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Abstract: Chromatin profiling at locus resolution uncovers gene regulatory features that
define cell types and developmental trajectories, but it remains challenging to map and
compare distinct chromatin-associated proteins within the same sample. Here we
describe a scalable antibody barcoding approach for profiling multiple chromatin features
simultaneously in the same individual cells, Multiple Target Identification by Tagmentation
(MulTI-Tag). MulTI-Tag is optimized to retain high sensitivity and specificity of enrichment
for multiple chromatin targets in the same assay. We use MulTI-Tag in a combinatorial
barcoding approach to resolve distinct cell types and developmental trajectories using
multiple chromatin features, and to distinguish unique, coordinated patterns of active and
repressive element regulatory usage in the same individual cells that are associated with
distinct differentiation outcomes. Multifactorial profiling allows us to detect novel
associations between histone marks in single cells and holds promise for
comprehensively characterizing cell-specific gene regulatory landscapes in development

and disease.
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Main Text

Single-cell sequencing methods for ascertaining cell type-associated molecular
characteristics by profiling the transcriptome’3, proteome*%, methylome’8, and
accessible chromatin landscape®°, in isolation or in “Multimodal” combinations''-'5, have
advanced rapidly in recent years. More recently, methods for profiling the genomic
localizations of proteins associated with the epigenome, including Tn5 transposase-
based Cleavage Under Targets & Tagmentation (CUT&Tag)'®'”, have been adapted for
single cell profiling. The combinatorial nature of epigenome protein binding and
localization'®2° presents the intriguing possibility that a method for profiling multiple
epigenome characteristics at once could derive important information about cell type-
specific epigenome patterns at specific loci. However, we still lack precise, scalable

methods for profiling multiple epigenome targets simultaneously in the same assay.

Motivated by this gap, and with the knowledge that CUT&Tag profiles chromatin proteins
in single cells at high signal-to-noise ratio'®, we explored methods for physical association
of a chromatin protein-targeting antibody with an identifying adapter barcode added
during tagmentation that could be used to deconvolute epigenome targets directly in
sequencing (Fig. 1a, Supplementary Fig. 1a). Using antibodies against mutually exclusive
H3K27me3 and PollIS5P in human K562 Chronic Myelogenous Leukemia cells as
controls, we systematically tested a variety of protocol conditions for antibody-barcode
association with the goal of optimizing both assay efficiency and fidelity of target
identification. In contrast with previous reports?’, we found that both pre-incubation of

barcoded pA-Tn5 complexes and combined incubation and tagmentation of all antibodies
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simultaneously resulted in high levels of spurious cross-enrichment between targets
(Supplementary Fig. 1b-c), leading us to use adapter-conjugated antibodies loaded into
pA-Tn5 to tagment multiple targets in sequence. We also found that tagmenting in
sequence beginning with the target predicted to be less abundant (PollIS5P in this case)
modestly reduced off-target read assignment (Supplementary Fig. 1d). We further found
that primary antibody conjugates resulted in superior target distinction vs. secondary
antibody conjugates (Supplementary Fig. 1b-c), but also variable data quality, likely owing
to fewer pA-Tn5 complexes accumulating per target locus in the absence of a secondary
antibody. To overcome this obstacle, we (1) Loaded pA-Tn5 onto 1° antibody-conjugated
i5 forward adapters, (2) Tagmented target chromatin in sequence, and (3) Added a
secondary antibody followed by pA-Tn5 loaded with i7 reverse adapters and carried out
a final tagmentation step (Fig. 1a). This resulted in libraries that were as robust as
matched CUT&Tag experiments, particularly for H3K27me3 (Supplementary Fig. 1e). We
dubbed this combined approach Multiple Targets Identified by Tagmentation (MulTl-Tag)
(Fig. 1a). MulTI-Tag profiles for each of H3K27me3 and PollIS5P profiled in sequence
were highly accurate for on-target peaks as defined by ENCODE ChlIP-seq (Fig. 1b-c)
and had comparable specificity of enrichment to CUT&Tag as measured by fraction of
reads in peaks (Supplementary Fig. 1f), indicating that MulTI-Tag recapitulates target

enrichment without cross-contamination that may confound downstream analysis.

In H1 human embryonic stem cells (hESCs), we went on to simultaneously profile three

targets that represent distinct waypoints during developmental gene expression:
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H3K27me3, enriched in developmentally regulated heterochromatin??23, H3K4me2,
enriched at active enhancers and promoters?*, and H3K36me3, co-transcriptionally
catalyzed during transcription elongation?>2% (Fig. 1d-e). In comparison with control
experiments in which each of the three targets was profiled individually, MulTI-Tag retains
comparable accuracy of target-specific enrichment in peaks (Supplementary Fig. 2a) and
efficiency of signal over background (Supplementary Fig. 2b). Moreover, both control and
MulTI-Tag experiments exhibit characteristic patterns of enrichment for each mark,
including H3K4me2 at promoters, H3K36me3 in gene bodies, and H3K27me3 across
both (Fig. 1e). Of note, we observed regions with overlap between H3K27me3 and
H3K4me2 for both CUT&Tag and MulTI-Tag samples consistent with known “bivalent”
chromatin in hRESCs?’. The enrichment of these regions in our MulTI-Tag was comparable
to standard CUT&Tag, indicating that tagmenting targets in sequence does not preclude
detection of expected co-enrichment of two targets at the same loci (Supplementary Fig.

2c-d).

Given the successful adaptation of CUT&Tag for single cell profiling'28-30, we sought to
use MulTI-Tag for single-cell molecular characterization (Fig. 2a). To do so, we adapted
the Takara iCELL8 microfluidic system for unique single cell barcoding via combinatorial
indexing (Fig. 2a) (Methods). In a pilot combinatorial indexing MulTI-Tag experiment
profiling H3K27me3 and H3K36me3 either individually or in combination in a mixture of
human K562 cells and mouse NIH3T3 cells, we calculated cross-species collision rates
as 9.9% (231/2334, H3K27me3), 10.7% (173/1623, H3K36me3), and 11.0% (358/3262,

H3K27me3-H3K36me3) of cells yielding <90% of reads from a single species
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(Supplementary Figure 3a-b). These statistics are comparable to the same metrics
reported for combinatorial indexing-based ATAC-seq (7-12%'%3"). To confirm that MulTI-
Tag could be used to distinguish a mixture of cells originating from the same species, we
jointly profiled H3K27me3 and H3K36me3 in K562 cells, H1 human embryonic stem cells,
and a mixture of the two cell types, yielding 21548 cells (7025 K52, 7601 H1, 6922 Mixed)
containing at least 100 unique H3K27me3 and 100 unique H3K36me3 reads (Fig. 2b,
Supplementary Fig. 3c). For the majority of peaks defined by ENCODE ChlP-seq (91.4%
and 92.4% for H3K27me3 in H1 and K562 cells; 84.9% and 94.8% for H3K36me3 in H1
and K562 cells), greater than 80% of fragments corresponded to the expected target
(Supplementary Fig. 3d-e). Moreover, MulTI-Tag uniformity of coverage at representative
loci (Supplementary Fig. 3f), cell recovery from input, and library complexity as measured
by unique reads per cell were comparable or superior to analogous published methods

for single cell chromatin profiling?'28-2%:32 (Supplementary Fig 3g).

We used Uniform Manifold Approximation and Projection (UMAP)3334 to project single
cell data into low-dimensional space based on enriched features defined for H3K27me3,
H3K36me3, or a combination of both based on Weighted Nearest Neighbors (WNN)
integration®5, and clustered the resulting projections (Fig 2c). Using our known cell type
labels to calculate cluster Normalized Mutual Information (NMI) on a scale of 0 (no cell
type distinction by cluster) to 1 (perfect cell type distinction by cluster), H3K27me3
(0.913), H3K36me3 (0.944), and H3K27me3-H3K36me3 combined (0.930) were all
highly proficient in cluster distinction (Fig. 2c). Additionally, 99.1% (6383/6443) of “Mixed”

cells occupied non-ambiguous clusters defined nearly exclusively by either H1 or K562
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cells (Fig 2c). Constitutively expressed (POLR3E) or silenced (HOXD3) genes exhibited
cluster non-specific enrichment of H3K36me3 and H3K27me3, respectively, and genes
expressed exclusively in K562 (HOXB3) or H1 (SALL4) cells were enriched for
H3K36me3 in the cell-specific cluster vs. H3K27me3 in the other (Fig 2d). To further
demonstrate the flexibility of target combinations possible with MulTl-Tag, we profiled
K562, H1 and K52-H1 mixed cells in three additional target pair combinations
(H3K27me3-PollIS5P, H3K27me3-H3K9me3, and H3K27me3-H3K4me1)
(Supplementary Fig. 4a-b). All individual marks distinguished cell types with high
efficiency with the exception of H3K4me1, likely owing to the fact that only 27 K562 cells
were analyzed for H3K4me1 enrichment after quality control filtering (Supplementary Fig.
4c). In all, these results show that MulTIl-Tag can use enrichment of multiple targets to

distinguish mixtures of cell types.

Since MulTI-Tag uses barcoding to define fragments originating from specific targets, we
can directly ascertain and quantify relative target abundances and instances of their co-
occurrence at the same loci in single cells. To establish methods for cross-mark analysis
in single cells, we co-profiled the aforementioned transcription-associated marks
(H3K27me3-H3K4me2-H3K36me3) by MulTl-Tag in single H1 and K562 cells with high
target specificity (Fig. 3a-b, Supplementary Fig. 5a-e). When we calculated the
percentage of unique reads originating from each of the three profiled target in each single
cell, we found that H3K27me3 represented the vast majority (89.4% and 80.0% in K562
cells and H1 cells) of unique reads (Fig. 3c). This is consistent with previously reported

mass-spectrometry3® and single molecule imaging®” quantification of H3K27me3 vs.
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H3K4me2 species, and with a reported higher abundance of H3K27me3 in differentiated
vs. pluripotent cells®. By mapping fragments from any target in H1 and K562 cells onto
genes in a window from 1 kb upstream of the TSS to the gene terminus, we found notable
instances of genes the show co-enrichment of distinct targets in the same single cells,
including H3K4me2 and/or H3K36me3 enrichment in NR5A2 linked with H3K27me3
enrichment in HOXB3 in the same H1 cells, and vice-versa in K562 cells (Fig. 3e). We
were also able to classify genes by the frequency with which they were singly or co-
enriched with specific targets in an individual cell. H1 hESCs had a higher frequency of
most co-enriched target combinations than K562 cells (Supplementary Fig. 5f), including
“bivalent” H3K27me3-H3K4me2 co-enrichment in the same gene in individual cells?” (Fig.
3e-f). We used Cramer’s V3 to quantify the degree of co-enrichment between each pair
of targets in the same genes in the same single cells, and confirmed that H1 cells had a
higher degree of co-enrichment between H3K27me3 and H3K4me2 than K562 cells, (Fig.
39). Curiously, the same was true for association between H3K27me3 and H3K36me3,
despite previous observations that H3K27me3 and H3K36me3 appear to be antagonistic
in vitro and in vivo*®#' (Fig. 3g). Nevertheless, in CUT&Tag, bulk MulTI-Tag, and in
previously published ENCODE ChIP-seq data from H1 hESCs, we were similarly able to
detect co-occurrence of H3K27me3 at the 5’ ends and H3K36me3 at the 3’ ends of
several genes, concomitant with their low expression as quantified by ENCODE RNA-seq
data (Supplementary Fig. 6a-d). Together, these results shed light on patterns of

chromatin enrichment at single cell, single locus resolution.
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To ascertain how histone modifications co-occur in single cells in a continuous
developmental context, we differentiated H1 hESCs into three germ layers (Endoderm,
Mesoderm, and Ectoderm), harvested nuclei at 24 hour time points across the three time
courses, and used MulTl-Tag to co-profile H3K27me3, H3K4me1, and H3K36me3,
resulting in 7727 cells meeting quality filters (Fig. 4a, Supplementary Fig. 7a). A UMAP
based on H3K36me3 was unable to distinguish cell types as calculated by NMI for distinct
cluster assignment of the four terminal cell types (NMI=0.0166, Supplementary Fig. 7b).
However, UMAPs based on H3K27me3 (NMI=0.4060), H3K4me1 (NMI=0.277), or
weighted-nearest neighbor synthesis of H3K27me3 and H3K4me1 signal (NMI=0.3403)
all distinguished two major clusters corresponding to endoderm and mesoderm, along
with H1- or ectoderm-dominant clusters that were partially mixed, consistent with H1
hESC gene expression profiles being more similar to ectoderm*? (Fig. 4b, Supplementary
Fig. 7b). To determine how well MulTI-Tag profiles reflect expected developmental
trajectories, we used H3K27me3, H3K4me1, or combined H3K27me3-H3K4me1 MulTlI-
Tag data to infer pseudotemporally ordered differentiation trajectories using monocle343.
We then calculated two quality metrics: frequency of cell type assignment to an incorrect
trajectory, and inversion frequency, or the likelihood that “correct” trajectory timepoints
derived from known differentiation age were “out of order” based on the inference (Fig.
4d, Supplementary Fig. 8a-f). Relative to either H3K27me3 or H3K4me1 pseudotime
alone, inferred H3K27me3-H3K4me1 pseudotime correlated more closely with known
differentiation age based on experimental time points (Fig. 4c, Supplementary Fig. 8g)
and minimized both incorrect trajectory assignment and trajectory-specific inversion rates

(Supplementary Fig. 8h). Moreover, the H3K27me3-H3K4me1 inferred trajectories alone
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recapitulated two major known branch points in hESC trilineage differentiation:
partitioning of Ectoderm and Mesendoderm lineages at the outset of differentiation based
on TGF-B and WNT signaling, and subsequent separation of Endoderm and Mesoderm
based on BMP and FGF signaling**45 (Fig. 4d). These results show that multifactorial
data integration is important for accurately representing continuous developmental

chromatin states.

To determine how continuous transitions in chromatin enrichment across differentiation
correlate with changes in developmental gene expression, we quantified changes in
H3K27me3, H3K4me1, and H3K36me3 enrichment across pseudotime in transcription
factors (TFs) with the highest reported fold-change enrichment in RNA-seq** between a
terminal cell type (endoderm, mesoderm, or ectoderm) and hESCs. Notably, there were
trajectory-specific differences in enrichment changes: for TFs whose expression declines
during differentiation as measured by RNA-seq, we observed a decline in H3K36me3
enrichment across pseudotime accompanied by relatively low and stable levels of
H3K4me1 and H3K27me3 in the mesoderm and endoderm trajectories, whereas the
ectoderm trajectory was characterized only by a decline in H3K4me1 enrichment
(Supplementary Fig. 9a). For TFs whose expression increases, H3K27me3 is lost
gradually in a pseudotime-dependent manner in endoderm and mesoderm trajectories,
whereas in the ectoderm trajectory H3K27me3 is low at the onset of differentiation and
H3K36me3 enrichment increases across pseudotime (Supplementary Fig. 9b). These
phenomena were particularly pronounced for core regulators of cell identity, including

LEF1 in mesoderm and SOX77 and FOXAZ2 in endoderm, whereas ectoderm regulators
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such as OTX2 were largely devoid of H3K27me3 early in the ectoderm trajectory (Fig. 4e,
Supplementary Fig. 9c-d), indicating that different trajectories manifest distinct temporal

chromatin trends at genes important for differentiation.

The unique enrichment profile of the ectoderm trajectory led us to wonder whether
changes in global histone modification enrichment may be similarly distinct. As with our
experiments in H1 and K562 cells, we calculated the percentage of unique reads
assigned to each of the three targets in single cells, and analyzed how target balance
changed across trajectories. We found that the ectoderm trajectory exhibited a rapid,
pseudotime-dependent reduction in H3K27me3 as a percentage of all targets
(Supplementary Fig. 10a), resulting in terminal ectoderm exhibiting significantly lower
H3K27me3 percentage than other cell types (Fig. 4d, Supplementary Fig. 10b). Notably,
hESCs predicted to participate in the ectoderm trajectory also had a lower percentage of
H3K27me3 than those participating in the mesendoderm trajectory (p < 1E-5 Wilcoxon
Rank Sum Test) (Fig. 4f). To ascertain whether H3K27me3 level was correlated with
developmental gene regulation, we partitioned hESCs into “low” and “high” H3K27me3
groupings, calculated normalized differences in gene-specific enrichment, and examined
a panel of known regulators of germ cell differentiation (Fig. 4g, Supplementary Fig. 10c).
Curiously, whereas most genes exhibited a negligible or modest decline in enrichment
despite different global H3K27me3 levels, including constitutively silenced genes such as
HOXB3, TFs specifically active in the first phase of germ layer specification after
pluripotency exit, including T and OTX2, were strongly derepressed in the “low”

population of cells (Fig. 4f, Supplementary Fig. 10d), suggesting that low H3K27me3 in
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hESCs is accompanied by a uniquely configured developmental state. TFs derepressed
in the “low” population were enriched for gene ontology terms related to organ/anatomical
development and pattern specification, but not for terms related to neurogenesis,
suggesting that such cells are generally primed for differentiation rather than representing
spuriously differentiated ectoderm (Supplementary Fig. 10e). Finally, we quantified
intragenic “bivalent” H3K27me3-H3K4me1 co-occurrence across cell types and found
that ectoderm bivalency is significantly lower than hESCs, endoderm, or mesoderm,
consistent with the original observation that bivalency is absent in neuronally-derived
lineages?” (Supplementary Fig. 10f). Bivalency was equivalent in H3K27me3 low and high
hESC populations, however, indicating that pluripotency-specific chromatin
characteristics are maintained in H3K27me3-low hESCs despite their distinct chromatin
environment (Supplementary Fig. 10f). Taken together, these results show that global
changes in chromatin modification enrichment and co-enrichment that can be detected

prior to differentiation are associated with specific developmental endpoints.

MulTI-Tag establishes a rigorous baseline for unambiguously profiling multiple
epigenome proteins with direct sequence tags, maintaining both exemplary assay
efficiency and target-assignment fidelity relative to other similar approaches*¢#’. We use
a well-documented combinatorial barcoding strategy®#® that can be implemented without
any specialized equipment by substituting standard PCR plates for the iCELL8 apparatus.
Three targets profiled here, H3K27me3, H3K4me1/2, and H3K36me3, are typically
enriched at distinct stages of the gene regulatory cycle that proceeds from developmental

repression (H3K27me3) to enhancer and promoter activation (H3K4me1/2) to productive

11


https://doi.org/10.1101/2021.07.08.451691
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451691; this version posted June 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

transcription elongation (H3K36me3). We integrated this temporal information across a
model of ESC differentiation to germ layers to characterize continuous changes in
chromatin enrichment that corresponded with specific differentiation outcomes, including
a global low-H3K27me3 signature in hESCs associated with ectoderm differentiation.
This is perhaps consistent with a “goldilocks” zone that balances an immediate need to
prevent spurious mesendoderm signaling*® with a need to mitigate silencing later during
neurogenesis®. By simultaneously measuring locus-specific enrichment and the relative
abundances of multiple targets, Multifactorial profiling is uniquely suited to characterize
this style of context-specificity in developmental chromatin regulatory strategies. Whereas
pseudotemporal inference using MulTI-Tag was sufficient to build accurate trajectories,
we suspect that molecular “velocity” analyses may be more challenging to implement if
the context-specificity we observe violates steady-state assumptions on which they are
based®'%2, Finally, our analysis of co-occurrence of different targets in the same genes
elucidates chromatin enrichment at single-locus, single-cell resolution, and further
allowed us to confirm classic “bivalent” co-enrichment and detect an unexpected class of
H3K27me3-H3K36me3 co-enriched genes that we verified via public ENCODE data.
Although H3K27me3-H3K36me3 are considered to be antagonistic within the same
histone tail*®>3, we find that co-enrichment occurs on different nucleosomes in the same
gene, which is consistent with H3K27me3 spreading via polycomb repressive complex
(PRC) tudor domain-containing subunits engaging H3K36me3 in ESCs®%¢. We
anticipate further work to understand intra-locus interactions between different chromatin
characteristics to bear on long-standing hypotheses regarding bivalency?” and

hyperdynamic chromatin®’.
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Opportunities for refinement of MulTl-Tag exist. Although MulTI-Tag is theoretically
scalable to any combination of user-defined targets in the same assay, in practice
downstream analysis is constrained by the decreasing number of cells that meet minimum
read criteria for every target. It is possible that PCR “jackpotting” bias may suppress the
equitable amplification of some target combinations, and methods to mitigate target-
specific amplification bias could resolve this. Our emphasis on ensuring both that the
efficiency of MulTI-Tag profiling was comparable to CUT&Tag, and that there was minimal
cross-contamination between antibody-assigned adapters, led us to generate antibody-
adapter conjugates®®, and to incubate and tagment with antibody-adapter-transposase
complexes sequentially rather than simultaneously. By physically excluding the possibility
of adapter or Tn5 monomer exchange in the protocol, MulTI-Tag safeguards against
potential artifacts originating from adapter crossover, identifying any set of user-defined
targets with high fidelity. However, alternative reagent schemes that allow simultaneous
antibody incubations and tagmentation while maintaining target fidelity may increase the
number of targets that can be profiled in a single experiment. Nevertheless, as presented
MulTl-Tag is an effective tool for refining our understanding of chromatin regulation at
single-cell, single-locus resolution. In the future we anticipate development of chromatin-
integrated Multimodal®®5° and Spatial®® single-cell technologies will benefit substantially
from Multifactorial profiling by pairing its potential benefits in cross-factor developmental
analysis with strong existing cell-type identification and tissue-contextual molecular

signatures.
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Methods

Cell culture and nuclei preparation

Human female K562 Chronic Myleogenous Leukemia cells (ATCC) were authenticated
for STR, sterility, human pathogenic virus testing, mycoplasma contamination, and
viability at thaw. H1 (WAO1) male human embryonic stem cells (hESCs) (WiCell) were
authenticated for karyotype, STR, sterility, mycoplasma contamination, and viability at
thaw. K562 cells were cultured in liquid suspension in IMDM (ATCC) with 10% FBS
added (Seradigm). H1 cells were cultured in Matrigel (Corning)-coated plates at 37°C and
5% CO2 using mTeSR-1 Basal Medium (STEMCELL Technologies) exchanged every 24
hours. K562 cells were harvested by centrifugation for 3 mins at 1000xg, then
resuspended in 1x Phosphate Buffered Saline (PBS). H1 cells were harvested with
ReleasR (StemCell Technologies) using manufacturer's protocols. H1 cells were
differentiated to germ layers using the STEMDIff Trilineage Differentiation Kit
(STEMCELL Technologies) according to manufacturer’s protocols. Lightly crosslinked
nuclei were prepared from cells as described in steps 2-14 of the Bench Top CUT&Tag

protocol on protocols.io (https://dx.doi.org/10.17504/protocols.io.bcuhiwt6). Briefly, cells

were pelleted 3 minutes at 600xg, resuspended in hypotonic NE1 buffer (20 mM HEPES-
KOH pH 7.9, 10 mM KCI, 0.5 mM spermidine, 10% Triton X-100, 20% glycerol), and
incubated on ice for 10 minutes. The mixture was pelleted 4 minutes at 1300xg,
resuspended in 1xPBS, and fixed with 0.1% Formaldehyde for 2 minutes before
quenching with 60 mM glycine. Nuclei were counted using the ViCell Automated Cell

Counter (Beckman Coulter) and frozen at -80°C in 10% DMSO for future use.
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Antibodies

Antibodies used for CUT&Tag or MulTI-Tag in this study were as follows: Rabbit Anti-
H3K27me3 (Cell Signaling Technologies CST9733S, Lot 16), Mouse anti-RNA PollIS5P
(Abcam ab5408, Lot GR3264297-2), Mouse anti-H3K4me2 (Active Motif 39679, Lot
31718013), Mouse anti-H3K36me3 (Active Motif 61021, Lot 23819012), Rabbit anti-
H3K9me3 (Abcam ab8898, Lot GR3302452-1), Rabbit anti-H3K4me1 (EpiCypher 13-
0040, Lot 2134006-02), Guinea Pig anti-Rabbit (Antibodies Online ABIN101961), and
Rabbit anti-Mouse (Abcam ab46450). For antibody-adapter conjugation, antibodies were
ordered from manufacturers with the following specifications if not already available as
such commercially: 1x PBS, no BSA, no Sodium Azide, no Glycerol. For secondary
conjugate MulTl-Tag, secondary antibody conjugates from the TAM-ChIP Rabbit and

Mouse kits (Active Motif) were used.

CUT&Tag

CUT&Tag was carried out as previously described’

(https://dx.doi.org/10.17504/protocols.io.bcuhiwt6). Briefly, nuclei were thawed and
bound to washed paramagnetic Concanavalin A (ConA) beads (Bangs Laboratories),
then incubated with primary antibody at 4°C overnight in Wash Buffer (10 mM HEPES
pH7.5, 150 mM NaCl, 0.5 mM spermidine, Roche Complete Protease Inhibitor Cocktail)
with 2mM EDTA. Bound nuclei were washed and incubated with secondary antibody for
1 hour at room temperature (RT), then washed and incubated in Wash-300 Buffer (Wash
Buffer with 300 mM NaCl) with 1:200 loaded pA-Tn5 for 1 hour at RT. Nuclei were washed

and tagmented in Wash-300 Buffer with 10 mM MgCl, for 1 hour at 37°C, then
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resuspended sequentially in 50 uyL 10 mM TAPS and 5 pL 10 mM TAPS with 0.1% SDS,
and incubated 1 hour at 58°C. The resulting suspension was mixed well with 16 pL of
0.9375% Triton X-100, then primers and 2x NEBNext Master Mix (NEB) was added for
direct amplification with the following conditions: 1) 58 °C for 5 minutes, 2) 72 °C for 5
minutes, 3) 98 °C for 30 seconds, 4) 98 "C 10 seconds, 5) 60 °C for 10 seconds, 6) Repeat
steps 4-5 14 times, 7) 72 °C for 2 minutes, 8) Hold at 8 “C. DNA from amplified product
was purified using 1.1x ratio of HighPrep PCR Cleanup System (MagBio) and
resuspended in 25 yL 10 mM Tris-HCI with 1 mM EDTA, and concentration quantified
using the TapeStation system (Agilent). For sequential and combined CUT&Tag, rather
than incubating the secondary antibody and pA-Tn5 separately, pA-TnS was pre-
incubated with an equimolar amount of secondary antibody in 50 yLWash-300 buffer at
4°C overnight. For sequential, primary antibody incubation, secondary antibody-pA-Tn5
incubation, and tagmentation were carried out sequentially for each primary-secondary-
barcoded pA-Tn5 combination, whereas for combined, all reagents were incubated
simultaneously for their respective protocol steps (i.e. primary antibodies together,
secondary antibody-pA-Tn5 complexes together), and tagmentation was carried out once

for all targets.

Conjugates for MulTI-Tag

Antibody-adapter conjugates were generated by random amino-conjugation between 100
Mg antibody purified in PBS in the absence of glycerol, BSA, and sodium azide, and 5’
aminated, barcode-containing oligonucleotides (IDT) using Oligonucleotide Conjugation

Kit (Abcam) according to manufacturer’s protocols. Before conjugation, 200 uM adapter
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oligos resuspended in 1xPBS were annealed to an equimolar amount of 200 yM
Tn5MErev (5'-[phos] CTGTCTCTTATACACATCT-3'") in 1xPBS to yield 100 uM annealed
adapters. In all cases, primary antibodies were conjugated with an estimated 10:1 molar
excess of adapter to conjugate. The sequences of adapters used are listed in

Supplementary Table 1.

Bulk MulTI-Tag protocol

For each target to be profiled in MulTl-Tag, an antibody-i5 adapter conjugate was
generated as described above, and 0.5 yg conjugate was incubated with 1 yL of ~5 yM
pA-Tn5 and 16 pmol unconjugated, TnSMErev-annealed i5 adapter of the same
sequence in minimal volume for 30 minutes-1 hour at RT to generate conjugate-
containing i5 transposomes. In parallel, a separate aliquot of 1 uL pA-Tn5 was incubated
with 32 pmol i7 adapter for 30 minutes-1 hour at RT to generate an i7 transposome.
Conjugate i5 and i7 transposomes were used in MulTl-Tag experiments within 24 hours
of assembly. After transposome assembly, 50000 nuclei were thawed and bound to
washed ConA beads, then incubated with the first conjugate transposome resuspended
in 50 yL Wash-300 Buffer plus 2 mM EDTA for 1 hour at RT or overnight at 4°C. After
incubation, the nuclei mix was washed 3 times with 200 yL Wash-300 Buffer, then
tagmented in 50 yL Wash-300 Buffer with 10 mM MgCl, for 1 hour at 37°C. After
tagmentation, buffer was removed and replaced with 200 yL Wash-300 with 5 mM EDTA
and incubated 5 minutes with rotation. The conjugate incubation and tagmentation
protocol was then repeated for the remainder of conjugates to be used, up to the point of

incubation with the final conjugate. The optimal order of conjugate tagmentation was
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ascertained empirically by observing the optimal balance of reads between targets, and
in this study were tagmented in the following order: PollIS5P-H3K27me3; H3K9me3-
H3K27me3; H3K4me1-H3K27me3; H3K36me3-H3K27me3; H3K4me2-H3K36me3-
H3K27me3; or H3K4me1-H3K36me3-H3K27me3. After incubation, the supernatant was
cleared and secondary antibodies corresponding to the species in which the primary
antibody conjugates were raised were added in 100 yL Wash Buffer and incubated for 1
hour at RT. The nuclei were then washed twice with 200 yL Wash Buffer and the i7
transposome was added in 100 uyL Wash-300 Buffer, and incubated 1 hour at RT. After
three washes with 200 yL Wash-300 Buffer, the final tagmentation is carried out by adding
50 pL Wash-300 Buffer with 10 mM MgCl> and incubating 1 hour at 37°C. After
tagmentation, the nuclei are resuspended in 10 mM TAPS, denatured in TAPS-SDS,
neutralized in Triton X-100, amplified and libraries purified as described above. All nuclei
transfers were carried out in low-bind 0.6 mL tubes (Axygen). For combined MulTI-Tag,
all antibody conjugate incubation and tagmentation steps were carried out

simultaneously.

Single cell MulTI-Tag

Single cell MulTl-Tag was carried out as described in Bulk MulTI-Tag protocol up to the
completion of the final tagmentation step, with the following modifications: 250 pL
paramagnetic Streptavidin T1 Dynabeads (Sigma-Aldrich) were washed 3 times with 1
mL 1x PBS and resuspended in 1 mL 1x PBS with 0.01% Tween-20, 240 uL of Biotin-
Wheat Germ Agglutinin (WGA) (Vector Labs) combined with 260 pyL 1x PBS was

incubated with dynabeads for 30 minutes and resuspended in 1 mL 1x PBS with 0.01%
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Tween-20 to generate WGA beads, and 100 yL of washed beads were pre-bound with 6
million nuclei. For each experiment, 15 yg H3K4me2 and H3K36me3 conjugate and 7.5
ug H3K27me3 conjugate were used, loaded into transposomes at the ratios described
above. All incubations were carried out in 200 pyL, and washes in 400 pL. After final
conjugate and secondary antibody incubation, nuclei were distributed equally across i7
transposomes containing 96 uniquely barcoded adapters (Supplementary Table 1). After
the final tagmentation step, nuclei were reaggregated into a single tube, washed twice in
100 yL 10 mM TAPS, and transferred to a cold block chilled to 0°C on ice. Supernatant
was removed and nuclei were incubated in ice cold DNase reaction mix (10 yL RQ1
DNase, (Promega), 10 uL 10x DNase buffer, 80 yL ddH20) for 10 minutes in cold block.
The reaction was stopped by adding 100 pL ice cold RQ1 DNase Stop Buffer. Nuclei were
immediately washed once in 100 yL 10mM TAPS and then resuspended in 650 pL TAPS.
Two 20-micron cell strainers (Fisher Scientific) were affixed to fresh 1.5 mL low bind
tubes, and 325 L nuclei mix was added to the top of each. Tubes were spun 10 minutes
at 300 xg to force nuclei through strainer, flowthrough was combined, and resuspended
in 640 uL 10 mM TAPS. To the final nuclei mix, 16 yL 100x DAPI and 8 L ICELL8 Second
Diluent (Takara) were added and incubated 10 minutes at RT. The entire nuclei mix was
dispensed into an ICELL8 microfluidic chip according to manufacturer’s protocols, and
SDS denaturation, Triton X-100 neutralization, and amplification were carried out in
microwells as described previously®'. After amplification, microwell contents were
reaggregated and libraries were purified with two rounds of cleanup with 1.3x HighPrep

beads and resuspended in 20 yL 10 mM Tris-HCI with 1 mM EDTA.
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Sequencing and data preprocessing

Libraries were sequenced on an lllumina HiSeq instrument with paired end 25x25 reads.
Sequencing data were aligned to the UCSC hg19 genome build using bowtie2%?, version
2.2.5, with parameters --end-to-end--very-sensitive--no-mixed--no-discordant -gq—
phred33 -1 10 -X 700. Mapped reads were converted to paired-end BED files containing
coordinates for the termini of each read pair, and then converted to bedgraph files using
bedtools genomecov with parameter —bg®3. For single cell experiments, mapped reads
were converted to paired-end CellRanger-style bed files, in which the fourth column
denotes cell barcode combination, and the fifth column denotes the number of fragment
duplicates. Raw read counts and alignment rates for all sequencing datasets presented

in this study are listed in Supplementary Table 2.

Data Analysis

Code and processed data files necessary for the analyses performed in this study are
available at Zenodo (doi.org://10.5281/zenod0.6636675). Single cell MulTI-Tag pre-
processing, feature selection, dimensionality reduction and UMAP projection were carried
out as follows: for each target, we selected a cutoff of 100 unique fragments per cell, and
cells were retained only if they met unique read count criteria for all three targets, with the
exception of the germ layer differentiation experiments in which the unique read cutoff for
H3K36me3 was relaxed in order to maximize the number of cells analyzed for
dimensionality reduction and trajectory analysis. For bulk MuLTI-Tag, peaks were called
using SEACR v1.4% with the following settings: -n norm, -m stringent, -e 0.1

(https://qithub.com/FredHutch/SEACR). For single cell MulTl-Tag, peaks were called
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from aggregate profiles from unique read count-filtered cells using SEACR v1.4 with the
following settings: -n norm, -m stringent, -e 5. Peak calls presented in this study are listed
in Supplementary Table 3. All dimensionality reduction, UMAP analysis, and clustering
was performed using Seurat v4.0.5 and Signac v1.5.0, with the exception of datasets
described in Supplementary Figure 4. Those datasets were analyzed as follows: Cell-
specific unique reads were intersected with a bed file representing 50kb windows
spanning the hg19 genome using Bedtools®® to generate bed files in which each line

contained a unique window-cell-read count instance. In R (https://www.r-project.org),

these bed files were cast into peak (rows) by cell (columns) matrices, which were filtered
for the top 40% of windows by aggregate read counts, scaled by term frequency-inverse
document frequency (TF-IDF), and log-transformed. Transformed matrices were
subjected to Singular Value Decomposition (SVD), and SVD dimensions for which the
values in the diagonal matrix ($d as output from the “svd” command in R) were greater
than 0.2% of the sum of all diagonal values were used as input to the “umap” command
from the umap library in R. For clustering analyses of K562-H1 datasets, we used k-
means clustering to define two clusters for each dataset, then calculated Normalized
Mutual Information using the “NMI” function from the “aricode” library in R, based on the
cluster and real cell type classifications for each cell. For the germ layer differentiation
experiment, we used Seurat-derived cluster annotations and considered only cells
classified as hESC, Endoderm, Ectoderm, or Mesoderm. For genic co-occurrence
analysis, fragments were mapped to genes in a window extending from 1 kb upstream of
the farthest distal annotated TSS to the annotated TES. The statistical significance of cell-

specific, target-specific fragment accumulation in genes was verified by calculating the
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probability of X fragment-gene overlaps in cell / based on a poisson distribution with a
mean p; defined by the cell-specific likelihood of a fragment overlap with any base pair in

the hg19 reference genome:

p= POiSSOTl(X = X, ui); where x = Lr*i and W = Li*fi

gene Lgenome

Where L; = median fragment size in cell /, fi= number of fragments mapping in cell i, Lgene
= length of the gene being tested, and Lgenome = length of the reference genome. All gene-
fragment overlaps considered in this study were determined to be statistically significant
at a p < 0.01 cutoff after Benjamini-Hochberg multiple testing correction. P-values
comparing fraction of reads in peaks in Supplementary Fig. 1f, target combination
proportions in single cells in Supplementary Fig. 5, normalized count enrichment in
Supplementary Fig. 6¢, normalized count enrichment in Supplementary Figure 9a-b, and
Cramer’s V in Supplementary Figure 10f were calculated using two-sided T-tests. All
underlying statistics associated with statistical comparisons presented in this study are
listed in Supplementary Table 4. Genome browser screenshots were obtained from
Integrative Genomics Viewer (IGV)%. CUT&Tag/MulTI-Tag enrichment heatmaps and

average plots were generated in DeepTools®. UMAPs, violin plots, and scatter plots were

generated using ggplot2 (https://agplot2.tidyverse.orq).
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Figure Legends

Figure 1: MulTI-Tag directly identifies user-defined chromatin targets in the same cells.
a) Schematic describing the MulTI-Tag methodology: 1) Antibody-oligonucleotide
conjugates are used to physically associate forward-adapter barcodes with targets, and
are loaded directly into pA-Tn5 transposomes for sequential binding and tagmentation; 2)
pA-Tn5 loaded exclusively with reverse adapters are used for a secondary CUT&Tag step
to efficiently introduce the reverse adapter to conjugate-bound loci; 3) Target-specific
profiles are distinguished by barcode identity in sequencing. b) Genome browser
screenshot showing individual CUT&Tag profiles for H3K27me3 (first row) and RNA
PollIS5P (second) in comparison with MulTI-Tag profiles for the same targets probed
individually in different cells (third and fourth rows) or sequentially in the same cells (fifth

and sixth). c) Heatmaps describing the enrichment of H3K27me3 (red) or RNA PollIS5P
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(blue) signal from sequential MulTI-Tag profiles at CUT&Tag-defined H3K27me3 peaks
(left) or RNA PollIS5P peaks (right). d) Genome browser screenshot showing H3K27me3
(red), H3K4me2 (purple), and H3K36me3 (teal) MulTI-Tag signal from experiments in H1
hESCs using an individual antibody (rows 1, 3, and 5) or all three antibodies in sequence
(rows 2, 4, and 6). e) Normalized CUT&Tag (light colors) and MulTI-Tag (dark colors)

enrichment of H3K27me3, H3K4me2, and H3K36me3 across genes in H1 hESCs.

Figure 2: MulTIl-Tag in single cells. a) Schematic describing single cell MulTl-Tag
experiments. H1 hESCs (fuschia) and K562 cells (gold) were profiled separately or in a
mixture of the two cell types in bulk, then cells were dispensed into nanowells on a Takara
ICELL8 microfluidic device for combinatorial barcoding via amplification. b) Genome
browser screenshot showing aggregated single cell MulTI-Tag data (rows 2, 4, 6, 8) in
comparison with ENCODE ChlP-seq data (rows 1, 3, 5, 7) profiling H3K27me3 (rows 1,
2, 5, 6) and H3K36me3 (rows 3, 4, 7, 8) in K562 (rows 1-4) and H1 (rows 5-8) cells. All
scMulTI-Tag data is from cells co-profiled with H3K27me3 and H3K36me3. c) Connected
UMAP plots for single cell MulTI-Tag data from H1 and K562 cells. Projections based on
H3K27me3 (left), H3K36me3 (right), or a weighted nearest neighbor (WNN) integration
of H3K27me3 and H3K36me3 data (center) are shown. Normalized mutual information
(NMI) of cell type cluster accuracy is denoted for each projection. Lines are connected
between points that represent the same single cell in different projections. d) WNN UMAP
projections with MulTIl-Tag enrichment scores plotted for POLR3E (tope left), HOXD3 (top

right), HOXB3 (bottom left), and SALL4 (bottom right). The balance of enrichment

32


https://doi.org/10.1101/2021.07.08.451691
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451691; this version posted June 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

between H3K36me3 and H3K27me3 in each cell is denoted by color, and the total

normalized counts in each cell is denoted by the transparency shading.

Figure 3: Coordinate multifactorial analysis in the same cells using MulTl-Tag. a)
Schematic describing three-antibody MulTI-Tag experiment. b) Connected UMAP plots
for single cell MulTl-Tag data from H1 and K562 cells. Projections based on H3K27me3
(top), H3K4me2 (left), H3K36me3 (right), or a weighted nearest neighbor (WNN)
integration of H3K27me3 and H3K36me3 data (center) are shown. Lines are connected
between points that represent the same single cell in different projections. c) Violin plots
describing the distribution of the proportions of MulTl-Tag H3K27me3 (red), H3K4me2
(purple), or H3K36me3 (teal) unique reads out of total unique reads in individual H1 (left)
or K562 (right) cells. d) Schematic describing coordinated multifactorial analysis strategy
for MulTl-Tag. Genes in individual cells are analyzed for the enrichment of all MulTI-tag
targets, and gene-cell target combinations are mapped onto a matrix for clustering and
further analysis. e) Top: Heatmap describing co-occurrence of MulTl-tag targets in 6
genes of interest in each of 373 H1 cells and 372 K562 cells. The balance of enrichment
between H3K4me2/H3K36me3 and H3K27me3 in each cell is denoted by color, and the
total normalized counts in each cell is denoted by the transparency shading. Bottom:
Instances of “bivalent” enrichment of H3K27me3 and H3K4me2 or H3K36me3 in the
same gene in the same cell are highlighted, with color reflecting normalized counts. f)
WNN UMAP projection with cells colored by the sum of all counts occurring in a “bivalent”

context (i.e. H3K27me3 and H3K4me2/H3K36me3 enrichment in the same gene). g)
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Violin plots describing calculated Cramer’s V of Association between target combinations

listed at bottom in individual H1 (fuschia) or K562 (gold) cells.

Figure 4: MulTI-Tag profiling of continuous developmental trajectories. a) Schematic
describing differentiation of H1 hESCs (black) into three germ layers, Ectoderm (blue
shading), Endoderm (red shading), and Mesoderm (green shading), followed by MulTI-
Tag profiling of H3K27me3, H3K4me1, and H3K36me3. b) Connected UMAP plots for
single cell MulTI-Tag data from H1 hESCs differentiated to three germ layers. Projections
based on H3K27me3 (left), H3K36me3 (right), or a weighted nearest neighbor (WNN)
integration of H3K27me3 and H3K36me3 data (center) are shown. Lines are connected
between points that represent the same single cell in different projections. c) Violin plot
showing the distribution of inferred pseudotimes derived from a weighted nearest
neighbor integration of H3K27me3 and H3K4me1 data for each cell type profiled. Number
of cells profiled for each cell type is denoted at left. d) WNN UMAP projection colored by
% H3K27me3 as a proportion of total unique reads in each single cell. User-defined cell
type clusters are denoted by dashed lines, and computationally-derived pseudotemporal
trajectories are denoted by solid lines and user-classified by color. €) Heatmap describing
co-occurrence of MulTl-tag targets in selected genes of interest whose RNA-seq
expression increases (top) or decreases (bottom) during differentiation from hESC to
mesoderm in 4754 single cells classified as hESC or different stages of differentiated
mesoderm. Heatmaps are sorted left-to-right by increasing pseudotime in the
mesendoderm/mesoderm  trajectory. The balance of enrichment between

H3K4me1/H3K36me3 and H3K27me3 in each cell is denoted by color, and the total
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normalized counts in each cell is denoted by the transparency shading. f) hESCs plotted
to the WNN UMAP projection and colored by predicted H3K27me3% as a proportion of
total unique reads (methods). hESCs adjacent to the ectoderm trajectory or the
mesendoderm trajectory are denoted by arrows. g) Heatmaps denoting H3K27me3
enrichment in “high-H3K27me3” and “low-H3K27me3” hESCs (left), Log fold change in
enrichment (center), and -log10(p-value) of differential enrichment (right) for select genes
colored by their function in hESCs (black), mesendoderm (grey), endoderm (red),

mesoderm (green), or ectoderm (blue).
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