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Abstract

Kinase inhibitors are one of the largest classes of FDA-approved drugs and are major targets in oncology. 1
Although kinase inhibitors have played an important role in improving cancer outcomes, major 2
challenges still exist, including the development of resistance and failure to respond to treatments. 3
Improvements for tumor profiling of kinase activity would be an important step in improving treatment 4
outcomes and identifying effective kinase targets. Here, we present a graph- and statistics-based 5

algorithm, called KSTAR, which harnesses the phosphoproteomic profiling of human cells and tissues by
predicting kinase activity profiles from the observed phosphorylation of kinase substrates. The algorithm 7
is based on the hypothesis that the more active a kinase is, the more of its substrates will be observed in s

a phosphoproteomic experiment. This method is error- and bias-aware in its approach, overcoming 0
challenges presented by the variability of phosphoproteomic pipelines, limited information about 10
kinase-substrate relationships, and limitations of global kinase-substrate predictions, such as training set
bias and high overlap between predicted kinase networks. We demonstrate that the predicted kinase 12
activities: 1) reproduce physiologically-relevant expectations and generates novel hypotheses within 13
cell-specific experiments, 2) improve the ability to compare phosphoproteomic samples on the same 14
tissues from different labs, and 3) identify tissue-specific kinase profiles. Global benchmarking and 15
comparison to other algorithms demonstrates that KSTAR is particularly superior for predicting tyrosine 1
kinase activities and, given its focus on utilizing more of the available phosphoproteomic data, 17
significantly less sensitive to study bias. Finally, we apply the approach to complex human tissue 18
biopsies in breast cancer, where we find that KSTAR activity predictions complement current clinical 19

standards for identifying HER2-status — KSTAR can identify clinical false positives, patients who will 2
fail to respond to inhibitor therapy, and clinically defined HER2-negative patients that might benefit 2
from HER2-targeted therapy. KSTAR will be useful for both basic biological understanding of signaling =
networks and for improving clinical outcomes through improved clinical trial design, identification of new 2

and/or combination therapies, and for identifying the failure to respond to targeted kinase therapies. 2
Introduction 2
Kinases make up the largest fraction of FDA-approved drugs for oncology [25], a reflection of their 2
importance in oncogenesis and cancer progression. These drugs are also one of the most prevalent 27

examples of precision medicine. For example, patients with BCR-ABL leukemias, HER2-overexpressing
breast cancers, or EGFR-driven lung cancers benefit immensely from kinase-targeted therapies (often as 2
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adjuvants to chemotherapy, radiation, and/or surgery). Unfortunately, the selection and success of 30
kinase inhibitors is often hampered by development of resistance mutations [3,67], failure to respond to =
treatment [49], and a limited set of current targets [25] — most new molecular entities target kinases for =
which inhibitors already exist. Hence, there is a need in the field of oncology to identify whether a patient 33
might benefit from a kinase-inhibitor therapy and which kinase target(s) would be most beneficial. 34

In recent years, due to advances in proteomics, large-scale monitoring of protein phosphorylation is 35
closer to being used within clinical profiling of tumor biopsies [23,33,34,49,69]. Since phosphorylation is 3
a direct consequence of active kinases, or inactive phosphatases, this measurement might hold the key to
better precision medicine. However, generating kinase activities from this data requires overcoming 38
several challenges, including: 1) data sparsity or missing data — in shotgun phosphoproteomics (i.e. 39
discovery-based approaches) lack of detection of a phosphorylation site may not be evidence that it is not
present in the sample and although CPTAC approaches often using a reference standard, only 5 to 15%  «

of all phosphorylation sites are common across patient cohorts, 2) there is an extreme paucity of data a2
regarding the direct connection between phosphorylation sites and their kinases (only 5% of 3
phosphorylation sites are annotated with a kinase) [39], and 3) challenges in relating quantitative data
available from phosphoproteomics experiments to kinase catalytic activities. Quantification is 15
particularly challenging — unless one uses a known spike-in for absolute quantification for every a6
phosphopeptide of issue, all quantification (label and label-free) is relative — i.e. it is not possible to a

understand differences in quantities between peptides, only differences of a peptide between conditions. 4
This is due in large part to peptide-specific sample losses and ionization [53]. For example, if there are 4

two kinases, each with a different substrate and one substrate changes from 1fmol to 2fmol, but the 50
second substrate changes from 8pmol to 16pmol, there is a 4,000-fold difference in catalytic activity 51
between the two kinases, but relative quantification interprets both of those as the same (2-fold 52
different). Despite these challenges, phosphorylation is still more closely connected to kinase activity 53
than commonly used proxies, such as mRNA, which rarely correlates with protein expression [11] or 54
kinase activation loop phosphorylation, since kinase activity is regulated by a myriad of complex 55
mechanisms [32,35,38,41,56,66]. 56

Although there has been excellent progress in algorithm development to convert phosphoproteomic 57
data into scores, rankings, or activity values for kinases, these algorithms often suffer from the major 58
issues of phosphoproteomics (see S1 Table for a summary). All but one algorithm we assessed, 59
KEA3 [29], depends heavily on the use of quantification of phosphorylation sites in a calculation for 60

activity, via paired samples with relative quantification (PTM-SEA [27], KSEA [9], IKAP [36]), single o1
sample normalized intensities (KARP [60]), or spectral counts (INKA [5]), despite the limitation that 62

these values are not comparable across peptides or indicative of concentrations or substrate amounts. 63
Most algorithms rely on sparse kinases-substrate information, most commonly from PhosphoSitePlus 64
(KARP, IKAP, KSEA), where 95% of the phosphoproteome is unlabeled (no known kinase interaction). s
This results in the absence of kinase information for > 80% of sites identified in a typical 66
phosphoproteomic experiment (S1 Figure). For those algorithms that turn to global kinase-substrate 67
predictions, specifically NetworKIN [21], to expand the number of useable phosphorylation sites in an 68
experiment (INKA and KSEA), NetworKIN predictions are used by applying a threshold to the weighted
graph (edges indicating likelihood of a kinase-substrate interaction), where only edges above a certain 70
score are kept. However, we recently showed that these thresholded graphs are highly problematic [65] 7
and is likely the reason a systematic evaluation showed that NetworKIN-based annotations in KSEA 72
performed worse than literature-based annotations [19]. 73

In this work, we were explicitly seeking to create an algorithm that would be useful for patient care 7
and: 1) can be used without requiring pooled or comparative samples (single sample), 2) avoids 7
dependencies on the highly problematic nature of mass spectrometry-based quantification, 3) utilizes 7
more of the phosphorylation data, but handles the issues with kinase-substrate predictions, and 4) avoids =
proxies of activity, like activation loop phosphorylation. Here, we present a novel algorithm that uses 78
statistical and graph-theoretic approaches to infer the likely kinase activities from large-scale 79

phosphoproteomic data. The underlying hypothesis is based on the action of kinases — given increasing s
activity, there will be an increasing number of observed substrates from a kinase’s network. Ultimately s
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our algorithm’s kinase activity score is a reflection of “net kinase activity”, since substrate 8
phosphorylation is a reflection of the balance between kinase and phosphatase activity. In this work, we s
explain the details of our algorithmic approach and explore experiments to test whether the inferred 84

kinase score changes with kinase activity. We demonstrate that we can predict: 1) increases in expected s
kinases as a result of network stimulation, 2) decreases in expected kinase activities as a result of kinase s
inhibition, and 3) tissue-specific kinase activity profiles, which are significantly more robust that the 87
phosphoproteomic profiles, even across samples collected in different labs on different proteomic pipelines. s
Finally, we apply KSTAR to breast cancer biopsy-derived phosphoproteomic data and find that kinase s
activity profiles predicted by the algorithm can help identify misclassified HER2-positive breast cancer  «
patients and identify clinically diagnosed HER2-negative patients that might respond to HER2-targeted o
therapy. Based on these experiments and comparison to existing algorithms, KSTAR is a first-in-class o
algorithm that can utilize phosphorylation sites observed from single or multisample experiments and 03
convert that to quantifiable, physiologically relevant, and interpretable insight into kinase activity with o
special strengths in accuracy in tyrosine kinase prediction and increased sensitivity to smaller numbers of o
phosphorylation sites and decreased reliance on a small subest of well-studied sites. %

Results or

The KSTAR algorithm (Fig. 1) is based on the hypothesis that the more active a kinase is, the more of
its substrates will be observed in a phosphoproteomic experiment. At its core, KSTAR is an algorithm o
that takes, as input, a set of phosphorylation sites observed in a mass spectrometry experiment, maps 10

them onto global kinase substrate prediction graphs of KinPred [65], and converts the experimental 101
input into a statistically robust KSTAR ‘score’ for each kinase, which increases with increasing 102
representation of substrates from that kinase’s network. When an experiment contains multiple 103
conditions with relative quantification across all sites, the reported abundances are converted to binary 1o
evidence using a threshold relevant to the biological problem in question (S2 Table). We found that 105
KSTAR predictions are fairly robust to changes in the threshold used as inclusion criteria for 106
phosphorylation sites of an experiment(S1 Figure). 107
KSTAR algorithm 108
The first key development of KSTAR was to avoid the use of annotations alone, since so few 109
phosphorylation sites are annotated, and to improve the usability of kinase-substrate predictions. As 110
published and traditionally used (thresholded by removing edges below a cutoff score), predicted m
kinase-substrate networks suffer from the following issues: 1) the exclusion of a large number of 112
phosphorylation sites from the human phosphoproteome, 2) high degrees of overlap between kinases, 113

leading to a lack of discriminability for algorithms relying on these networks, and 3) high centrality of s
well-studied kinases and substrates (the more a substrate is annotated, the more kinases it is connected s

to) [65]. To overcome the challenges of prediction-based networks, we developed a “heuristic pruning” 116
approach (Fig. 1) to create many possible, alternate representations of kinase-substrate relationships 7
from global kinase-substrate prediction algorithms. In this work, all results are generated using the 118
kinase-substrate graph of NetworKIN [21], with serine/threonine and tyrosine graphs being treated 119
independently, since they are non-overlapping. 120

To achieve the objectives of pruning, we probabilistically select edges from a dense graph including all 1z
kinase-substrate predictions of the human proteome based on edge weights, where higher edge weights 1

are more likely to be selected. This continues until all kinases are attached to a fixed number of 123
substrates. The probabilistic selection introduces heuristic effects — creating different versions of output 12
graphs each time the algorithm is run. To overcome the issues that happen when selecting only high 125
edge weights in the graph (i.e. as done by thresholding), we apply constraints on the selection of edges to 12
maintain specific properties of the output network. These constraints are: 1) the distribution of 127
substrate “study bias” — as defined by the number of compendia substrates are documented in [65] —is  12s
the same for all kinases based on the distribution of the entire phosphoproteome in order to reduce 120
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Figure 1. Overview of KSTAR algorithm. First, we heuristically prune dense and highly overlapping
weighted kinase-substrate prediction graphs from NetworKIN [21] into many sparse, binary graphs.
Statistical enrichment is calculated for an experiment that has a defined set of phosphorylation sites
for every kinase across all networks using a hypergeometric distribution. We generate and calculate
enrichment in 150 random experiments using the same approach. Next, we use the Mann-Whitney U
test to measure the likelihood that the enrichment p-values in the real experiment are more significant
than the random experiments, giving us a final p-value, which accounts for the underlying enrichment of
substrates in a network, aggregates that information across the different network configurations, and
controls for the kinase- and experiment-specific behavior of enrichment that occurs by random chance.
We measure the false positive rate by measuring the distribution-based test for a random experiment
against the remaining 149 random experiments, repeating this for 100 times. Finally, the numerical
KSTAR “score” (the -logl0 transformation of the Mann Whitney U-test) is presented in graphical format
where the dot size is larger when there is more evidence phosphorylation sites are coordinately sampled
from a kinase network. The FPR is indicated by “Significance” of having less than a specific empirical
FPR.

kinase- and experiment-specific false positive rates (S2 Figure), 2) edge selection is impossible once a 130
substrate and/or kinase hits a maximum target in order to avoid the emergence of “hub substrates” 131
and/or “hub kinases” and ensure each substrate only provides evidence for its most likely kinases, and 3) 12
all kinases have the same number of edges in the final network to ensure that kinases are not isolated 133
from the network, due to having only low probability edges. The example graphs shown in Fig. 1 depicts 1.
the success of this approach for reducing homologous kinase overlap — on average, KSTAR networks 135
reduce the overlap of evidence between EGFR and ERBB2 for sites observed in an experiment from 80% 13
in a thresholded network to 18% overlap. We have provided an extended description of the problems 137
addressed by the prune procedure as well as pseudo-code for the generation of KSTAR networks in 138
Supplementary Methods. Final pruned networks are then cast into unweighted graphs (i.e. binary 130

graphs), which, relative to PhosphoSitePlus annotations and a thresholded NetworKIN graph, include 1o
more unique substrates, has lower overlap of evidence between kinases, and has better network coverage 1a

of experimentally identified sites (S1 Figure). 1402

The first statistical test in KSTAR measures overrepresentation of substrates in each kinase network, 14
controlling for the likelihood that the observation happened by random chance. Since we use binary 144
evidence (a substrate was observed) with binary networks, we can use a well-defined theoretical 145
probability function to estimate this overrepresentation — the hypergeometric distribution, where we 146

calculate the probability of having observed k or more substrates of a kinase in an experimental dataset 1
with n phosphorylation sites, when the full graph (all sites in the human phosphoproteome) has N total 1
phosphosites and a kinase has K total substrates. This approach has the benefit of scaling with the size 10
of the dataset and the distribution of edges in the graph. The output of this calculation is a p-value for s
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each graph (i.e. a set of 50 p-values for every kinase). 151
We next wished to control for the variability of the resulting hypergeometric p-values across the 152
different network configurations and the likelihood of making the same observations in a random 153

experiment exhibiting similar properties as the experiment under consideration. To do this, we create 154
150 random experiments, where we randomly draw the same number of phosphorylation sites as the real 1
experiment from the background phosphoproteome, such that the distribution of substrate study bias is 1
the same as the real experiment. For each random experiment, we calculate enrichment in each kinase 1
network as we did for the real experiment, producing a “random” distribution of p-values. This random s
distribution can then be compared to the real distribution using the Mann Whitney U-test, a 159
non-parametric, distribution-based test which estimates the probability that the ranked p-values of the 160
real experiment are more significant than those of the random experiments. Fig. 1 shows examples of 161
distributions that arise from this process. For EGFR, Fig. 1 indicates that some random networks with e
real data give low -logl0(p-values), yet the preponderance of evidence across all networks is more 163
significant than what was observed in the random experiments, resulting in a small U-test p-value and a 1
large KSTAR ‘score’ (the -logl0(MW U-test p-value)). In contrast, it is clear that the p-values observed s
in SRC networks of the real experiment are no more significant than what occurs in random experiments, s
resulting in a small KSTAR score. Finally, we measure a false positive rate for the observed Mann 167
Whitney p-value by measuring how often that p-value or more significant is observed in an empirical null 168
model (repeatedly calculating the Mann Whitney p-values for treating a random experiment as the real 160

experiment and comparing it to the remaining random experiments). The KSTAR score must be 170
interpreted with the false positive rate (FPR) as we have observed some experiments result in large 171
kinase-specific KSTAR scores that occur by random chance, due to the particular composition of the 172
experiment. We detail the process by which we arrived at this approach to control and measure for 173

kinase- and experiment-specific false positive rates in S2 Figure, which also shows before these controls 17
were added we saw very high false positive rates for kinases that demonstrate high study bias (e.g. 100% s
FPR for FYN, LCK, and HCK). Hence, the final KSTAR score is a statistically powered value that 176

ultimately reflects the fundamental measurement of the proposed hypothesis — an activity score that 177
increases when more evidence is observed across many different possible network architectures and is 178
more significant than what is observed by random chance alone. 179
KSTAR correctly infers expected tissue-specific kinases, kinase activation, 160
and kinase inhibition 151

We wished to understand if KSTAR scores correlate with kinase activities and so we explored KSTAR 1

predictions in-depth for specific physiological test cases of kinase activation and inhibition. Here, we 183
summarize a set of key kinase predictions from KSTAR, with full activity predictions and their false 184
positive rates presented in S3 Figure. We find that KSTAR predicts expected activity changes in 185
response to either activation or inhibition and introduces interesting new hypotheses. We also found 186
from these experiments that using the base kinase-substrate prediction network from NetworKIN [21] 187

results in predictions consistent with physiological expectation, but using kinase-substrate networks from 1
other prediction algorithms (GPS [58] and PhosphoPICK [42]), did not result in physiologically relevant  1s
hypotheses. For example, PhosphoPICK-based networks failed to show ABL activity in BCR-ABL 190
driven cancers and GPS failed to show HER2-activity in any breast cancer sample, where HER2-activity 1
is a driving oncogene in many of these samples. Instead, GPS-based networks suggested that ERBB2 192

activity increases in Jurkat cells in response to TCR, activation, inconsistent with tissue-specific 103
expectations. Therefore, we have used NetworKIN as the foundation for KSTAR. 194
Activation of kinases in diverse cell models 195

Growth factor stimulation in epithelial cells: We used two phosphoproteomic studies of a human 10

mammary epithelial cell line (184A1) stimulated with EGF to explore whether KSTAR accurately 197
predicts the onset of EGFR activation and other related EGFR-network kinases. One of the studies 108
additionally includes a HER2-overexpressing model of 184A1 cells (24H cells, expressing 600,000 vs. 199
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20,000 copies of HER2/ERBB2) [64] and measured response to EGF- and HRG-stimulation, where EGF 20

drives EGFR:ERBB2 dimers and HRG drives ERBB2:ERBB3 dimers. Despite the different 201
phosphoproteomic pipelines used in the two studies, the KSTAR predictions are extremely similar for 202
parental 184A1 cells stimulated with EGF (S3 Figure and Fig. 2A), suggesting no basal EGFR or 203
ERBB2 activity exists after serum starvation and is followed by rapid onset and peak activation between 20
4 and 10 minutes post-stimulation. Notably, cytosolic kinases that are not expected to be in the 205

epithelial lineage are not predicted to be active in any condition (S3 Figure). In the HER2-perturbation 20
experiment there are predictions of both dynamics and activity differences between cell lines and growth 20
factors (Fig 2A), consistent with the expected biology of the cells. For example, there is basal EGFR 208
activity in HER2-overexpressing cells, slower dynamics of ERBB2 activation by HRG, and lower activity 20

of both receptors from HRG-treatment — all of which are consistent with the effects of 210
HER2-overexpression, the increased migration of 24H cells in the absence of stimulation, and the am
maximal migration upon EGF-addition [64]. Finally, and somewhat surprisingly, we see maximal 212
statistical significance of ERBB2 in the EGF stimulation of both cell lines, with some indication that 213
HER2-overexpression sustains that activity longer in the 24H cells. The failure to see additional 214

increases in ERBB2 activity in HER2-overexpressing cells may be a result of our statistical limit, as no s
additional gains can be seen beyond this amount of evidence that is already present in the parental cells 26
stimulated by EGF. Taken together, the specific kinases predicted active, their associated scores, and 217
their patterns of activation suggest that KSTAR predictions are capable of reproducing expected biology 2
and that the use of evidence in experiments alone (i.e. the removal of quantitative fold changes) is useful 21

for making comparative hypotheses between conditions. 20
TCR activation of Jurkat cells: To explore a cell lineage that is expected to have a distinctly 2
different fingerprint of kinase activities than epithelial cells, we turned to datasets available in 2

hematopoietic lineages, including several datasets in K562 (chronic myeloid leukemia) (S5 Figure) and 2
Jurkat cells (S3 Figure). The Jurkat cell experiment by Chylek et al. [10] captured the fast dynamics of 22
TCR activation at 5, 15, 30 and 60 seconds after stimulation. Importantly, the KSTAR predictions result 2
in robust tissue-specific signaling expectations (Fig. 2B), predicting fast and robust (statistically 26
saturated) activity of cytosolic kinases downstream of TCR, including LCK, FYN, HCK, BTK, and ITK 2
(an important observation — our approach to controlling for high study bias of LCK, FYN, and HCK did s
not prevent them from giving robust activity values in a physiologically-relevant system). Slower to 229
reach maximal detectable activity include YES1, BLK, and FGR. Additional hypotheses suggested by 230
KSTAR predictions include a slower (30-second) onset of the RTK activity of VEGFR2 and NTRKI1. 231

Most importantly, these tissue-specific kinases were not predicted to be active in the epithelial 23
experiments and epidermal growth factor-specific kinases are not predicted to be active in Jurkat/TCR 23
signaling. Hence, KSTAR predictions are consistent with tissue- and signaling-specific expectations. 234
KSTAR correctly predicts inhibition of tyrosine and serine/threonine kinases 235

BCR-ABL inhibition by dasatinib: The oncogenic BCR-ABL fusion protein drives some chronic 236

myeloid leukemias (CML) and represents an important target for treatment. Unlike many kinase 237
inhibitors, inhibition of BCR-ABL can initiate cell death pathways within the first hour of treatment. 238
This occurs even though ABL activity has been shown to be recovered within 4-8 hours after drug 239

washout, depending on the study [2,20,50,52]. To validate the predicted tyrosine kinase activities from 240
KSTAR, we compared the kinase activity profiles of the CML cell line K562 in response to treatment 2
with the ABL-inhibitor dasatinib from a study by Asmussen et al., who profiled phosphopeptide 242
abundance before treatment, at the time of drug washout (EOE), and 3 and 6 hours post drug washout 23
(HDP3 and HDPG, respectively) [2]. KSTAR predictions for ABL1 and ABL2 activity show a decrease 2
following treatment, although the activity levels remain significant across all time points (Fig. 2C). Also, s

as expected, this activity is partially recovered after drug washout and the dynamic patterns of ABL 246
kinases are mirrored in the Src family kinases (SFKs) BLK, HCK, and FGR, known alternate targets of 2«
dasatinib [67]. Finally, we note that there is robust down-regulation of a number of receptor tyrosine 218

kinases, which is consistent with the conclusions of the original study [2] and others [20], which suggests 2
dasatinib treatment in K562 cells is dependent upon on the elimination of ABL-GF-R interactions more s
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Figure 2. KSTAR applied to diverse cell models of kinase activation and inhibition. Full
KSTAR results for data in this figure available in S3 Figure). Panel titles give the reference for the
publication study of the phosphoproteomic data. All KSTAR predictions use the same legend for score

size and significance as given above panel A, (caption continued on next page)
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Figure 2. A) Predicted activation patterns of HMEC cell lines (P for parental 184A1 and 24H for HER2
overexpressing 184A1) in response to EGF and HRG stimulation. B) Predicted activation patterns of
TCR stimulation in Jurkat cells shows early and robust activation of TCR-specific kinases (this figure is
in seconds). C) Predicted kinase patterns in response to inhibition of BCR-ABL inhibition by dasatinib
in K562 cells with a detailed plot of significance changes for the ABL family kinases demonstrating a
decrease, but continued activity of the oncogene. Kinase activity decreases in receptor tyrosine kinases
(RTKs) correspond with findings of the original publication [2] as do changes in the off-target interactions
with Src family kinases (SFKs). D) AKT inhibition by five inhibitors, all competitive ATP inhibitors,
except MK-2206 an allosteric inhibitor of AKT demonstrate robust inhibition of all AKT homologs
and interesting increases in CSNK2A1. E) Vemurafenib treatment, targeting the BRAFY6%9® mutation
found in Colo205 colorectal cancer cells, but not the HCT116 cell line, demonstrates a decrease in MAPK
activity specific to BRAF mutation, although still statistically significant MAPK activity.

than the elimination of ABL activity. 251

AKT inhibition: To this point, we have demonstrated the utility of KSTAR for predicting tyrosine 25
kinase activities. To validate serine/threonine kinase predictions, we profiled the response of the breast 23
cancer cell BT-474 to five different clinically relevant AKT inhibitors (Fig. 2D), based on data obtained 2
from Wiechmann et al. [59]. BT-474 is a cell line that overexpresses ERBB2, which commonly leads to s
increased AKT activity. Upon applying KSTAR to this dataset, a complete elimination of AKT activity s
was predicted across all five inhibitors, suggesting that each inhibitor is highly effective at targeting 257
AKT. While AKT3 was not identified by chemical proteomics in Wiechmann et al., our results suggests 2ss
that AKT3 is active basally in BT-474 cells and that AKT3 activity is equally affected by treatment 250
with these AKT inhibitors. We validated that the coordinated AKT1/2/3 predictions are not due to 260

indiscriminate kinase networks — no AKT kinase shared more than 20% of substrates in KSTAR 261
networks with any other AKT kinase. Hence, the basal activity predictions and predicted decrease of 262
AKT family kinases in response to drug comes from independent networks. 263

Fig. 2D highlights two interesting predictions from KSTAR. First, AKT inhibition appears to 264

increase CSNK2A1 (Casein Kinase 2) activity in four of the five drugs. There is evidence that there is 2
complex interconnections between CSNK2A1 and AKT kinases [47] and these predictions suggest that 2
there might be an unintended increase in casein kinase activity as a result of AKT inhibition. Second, we 27
observed interesting patterns in PRKACA /B, which shows decreasing activity with the ATP competitive s
inhibitors, but not the PH-domain binding allosteric inhibitor MK-2206. Hence, these predictions 269
suggest the competitive ATP inhibitors bind to PRKACA/B kinases, and the greatest decreases 270
predicted by KSTAR in PRKACA/B (GSK2110183, GSK690693, and AZD5363) were shown to bind o
PRKACA/B by chemoproteomics [59]. Hence, KSTAR predictions accurately predict AKT inhibition  on

and help identify cross-talk at the network level (CK2) and the inhibitor level (PRKACA/B). o

Vemurafenib inhibition of BRAFY6%0F: While the previous studies help to demonstrate how 2
KSTAR effectively predicts changes to kinases directly impacted by stimulation or inhibition, KSTAR is 25
currently limited by the kinases that are present in NetworKIN and some commonly studied 276
cancer-specific kinases do not currently have predictions, such as AXL, DDR2, and RAF. In order to 217
determine whether KSTAR is still applicable in cases where direct kinase targets may be absent from 278
predictions, we profiled the response of colorectal cancer cell lines to RAF inhibition by vemurafenib, 219

using a time-resolved dataset generated by Kubiniok et al [28]. Vemurafenib is commonly used to target s
cells that harbor a BRAFY60F mutation, such as the colorectal cancer cell line Colo205. However, it has s

achieved limited clinical utility, in part, because tumors that contain a RAS mutation or overactive 282
RTKSs often see an adverse response where the MAP-ERK pathway is activated rather than 283
inhibited [18,28]. HCT116 cell line harbors a mutation in KRAS, and provides an example of a cancer 2
cell that exhibits this paradoxical response and was also treated in the study by Kubiniok et al. 285

KSTAR predicts a clear decrease in MAPK1/3 activity over time in Colo205 cells, and a small 286

increase in ERK activity is observed in HCT116, consistent with the paradoxical effect of RAS mutation s
in HCT116 (Fig. 2E). However, the basal activity values limits the ability to observe significant increases — oss
in activity due to the statistical limit. The increase in activity becomes more apparent when the kinase 28
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Figure 3. Comparing accuracy of KSTAR to other available kinase activity algorithms.
KSTAR and four other publicly available kinase activity algorithms (KSEA, PTM-SEA, KARP, KEA3)
were applied to a suite of inhibition and stimulation datasets. Accuracy measures expected activity changes
as defined by Py — the fraction of conditions for which a perturbed kinase was found differentially active,
either based on activity rank (in the top 10 kinases) or significance (FDR <= 0.05), which is not available
(NA) for KARP and KEA3. A) Global accuracy of each algorithm for tyrosine or serine/threonine kinases.
B) Kinase-specific accuracy of each kinase activity algorithm, separated based on accuracy metric (rank,
upper left triangle or significance, lower right triangle) and kinase type (Tyrosine, Y or Serine/Threonine,
ST). The heatmaps only include kinases for which all algorithms had available predictions (full heatmaps
in S4 Figure).

activity profiles are transformed via quantile normalization across samples (S3 Figure). Importantly, 200
pre-treatment MAPK1/3 activity levels are comparable between HCT116 and Colo205, indicating that  2a
differences are a result of treatment and not basal activity. While the ultimate goal might be to expand 20
NetworKIN and KSTAR to include these kinases in predictions, these results indicate that KSTAR is 203
able accurately predict kinase activity profiles affected by missing kinases. 204

Global accuracy benchmarking and comparison to other algorithms 205

Having observed that KSTAR activity scores are consistent with the detailed physiology of test cases, we 20
next sought to globally compare KSTAR predictions to other available algorithms. Global benchmarking 207
is difficult for three key reasons: 1) each algorithm is dependent on varying types of information such as 2
relative intensities [60], differential fold-changes [8,27], or gene lists [29], 2) each algorithm produces very  2e

different types of outputs from ranks, to scores, or scores with accompanying significance values for a 300
algorithm-specific number of kinases (see S4 Figure), and 3) encoding globally positive and negative 301
kinase sets for a given stimulation or inhibition condition is not necessarily biologically relevant or 302

known, as kinase networks are inherently interconnected. For example, in the case of BCR-ABL driven 30
CML cells, ABL inhibition is therapeutically effective by reducing RTK activation rather than causing a 30
significant reduction in ABL activity. However, despite these complications, global benchmarking allows s
for a greater understanding of the general accuracy and best use cases of algorithms across a broad range 0
of conditions and kinases. We adopted a similar benchmarking approach as Yilmaz et al. [68], in which s
we defined a hit as any instance in which a kinase expected to be perturbed was identified as 308
differentially active, and a miss as any instance when the expected kinase is not identified as differentially 300
active. We compiled multiple publicly available datasets representing a total of 15 studies with 51 total w0
conditions allowing for the testing of 38 different serine/threonine and 19 different tyrosine kinases (S2  su
Table). To be able to measure performance for the vast majority of algorithms, we used a rank-based 312
statistic — considering a kinase as a hit if it appears in the top ten most affected kinases. Additionally, a3
for those algorithms that provide a binary active/inactive call based on statistical significance, we also a1
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measured a hit as whether the kinase was correctly considered as activated or inactivated in a differential s
condition. To avoid over/underestimation of accuracy in benchmarking as a result of multiple studies of s
the same kinase, we first measured the average accuracy for each tested kinase (heatmaps in Fig. 3B and  a
S4 Figure), then recorded the global accuracy as the average accuracy across all kinases (see methods for s

details). We compared KSTAR to the following four available algorithms that were compatible with 310
benchmarking studies: KSEA [8], KARP [60], PTM-SEA [27], and KEA3 [29]. 320

Fig. 3 highlights the average prediction accuracy for tyrosine and serine/threonine networks, both 321
globally and for individual kinases. These results demonstrate that KSTAR consistently recovered 322
tyrosine kinases expected to be perturbed. This performance is especially notable in cases where a 323

binary call for activity is necessary, where KSTAR outperforms the next best algorithm by almost 50% s
and only fails for one kinase condition common to all algorithms (ABL). It is also notable that KARP, s
the only other algorithm that takes deliberate steps to account for study bias in kinase-substrate 326
networks, exhibited the second best performance for tyrosine kinases based on rank (Fig. 3A). KSTAR’S sz
binary predictions for serine/threonine kinases also outperforms other algorithms, but to a lesser extent s

than tyrosine kinases. Interestingly, where KSTAR improves in performance as a binary predictor 320
compared to rank-based measurement, KSEA and PTM-SEA significantly degrade in performance. 330
KSTAR likely improves due to statistical saturation for certain kinases across most datasets, namely 331

certain MAPKs and CDKs as is observed in the BRAF inhibition test case described in Fig. 2E, which 33
makes rank-based performance difficult for other S/T kinases (for example, RPS6KB1 and AURKA were 33
not found in the top ten, but were considered differentially active by their false positive rate). On the 33
other hand, the reason for degradation of KSEA and PTM-SEA are likely two fold. First, kinases only 33

have an associated activity score if at least one substrate of that kinase is identified in the sample, 336
leading to variability in the number of kinases with predictions for each condition (S4 Figure). This 337
could lead to inflated rank-based accuracy, as it is easier to be in the top 10 of all kinases if there are 338
only 20 other kinases (instead of 100) with predictions (a notable weakness of this benchmarking 330

approach, which does not account for total set size of kinases). Second, many kinase scores, particularly w0
for tyrosine kinases, rely on only a few substrates, so if any of these substrates exhibit large fold-changes 3
in the dataset, they will likely lead to large kinase scores. However, these scores are not robust, leading 3«
to low statistical significance. For this reason, the authors of both KSEA and PTM-SEA recommend 343
restricting analysis to kinases with a set number of identified substrates, but this severely reduces the 3.
total number of kinases with predictions (S4 Figure). 345

Benchmarking sensitivity and study bias 346

In addition to globally testing recovery of specific kinases, we hypothesized that KSTAR’s unique ability s
to use most of the phosphorylation sites identified in an experiment (Supplementary Methods) would 38
allow KSTAR to be more sensitive to identifying signal in smaller datasets. We were also interested in 9
understanding if KSTAR predictions were less reliant on well-studied sites than other methods, which 35
was a key goal of generating the pruned networks and well-controlled random experiments in Fig. 1. In 3=

addition to the observation that kinase annotations and predictions encode study bias [65], we found 352
that phosphoproteomic studies are more likely to identify those sites of high study bias and that the 353
more well studied sites tended to exhibit larger fold-changes across the benchmarking dataset, 354

particularly for tyrosine sites (S2 Figure). Inspired by the idea of testing random versus targeted attacks s
on networks by Albert et al. [1], we developed an experiment to assess changes to the predicted activity — ss
of a kinase as data is removed, either by random loss of phosphorylation sites from an experiment or by s
targeted removal of the most well studied sites, defined by the number of compendia a site is recorded in. s
If losses of both types are equivalent, it suggests low dependency on study bias, whereas a faster change s
in prediction significance for targeted loss suggests a high dependency on specific phosphorylation sites 0
(Fig. 4B). We defined the tolerable loss of an algorithm as the maximum percent of sites that can be 361
removed from a dataset before the majority of experiment replicates no longer indicate significant 362
activity (FDR < 0.05). To measure a global differences between the random or targeted removal of sites, 36
we also defined an algorithm’s “sensitivity to data loss” as the area under the random attack curve and 36
an algorithm’s “sensitivity to study bias” as the area under the curve between the random and targeted s
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A) Metrics for measuring sensitivity
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Figure 4. Comparing sensitivity to data loss and study bias A) Metrics defined to measure
sensitivity to data loss and study bias. For a kinase in a prediction that starts as significant, we select
data to be removed based on completely random selection or semirandom selection where high study bias
sites are removed first. Results were obtained at every 5% loss increment, with each data point in the
curve indicating the average false discovery rate across five replicates. Tolerable loss is defined as the
percent of sites that can be removed before the majority of trials (3 out of 5) stop showing statistically
significant activity for the kinase. Sensitivity is defined as the area under the random curve (data loss) or
between the targeted and random curve (study bias) B) Example loss curves that illustrate the difference
between low or high sensitivity to data loss and/or study bias. The sensitivity to data loss (blue) and
sensitivity to study bias (green) for each curve are displayed in the upper left of each plot. The right
panels define the algorithm, kinase, and the benchmark experiment number (indicated in S2 Table) that
gave rise to these curves. The black dot in KSEA/EPHAZ2 in lower left quadrant indicates that KSEA
was no longer able to calculate EPHA2 activity at that value of targeted data loss. C) Tolerable loss
under random (blue) or targeted (green) removal for all tested conditions for each algorithm (each dot
represents the measurement of tolerable loss for a single condition). Results are provided for tyrosine
kinases (left) and serine/threonine kinase (right). Total number of conditions tested are given under
the algorithm name. Only conditions where the perturbed kinase had statistically significant activity
with the full dataset were used. To determine if the observed decrease in tolerable loss obtained between
random and targeted attacks was statistically significant, a one-tailed Mann-Whitney U-test was used:
p-value<0.01(*) and 0.0001(***), respectively. D) The global measure, based on algorithm, for sensitivity
to data loss (blue and left panels) or study bias (green and right panels). Two-tailed Mann-Whitney
U-test values indicate p-value<0.05(*), le-5(**), and 1e-10(***), respectively.
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removal of sites (Fig 4A). 366

We performed our network loss experiment across all conditions for which the perturbed kinase was s
found to have significant activity when the full dataset was used (FDR < 0.05), comparing all algorithms s
that give a defined statistical call for kinase activity: KSTAR, KSEA, and PTM-SEA. We found that 369
KSTAR predictions were remarkably stable, with most conditions tolerating > 60% data loss and some 37
conditions able to maintain significant predictions using only 5% of the data (Fig 4C). While there is a

decrease in the median tolerable data loss between the random and targeted removal approaches for 372
tyrosine kinases (75 to 65%), these differences were not found to be statistically significant, suggesting a3
that KSTAR is not heavily reliant on well-studied sites. On the other hand, both tyrosine and 374
serine/threonine kinase predictions from KSEA, as well as serine/threonine kinase predictions from 375
PTM-SEA, exhibited significantly less tolerable loss under targeted attack, demonstrating a high 376
dependency on a few well-studied sites. A measure of study bias for PTM-SEA tyrosine kinase 377
predictions is not attainable, since performance degraded significantly under random loss (17.5%). 378

To better understand global differences between how each algorithm handles random and targeted 379
losses, we next assessed the cumulative sensitivity of each algorithm (areas under or between the curves s
from 0-50% data loss, instead of the intersections of the curves with the line of significance). Similar to  se
what was observed in Fig. 4C, we found that KSTAR was significantly less sensitive to both data loss s
and study bias than KSEA and PTM-SEA for both tyrosine and serine/threonine networks (Fig. 4D).  3s
PTM-SEA and KSEA were particularly sensitive to these losses in tyrosine kinase networks. In many 384
cases, we found that predictions could often not be generated by KSEA or PTM-SEA when 50% of the s

data was removed via the targeted approach due to the loss of all known substrates of a kinase (S4 386
Figure). These experiments suggest that since KSTAR is built to retain and integrate across more 387
information from a phosphoproteomic dataset, it is more robust for making inferences on smaller dataset s
sizes and is significantly less dependent on high-study bias sites than KSEA and PTM-SEA. 389
Kinase activity profiles are more robust than phosphoproteomic data 390
Due to the high complexity and stochastic nature of mass spectrometry measurements, obtaining 301
reproducible results across studies and across laboratories can often be difficult. Multiple 302
inter-laboratory studies have demonstrated that differences in instrumentation and pipelines can greatly o
impact the peptides identified in a single run, with reproducibility being highest between technical 304
replicates from the same instrument [7,55]. In addition, the choice of phosphopeptide enrichment 305
method can further increase variability and lead to differences in the type of phosphopeptides 306

identified [12]. Here, we sought to determine whether kinase activity profiles obtained from KSTAR can s
robustly identify similarities and differences between samples, even in cases where there is low overlap in s
the phosphopeptides identified by mass spectrometry. To do so, we obtained a total of 11 different 309
phosphotyrosine datasets from 7 different studies and 5 different labs. Of these 11 datasets, 7 profiled 0
the phosphoproteome of non-small cell lung carcinoma (NSCLC) cell lines with activating mutations in
EGFR (H3255 and HCC827) [5,17,37,46,70] and 4 datasets profiled K562 cells, a chronic myeloid 402
leukemia (CML) cell line containing the BCR-ABL fusion protein [2,5,12]. 403

Based on the Jaccard similarity between sites identified in each dataset, most experiments exhibit low s
overlap with the other experiments (Fig 5). The datasets with the highest overlap all stem from either s
the same study, the same lab, or both. In the only case where both K562 cells and NSCLC cells were 406
profiled by the same study (dataset 6 and 10, [5]), the NSCLC sample shared the highest site similarity o

with the corresponding K562 sample rather than NSCLC samples from other studies. Overall, it is 408
difficult to identify a clear pattern of separation between the NSCLC cell lines and K562 cells with the 40
phosphoproteomic datasets alone. However, kinase activity profiles are capable of identifying shared 410
profiles amongst all cells of the same type and reducing perceived similarity between studies from a1

different cell types — datasets from the same cancer type were either moderately or strongly correlated a2
(r > 0.47,p < 0.05), while those from different cancer types were either uncorrelated or weakly negatively s
correlated (r < 0.15). When the same analysis was performed using KEA3 [29], the only other algorithm s
capable of generating predictions in non-quantitative settings, kinase rankings tended to be highly a1
correlated across all datasets (r >= 0.68,p <= 0.05), regardless of tissue similarity (Fig 5D,S5 Figure). s
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Figure 5. Tissue-specific profiles of kinase activities across independent studies of non-
small cell lung carcinoma (NSCLC) and chronic myeloid leukemia (CML) cell lines. A)
Comparison of the phosphoproteomic results obtained by each study (left) and the kinase activity profile
predicted by KSTAR (right). We used similarity metrics to match the different data types — Jaccard
similarity for phosphoproteomics and Spearman’s rank correlation for kinase activity profiles. The
ordering of the experiments in each heatmap is based on hierarchical clustering of the full kinase activity
profile (S5 Figure). B) Kinases with the highest average activity ranking in NSCLC and CML cell lines.
A rank of 1 indicates the most active kinase and a rank of 50 indicates the least active. For each study,
kinases were sorted by their Mann Whitney p-values to obtain the experiment-specific ranking, and
then the average rank across experiments was calculated for each kinase. C) Kinase activity profiles for
top-ranked kinases. Both the kinases and experiments were sorted using hierarchical clustering with ward
linkage. Full KSTAR results for data in this figure available in S5 Figure. D) A systematic evaluation
of how KSTAR and KEA3 perform at identifying similarities between tissues of the same type and
differentiate between tissues of different types based on predicted kinase activity /enrichment. KSTAR
activity scores (or KEA3 kinase rankings) from each dataset were compared using Spearman’s rank
correlation, and results are plotted for within-tissue comparisons (NSCLC vs. NCLSC or CML vs. CML)
and between tissue comparisons (NSCLC vs. CML).
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This approach also represents a novel type of benchmarking that overcomes the reliance on a priori a17
assumptions of kinase alterations — it only assumes that kinase profiles within a tissue should be similar s
and between tissues should be dissimilar. Hence, the transfer of phosphoproteomic data into kinase 419
activity profiles using KSTAR greatly improves the comparability of independent phosphoproteomic 420
experiments, a feat not currently attainable by any currently available algorithm. o

To verify that the kinase profiles that improved similarity within cell types and discrimination a2
between cell types was connected to the underlying biology, we explored the top-ranked kinases across 4
each cell type (Fig 5B). On average, EGFR was ranked as the most active kinase across all of the 424

NSCLC cell lines, which is consistent with these lines carrying activating EGFR mutations. In K562 425
cells, the most active kinases were hematopoietic kinases HCK and BTK. Only MET appears as a highly s
active kinase in both cell types. We found that using only these top ranked kinases was sufficient to 27
separate the cancer types by hierarchical clustering (Fig 5C). Further, the two NSCLC cell lines tended s
to cluster separately with this subset of kinases, which was not observed when using the entire kinase 429
activity profile (S5 Figure). Overall, these results suggest that KSTAR is able to robustly predict kinase 43
activity profiles that define a particular tissue type and results in robust identification of samples coming s

from similar tissues, which is not possible from phosphoproteomics directly. 432
Kinase predictions in breast cancer e
We next wished to ask if KSTAR predictions from bulk biopsy of human tumors might be informative
for identifying patient-specific kinase activity profiles. We selected breast cancer in order to compare 435
HER2/ERBB2 activity with clinical diagnosis of HER2-overexpression. We applied KSTAR to the 436
CPTAC dataset of 77 breast cancer patients, using data from the consortium as published in Mertins et 43
al. [33] that passed quality control for phosphoproteomics. Figure 6A focuses on ERBB2-activity 438

predictions and the clinical status of the patient tumor. We considered three different cutoffs for making 30
a binary decision of whether KSTAR predicts a tumor is “ERBB2 active”, based on FPR (less than 0.05 0
and 0.1) or by the activity score (greater than 3, or having less than 1 in a 1000 chance that the number s

of sites observed in ERBB2 networks occurred by random chance). These different cutoffs produced a2
varying rates of “true positives” (HER2+ patients predicted as having ERBB2 activity) from 27 to 50% 3
and the selection of cutoff had a minimum impact on the false negative rate (19-24% HER2-negative a4
tumors are considered active). All ranges showed excellent true negative rates (76 to 81% of 445
HER2-negative tumors are predicted as inactive). Since there are different ways to convert KSTAR 446

scores into a binary prediction, we tested whether KSTAR rankings of ERBB2 activity was coordinated 4
with HER2-status. Using a GSEA-style analysis to measure coordination between the continuous value s

KSTAR activity score and the binary label of HER2-status, we found significant coordination 449
(p = 0.023). Unsurprisingly, due to the poor performance of other algorithms for tyrosine kinases and 450
ERBB?2 in particular in benchmarking, no other algorithms appear to be capable of predicting ERBB2 s
activity or in a way that was correlated with HER2-status S6 Figure). 452

To our surprise, despite the fact that KSTAR predictions are well-correlated with HER2 status, some  s3
of the most ERBB2-active predictions occur in HER2-negative patients. Also, some HER2-positive 454

patients demonstrate extremely low levels of ERBB2-activity. This difference between HER2-status and s
ERBB2-activity is feasible, since overexpression of HER2 may not necessarily lead to functional ERBB2 s
receptors at the cell surface and all breast epithelial cells contain some level of ERBB2, which could have s
activity without the requirement of amplification or overexpression. However, from this data, which lacks sss
longitudinal patient information, it is not possible to know if KSTAR predictions are accurately 450
identifying the HER2-positive patients that will not be responsive to HER2-targeted therapies (a number 40
that varies but is thought to range between 35 and 50% of HER2-positive patients [49,51], or instead 461

demonstrates issues with inferring tumor activity from complex bulk biopsies. 462

In order to test whether the departure of ERBB2-activity from HER2-status is clinically predictive of 4
ERBB2-therapy response, we sought out additional datasets. These additional datasets include the 464
phosphoproteomics of patient-derived xenografts (PDX) of breast cancer tumors [23], predominantly a5
from HER2-negative patients, and the phosphoproteomics of HER2-positive breast cancer patients with s
data both before and 48-72 hours after starting a combined chemotherapy and HER2-targeted a67
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Figure 6. KSTAR applied to breast cancer biopsies in three studies. HER2 is used when
referring to clinical diagnosis and ERBB2-activity for ERBB2/HER2 activity predictions. A) KSTAR
predictions of ERBB2-activity for the 77 breast cancer patients in the CPTAC dataset [33] and their
clinical IHC/FISH HER2-status is given (samples are ranked by ERBB2-activity prediction score). The
table gives the total number of HER2-positive and HER-negative patients and the KSTAR predictions
for ERBB2/HER2 activity for the best of three cutoffs (score-based) considered for designation of
ERBB2-active: FPR <= 0.05, FPR <= 0.1, and score > 3. B) Predictions of EGFR and ERBB2
activities for the patient derived xenograft (PDX) models published in Huang et al. [23] subset that
were treated with lapatinib (EGFR/HER2 targeted therapy), where WHIM14 is a HER2-negative tumor
that showed a surprising response to lapatinib treatment. The table reports the HER2-status of all
25 PDX tumors and KSTAR ERBB2/HER2-activity predictions. C) The ERBB2-activity predictions
for tumor biopsies of patients enrolled in a HER2-positive study by Satpathy et al. [49]. Five patients
were non-pathologically complete responders (non-pCR) and the remainder were pathologically complete
responders (pCR). Biopsies were taken pre-treatment and most patient’s also had an on-treatment biopsy
taken with phosphoproteomic profiling. The first three non-responders were reclassified for HER2-status
upon additional analysis in Satpathy et al. and results are shown as one false positive and two classified

as “Pseudo-positives”. Full KSTAR results for data in this f-igure available in S6 Figure. 15/31
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therapy [49]. Although small, each of these datasets included response data to HER2-targeted therapy, s
allowing us to query whether KSTAR predictions are correlated with clinical response. 469

PDX models of breast cancer 470

The PDX dataset [23] measured the phosphoproteomics of 25 breast cancer PDX models, which were an
predominantly HER2-negative. Of the three HER2-positive PDX models, we predict two of them are an
ERBB2-active and represent the highest activity levels of HER2/ERBB2 that we see across the entire

dataset. We predict the third HER2-positive model as having globally low tyrosine kinase activity, a7
including insignificant levels of ERBB2-activity. On the other hand, we predict 31.8% of the a5
HER2-negative PDX models have evidence of ERBB2-activity, double the rate we observed in the 476
CPTAC predictions. The researchers in this study selected 4 PDX models to treat with the art
EGFR/HER2 inhibitor lapatinib. They selected two HER2-positive models, WHIM35 and WHIMS a78
(both of which we predict are the models we predict are ERBB2-active), and two HER2-negative models, 47
WHIM14 and WHIMG6. The authors were surprised to find that WHIM14 demonstrated significant 480

response to lapatinib treatment. However, KSTAR predicts that the tumor has significant levels of both 4
EGFR and ERBB2 activity, similar to WHIM35 and WHIMS8, which also respond to lapatinib treatment. s
Hence, KSTAR predictions of EGFR and ERBB2 basal activity correspond with lapatinib response, 483
including the surprising result of a HER2-negative tumor responding to HER2-specific therapy. This 484
data suggests that kinase activity predictions from phosphoproteomic data may be capable of identifying s

patients who could benefit from HER2-targeted therapy despite being diagnosed in current clinical 486
standards as HER2-negative. Together with the the CPTAC analysis, it suggests there are around 24 to s
32% of HER2-negative patients that might benefit from HER2-targeted therapy. 488
HER2-positive patient study and response to treatment 489

In the study by Satpathy et al. [49], the researchers developed a method to section a biopsy for a suite of 0
molecular analyses, including microscaled proteomics and phosphoproteomics. This study consisted of 14 s
clinically-identified HER2-positive patients. Microscaling the analyses allowed the researchers the ability
to perform replicates and analyses on new biopsies taken 48 to 72 hours following the commencement of 40
a combination of chemotherapy and HER2-targeted therapy. Thirteen of the patients were treated with s
docitaxel and the combination of trastuzumab and pertuzumab, while one patient (BCN 1369) received o5

paclitaxel and trastuzumab alone. In the study, 9 of the 14 patients were diagnosed as pathologically 496
complete responders (pCR) and 5 patients were non-pathologically complete responders (non-pCR). This 4o
study provides an excellent opportunity to explore the reproducibility of KSTAR predictions across 498
replicates, the relationship between therapy response and predictions of kinase activity pre-treatment, o0
and the connection between response and ERBB2-activity, including on-treatment biopsy data, although s
complicated by the combination of treatment with chemotherapy. 501

From kinase activity predictions, we focused on the prediction of ERBB2 activity across replicates 502
and samples, where we found consistent predictions across all replicates of a patient sample (S6 Figure), so
which confirms that both the replication of the data and predictions from that data are robust. We saw 5o
a larger range of KSTAR activity scores in this dataset for ERBB2, compared to the TCGA/CPTAC 505

dataset, likely due to a larger sampling of pTyr sites. Of all 14 patients that have been clinically 506
diagnosed as HER2-positive, we predict 3 of the patients (BCN1326, BCN 1335, and BCN 1359) lack 507
evidence of ERBB2-activity in the pre-treatment phosphoproteomic data and an additional patient, 508

BCN1331 with the next lowest activity and an FPR rate right at significance of 0.05. Three of these 509
patients are non-pCR, suggesting that lack of ERBB2-activity basally may be a reason for non-response s
to chemotherapy combined with targeted HER2-therapy (Fig. 6C). In the original study, the researchers su
re-analyzed patient data for the non-pCR patients and found that BCN1326 was a HER2 false-positive, s
having no indication of ERBB2-amplification or increased protein expression and it is also the patient we s
predict has the lowest ERBB2-activity. Patients BCN1331 and BCN1335, also with low KSTAR scores s
for ERBB2-activity, were re-labeled by the research team as“pseudo-HER2-positive” having evidence of s
HER2 copy number increases, which did not translate to the protein levels. When KEA3 was applied to s
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this same dataset, ERBB2 was not found to be higher than the 6th ranked kinase in any patient sample s
(S6 Figure), whereas KSTAR predicted ERBB2 in the top 4 most active kinases in all the true basally s
HER2-positive patient samples, with the exception BCN1359. These results demonstrate that KSTAR s
predictions of phosphoproteomic data can complement clinical diagnosis of HER2 status, a designation s»
that is clearly not perfect by IHC and FISH alone [26,49]. 521

KSTAR predictions from on-treatment samples are also promising, suggesting that six of the seven  s»
patients with pre-treatment ERBB2-activity are predicted to demonstrate a decrease, below significance, s
of ERBB2-activity on-treatment (Fig 6C). There are two patients where predictions suggest there is no sz
response to ERBB2-targeted therapy, BCN 1369 (non-pCR) and BCN 1300 (pCR). These data suggest s
that these patients are not benefiting from the HER2-therapy arm. Additionally, these two patients are s
most similar according to their tyrosine kinase activity predictions (S6 Figure), suggesting that 527
resistance to HER2-therapy might be encoded by their particular pattern of tyrosine kinase activities. 528
BCN 1371, the last non-pCR patient, which has no on-treatment sample, has a similar kinase activity — s»
profile to the HER2- non-responders BCN 1369 and BCN 1300. Similarly, BCN 1357 and BCN 1368, 530
which have no on-treatment phosphoproteomic data, cluster most similarly with BCN 1358 and BCN 531
1368, respectively, both of which show robust decreases in ERBB2-activity on-treatment. Where these  s»
similarities between pre-treatment patient responses and clinical outcomes are seen in tyrosine kinase 533
activity profiles, they are do not occur in serine/threonine kinase activity profiles (S6 Figure). 534

The final ERBB2-predicted negative patient, BCN1359, represents a unique case, as we predict it has s
low pre-treatment activity that increases on therapy. Satpathy et al. did not redefine the HER2-status of s
this patient and their analyses show this patient also uniquely undergoes an increase in ERBB2 mRNA s
and protein upon treatment. A unique trait of BCN1359’s pre-treatment kinase profile is EGFR-activity, s
in the absence of ERBB2-activity. This status is rare as we have typically observed, across the breast 539
epithelial and breast cancer samples we have profiled, that EGFR and ERBB2 activity are often jointly s«
active or inactive, consistent with the obligate dimer behavior of ERBB2. Ultimately, BCN1359 went on  sa
to become a pathologically complete responder. However, KSTAR predictions suggest that response may s

have been a product predominantly of the chemotherapy component of the treatment or that the pre- 543
and post-treatment samples were possibly swapped at some point in the study. Alternately, these results s
might suggest that the pre-treatment and post-treatment samples were accidentally swapped at some 545
point. 546
Discussion 7
We set out to develop a robust kinase activity inference method that is generally useful for all 548
phosphoproteomic pipelines, especially clinical phosphoproteomics. The application of KSTAR to diverse — ss0
experiments supports the idea that the KSTAR score is a reflection of kinase activity — the score 550

increases with increasing kinase activities and decreases as a result of direct kinase inhibition. We found s
that these continuous-valued scores, up to the limit of statistical saturation, can identify the most active s
kinases within tissues and differences in kinase activities between tissues. These results also suggest that s

activity scores are comparable across kinases within an experiment, as the kinases with the highest 554
activity scores in each tissue tended to be the ones you would expect, such as HCK and BTK in chronic ss
myeloid leukemia cells and EGFR and ERBB2 in non-small cell lung carcinoma. This attribute is a 556
result of creating uniform network sizes for all kinases (treating tyrosine and serine/threonine kinases 557
independently) — if more phosphorylation sites were observed in one kinase’s network, compared to 558
another kinase network, then the statistical score reflects that as higher activity for the first kinase. 559

Among available kinase activity prediction algorithms, KSTAR is unique for several reasons. First,  se
KSTAR is capable of utilizing any mass spectrometry experimental pipeline as evidence of kinase 561

activity, irrespective of the type of quantification approach used, or in the absence of quantitative data. se
KEA3 is the only other algorithm that offers a similar flexibility, but we observed very poor performance se
of KEA3 in predicting physiologically relevant kinase ranks, such as an inability to produce results that se
improved tissue similarity/differences, and KEA3 results often suggested that the same kinase was 565
high-ranking in both the most upregulated and downregulated of sites in an experiment. Second, 566
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KSTAR provides both a measure of degree of activity (score) and a binary cutoff indicating the 567
significance of that score, allowing for a clear definition of an active kinase. KSEA and PTM-SEA also s
provide a binary call based on statistical significance, but these algorithms require differential 569

quantification, perform significantly worse for tyrosine kinases, and are extremely sensitive to data losses sn
within both tyrosine and serine/threonine networks (particularly losses of well-studied sites). Lastly, and sn
perhaps most importantly, KSTAR accounts for the undue influence of well-studied sites at both the 572

kinase and experiment level. We believe that existing activity inference approaches are triply hit by 573
study bias issues: 1) they tend to rely on annotations, which are only available for well-studied kinases s
and phosphorylation sites, 2) phosphorylation sites identified in a phosphoproteomic experiment are 575
more likely to be well-studied and most algorithms (except KARP) do not attempt to account for that, s
and 3) more well-studied sites tended to undergo larger fold-changes in the benchmarking data and 577
therefore exhibit higher influence on predictions reliant on relative quantification (S2 Figure). Hence, we s
believe that the algorithmic developments of KSTAR, such as enabling larger inclusion of 579
phosphorylation evidence from experiments, kinase- and experiment-specific false positive rate control,  ss
and lack of dependence on fold-change or quantitative data, has created an algorithm that is more 581
broadly useful across kinases available in NetworKIN, but especially tyrosine kinase networks, which 582
generally demonstrate more issues with study bias [65]. 583

Finally, in our motivation to use kinase activity inference in a clinical setting, we demonstrated that sss
KSTAR activity inference of tumor phosphoproteomic profiling can complement current clinical markers — sss
for HER2-status. KSTAR accurately identified a false HER2-positive patient and two 586
HER2-pseudopositive patients in the microbiopsy study from Satpathy et al. [49]. KSTAR also correctly —ss
predicted that a clinically diagnosed HER2-negative PDX model would be responsive to EGFR/HER2  sss

therapy, suggesting that phosphoproteomics combined with KSTAR can offer an orthogonal clinical 589
diagnostic for breast cancer patients. On average, across all breast cancer samples analyzed by KSTAR, s«
in this study, roughly 30% of HER2-negative patients might have basal levels of HER2-activity, 501
suggesting the possibility of a therapeutic avenue not normally offered HER2-negative patients. 502
Materials and Methods 593
Data Preparation and Mapping 504
All phoshoproteomic datasets used in this study were downloaded from the relevant journal site 505
(typically found as supplementary data or tables in Excel). We identified the datasheet columns (a 596
protein accession and a peptide indicating the phosphorylation site or an amino acid position) that 507
allowed us to map the specific protein and phosphorylation site to the central ontology developed in 508
KinPred [65]. If Uniprot accessions were not available, we used Uniprot web services to map to the 599

Uniprot accession. KSTAR has a mapping function that matches the protein record and site information e
to the central KinPred ontology and appends two confirmed columns in that same ontology. Failure to o
map the protein or the site results in exclusion of that peptide from the mapped experiment, which 602
happens in about 1 to 10% of peptides in any given dataset, an event that is logged. Also logged by 603
mapping is if the site position is altered from the dataset to the ontology in cases where the reference 604
protein is different than the database representation used by the authors of the study. The mapped files o5

and their error and warning logs are provided in Supplementary Data available on FigShare 606
(https://doi.org/10.6084/m9.figshare.14919726). 607
In the experiments where relative quantification of phosphosites across multiple conditions was 608

available, we used a relevant threshold to include or exclude specific sites as evidence in that particular e
experimental condition, while still ensuring that every experiment contained a sufficient number of sites 0
to be statistically powerful (generally 50 or more sites for tyrosine, 1000 or more sites for serine and 611
threonine). These thresholds, their meaning, and the resulting evidence sizes for experiments for all 612
datasets are given in S2 Table and these experiments are stored in KSTAR outputs as binary evidence e
used to generate kinase activity predictions (also available in FigShare KSTAR Supplementary Data).  ou

18/31


https://doi.org/10.1101/2021.07.06.451378
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451378; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

KSTAR algorithm implementation and details 615

All parts of the KSTAR algorithm, including pruning, mapping, activity inference, and plotting were 616
implemented using Python3. The KSTAR code is highly customizable regarding the networks used, the v
limits on when to stop network pruning, the number of random experiments, and the number of decoy s
runs to use in FPR calculation. However, here we used the same parameters for all analyses as described e
and all data and code are provided on open source platforms (GitHub and Figshare), described below.  6x

The 50 heuristically pruned networks were generated according to the rules discussed in Algorithm  ex
Overview, where tyrosine kinases had a finishing limit of 2000 substrates per kinase and serine/threonine 2
kinases had a finishing limit of 2500 substrates per kinase. Further, substrates could be connected to no s
more than 10 tyrosine kinases or 20 serine/threonine kinases. The final networks also guaranteed that e
each kinase had the same proportion of substrates based on “study bias” according to the total number of s
compendia substrates are annotated by and as defined by KinPred [65]. Substrates can be found in none e
or any of the five compendia included in ProteomeScout [31]: UniProt [4], phosphoELM [14], HPRD [45], ez
dbPTM [30], or PhosphoSitePlus [22]. The networks used were downloaded from KinPred version 1.0 o
and based on the February 2020 reference phosphoproteome. The final networks used in this work are e
available on Figshare at https://figshare.com/account/projects/117123/articles/14944305. 630

We generated 150 unique random experiments for every experiment under consideration and such that ex
the distribution of “study bias class” was the same as the real experiment, where study bias was defined e
as having low, medium, or high study bias based on being annotated in 0, 1-2, or 3-5 compendia. Unlike 633
network generation, which uses the exact number of compendia annotations in the definition of study 634
bias, random sampling groups the categories into classes, in order to guarantee true random sampling 635
from the high study bias categories, since the number of total substrates annotated by 5 compendia is e
small. The false positive rate of the p-value observed in an experiment for a kinase is then calculated as s

the proportion of random experiments that had that p-value or more significant across the set. 638

Statistical tests, including the hypergeometric test and the one-sided Mann Whitney U test, were 639
performed using functions found within the stats module of the SciPy Python package [57]. For cases 640
where datasets were large, such as for the two global phosphoproteomics studies [28,59] or for large 641
serine/threonine networks, the KSTAR activity predictions were performed using a highly parallel 642
version of the original code, implemented using the Nextflow software package [13]. 643
Compiling Datasets for Benchmarking Analysis 644
In order to benchmark as many kinases and kinase families as possible, we sought to compile datasets 645
across a wide range of studies and stimulation/inhibition conditions. Our final benchmarking dataset 646
shares overlap to the one compiled by Hernandez-Armenta et al. [19], but has a larger breadth of 647
tyrosine kinases profiled, as well as a few different serine/threonine kinases. For tyrosine kinases, 20 648
conditions were tested impacting a total of 19 tyrosine kinases, compiled across 8 649

studies [2,10,16,40,63,64,71]. For serine/threonine kinases, 31 conditions were tested impacting a total eso
of 38 kinases, compiled across 10 studies [6,15,24,40,43,44,48,54,59,61]. All data was used as provided s
by the original authors, with the fold-change relative to the control used in the study, typically untreated e
cells. When assigning the expected perturbed kinases, we focused on kinases that were either directly 653
targeted (such as EGFR during EGF stimulation) or had well characterized downstream activity (such  es
as ERK during EGF stimulation). In studies where chemical proteomics data was available [16,59], we s
defined the expected perturbed kinases as the top 5 kinases based on strength of interaction from the 656
chemical proteomics data (unless the particular drug interacted with fewer than 5 kinases). This allowed e
us to expand the benchmarking dataset to kinases that are often difficult to directly target and measure. s
For specific details about each dataset used in this work, see S2 Table. 659
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Applying Available Kinase Activity Inference Algorithms 660
KSEA 661
KSEA was implemented in Python3 as described in the original publication [8] and at 662
(https://github.com/casecpb/KSEAapp/). KSEA uses a z-score transformation to calculate the 663
enrichment of substrates for each kinase, according to the following formula: 664
scorey, — Ei;:%?;[i? (1)

where 5 is the mean log2fold abundance of the substrates of kinase k, p is the mean log2fold abundance s

in the entire dataset, m is the number of substrates of kinase k identified in the dataset, and ¢ is the 666
standard deviation of log2fold abundance across the dataset. 667

Significance is assessed using a right-tailed test and Benjamin-Hochberg FDR correction is applied to s
obtain the final list of significant kinases. Kinase-substrate annotations used for prediction were 669

downloaded from PhosphoSitePlus [22], and mapped to KinPred as described in previous section. We 670
compared our implementation of KSEA results to the available KSEA webapp [62] and found them to be e

consistent overall, but our mapping to PhosphoSitePlus (November 2021) increased the number of 672
annotations in general, compared to the webapp (2016 PhosphoSitePlus data). 673
PTM-SEA 674

PTM-SEA was implemented within Rstudio using the R-gui provided in the ssGSEA2.0 github repo 675
(https://github.com/broadinstitute/ssGSEA2.0). Annotations were downloaded from PTMsigDB e
v1.9.0 [27]. All default parameters were used, except that the minimum number of substrates required e

(called min.overlap in the gui) was reduced from 10 to 1 to expand the number of total available 678
predictions. To assess the impact of this substrate requirement, we also obtained which kinases 679
maintained predictions when requiring at least 10 substrates to be present and plotted the results in S4 s
Figure. 681
KARP 682
KARP was implemented in Python3 as described in Wilkes et al. [60], where the K-score for a particular s
kinase was generated using the below equation: 684

Zwi (67 m

K =252 5 ()2 510° (2)
Z;‘L:1 Bj

where o and § are normalized intensities for an individual phosphorylation site, n is the total number of s
phosphorylation sites in the dataset, m is the number of substrates identified in the dataset associated s

with the kinase, and t is the total number of phosphorylation sites associated with the kinase in 687
PhosphoSitePlus. As was done for KSEA, kinase-substrate annotations were downloaded from 688
PhosphoSitePlus [22]. 689

In order to identify the most perturbed kinases for a particular condition in the benchmarking 690

dataset, the difference between the K-score for the experimental condition and the control was calculated, o
and kinases were ranked based on this difference. A positive difference indicated an increase in activity, e
while a negative difference indicated a decrease in activity. For applying KARP to the CPTAC data in
S6 Figure, the provided relative intensities were used to generate K-scores for each patient sample. 694

KEA3 695

In KEA3, kinases enrichment rankings are obtained for each of 11 different protein-protein interaction e
(PPI) or kinase-substrate interaction (KSI) databases based on the results of a Fisher’s exact test. The ew
mean rank is then obtained by averaging the ranks from each database, and it is the mean ranks that 698
produce the final kinase enrichment ranking. 699
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To obtain results from KEA3, gene names were obtained for each protein identified in a sample either 700
from the original dataset itself or by using the UniProt web services to convert Uniprot accessions to the 7o
correct gene name. These gene names were then run through either the KEA3 web app or the KEA3 702
API via python3. To make results directly comparable to KSTAR results in figures 3, 4 and 5, the same 703
sites/genes used for KSTAR predictions were used for KEA3. Further, for the results in Fig. 5D, kinases o
without predictions in KSTAR were removed and kinases were then ranked across these 50 kinases based s
on their mean rank. Notably, the removed kinases include many serine/threonine kinases, which are not 7o

relevant to the phosphotyrosine enriched datasets where KEA3 is applied, hence the removal of 707
non-overlapping kinases in KEA3 ultimately resulted in more relevant predictions that were dataset 708
specific. 709
Calculating Phit 710

In this work, we have defined accuracy in a similar manner as in Yilmaz et al. [68], where the accuracy,

Pris, is defined as the fraction of times in which an expected positive kinase is found to be differentially 712

active. We utilized two seperate indicators of a kinase hit: 1) kinase rank, where the perturbed kinase is 713

found in the top 10 most differentially active kinases, or 2) statistical significance of activity, where the 7.

associated activity score was identified as statistically significant (p < 0.05). A miss is then any instance s

for which a kinase is expected to be perturbed but is not defined as a hit. 716
hits

it hits + misses (3)

We made an additional modification to the approach from Yilmaz et al., where we measured accuracy 77

as a function of individual kinase performance, instead of as a function of individual experiment 718
performance (Fig. 3B, S4 Figure). We made this change due to the fact that both our benchmarking 719
dataset and those compiled by others tended to be over-represented by certain kinases, typically ones 720
that are easily targetable and/or well studied [19]. For example, in our dataset, AKT1 is perturbed 721

across 13 different experiments while ATM is only perturbed in 2 experiments, contributing to 12% and 7
1.6% of tests, respectively (S4 Figure). Given that this is the case, an algorithm that effectively predicts 7
AKT1 activity, but not ATM activity, will appear to be successful due to the high influence of AKT1. 72
Instead, by calculating the kinase-specific accuracy (fraction of expected perturbations of an individual s
kinase that were defined as a hit) and then averaging these scores to obtain the global accuracy in Fig. s

3A , we can then obtain a global accuracy assessment that is more reflective of performance for all 727
kinases present in the benchmarking dataset. In practice, this looks like the below two equations: 728
hitsy,
Pritk = 4)

hitsy, + missesy,

Pritiy + Pritjey + - + Phit i,
n

()

where Pyt 1 is the average accuracy for kinase k across conditions where it is expected to be perturbed 72
and n is equal to the total number of kinases profiled in the benchmarking dataset (split by tyrosine and 70

Pt global =

serine/threonine kinases). 731
Random and Targeted Data Loss Experiments 732
To generate the random and targeted attack loss curves shown in Fig. 4B and S4 Figure, we first 733
identified the conditions in the benchmarking data where a statistically-based algorithm (KSTAR, 734

KSEA, andPTM-SEA) found the perturbed kinase to have statistically significant differential activity s
(hits in Fig. 3) in the dataset. For each of these conditions, we generated a set of reduced experiments 73
ranging from 5% to 95% data loss at increments of 5% data loss (5%, 10%, 15%,...). We repeated this 7
process five times to obtain multiple replicates. KSTAR, KSEA, and/or PTM-SEA (depending on if 738
initial activity was significant) were then applied to all of the reduced experiments to regenerate 739
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predictions at each level of data loss, and the average false discovery rate curve was obtained by 740
averaging across the five replicates. 741

Datasets were reduced in two ways. For the random attack/removal, sites were removed at random so 7
that all sites were equally likely to be removed from the experiment with each replicate. For the 743
semi-random targeted attack sites were first organized based on the number of compendia they are 744

recorded (an indicator of study bias). The most well-studied sites, which are found in all five compendia s
discussed in this work, are chosen at random for removal. If all of these sites are removed, the next most s
well studied sites, which are found in four of the five compendia, are chosen at random for removal. This 7

process continues until the correct amount of sites have been removed from the experiment. As the 748
targeted attack is only a semi-random process, variance across the replicates tended to be smaller than 740
for the random attack. 750

Once all random and targeted attack curves were generated, tolerable loss and sensitivity could be 751
calculated as described in Fig. 4A. Tolerable loss was obtained using the entire loss curves (0 to 95%), 7

while sensitivity was calculated using only half of these curves (0 to 50%). 753
Comparing Phosphoproteomics Datasets 754
When comparing different phosphoproteomics datasets, all data was first mapped to KinPred, as 755
described above. After mapping, the set of phosphosites identified in each dataset was obtained, where s
any site present in a sample, regardless of relative quantification, was considered in the set. The 757

similarity of two sets of sites were compared using the Jaccard index, defined by dividing the intersection  ss
of the two sets (number of sites identified in both experiments) by the union (the total number of unique o
sites identified across both experiments). To compare these same experiments based on their KSTAR 760

profiles, we used Spearman rank correlation, as implemented in the SciPy Python package [57]. 761
Data Availability 762
The datasets generated during and analyzed during the current study are available in the KSTAR 763

Figshare Project https://figshare.com/account/home#/projects/117123, which includes Networks 7
and Resource Files for implementation of KSTAR and all datasets, logs, and results for all experiments s

in this manuscript. Source data are provided with this paper (S4 Table). 766
Code Availability 767
All code for KSTAR are available at our Git repository: https://github.com/NaegleLab/KSTAR. 768

Additionally, all code for applying KSTAR to data, including all examples within this paper, is available 7o
at our KSTAR Applications Git repository: https://github.com/NaegleLab/KSTAR_Applications. 770

Supporting Information m
Supplementary Methods 772
Extended description of the KSTAR algorithm. Within this supplement, we have provided an 3
extended discussion of the challenges with kinase activity inference methods that we set out to solve 774
when developing the KSTAR algorithm, as well as how each step of the algorithm serves to improve s
activity prediction. In addition, we describe how KSTAR is implemented in practice, providing 776
pseudocode for each of the major steps involved in the KSTAR algorithm described in Figure 1. 777
S1 Figure 778
Impact of heuristic prune on network properties and thresholding decision on the 779
estimated kinase activity. S1.1) We compared the number of unique substrates, kinase network 780

similarity, and experimental coverage of KSTAR pruned networks to PhosphoSitePlus annotations and 7
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NetworKIN predictions thresholded with a value of 1. In addition, to test the effect of choosing different 7

thresholds when binarizing experimental abundances, we used phosphoproteomic data from: S1.2) 783
untreated samples in K562 cells from Di Palma et al. [12] for pTyr sensitivity analysis and S1.3) 784
untreated BT-474 samples from Wiechmann et al. [59] for pSer/pThr sensitivity analysis. KSTAR 785

analysis was performed on these datasets with run multiple times using progressively smaller evidence s
sizes using abundance estimates from these datasets to simulate the effect of using increasing threshold 7

stringencies. 788
S2 Figure 780
Demonstration that phosphorylation site sampling from resources causes kinase- and 790
experiment-specific false positive rates. The background studies, data, and demonstration that 701

experimental datasets are skewed in the representation of well-studied phosphorylation sites, which in 792
turn are overly connected in prediction algorithm outputs and results in experiment- and kinase-specific 7o
false positive rates that are both above and below expected rates. These studies lead to mitigation of 704
study bias by: 1) addition of a constraint that every kinase network have the same distribution of study 7o
bias and 2) that experimental random controls should also represent the study bias of the experiment 796
under consideration. Supplement gives methods and shows the activity predictions for datasets randomly  7o7
sampled from the following compendia: S2.1) phosphoELM [14], S2.2) HPRD [45], S2.3) dbPTM [30], s
or S2.4) PhosphoSitePlus [22]. S2.5) We show the distribution of sites in the original KSTAR networks 79
(prior to adding a study bias constraint) and S2.6) in the final KSTAR networks (after adding a study s
bias constraint).S2.7) Demonstration that phosphorylation sites in ProteomeScout [31] is very different so

than what is observed in an example phosphoproteomic dataset [23]. 802
S3 Figure 803
Full KSTAR predictions for all control experiments in Figure 2. For each experiment 804
described in 2, we have provided the full activity predictions for all kinases with available predictions 805
and with significant activity in at least one sample for each experiment. This includes: S3.1) EGF 806
stimulation in 184A1 epithelial cells [63], S3.2) EGF and HRG stimulation in HER2 overexpressing 807

184A1 epithelial cells [64], S3.3) TCR activation in Jurkat cells [10], S3.4) ABL inhibition by dasatanib s
in K562 CML cells [2], S3.5) AKT inhibition of BT-474 breast cancer cells [59], S3.6) BRAF inhibition s
by vemurafenib of two colorectal cancer cells with opposing responses [28]. Lastly, in S3.7) we provide s

MAPK1/3 activities in each colorectal cancer cell from S3.6 after quantile normalization, which 811
highlights the clear increase in activity in HCT116 cells despite statistical saturation of the MAPK1/3 &
scores. 813
S4 Figure 814
Comparing KSTAR to other inference algorithms To assess how KSTAR predictions compares s
to currently available activity inference methods, we compared KSTAR to several commonly used 816
methods: KSEA [8], KARP [60], PTM-SEA [27], and KEA3 [29] as described in Fig. 3 and Fig. 4. We &z
explored various aspects of these algorithms, including S4.1) interpretability, S4.3) accuracy for 818
individual kinases, S4.4-5) the number of kinases with predictions, and impact of data loss and study  sw
bias on prediction for S4.6) individual experiments and S4.7-9) kinases. We also compared the 820
distribution of kinases in the benchmarking dataset both before and after applying an equal weighting to sz
all kinases for the calculation of Phit (S4.2). 822
S5 Figure 823
Full KSTAR and KEA3 predictions for all NSCLC and CML cell lines used in Figure 5. 824
We compared the activity predictions for similar and different tissues across the datasets outlined in 825
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S5.1. S5.2) Full KSTAR dotplot and the most active kinases in each dataset. S5.3) Heatmap 826
displaying correlation between KEA3 rankings across datasets. 827
S6 Figure 828
Full KSTAR, KSEA, and KEA3 predictions for all Breast Cancer biopsy experiments in 829
Figure 6. For each breast cancer dataset profiled in Figure 6, we have provided full tyrosine kinase 830
predictions from KSTAR, as well as serine/threonine predictions and KSEA/KEA3 predictions where  sx
relevant. S6.1) Full KSTAR predictions for CPTAC phosphoproteome analysis of 77 Breast cancer 832

patients [33]. S6.2) Comparison of ERBB2 activity predictions in CPTAC patients for KSTAR, KEA3, e
and KSEA. S6.3) Full KSTAR predictions on PDX models of breast cancer [23]. S6.4) Full tyrosine 834
kinase predictions for microscaled biopsies of HER2+ patients [49]. S6.5) Pre-treatment tyrosine kinase s
predictions for microscaled biopsies. S6.6) Pre-treatment serine/threonine kinase predictions for 836
microscaled biopsies. S6.7) Patient-specific KSTAR activity predictions for non-pathologically complete s
responders from Satpathy et al. S6.8) Patient-specific KEA3 rankings for non-pathologically complete s
responders from Satpathy et al. S6.9) Patient-specific KSTAR activity predictions for pathologically 839
complete responders from Satpathy et al. S6.10). Patient-specific KEA3 rankings for pathologically 840
complete responders from Satpathy et al. S6.11) Comparison of KSTAR and KEA3 rankings across all  sa

pre-treatment predictions and their ability to differentiate between true and false positives in HER2 842
status. 843
S1 Table 844
Table outlining most commonly used, available kinase activity inference methods. We have s
compiled information regarding several popular/commonly referenced kinase activity/enrichment 846
inference methods currently available, including KSEA and KEA3. We provide a brief description of 847
their implementation, as well as the input data type, background networks used, whether they use 848
quantification, and if they account for study bias. 849
S2 Table 850
Table outlining experiments used in this study. For each of the datasets used in this study, we 851
have provided a detailed description of the experiment and how it was used in KSTAR analyses, 852
including the threshold used to define binary evidence within them and the resulting evidence sizes. 853
S3 Table 854
Table outlining the ancestry, age, and sex of the patients for samples/cell lines used in 855
studies analyzed by KSTAR in this paper. 856
S4 Table 857
Source data for figures and supplements related to this paper. Data is separated by sheet, 858
according to its figure. 859
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