drosophila* reveals a complex pattern of allelic, regulatory, and behavioral variation.
937 *Genetics*. 2021;217.

938 21. Merritt TJS, Bewick AJ. Genetic diversity in insect metal tolerance. *Front Genet*. 2017;8:172.

939 22. Roelofs D, Janssens TKS, Timmermans MJTN, Nota B, Mariën J, Bochdanovits Z, et al.
940 Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod
941 *Orchesella cincta*. *Mol Ecol*. 2009;18:3227–39.

942 23. Zhou S, Luoma SE, St. Armour GE, Thakkar E, Mackay TFC, Anholt RRH. A *Drosophila* model
943 for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure. *PLOS Genet*.
944 2017;13:e1006907.

945 24. Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, et al. Population-scale long-
946 read sequencing uncovers transposable elements associated with gene expression variation and
947 adaptive signatures in *Drosophila*. *Nat Commun*. 2022;13:1–16.

948 25. Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit widespread
949 allelic heterogeneity and shape variation in complex traits. *Nat Commun*. 2019;10:1–11.

950 26. Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, et
951 al. Stress response, behavior, and development are shaped by transposable element-induced mutations
952 in *Drosophila*. *PLOS Genet*. 2019;15:e1007900.

953 27. Schmidt JM, Robin C. An Adaptive Allelic Series Featuring Complex Gene Rearrangements.
954 *PLOS Genet*. 2011;7:e1002347.

955 28. Guio L, Barrón MG, González J. The transposable element Bari-Jheh mediates oxidative stress
956 response in *Drosophila*. *Mol Ecol*. 2014;23:2020–30.

957 29. Mateo L, Ullastres A, González J. A Transposable Element Insertion Confers Xenobiotic
958 Resistance in *Drosophila*. *PLOS Genet*. 2014;10:e1004560.

959 30. Merenciano M, Ullastres A, de Cara MAR, Barrón MG, González J. Multiple Independent
960 Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and
961 Functional Effects in *Drosophila*. *PLOS Genet*. 2016;12:e1006249.

962 31. Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element
963 insertions drive interindividual differences in response to immune challenges in *Drosophila*. *Genome*

964 Biol. 2021;22:1–30.

965 32. Le Manh H, Guio L, Merenciano M, Rovira Q, Barrón MG, González J. Natural and laboratory
966 mutations in kuzbanian are associated with zinc stress phenotypes in *Drosophila melanogaster*. Sci
967 Rep. 2017;7:1–12.

968 33. Hallas R, Schiffer M, Hoffmann AA. Clinal variation in *Drosophila serrata* for stress resistance
969 and body size. Genet Res (Camb). 2002;79:141–8.

970 34. Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a
971 critical look at the temperate-tropical clines in *Drosophila melanogaster* from eastern Australia.
972 Genetica. 2006;129:133–47.

973 35. Arthur AL, Weeks AR, Sgrò CM. Investigating latitudinal clines for life history and stress
974 resistance traits in *Drosophila simulans* from eastern Australia. J Evol Biol. 2008;21:1470–9.

975 36. Kapun M, Barron MG, Staubach F, Obbard DJ, Axel R, Vieira J, et al. Genomic Analysis of
976 European *Drosophila melanogaster* Populations Reveals Longitudinal Structure, Continent-Wide
977 Selection, and Previously Unknown DNA Viruses. Mol Biol Evol. 2020;37:2661–78.

978 37. OECD/European Commission. Cities in the World: A New Perspective on Urbanisation, OECD
979 Urban Studies. OECD Publishing, Paris. Available online at:
980 <https://www.oecd.org/publications/cities-in-the-world-d0efcbda-en.htm>; 2020.

981 38. Hu Y, Comjean A, Perrimon N, Mohr SE. The *Drosophila* Gene Expression Tool (DGET) for
982 expression analyses. BMC Bioinformatics. 2017;18:1–9.

983 39. Filshie BK, Poulson DF, Waterhouse DF. Ultrastructure of the copper-accumulating region of the
984 *Drosophila* larval midgut. Tissue Cell. 1971;3:77–102.

985 40. Tapp RL, Hockaday A. Combined histochemical and x-ray microanalytical studies on the copper-
986 accumulating granules in the mid-gut of larval *Drosophila*. J Cell Sci. 1977;26:201–15.

987 41. Marianes A, Spradling AC. Physiological and stem cell compartmentalization within the
988 *Drosophila* midgut. Elife. 2013;2013.

989 42. Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, et al. A cell atlas of the adult *Drosophila*
990 midgut. Proc Natl Acad Sci U S A. 2020;117:1514–23.

991 43. Terashima J, Bownes M. A microarray analysis of genes involved in relating egg production to
992 nutritional intake in *Drosophila melanogaster*. Cell Death Differ. 2005;12:429–40.

993 44. Ojima N, Hara Y, Ito H, Yamamoto D. Genetic dissection of stress-induced reproductive arrest in
994 *Drosophila melanogaster* females. PLOS Genet. 2018;14:e1007434.

995 45. Marshall KE, Sinclair BJ. Repeated stress exposure results in a survival–reproduction trade-off in
996 *Drosophila melanogaster*. Proc R Soc B Biol Sci. 2010;277:963–9.

997 46. Klepsat P, Gáliková M, Xu Y, Kühlein RP. Thermal stress depletes energy reserves in
998 *Drosophila*. Sci Rep. 2016;6:1–12.

999 47. Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, et al. Basal and stress-
1000 induced expression changes consistent with water loss reduction explain desiccation tolerance of

1001 natural *Drosophila melanogaster* populations. bioRxiv. 2022;:2022.03.21.485105.

1002 48. Stone EA, Ayroles JF. Modulated Modularity Clustering as an Exploratory Tool for Functional
1003 Genomic Inference. PLOS Genet. 2009;5:e1000479.

1004 49. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11:
1005 protein–protein association networks with increased coverage, supporting functional discovery in
1006 genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

1007 50. Palu RAS, Thummel CS. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin
1008 Signaling and Metabolic Homeostasis in *Drosophila*. PLOS Genet. 2016;12:e1005978.

1009 51. King-Jones K, Horner MA, Lam G, Thummel CS. The DHR96 nuclear receptor regulates
1010 xenobiotic responses in *Drosophila*. Cell Metab. 2006;4:37–48.

1011 52. Alic N, Andrews TD, Giannakou ME, Papatheodorou I, Slack C, Hoddinott MP, et al. Genome-
1012 wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Mol
1013 Syst Biol. 2011;7:502.

1014 53. Barry WE, Thummel CS. The *Drosophila* HNF4 nuclear receptor promotes glucose-stimulated
1015 insulin secretion and mitochondrial function in adults. Elife. 2016;5.

1016 54. Fields M, Lewis CG, Beal T. Accumulation of sorbitol in copper deficiency: dependency on
1017 gender and type of dietary carbohydrate. Metabolism. 1989;38:371–5.

1018 55. Southon A, Burke R, Norgate M, Batterham P, Camakaris J. Copper homoeostasis in *Drosophila*
1019 *melanogaster* S2 cells. Biochem J. 2004;383:303–9.

1020 56. Leader DP, Krause SA, Pandit A, Davies SA, Dow JAT. FlyAtlas 2: a new version of the
1021 *Drosophila melanogaster* expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic
1022 Acids Res. 2018;46:D809–15.

1023 57. Denecke S, Fusetto R, Martelli F, Giang A, Battlay P, Fournier-Level A, et al. Multiple P450s and
1024 Variation in Neuronal Genes Underpins the Response to the Insecticide Imidacloprid in a Population
1025 of *Drosophila melanogaster*. Sci Rep. 2017;7:1–11.

1026 58. Green L, Battlay P, Fournier-Level A, Good RT, Robin C. Cis- And trans-acting variants
1027 contribute to survivorship in a naïve *Drosophila melanogaster* population exposed to ryanoid
1028 insecticides. Proc Natl Acad Sci U S A. 2019;116:10424–9.

1029 59. Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes
1030 conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in *Leptinotarsa*
1031 *decemlineata* (Say). Insect Biochem Mol Biol. 2017;83:1–12.

1032 60. Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, et al. Copper
1033 homeostasis in *Drosophila* by complex interplay of import, storage and behavioral avoidance. EMBO
1034 J. 2007;26:1035–44.

1035 61. Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C. Acute and chronic metal exposure
1036 impairs locomotion activity in *Drosophila melanogaster*: a model to study Parkinsonism. BioMetals.
1037 2011;24:1045–57.

1038 62. Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. Genome-Wide
1039 Association Analysis of Oxidative Stress Resistance in *Drosophila melanogaster*. *PLoS One*.
1040 2012;7:e34745.

1041 63. Chow CY, Wolfner MF, Clark AG. Using natural variation in *Drosophila* to discover previously
1042 unknown endoplasmic reticulum stress genes. *Proc Natl Acad Sci U S A*. 2013;110:9013–8.

1043 64. Horváth V, Merenciano M, González J. Revisiting the Relationship between Transposable
1044 Elements and the Eukaryotic Stress Response. *Trends Genet*. 2017;33:832–41.

1045 65. Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for
1046 molecular QTL discovery and analysis. *Nat Commun*. 2017;8:1–7.

1047 66. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene–gene
1048 interactions. *Nat Rev Genet*. 2014;15:22–33.

1049 67. Massadeh A, Al-Momani F, Elbetieha A. Assessment of Heavy Metals Concentrations in Soil
1050 Samples from the Vicinity of Busy Roads: Influence on *Drosophila melanogaster* Life Cycle. *Biol*
1051 *Trace Elem Res*. 2008;122:292–9.

1052 68. Adriano DC. Trace Elements in Terrestrial Environments. New York, NY: Springer New York;
1053 2001.

1054 69. Battlay P, Schmidt JM, Fournier-Level A, Robin C. Genomic and transcriptomic associations
1055 identify a new insecticide resistance phenotype for the selective sweep at the Cyp6g1 locus of
1056 *Drosophila melanogaster*. *G3 Genes, Genomes, Genet*. 2016;6:2573–81.

1057 70. Norgate M, Southon A, Zou S, Zhan M, Sun Y, Batterham P, et al. Copper homeostasis gene
1058 discovery in *Drosophila melanogaster*. *BioMetals*. 2007;20:683–97.

1059 71. Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U. dSir2 deficiency in the fatbody, but
1060 not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies. *Aging*
1061 (Albany NY). 2012;4:206–23.

1062 72. Banerjee KK, Deshpande RS, Koppula P, Ayyub C, Kolthur-Seetharam U. Central metabolic
1063 sensing remotely controls nutrient-sensitive endocrine response in *Drosophila* via Sir2/Sirt1-upd2-IIS
1064 axis. *J Exp Biol*. 2017;220:1187–91.

1065 73. Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic
1066 detoxification in *Drosophila*. *Genes Dev*. 2011;25:1796–806.

1067 74. Ross J, Jiang H, Kanost MR, Wang Y. Serine proteases and their homologs in the *Drosophila*
1068 *melanogaster* genome: an initial analysis of sequence conservation and phylogenetic relationships.
1069 *Gene*. 2003;304:117–31.

1070 75. Vásquez-Procopio J, Rajpurohit S, Missirlis F. Cuticle darkening correlates with increased body
1071 copper content in *Drosophila melanogaster*. *BioMetals*. 2020;33:293–303.

1072 76. Carlson KA, Gardner K, Pashaj A, Carlson DJ, Yu F, Eudy JD, et al. Genome-wide gene
1073 expression in relation to age in large laboratory cohorts of *drosophila melanogaster*. *Genet Res Int*.
1074 2015;2015:835624.

1075 77. Chapman RF. *The insects: Structure and Function*. Cambridge University Press, United Kingdom;
1076 1998.

1077 78. Dow J. pH gradients in lepidopteran midgut. *J Exp Biol.* 1992;172:355–75.

1078 79. Clark TM. Evolution and Adaptive Significance of Larval Midgut Alkalization in the Insect
1079 Superorder Mecopterida. *J Chem Ecol.* 1999;25:1945–60.

1080 80. Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, et al. A role for triglyceride
1081 lipase brummer in the regulation of sex differences in *Drosophila* fat storage and breakdown. *PLOS
1082 Biol.* 2020;18:e3000595.

1083 81. Hood SE, Kofler X V., Chen Q, Scott J, Ortega J, Lehmann M. Nuclear translocation ability of
1084 Lipin differentially affects gene expression and survival in fed and fasting *Drosophila*. *J Lipid Res.*
1085 2020;61:1720.

1086 82. Fernández-Ayala DJM, Chen S, Kemppainen E, O'Dell KMC, Jacobs HT. Gene Expression in a
1087 *Drosophila* Model of Mitochondrial Disease. *PLoS One.* 2010;5:e8549.

1088 83. Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic
1089 factors during copper-induced apoptosis in PC12 cells. *J Environ Sci Heal Part A.* 2014;49:1023–8.

1090 84. Song MO, Freedman JH. Role of hepatocyte nuclear factor 4 α in controlling copper-responsive
1091 transcription. *Biochim Biophys Acta - Mol Cell Res.* 2011;1813:102–8.

1092 85. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. Genetic evidence for a protective role of
1093 the peritrophic matrix against intestinal bacterial infection in *Drosophila melanogaster*. *Proc Natl
1094 Acad Sci U S A.* 2011;108:15966–71.

1095 86. Cruz GS, Wanderley-Teixeira V, Antonino JD, Gonçalves GGA, Costa HN, Ferreira MCN, et al.
1096 Lufenuron indirectly downregulates Vitellogenin in the boll weevil females reducing egg viability.
1097 *Physiol Entomol.* 2021;46:24–33.

1098 87. Mateo L, Rech GE, González J. Genome-wide patterns of local adaptation in Western European
1099 *Drosophila melanogaster* natural populations. *Sci Rep.* 2018;8:1–14.

1100 88. Johnson RM, Dahlgren L, Siegfried BD, Ellis MD. Acaricide, Fungicide and Drug Interactions in
1101 Honey Bees (*Apis mellifera*). *PLoS One.* 2013;8:e54092.

1102 89. Fernandez Falcon M, Perez Frances JF, López Carreño I, Borges-Perez A. Available
1103 micronutrients in agricultural soils of Tenerife (Canary Islands). I.: copper and zinc. *Agrochimica.*
1104 1994;38:268–76.

1105 90. R Core Team. *R: A Language and Environment for Statistical Computing*. 2022.

1106 91. Kutner MH, Nachtsheim C, Neter J. *Applied linear regression models*. McGraw-Hill Irwin; 2005.

1107 92. DI Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables
1108 reproducible computational workflows. *Nat Biotechnol.* 2017;35:316–9.

1109 93. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for
1110 community-curated bioinformatics pipelines. *Nat Biotechnol.* 2020;38:276–8.

1111 94. Andrews S. *FASTQC*. A quality control tool for high throughput sequence data. Available online

1112 at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. 2010.

1113 95. Krueger F. Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality

1114 and adapter trimming to FastQ files. Available online at:

1115 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. 2015.

1116 96. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.

1117 *EMBnet.journal*. 2011;17:10–2.

1118 97. Larkin A, Marygold SJ, Antonazzo G, Attrill H, dos Santos G, Garapati P V, et al. FlyBase: updates to the *Drosophila melanogaster* knowledge base. *Nucleic Acids Res*. 2021;49:D899–907.

1119 98. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal

1120 RNA-seq aligner. *Bioinformatics*. 2013;29:15–21.

1121 99. Sayols S, Scherzinger D, Klein H. dupRadar: A Bioconductor package for the assessment of PCR

1122 artifacts in RNA-Seq data. *BMC Bioinformatics*. 2016;17:1–5.

1123 100. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning

1124 sequence reads to genomic features. *Bioinformatics*. 2014;30:923–30.

1125 101. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq

1126 data with DESeq2. *Genome Biol*. 2014;15:1–21.

1127 102. Anders S, Huber W. Differential expression analysis for sequence count data. *Genome Biol*.
2010;11:1–12.

1128 103. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological

1129 Themes Among Gene Clusters. *Omi A J Integr Biol*. 2012;16:284–7.

1130 104. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD, et al. Cytoscape Web: an

1131 interactive web-based network browser. *Bioinformatics*. 2010;26:2347–8.

1132 105. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, et al. A genome-wide transgenic

1133 RNAi library for conditional gene inactivation in *Drosophila*. *Nature*. 2007;448:151–6.

1134 106. Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, et al. The transgenic RNAi

1135 project at Harvard medical school: Resources and validation. *Genetics*. 2015;201:843–52.

1136 107. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, et al. The BDGP Gene Disruption

1137 ProjectSingle Transposon Insertions Associated With 40% of *Drosophila* Genes. *Genetics*.
2004;167:761–81.

1138 108. Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Ffrench-Constant RH, Batterham P, et al.

1139 Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the

1140 *Drosophila melanogaster* Insecticide Resistance Gene Cyp6g1. *Genetics*. 2007;175:1071–7.

1141 109. Phillips MD, Thomas GH. Brush border spectrin is required for early endosome recycling in

1142 *Drosophila*. *J Cell Sci*. 2006;119:1361–70.

1143 110. Shell BC, Schmitt RE, Lee KM, Johnson JC, Chung BY, Pletcher SD, et al. Measurement of

1144 solid food intake in *Drosophila* via consumption-excretion of a dye tracer. *Sci Rep*. 2018;8:1–13.

1145 111. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.

1149 Bioinformatics. 2018;34:i884–90.

1150 112. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware
1151 quantification of transcript expression. Nat Methods. 2017;14:417–9.

1152 113. Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics.
1153 2021;37:1639–43.

1154 114. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.
1155 Bioinformatics. 2010;26:841–2.

1156 115. Behrman EL, Howick VM, Kapun M, Staubach F, Bergland AO, Petrov DA, et al. Rapid
1157 seasonal evolution in innate immunity of wild *Drosophila melanogaster*. Proc R Soc B Biol Sci.
1158 2018;285.

1159 116. Coronado-Zamora M, Salces-Ortiz J, González J. DrosOmics: the comparative genomics
1160 browser to explore omics data in natural strains of *D. melanogaster*. bioRxiv. 2022;2022.07.22.

1161

1162

1163 **Table 1. Differentially Expressed Genes up-regulated in the tolerant and down-regulated in the**
1164 **sensitive strains. ND is no data.**
1165

Gene name	Biological process	Molecular function	Prior copper response association
<i>CG13078</i>	ND	heme binding, oxidoreductase activity, transmembrane ascorbate ferrireductase activity	Within QTL (Everman et al. 2021)
<i>CG31091</i>	lipid metabolic process	sterol esterase activity, triglyceride lipase activity	ND
<i>Hml</i>	hemolymph coagulation, hemostasis, wound healing	protein homodimerization activity, chitin binding	Up-regulated in control vs treated (Everman et al. 2021)
<i>Jon99Ci</i>	proteolysis	endopeptidase activity, serine-type endopeptidase activity	ND
<i>Lectin 24Db</i>	ND	fucose binding, glycosylated region protein binding, mannose binding	Downregulated in control vs treated (Everman et al. 2021)
<i>NtR</i>	chemical synaptic transmission, ion transmembrane transport, nervous system process, regulation of membrane potential, signal transduction	extracellular ligand-gated ion channel activity, neurotransmitter receptor activity, transmembrane signaling receptor activity	ND

1166
1167

1168 **Table 2. Eight out of 10 Copper Candidate Genes Play a Role in Copper Tolerance.**

1169 NS: not significant; ND: no data. Average mortality: RNAi, GDP (gene disruption) and Del (gene
 1170 deletion): stock/background (Figure 4). \uparrow : increased mortality. \downarrow decreased mortality. -: No data.
 1171 Crosses with different backgrounds are separated with “;”. Reciprocal crosses results are separated
 1172 with “,”.

Gene	FC in expression after copper treatment		Kaplan-Meier			LT ₁₀₀		
	Tol.	Sen.	RNAi	GDP	Del	RNAi	GDP	Del
CG11594	2.06	1.84	$\uparrow^{<0.001, <0.001}$	-	$\uparrow^{<0.001}$	$\uparrow^{0.04, 0.004}$	-	$\uparrow^{0.002}$
Cyp6w1	2.03	NA	$\uparrow^{<0.001, 0.028}$	-	-	$\uparrow^{0.032, 0.059}$	-	-
Cyp6a8	NA	1.91	-	$\uparrow^{<0.001}$	-	-	$\uparrow^{<0.001}$	-
Sodh-1	4.22	3.46	$\uparrow^{<0.001}$	-	-	$\uparrow^{<0.001}$	-	-
CG6910	2.86	3.09	NS; NS	NS	-	NS; NS	$\uparrow^{0.031}$	-
Jon65Aiv	-1.83	-4.02	$\downarrow^{0.0062, <0.001}$; NS	-	-	NS; NS	-	-
CG32444	3.84	2.70	$\uparrow^{<0.001}$	-	-	-	NS	-
CG5966	4.07	4.64	$\downarrow^{<0.001, <0.001}$	-	-	NS	-	-
CG5773	-2.24	-5.13	NS	-	-	NS	-	-
Cyp4e3	3.81	2.05	NS; NS	-	-	NS; NS	-	-

1173