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Abstract

Motor circuits develop in sequence from those governing fast movements to those governing
slow. Here we examine whether upstream sensory circuits are organized by similar principles.
Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the
gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that
both sensory tuning and developmental sequence are organizing principles of vestibular
topography. Patterned rostrocaudal innervation from hair cells to afferents creates an
anatomically inferred directional tuning map in the utricular ganglion, forming segregated
pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked
to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying
phasic information preferentially excite fast escape circuits, whereas later-born pathways
carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate
that vestibular circuits are organized by tuning direction and dynamics, aligning them with
downstream motor circuits and behaviors.

Introduction

Central neuronal circuits mediate the transformation from sensory inputs to motor
outputs. Motor output can be described by both the direction of movement and its temporal
dynamics—fast and rapidly fatiguing versus slow and sustained contractions. Fast and slow
motor behaviors emerge sequentially, set up by early-born and late-born motor circuits,
respectively’. In zebrafish, spinal motor neurons differentiate in sequence from those controlling
fast movements to those controlling slow?. Similarly, premotor neurons in spinal cord and
brainstem governing fast escape movements develop earlier than premotor neurons driving
slower locomotion®>. Developmental sequence also influences motor circuit connectivity in flies,
linking the timeframe of motor circuit formation to temporal dynamics of movement®’. Both fast
and slow behaviors can be elicited by a wide range of sensory inputs. It remains unclear whether
sensory systems are also organized around principles set up by developmental sequence that
align with the speed-dependent motor circuit architecture.

The vestibular system encodes information about head movement in space. Both
translational acceleration and orientation with respect to gravity are encoded by hair cells arrayed
underneath otoliths in the inner ear. Striolar hair cells carry high-pass signals which are
predominantly relayed by irregular-firing vestibular afferents with phasic kinetics, whereas
extrastriolar hair cells excite predominantly regular-firing vestibular afferents with tonic or
phasic-tonic dynamics®. Both types of vestibular afferents relay head movement information into
the brainstem, where they excite a variety of central targets. Central vestibular nucleus neurons
innervated by vestibular afferents project directly to oculomotor and spinal neurons to drive
behaviors®. This tight connection from sensory input to motor output suggests that vestibular
circuits, like motor and premotor circuits, might be organized around speed-dependent
principles. However, it has been difficult to link the patterning of central premotor circuits to hair
cell organization because vestibular afferents are not known to be spatially organized by tuning
direction or their temporal dynamics.

We examined the architecture of the gravity-sensing system in larval zebrafish. Zebrafish
begin to exhibit simple vestibular functions, such as postural control and vestibulo-ocular
reflexes, as early as 3 days post fertilization'®*? (dpf). Over the following days and weeks,
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vestibular behaviors improve and refine™>**. The small size of the larval zebrafish brain makes it
tractable for reconstruction with serial-section electron microscopy (SSEM) at synaptic
resolution. In these animals, only the utricular otolith is responsible for gravity sensation'®*®, and
accordingly we reconstructed all utricular hair cells, afferents, and four classes of central neurons
receiving utricular inputs.

Directional tuning of utricular hair cells was topographically mapped onto the
rostrocaudal axis of the utricular afferent ganglion. Afferents carrying inferred rostral or caudal
tilt information excited compensatory central vestibulo-ocular reflex (VOR) circuits to stabilize
eye position. Similarly, afferents carrying information about head movement in inferred
ipsilateral or contralateral directions excited distinct elements of Mauthner cell escape circuits.
Along with these directional maps, we identified cellular signatures of vestibular hair cells and
afferents, including cilia length, synapse counts, and myelination, that indicated their
developmental sequence. Inferred developmental sequence was mapped onto the mediolateral
axis of the utricular ganglion and also correlated with central vestibular targets controlling
distinct behaviors. Early-born sensory pathways are preferentially connected to drive early-born
fast motor circuits, whereas later-born pathways govern movements mediated by later-born
slower motor circuits. Collectively, these data revealed a sensorimotor transformation organized
around movement speed, where phasic and tonic vestibular signals are preferentially used to
regulate fast and slow movements respectively. Together, the directional and temporal tuning of
vestibular circuits pattern the entire vestibulomotor transformation.

Results

Imaging the utricular system at synaptic resolution

Gravity and inertial forces are sensed by hair cells in the inner ear. The otolith, or in mammals
the otoconial matrix, slides relative to the macula during head tilt or translation to deflect hair
cell cilia. Utricular hair cells, which in larval zebrafish serve as the sole gravitational sensors*®**,
synapse onto the peripheral process of utricular afferents (schematic, Fig. 1a). These afferents,
whose cell bodies reside within the vestibular ganglion, project axons that bifurcate and synapse
in several brainstem nuclei that mediate behaviors like escape, posture, and the vestibulo-ocular
reflex (VOR). We obtained an ultrathin section library of the larval zebrafish at 5.5 days post
fertilization (dpf), which had originally been imaged at 18.8 x 18.8 x 60.0 nm*® per voxel or 56.4
x 56.4 x 60.0 nm® per voxel depending on the region®®. We re-imaged the peripheral and central
areas of the right utricular circuit at 4.0 x 4.0 x 60.0 nm® / voxel (Fig. 1b), sufficient resolution to
visualize hair cell cilia (Fig. 1¢) and vestibular afferent processes (Fig. 1d). The new images
were aligned to the lower-resolution data and used to produce a reconstruction of the gravity-
sensing system, including 91 utricular hair cells, 105 ganglion afferents, and ~45 target neurons
in the ipsilateral vestibular brainstem (Figs. 1e, f, g; Supplemental Video 1).

Characterization of direction tuning in utricular afferent circuits

We first established the tuning direction of every hair cell in the utricular macula. Hair cells are
maximally depolarized by head tilts in the direction of their kinocilium relative to the cluster of
stereocilia®. We measured directional tuning for each hair cell by drawing a vector from the
center of mass of the stereocilia bases to the kinocilium base (schematic, Fig. 2a). Hair cell
direction tuning vectors were displayed relative to soma position to yield a sensory map of the
entire utricular macula (Fig. 2b), with vectors colorized by their inferred directional tuning.
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Consistent with prior observations'’*®, the line of polarity reversal (LPR) was found towards the

lateral edge. On either side of the LPR, directional tuning varied smoothly from rostral tilt
sensitive to caudal tilt sensitive. As a result, hair cells located near each other tended to have
more similar tuning than those far apart (Fig. 2c).

Organization of the utricular ganglion by directional tuning

We next asked whether this organization of hair cells by directional tuning was reflected in the
organization of the utricular afferent ganglion. Despite a rich literature of physiological
responses in utricular afferents recorded in their axonal processes'®#, the bone surrounding this
ganglion in adult animals has historically prevented somatic recordings, rendering its sensory
topography unknown. To create a map of utricular ganglion topography, we reconstructed all
processes postsynaptic to the hair cell ribbon synapses (Fig. 2a, bottom), which are by definition
utricular afferents, back to their soma locations in the utricular ganglion. Out of 944 ribbon
synapses, 929 (98.4%) were apposed to afferent processes that could be followed out of the
macula. A total of 105 utricular afferents were reconstructed, with an average of 3.0 £ 1.5
discrete hair cells contacting each afferent, and 3.4 *+ 1.4 afferents contacting each hair cell
(mean = SD). In a 3D reconstruction of all afferents, there was a visible rostrocaudal gradient to
their organization (Fig. 2d; note that this reconstruction is tilted slightly relative to a true
horizontal view so that the afferent ganglion is visible beneath the central axon projections).

Afferents whose somata were rostrally located within the ganglion were innervated by hair cells
in the rostral utricular macula, whereas afferents in the caudal portion of the ganglion were
innervated by hair cells in the caudal macula. Consistent with previous reports?, each afferent
received input from hair cells exclusively on one side or the other of the LPR. To infer
directional tuning of each utricular afferent, we weighted its convergent hair cell vectors by their
number of ribbon synapses. Here and throughout the manuscript, this anatomically-inferred
directional tuning will be referred to more simply as directional tuning, but we note that actual
directional tuning might differ based on variations in synaptic weight, process morphology, and
other biological variables that cannot be assessed with EM.

The resulting map revealed a sensory tuning topography in the utricular ganglion, with rostrally
located afferents encoding rostral head tilts and caudally located afferents encoding caudal head
tilts (Fig. 2d, e; Supplemental Video 2). Quantifying hair cell to afferent connectivity revealed a
strong correlation between the rostrocaudal position of each afferent soma and the hair cells that
innervate it (Fig. 2f). However, unlike in the hair cell macula (Fig. 2b), afferents innervating hair
cells lateral to the LPR are intermingled with those innervating hair cells medial to the LPR (Fig.
29, note red arrows), both in this horizontal view and in sagittal and coronal views
(Supplemental Fig. 2a, b). Nonetheless, these afferents with inferred contralateral tilt tuning
formed a segregated axon bundle in the brainstem (Fig. 2d). Afferent somata located near each
other typically had more similar tuning than afferents that were further apart (Fig. 2h), although
the strength of the relationship is less pronounced than in the hair cells themselves (cf. Fig. 2c).

Central organization of directional tuning

We next asked how directional tuning was organized centrally in three utricular afferent target
populations: the Mauthner escape circuit, the VOR circuit, and the vestibulospinal (VS) postural
circuit. Our high-resolution reimaged territory in the brainstem allowed us to identify the
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postsynaptic targets of utricular afferents. These central brainstem targets were then
reconstructed and characterized based on soma location and axon projection. Although most
central vestibular neurons project axons outside the vestibular brainstem, into lower resolution
regions that were not reimaged, they could be reconstructed over long distances if their axons
were myelinated™®. Within these criteria, we characterized utricular input to the ipsilateral
Mauthner cell, 4 commissural escape neurons projecting to the contralateral Mauthner cell, 23
VOR neurons, and 19 VS neurons. We note that additional commissural, VOR, and VS neurons
presumably exist with insufficiently myelinated axons for adequate reconstruction, and therefore
the set sampled here is likely biased towards earlier-born neurons. Additional neurons of less
certain identity will be described in a future publication.

The Mauthner cells are a specialized pair of reticulospinal neurons that trigger fast escape
movements in response to multiple types of sensory input. Mauthner cells develop by 8 hours
after fertilization, excite primary (fast, early-born) spinal motor neurons, and drive fast escape
movements by 1 dpf*%. We identified and reconstructed utricular inputs both onto the
ipsilateral Mauthner cell and onto brainstem neurons whose axons cross the midline and appear
to synapse onto the contralateral Mauthner cell. In total, 18 utricular afferents contacted the
Mauthner cell lateral dendrite (example, Fig. 3a) with a total of 52 synaptic contacts. All
utricular afferent synapses were clustered together tightly on ventral sub-branches of the
Mauthner cell lateral dendrite (Fig. 3b), as reported®®. In addition, seven utricular afferents
synapsed on a commissurally projecting neuron population that contacted the contralateral
Mauthner (Fig. 3c), which we term “commissural escape” neurons.

Interestingly, no utricular afferents diverged to contact both the ipsilateral Mauthner cell and this
commissural escape population. Utricular afferents presynaptic to the Mauthner cell were
innervated by hair cells in the medial portion of the macula, whereas afferents that excited the
commissural-projecting neurons were innervated by hair cells in the lateral portion of the
macula, on the far side of the LPR. The inferred tuning vectors of all afferents contacting the
Mauthner cell were averaged to yield an inferred tuning to tilt in the ipsilateral and rostral
direction (Fig. 3c, d). Tuning vectors of commissural escape neurons pointed in the opposite
direction, contralaterally and caudally (Fig. 3c, d; average difference between Mauthner and
commissural neuron inferred tuning, 196°). Therefore, these commissural escape neurons are
presumably similarly tuned to inertial movements as the contralateral Mauthner cell that they
contact.

Vestibular stimuli can elicit locomotion®”?%, but escape behaviors have primarily been evoked
with auditorg/ or mixed auditory-vestibular stimuli that do not allow isolation of the vestibular
component®°. We reasoned that the utricular afferents exciting the Mauthner cell are tuned to
report ipsilateral head tilts and therefore contralateral translational movements, with the
predicted consequence that a translational movement to the left should trigger escape bends to
the left (Fig. 3e). This type of circuit would be useful to detect predator movement towards the
zebrafish. While the water flow of a predator bow wave can be detected by lateral line circuits™,
there is little known about whether the head deflection itself can also elicit escapes. To test this
prediction, we delivered a large amplitude translational stimulus optimized for speed (~10 ms, >
1 g) to freely moving zebrafish larvae while recording behavior at 508 frames/s. This stimulus
evoked a classic short-latency escape response in 35% of trials (Fig. 3f; 28 escapes in 81 trials
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185  from 27 animals; escapes defined as C-bends within 10 ms of peak acceleration®). Animals

186  escaped in the direction predicted by the circuit in Fig. 3e on 64% of trials (18/28). However, due
187  to sled limitations, this stimulus involved bidirectional movement to maximize the accelerative
188  force. We therefore repeated this experiment with a second stimulus that was slightly slower but
189  optimized to be unidirectional (~20 ms, 0.8 g). This stimulus elicited a similar frequency of

190  escapes (28%: 56 escapes in 202 trials from 105 animals). Notably, successful escapes were

191  strongly directionally biased: animals turned in the direction of peak acceleration on 95% (53/56)
192  of escapes (Fig. 3g, shaded regions). Turns in the “wrong” direction occurred on trials where
193  animals were accelerated rostrally or caudally (Fig. 3g). To test for utricular dependence, both
194  stimuli were presented to the utricle-deficient rock solo fish line, an otogelin mutant'®=2. Utricle-
195  deficient animals escaped about half as often as their sibling controls (Fig. 3h). Because

196  experiments were carried out under infrared light, the remaining escapes were likely triggered by
197  the lateral line system®. Based on these anatomical and behavioral results, we conclude that this
198 utricular-activated escape circuit allows for computation of the direction of head deflections,
199  such as occur during predator approach.

200

201  Next, we evaluated directional tuning in three vestibular nuclei. VOR neurons of the superior
202  vestibular nuclei (SVN) and tangential nuclei collectively govern vertical and torsional eye

203  movements. We reconstructed 12 neurons in the SVN, which inhibits the ipsilateral trochlear and
204  oculomotor nuclei®, and 11 neurons of the tangential nucleus*?, which excites contralateral

205  trochlear and oculomotor neurons (Fig. 4a, b). Of these VOR neurons, 22/23 had inferred tuning
206  inthe ipsilateral rostral or caudal directions (insets, Fig. 4a, b), consistent with their well-

207  described roles in the VOR?®. This inferred tuning also aligns with the angles of the anterior and
208  posterior semicircular canals, which contribute to rotational VOR behaviors later in

209  development®. Notably, the SVN and tangential neurons tuned for rostral vs caudal tilt also

210  projected axons with largely distinct trajectories. SVN axons with inferred rostral tilt encoding
211  traveled more laterally than those encoding caudal tilt (boxed inset, Fig. 4a), and presumably
212  inhibit the motor neurons that drive downward eye rotation via the inferior rectus and superior
213  oblique muscles®. Tangential axons with inferred rostral tilt encoding traveled ventrally and are
214  presumed to activate the activate the eyes-up pathway through motor neurons that control the
215  superior rectus and inferior oblique, whereas those with inferred caudal tilt encoding traveled
216  dorsally where they likely activate the eyes-down pathway through motor neurons of the inferior
217  rectus and superior oblique***® (Fig. 4b).

218

219  Similarly, we characterized the tuning of afferent inputs to the VS population, which is involved
220  in postural control (Fig. 4c)*’. We extended our previously reported connectivity from

221 myelinated utricular afferents® to include the unmyelinated afferents. The 19 VS neurons

222  received input from a total of 61 afferents. In contrast to VOR nuclei, VS neurons primarily

223  received input from more rostral tilt sensitive afferents (Fig. 4c). VS neurons were typically

224 contacted by a greater number of distinct utricular afferents than VOR pathway neurons were
225  (medians: 8 afferents per VS neuron, 25™-75" %ile, 3.5 — 15.5; 4 afferents per VOR neuron, 25"
226  -75" %ile, 3-7; Wilcoxon-Mann-Whitney between the number of distinct utricular afferents

227  contacting VS and VOR neurons, p = 0.012; U, U’ = 85, 245). Thus VS neurons are contacted
228 by a large number of predominantly rostral tilt sensitive utricular afferents.

229
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230  Little is known about subcellular organization of vestibular afferent input onto central neurons.
231  The concentration of utricular inputs onto a portion of dendrite in the Mauthner cell (Fig. 3b) led
232  us to use the high resolution of EM to examine whether utricular inputs were similarly

233  concentrated in VOR and VS neurons. Dendrograms of utricular afferent input to VOR and VS
234 neurons revealed that most utricular input is not evenly distributed across the dendritic arbor but
235 instead arrives on a small subset of branches (examples, Fig. 4d). To quantify the concentration
236  of synapses, we carried out Monte Carlo simulations of synaptic distribution with either

237  randomly distributed synapses or locations weighted by distance from afferents (see Methods).
238  We found that utricular afferent synapses were located more closely to each other than expected
239 by random chance, likely related to the limited spatial range over which utricular afferents

240  interact with vestibular dendrites (Fig. 4e, Supplemental Fig. 5). This result indicates that

241  branch-specific computation may occur in vestibular nucleus neurons, perhaps in conjunction
242 with localized cerebellar input®.

243

244 These analyses revealed a rostrocaudal map of direction tuning in the utricular afferent ganglion,
245  as well as patterns of direction tuning in central brainstem targets of the utricular afferents. We
246  next considered the organization of temporal kinetics arising from distinct types of hair cells.
247

248  Temporal dynamics and developmental sequence of utricular hair cells

249 In addition to their directional tuning, hair cells are characterized as striolar or extrastriolar,

250  based on morphological differences in soma shape and ciliary lengths*>*®. Striolar hair cells
251 typically drive phasic, adapting, irregular-firing afferents with high-pass sensitivity, whereas
252  extrastriolar hair cells drive tonic or tonic-phasic regular-firing afferents that are less dependent
253  on stimulus frequency®*****%_Fish and frogs do not express the classical Type I striolar cell
254  shape seen in amniotes, but striolar hair cells can still be recognized based on the length of the
255  kinocilium relative to the tallest stereocilium***’. In the adult zebrafish utricle, striolar hair cells
256  are estimated to have kinocilia and tallest stereocilium lengths around 5 pm, whereas

257  extrastriolar hair cells have a kinocilium estimated at 6-8 um and tallest stereocilium 2-3 pm*’.
258  We reconstructed the kinocilium and tallest stereocilium of each hair cell (Fig. 5a) and plotted
259  the relationship between their lengths. In one group of hair cells, both kinocilium and

260  stereocilium were > 4.8 um and the kinocilium to stereocilium length (K/S) ratio ranged from 1.1
261 —1.7; these were identified as striolar (Fig. 5b). In a second group, the kinocilium was > 5 um
262  but the tallest stereocilium was < 5 um, yielding K/S ratios from 1.75 — 3.3, which we identified
263  as extrastriolar. These ciliary lengths are close to those in the adult zebrafish, suggesting that
264  these are mostly mature hair cells. Finally, at the tail end of the ciliary length distributions, we
265 identified hair cells in which the kinocilium was < 5 pm; we classified these as immature, though
266  they presumably exist on a continuum with established hair cells (Fig. 5b). Some of these

267  immature hair cells were also characterized by less cytoplasm, with fewer mitochondria and
268  vesicles, consistent with this identification.

269

270  We marked the position of each cell by its kinocilium and found that striolar hair cells straddled
271  the LPR while extrastriolar hair cells populated the rest of the macula, as expected***® (Fig. 5c).
272  Utricular hair cells differentiate in a temporal sequence, with roughly radial development from
273  the center or striola to the periphery*®>. We wondered whether hair cell ribbon counts, which
274  generally increase during development™, could establish additional signatures of this ongoing
275  sequence of differentiation. Counts of the total number of ribbon synapses (example, Fig. 2c)
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showed that hair cells located centrally in the macula had the highest number of ribbons per cell,
with fewer ribbons found in peripheral hair cells (Fig. 5¢). Accordingly, striolar hair cells overall
had the largest number of ribbons, followed by extrastriolar and immature hair cells (Fig. 5d).
Even within the extrastriolar population, hair cells with more ribbons were located more
centrally, and hair cells with fewer more peripherally, consistent with a radial growth pattern.
Thus, both ciliary lengths and ribbon synapse number are consistent with a radial pattern of
growth in the macula, providing proxies for developmental sequence.

Organization of the utricular ganglion by devel opmental sequence

We next asked whether similar proxies for developmental sequence could be identified in the
utricular afferent ganglion neurons. Myelination is responsive to neuronal activity>>>°, and
evidence suggests that it initiates first in early-born neurons®"*®, Of utricular afferents, 16 of 105
(15.2%) were myelinated throughout most of their central and peripheral processes; the
remaining afferents were mostly or entirely unmyelinated (examples, Fig. 1d), similar to early
developmental stages in other animals®®®!. Because the entire vestibular nerve is myelinated by
adulthood®**°, the myelinated afferents we observed are likely to be early-born, instead of a
specialized category of afferents. Consistent with this idea, we found that afferent somata that are
myelinated (Fig. 5e) and that receive the highest numbers of ribbon contacts from hair cells (Fig.
5f) occupy the most lateral edge of the nascent ganglion, the site of the earliest-born vestibular
afferents®®*. Later-born afferents are added more medially, forming a half-shell around the
earliest born somata®®. These observations are supported by quantification of mediolateral
position (Fig. 5g) and the ribbon synapse count (Fig. 5h) in myelinated versus unmyelinated
afferents. Thus, afferent myelination and soma position are proxies for developmental sequence.

Do early born hair cells preferentially connect with early born afferents? We found that
myelinated afferents received over half of their input from striolar hair cells, and little input from
immature hair cells (Fig. 5i). This was true whether quantified by the number of distinct hair
cells providing input or the total number of synaptic ribbon connections (Supp. Fig. 3d, €). In
contrast, unmyelinated afferents predominantly received input from extrastriolar hair cells, and
had a higher proportion of input from immature hair cells (Fig. 5i). At the level of individual
neurons, afferents with laterally located somata tended to receive input from striolar hair cells,
whereas medially located somata were the most likely to receive immature hair cell input (Fig.

5j).

We conclude from these results that early-born afferents, marked by early myelination,
preferentially receive input from early-born, predominantly striolar hair cells, and occupy a
lateral position in the ganglion. Later-born afferents contact later-born, predominantly
extrastriolar hair cells, and occupy progressively more medial positions, forming a half-shell
around the early-born afferents. At the same time, directional tuning is preserved in the
rostrocaudal axis, with rostrally located afferents contacting rostrally located hair cells and vice
versa (Fig. 2). Thus, the utricular ganglion is organized by directional tuning in the rostrocaudal
axis and developmental sequence in the mediolateral axis. Moreover, because inferred afferent
temporal dynamics are aligned with developmental order, the ganglion mediolateral axis is also
organized from phasic, striolar-dominated afferents at the lateral edge to tonic, extrastriolar-
dominated afferents more medially. Therefore, both the spatial and temporal tuning of vestibular
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321  signals are topographically organized in the utricular ganglion, though more loosely than at the
322  macula.

323

324  Organization of central circuits by developmental sequence

325  Building on our observation that developmental sequence is an organizing principle of the

326 utricular afferent ganglion and its connectivity with peripheral hair cells, we asked whether

327  developmental sequence might also be linked to central connectivity. The downstream targets of
328  vestibular afferents become functional at different times in development: Mauthner cells are the
329  first to form connections and drive escape behavior, whereas VOR and VS neurons driving eye
330  and postural movements are born later®”®®. Does the developmental sequence of utricular

331  afferents predict their patterns of connectivity to brainstem targets? We mapped the hair cells
332 contributing input to afferents that drove escape, VOR, or VS neurons (Fig. 6a). Central escape
333 neurons (the Mauthner cell and the commissural escape neurons) received most of their input
334  from afferents contacting striolar hair cells. In contrast, afferents exciting VOR and VS neurons
335  received input from a much broader territory of the hair cell macula (Fig. 6a). We quantified hair
336  cell input to these pathways by weighting each central synaptic contact by its afferent’s fraction
337  of input from striolar, extrastriolar, or immature hair cells. Around two-thirds of utricular inputs
338  to the escape circuits arose from striolar pathways, whereas VOR and VS neurons received a
339  much larger portion of their inputs from extrastriolar regions (Fig. 6b). Similarly, the Mauthner
340  cell and commissural escape neurons also received a higher proportion of their utricular inputs
341  from myelinated afferents, in comparison to VS and VOR populations (Fig. 6a, c). Consistent
342  with the interpretation that myelinated afferents are early-born and more mature, they also

343  diverge to more postsynaptic target nuclei (Myelinated afferents diverging to Mauthner, SVN,
344  tangential, and VS neurons: 9/16; to three targets, 3/16; to two targets, 1/16. Unmyelinated

345  afferents diverging to all four targets, 0/90; to three targets, 9/90; to two targets, 25/90.

346  Supplemental Table 2.) Therefore, early-born hair cells preferentially signal via early-born

347  afferents to early-born brainstem populations, which in turn drive early-born spinal motor

348  circuits for escape. Similarly, later-born hair cells excite later-born circuit elements for posture
349  and oculomotor control.

350

351  Developmental sequence may play a significant role not just across but also within neuronal

352  populations. We found that three VS neurons whose axons travel more medially in the brainstem
353  before joining the rest (VSmeq) receive more input from afferents carrying immature hair cell
354  information, whereas four VS neurons whose axons travel more ventrally (VSyen:) receive more
355 input from afferents carrying striolar information, as compared to other VS neurons (Fig. 6d).
356  Based on these inputs, VS subpopulations with distinct axonal trajectories are predicted to

357  exhibit different temporal dynamics, with more phasic information carried by the VSeqn and
358  more tonic by VSyeq. Though the postsynaptic targets of these subpopulations of VS neurons are
359  not known, this result may help identify circuits underlying later refinement of postural control**.
360

361  Collectively, our anatomical analyses demonstrate that directional tuning and developmental
362  sequence pattern the entire vestibulomotor transformation (Fig. 7). The rostrocaudal axis of hair
363  cell organization is largely preserved in the afferent ganglion, leading to distinct pathways that
364  drive responses to pitch. Afferents encoding contralateral tilt are intermingled at the level of the
365  ganglion but form spatially segregated pathways that underlie head direction computation in the
366  escape circuit (Fig. 7a). At the same time, early-born hair cells contact early-born utricular
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367  afferents, which in turn preferentially drive escape behaviors mediated by fast, early-developing
368  motor circuits. Later-born sensory pathways support postural and oculomotor behaviors

369  mediated by a mixture of fast and slow muscles (Fig. 7b). These results also demonstrate that
370  striolar signals, which are carried mostly by irregular-firing afferents with predicted high-pass,
371  phasic encoding properties, establish connections with circuits driving rapid-onset reflexes via
372 fast motor pools.

373

374

375 Discussion

376

377  Here we show that the utricular afferent ganglion, which carries gravity sensation into the brain,
378  is organized along two axes: a rostrocaudal axis for directional tuning, and a mediolateral axis
379  for development. Afferents with different directional tuning excite distinct brainstem

380 populations. Further, we demonstrate that early-born afferents preferentially receive information
381  from early-born and striolar hair cells, yielding a gradient from phasic to tonic signals in the
382  ganglion. This developmental organization aligns vestibular signals with downstream motor
383  circuits. Brainstem neurons governing the fastest motor circuits, which underlie early-developing
384  escape behaviors, are excited mostly by utricular afferents with inferred phasic firing and early
385  development. Oculomotor and postural circuits, which drive slower motor neurons, are excited
386  preferentially by afferents with inferred tonic firing and late development. Collectively, these
387  results demonstrate that the vestibular circuit is organized by both directional tuning and

388  temporal dynamics to mediate transformation into motor outputs.

389

390 Developmental sequence as an organizing principle in sensorimotor transformations

391

392  We demonstrate here that the utricular afferent ganglion is patterned both by directional

393  sensitivity in the rostrocaudal axis, and by developmental sequence, correlating to temporal

394  dynamics, in the mediolateral axis. As far as we are aware, this is the first demonstration of any
395 topography in the vestibular afferent ganglia. A similar mediolateral gradient has been described
396 for the nearby lateral line afferent ganglion, where early-born afferents are positioned more

397 laterally than later-developing afferents®. Early-born lateral line afferents also exhibit larger
398  somasize, lower excitability, and more dorsal central projections than later-born afferents®”’.
399  Thus, they are well placed to mediate coarser, large-amplitude stimuli, similar to our observation
400 that early-born utricular afferents carry striolar information with inferred phasic responses. The
401  mechanisms shaping topographic patterning in these two sensory systems may have been

402  templates for tonotopic organization in the auditory cochlear afferents that evolved later®.

403

404  The link between developmental sequence and motor control has been shown most robustly in
405  zebrafish®>>® and fruit flies®’, suggesting that sequential developmental from fast to slow is an
406  ancient principle of motor control. Building on these results, several classes of spinal neurons in
407  mice have also been shown to differentiate by subtype according to their birth order’® ™,

408  However, whether these subtypes are tied to different speeds of movement remains to be

409  explored.

410

411  Our work demonstrates that developmental sequence also links sensory inputs to motor outputs.
412  The vestibular system is tightly coupled to motor control, and therefore it seems plausible that its
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413  organization relies on related principles. Our data show that the Mauthner cell preferentially

414  receives utricular input from striolar-driven afferents (65% of utricular input). Notably, these
415  afferents are the earliest-born vestibular pathways; similarly, the Mauthner cell drives the escape
416  reflex as early as 2 dpf via the earliest-born spinal motor and premotor neurons®. Thus, the

417  entire escape reflex arc runs from from early-developing hair cells, to early-developing afferents,
418  to early-developing hindbrain reticulospinal neurons, to early-developing spinal elements and
419  muscles. Both oculomotor and postural behaviors appear around 3-4 dpf in zebrafish**>"#™
420  with continued maturation at later stages™*. Correspondingly, the VS and VOR neurons develop
421  after the Mauthner cell in zebrafish®” (D. Schoppik, personal communication), and these

422  populations appear to develop at roughly the same time in amniotes’. In mouse, VS neurons
423  preferentially synapse with slow motor neurons’®, consistent with our observation that they

424 receive more extrastriolar and later-developing input than escape circuits do. It is plausible that
425  developmental sequence may be significant in circuit assembly beyond the vestibulomotor

426  pathways examined here.

427

428  We find that VS neurons can be subdivided based on axon trajectory, with differing proportions
429  of striolar, extrastriolar, and immature input across groups. The fact that the VSyeq population,
430  whose axons plunge directly towards the midline, get a higher proportion of utricular input from
431  immature hair cells suggests that they might be later-born and participate in later-onset postural
432  functions. Zebrafish refine their postural control over the pitch axis from 4 to 15 dpf by

433 increasing use of fins and improved bout timing mediated in part by VS neurons™>***". We

434 speculate that these VSyeq Neurons may contribute to this refinement by preferentially connecting
435  with fin motor neurons, which are located near the midline”’. In mammals, the slower-onset

436  portion of postural reflexes is mediated in part by a subset of lateral vestibular nucleus neurons
437 (LVNc) which collateralize to contact pontine reticulospinal neurons’. These similarities

438  suggest that a VS population encoding tonic head movements could target multiple downstream
439  targets for fine motor control. In contrast, the higher proportion of striolar inputs to VSyent

440  suggests a function in rapid postural control. Together, our findings suggest a relationship within
441  the VS population between the developmental time course of sensory innervation, axon

442  trajectory, and the speed of behavioral responses.

443

444 Although our reimaging did not extend to the oculomotor and trochlear nuclei, the dorsal

445  trajectory of caudal-tilt sensitive (nose-up) tangential neurons corresponds well with the dorsal
446  position of inferior rectus and superior oblique (eyes-down) motor neurons in these areas™.

447  Based on the earlier development of eyes-down motor neurons®, we hypothesize that tangential
448  and SVN pathways contacting these motor neurons may be earlier born as well.

449

450  Mauthner cell computations

451  The directional tuning of afferent inputs to the Mauthner cell and the commissural escape

452  neurons was opposite in direction. Thus each Mauthner cell receives two forms of utricular

453  inputs tuned to ipsilateral tilt: monosynaptic innervation from ipsilateral vestibular afferents and
454 disynaptic innervation from the contralateral side. The identity of these commissural escape

455  neurons receiving utricular input is not known. Based on their anatomy, they are not similar to
456  excitatory spiral fiber neurons, whose axons target the Mauthner axon cap’®, nor to inhibitory
457  commissural neurons underlying left-right choice in the auditory system, whose axons target the
458  Mauthner cell body®. Instead, these commissural utricular neurons appear to target the Mauthner
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ventral dendrite (Fig. 3c). Vestibular commissural neurons in goldfish have previously been
interpreted as inhibitory, because their activation diminishes the amplitude of the antidromically
triggered spike®-®2. We speculate that these zebrafish commissural escape neurons are instead
excitatory, because they carry signal that is similar to the predicted monosynaptic vestibular
afferent inputs to that Mauthner cell. Alternatively, these commissural neurons might provide an
inhibitory signal that sharpens lateralization, as described in the auditory and lateral line
systems®. Further high-resolution imaging or physiology could resolve this question.

Additionally, because utricular inputs to the Mauthner cell and these commissural neurons are
predominantly striolar, they are expected to be phasic and high-pass, with exquisite spike
timing**®. Irregular-firing afferents carrying striolar signals are thought to be kinetically well
suited to signal translational movements, which are typically brief, in contrast to the lower-
frequency movements generated by tilt*. In keeping with this prediction, we identified a
vestibular-dependent escape behavior triggered by rapid translation. This behavior may be
important for survival: a predator approaching from the right would cause a fast translational
head displacement to the left. This would activate both the ipsilateral tilt tuned afferents on the
right side and the contralateral tilt tuned afferents on the left side of the animal (Fig. 3e). Via the
direct and indirect pathways described here, these would summate to activate the right side
Mauthner cell, which triggers contraction of the left side of the body, leading to a correctly
directed escape away from the predator.

Central vestibular tuning

We find that VOR circuit neurons in the tangential and SVN all receive inputs tuned to ipsilateral
tilt, with subpopulations aligned to either rostral or caudal tilt directions for control of vertical
and torsional eye movements. The shared ipsilateral sensitivity explains why these
subpopulations were not differentiated in zebrafish imaging studies of vestibular tuning in the
roll axis®®®. Our anatomical data predict that VS neurons exhibit greater sensitivity to rostral tilt,
consistent with our physiological results, in which VS neurons are preferentially sensitive to
caudal translation®. Some VS neurons are contacted by divergently tuned afferents in the
rostrocaudal axis and are predicted to have correspondingly more complex tuning responses, as
seen in mammals®®. These results align well with our observation that complex central tuning
in VS neurons is constructed by feedforward excitation from afferents with differing tuning®.
We also discovered that vestibular afferents innervating the most lateral portion of the macula
(contralateral tilt sensitive) form a separate axon bundle in the hindbrain (Fig. 2d and
Supplemental Video 3). This result implies differential targeting of this pathway, consistent with
the commissural utricular neurons in the escape circuit. The contralateral tilt-sensitive pathway is
also thought to drive local feedforward inhibition to amplify target tuning by a push-pull
mechanism®.

Our observation that VOR and VS neurons receive similar mixtures of striolar and extrastriolar
input are consistent with physiological analyses suggesting that both populations receive similar
amounts of synaptic input from irregular and regular firing vestibular afferents®*“!, In those
analyses, irregular-firing (phasic) afferent inputs appeared to dominate, whereas in our
anatomical analyses, striolar-driven afferents make up less than half the overall utricular input.
We suggest that synaptic contacts onto VOR and VS neurons from irregular afferents are
stronger in amplitude than those from regular-firing afferents, consistent with their

12
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morphologically larger synaptic contacts®. However, irregular-firing inputs preferentially
encode high-frequency head movements, which are less common®. Therefore, their dominance
in nerve stimulation experiments may reflect synaptic weights but not their overall influence on
typical activity. Indeed, loss of striolar hair cells has little effect on oculomotor and basic
postural behaviors™, consistent with our observation that those pathways draw mostly on
extrastriolar inputs. There are also likely to be significant variations across vertebrates in the
balance between phasic and tonic vestibular signals, based on characteristics of movement™.

Our analyses could not test whether developmental sequence governs connectivity, as opposed to
the possibility that a genetically distinct class of early-born afferents preferentially connects to
escape circuits. Future experiments manipulating circuit formation may shed light on this
question. Our data also necessarily represent a single snapshot in time. Is the observed circuit,
aligned with developmental sequence, likely to be maintained in adulthood? We suggest that it
likely is, on the basis of the functional correspondence between early-born hair cells and early-
born motor neurons which both display high-pass dynamics, while late-born hair cells and motor
neurons display slower dynamics® 8. However, the spatial organization of the ganglion may
become distorted by continued development; further experiments will be needed to address this
question. It will also be important to evaluate how later-born hair cells in the striolar region
integrate into the circuit. If they drive activity in later-born central circuits, their afferents may
change central temporal dynamics. Alternatively, if they integrate with early-born circuits as
other striolar hair cells do, they may serve to augment existing signals.

Materialsand Methods

Ultrathin (60 nm thick) serial sections from a 5.5 dpf larval zebrafish were a generous loan from
J. Lichtman and F. Engert. Using the published 18.8 x 18.8 x 60 nm® per voxel and 56.4 x 56.4 x
60 nm? per voxel reference map and reconstructions (Hildebrand et al., 2017), we re-imaged the
right side of the fish, covering the utricular hair cells, utricular afferents (identified by their
peripheral processes reaching the utricular macula), and a rostrocaudal extent of the brainstem
that covered several major vestibular nuclei at 4.0 x 4.0 x 60 nm® per voxel. The volume covered
~100 pum in the rostrocaudal axis, 150 um in the mediolateral axis, and 100 yum in the
dorsoventral axis, in an irregular shape designed to capture the afferent peripheral and central
processes (Fig. 1b). Imaging was carried out at the Washington University Center for Cellular
Imaging on a Zeiss Merlin 540 FE-SEM with a solid-state backscatter detector. WaferMapper
software® was used to control an ATLAS scan engine for automated focus and acquisition'®.
The resulting images were aligned onto the original 56.4 x 56.4 x 60 nm® per voxel dataset using
affine and elastic transformations in FIJI’s TrakEM2 plugin'®*%, with custom support from
UniDesign Solutions.

The entire image volume was hosted in a CATMAID instance’®'%. Vestibular circuit neurons
and hair cells were reconstructed as skeletons, i.e. node points without volume fills. All utricular
afferents were identified by stepping section by section through the entire anterior macula twice
and marking every hair cell ribbon synapse. Ribbon synapses were identified by the
characteristic large dark ribbon structure surrounded by vesicles (Fig. 2a). Every utricular
afferent was followed as far as possible, in most cases to the corresponding soma in the
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vestibular ganglion. Only 1.6% (15/944) of processes adjacent to ribbons could not be followed
to a soma due to the quality or ambiguity of the images.

Hair cell kinocilia and the tallest stereocilia were traced from the apical surface of each hair cell
to their distal tips. The kinocilium was recognizable based on its distinctive structure (see Fig.
2a). Ciliary length was calculated as the sum of the Euclidean point-to-point distances. Positions
of all cilia were plotted at the epithelial plane and a three-dimensional tuning vector for each hair
cell was derived from the center of mass of all stereocilia to the kinocilium. Hair cell vector
lengths were typically short in the dorsal-ventral axis relative to their extent in the other two axes
(around one-third the normalized vector magnitude of the other two axes; Supp. Fig. 1b),
consistent with the mostly horizontal orientation of the utricular macula. Therefore, for the
purposes of analysis we focused exclusively on their projection in the horizontal plane. Ganglion
soma position was quantified in three dimensions for all analyses. During fixation, differential
shrinkage caused a small tissue separation that is visible as a gap in the horizontal projection of
the utricular ganglion reconstruction (Fig. 2g, upper right), but there was no loss of tissue.
Tuning similarity was calculated as the cosine of the difference between the tuning directions of
each pair of hair cells or afferents. Hair cell distance was determined by the 3D Euclidean
distance between their kinocilia. Afferent distance was determined by the 3D Euclidean distance
between their soma centers. Only hair cells on the medial side of LPR or afferents innervating
the medial side of LPR were included for analysis of tuning similarity.

From the afferent somata in the utricular ganglion, afferent axons were then followed into the
brain. A total of 105 afferents were successfully reconstructed by two experienced annotators
(N.S. and M.W.B.) and all tracing was reviewed (M.W.B.). Central synapses were identified by
close appositions, thickening of the presynaptic membrane, and clustered vesicles (e.g. Fig. 3a,
4a). The Mauthner cell was previously reconstructed, as were most of the VS neurons®®,
Additional VS neurons were identified by reconstruction of utricular target neurons to the point
that they joined up with previously traced myelinated axons. VOR neurons were identified based
on their utricular input and their characteristic axonal projection patterns in the medial
longitudinal fasciculus. Because much of the axonal projections lay outside the reimaged
territory, only myelinated portions of axons could be reconstructed with confidence. Therefore,
we were not able to follow some VOR axons all the way to the trochlear and oculomotor nuclei.
Utricular commissural neurons were identified by their axons which crossed the midline and
traveled to the contralateral Mauthner cell. We note that we have identified a large number of
additional utricular target neurons in the brainstem that either do not fit into these categories
(e.g., commissural neurons) or cannot be confidently identified due to the difficulty in extending
their axons into lower-resolution territory. These neurons will be described in a future
publication. Therefore, the set of brainstem neurons analyzed here is likely to be strongly biased
to early-born, or at least early-myelinated, and is not a complete description of all VS or VOR
neurons. Nonetheless, the 19 VS neurons identified here is a large proportion of the 27 identified
by retrograde labeling®.

Behavioral data were acquired in 5-6 dpf larvae from wild-types or the line rock solo™"®, an
otogelin mutation®. Animals were visually verified as having normal (+/-) or absent (-/-)
utricular otoliths. Animals were free-swimming in a small dish with infrared transillumination
and imaged at 508 frames/s with a HiSpec-1 2g monochrome camera mounted on a Scientifica
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SliceScope with a 2X objective. The translational stimulus was delivered with an air-floated sled
(Aerotech ABL 1500WB) and designed for large amplitude acceleration and jerk, to maximize
responses of irregular otolith afferents'®. Due to the exploratory nature of this experiment, there
was no attempt to separate larvae into responders and non-responders as has been done for
acoustic stimuli®®, but animals were selected for behavioral tests based on whether they exhibited
some response to dish tapping. Images were analyzed with ZebraZoom'® (zebrazoom.org) to
extract the smoothed tail angle.

Synaptic clustering was measured as the average distances between synapses on the same
dendritic arbor. Vestibular neuron arbor skeletons were first simplified for analysis by
regularizing the distance between nodes to ~1 um. Each synapse was associated with the nearest
skeleton node, and distances between synapses were calculated along the Euclidean length of the
skeleton.

To understand how the observed mean distance between synapses compared to random
distributions of synapses on the vestibular neuron arbors, we used several Monte Carlo models.
For each model, the synapses of each vestibular neuron were redistributed across the arbor
100,000 times. The mean distance between synapses was measured the same way as the non-
randomized mean distances was measured. The measure used for each of the 100,000 iterations
was the average of the mean synaptic distances of 43 vestibular neurons observed for that
iteration. Confidence intervals were calculated as the bounds containing 95% of the results of the
100,000 experimental randomizations.

The first model (unweighted distribution) compares the observed clustering of synapses to what
would be expected if synapses of each vestibular neuron were randomly distributed across the
entire arbor of that neuron. In this model, each vestibular neuron skeleton node had an equal
probability of being randomly assigned to one of the synapses of that vestibular neuron.

In the second model (50 pm-from-afferent weighted distribution) we restricted nodes likely to be
assigned to a synapse using the proximity of the nodes to the synaptic terminals of afferent
axons. 105 afferent axons were skeletonized as above. We then counted the number of afferent
synapse nodes within 50 um of each vestibular neuron skeleton node (proximity score),
subtracting 1 to remove the influence of synaptic afferents presynaptic to a given vestibular
neuron node. We next shuffled synaptic locations while maintaining the likelihood of synaptic
connectivity given this proximity score. For example, if a skeleton node with a score of 95 has a
7% chance of being a synaptic locus, whereas a skeleton node with a score of 60 has a 1%
chance, then nodes with scores of 95 will be given a 7-fold greater chance of being assigned a
synapse in the redistribution than nodes with scores of 60.

In the final, most restrictive model (< 5 pm-from-afferent weighted distribution), we attempt to
use proximity to afferent terminals to recapitulate the clustering we observe in the real data.
Proximity scores were calculated as +1 for each vestibular neuron node 0 um from a presynaptic
node. The added score decreased linearly to 0 at 5 um distance. The rest of the 5 um model was
the same as the 50 pm model. Code for these analyses is available at
https://github.com/bagnall-lab under “Liu_Connectome”.
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642  Analyses and statistics were carried out in Igor Pro 6 (Wavemetrics) or Matlab R2017a

643  (Mathworks). Statistical tests were carried out as reported in text, two-tailed where relevant, and
644  typically with nonparametric analyses due to the non-normal distribution of parameters.

645

646  Data availability

647  Quantification of hair cell to afferent and afferent to central target connectivity are provided
648  (Supp. Table 1, 2). All images and reconstructions are hosted and publicly available at

649  http://zebrafish.link/hildebrand16/data/vestibular_right

650
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929

930 Figurelegends

931

932  Figure 1. High-resolution serial-section electron microscopy of the gravity-sensing system.

933  a, Schematic of the gravity-sensing system in fish. Hair cells in the utricular macula (HC, gray)
934  are inertial sensors of head tilt and translation, exciting the peripheral process of utricular

935 afferents (green). These afferents, whose cell bodies are located in the utricular ganglion, project
936  to brainstem neurons involved in escape (Mauthner cell, black), posture (vestibulospinal [VS]
937  cell, blue), and oculomotor (VOR) reflexes (superior vestibular nucleus [SVN] and tangential
938 nucleus [Tan], brown). Dashed line indicates midline.

939 Db, Coronal section through the head of a 5.5 dpf zebrafish. The region reimaged at high

940  resolution is visible as an L-shaped territory (dashed outline) covering the right utricle and hair
941  cells, utricular ganglion, and ipsilateral brainstem. The reimaged territory extended across 1757
942  coronal sections (105 um in the rostrocaudal axis). Scale bar, 100 um.

943 ¢, Electron micrograph of two hair cells in the utricular macula, with portions of their cilia. Scale
944  bar, 3 um.

945  d, Section of the vestibular nerve, peripheral processes. At this developmental stage, some axons
946  are myelinated (pseudocolored dark green) while others are not yet (light green). Scale bar, 1
947  pm.

948 e, Horizontal projection of reconstructed brainstem targets (Mauthner, VS, SVN, Tangential)
949  colorized asin a.

950 f, Sagittal projection of utricular hair cells, afferents, and brainstem targets, as in a.

951 g, Coronal projection as in f.

952
953  Figure2. The utricular afferent ganglion is organized in the rostrocaudal axis by directional
954  tuning

955 a, Top, Electron micrograph of utricular hair cell with stereocilia (black) and kinocilium (red)
956  marked. Right, schematic of the tuning vector derived from cilia positions, viewed from above.
957  Bottom, EM image of hair cell synaptic ribbons (arrowheads) apposed to a utricular afferent.
958  Scale bars, 1 pm.

959 b, Horizontal projection of the utricular macula, showing tuning direction vectors for all 91 hair
960 cells. Dashed line represents the line of polarity reversal (LPR). Vectors are colored by their

961 directional tuning to facilitate visualization. Note a slight asymmetry in the colorization; this was
962  chosen to ensure hair cells from the medial and lateral sides of the LPR are represented in

963 different colors. R, C = rostral, caudal = nose-down and nose-up pitch, respectively. M, L =

964  medial, lateral = contralateral and ipsilateral roll, respectively. The same conventions are used
965  throughout the paper.

966 c, Hair cells located near each other have more similar directional tuning, which falls off sharply
967  and within ~30 um, indicating orderly array of vectors. Data from hair cells medial to the LPR
968  only.

969  d, Horizontal view of reconstructions of all 105 utricular ganglion afferents including somata
970  (larger spheres, left) and their postsynaptic contacts in the utricular macula (smaller spheres,

971  right). Afferents are colorized by inferred direction tuning as in b. View is slightly tilted to aid in
972  visualization of ganglion, which is otherwise obscured by centrally projecting axons. Afferents
973  with inferred contralateral head tilt tuning (red) form a segregated axon bundle in the brainstem
974 (left).
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e, Sagittal view of reconstructions shown in d.

f, Correlation of rostrocaudal soma position between synaptically connected utricular hair cells
and afferents. Circle size reflects the number of synaptic ribbon connections (range: 1-19).
Significance of linear correlation, t-test, p= 1.3 x 10™%.

g, Horizontal projection of inferred afferent tuning vectors, relative to soma position in the
afferent ganglion. Each vector indicates an afferent’s tuning direction, calculated by weighting
by the number of ribbon inputs it receives from each hair cell. Colors as in b.

h, Afferents located close to each other have similar directional tuning, but the relationship is
looser than in hair cells (c). Data are from afferents innervating the macula medial to the LPR
only.

Figure 3. Escape circuits compute head movement direction from utricular input

a, Example electron micrograph of two utricular afferents (pseudocolored green) synapsing onto
the lateral dendrite of the ipsilateral Mauthner cell (yellow). Chemical synapses are recognizable
by clustered presynaptic vesicles and synaptic density. The very tight apposition between the
upper afferent and the Mauthner is likely an electrical synapse (gap junction). Scale bar, 0.5 pm.
b, Coronal projection of Mauthner cell skeleton reconstruction (black) with utricular afferent
input synapses (gray). The Mauthner cell nucleus is represented by a sphere. Inset, expanded
view of utricular inputs onto the lateral dendrite.

¢, Horizontal projection of reconstructions of both Mauthner cells (gray, blue) and the four
commissural utricular neurons (red). All four commissural utricular neurons make synaptic
contacts on the contralateral Mauthner (small red circles) and are therefore termed commissural
escape neurons. Colors indicate inferred directional tuning.

d, Polar plot of inferred direction tuning of utricular input to Mauthner cell and four commissural
escape neurons. As in Fig. 2, directional tuning is indicated in the context of head tilt. However,
otoliths are inertial sensors and therefore equally sensitive to head translation, which deflects the
hair cells in the opposite direction (e.g., rightward head tilt and leftward translation are
identically processed by otoliths).

e, Schematic of predicted Mauthner cell computation of head translation. A predator approaching
from the right will cause a head deflection to the left. Deflection of the utricular otolith by inertia
to the right relative to hair cells (blue arrow) would depolarize the ipsilateral tilt / contralateral
translation pathway (blue; medial to the LPR). These utricular afferents excite the ipsilateral
Mauthner cell, promoting an escape movement to the left, away from the predator. Commissural
escape neurons, in contrast, will respond to rightward head movements (red hair cells and dashed
lines) and are predicted to activate the contralateral Mauthner cell, promoting escapes to the
right.

f, Example of behavioral response in a free-swimming larva subjected to rapid translation. High-
speed videography captures the onset of escape and characteristic C-bend. Bottom, quantification
of tail angle (black) and translational stimulus (gray). Scale bars, 1 rad, 100 ms, and 1 g.

0, Escape responses to a unidirectional translational stimulus are plotted relative to the larval
heading angle at the start of the translational stimulus. In accordance with our circuit predictions,
larvae accelerated to the right (heading direction 0-180°) escape to the right, whereas larvae
accelerated to the left escape left. Escapes only occurred in the “incorrect” direction when
animals were accelerated in predominantly rostral or caudal directions.
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h, With both types of stimulus, utricle-deficient rock solo larvae escaped at approximately half
the rate as their heterozygous siblings. N = 52 sibling and 55 -/- fish. Chi-squared test, p =
0.0006 (1 degree of freedom [df], chi-squared value = 11.65, 266 total observations).

Figure 4. Structure and tuning of central VOR and VS utricular targets

a, Horizontal projection of 12 SVN reconstructed neurons. Neurons are colorized based on their
inferred directional tuning. Polar plot inset shows the directional tuning vectors of each neuron.
Gray bar indicates location of coronal plane where axon trajectories are shown in boxed inset.
Scale for reconstructions as in c. Electron micrograph (bottom) shows a utricular afferent
(pseudocolored green) contacting two dendrites of SVN neurons (yellow). Scale bar, 500 nm.
b, As in a, for 11 tangential nucleus reconstructed neurons. Sagittal projection inset (bottom)
shows the divergence of tangential neuron axons in the dorsoventral axis.

c, As in a but for 19 VS neurons.

d, Dendrograms of three example neurons from the SVN, tangential, and VS populations. The
soma is represented by a black circle and each dendrite is represented by lines. Gray circles
indicate synaptic inputs from utricular afferents, which appear disproportionately concentrated
on a small number of dendrites. Axons are truncated for purposes of scale.

e, Quantification of synaptic clustering, measured as distances between synapses, using three
Monte Carlo models compared to actual data. Synaptic locations were modeled as randomly
distributed across the arbor (unweighted model), preferentially weighted within 50 pm of
afferent axons, or preferentially weighted within 5 pm of afferent axons. The observed level of
synaptic clustering is shown in red. See Methods for detailed description.

Figure5. The utricular afferent ganglion is organized in the mediolateral axis by developmental
sequence and temporal dynamics.

a, Representation of kinocilium reconstruction across successive images to obtain the total
length. The neighboring tallest stereocilium was also reconstructed (not shown).

b, Plot of length of the kinocilium vs. the tallest stereocilium for all 91 hair cells (dots). Striolar
hair cells are identified by their long stereocilia and lower K/S ratios (dark brown) whereas
extrastriolar hair cells have much higher K/S ratios (tan). Hair cells characterized as immature
have very short kinocilia and stereocilia (blue-green).

¢, Horizontal projection of the utricular macula, showing number of synaptic ribbons in each hair
cell. Circle diameter reflects synaptic ribbon count; hair cells with larger numbers of ribbons
tend to be located more centrally.

d, Quantification of synaptic ribbon counts across hair cell categories. Box plot represents
medians + 25%ile; whiskers indicate 10-90%iles. Immature hair cells form fewer ribbon
synapses than striolar or extrastriolar hair cells. Significance was tested with ANOVA (p = 4.8 x
10°%; df = 90, F statistic = 11.14) and then pairwise with Wilcoxon-Mann-Whitney (striola —
extrastriolar, p= 0.60 [U, U’ = 552, 644]; striolar — immature, p = 4.3 x 10 [U, U’ = 302, 66];
extrastriolar —immature, p=1.3 x 10* [U, U’ = 668.5, 163.5]).

e, Horizontal projection of all utricular afferents, colorized by whether they are myelinated
(black) or not (gray).

f, Horizontal projection map of all utricular ganglion somata by position; circle diameter reflects
the number of hair cell ribbon synaptic inputs that each one receives (cf. Fig. 2d).

0, Myelinated afferent somata are located more laterally in the utricular ganglion. Each dot
represents one afferent soma. Wilcoxon-Mann-Whitney, p = 2.9 x 10 [U, U’ = 1105, 319].
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h, Myelinated afferents are contacted by significantly more hair cell ribbons than unmyelinated
afferents. Wilcoxon-Mann-Whitney, p = 1.8 x 10°[U, U’ = 1422, 2]. See also Supp. Fig. 3c.

i, Myelinated afferents receive the majority of their input from striolar hair cells, whereas
unmyelinated afferents receive most of their input from extrastriolar and developing hair cells.
The distributions are significantly different (chi-squared test, p< 1 x 10™°, df = 3, chi squared
value = 133.4). See also Supp. Fig 3d, e..

], The weighted fraction of inputs each utricular afferent receives from the different hair cell
classes. Afferents are ordered based on soma position from most medial to most lateral. Red dots
identify afferents receiving input from hair cells lateral to the LPR (contralateral tilt sensitive).
There is a gradient from laterally positioned afferents with predominantly striolar (phasic) inputs,
to medially positioned afferents with predominantly extrastriolar (tonic) or immature inputs.

Figure 6. Early developing afferent pathways with fast kinetics preferentially drive early
developing central neurons for fast escapes.

a, Hair cells in the utricular macula that excite afferents connected to Mauthner escape, VOR, or
VS circuits (top, middle, and bottom). Hair cells are colorized if they contribute input to a
pathway or gray if they do not. Right, afferents connected to escape, VOR, or VS circuits,
colorized by their myelination status (black: myelinated; gray, unmyelinated).

b, Quantification of the contribution of striolar, extrastriolar, and immature hair cells to these
central pathways. Striolar hair cells preferentially drive rapid escape circuits, both via the direct
afferent input to the ipsilateral Mauthner and the afferent input to the commissural escape
pathway, whereas VOR and VS circuits receive input from a mixture of pathways, with
extrastriolar inputs dominating. Numbers in parentheses indicate the number of central neurons
in each category. Wilcoxon-Mann-Whitney test, striolar contribution to escape vs non-escape
neurons, p=0.041 (U, U’ =141, 39).

¢, Quantification of the contribution of synapses from myelinated and unmyelinated afferents to
each central pathway. Afferents driving escape pathways are largely myelinated at this age,
whereas afferents driving VOR and postural pathways are more mixed. Chi-squared test for all
groups, p = 6.0 x 10°® (df = 3, chi squared = 36.45). Follow-up chi-squared: VOR vs escape, 1.4
x 10" (df = df = 1, chi squared = 14.47); VS vs escape, 1.7 x 10°® (df = 1, chi squared = 31.75).
d, Subsets of VS neurons, identified by axon trajectories, are predicted to exhibit different
temporal kinetics. VS neurons with axons that approach the midline before descending (V Smed,
greens) receive mostly extrastriolar (tonic) input with a large contribution from immature hair
cells, whereas VS neurons with ventral axon trajectories (VSyent, dark reds) receive mostly
striolar (phasic) input and none from immature pathways. The skeleton reconstruction is
projected at a mixed horizontal/sagittal angle to facilitate visualization of these groups. See also
representation of axon trajectories in Fig. 4d.

Figure 7. Directional tuning and developmental sequence are organizing principles of
vestibulomotor connectivity.

a, Summary schematic of organization by directional tuning. Hair cells in the utricular macula,
left, project via afferents that maintain rostrocaudal organization but not mediolateral
organization. The utricular afferent ganglion is organized rostrocaudally, but contralateral tilt
sensitive afferents are intermingled. These afferents project with different patterns to distinct
brainstem targets, conferring directional sensitivity in the mediolateral (escape) or rostrocaudal
(VOR, posture) pathways. Colors indicate directional tuning as previously.
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1111 b, Summary schematic of organization by temporal kinetics. Early-born, striolar hair cells make
1112  synaptic connections to early-born afferents, whose cell bodies are positioned laterally in the
1113 utricular ganglion, and typically myelinated by the larval stage examined here. These early-born
1114  afferents, carrying phasic information about head movement, preferentially excite escape

1115  pathways, which consist of early-born, fast reticulospinal and spinal motor neurons and muscles.
1116  Postural and VOR reflex pathways rely more on the tonic and phasic-tonic signals arising from
1117  extrastriolar, slightly later born pathways. We speculate that circuits carrying immature input,
1118  like VSneq, may project to motor circuits governing slower and more refined control of

1119  movement.

1120
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Supplemental Videos

Supplemental Video 1. The 3D reconstructed utricular circuits in the larval zebrafish, related to
Figure 1. Rendering of the utricular hair cells (gray), afferents (blues), Mauthner cell (black), and
central vestibular neurons (oranges) to show the entire gravity-sensing system. Utricles and eyes
(gray volumes) are included for reference.

Supplemental Video 2. The 3D reconstruction of utricular afferents and the utricular macula,
related to Figure 2. Utricular afferent neurons are colorized according to rostrocaudal position as
in Fig. 2d. The positioning of afferent somata reflects a systematic innervation pattern from the
afferents to the hair cells.

Supplemental Video 3. The 3D reconstruction of Mauthner and utricular commissural circuits,
related to Figure 3. The right Mauthner (blue) and vestibular commissural (red) neurons receive
projections from afferents that innervate the medial side of LPR (blue and yellow, tuned to
ipsilateral tilt) and the lateral side of LPR (red, tuned to contralateral tilt). Note that the
contralateral tilt (red) afferent axons exhibit a different trajectory in the brainstem than the
ipsilateral tilt afferents.

Supplemental Video 4. The 3D reconstruction of the superior vestibular and tangential circuits,
related to Figure 4.

Supplemental Tables

Supplemental Table 1. A grid of complete connectivity from utricular hair cells to utricular
afferents. Numbers in each cell represent the number of ribbon synapses from a hair cell onto an
afferent. Table also includes the computed tuning of each hair cell in radians.

Supplemental Table 2. A grid of connectivity from utricular afferents to identified central
neurons in the brainstem. Numbers indicate the number of synaptic contacts. Where relevant,
distinct release sites are counted as distinct contacts, but these are interpreted and less
straightforward to quantify than ribbon synapses. Note that there are many afferent contacts onto
central neurons not included in this table because they have not been reconstructed or identified.
For example, some commissural neurons of unclear identity are not included. Table also includes
the computed tuning of each afferent in radians.
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