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Abstract

Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two
orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking
thereof: The lack of a unified ML formalization of immunological antibody specificity prediction problems
and the unavailability of large-scale synthetic benchmarking datasets of real-world relevance. Here, we
developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic
lattice-based 3D-antibody-antigen binding structures with ground-truth access to conformational paratope,
epitope, and affinity. We formalized common immunological antibody specificity prediction problems as
ML tasks and confirmed that for both sequence and structure-based tasks, accuracy-based rankings of ML
methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The
Absolut! framework thus enables real-world relevant development and benchmarking of ML strategies for
biotherapeutics design.
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Graphical abstract | The software framework Absolut! enables (A,B) the generation of virtually arbitrarily large numbers of synthetic
3D-antibody-antigen structures, (C,D) the formalization of antibody specificity as machine learning (ML) tasks as well as the
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C. ML formalization of antibody specificity prediction

exploration of ML strategies for real-world antibody-antigen binding or paratope-epitope prediction.

Highlights

Software framework Absolut! to generate an arbitrarily large number of synthetic 3D-antibody-antigen
structures that contain biological layers of antibody-antigen binding complexity that render ML

predictions challenging

Immunological antibody specificity prediction problems formalized as machine learning tasks for which
the in silico complexes are immediately usable as benchmark datasets
Exploration of machine learning prediction accuracy as a function of architecture, dataset size, choice of

negatives, and sequence-structure encoding
Relative ML performance learnt on Absolut! datasets transfers to experimental datasets
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Introduction

Antibodies bind foreign molecules (antigens) with high specificity. Antibody therapeutics have led to
impressive medical breakthroughs in the treatment of infection, cancer, and autoimmunity 2 The 3D
antibody-antigen binding interface is formed by the paratope on the antibody side, and the epitope on the
antigen side **. The antibody CDRH3 (complementarity determining region of the heavy chain) region
contributes predominantly to the paratope >'.

The prediction of the 3D (or conformational) paratope and/or epitope for an antibody-antigen pair is crucial
&3 and vaccine design '*'°.
3D-antibody-antigen complexes resolved at the atomic level represent the gold standard for describing
antibody-antigen binding but they are time and cost-intensive to generate. Currently, there exist only =103
non-redundant antibody-antigen structures '*'®, which is many orders of magnitudes smaller than the
diversity of antibody sequences (>10") ". Furthermore, affinity values remain unavailable for the majority of
both 3D-structural datasets and antigen-specific antibody sequences obtained from repertoire % or
library-based screening approaches ?'. The lack of structural antibody-antigen binding data combined with
the complexity of antibody-antigen binding #*?* and protein-protein docking **” are one of the main
reasons why the prediction of antibody-antigen binding remains an unresolved problem.

for addressing long-standing problems in computational antibody

Machine learning (ML) is increasingly used for antibody-antigen binding prediction *'02128-41

given its
capacity to infer the hidden nonlinear rules underlying high-complexity protein-protein interaction ¥#**,
with rules including long-distance dependencies between amino acids at the binding interface. Such ML
methods encompass sequence-based paratope prediction >7?*4%0 and paratope-epitope-linked prediction
>3749°1 while varying in the extent of inclusion of structural information. Structure- or sequence-based
binding prediction may be feasible provided that sufficiently large antigen(epitope)-specific antibody
datasets become available '¢'7%*°¢ Currently, ML applications are developed on very small or
incomplete-knowledge datasets (joint information on paratope, epitope, affinity is unavailable, size of
datasets usually <10 000 antibodies) *'. Restricted experimental datasets allow neither the benchmarking

and stress testing of ML methods nor the verification whether ML conclusions generalize to other datasets.

Simulation allows the generation of synthetic complete-knowledge ground-truth datasets (i.e., datasets
whose generation rules are known and therefore contain validated properties to be learned) containing
desired levels of signal and noise that reflect experimental settings and biological mechanisms .
Simulated datasets have been used in methodological development and calibration before large-scale
datasets become available, to disentangle machine learning hypotheses and to prioritize the design of
8142 For antibody-antigen binding prediction, simulations may help precisely and
meaningfully define different real-world antibody-antigen binding problems, which requires levels of
annotation that are not yet available in experimental data. Furthermore, the simulation of ground-truth
complete-knowledge datasets is critical for benchmarking or ranking ML prediction strategies. Since ML
encodings span sequence- to structure- to hybrid formalizations, simulated antibody-antigen data need to
(i) recapitulate structural levels of complexity of experimental antibody-antigen binding (especially for
defining paratopes and epitopes); (ii) enable the generation of large-scale datasets; and (iii) allow the
integration of sequence and structural information into hybrid encodings.

future experiments

Here, we provide a deterministic 3D-antibody-antigen binding simulation framework to enable ML method
development and formalization on parametrized, large-scale datasets. Synthetic antibody-antigen
structures are generated as the energetically optimal binding structure in a 3D lattice and recapitulate
many levels of complexity inherent to antibody-antigen binding physiology, and allow for the exploration
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of various types of dataset designs that are largely unfeasible to generate experimentally. Specifically, we
generated synthetic binding structures of 6.9 million murine CDRH3 sequences to 159 antigens (=1B
antibody-antigen binding pairs). Our work is based on the premise that a successful ML antibody binding
strategy for experimental datasets should also perform well on synthetic datasets (and vice-versa).
Therefore, the synthetic datasets should be complex enough such that accuracy-based ML method
rankings can be transferred from synthetic to experimental datasets. For three use cases, we investigated
the extent to which 1D-sequence and 3D-structural information is required for achieving high prediction
accuracy of antibody-antigen binding: (i,ii) binary and multi-class classification of binding, and (iii)
paratope-epitope prediction ®°. We found that in silico investigated conditions predicted to increase
antibody specificity prediction reflect ML performance on experimental antibody-antigen sequential and
structural data.

Results

Formalizing and benchmarking antibody specificity prediction problems as ML tasks requires simulated
3D-antibody-antigen data

Predicting antibody specificity refers to identifying which antibody sequence(s) or structure(s) bind to which
antigen(s), and vice versa (Figure 1A), and remains an unresolved challenge '°. There exists a large variety
of possible biological and computational problem formulations and assumptions (Supplementary Figure 1),
and a formal framework that enables a unified formulation of antibody-antigen binding tasks is lacking.

Most ML formalized tasks fall into three main categories: (i) Classification: A binary classification predicts
whether an antibody binds to a predefined antigen or not (Figure 1A). An antibody may further be
separated in more classes describing the binding to one antigen (for example low-affinity, medium-affinity,
high-affinity classes); the binding to different epitopes on an antigen; or even the binding to different
antigens (Figure 1A), defining a multiclass (or multilabel) classification problem if an antibody can only
belong to one class (or to multiple classes). (i) Regression: Prediction of an antibody sequence affinity to a
target antigen, or sequence developability parameter values. (iii) Paratope-epitope prediction: Prediction of
which residues of an antibody-antigen complex are involved in their binding interface (paratope or epitope
prediction, Figure 1A), or prediction of the matching between a paratope and an epitope, possibly in an
encoded form. Of note, beyond only encoding antibody and antigen sequences, all these ML tasks may
involve the reconstruction of complex data structures describing features of the binding interface, that can
be leveraged e.g., by Natural Language Processing (NLP) architectures. All aforementioned tasks may also
be formulated starting from the antigen perspective and predict their binding to predefined antibodies
(bidirectionality of antibody-antigen binding prediction).

Each ML problem formulation requires different types of dataset structures and encodings, rendering the
comparison of their effectiveness challenging. Large and reproducible synthetic datasets can be
parametrized into specific immunology problems. ML-task-adapted training datasets can enable the
relative ranking of ML strategies for antibody-antigen prediction problems, following the hypothesis that
architectures or ML strategies that perform better on synthetic datasets are expected to also perform
better on experimental datasets (Figure 1C).
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Machine learning formalization of antibody-antigen binding prediction
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Figure 1 | Machine-learning formalization of antibody-antigen binding prediction tasks and pipeline for the high-throughput
generation of 3D antibody-antigen structure datasets.

(A) Machine-learning formalization of the biological problem of antibody-antigen binding prediction. The biological formulation of
the problem may involve either antibody or antigen, subsets thereof (paratope, epitope), affinity, sequence or structure or any
combination thereof. The choice of data encoding can be divided into sequence-based and structure-based ones, while hybrid
formalizations leverage both types of datasets (Supplementary Figure 1). On the ML side, predicting whether an antibody
sequence binds to an antigen may be broadly grouped into binary, multiclass or multilabel classification and regression. Regression
may be used to predict the affinity of an antibody sequence to a target antigen. Furthermore, specific problems of
antibody-antigen binding may be, for instance, predicting which residues of an antibody or an antigen are involved in the binding
(paratope and epitope prediction, and generation of new antibody or antigen sequences). (B) Synthetic antibody-antigen binding
data generation pipeline using the Absolut! framework: the PDB structure of an antigen is transformed into a 3D lattice
representation largely preserving antigen topology and surface amino acid composition (Supplementary Figure 7). Datasets can be
generated with unconstrained size. CDRH3 sequences are then tested for binding using exhaustive docking (6.8 million binding
poses per each 11-mer of each CDRH3 sequence and antigen, Supplementary Figure 2) to identify the energetically optimal
binding structure. The presence of glycans on the protein is parsed from the original PDB and may be included in the lattice
representation. For each optimal antigen-binding structure, the 3D paratope, 3D-epitope and affinity values are obtained and
recorded. By screening 6.9 million experimental CDRH3 sequences of length 11 or more (therefore containing physiological amino
acid composition and dependencies ) ©, we thus produced a database (antibody-antigen binding matrix) of 1 billion
antibody-antigen binding pairs with 3D paratope+epitope+affinity resolution. The generated dataset encompasses the following
levels of biological complexity of antibody-antigen binding: 1) Antigen topology; 2) antigen AA composition; 3) physiological
CDRH3 sequences; 4) a combinatorially large amount of millions of possible binding conformations sampled during exhaustive
docking; 5) positional amino acid dependencies in high-affinity sequences; 6) immunogenic regions (binding hotspots, showing
clusters of epitopes that share residues. Turquoise residues are contained in all epitopes binding this region, while levels of red
show how often a residue is contained in an epitope); 7) a complex paratope-epitope matching landscape (that can be visualized
on reactivity network showing the organization of binding pairs according to a specific encoding and can be compared to atomistic
experimental 3D-antibody-antigen binding data); and 8) a “broken similarity” binding landscape, where similar antibodies do not
necessarily bind the same antigens. (C) Synthetic antibody-antigen binding data with native-like levels of complexity is necessary
for understanding the relative performance of dataset design and ML benchmarking of antibody specificity prediction methods. In
this manuscript, we show that ML insights (performance ranking of ML methods) informed by ML application to synthetic
antibody-antigen data, transfer to experimental antibody-antigen binding data.

Unconstrained generation of in silico antibody-antigen structures
We present the Absolut! framework that enables deterministic generation of large synthetic datasets of

3D-antibody-antigen binding at moderate computing costs. Absolut! simulates the binding of antibody
sequences (CDRH3) to antigens (from PDB) in silico (Figure 1B) using a lattice representation of protein
interactions (Methods, Supplementary Figure 2A).

First, Absolut! creates a discretized lattice representation of the protein antigen (Figure 1B), by minimizing
the dRMSD between the original PDB structure and its many possible lattice counterparts ¢
(Supplementary Figure 3A, Methods). Protein glycosylation is modeled as “inaccessible positions” on the
surface of the discretized antigen (Supplementary Figure 3A,B), which impact the binding affinity of the
CDRH3 sequences (Supplementary Figure 4G), as observed experimentally ®. We optimized the lattice
resolution (distance between neighboring amino acids) to reach an average RMSD of 3.5A to the original
PDB (Supplementary Figure 3C-F). In brief, the protein antigen discretization step preserves realistic 3D
antigen sizes (Supplementary Figure  4B), shapes, and surface amino acid composition
(Supplementary Figure 7A).

Second, Absolut! enables the calculation of the energetically optimal binding of a CDRH3 sequence to a
lattice-discretized antigen. Briefly, Absolut! enumerates all possible binding poses of the CDRH3 to the
antigen ¢, computes their binding energy (scoring function) using the Miyazawa-Jernigan energy potential
8, and returns the best pose as the “binding structure” of the CDRH3, a step we termed “exhaustive
docking” (Figure 1B, Supplementary Figure 2B, Methods). Each binding structure provides 3D-information
on paratope, epitope, and affinity. The advantage of exhaustive docking is twofold: it screens the entire
lattice epitope space and ensures that the energetically global optimal binding is always found, in contrast
to docking of experimental or modeled structures ¢’.
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One billion Absolut!-generated in silico antibody-antigen structures as a basis for ML benchmarking and
ML antibody-antigen binding task formulation
We generated a library of synthetic 3D-antigens (including pathogenic and self-antigens, see Table S1) of

159 antigens from crystallized antibody-antigen complexes '¢, and further calculated the binding structures
of a database of 6.9 million unique CDRH3 antibody sequences obtained from murine naive B-cells ¢ to
the 159 discretized antigens (Figure 1B, Supplementary Figure 4A-C). Using experimental CDRH3
sequences ensures that antibody sequences possess, analogously to the antigen, physiological amino acid
composition and positional dependencies. The CDRH3 sequences were assessed for binding by
sub-peptides of size 11 amino acids for the purpose of computational tractability and consistency
(Figure 1B, "exhaustive docking” in Methods). The generated database contains 1.1 billion
antibody-antigen binding structures with conformational paratope, conformational epitope and affinity
resolution (Figure 1B). Human CDRH3 7° may be used instead of murine ones, and showed similar binding
behavior in terms of affinity distribution and epitope convergence (Supplementary Figure 4H,l). Each
11-mer of a CDRH3 sequence required on average the enumeration of 6.8 millions binding poses per
antigen by exhaustive docking (Supplementary Figure 4D), depending on the antigen size
(Supplementary Figure 4E), and required 7.9 seconds per CDRH3 on average (Supplementary Figure 4F).
This is a fairly moderate computational requirement in view of the 6.9 million CDRH3 times 6.8 million
docking poses per antigen. Therefore, the Absolut! antibody-antigen binding dataset is not only ultra-large
but also easily extendable.

Importantly, for ML analyses, Absolutl-generated data enables the extraction of various features describing
the paratope-epitope interface (Supplementary Figure 5), and mirrors the diversity of used encodings in ML
studies, from binary vectors # to 3D distance representations ’'’?. Altogether, the Absolut! framework and
the generated database of in silico antibody-antigen binding complexes enable the unconstrained
generation of antibody-antigen datasets designed specifically for different ML problems.

Absolut!-generated datasets reflect multiple levels of biological antibody-antigen binding complexity

A prerequisite for the real-world-relevant comparison of ML strategies (architecture, dataset design,
encodings) for antibody-antigen binding prediction is that Absolut! datasets reflect as many levels of
biological antibody-antigen complexity as possible.

In the Absolut! framework, antibody sequences bind to an antigen with a large diversity of binding energies
(Figure 2A) and structures, as shown as an example, for the antigen with pdb-id TADQ_A (Figure 2B). We
arbitrarily define “binders” to an antigen as those (CDR3-derived) 11-mer sequences within the top 1%
affinity threshold (1% lowest binding energies, Figure 2B, Supplementary Figure 9A, see Methods).
Grouping CDRH3 sequences (or 11-mers) by affinity classes of arbitrarily adjustable thresholds allows
exploring different definitions of negative (non-binder) samples in ML tasks. Among the 159 antigens, the
top 1% binders used on average 62 different binding structures per antigen, with on average 17 distinct
epitopes (Supplementary Figure 4J-L1), reflecting experimentally observed antibody binding diversity 7.

Analysis of binder sequences to an antigen (1ADQ_A) showed non-linear positional dependencies ’* of
amino acids as compared to non-binder sequences. (Figure 2C, Supplementary Figure 6) >*. Clustering the
binding sequences to 20 different antigens showed that very similar antibody sequences recognized
different antigens (Supplementary Figure 14D), which is a major current challenge for ML prediction tasks
applied to experimental antibody-antigen binding ****”* (Supplementary Figure 14E-H).
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Figure 2 | The Absolut! dataset reflects granular levels of the biological complexity of antibody-antigen binding.

(A) Affinity of the 1 113 000 000 antibody-antigen pairs in the Absolut! database, shown as an affinity matrix of 159 antigens and
6.9 million CDRH3 sequences (left panel). Each heatmap tile represents the binding energy (affinity) of a CDRH3 sequence against
an antigen. The right panel illustrates the affinity distributions of the top and bottom three antigens in terms of median affinity. (B)
Diversity of binding structures in the dataset for antigen TADQ_A (see Methods). [Inset] Affinity annotation in (A) allows
custom-stratification of CDRH3 sequences into binders and substratification thereof (the top 1% of affinity sorted CDRH3
sequences for each antigen separately) and non-binders (the bottom 99% of affinity sorted CDRH3 sequences). [Main panel]
Distribution of 3D-binding structures with respect to each binding class as defined in the inset. The x-axis represents the antibody
binding structures to this antigen, written as a 6-digit number representing a starting 3D position in the lattice, followed by a list of
moves in 3D-space (see Supplementary Figure 3A or Methods for details). Different CDRH3 sequences may converge to the same
binding structure albeit with different affinities (i.e., one bar with 4 colors reflects a single binding structure containing all four
binding classes). An affinity class could be distributed across multiple binding structures (i.e., blue bars: very high-affinity
sequences, are found across multiple structures in the x-axis). Only 159 of the total 842 identified binding structures are shown for
legibility, only 65 of them are used by the top 1% binding sequences. (C) Positional dependencies are illustrated by comparing the
observed conditional probabilities of an amino acid A, at position k+1, knowing the amino acid A, at the previous position
(P(Ar1]AY), between binders and non-binders (Ap(Ar1|A) = p(Awa|A) (binder) - p(A.1|Al) (non-binder). Positional dependencies at
longer range, are shown in Supplementary Figure é for amino acids within a distance up to 5 and 11 amino acids, instead of only 2
amino acids here). Red squares denote a case where two consecutive amino acids are more highly dependent in binders than in
non-binders, while blue squares show more negatively dependent consecutive amino acids in binders than in non-binders. (D)
Binding hotspots identified for antigen 1ADQ_A, named H1 to H4 (see Methods and Supplementary Figure 22). (E) The
paratope-epitope binding network (reactivity network) constructed with the Absolut! dataset (left) shows a complex topology with
oligo- and polyspecific characteristics also found in experimentally determined reactivity networks >'°. Different paratope-epitope
encodings determine different reactivity networks. The network shows gapped structural interaction motifs, for instance, epitope
XIX2X3XXB82XIXXXXXXX and paratope XXXXTXX1XXX where X denotes an interacting residue and the numbers refer to the
number of non-interacting residues in-between (see Methods and ). The Absolut!-generated network contains 6092 unique
paratope-epitope pairs, with 2572 unique epitopes and 324 unique paratopes with this encoding. Epitopes are shown in blue and
purple, and paratopes appear in light or dark gray. Specific epitopes (purple) are defined as being bound by only one paratope in
the dataset (all binder sequences use this paratope-epitope pair), while specific paratopes (light gray) are only bound by one
epitope. The reactivity network degree distributions of Absolut! and experimental immune (antibody-antigen) and non-immune
(protein-protein) datasets using the most predictive encoding from Figure 5A are compared in Supplementary Figure 8.

To quantitatively describe preferential CDRH3 binding to specific antigen regions, we developed an
algorithm to cluster the modes of antibody binding (epitopes of binder sequences) into, hereafter called,
“binding hotspots” (see Methods, Supplementary Figure 22, Figure 2D for 1ADQ_A), mirroring the
concept of immunogenic regions of an antigen ’®. Each cluster is defined by a core set of at least four
shared epitope positions between different epitopes (turquoise), while other residues are colored with
levels of red representing the fraction of epitopes (of the cluster) containing the residue, and white areas
denote antigenic regions that are more challenging to bind with high affinity, as no predicted binding from
the top 1% binders had its epitope in these regions. The number of binding sequences to each hotspot
ranged from 5 to 37 500 CDRH3 sequences for the antigen TADQ_A (Figure 2D), suggesting the Absolut!
database mirrors the experimentally observed hierarchy of more or less immunogenic domains within the
same antigen ’’.

Although Absolut! is neither suited nor designed to directly predict where an antibody sequence would
bind in the real world, we quantified whether antigen regions predicted to be binding hotspots overlap
with known binding sites in experimental crystal structures. In 75% of examined experimental
antibody-antigen structures from which the antigens were discretized, the experimental paratope was
overlapping with a binding hotspot core residue on the discretized antigen, while this number reached 85%
when including binding hotspot side residues (Supplementary Figure 7B-E). Since for this comparison full
chain experimental antibody structures were compared with CDRH3-based Absolut! structures, the overlap
calculated represents an upper bound. This suggests that topological factors that make antigen regions
immunogenic are somewhat preserved in Absolut! datasets.
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ML tasks are often set up to predict which antibody sequence binds to which antigen, according to specific
encodings. The reactivity network of Absolut! links 53 000 binder sequences on average to each antigen.
Here, we compare the reactivity networks of Absolut! (Figure 2E, left) and experimentally determined
binders (Figure 2E, right, generated from 825 experimentally-determined antibody-antigen pairs °)
according to such encoding. In both synthetic and experimental data, we observed a complex organization
(tree-like structure) and mutually exclusive polyreactivity of certain binding modes (motifs). Properties of the
synthetic reactivity network are statistically more similar to the experimental antibody reactivity network
than to the protein-protein interaction network (Supplementary Figure 8).

Taken all together, although simplifying antibody-antigen binding, Absolut! encompasses eight substantial
levels of structure- and sequence-based complexity levels (Figure 1, Figure 2), a subset of which are
encountered in experimental antibody-antigen binding highlighting the relevance of Absolutl-generated
data for developing and benchmarking antibody-antigen binding prediction methods.

Absolut! allows the prospective evaluation of ML strategies with custom-designed datasets

To demonstrate Absolut!'s usefulness in assessing the efficacy of different binary and multi-class
classification ML strategies (Figure 1A), we compiled three datasets (Figure 3A). Binary classification
datasets D1 and D2 were generated for each antigen separately. D1 was generated with 50% binders of
top 1% affinity (blue) and 50% non-binders containing both top 1-5% affinity (red) and bottom 95% affinity
(gray), while in D2 the non-binders are instead only defined by top 1-5% affinity (Figure 3A, Methods,
Supplementary Figure 9A). Our selected multi-class classification example aims at identifying the target
(class) of an antibody sequence among N antigens (class) excluding cross-reactive sequences (one label per
sequence only). The multiclass dataset 3 (D3) was generated for a set of 5 to 140 randomly chosen
antigens, by pooling the top 1% binder sequences to each antigen (Figure 3A), while discarding those
sequences that bind more than one antigen. The size of D3 depends on the number of selected antigens
and is imbalanced (Supplementary Figure 9B,D,E). As a comparison, including cross-reactive sequences in
D3 would reach up to 1250000 sequences to all antigens (Supplementary Figure 9C) and also allows
evaluating ML performance on the multilabel problem (Figure 1, Supplementary Figure 12).

We compared a set of ML methods with respect to binary and multi-class classification, namely Logistic
Regression (LR), Random Forest (RF), Naive Bayes (NB), Support Vector Machine (SVM) a single layer neural
network (SNn), as well as a deep (two-layer) network (DNn) (Figure 3B) where n stands for the number of
neurons in each hidden layer. For brevity, we showed the results for SN and DN in Figure 3C-G and the
remainder (LR, RF, NB, and SVM together with amino acid composition and shuffling controls for SN) in
Supplementary Figure 10. Nota bene, in this manuscript, we do not aim to optimize the architectures and
hyperparameters of the machine learning models (Figure 3, Figure 4, Figure 5). The ML investigations
shown merely showcase the utility of Absolut! in creating custom-designed datasets with varying
specifications that can be used to explore and train a wide range of ML methods for antibody specificity
research.
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Figure 3 | Classification of binding and non-binding antibody sequences with machine learning.

(A) Design of datasets for the ML task of classifying a sequence as binding in a binary (binding, non-binding) or multi-class (binding
to one antigen among a set of N antigens) setting. Binding is assessed for sub-sequences of size 11 amino acids derived from
CDRH3 sequences (see Methods Supplementary Figure 9). For each antigen separately, we defined binders as 11-mer sequences
within the top 1% affinity threshold (blue), non-binders as 11-mer from the top 1-5% (red), and the bottom 95% (gray). Datasets 1
(D1) and 2 (D2) have been created for binary classification for each antigen separately, and D3 for multi-class classification for a set
Of Nanigens @aNtigens (Supplementary Figure 9). D1 was generated with 50% binders of top 1% affinity (blue) and 50% non-binders
containing both top 1-5% affinity (red) and bottom 95% affinity (gray), while in D2 the non-binders are defined only by top 1-5%
affinity (excluding the bottom 95%), rendering this dataset a priori more challenging to classify since binders and non-binders are
closer affinity-wise. In both datasets, binders and non-binders were sampled as 11-mers taken from CDRH3 sequences of the same
length distribution, to limit potential amino acid composition bias (see Methods). D3 was generated by pooling sequences that
were among the top 1% binders across multiple antigens, labeled with the name of their antigen, discarding 11-mers that bound
multiple antigens to fit a multi-class classification problem. We also discarded antigens representing variants of the same protein,
leaving 142 non-redundant antigens, i.e., different labels (see Table S1 for the list of discarded antigens). Due to the removal of
cross-reactive sequences, D3 is imbalanced, because the amount of binder sequences to an antigen that was cross-reactive (with
another selected antigen) were highly variable, as seen by the number of available sequences for D3 (Supplementary Figure 9C).
(B) Model architectures considered: Feed-forward neural network with a single layer (SN), feed-forward neural network with deep
(two-layers) (DN) of equal number of neurons (5-20 neurons; in this Figure, SN5 indicates a single-layer network with 5 neurons and
DNS5 indicates a DN with 5 neurons), and four shallow learning methods namely logistic regression (LR), Naive Bayes (NB), random
forest (RF), and support vector machine (SYM) (see Supplementary Figure 10 and Supplementary Figure 11). The ML models were
trained on the two tasks: binary classification (binder or non-binder) on D1 and D2 for each antigen separately, and multi-class
classification (prediction of an antibody’s target out of n,gens targets ) on D3. Ny,ining=80 to 40 000 sequences were used for D1 and
D2 datasets as training dataset while n,;=40 000 sequences were always used for testing, to avoid a bias of test size. For D3,
Niraining=200 000 sequences were used for training and Niegi,g=100 000 sequences for testing (or scaled-down when less than 300
000 sequences were available, see Methods for details). (C-F) Accuracy of binary classification prediction of the considered model
architectures per antigen. One datapoint represents the accuracy to the dataset (D1 or D2) of one antigen (each point is the
average of 10 independent replicates, 159 points in total). Median accuracies among the antigens are shown in each panel.
Prediction accuracies of shallow architectures and conditions are shown in Supplementary Figure 10, including a control with
shuffled labels (i.e., where the causal link between paratopes and epitopes was removed) to quantify prediction accuracy on
randomized data. (C) All models, trained on 40 000 sequences from D1 irrespective of their network architectures, yielded accurate
predictions for the binary classification task with median accuracy values ranging between 0.988-0.991 (see Supplementary Figure
10 for shallow learning). (D) Prediction accuracy improved as a function of the number of training sequences (here shown for the
DN10 architecture). The model trained on the least number of sequences (Nining=80) yielded the lowest accuracy (median 0.86)
whereas the model trained on the largest dataset (Nyining=40 000) yielded the highest accuracy (median 0.988). (E) Prediction
accuracy (trained on 40 000 sequences) was slightly lower on D2 (compared to D1 in (C)) with median accuracy values ranging
between 0.891-0.918. (F) Models trained on D1 and tested on D2 yielded notably lower performance with median accuracy values
ranging between 0.704-0.744. (G) Multi-class prediction performance improved as a function of model complexity (number of
neurons and number of layers) and decreased as a function of the number of antigens (classes). We quantified the accuracy as
macro F1 score " due to the class imbalance of D3 10 independent replicates are shown as boxplot for each condition and show
very little variation. Macro-averaging weights each class equally (see Methods). Specifically, the median macro F1 values for the
model with the least number of classes (N,ngens=5) ranged between 0.76-0.962 whereas the model with the most number of classes
(Nantigens=140) yielded macro F1 values between 0.097-0.67, depending on the number of neurons and layers. Baseline shuffled
(expected) median macro F1 values ranged between 0-0.02 and 0-0.03 (Supplementary Figure 11). (H) Comparison of the relative
performance of ML architectures on a sequence binary classification problem when they are trained and tested either on an
experimental dataset * containing 7 894 binding sequences and 17 237 non-binders to HER2, or on Absolut! D1 where the same
amounts of binder and non-binder sequences were taken for 10 randomly selected antigens independently. CDRH3 sequences
were one-hot encoded as 1D or 2D vectors depending on the architecture (see Table 3). For each ML method (color), eight
“balancing conditions” (data points) were investigated where the relative amounts of binder and non-binder in the training was
varied, as in Mason et al. (see Methods and Supplementary Figure 24). One datapoint represents one ML method and one
condition, and is the average of 10 independent simulations for this condition (each time with a newly sampled set of binders and
non-binders from Mason dataset, and each time using the D1 from a different antigen for Absolut! dataset). The x-axis shows the
performance of an ML method and balancing condition on a Mason processed dataset, while the y axis shows the performance of
the same ML method and condition on the Absolut! processed dataset. As a general trend, the ML methods that perform better on
the Absolut! dataset also perform better on the Mason (experimental) dataset (Spearman correlation of 0.9 between ML-based
accuracies on Absolut! and the Mason dataset using identical ML architectures in both datasets).

SN and DN architectures achieved high median accuracy (0.982-0.99) for the binary classification use case
on D1 (Figure 3C). >4 000 training sequences were sufficient to reach accuracy values >0.97 (Figure 3D).
Prediction accuracy was slightly lower for SN and DN architectures on D2 (median 0.891-0.918) underlining
the impact of the choice of the type of negative samples on the degree of difficulty of the ML task
(Figure 3E). Interestingly, models trained only on D1 using the amino acid composition of the sequences,
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reached a substantially higher accuracy than random (Supplementary Figure 10C): shallow models reached
0.63 to 0.73 median accuracy trained on 40 000 sequences from D1 (Supplementary Figure 10,
“AA-comp”) while all neural network architectures (SN5-20 and DN5-20) consistently reached 0.974
accuracy on D1 with 40 000 sequences on average across all antigens (Supplementary Figure 10B), which
was very close to accuracies using the one-hot encoding (0.989, Figure 3). In comparison, models trained
on the amino acid composition of 40 000 sequences from D2 reached 0.768 to 0.775 median accuracies
(Supplementary Figure 10C), which is lower than accuracies using the one-hot encoding (0.823-0.918,
Figure 3E). We further used an out-of distribution approach to evaluate models that were trained on D1 on
their capacity to predict binding in the D2 dataset of the same antigen (Figure 3F) (i.e., assessing accuracy
on the distribution-shifted dataset ’°), and found lower median accuracy values (0.707-0.744), showing that
training on D1 is not very informative to learn the delineation between binders and non-binders of D2.

As with sequence-based experimental datasets, D1 or D2 contain a mixture of sequences that bind to
different epitopes on the target antigen, and it is not clear whether ML models trained on sequence
datasets implicitly learn information on epitope specificity. One can naively assume that similar sequences
bind the same epitope, and that the knowledge of the binding epitope of a few sequences could be
sufficient to tell that other similar sequences would also bind with high affinity and with the same epitope.
To explore this assumption, we clustered 25000 binder sequences to TADQ_A (positive class in D1)
according to their Levenshtein Distance (LD) and could observe 10 clusters (Supplementary Figure 14A),
which did neither correlate with the epitope nor paratope encoding of these sequences, showing that
similar sequences bound to different epitopes. We used an integrated gradients (IG) analysis * as an
attribution method to identify which residues were important in the classification of binder sequences in
Dataset 1 (Supplementary Figure 14B-C) ¥. To this end, the SN10 architecture was trained on D1 of antigen
1ADQ_A and each sequence was annotated with its |G weights of the trained model; i.e., a measure on
how each amino acid of this sequence quantitatively decided its output binding probability. The integrated
gradient approach allowed to cluster sequences according to their paratope and epitope encoding
(Supplementary Figure 14B) as opposed to clustering by sequence similarity, showing that the information
learned by a neural network uncovers properties of the functional similarity between sequences and
therefore may be used not only to find new sequences with high affinity * but also with desirable paratope
or epitopes. The clustering was not due to a confirmation bias, as the clusters disappeared after shuffling
the labels of each sequence (Supplementary Figure 14C). Therefore, Absolut! can be used to benchmark
attribution methods for their usefulness in identifying the binding properties of antigen-specific antibodies.

We assessed whether ML architectures for binary classification followed the same performance ranking in
Absolut! or in experimental datasets. We used an experimental dataset containing high-affinity (class 1) and
low-affinity (class 2) antibody sequences to the tumor antigen HER2 * (Figure 3H). Using Absolut!
sequences from D1, with the same amount of positives and negatives as in *, the ranking of ML
architecture performances were shared on both Absolut! and experimental datasets.

In the context of multiclass antigen binding prediction (on dataset D3), we used SN and DN architectures
on multi-class classification varying ML model complexity (humber of neurons 5-250 and number of layers).
The classification performance (in terms of macro-averaged F1 score) decreased with increasing number of
antigens (classes) included in the task (Figure 3G). Conversely, the accuracy values improved as a function
of model complexity (number of neurons) with the largest models (N .,0ns=250) reaching between
0.67-0.932 median macro F1 depending on the number of antigens. In comparison, shallow learning
models yielded markedly lower median macro F1 accuracies (LR: 0.36-0.66; NB: 0.01-0.34; RF: 0.-0.15;
and SVM: 0.35-0.68 for SVM, Supplementary Figure 11A). The F1 scores for the largest model (N, cy0ns=250)
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were higher than those of models trained on D3 with shuffled labels (median macro F1 < 0.02) or using
only amino acid composition (median macro F1: 0.05-0.16, Supplementary Figure 11B).

To summarize, Absolut! is useful for comparing ML architectures and attribution strategies on different
dataset specifications including the influence of different negative samples design.

Impact of the choice of negatives on binary classification of antibody-antigen binding poses

We investigated the relative performance of different ML strategies on a structural antibody-antigen
prediction problem that classifies whether an antibody-antigen binding pose is of high affinity (the pose
classification problem ®'#?, Figure 4A) and assessed if the ML method rankings transfer to experimental
datasets.

Using antibody-antigen pairs whose experimental antibody-antigen structures are known (“binding pairs”)
as the largest currently available source of high-affinity binding poses, the DLAB-VS (Virtual Screening)
pipeline by Schneider et al. ® models the 3D structure of the antibody sequence #, and generates 500
docking poses for a given antibody-antigen pair. The poses are compared to the experimental (target)
structure using the “fnat” score (Figure 4A, top panel and Methods). Any pose that is similar to the target
structure according to an fnat threshold was considered as positive (P). In contrast, remaining poses that are
not “high affinity” can be separated into different types of negative examples, that can be included or not
in the binary pose classification problem definition: Schneider et al. defined as negative examples poses of
a binding pair that are highly dissimilar to the target structure (fnat < 0.1, incorrect poses (1)) as well as any
pose generated from a an antibody-antigen pair that was formed by randomly matching the antibody
sequence of a binding pair with another antigen (O), as commonly performed in PPI problems ®'#2. Here,
we reproduced the DLAB-VS pipeline on Absolut! datasets (Figure 4A, bottom panel) by selecting 10 000
antibody sequences of different affinity levels to 10 different antigens; extracting the energetically best 500
poses from the ~6.8 million poses screened during exhaustive docking for each of the 100 000
antibody-antigen pairs. If the pair was of high affinity (top 1% affinity), we calculated the fnat between the
poses and the optimal binding structure as target structure. Additionally to “P”, “I” (from the top 1%
antibody binding sequences), and “O" poses, we defined new types of negative poses: any pose from a
low affinity antibody sequence (“L”, top 1%-5%), or any pose from a non-binding affinity sequence (“N”,
bottom 95%). The choice of the fnat threshold for positive poses, as well as the type of negative poses
included in datasets, define a pose classification problem.

We reproduced the ML architecture of DLAB-VS ®'%2, which takes as input the 3D encoding of an
antibody-antigen pose as two cubic lattices, one for the paratope residues and one for epitope residues of
the pose (Figure 4B). A 3-layered CNN architecture extracts structural information from the paratope and
epitope lattices in parallel, while a dense layer returns the binary class of the input pose. Although the CNN
architecture is translation invariant, it is not invariant to rotation, which opens up the possibility to optionally
augment training datasets by duplicating a pose into its many possible rotations (Ngewions) t0 reduce
overfitting.
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Formulation of pose classification problems
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Figure 4 | Transferability of ML method rankings in the context of pose classification and impact of type of non-binding pose
(negative example) in the training datasets.

(A) Pose classification problem formulation and data generation pipeline. Starting from an antibody-antigen pair, an
antibody-antigen pose proposed by docking was classified as positive if it is similar to an experimental known binding structure for
this antibody-antigen pair (the “target binding structure”). If the pair was not binding, there is no target binding structure and all
poses should be classified as negative. If the pair was binding with high affinity, only poses similar to the target structures should
be classified positive. The similarity between a pose and the target pose was quantified using the “fnat” score (fraction of
conserved native contacts), which calculates the relative amount of shared interacting residue pairs between two poses. The fnat
ranges between O (no shared interaction) and 1 (all interactions of the target pose are recapitulated). We created an in silico
pipeline to generate docking poses for the pose classification problem, reflecting the DLAB-VS pipeline used on experimental data
by Schneider et al. ®'. In DLAB-VS (left panel), the antibody structure is modeled and docked to the given antigen structure, and a
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positive pose (P) is a pose from a high affinity binding antibody-antigen pair that has a fnat score over a certain threshold (for
instance, 0.7). Two types of poses were defined as negative examples: those from a cognate pair with fnat lower than 0.1 (i.e., very
dissimilar to the target binding structure), called “incorrect” (l), and any pose from a non-cognate antibody-antigen pair created by
taking a binding antibody sequence to an antigen and pairing it with another antigen, called “other pair” (O). DLAB-VS datasets
can therefore contain P, O and | poses. In the in silico pipeline (right panel), the experimental binding pose of a binding pair is
replaced by the energetically optimal pose calculated from exhaustive docking, as the target pose. For any antibody-antigen pair,
we used Absolut! to output the 500 energetically best poses among the millions of poses enumerated during exhaustive docking
(6.8 millions on average, Supplementary Figure 2B). Additionally to high-affinity pairs (top 1% binders, defining “P” and “1”) and
other pairs created from top 1% binders to other antigens, we defined two new types of negative examples: poses from low affinity
antibody-antigen pairs (L), from the top 1%-5% high-affinity sequences to an antigen, and poses from non-binding pairs (N), from
the bottom 95% affinity sequences. Indeed, the “O” negatives have the bias to already bind another antigen, and might thereby
have a non-random AA composition or pattern, while the “N” are only selected based on their non-binding affinity to the
considered antigen. For 10 different antigens, 10 000 antibody sequences were randomly selected per antigen (among which, 500
high-affinity sequences (to generate “P" and “1”), 2500 low-affinity sequences (L), 2500 non-binders (N) and 5500 sequences with
known high affinity to another antigen among the library (O), see Methods). 500 poses were generated using Absolut! for each of
the 100 000 pairs, creating a dataset of 50 million poses. (B) ML formalization from DLAB-VS #': a pose is encoded as two cubic
lattices®' of size éx6x6 amino acids, containing the spatial organization of its paratope and epitope residues, respectively. To
compensate for the lack of rotational invariance of CNNs, each pose is repeated multiple times according to a different, randomly
sampled, rotation. A two-track ML architecture takes the two cubic lattices and returns 1" if the pose is of type “P”, 0" otherwise.
Two 3D CNNs composed of three layers process in parallel the lattice representation of the paratope and epitope residues of a
pose. Their output is flattened and converted into a binary prediction using a dense layer. (C,D) Comparison of ML strategies
related to data augmentation and the definition of positives and negatives. (C) Data augmentation by rotation can reduce
overfitting. Comparison of prediction accuracy when each pose is randomly rotated 1, 5, 20, 50 or 200 times during training, and
depending on the fnat threshold defining positive poses. The AUC resulting from 1 and 20 rotations with threshold 1 are compared
to AUC observed on experimental protein-protein binding structures in Ragoza et al. ®. Data augmentation by rotation is not
beneficial using a large definition for positive poses (fnat > 0.5). (D) The choice of negatives in the training dataset influences the
pose classification prediction efficacy. The x-axis shows conditions with different negative examples included in the training
dataset. The training dataset was balanced by repeating the binding poses (positive examples) to have 50% "“P” and 50% of all
combined negatives during training. All poses from an antibody-antigen pair were segregated either all in the training or test
dataset but not both to prevent data leakage. 8 000 poses were taken for training before data augmentation by rotations (Nggions =
20). Since each condition defines a different ML problem, the trained models were evaluated on test datasets designed with the
same type of negative poses, consisting of 1000 “P” and 1000 “O" pairs before rotations. This represents a form of
out-of-distribution testing as the distribution of negative poses was different in the training dataset of each condition, while the
same test dataset was used to compare these conditions.

We compared the ranking of different ML strategies for pose classification on Absolut! datasets to the
rankings observed on experimental datasets. First, using a strict threshold for positive poses (fnat = 1), we
reproduced a finding in Ragoza et al. #% on experimental PPl datasets where data augmentation by
rotation was necessary to avoid overfitting (Figure 4C, Supplementary Figure 13A). The AUC of the
classification accuracy was 0.5 with ngoiions = 1 (N0 data augmentation) and increased to 0.75 with as few as
5 rotations per pose. This represents an aspect in which ML behavior is observed to be similar in the
Absolut! world and the real world. Interestingly, with a less strict definition of positive poses (fnat = 0.5),
including rotations did not have a beneficial effect anymore, which suggests calibrating the extent of data
augmentation by rotation in future ML methods. Second, we explored the impact of the type of negative
examples included in the training dataset (Figure 4D). The accuracy of trained models is shown either on
the problem with only “O” negative poses (Figure 4D), (“I"” and “Q"), or all possible negative poses
(Supplementary Figure 13B-D). We reproduced a finding from Schneider et al. * where including the “I”
negatives slightly increased the classification precision for the “O" training composition. Depending on the
tested dataset composition, the choice of negative poses had a non-negligible effect on the classification
accuracy and can assist future pose classification strategies on experimental datasets.
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Impact of structural information on paratope-epitope prediction accuracy

Since the rules of antibody-antigen binding lie within the paratope-epitope interface, we formulate the
prediction of the epitope for a given paratope as the “paratope-epitope” prediction problem (Figure 1A,
Figure 5A). Paratope-epitope prediction may be formalized as a multi-class prediction problem, where a
paratope is labeled by the ID of the epitope (in which case shallow learning methods can be used ) or as a
sequence prediction problem; e.g., Natural Language Processing (NLP) problem, where a paratope needs
to be “translated” into an epitope by text generation. The NLP formulation allows predicting the binding
epitope of new sequences (named as “neo-epitopes”) and towards new antigens, which makes the NLP
formulation a more difficult task than classification, but more useful for purposes such as antibody, vaccine
design, or neo-epitope discovery (Figure 5A).

We used our framework to propose mathematical expressions for antibody-antigen binding prediction
tasks (Supplementary Figure 5). We considered a diverse set of possible paratope and epitope encodings
suitable for NLP (Figure 5A), each differing in the amount of sequence and structural information contained.
Degree-free encodings only contain paratope or epitope residues (involved in the binding), with or without
indication of gaps (“-") for a group of non-interacting residues between them, and have already been used
for ML prediction on experimental antibody-antigen structures °. Residues can be encoded as the amino
acid name (without gap: “Sequence”, with gaps: “Aggregate”), their chemical property (“Chemical
aggregate”), or just an “X" to denote that binding occurs at this position (“Motif”). Additionally, each
paratope residue can be annotated with its “binding degree” (i.e., the number of bound epitope amino
acid residues), termed “Degree-explicit” encoding. Simplified encodings were also considered after
preserving only residues of degree 2 and more (D = 2). Of note, each encoding defines a different
biological paratope-epitope problem (Figure 1A, Supplementary Figure 1).

Depending on the encoding, an epitope can be represented by a different number of matching paratopes
(Supplementary Figure 15A, blue histograms). In the sequence degree-free encoding, one single epitope
was associated with a median of 24 841 paratopes. Therefore, the epitope—paratope prediction problem
may contain multiple correct answers (as it does in this dataset). In comparison, a paratope encoding was
only paired with a small number of different epitopes (Supplementary Figure 15A, gray histograms).
Therefore, the paratope—epitope prediction problem generally has only one or very few answers, which is
compatible with NLP architectures, or architectures trained to predict one possible answer (epitope). We,
therefore, decided to focus on the paratope—epitope prediction problem.

We considered two commonly used NLP architectures using attention layers (Figure 5A and
Supplementary Figure  23), due to the existence of long-range positional dependencies
(Supplementary Figure 6): an encoder-decoder with a Bahdanau attention layer ® and a transformer
architecture * (Supplementary Figure 23A). Shallow architectures (SVM, LR, RF and NB; with one-hot
encoding) provided baseline accuracies using the multiclass problem formulation on the same datasets
(Supplementary Figure 19).
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Figure 5 | ML prediction of paratope-epitope pairs involved in antibody-antigen binding.

(A) Problem formulation of paratope-epitope prediction: using a range of encodings of paratope and epitope pairs, we aim to
predict the epitope encoding from the paratope encoding. From an Absolut! antibody-antigen binding complex (the best binding
pose), possible elements that can be incorporated into a paratope-epitope encoding are shown on one example binding (of
CDRH3 sequence CAIDGYSLYWYFDVW to antigen 1FBI_X). The interaction code stores which residues on the CDRH3 (denoted by
their position as a letter from a (position 0) to k (position 11)) bind to which residues on the antigen (numbers). From the interaction
code, a list of encodings is proposed to describe both sequence and structural information on the paratope and epitope of a
binding. Encodings contain the list of binding residues (i.e., paratope or epitope residues), possibly separated by gaps (stretches of
non-interacting residues, noted as “-"). Residues can be encoded as their name (“Sequence” without gaps or “Aggregate”, when
using gaps), their chemical property (“Chemical”, with p: polar, r: aromatic, n: non-polar, c: charged) or structural interaction motif
where interacting residues are encoded as the character “X"”. Compared encodings can contain (degree-explicit) or not

|u

(degree-free) information on the degree of binding of each residue. Of note, the sequence encoding implicitly contains structural
information, as non-binding residues are not included. We leveraged common natural language processing (NLP) architectures for

the paratope-epitope prediction: an encoder-decoder with attention ¥ and the transformer architecture ® (as described in

Supplementary Figure 23). (B,C) Prediction accuracy (exact match of the predicted epitope to the test-set epitope) for both
architectures as a function of a set of encodings, for degree-free (B) or degree-explicit (C) encodings, with (upper facet) or without
(lower facet) residues binding with degree 1. Each point is an independent training instance and 10 different replicates per
condition were performed. Learning on a paratope-epitope shuffled dataset was compared with learning on 1 600-40 000 (and
200 000 only for the Transformer architecture due to computational reasons) unique paratope-epitope pairs, while all conditions
were tested on 100 000 unique pairs when available, or downscaled to reach 80% training and 20% testing (see Methods). The
"motifs” encodings only allowed for 2 262 to 9 065 unique paratope-epitopes pairs (see Supplementary Figure 15A), which are
referred to as One-Hot (Max) conditions).

We assessed the performance on the paratope-epitope prediction problem of the two NLP architectures
with all proposed encodings (Figure 5A) and using from 1 600 to 200 000 unique paratope-epitope pairs
for training. Performance was measured by the fraction of either exact prediction match (accuracy)
(Figure 5B,C), correct predicted epitope size (Supplementary Figure 16A), or the LD between predicted and
target (test-set) epitope (Supplementary Figure 16B,C). For each condition, a shuffled dataset control was
included (i.e., where the causal link between paratopes and epitopes was removed) to quantify prediction
accuracy on randomized data.

The accuracies of both NLP architectures were low using degree-free encodings including all binding
residues irrespective of their degree (Figure 5B, D=1). The encoder-decoder failed to predict the cognate
epitope. The transformer achieved 0.109 median accuracy with the aggregate encoding and 0.048 for the
chemical encoding, with 200 000 training paratope-epitope pairs. Median accuracy on paratope-epitope
shuffled data (negative control) remained under 0.003 for all encodings. Altogether, we concluded
degree-free encodings not filtered for residues with high binding degree (D=2) did not allow for the
investigated architectures to learn the patterns of antibody-antigen binding.

Degree-free encodings with high binding degree residues (D=2) yielded higher prediction accuracies using
both architectures (Figure 5B, lower facet), suggesting that degree 1 residues are less relevant for binding
prediction. The aggregate encoding was most predictive with 0.456 and 0.396 median accuracies for the
encoder-decoder and the transformer, respectively, with 40 000 training paratope-epitope pairs (shuffled
accuracies were lower: 0 and 0.006 for the two architectures respectively). The transformer reached a 0.517
accuracy when trained on 200 000 sequences. Interestingly, the sequence encoding and the motif
encodings yielded markedly lower accuracies using the transformer, 0.173 and 0.072 respectively, still
higher than random (0.009 and 0.066 from the shuffled control, respectively). Therefore, encodings that
combine both sequence and structural information (the “Aggregate” and “Chemical” encodings), filtered
on residues with degree two or more, are more predictive than sequence-only or structure-only (“Motif”)
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encodings. Of note, the increase in prediction accuracies using the “Aggregate” encoding (compared to
the “Sequence” one) was not due to a simplification of the task by a decrease in the number of possible
output epitopes (2 128 epitopes associated with 16 276 paratopes each, on average for the “Sequence”
encoding; and 2 154 epitopes associated with 16 252 paratopes each, on average for the "Aggregate”
encoding (Supplementary Figure 15A)).

We asked whether including the binding degree in the encoding (degree-explicit encodings) would further
improve accuracy. By retaining residues of degree 1 in the encoding (Figure 5C, upper facet), the
transformer reached high accuracies for all the encodings (between 0.634 and 0.731 for 200 000 training
pairs) except for the motif encoding (0.102). Accuracies on shuffled controls ranged between 0 and 0.005
across encodings. The encoder-decoder, however, only performed well on the sequence encoding (0.689
accuracy on 40 000 training sequences) while it failed to predict the epitopes with the other encodings
(accuracy= 0), which was associated with improper size of predicted epitopes (Supplementary Figure 16A,
the encoder-decoder entered infinite repeat loops). This suggests the transformer is better suited for
longer encodings. Finally, discarding degree 1 residues in explicit degree encodings further increased the
prediction accuracy (Figure 5C, lower facet) for all encodings except the motif one, and the
encoder-decoder reached between 0.903 to 0.944 median accuracy on 40 000 training pairs, slightly
outperforming the transformer architecture that reached 0.867 to 0.909 on the same training dataset size.
We also introduced “Gapped Motif” encodings where gaps tokens “-” are replaced by a their size (as
number), and which led to poor accuracies (Supplementary Figure 17A-C, maximum accuracy= 0.012) with
both NLP architectures, suggesting that the size of gaps between binding residues does not contain
sufficient information to predict paratope-epitope matching.

Taken all together, we have shown that datasets of as low as 8 000 training paratope-epitope pairs can be
leveraged to obtain high prediction accuracy (~0.8) if structural information is included within the
sequence-based encodings in the form of gaps and/or binding degrees. The relative performance of NLP
architectures on the Absolut! dataset validated our previous results ® on experimental antibody-antigen
structures, where the “Aggregate” encoding enabled higher prediction accuracy than the “Sequence”
encoding alone on antibody-antigen structures from the AbDb dataset '®. Interestingly, structural
information has recently been shown to be predictive and more data-efficient not only for the prediction of
paratope-epitope binding ® but also TCR-antigen binding .

Performance of paratope-epitope prediction models on unseen data

We investigated the extent to which the aforementioned high accuracies (Figure 5C) reveal generalizable
trained ML models, and specifically, whether the ML models have been biased to recognize similar
paratopes or epitopes in the training and test datasets (data leakage problem).

First, on the epitope side, we analyzed the accuracy and LD of the trained models separately on epitopes
that were either present in both training and test datasets (shared) compared to epitopes unique to the test
dataset (hereafter called “neo-epitopes”, Supplementary Figure 18A). The likelihood to observe an epitope
in both training and test datasets is shown in Supplementary Figure 15B,C). The accuracy on neo-epitopes
was always zero (Supplementary Figure 18B) and the LD between predicted and true epitope was always
very similar to the shuffled control, showing that neither architecture was able to predict epitopes that were
completely absent from the training dataset. We observed a decreasing LD on the test-unique epitopes
using the degree-explicit encodings in an encoding-specific fashion (e.g., using the chemical,
degree-filtered, degree-explicit encoding the median LD went from 0.521 in the shuffled group down to
0.482 using the encoder-decoder, Supplementary Figure 18A). Despite a very low prediction accuracy, the
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LD of predicted neo-epitopes was slightly improved if the epitope was similar to training epitopes, for the
“Chemical” and “Aggregate” degree-filtered encodings (Supplementary Figure 20A,B), suggesting that
some patterns shared between similar neo-epitopes and training epitopes were learnt.

Second, on the paratope side, we quantified the similarity between paratope encodings matching the
same epitope, by clustering encoded paratopes using their pairwise LD (Supplementary Figure 21A).
Encodings that enabled high prediction accuracy generated clusters of paratopes with the same color
(epitope), and multiple distinct paratope clusters matched the same epitope, possibly revealing different
structural binding modes. We designed a train-test separation strategy, where the paratope clusters found
for each epitope were split between the training or the test dataset, such that elements of the same cluster
and same label (epitope) do not appear in both datasets (called “no data leakage” condition). This strategy
minimizes the chance of high accuracy in the test due to the presence of encoding-similar examples in the
training dataset. We assessed the performance of NLP architectures trained on the “no data leakage”
datasets (Supplementary Figure 21B,C), which defines a more complex task. Interestingly, trained models
reached higher prediction accuracy in the “no data leakage” condition compared to random splitting of
examples between train and test. Of note, we used the same hyperparameters in all conditions, and
therefore excluded the risk that models would be biased to perform better on a certain data processing
strategy via hyperparameter optimization. Altogether, by creating a new data preprocessing condition
where similarity of encodings is controlled, we could exclude the possibility that the NLP architectures used
were reaching high accuracy because of similarity, which suggests that the trained models were able to
learn generalizable patterns.

Discussion

Absolut! allows unconstrained generation of in silico 3D-antibody-antigen datasets for ML benchmarking

To overcome the lack of datasets to benchmark ML prediction methods and compare their relative
performance, we developed a deterministic antibody-antigen simulation tool (Absolut!) that allows
unconstrained generation of in silico antibody-antigen binding structures (Figure 1). The formalization of
immunological antibody-antigen binding prediction use cases as ML problems imparts the capacity to
generate datasets parametrized to antibody-antigen prediction problems as they would occur in the real
world. Along with Absolut!, we provide an extendable database of 1.03 billion antibody-antigen complexes
(Figure 2, greifflab.org/Absolut/). This database was used to compare the relative performance of ML
strategies (differing by dataset design, encoding, or ML architecture) to three types of antibody-antigen
prediction problems: classification of high-affinity antibody sequences (Figure 3), structural classification of
binding poses (Figure 4), and paratope-epitope prediction (Figure 5). For these three use-cases, we have
shown that the rankings of ML strategies were transferable to the rankings observed on experimental
datasets, and predicted ML strategies that maximize prediction accuracy. In particular, we propose
strategies to include structural information that improve paratope-epitope prediction performance
(Figure 5).

Synthetic datasets are valuable as long as they provide features that overlap with experimental data as well
as operate, at least to a certain degree, within a physiological parameter space. We have shown that
Absolut! datasets recapitulate eight levels of complexity present in experimental antibody-antigen datasets
(Figure 2, Supplementary Figure 6, Supplementary Figure 7). In comparison to previous widely used more
or less abstract coarse-grained representations of antibody-antigen binding (reviewed in ¥), ranging from
probabilistic models °?', the shape-space model %, to cubic ligand-receptors 7%
for antibody clones *, Absolut! allows a substantially higher level of intrinsic structural complexity of

or structural coefficients
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antibody-antigen binding. Indeed, the VAE-generated latent space of monospecific binding sequences to
different antigens did not cluster antigen-specific antibodies but rather by sequence similarity
(Supplementary Figure 14E-H) **, highlighting the complexity of binding rules beyond similarity that are
present in Absolut! datasets *. Absolut! has also been used as an oracle to compare stochastic and
Bayesian optimization strategies that aim to iteratively increase antibody affinity to an antigen *. Therefore,
by generating simulated data that reflect different forms of sequence signals of antigen specificity, Absolut!
enables the in silico evaluation of computational and ML strategies for antibody-antigen binding prediction
prior to experimental exploration.

Rankings of ML strategies on Absolut! datasets are transferable to ML rankings on experimental datasets
We have shown that Absolut! synthetic datasets are useful to predict the relative performance of ML
strategies, and importantly, that the rankings of ML strategies on Absolut! datasets transfer to experimental
datasets (transferability). ML architectures that performed best in a binary sequence classification task on
Absolut! datasets (Figure 3) also performed best on an experimental HER2-binder/non-binder dataset *°.
Paratope-epitope encodings containing both sequence and structure information performed better than
sequence-based encodings (Figure 5), as shown in °. Finally, reducing overfitting by data augmentation
(Figure 4C) and increased precision after including additional types of negative examples (Figure 4D) for
binary pose classification, mirrored analogous findings on experimental datasets ®'%2. Using Absolut!
datasets, we have also shown that the required size of datasets for generative models transferred to a
published generative model on experimental dataset *. Therefore, despite the simplifications taken in the
Absolut! framework as compared to biological data, the biological levels of complexity preserved in
Absolut! datasets suffice to assist ML design useful to ML investigations on experimental datasets.

Classification of antigen-binding can be improved by negative class design

We leveraged Absolut!-generated datasets to show that the performance of binary classification of
antibody sequences (Figure 3) or structures (Figure 4) depends on the definition of non-binding antibody
sequences (Figure 3E,F). This is a helpful result in the context of experimental enrichment-based antibody
screening #'”’, where each enrichment step defines “improved binders”. Our results indicate that the
non-binders in a late enrichment step may represent a good negative class as opposed to the non-binders
in the early enrichment steps, since they represent the low affinity negative sequences in D2. In the context
of antibody-antigen pose classification, in agreement with findings on experimental antibody structures ®',
we showed that it is also possible to generate negative datasets with Absolut!, and that the inclusion of
incorrect poses of a high-affinity antibody-antigen pair increases classification precision while defining a
more complex task (Figure 4D). Therefore, Absolut! enables the generation of different types of samples in
datasets with various controlled levels of difficulty, which is currently unfeasible experimentally. For
instance, by generating antibody sequence datasets with different modes of binding to an antigen, we
have shown that Absolut! allows the prospective performance evaluation of predicted outputs from
generative models across those different classes of sequences .

Structural information improves sequence-based conformational paratope-epitope prediction

A major open question in the immune receptor ML field is to understand how beneficial it is to include
structural information in binding prediction tasks *. Several recent studies have reported improved
paratope or epitope prediction **° when including an attention mechanism to the antibody or antigen
structure. Under the paratope—epitope prediction problem, we compared encodings with different levels
of coarse-grained sequence and structural information, allowing us to regroup multiple paratope-epitope
sequences under a shared pattern and embed binding rules within the encoding. We were able to

delineate a hierarchy of predictive structural and sequence features within the paratope and epitope
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encodings (Figure 5B,C). The presence of the gaps in the encoding improved accuracy (compare
“Sequence” and "“Aggregate” encodings), which mirrors previous findings of us on 3D-structural
experimental data °. Solving the problem of pose classification would be a practical breakthrough for
antibody discovery because it predicts both if an antibody binds to an antigen (as sequences or modeled
structures), and where and how it binds (through classification of possible poses), and has the potential to
combine information from both sequence-based and structural-based datasets as recently suggested by
Schneider et al. in the DLAB-VS pipeline 8. Here, using Absolut!, we were able to reproduce and
benchmark the behavior of DLAB-VS to poses generated from different types of antibody-antigen pairs.
Therefore, Absolut! fosters the development of new methods before the data are available and enables the
comparison of the predictive power of datasets with a varying richness of embedded structural information.

The challenge of generalization and capacity to predict on unseen data

Another major question in antibody discovery is to what extent rules learned from a set of antibodies
binding to a set of antigens are applicable to other antibodies or antigens (generalization). For instance,
antibody structure or paratope prediction studies typically allow similar paratope or epitope sequences to
be in both the training and testing dataset, and therefore it is challenging to disentangle whether their high
prediction accuracy is due to the presence of a homologous antibody/antigen sequence or structure in the
training dataset (“data leakage” problem). In the context of paratope-epitope prediction, we have shown
that several encodings lead to high accuracy when predicting the target epitope of new paratopes
(Figure 5B,C). However, the high accuracy was due to the successful prediction of epitope targets that were
already described in the training dataset (Supplementary Figure 18, Supplementary Figure 15B,C) while the
accuracy of unknown epitopes during training (here termed neo-epitopes) was very poor (accuracy close to
0 and LD similar to shuffled controls). Certain encodings provided a slight decrease in LD between
predicted and target neoepitopes suggesting that a substring or subpattern could be predicted for some
neo-epitopes (Supplementary Figure 18). Of note, the LD of predicted epitopes to their target was slightly
better for neoepitopes sharing subpatterns with training epitopes (close neoepitopes) than for those that
are more dissimilar to the training dataset (Supplementary Figure 20). The prediction of neoepitopes has
also been proven to be difficult on the TCR binding prediction problem, for TCR sequences distant from
the training dataset *'®. Furthermore, the complexity of paratope—epitope prediction also depends on
the number of possible answers for a paratope (Supplementary Figure 15A, gray histograms). Due to the
dataset design of millions of CDRH3 to few antigens (as in the real-world), the possible answers were
limited and the tested NLP architectures could reach high accuracy. In contrast, when studying either
epitope—paratope prediction or datasets with mutant antigens, a many-to-many approach will need to be
developed, a Multiple Instance Learning formalism "' could help learn from datasets with higher levels of
cross-reactivity '°"'%. Absolut! datasets will be critical for optimal design of such models.

We also developed a strategy to assess the extent of data leakage on trained model performance, due to
similarity of encoded paratopes in training and test datasets, by clustering similar encoded paratopes, and
assigning the clusters to either the training or test dataset (Supplementary Figure 21, Methods).
Interestingly, the prediction accuracy was slightly higher using the “no data leakage strategy”, suggesting
that binding rules could be learnt beyond merely similarity. However, these findings do not exclude a
potential influence of alternative types of similarity, e.g., conserved features reminiscent of structural
similarity '%. Altogether, our results suggest that the analysis of similarity in antibody-antigen datasets as a
confounder (instead of assuming that similar antigens bind the same target), and studying the capacity of
different encodings to provide a functional similarity landscape in the encoded space, represent promising
avenues to increase generalization.


https://paperpile.com/c/6x2vFO/HjxIq
https://paperpile.com/c/6x2vFO/VPsQ
https://paperpile.com/c/6x2vFO/ohX6d+l6vS1
https://paperpile.com/c/6x2vFO/J4VmL
https://paperpile.com/c/6x2vFO/5zfUN+J4VmL
https://paperpile.com/c/6x2vFO/g8Je
https://doi.org/10.1101/2021.07.06.451258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451258; this version posted July 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

24

Limitations of the Absolut! framework in terms of reflecting the complexity of antibody-antigen binding
Although the Absolut! framework includes the above-mentioned levels of complexity, the main limitations
of our model with respect to the current understanding of antibody-antigen binding are: (i) proteins do not
conform to lattice representations based on fixed inter-amino acid distances and rigid 90-degree angles. (ii)
Protein binding depends on additional factors not included in this model such as solvatation and 3D
distribution of charges, and the possible flexibility of the antigen structure depending on the binding
antibody. (iii) Only the CDRH3 loop (as opposed to VH-VL) was simulated, which is the most variable chain
for antibody specificity >, thereby neglecting the topological constraints with other CDR loops and their
contribution to binding as well as the influence of the constant region on antibody binding '®.

Potential improvements for the Absolut! framework to include antibody full chains

Possible improvements of the Absolut! framework are: (i) within the lattice framework, it may be possible to
add local geometric '® or angle constraints ' within consecutive groups of amino acids, and thus, add an
additional level of structural complexity on CDRH3 sequences binding an epitope. (ii) The 90-degree
angles can be refined to a larger set of angles. This will impact the lattice resolution and the antigen
discretization might be redefined for higher lattice resolution. (iii) Since the CDRH3 peptide is anchored on
a conserved region between antibodies, geometric constraints could be included between the endings of a
CDRH3, but this would require care since Absolut! only considered 11 amino acids that do not necessarily
include both ends of the CDRH3. (iv) Including structural constraints between more than one loop could
enable simulating the CDRH3 and CDRL3 chains together, or even all CDR antibody chains although the
computational cost of evaluating each pair of compatible CDRH3 and CDRL3 structures without further
optimizations seems unrealistic to achieve at the moment. (v) The top 1% binding thresholds used across
the manuscript are an arbitrary choice of the user and can be adapted to any other simulation or
experiment data-informed settings. Relative thresholds per antigen mimic the fact that experimental
enrichment of high-affinity sequences is usually affinity threshold agnostic and therefore should not be
compared across antigens. (vi) It will be possible to compare different energy potentials and to include
non-linearities between the energetic contributions of neighboring amino acids once more experimental
affinity distributions have become available. Docking-based affinities are not directly suitable to this end '%’.

There is the risk that trained models on synthetic datasets would increasingly learn synthetic design biases
with increasing size of these datasets, which we cannot exclude. However, learning the biases is only a
problem if it decreases transferability. We believe the fact that transferability of ML method rankings was
observed for a range of specific use cases as shown in this study (Figure 3C-D, Figure 4, Figure 5), supports
the notion that biases are to a certain extent negligible for the use cases tested. Furthermore, the fact that
sequence-encoded paratope-epitope prediction accuracy was low for the investigated dataset size and
model complexity (Figure 5) suggests that the ML models were not able to learn lattice biases. Since
experimental datasets also contain their own biases, these biases may be integrated in the future.

Finally, ML investigations shown will require follow-up studies. Beyond detailed benchmarking of already
implemented encodings, investigations of graph-based encoding, physicochemical properties, full torsion
angle, or 3D voxels, the addition of physics-based priors may be needed '®®. Furthermore, comparative
insights into different ML architectures such as Transformers, graph-based ML %4419
strategies such as integrated gradients to map the ML models’ predictions to the underlying biology are
warranted "%,

as well as attribution
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Materials and Methods

Representation of antibody-antigen binding

We used the Ymir framework that can represent binding between ligands and receptors in a 3D-lattice and
has been used to model affinity maturation in germinal centers ¢. Briefly, a protein is a set of consecutive
(neighbor) amino acids on the 3D lattice (Supplementary Figure 2), meaning only 90 degrees angles are
considered, and only one amino acid is allowed per lattice position. A protein chain is represented by its
amino acid sequence, a starting point in space, and a list of relative moves in space to determine the next
amino acid position (Straight (S), Up (U), Down (D), Left (L), Right (R)) according to a moving observer’s
coordinates (similar to a plane pilot) ¢. From the starting point, the first move is defined from the
coordinate system (Ox for straight, Oz for up, etc.), and the “observer” moves or turns. The next move is
relative to the observer. “Backwards” (B) is only allowed as the first move (otherwise, it would collide with
the previous position). For instance, “(25, 30, 28), BSLDUSUSRS, RGAYYGSSYGA" or “(26, 30, 27),
DLURSLDDUL, YYGSSYGAMDY" are two protein structures of the size “10 moves” or 11 amino acids. In
particular, an antigen is a multi-chain Ymir protein (structure and amino acid sequence), and the antibody is
represented either as an 11 amino acids sub-sequence of its CDRH3 (sequence only) or as with a 3D
conformation as an Ymir protein (structure and amino acid sequence).

Automatic discretization of antigens

The position of each amino acid within a protein’s PDB structure of a protein (the antigen) requires
transformation into 3D integer lattice positions in order to use the Ymir framework (Figure 1B). Intuitively,
this process is similar to rescaling the PDB structure, finding the best rotation and translation, and
converting each amino acid position into a possible integer position around it with the best fidelity to the
original structure. We used the software LatFit ** to perform this task, using its dRMSD (Root Mean Square
Deviation, providing a measure of the distance between experimental and lattice positions) minimization
algorithm. LatFit iterates through multiple possible reconstructions of the protein structure on the lattice. It
starts from the first amino acid of the protein and assigns it to (0,0,0) in the lattice. It iterates through all
possible neighboring positions for the next amino acid, thereby generating multiple starting lattice
structures of size two amino acids. Each structure is ranked according to its best fit to the underlying PDB
positions, determined by the dRMSD, calculated on the best rotation/translation between this structure and
the original PDB structure. LatFit iteratively stores a list of N best-ranked structures of lattice positions for
the first K amino acids, and extends each structure with every possible position for the next amino acid,
before ranking all the newly extended structures by their dRMSD and keeping only the N best ones. When
residues are missing in the PDB file, or for instance when a protein loop was not structured enough to be
reconstructed from a crystal or cryoEM, LatFit automatically starts a new chain starting with the next amino
acid. Finally, since LatFit cannot parse residue insertions and can only process residues from a single chain
in the PDB, we used pdb-tools '"° to rename amino acid insertions by shifting residue ID and merge all
chains of interest into a single chain and adapted the LatFit C++ code to create new chains when
necessary.

Altogether, the following LatFit parameters are considered during the discretization of the antigen:

i) Type of discretization: Which position do we consider for an amino acid (the position of the C
Alpha “CA", the centroid center “CoM”, or the fused center of positions of all the amino acid
atoms “FuC” that we implemented);

ii) Lattice resolution: The distance between two lattice points in A,

iii) N: The number of possible lattice chains that LatFit keeps at each iteration.
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We compared the discretization types and lattice resolutions (Supplementary Figure 3) and reached the
conclusion that a lattice size of 5.25 A using the “FuC"” discretization is optimal to minimize the dRMSD
quality of discretization while avoiding an excessive number of empty cavities inside the protein when the
lattice resolution is larger. As a tradeoff, values for N (retained lattice chain solutions) larger than 25 did not
significantly improve the quality of discretization (ARMSD), although special cases of large proteins needed
N=50 for LatFit to find a solution (PDB 3VI3 chains AB and 5JW4 chain A). Therefore, the discretization step
preserves both the native antigen topology in 3D-space (typically <3.5A, Supplementary Figure 3) as well
as the native surface amino acid distribution (Supplementary Figure 7A).

Removal of aberrant geometries

Discretization artifacts might leave empty positions (cavities) inside the antigen, or generate topologies that
would not be physically accessible by antibodies in vitro/vivo (Supplementary Figure 3B). For instance, a
free position surrounded by five amino acids would be a dead-end if an antibody bound there.
Furthermore, an antibody should not occupy a free position surrounded by four antigen amino acids in the
same plane (a “donut hole”) because the antibody’s simulated peptide end would “pass through” the
antigen. We used a recursive algorithm that identifies “aberrant geometries” and blocks access to all
positions surrounded by four planar (donut) or five or six (dead-end) inaccessible positions until all such
positions had been blocked. We added a visual inspection step for complicated topologies where the
antibody may pass through the antigen (manual curation by adding blocking positions).

Assignment of glycans in the discretized antigens

Glycans show a high diversity of tree structures anchored on proteins as post-translational modifications
and are of critical interest for antigen recognition because glycans on viral glycoproteins shield against
antibody binding ™"
systems that do not produce associated glycans, and crystal structures are more difficult to obtain in the
presence of glycans '"?. A glycan is typically a tree of sugar molecules anchored on a protein via a B-(1,4)
linked N-acetylglucosamine (NAG) or N-acetylmuramic acid (NAM) stem. Here, we modeled the glycan by
adding a “forbidden” position on the closest available lattice position to the stem position, around the
discretized antigen (independently/after the LatFit discretization step was performed). The flexibility and
weak binding of glycans '
carried out to assign glycan positions in the 3D lattice:

. However, the proteins used in PDB structures are often synthesized on expression

are therefore ignored. Starting from the PDB file, the following steps were

i) identification of glycan stems: Glycans are parsed from the PDB file by identifying NAM or NAG,
and by finding which amino acids are bound to them on the chains of interest. Since the NAM
and NAG are relatively big (similar size to an amino acid), we decided to consider the barycenter
position of all atoms of the NAM or NAG as one amino acid-like element and to discard the
remaining sugar ramified structure that is normally flexible and do not necessarily preclude
antibodies to be at the original positions of the ramifications.

ii) identification of root amino acids for the glycans in the discretized antigen: Since the
preprocessing of insertions by the tool pdb-tools shifts the amino acid IDs in the initial PDB, we
keep track of the amino acid bound by each glycan stem by noting their position in space
instead of their ID. After discretization, we retrieve where these amino acids are (independently
of their ID) positioned in space before and after discretization. The glycan position in the lattice
should be attributed in the vicinity of this amino acid, and as close as possible to the real space
position of the NAG or NAN barycenter.

iii) definition of suitable positions to place glycans (“Atmosphere”): In some cases, the
discretization leaves empty space inside the antigen, which is not a suitable position for glycans
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that are typically located at the surface of proteins. We designed a recursive algorithm to
identify “atmospheric positions” (Algorithm 1) in space that are defined as all positions that (i)
may be accessed from the exterior by 90-degree moves, and (ii) that are either of Hamming
distance one (nearest neighbor) or distance two (non-nearest neighbor) from an antigen residue.
This excludes buried empty lattice points. In the algorithm, [global] means the variable should
be a global variable shared between all calls of the recursive search, to label previously visited
positions.

Algorithm 1 Atmosphere: returns empty lattice points around (but not buried inside) an antigen.

1: procedure ATMOSPHERE(Set of antigen AA positions X)

2: Step 1: Identify an antigen surface residue SP and an adjacent atmospheric point AP

3: Pick randomly an antigen AA Ay(x,, Y4, 2,) that is not on a lattice border +maxX, +max¥, +maxZ.

4: P — (xg,Yq,maxZ) > A lattice border point
5: while P ¢ X

6 | | Pe—P—(0,0,1)

7 end while

8: SP«—P > First surface point
9: AP «— P +(0,0,1) > First atmospheric point
10: Step 2: Recursive deep search of atmospheric points at distance 1 or 2 from the antigen (procedure below)
11: Return RecursiveSearch(AR Set of antigen AA positions X, @)

12: end procedure

13: procedure RECURSIVESEARCH (AP, Antigen AApositions X, [global] visited)

14: | S—90 > Empty set of postitions
15: L <« nearestNeighbors(AP)/V

16: for each P, € L do

17: ‘ visited «— visited UP; » visited should be defined outside the function (global variable) such that
points visited by different sub-calls are not visited twice

18: if non-nearestNeighbors(P;) NX # @) then

19: ‘ S «— S URecursiveSearch(P;,X,visited)

20: end if

21: end for

22: return S

23: end procedure

assignment of possible suitable free positions to each glycan: to position a given glycan in the
lattice, each glycan will be assigned a set of possible positions. Let A be the rooting antigen
amino acids for a glycan /, and its position (A;, A;, A,)in the lattice, from the discretization step.
Let G, be the original glycan floating position (NAG or NAN barycenter) and D, the closest
lattice integer position (rounding up all positions to integers). Among identified suitable
positions (the “Atmosphere”, the neighbors of A; in the lattice are considered as potential
positions for the glycan. If not, D; and its neighbor lattice positions are considered. If there are
still no such positions, its non-nearest neighbors are also considered (Algorithm 2, possible
positions).

greedy assignment of positions to glycans: The possible positions for each glycan are sorted by
their distance to the original position D; and the glycans are iteratively assigned to a position in
a greedy manner (Algorithm 2). For each glycan, its closest available position is assigned to it
except if another glycan has only this choice (in which case the latter is assigned the respective
position) or if another glycan has the same position with a smaller distance. The procedure is
repeated until all glycans are assigned a lattice position. The greedy approach allows us to solve
conflicts between spatially close glycans. Although it may be possible that there are not enough
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free positions for all glycans, in which case one position represents two or more glycans, we did

no

t observe such a case for the antigens investigated.

Algorithm 2 Glycan assignment: for each glycan, the closest atmospheric point in the lattice is chosen, starting
from glycans with smaller distances to atmospheric points.

1

17
18

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

: Stepl: Generation of suitable lattice positions for each glycan
2: procedure POSSIBLEPOSITIONS(Set of antigen AA positions X, glycan PDB positions G,c[;. 67, position of AA

Ai(ajy, ajy,a;;) bound by Gi)
Atm «— Atmosphere(X)
for i from 1 to n; do
Li—0 > List of possible positions for glycan i
L; «—nearestNeighbors(a;) NAtm/X
if L; == () then
\ D; «— (round(G;,), round(G;,), round(G;,)
| | ‘ L; «— D; Unearestneighbors(D;) NAtm/X
if L; == then
‘ ListPositions «— D; Unon —nearestneighbors(D;) NAtm/X
end if
end if
end for
return couples (G;, L;) > L; is a set of lattice positions
end procedure

: Step2: Greedy assignment of positions from the glycan with minimal distance

: procedure ASSIGNPOSITIONS(couples (G;, L;), i € [1..ng])

assignedPos «— none,none,,... > Assigned lattice position for each glycan
forifromltons do

Sort elements of L; per distance to G; (smallest first)

while i|assigned Pos[i] == none > i.e., not all glycans assigned yet
for each glycan i with L; # 0 do

bestChoice «— Li.head()

if bestchoice ¢ U;{L;.head().weight|L;.head() <= bestChoice} then

assignedPos[i] «— bestChoice
Li — 0

else if bestChoice € {Ljz|size(L;) == 1) then
assignedPos[min({j})] «— bestChoice > attributed to glycan with single choice
Loningijp) <9

else

‘ Jj «— min index of j|L;.head() == bestChoice
assignedPos[j] «— bestChoice
| | \ \ Remove bestChoice from all other L;
‘ end if
end for

if 3i|assigned Pos[i] == none and L; == () then
Raise error: Glycan i could not get a position
assignedPos[i] «— impossible

end if

end while

end for

return assignedPos| ]

end procedure
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Calculation of CDRH3 binding energy for a binding structure

The affinity of an antibody (CDRH3) binding to an antigen depends on its binding confirmation ¢’. The
antigen structure is pre-defined by the user (see Section above on discretization), and the structure of the
antibody is not known a priori (the considered 11-mer amino acid subsequence). In the Ymir lattice
framework ¢, only neighboring but non-covalently bound amino acids are considered interacting, and the
strength of the interaction is defined by the Miyazawa-Jernigan ''* potential, an empirical, experimentally
derived potential that gives a binding energy for each pair of interacting amino acids
(Supplementary Figure 2A). For a particular conformation of the antibody on the antigen, by summing the
binding energies of interacting amino acids, three energies can be derived: i) the interactions between
residues of the antigen (folding energy of the antigen), ii) the interaction between antibody residues
(folding energy of the antibody) and iii) the interaction between residues of the antibody and the antigen
(the binding energy). The total energy of the binding is the sum of the three interaction types. Since the
antigen structure is assumed constant, its folding energy is constant and ignored. In order to find how an
antibody CDRH3 sequence binds to the antigen, the antibody-antigen binding structure with minimum
total energy (the most stable) will be defined as the “energetically optimal binding conformation of the
CDRH3 to the antigen”, and the binding energy will be recorded as “binding energy of this CDRH3
sequence to the antigen”. It is this binding energy that is used for all downstream analyses. Of note, the
most stable binding is not necessarily the one with the lowest binding energy, due to trade-offs between
folding and binding energies.

Exhaustive search of the optimal binding (exhaustive docking)

The energetically optimal binding conformation is calculated using a previously developed algorithm ¢ that
performs an exhaustive search (Supplementary Figure 2B). By enumerating all possible binding structures
(which is feasible in the lattice), we guarantee to find the optimal binding, while usual docking approaches
rely on optimization procedures which can always be stuck in local optima, and therefore called our
approach “exhaustive docking”. We restricted the calculations to peptides of 11 amino acids only as we
could show that the lattice binding energy cannot directly be compared between binding sequences of
different sizes ¢ and the calculation for longer peptides was not computationally feasible. In brief, all
possible 3D structures of 11-mers in the lattice were enumerated (independently of their amino acid
content), provided they had a minimum predefined number of 11 contacts. Among the used antigen
structures, an average of 6.8 million 11-mer structures was found per antigen (min 27 500, max 44.3 million)
filtered according to a minimum of 11 contacts to the antigen (i.e., the sum of degrees of amino acids on
the antibody 11-mer). Allowing a lower number of contacts led to an increasingly higher number of
structures, and we noted that found optimal structures always had many more contacts than 11 (22 on
average), suggesting that this contact threshold could further be increased). Finally, when treating a CDRH3
sequence, all its consecutive 11-mers amino acid sequences (called “antibody slices”,
Supplementary Figure 9) are derived and assessed for binding and folding energies according to all
possible binding structures on the antigens. The optimal binding conformation of the 11-mer with the
lowest binding energy is kept as the structural binding of the CDRH3. CDRH3s of less than 11 amino acids
were discarded (6 919 242 remaining out of 7 317 314, see next paragraph).

Antigen and CDRH3 data source for the generation of high-throughput structural antibody-antigen binding
structures

Antigen dataset: In order to build the Absolut! database, we discretized 159 antigens sourced from the
AbDb database, which collects all non-redundant PDB structures of antibody-antigens complexes, as a
selection of therapeutically relevant antigens, to allow for the comparison of our epitopes against
experimentally known binding regions (Supplementary Figure 7E). The list of antigens and their species is
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shown in (Supplementary Table 1). CDRH3 sequence dataset: We used a total of 7 317 314 unique CDRH3
sequences of murine naive B cells ©. Only the 6 919 242 CDRH3 of size 11 or more were used for binding
calculations. For comparison, we used 1 million healthy human sequences of size 11 amino acids or more of
naive B cell BCRs from a set of 22.6 million CDRH3 amino acid sequences ’°. Although our pipeline is valid
for any CDR/FR sequence, antibody binding was computed for a single binding site, the CDRH3 of the
antibody heavy chain, because it is the most important antibody site for antigen specificity >*.

Dataset of protein-protein interaction (PPI) and Ab-Ag complexes (AbDb)

The dataset of protein-protein interaction complexes used to compare encoded interaction network
topologies (Supplementary Figure 8) was obtained from 3did '"* (preprocessed data from Akbar et al. * was
used) thus we followed the preparation, preprocessing, and filtering steps for the PPI data as described
previously °. Briefly, we annotated interactions between domains of different chain origin as interdomain
and identical chain origin as intradomain, removed structures with domain description immunoglobulin and
ig-like. We excluded the structures with non-interacting residues (gap) larger than 7 residues and finally we
excluded protein-protein complexes larger than 300 residues long (to allow for a fair comparison against
antibody-antigen complexes). The PPl dataset comprises 9 621 interdomain and 1 043 intradomain
complexes. The dataset of Ab-Ag interaction comprises 1 200 of Ab-Ag complexes obtained from AbDb'.

Absolut! computational consumption

The calculation of one binding energy/conformation of one 11-mer to one antigen takes on average one to
two seconds on a CPU (depending on the number of structures in the exhaustive search), and 8 seconds
per CDRH3 (Supplementary Figure 4F). In total, 16 000 CPU hours were needed per antigen on average,
and approximately 3 million CPU hours were required to generate the Absolut! database.

Clustering of antibody binding hotspots

From a structurally annotated list of CDRH3 sequences; i.e., the lattice binding structure and their
associated epitope (set of bound antigen amino acids in the lattice). We defined a binding hotspot as a set
(cluster) of epitope residues shared by multiple binding structures on the antigen, in the following way (see
Supplementary Figure 5 for visualization of definitions and Supplementary Figure 22):

i) Assign a list of binding epitope residues to each CDRH3. Each CDRH3 binding structure was
translated into a list of positions bound on the antigen (the epitope). Additionally, to
differentiate only “important” positions on the antigen, we first selected residues on the CDRH3
that were a neighbor to at least D residues on the antigen, and then created the list of epitope
residues A; bound by these CDRH3 residues.

ii) Separate sets of K antigen residues that explain the epitopes of all CDRH3s. We aimed to
identify binding hotspots as antigen residues bound by many CDRH3s. For each antigen
residue, we created the list of all CDRH3 sequences that contain A, in their fingerprint. A set of K
residues {A} “covers” the CDRH3 sequences whose epitope contains all the A. The
identification of binding hotspots translates into the following question: “Can we find a minimal
list of K-sets of antigen positions that cover all the CDRH3 sequences?” This is a “set cover”
problem, which is NP-complete '"¢. We decided to implement a greedy approximation solution
by first taking the set of K positions that cover the most CDRH3s, then removing these CDRH3s
and iteratively determining the set of K positions that cover the most remaining CDRH3s
(Algorithm 3). Therefore, each set of K positions mirrors the binding pattern of a group of
CDRH3s.
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iii) Translate each K-set into a binding hotspot: For each K-set, we analyzed which residues are
bound by this group of CDRH3s. The fraction of CDRH3 structures binding to each residue of
the antigen was computed. The residues in the K-set were all bound by 100% of the CDRH3s.
However, other positions might also be bound by 100% or a high enough percent and would be
grouped together as an epitope if this was the case.

Therefore, in our framework, “a binding hotspot” is a cluster of antigen residues bound by a group of
CDRH3s with K common positions in their binding epitope. Furthermore, a CDRH3 was named
hotspot-specific if it contained the K common binding positions of this epitope. Note that a position can
belong to two hotspots. It is not impossible that CDRH3s would have structures overlapping two hotspots
(although very unlikely), in which case they will be classified as binding to both hotspots.

Algorithm 3 Clustering of binding hotspots as sets of K positions on the antigen. The epitope of each binding i
is taken as a set of N; antigen positions binding antibody residues with minimal interaction degree D. All
subsets of K positions of the N; are generated. The K-sets that represent the most binding epitopes become
binding hotspots.

1: procedure GETKSETS(Antigen AA positions X, bindings (CDR3_Seq R;, 3D_structure S;), K, D)

2: | Step 1: For each binding, select the list of interesting epitope residues, generates all K-subsets from them,
and assign the K-subset back to the bindings

3: SequencesPerKSet «— empty dictionary of type {Set of K positions — list of CDR3 sequences}

4 for each (R;,S;) do

5: EpitopeResidues < —f

6: for each position P in S; do

7: if size(PnearestNeighbours NX) >= D then

8: ‘ EpitopeResidues «—— EpitopeResidues U (S.nearestNeighbours NX)

9: end if
10: end for
11: ListKSets <« GenerateKSubsets(EpitopeResidues,K) > See function below
12: for each set S in listKSets do > i.e., for each K-set
13: ’ SequencesPerKSet[S] «— SequencesPerKSet[S]UR; > R; is associated with all its K-set
14: end for
15: end for
16: Step 2: Greedy selection of K-sets that explain most sequences

17: bindingHotspots «— emptylistofsets
18: while SequencesPerKSet # empty

19: Sort the sets in SequencesPerKSet from highest number of sequences they contain
20: Winner «— SequencesPerKSet.head()

21: bindingHotspots «— bindingHotspots UWinner

22: for each set S in SequencesPerKSet do

23: for each CDR3 sequence R € SequencesPerKSet[Winner] do
24: \ Remove R from SequencesPerKSet[S]

25: end for

26: if SequencesPerKSet[S] is empty then

27: ‘ Remove S from SequencesPerKSet

28: end if

29: end for

30: end while

31: Return PoolWinners

32: end procedure
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33: Tool function: generate all possible subsets of K elements from a set of N elements.
34: procedure GENERATEKSUBSETS({I; > 0, I, > 0,...Iy > 0}, integer K)
35: if K < 1 then
36: \ return § > End of recursion
37: else if K== 1 then
38: \ Return {I;,I,,...Iy}
39: else if size(S) < K then
40: \ Return {—K +size(S),...,—2,—1,11,I5,...,I,} > Fills with negative numbers to reach K elements.
41: else
42: setList «— empty list of sets
43: forifrom 1 to N do
44: SubsetsWithoutli «— GenerateKSubsets(S/{Ii},K —1)
45: for each subset G € SubsetsWithoutli do
46: | setList «— Result + {li}UG
47: end for
48: end for
49: Return setList
50: end if

51: end procedure

Feature extraction from annotated antibody-antigen binding structures

Definition of affinity classes (Figure 2B): Starting from 7 317 314 unique murine CDRH3 sequences ¢,
6 919 242 CDRH3s of 11 or more amino acids were kept and a total of 34 395 055 11-mers were generated
(i.e., on average, 4.97 11-mers are generated per CDRH3). The same 11-mer can occur in different CDRH3
sequences, leading to 22 684 073 unique 11-mers. As explained above, the binding energy and structure
of a CDRH3 to the considered antigen, are defined by its 11-mer with the lowest binding energy.

The Absolut! framework and database allows generating datasets with antibody-antigen binding sequences
represented as a CDRH3 or a 11-mer sequence. Binding thresholds and affinity classes were defined based
on the CDRH3 sequences, for each antigen separately. Binder CDRH3 sequences were defined as top 1%
binders and ranged between 67 761-81 255 unique CDRH3 sequences (median 70 024). This number
varied between antigens, due to multiple CDRH3 sharing the same binding energy as the threshold energy.
Other CDRH3 binding classes such as the top 1%-5% binders, or the bottom 95% non-binders were
defined analogously (Figure 2B).

However, at the 11-mer level, the top 1% binders were not defined as the top 1% of the 22 million unique
11-mers, because the binding energy of each CDRH3 was calculated among 4.97 different 11-mers on
average, i.e., only keeping the energetically lowest 11-mer and discarding the other 3.97 11-mers.
Therefore, an equivalent threshold would be around the top 0.2% best 11-mers. Instead of using a relative
threshold proper to the 11-mers, we decided to define the “binder” or “top 1%" 11-mers based on the
same absolute binding threshold as the top 1% CDRH3 sequences to the considered antigen, i.e, the list of
11-mers that would allow a CDRH3 to be a top 1% (CDRH3) binder to this antigen. We obtained between
28 486 and 97 618 unique 11-mers as "top 1%"” binders per antigen (median 53 753), as shown in
Supplementary Figure 9A. If the CDRH3 sequences did not share any 11-mer, we would have expected to
obtain around 69 000 different binders for each antigen (exactly 1% of the number of CDRH3s). Lower
numbers of top 1% 11-mers meant that the same 11-mer was isolated from multiple different CDRH3s,
while higher numbers of top 1% 11-mers reveal a higher diversity of high-affinity 11-mers within the top 1%
CDRH3s, i.e., that one CDRH3 contained more than one 11-mer over the binding threshold.
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The strategy of defining affinity classes CDRH3 or 11-mers according to the same energy threshold allows
interchangeably using 11-mer or CDRH3 binders for an antigen to build ML datasets. Throughout the
manuscript, we used the 11-mers derived from CDRH3 sequences, to work on sequences of equal size.

Binary classification of binders (Figure 3A-F): The "top 1%" 11-mers were isolated for each antigen (median
53 753 unique sequences, as explained above), and 25 000 of them were taken and labeled as “binders”.
A random selection of 25 000 non-binding 11-mers (dataset 1, within the bottom 99% CDRH3 energies) or
suboptimal binders (dataset 2, top 1%-5% CDRH3 binding energies) was taken. For both datasets, the
non-binder 11-mers were sampled from CDRH3 of the same size distribution as the CDRH3 of origin of the
binders, in order to avoid obvious amino acid composition bias, since CDRH3 sequences tend to start by
“CAR" and shorter CDRH3s have, for instance, higher usage of C, A, and R amino acids.

Multi-class classification of antigen target (Figure 3G): Among the 159 antigens, several antigen structures
originated from the same protein (but different PDBs, see antigens with “*” in Table S1). The binding
structures of the CDRH3s to the remaining 142 non-redundant antigens were kept. When K antigens were
randomly picked to perform classification, only the top 1% binders to at least one of these K antigens were
kept (we discard 11-mers that bind none of them, and perform the classification among binders only).
Further, since we opted for multi-class techniques, we discarded any 11-mer that bound more than one
antigen among the K-selected antigens, explaining the saturation in the number of available sequences as
a function of the number of antigens in Supplementary Figure 9. In the future, multi-label techniques may
also be tested without discarding these cross-reactive sequences.

Paratope-epitope prediction (Figure 5): The structural annotation of all the binding 11-mers to the 159
antigens was transformed into epitope and paratope encoding, as described in Figure 5. For each
paratope and epitope encoding, each encoded pair was kept only once.

Assessment of physiological relevance of binding structures

Surface residues in Supplementary Figure 7A were identified using the module findSurfaceResidues
in Pymol wver. 2.1.0 ''. For Supplementary Figure 7B, for each of the 159 antigen-antibody
complexes that were used to generate the library of in silico antigens, the position of the antibody was kept
unchanged during the discretization of the antigen using Latfit, therefore the lattice antigen is shown with

the experimental structure of the antigen.

Machine learning

Data processing of sequence-based datasets: For the binary classification tasks (Figure 3A-F), 11-mer amino
acid sequences were encoded as one-hot encoding (binary vector, dimension 220), as input features for the
architectures shown in Figure 3B. Dataset 1 (binary classification) was generated with 40 000 unique binder
11-mers (Supplementary Figure 9A), and the same amount of unique non-binders (defined differently in D1
and D2). The number of used training sequences is indicated in the figure legends, while testing was
performed on 40 000 sequences. For 9 antigens out of 159 antigens, only 56 900 to 78 000 sequences
(binder + non-binders) were available in total, and the training ratio was downscaled to 80% training and
the remaining sequences for testing (see Supplementary Figure 9A for the distribution of available binding
11-mers per antigen). For multilabel classification (Figure 3), the amount of available sequences for Dataset
3 is shown in Supplementary Figure 9B. When at least 300 000 sequences were available, 100 000
sequences were used for testing and 200 000 for training. For the ML use case of 10 antigens or less, less
than 300 000 sequences were available and 80% of them were used for training and 20% for testing.
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Data processing of encoded paratope-epitope pairs: For the paratope-epitope prediction problem, a list of
unique paratope-epitope encoding pairs was generated by taking the structural annotation of all 11-mers
from the top 1% affinity class. Therefore, the same encoded paratope-epitope pair can represent the
binding of multiple 11-mer sequences to different antigens and is only repeated once in the
paratope-epitope dataset. The number of available unique paratope-epitope pairs is shown in
Supplementary Figure 15A. The number of used training pairs is indicated in the figure legends (between 1
600 to 200 000 pairs) while 100 000 pairs not present in the training dataset were used for testing. For the
“motif” encodings, only 2 262 to 9 065 pairs were available, and for the “Max" or “8000" condition, 80%
of all available pairs were used for training and 20% for testing. The encoded paratope-epitope pairs are
processed for NLP processing by cutting the paratope and epitope in words of size 1 (degree-free) or size 2
(degree explicit) encodings while gaps were considered as one word (see Supplementary Figure 23A).
Processed pairs were completed by adding a <start> and <end> word tokens, tokenized word by word,
and padding. Words of size 1 in degree explicit encodings led to lower accuracies and we restricted
ourselves to words of size 2.

Encoder-decoder: We leveraged a model based on Neural Machine Translation ¥ to “translate” an epitope
to a paratope and vice versa at motif, sequence, and aggregate levels. The architecture comprises two
components: encoder and decoder with gated recurrent units (see Supplementary Figure 23). Within the
decoder, a Bahdanau attention layer ® was used to capture relevant input-side information necessary for
the prediction of the output. Utilizing the context vector, the decoder generates each paratope or epitope
motif/sequence character by character. The dataset was split into 80% training and 20% test set. An
embedding layer of dimension 6 was used to learn numerical representations of the input. 516 cells in the
GRU were taken, otherwise known as the length of the hidden dimension. The training procedure was
carried out for 150 epochs with Adaptive Moment Estimation (Adam) optimizer '"® and was replicated ten
times. 20 additional epochs were used where the loss function was letting the decoder predict the full
output sentence instead of predicting the next word from the true previous word. The deep learning
framework, Tensorflow ver. 2.0 "’ was used.

Transformer: A transformer architecture was used as a comparison and implemented in Tensorflow
ver. 2.0. Specifically, 8 heads, an embedding dimension of 16, and feed-forward layers of dimension
512 were used, together with a dropout rate of 0.1. The training dataset was separated into 40 batches of
equal size and 250 epochs were used.

Shallow learning models for classification (including paratope-epitope prediction as a classification
problem): Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression
(LR) models were defined as shallow models. All shallow learning models were parameterized with their
baseline (default) parameters (see Table 1). We note that the shallow learning models, namely LR and SVM,
yielded comparable performance (Supplementary Figure 11) in comparison to the single-layer neural
network (Figure 3) and the performance may further be improved by hyperparameter optimization. Prior to
training, the data were randomly split into training and test datasets (80:20), each amino acid was encoded
as a one-hot vector (of size 20), consequently, each sequence was encoded as a one-hot vector of size 220
(11x20). Following training, the test dataset was used to obtain the model’s accuracy. The ML framework
Scikit-learn wver. 0.21.3 *'?° was used to construct, train and evaluate the models. The
comparison of ML architectures from Mason et al. *” in Figure 3H, was performed using hyperparameters
from their study instead of the ones used for classification in the rest of the manuscript (see Ranking of ML
architectures for sequence classification below).
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+in

__tpttn . . . .
Performance metrics: Accuracy is defined as &+/n+intip where tP is true positive, tn is true negative, Ip
is false positive and /7 is false negative.

Macro F1 is defined as
2 x (Precisiony x Recallyr)/(Precisiony + Recallyy),

Micro F1 is defined as
2 x (Precision, x Recall,)/(Precision, + Recall,,)

where macro averaging M is the per-class average and micro averaging A is the cumulative average as
defined in 7% Specifically, macro averaging splits the multi-class problem (k classes) into a binary
classification for each class (k), measures the performance metric for each class and finally averages the
results from all classes (average of k metrics). In contrast, micro averaging treats the entire dataset as one
aggregate and measures one single metric (instead of k metrics). Thus, micro-averaging is more sensitive to
imbalance in the dataset since the class with a large number of samples dominates the average. Macro-
and micro-averaging will return an identical metric when the number of samples in each class is identical
(balanced dataset).

Table 1 (refers to Methods, Figure 3 and Figure 5) | Parameters of the shallow learning methods.

During training, unless stated otherwise, the default parameters for each model were used. We note that we did not perform any
hyperparameter optimization. Therefore, the performance of these models may further be improved by additional steps of
hyperparameter optimization.

Shallow learning model Parameters used
Naive Bayes (NB) priors=None, var_smoothing=1e-09
Support Vector Machine (SVM) penalty="12", loss="squared_hinge”, dual=True, tol=0.0001, C=1.0, multi_class="ovr",

fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0,
random_state=None, max_iter=1000

Random Forest (RF) n_estimators=100, criterion="gini", max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto”,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None

Logistic Regression (LR) penalty="12", dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver="Ibfgs", max_iter=100,
multi_class="auto”, verbose=0, warm_start=False, n_jobs=None, |1_ratio=None

Integrated Gradlients (IG) * were computed with PyTorch ' on the SN10 architecture to identify the
importance of input dimensions towards the binder / non-binder prediction. The SN10 model (Figure 3)
was trained on 40 000 sequences from dataset 1 for antigen 1TADQ_A (i.e., containing 50% binders and
50% non-binders to antigen TADQ_A). IG were only calculated on binder sequences from the training
dataset (positive class), to identify which positions were predicted to be important for binding, or to reveal
clustering of sequences based on their predicted IG. For each sequence, linear interpolations of 100 points
between the one-hot encoded input and a baseline were created (we used the “zero” baseline, i.e., a zero
vector with the same dimensionality as the encoded input). Gradients for each interpolation were
computed with respect to the output of the neural network. The IGs are computed by averaging over all
100 gradients. Thus, each sequence is associated with a 11x20-dimensional |G matrix.
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VAE: We used a standard VAE implementation ' using fully connected layers, batch normalization
between layers (for numerical stability and to allow for higher learning rates, we used the Adam optimizer
with a learning rate of 1e-04), and a module for sampling from standard normal distribution. The
architecture is described in Table 2. The encoder takes one-hot encoded 11-mers (220 input units) while the
decoder contains 220 output units. We trained the model with 233 605 samples. The VAE optimizes
Evidence Lower Bound (ELBO), which consists of reconstruction error and the Kullback-Leibler (KL)
divergence to keep the posterior probability close to the latent prior. The reparameterization trick was used
to allow backpropagation through non-deterministic nodes in the neural network. Specifically, our
implementation uses negative log-likelihood for reconstruction loss and KL divergence as a closed formula,
and was built using the PyTorch deep-learning framework. Regarding parameter beta, we tried the
following (1.05, 1.1, 1.2, 1.5, 2.0). The purpose of parameter beta was to encourage learning disentangled
representation where each dimension of the latent space (orthogonal directions) corresponds to a single
variation factor in the input space '®. We noticed that while increasing the value of parameter beta, the
reconstruction loss increased as well on average (resulting in lower reconstruction quality, also described by
Dupont et al. %), and did not observe any changes in the clustering. We, therefore, used beta=1.0.

Table 2 (refers to Supplementary Figure 14): VAE architecture layer by layer.

The number of neurons in each layer is shown, with the type of activation function. As a comparison, other architectures with one
less layer in both encoder and decoder were tested and yielded less clear delineation of clusters, written as [Encoder dense layer
sizes (latent space dimensions used to represent mean and variance and first decoder layer size). Other decoder dense layer sizes]:
[220-100-(50-50,40-40,30-30, or 20-20)-100-220]; [220-200-(50-50,40-40,30-30, or 20-20)-200-220]; [220-300-(50-50,40-40,30-30, or
20-20)-300-220];  [220-400-(50-50,40-40,30-30, or 20-20)-400-220]; [220-500-(50-50,40-40,30-30, or 20-20)-500-220];
[220-500-(50-50,40-40,30-30, or 20-20)-500-220] and [220-500-(20-20)-500-220].

Encoder Decoder

Dense (220) - BatchNorm1d - ReLU Dense (40) - BatchNorm1d - ReLU

Dense (300) - BatchNorm1d - RelLU Dense (100) - BatchNorm1d - RelLU

Dense (100) - BatchNorm1d - RelLU Dense (300) - BatchNorm1d - ReLU

Dense (40) for mean and dense (40) Dense (220) - Softmax
for variance - BatchNorm1d

ESM-1b embedding layer: In order to leverage biochemical attributes pre-learned on 250 million protein
sequences, we added to the VAE the pre-trained ESM-1b transformer embedding architecture 125 using the
default parameters to generate per-sequence latent space representations of 11-mer sequences.

UMAP visualization: The latent space of the VAEs was clustered using UMAP with the following parameters:
Mneighbors=(2, 5, 10, 20, 50, 100, 200), min_dist=(0.0, 0.1, 0.25, 0.5, 0.8, 0.99), Ncomponens=(2,3),
metric=("euclidean”,” correlation”).

DLAB-VS pose classification pipeline

Generation of poses using Absolut!: During exhaustive docking, Absolut! enumerates all possible
conformations (binding poses) of a 11-mer CDRH3 sequence to a predefined antigen, and calculates two
energy components for each pose: the binding energy and the folding energy. Their sum is the total
energy of the pose, which represents its probability of being stable. Instead of returning only the structures
with optimal total energy (the most stable ones), we modified Absolut! to rank all the enumerated poses
(6.8 millions on average during one exhaustive docking) based on their total energy, and to return the top
N=500 poses with minimal total energy. This step replaces the docking step in DLAB-VS ®'.
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Selection of antibody-antigen pairs: In order to create a database of antibody-antigen poses for pose
classification, we selected sequences with various energy thresholds to Absolut! antigens. For each antigen
A; of the library, we randomly selected: i) 500 high-affinity 11-mers (top 1% affinity), 2 500 low-affinity
11-mers (top 1%-5% affinity), iii) 2 500 non-binders (bottom 95% affinity), and iv) 4 500 11-mers from the
pool of sequences that were high affinity to any of the 142 antigens, as “other pairs”. We included these
11-mers irrespectively of whether they would also have high affinity to the considered antigen A, to mimic
the bias of the random pair matching strategy as used in PPI®. It is however possible to annotate them with
Absolut! as false negatives prospectively during performance analysis if necessary. The numbers of
high-affinity and “other” pairs were calibrated to the 1:9 ratio reported in DLAB-VS (thereby 500 and 4
500). We therefore created a database of 500 poses from 10 000 antibody-antigen pairs for each antigen in
the library (700 M poses in total). For DLAB-VS, due to computation time constraints, we randomly picked
10 antigens for each simulation and only kept GroupSize=10 randomly selected poses per
antibody-antigen pair from each antigen before dataset preprocessing. Up to 142 antigens and 500 kept
poses per pair were available within the generated pose dataset.

Calculation of fnat and annotation of poses: The poses from low affinity pairs, non-binding pairs and other
pairs were labeled with “L”, “N”, and “O” and were all associated with the class O (negative). Each pose
from a high affinity pair needed to be compared to the target binding structure, that is, the energetically
optimal pose for this pair (based on total energy, as used in the other figures of the manuscript). For a pose
(the pose to be compared or the target binding structure), the set of binding pairs was enumerated
(containing each time a residue in the CDRH3 and a residue in the antigen, that are neighbors in the lattice,
i.e., interacting). The intersection of the two binding pairs was calculated (and represents the list of
“conserved native contacts”). Subsequently, this number was divided by the total number of binding pairs
in the target pose, thus ranging between 0 (no shared contacts) and 1 (all contacts from the target pose are
present in the pose). Finally, depending on the positive and negative thresholds threshold, = 0.5 or 0.7 or
0.9 or 1, and thresholdy = 0.1, any pose with fnat higher than threshold, was labeled “P" and classified 1
(positive), while poses with fnat lower than thresholdy were labeled “I” (incorrect) and classified O
(negative). Of note, poses with a fnat between the two thresholds are considered as a “no man’s land” and
were discarded from the datasets, because the fnat is not directly mirroring the relative energy (binding or
total energy) between the poses. In Absolut!, it would also have been possible to classify “P"” and “1” poses
based on an energy threshold but this information is not available experimentally at high throughput and
the predicted Absolut!-based results would therefore not be transferable to application on experimental
datasets.

Encodling of poses: Starting from a pose, only paratope and epitope residues were kept. The barycenter of
paratope residues and epitope residues was calculated separately, then averaged as the "interaction
center” (IT), and the full pose was translated to put the IC at position (2.5,2.5,2.5). Since the IC is a floating
number, the translation was rounded randomly up or down for each direction to end up in integer
positions, therefore similar poses are sometimes translated between each-other by a maximum of 1 grid
step in each direction (this creates a data augmentation by translation without increasing the number of
poses). Finally, only the integer positions [0;5] for each axis are kept, generating a 6x6x6 cubic lattice. The
paratope and epitope residues are then separated in two 6éx6x6 cubic lattices, as input to the CNN, and
each AA in the lattices is converted into a one-hot encoding with 20 possible values, and empty positions
are encoded as a 20-dimensional zero vector.
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Preprocessing of training and test datasets: The list of GroupSize=10 randomly selected poses per
antibody-antigen pair were gathered, annotated with their label (P, I, N, L, O) and class (0/1) from 10
randomly selected antigens. To avoid data leakage, it is important that the poses from the same
antibody-antigen pair should not appear both in training and test datasets. Therefore, the poses were
shuffled by groups of GroupSize, and the first nPosesTrain = 8000 poses after shuffling are assigned to the
training dataset, and the next nPosesTest=2000 poses are assigned to the test dataset. Importantly, since
there are much less positive poses than negative poses, and as performed in DLAB-VS, the positive poses
are repeated in the training dataset to reach the number of negative poses (i.e., the training dataset is
balanced with 50% of positive poses and 50% of negative poses altogether).

Data augmentation by rotation: In order to rotate poses, a uniform list of rotations are enumerated
(Algorithm 4). In order to be independent on the axes (rotationally invariant), a list of uniformly distributed
unit vectors (defined as the phi (=0 at the equator) and theta (=0 at the z axis) angles in spherical
coordinates) on a sphere are enumerated according to the following formula '%, where resolution=1000 is
the number of unit vectors on the equator (this number decreases at higher latitudes).

Algorithm 4 Function that generates a list of uniformly distributed unit vectors on a sphere.

—_

: procedure GENERATEROTATIONS (resolution)

2 listRotations «— empty list of [¢, 8] angles
3: for i from 1 to resolution-1 do
4 | | e~ T3
5: n; «— 0.5 + v/3.resolution.cos(6;) ]
6: shift «— 0.5(i is even?)
7: forjfromOton;-1do
8: ‘ ‘ ‘ listRotations «— listRotations U[—m + 271%, 0;]
9: ‘ end for
10: end for
11: return listRotations
12: end procedure

When a pose needs to be rotated, during preprocessing, a random (phi, theta) rotation is picked from the
list of rotations, and a rotation matrix is applied to each position of both paratope and epitope 6x6x6 cubic
lattices that contained a residue (using the picked phi and theta, i.e., same rotation for both lattices). The
new position of each residue is rounded up to the closest integer coordinate in each axis, and bounded
within [0;5] to generate two new, rotated, paratope and epitope 6x6xé cubic lattices. For each pose in the
train or test datasets, Ngouions Were performed, and one of the rotations was performed with angles (phi=0,
theta=0), preserving the original pose. This step multiplies the training and test datasets sizes by
nRotations.
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CNN architecture: The configuration of the CNN used for pose classification is shown in Table 3.

Table 3 | Parameters of the CNN layers. CNN architecture: The input shape of the pose classification architecture is ([6x6x6x20],

[6x6x6x20]). Two CNNs with the same architecture (but different parameters) process each cubic lattice in parallel. Each CNN has

the following layers:

Layer Layer Filter | Kernel Padding type Stride Kernel | Activation Batch
name type size size dimension | initializer normalization layer
Layer 1 | 3D convo- 32 3 Same (preserves the (1,1,1) Glorot Relu Yes
lutional original 6x6x6 dimension) uniform
layer
Layer 2 64 Valid (reduced Glorot
dimensions at borders) uniform
Layer 3 128 Valid (reduced Glorot
dimensions at borders) uniform

Layer 4: Dropout layer: The output of the layer 3 of each CNN is flattened, and concatenated into a 256-dimensional feature
vector followed by a dropout layer of value 0.2.

Layer 5: Dense layer that converts the 256 dimensions into one logit for the binary classification, with sigmoid activation function
and kernel_initializer="glorot_uniform”.

Evaluation of model performance on a comparable basis: The inclusion of different types of negative poses
generates datasets with different ratios of positive and negative examples, and also with a different
distribution of poses with different labels (I,N,L,O) within the negative examples. It is therefore not
straightforward to compare the performance of a trained model under different compositions of types of
negative poses. When comparing trained models with the same type of negative poses (for instance in
Figure 4C), the same distribution was kept for train and test datasets, except that positive poses were
repeated during training to reach 50% positives. When comparing trained models under different dataset
compositions, we decided to evaluate the trained models separately on test datasets with the same
composition (Figure 4C, Supplementary Figure 13B-D),
out-of-distribution setting (when the distribution of negative poses in the training dataset was different than
in the test dataset), that is, more “fair”. We consider only three test dataset compositions with predefined
types of negative poses (“O”, “IO”, and “INLO" in Supplementary Figure 13B, C and D, respectively).
Specifically, we first take the type of negative poses requested during training, then create a train/test split,
then further process the test dataset by either removing unwanted types of negative poses, or by adding
2000 poses of a requested type of negative poses that were not in the training dataset composition.
Finally, in both the training and test datasets, the positive poses were repeated to reach the 50% of
positive poses, and therefore reach final balanced training and test datasets. This explains why the F1 score
of models in Supplementary Figure 13A was low (the test dataset was unbalanced), while the F1 score of
Supplementary Figure 13B-D was higher (the datasets were class-balanced, i.e., 50% positive poses). The
summary of simulation parameters is given in Table 4

ji.,e., the models are evaluated in an
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Table 4 | List of parameters for a DLAB simulation. Altogether, a DLAB simulation can be parameterized according to the following
parameters (the values used in the manuscript are given).

Parameter name

Parameter value

Description

nAntigens 10 Number of antigens

nPosesTrain 8 000 Number of poses in the training dataset (prior to data
augmentation by rotation and prior to balancing by
overrepresentation of positive poses)

nPosesTest 2 000 Number of poses in the test dataset (prior to data
augmentation by rotation and prior to balancing by
overrepresentation of positive poses)

nRotations 1,5, 20, 50, or 200 Number of times of pose is repeated with a different random
rotation

strategyNegatives [, O, INO, ILO, INLO, or NL Type of negative poses in the training dataset

strategyNegativeTesting

[, 1O, or INLO

Type of negative poses in the test dataset

condition one-hot or shuffled one-hot encoding or shuffled data
groupSize 10 Number of retained poses for each antibody-antigen pair
fnatNegative 0.1 Maximum threshold of fraction of native (Fnat) for high-affinity

antibody-antigen pairs to be classified as incorrect (classified as
negative)

fnatPositive 0.5,0.7,0.9, or 1 Minimum threshold of fraction of native (Fnat) for high-affinity

antibody-antigen pairs to be classified as positive

nEpochs 10 Number of epochs

batch_size 2 000 Number of samples in each batch

Ranking of ML architectures for high affinity antibody sequence classification on experimental and Absolut!
datasets (refers to Figure 3H and Supplementary Figure 24)

Experimental and Absolut! data sets: We obtained CDRH3 sequences of antibody sequences with
experimentally determined high affinity (n= 11300 positive sequences) and low affinity (n= 27539 negative
sequences) to HER2 from Mason et al. *. The sequences were of size 10AA and had an average LD of 8 to
the original Trastuzumab sequences. Since the sequences were not especially similar to each other, we
used the Absolut! dataset D1 (for 10 randomly selected antigens: 1ADQ_A, 1FBI_X, 2ARJ, 2B2X_A,
3B9K_A, 3BGF_S, 4AEI_A, 4CAD_C, 5B8C_C, 5BVP_I) containing ~50 000 top 1% binding and bottom
99% non-binding 11-mers as synthetic dataset to compare the ranking of ML architectures between
experimental and synthetic data. In order to check whether the predicted performance of ML methods was
also valid in other data design settings with mutated sequences that are more similar to each other, in
Supplementary Figure 24, we also Absolut!-generated mutated sequences (50 000 with 1 point-mutation,
25000 with 2 point-mutations, and 25000 with 3 point-mutations) around the CDRH3 sequence
“CAPNLLFITTVVAPFDYW” that was a top 1% binding sequence to antigen TADQ_A. Mutated CDRH3
sequences above the top 1% threshold were considered as positive and the remaining were labeled as
negative.
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Data preprocessing: Analogously to Mason et al. ¥, eight data preprocessing conditions were designed
with different ratio of binding and non-binding sequences in the training dataset, by random sampling of 7
894 binders and from 7 237 (condition “A") to 17 237 (condition “K") by incrementing the number of
negative sequences by 1 000 between conditions. The test dataset was generated with 1 622 binders and
the same amount of non-binders, distinct from those in the training dataset. Therefore, evaluation metrics
are balanced while the training dataset is more or less balanced depending on the condition.

ML architectures: We used the same ML methods and ML architectures as Mason et al. *? (Table 5).

Table 5 | ML methods and architectures. The sklearn package was used for shallow models (LSVM, SVM, LR, RF) and keras was used
for the ANN, LSTM, and CNN architectures, using the following hyperparameters, taken from Mason et al.

ML model/DL architecture Parameters

LSVM sklearn.svm.LinearSVC, Loss function = “squared_hinge”, Tolerance = 1e-4, C (Regularization) 1.0
SVM sklearn.svm.SVC, kernel="rbf" (Gaussian RBF), degree=3, gamma="scale”, tolerance=1e-3

LR sklearn.linear_model.LogisticRegression,solver="Ibfgs", C=1e-4, penalty="12"

RF sklearn.ensemble.RandomForestClassifier, n_estimators=150, criterion="gini"

ANN tf.keras.Sequential input: flattened one-hot encoding [220] Dense, units=70,

kernel_initializer="uniform" activation="relu” Dropout, rate=0.1 Dense, units=70,
kernel_initializer="uniform" ,activation="relu” Dropout, rate=0.1 Dense, units=70,
kernel_initializer="uniform" ,activation="relu” Dropout, rate=0.1 Dense, units=1,
kernel_initializer="uniform", activation="sigmoid" loss = “binary_crossentropy”

CNN tf.keras.Sequential input: 2D one-hot encoding [10x20] Conv1D, filters=400, kernel_size=3
Conv1D, filters=400, kernel_size=3, strides=1, activation="relu”, kernel_regularizer=None,
bias_regularizer=None, padding="same"” Dropout, rate=0.5 MaxPool1D, pool_size=2, strides="1
Flatten Dense, units=50, activation="relu”, kernel_regularizer=None, bias_regularizer=None
Dense, units=1, activation="sigmoid” loss = “binary_crossentropy"

LSTM tf.keras.Sequential() input: 2D one-hot encoding [10x20] regularizer=tf.keras.regularizers.|2(1e-4)
LSTM, units=40, return_sequences=True, bias_regularizer=regularizer Dropout, rate=0.1 LSTM,
units=40, bias_regularizer=regularizer, return_sequences=True Dropout, rate=0.1 LSTM, units=40,
bias_regularizer=regularizer, return_sequences=False Dropout, rate=0.1 Dense, units=1,
activation="sigmoid"” loss = “mean_squared_error”

* For ANN, CNN and LSTM: optimizer = tf keras.optimizers.Adam() nEpochs = 20 batch_size = 16

Quantification of data leakage in paratope-epitope prediction

In order to assess whether similar instances in the train and test datasets were responsible for the high
accuracy of paratope-epitope prediction trained models in certain encodings (Figure 5B,C), we created
new train and test datasets (for each encoding separately). Briefly, two similar paratopes matching the
same epitope should preferably be both in the train or the test dataset, but not one in each dataset
because the model would predict correctly for the test instance even by overfitting to the similar training
instance. However, two similar paratopes matching a different epitope do not need to be grouped in one
dataset, because they represent “difficult” instances to learn.

Creation of train and test datasets with reduced data leakage. First, the paratope-epitope pairs were
balanced by keeping the same number of paratopes for each epitope. For visualizing paratope similarity
(Supplementary Figure 21), 20 epitopes were randomly chosen, and 500 paratopes for each epitope were
randomly kept. The LD between any pair of paratopes was calculated and UMAP was used to cluster the
paratopes, while their machine epitope (label) was used as coloring. For separating train and test instances,
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for each epitope separately, 10 000 paratopes were kept and a UMAP between paratopes using their LD as
metrics was performed. The clusters generated by the UMAP were then separated and annotated with an
ID using HDBSCAN and each cluster was randomly assigned either to the train or the test dataset. In this
way, similar paratopes will appear in the same cluster and be segregated into the train or the test dataset.
However, similar paratopes matching different epitopes were treated independently since the clustering
and separation was performed for each epitope separately, and such paratopes would sometimes be both
in train dataset, or both in test dataset, or one in train and one in test datasets.

Graphics

Plots were generated using the R package ggplot2 '’ as well as the python packages seaborn '® and
matplotlib '#. Plots were arranged using Adobe Illustrator 2020 (Adobe Creative Cloud 5.2.1.441).
Logo plots were made with R package ggseglogo "*° and networks using Cytoscape 3.0.
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Hardware used
Computations were performed on the Norwegian e-infrastructure for Research & Education (NIRD/FRAM;
https://www.sigma2.no) and a local server.

Code and data availability
The Absolut! package is freely available on https://github.com/csi-greifflab/Absolut/ and the Absolut!
database is available on https://greifflab.org/Absolut/.
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Supplementary Figure 1 (refers to Figure 1A) | Immunological antibody specificity prediction problems formalized as

machine-learning tasks for which Absolut! can generate synthetic benchmark datasets.

Biological problems of antibody-antigen binding are very diverse and require translation into ML tasks performed on a specific type
of experimental dataset. Datasets branch into two main categories: sequence- and structure-based (central ring). A large
proportion of biological questions (middle ring) such as the prediction of antibody reactivity (to a defined antigen), binding affinity,
antigen reactivity (to a defined antibody), and prediction of antibody-antigen structural features may be addressed (partially) by
relying on sequence data alone, however, structural data contains the highest amount of information in terms of resolution and
fidelity for the prediction of antibody-antigen binding (antibody and antigen structures are depicted in salmon and red
respectively). Each biological problem can be converted into ML problems (outer ring) with a diverse panel of formulations, such as
classification/generation of binding sequences, clustering of sequences into binding groups, multi-label classification of sequences
into binding affinity class, prediction of structural features, and classification of binding from antibody and antigen structure. Most
formulations typically fall into classification, regression, or paratope-epitope prediction (Figure 1A), and Absolut! is suited to
generate in silico datasets for all of them.
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Supplementary Figure 2 (refers to Figure 1B) | Representation of antibody-antigen binding and deterministic calculation of the

binding structure by exhaustive docking.

(A) Synthetic antibody-antigen binding structures are represented as lattice peptides whose neighboring amino acids interact

(non-covalently) via the Miyazawa-Jernigan interaction potential . The stability of an antibody-antigen complex is assessed by its
total energy (E.) that sums two types of energies are defined from the interaction potential: the binding energy (E,;,4), summing
the energy of bonds between the two proteins, and the folding energies (E,4), summing the energy of bonds within the antibody.

The folding energy of the antigen is neglected since its structure is fixed and this energy is therefore constant. (B) Exhaustive

docking: The energetically optimal binding conformation of an antibody chain sequence to an antigen is found by exhaustive
search to minimize the energy of the binding complex (see Methods for details).
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Supplementary Figure 3 (refers to Figure 1B) | Steps of the antigen discretization pipeline and optimization of the lattice resolution.
(A) Antigen discretization pipeline. Antigens are filtered for the chains of interest and removal of insertions by pdb-tools '"° and are
further discretized into a 3D lattice using LatFit ®, which outputs a new PDB file with both lattice and real-world amino acid
positions side-by-side. These positions are transformed into a lattice structure (see Methods), where each chain is defined by a
starting position and a string of letters representing moves in the lattice (Straight, Up, Down, Left, Right). The presence of glycans
on the protein is parsed from the original PDB and added at the vicinity of the designated residues that are closest to the original
position (see Methods). Finally, aberrant geometries are removed (curated antigen, see Methods). (B) Definition of “aberrant
geometries” that are blocked from antibody access during discretization. Dead-ends and donut-shaped holes are automatically
detected and blocked recursively. Subsequently, more complex holes are manually determined by visual inspection, such as
larger-than-donut holes that would allow the antibody to go through the antigen, or more complex pockets where the antibody
loop would be “diagonally” blocked to enter. (C-F) Choice of the optimal lattice resolution for discretization. (C-E) Discretization of
the antigen of PDB entry 3V60 with different lattice resolutions (distance between two lattice points), from 3A to 7A. (C) Original
PDB structure of antigen 3V60 with amino acid coloring (shapely palette). (D) Quality of the discretization of 3V60 depending on
the lattice resolution, measured as the dRMSD, quantifying the average distance between pairs of amino acids from the original
PDB and their lattice position. The color represents the method of discretization: using the carbon alpha, the mass center of the
centroid, or the fused center of the whole amino acid. (E) Result of discretization using the four lattice resolutions depicted in panel
(D) using the fused center method, and showing the zoom on a concave area. (F) Discretization efficacy (dRMSD) of 130 antigens of
the database, as a function of the lattice resolution and discretization method. In this manuscript, we opted for 5.25A resolution
(arrow C) in panel D, using a “fused amino acid center” method.
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Supplementary Figure 4 (refers to Figure 1C and Figure 2) | Computational complexity and binding diversity of the Absolut!
database.

(A) Amino acid size distribution of the 159 antigens (amino acid). (B) Species of origin of the antigens (blue: foreign and turquoise:
self). (C) Resolution of the PDBs of the 159 antigens. (D-F) Computational complexity: (D) Distribution of the number of enumerated
structures per antigen (tested docking poses for each CDRH3 affinity calculation). (E) Number of enumerated structures as a
function of the antigen size. (F) Computational resources needed to generate the Absolut! database. Left axis: CPU hours to
calculate the 6.9 million CDRH3 sequences for each antigen (as function of the antigen size). Right axis: average time to compute
the affinity of one CDRH3 sequence to an antigen depending on its size. (G) Effect of glycans on binding profiles. Distribution of
affinities of 1 million murine CDRH3 to antigens that contain glycans (See Table S1), when calculated for binding with (gray) or
without (blue) these glycans. The gray curve is only shown when it is different from the blue one. (H,l) Affinities and binding
conformations between 1 million murine CDRH3 and 1 million human CDRH3 sequences share the same ranges of affinities. (H)
Distribution of binding energies (affinity). Human and murine sequences follow similar distributions of affinities for each antigen. (I)
Distribution of the top 15 most used binding structures for each antigen. Human and murine CDRH3 sequences share the same
usage of binding structures. Structures with only one color denote those that were not in the top 15 most used structures in the
respective other category (mouse or human). (J-L) Structural diversity of binding for the CDRH3 sequences (either high affinity
purple, top 1% or all sequences, blue) to each antigen. (J) Number of distinct antibody-antigen binding structures. (K) Number of
epitopes. (L) Number of binding hotspots.
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E Encoding features of a binding

Interaction code:

Term L, Biological definition Encoding / Example

Antibody sequence:

AAs sequence CDRH3 CARFWLLRGFYWYFDVW Binding pairs of residues, inter (Antibody-Antigen) and intra (Antibody-Antibody)
Antibody slice: Expanded: [(residue antibody [a..k], antigen residue ID [0..) ...]
set of 11 consecutive AAs of the CDRH3 FWLLRGFYWYF (i 33) (k 33) (h 34) (c 35) (g 35) (d 36) (f 36) (d 38) (d 42) (a 43) (c 43)

(a 45) (c 53) (c 107) (b 108) (g 109) (h 112) (h 118) (j 118) (k 119) (k 123)
(be) (bg) (fi)
Compressed: [(residue antibody [a..k], AA on antigen) ...]
iFkFhEcSgSANfNdNdTaNcNaNcGeWbVgAhKhDjDkVkIbebgfi

6427 + 64y +x
141220

Position:
L» Position in the lattice space [0..64]3

Up might
L

Position-List of moves Straight .
2

Structure (without AAs):

Peptide structure in the lattice Interaction (bipartite) graph:

141220-SURL
Antigen structure: position
Spatial conformation of the antigen residues
Expanded: [(Residue, 1D, position)]
[(K, 0, 141320), (T, 1, 141226), ..., (I, 1000, 138256), ...]

Binding pairs of residues, inter (Antibody-Antigen)

Antibody
residues

Antigen 35 36 38 42 43 45 53
residues

a 1
38

partnership features

35 1 1
Compressed: (AAs, [chainl, chain2...]) . . . 2 :_ degree
(KTPLY..., [141320, ULDRUBRDU...], 43 ‘ 9
[138256, RLURDS...]) N
45 f 1

Antibody-antigen binding structure:

AAs from the CDRH3 and their spatial configuration
(to this antigen) that minimizes the binding energy

Encoding features of a paratope or an epitope

(AAs, position, structure)
(FWLLRGFYWYF, 141220, LLDDRDUUDR) (examples for binding (FWLLRGFYWYF, 141220, LLDDRDUUDR)

Paratope (for this binding): not interacting
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‘List of bound antigen residues and their spatial conformation® 9' degree 2+ F2L4L3F2Y3F3 degree 2+  X-XX-XX-X
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2o, { Graph-based distance representation) Surface topology (3x3x3 voxels)
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Supplementary Figure 5 (refers to Figure 1) | /n silico formalization of antibody-antigen binding features and their encodings for ML.
(A) Definitions. An antibody slice refers to 11 consecutive amino acids of the CDRH3, which is the size used to compute binding
(see Methods) ¢’. Amino acids can only occupy integer 3D lattice positions encoded as a single integer number. A peptide structure
is defined as a starting position and a list of moves in space, without knowing which amino acids are in this peptide. An antibody
binding is then represented as the best spatial conformation of a slice that minimizes its energy (according to the interaction of
neighboring lattice residues from the Miyazawa-Jernigan potential, see Methods and Supplementary Figure 2), and is stored as the
amino acids with their structure in 3D. The paratope refers to the spatial configuration of only the antibody amino acids
participating in the interaction, while the epitope is the spatial configuration of the antigen amino acids that are involved in the
binding. Therefore, we define “paratope” and “epitope” as referring to the full structural information of the binding from either
side. In a binding structure, an amino acid’s degree of binding refers to its number of binding partners on the opposite protein.
Note that amino acids of degree 2 on the antibody can bind to residues of degree 1 on the antigen (residue degree asymmetry).
The preferential binding of many antibodies to certain regions of the antigen can be analyzed by clustering the epitope residues as
“antigen binding hotspot”, using a minimal set cover algorithm (see Methods) (B) Representations of the binding interface. The list
of binding partners or the bipartite graph of interaction can conveniently describe some properties of the binding interface, while
losing the spatial configuration of the epitope or paratope (surjective mapping). (C) Encodings of the paratope or epitope.
Paratope and epitope may be represented with different resolutions, to represent the type of available experimental information,
or as encoding features for ML pipelines. The binding amino acids can be annotated with their binding degree, or as “structural
interaction motifs” ° that only encode binding positions and gaps. The 3D environment of each amino acid may be encoded as a
graph of neighbors for each range of distances ', or as explicit presence of amino acids around (local surface topology). Finally,
the full conformation of a paratope or epitope can be provided as a 3D matrix of voxels (3D cubic units) describing the type of
amino acid at each position in the lattice, as used for protein docking strategies .
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Supplementary Figure 6 (refers to Figure 2C) | Positional amino acid frequencies and positional dependencies of binder and
non-binder CDRH3 sequences to antigen TADQ_A.

The binding CDRH3 sequences to antigen 1ADQ (as an example) were assessed for positional dependencies. (A-C) Amino acid
positional bias between binder (from the top 1%) and non-binder (from the bottom 99%) sequences (11-mers) to TADQ_A (see
Figure 2B for details). For each CDRH3 (binder or non-binder), its 11-mer with highest affinity was taken to build the aligned logo
plot. (A) Positional amino acid usage is shown separately for non-binders, representing the sequence bias of CDRH3 sequences
generated by VDJ recombination, as seen by the “CAR"” sequence when the 11-mer is close to the beginning of the CDRH3 or the
DYW sequence when the 11-mer lies close to the sequence’s end. (B) Positional amino acid usage of non-binder sequences,
showing remaining biases from CDRH3 sequences but with a preferential usage of the end of the CDRH3 as seen by the DYW
sequence. (C) Comparison of binder and non-binder positional amino acid usage shown as the Jensen-Shannon divergence
between the distribution of amino acids at each position between binders and non-binders. (D) Comparison of binder and
non-binder positional amino acid usage analogous to panel C for three different antigens, 1FBI_X, 1FSK_A and 1HOD_C. (E-H) The
positional dependencies are further illustrated by the conditional probabilities of having an amino acid at a position knowing the
amino acid at another position, assessed on all subsequences of size 2 (right), 5 (middle) or 11 (left) amino acids of the binders and
non-binders. (E) The simultaneous appearance p(p;, A and p;, A) of two amino acids A and A, at two different positions p; and p; are
quantified in binders and non-binders separately. (F-G) The conditional probability p(p;, A; | p;, A) to observe a certain amino acid
A at a position p; knowing the presence of another amino acid A; at a position p; is shown, which normalizes the correlations
(simultaneous appearance) by the amino acid composition difference between binders and non-binders shown in panel (C).
Residues A (y axis) that show consistently higher conditional probability across all positions (blue horizontal lines in F,G and blue or
red horizontal lines in H) reveal only a higher amino acid usage of A; while local colored points show complex positional
dependencies. (H) The difference Ap(p, A | pi. A) = plpn Al | pi. A) (binder) - p(pi, A | p;, A) (non-binder) between the conditional
probabilities in binders and non-binders reveals binder-specific positional dependencies. The right panel (2-mer) is the one shown

in Figure 2C.
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Supplementary Figure 7 | Comparison of Absolut! antibody-antigen binding structures with experimental crystal structures.

(A) Surface amino acid composition of discretized antigens, compared to the experimental amino acid distribution in their original
PDB file, or to the entire amino acid composition (not only surface, which is therefore identical between the PDB and lattice
antigen). (B) Each antigen was built from PDB structures containing both the antigen and at least one binding antibody. Description
of the overlap between the experimental antibody binding structure in the original PDB, and the predicted binding hotspots (see
C). For a PDB antibody-antigen binding structure, paratope residues in the PDB, contacting a shared binding hotspot position
(core, green) or a peripheral residue of a binding hotspot (dark red) in the lattice can be quantified. A PDB paratope residue is
considered as contacting the antigen if it lies within a radius of 8A to a lattice antigen residue, to mimic the lattice resolution of
5.25A and the antigen discretization error RMSD around 3.5A (Supplementary Figure 3). The different possible hotspots are all
“merged”, meaning that in the lattice, by definition of the hotspots, each structure of a binder sequence in the Absolut! dataset
was binding at least 4 green positions in one of the hotspots. (C) The number of PDB paratope residues contacting a core or
peripheral residue of a binding hotspot were quantified. (D) Distribution of the number of paratope residues contacting a core and
peripheral (side) epitope residues normalized by the number of amino acids at the surface of the lattice antigen. 75% of PDB
antigen-antibody complexes were in contact with the lattice hotspot core residues identified from the 6.9 million murine CDRH3
sequences, while the remaining structures show a high variation of overlap, from few paratope residues (relative to the total antigen
surface) such as antigen 2DD8, up to a strong overlap in the case of antigen 2HFG. When inspecting peripheral residues of binding
hotspots, 85% of antibody-antigen complexes overlapped with peripheral hotspot residues. (E) Experimental PDB antibody
binding versus predicted hotspots for all the Absolut! antigen-antibody complexes. In a few cases, the PDB antibody was binding
to another protein chain than the one of the discretized antigen, in which case the PDB antibody and discretized antibody chain are
not shown.
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Supplementary Figure 8 (refers to Figure 2E) | Reactivity networks of experimental (AbDb) and simulated
antibody-antigen interaction data (Absolut!) are similar whereas the reactivity network of experimental non-immune
protein interaction data (PPI) differs from both experimental and simulated immune interaction data.

To compare the experimental antibody-antigen complexes (AbDb; data preparation and preprocessing were done as described in
%), Absolut! antibody-antigen complexes (Absolut!), and PPI (non-immune protein-protein interaction) complexes, we subsampled
randomly the Absolut! and PPl datasets to match the size of the experimental dataset (n...=7 353 paratope-epitope pairs;
Naubsampling= 100, non-overlapping subsampling), constructed the reactivity network (each paratope is connected to its epitope by an
edge, see inset) for each subsampled dataset, plotted the resulting network degree distributions (here shown only for one
subsample and for the top 200 aggregate encodings; see Figure 5 for detailed explanation on aggregate encoding) and calculated
the KSD between empirical distribution functions of the subsamples. We compared the KSD distances in three groups (group 1:
KSD between experimental vs Absolut! subsamples, group 2: KSD between experimental vs PPl subsamples, group 3: KSD
between Absolut! and PPl subsamples) using pairwise paired t-tests and corrected for multiple testing using the Bonferroni
method. We failed to reject the null hypothesis that the average KSD of network degree distributions are equal in group 1
(experimental vs Absolutl) vs group 2 (experimental vs PPI) and in group 3 (PPl vs Absolut!) and group 2 (experimental vs PPI)
(adjusted p-values are 0.071 and 0.085, respectively). But we detected a statistical difference in group 3 (PPI vs Absolut!) vs group 1
(experimental vs Absolut!) (adjusted p-value 0.019).
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Supplementary Figure 9 (refers to Figure 3) | Generation and properties of classification datasets 1, 2 and 3

(A) Pipeline for the generation of Dataset 1 and 2 for a chosen antigen (see Methods). 11-mer slices were generated from the
CDRH3 sequences and assessed for binding affinity to the antigen. The lowest energy among slices defines the CDRH3 energy. A
(top 1%) binding threshold was calculated and each CDRH3 (or each slice) is labeled with a “binder” or “non-binder” tag according
to the CDRH3-defined top 1% threshold. The binding CDRH3s have a bias to be longer (and the binding slices tend to stem from
longer CDRH3s), which creates an amino acid composition bias between binder and non-binder CDRH3s (or slices), due to the
frequent "CAR” sequence in the beginning of CDRH3s. Therefore, for building a CDRH3-based or slice-based-dataset 1, 40 000
binders are taken and 40 000 non-binders are sampled that follow the same CDRH3 size distributions as the selected binders. For
dataset 2, an additional 5% threshold is defined per antigen to take non-binders within the lowest 1% to 5% energies. (B-E)
Number of available sequences for Dataset 3 as a function of the number N of considered antigens. (B) Number of total
monospecific sequences to one of the N antigens (of note, these sequences can be cross-reactive to antigens other than the N
selected ones). (C) Number of total sequences (including cross-reactive sequences within the N selected antigens) to one or more
of the N antigens. (D) Average and (E) minimum number of monospecific sequences recognizing each antigen (i.e., belonging to
each class).
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Supplementary Figure 10 (refers to Figure 3) | Classification accuracy on D1 and D2 for amino acid composition
(AA-comp) and one-hot encodings.
(A) Shallow learning. In addition to one-hot encoding, we used the frequency of the amino acids (AA-comp) to encode CDRH3
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sequences and as a control we trained the models on label-shuffled datasets (shuffled). Binary classification median balanced
accuracy (shuffled accuracy) ranged between 0.64-0.73 (0.5) and 0.56-0.79 (0.5) for AA-comp and one-hot encoding, respectively.
Maximum accuracy (0.83) was obtained by SVM trained on the largest training dataset (50 000 sequences). Of note, ML methods
were not optimized with respect to hyperparameters. (B) AA-comp encoded neural network binary classification median balanced
accuracy ranged between 0.816-0.82 and shuffled median balanced accuracy for one-hot encoding 0.5 (see Figure 3 for accuracy
values of models with one-hot encoding). (C) Median classification accuracy of neural network trained on D1 and tested on D2 for
AA-comp ranged between 0.768-0.778 (shuffled accuracy at 0.5). For each antigen, model, encoding and Nepgis_irining: training and
test were replicated 10 times.
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Supplementary Figure 11 (refers to Figure 3) | Classification accuracy on D3 for amino acid composition (AA-comp) and one-hot
encodings.

Accuracy of shallow architectures, shuffled control and amino acid composition encoding are assessed on D3 generated for
different antigen numbers as described in Figure 3. (A) Shallow learning. Macro F1 multi-class classification median accuracy
(shuffled accuracy) ranged between 0-0.24 (0-0.05) and 0.01-0.68 (0-0.07) for AA-comp and one-hot encoding respectively. Micro
F1 multi-class classification median accuracy (shuffled accuracy) ranged between 0-0.32 (0-0.18) and 0.01-0.72 (0-0.18) for
AA-comp and one-hot encoding respectively. (B) Neural network. Shuffled Macro F1 multi-class classification median accuracy
ranged between 0-0.01 and 0.02 for AA-comp and one-hot encoding respectively. Shuffled Micro F1 multi-class classification
median accuracy ranged between 0-0.01 and 0.03 for AA-comp and one-hot encoding respectively. See Figure 3 for unshuffled
accuracy. For each model, encoding and # of antigens, training, and test were replicated 10 times.


https://doi.org/10.1101/2021.07.06.451258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451258; this version posted July 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1.00

0.75,, =2

0.50

Macro-F1

0.25

000 T T T T

63

# of neurons (SN10)

1.00
0.75,, 0™ omom
= sz =
w T e st = st
g . = e w
S 0507 o N = =
E - nu57 = u)sﬂ = wn
0.25 o= = o)
o _ ——
n2g8R w2838 weS8R ©wo2I88 wog8R w2988 w2888
2888 w2888 w2888 w2888 we 8 »2388 »2388

Supplementary Figure 12 (refers to Figure 3) | Prediction accuracies of multilabel classification (instead of multiclass in Figure 3), for

antibody sequences to bind a set of predefined antigens.
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Supplementary Figure 13 (refers to Figure 4) | Effect of data augmentation, and definition of positive and negative poses on pose

classification prediction performance.
(A) Additional metrics of pose classification performance depending on the number of times a pose is replicated by rotation in the
dataset (complementing Figure 4C). All trainings are based on the problem "O" (only “other Ab-Ag pairs” as negatives), and are

tested on the same dataset design "O". (B-D) Pose classification prediction performance with different definition of negative

examples (complementing Figure 4D). The x axis represents the negatives included in the training dataset. The positives always

represent 50% of the instance, while the different negatives are kept within the remaining 50% (see Methods). Since every choice of

negative example defines a different problem, it is more fair to compare the train models on the same dataset composition (i.e.,
the same problem). Therefore, the classification performance is shown on problems "O" (B), "IO" (C), or "INLO" (D).
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Supplementary Figure 14 (refers to Figure 3) | Structural properties of antibody binding can be discriminated using
sequence-trained model integrated gradients, but not using sequence similarity, sequence clustering, nor VAE-based latent space
representations.

(A) Similar sequences do not cluster according to paratope (degree-explicit motif encoding, top) nor epitope encoding
(degree-explicit sequence encoding, bottom). 25 000 binder 11-mer sequences to TADQ_A from D1 (Supplementary Figure 9)
were clustered according to their LD, identifying 10 clusters (horizontal color bar) in the heatmaps. The two heatmaps are identical
but showing as vertical color bars the annotation of sequences with either their paratope (top, 10 colors) or epitope (bottom, 10
colors) encoding. (B-C) Integrated gradients can inform whether CDRH3 sequences share a paratope or epitope encoding PCA
and t-SNE of integrated gradients of each binder sequences, computed on the SN10 architecture trained with 40 000 training
sequences (dataset D1, antigen TADQ_A, containing both binders and non-binders Supplementary Figure 9A), colored according
to different properties of the sequences: (B) colored according to the 10 clusters generated by agglomerative clustering on the LD
between amino acid sequences (see horizontal color bar in panel A); (C) colored with associated paratope encoding (top) or
epitope encoding (bottom); or colored with shuffled paratope/epitope labels as a comparison (right) for detecting confirmation
bias. Sequence coloring by paratope (top) is well separated in the integrated gradients-generated PCA and t-SNE, while
agglomerative clustering based on LD sequence similarity could not recover these binding-specific informations. This suggests that


https://doi.org/10.1101/2021.07.06.451258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451258; this version posted July 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

65

taking a new sequence, calculating the integrated gradients of this sequence from the trained model, and integrating the gradients
vector into the t-SNE or PCA could be predictive of its binding paratope encoding. In comparison, sequences colored by epitope
encoding show more than one cluster for the same color, reminiscent of different modes of binding (paratopes) to the same
epitope. (D) Similar CDRH3 sequences bind to different antigens. Sequences from D3 with mono-specific binding sequences to 20
different antigens were clustered according to their similarity (LD), leading to the delineation of 23 clusters (horizontal color bar),
and colored according to which antigen they bind (vertical color bar, 20 colors). Clusters of sequence similarity were not predictive
for the sequences’ target antigen. (E-H): Neither VAE architecture nor ESM1-b transformer embeddings can isolate CDRH3
sequences by antigen specificity. To save computational time, 233 605 monospecific sequences binding monospecifically 10
different antigens from panel (D) were embedded in the latent space of a VAE (lower row) or through the ESM1-b transformer
model '? (upper row) and reduced with UMAP (see Methods). Sequence embeddings were colored according to their LD cluster
identified from (D) (left) and by epitope recognition (right). 10 000 embedded sequences are shown for the VAE and 9 000 for the
ESM1-b.
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Supplementary Figure 15 (refers to Figure 5) | Attributes of the paratope-epitope dataset depending on the encoding.

(A) Numbers of cognate paratopes and epitopes with respect to encodings and degree filtering for degree-free (left) and
degree-explicit (right). The largest number of pairs was observed for the sequence encoding (4 292 836 and 4 166 497 for
degree-free and degree explicit) and the smallest number of pairs was observed for the motif encoding (7 205 and 2 262 for
degree-free and degree explicit respectively). (B) Fraction (relative overlap) of test epitopes that were also present in the training
data. Broadly the overlap between test and training epitopes increased as a function of the number of training sequences. (C)
Fraction of paratope-epitope pairs whose epitopes were present in the training data. As in (B), the overlap increased as a function
of the number of training sequences. 10 replicates are shown in each panel/condition.
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Supplementary Figure 16 (refers to Figure 5) | Performance of the transformer and encoder-decoder architectures on the
paratope-epitope prediction problem with different encodings.

(A-C) Additional accuracy measures for both architectures depending on a large panel of encodings, for degree-free (left) or
degree-explicit (right) encodings, with (upper facet) or without (lower facet) residues binding with degree 1. Each point is an
independent training, 10 different replicates per condition were performed. Learning on a shuffled dataset (on 1600 and 8000
unique paratope-epitope pairs) is compared with learning on 1 600-40 000 (and 200 000 only for the Transformer architecture)
unique paratope-epitope pairs, while all conditions are tested on 100 000 unique pairs when available, or downscaled to reach
80% training and 20% testing (see Methods). The “motifs” encodings only allowed for 2 262 to 9 065 unique paratope-epitopes
pairs (see Supplementary Figure 15A), which are referred to as One-Hot (Max) conditions, and higher dataset size is therefore not
available). (A) Accuracy of predicting the proper epitope size: fraction of predicted epitopes with the same length as the target
epitope. (B) Average Levenshtein distance between predicted and target epitope, normalized to the length of the largest of the
two. The shuffled controls show a different reference level for the LD depending on the encoding. Indeed, degree-explicit
encodings are longer while degree-filtered ones are shorter (Figure 5A), therefore leading to different possible LD values. (C)
Distributions of normalized Levenshtein distance between predicted and target (test set) epitopes. Performance on shuffled pairs
was identical with different training sizes (1600 and 8000 pairs).
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Supplementary Figure 17 (refers to Figure 5) | Prediction accuracy of the paratope-epitope prediction problem with the transformer
and encoder-decoder architecture, using the “Gapped Motif” encoding.

(A) Nlustration of the gapped motif encoding. Here, interacting amino acid residues were encoded as the string X and the size
(number) of non-interacting residues as integers. (B) The distribution of the number of cognate paratopes (left) and cognate
epitope (right). A total of 6092 paratope epitope pairs were observed with 2752 and 324 unique paratope and epitope
respectively. (C) Prediction accuracy (left) and LD (right) for encoder-decoder (blue) and transformer (black). Broadly, both
architectures yielded poor prediction accuracy (~0) and no increased LD as compared to the shuffled controls (LD ~0.4).
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Supplementary Figure 18 (refers to Figure 5) | Paratope-epitope prediction accuracy on paratope-epitope pairs whose epitope was
present or absent in the test dataset.

To examine the prediction accuracy of epitopes that were not present in the training set (test-only epitopes, called "neo epitopes”
here), we calculated separately the prediction accuracy (B) and LD (A) of shared (present in both training and test datasets) and
test-only epitopes. Broadly the test-only epitopes yielded markedly lower accuracy (B) and larger LD (A) in comparison to shared
epitopes across all encodings and degree filtering.
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Supplementary Figure 19 (refers to Figure 5) | Paratope-epitope prediction with shallow learning methods.

As in Figure 5, we examined the performance of shallow learning methods in predicting paratope-epitopes pairs (degree-free
encoding). The highest accuracy (shuffled accuracy) values ranged between 0.36-1 (0-0.01) for the model trained on the largest
training dataset (Ncpras_raining=8 000) and motif encoding (MotifD2). We note that for the motif encoding the maximum ncprus_training
are 4 495 and 1 809 but we show them in the 8 000 row. In contrast to Figure 5, aggregate and chemical encodings did not
improve the prediction accuracy even with increased size of training datasets indicating that shallow learning methods were unable
to capture long-range sequence dependencies in the data. Due to the large memory footprint required to train shallow learning
models with 200 000 training sequences, the RF classifier was excluded in this analysis. For each model, encoding and Neogys wainings
training and test were replicated 10 times.
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Supplementary Figure 20 (refers to Figure 5) | Levenshtein distance of predicted epitopes depending on their similarity to epitopes
in the training dataset (x-axis).

For each test paratope-epitope pair, the closest epitope in the training dataset (lowest LD) was identified, defining a distance
between the epitope and the training dataset (x-axis). The LD of the predicted epitope to the target epitope (y axis) is shown for
5000 pairs in each condition (or all the test pairs for the motifs encoding). 1600 sequences were used for training (enabling to have
a high fraction of test-specific epitopes compared to larger training datasets, see Supplementary Figure 15B,C). The fact that
accuracy was better in conditions for similar epitopes in certain conditions suggests that the trained model can learn patterns of
sequence-wise close epitopes in those conditions (degree-explicit encodings, with degree at least 2 and chemical degree-implicit
also with degree at least 2), and that trained models may be applied to unseen epitopes (neoepitopes) provided they are not too
different from the training epitopes. (A) Degree-free encodings. (B) Degree-explicit encodings.
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Supplementary Figure 21 (refers to Figure 5) | Evaluation of data leakage due to paratope similarity and its impact on the
performance of the two NLP architectures.

(A) To quantify the potential similarity between paratopes sharing the same label (epitope), the paratopes were clustered according
to each encoding, and colored by their matching epitope encoding. The clustering was performed based on the LD between
paratope encodings using UMAP, and 10 000 paratopes were considered per epitope, to ensure the same amount of datapoints
per color (see Methods). Of note, in different encodings, the same LD may have different interpretations: for example, in
"aggregate” substitution can mean a difference in one non-interacting residue, while in “sequence” it is always a difference in the
interacting one. Motif encodings contained less different paratopes encodings for each epitope. For degree-explicit motif
encodings, only 9 epitopes (colors) were matched by 1000 paratopes or more. For degree-free encodings, there were not enough
different paratopes encodings per epitope to show clustering. In degree-explicit encodings, one epitope (color) is represented by
more than one similarity cluster, possibly representing different modes of binding. Visible clusters with a single color show the risk
of data leakage if some sequences from this cluster appear in the training while other sequences from this cluster are in the test,
since they are likely very similar. The encodings that led to highest accuracies in Figure 5 seem to generate more visible clusters
than those with low accuracy. (B,C) Evaluation of paratope-epitope performance after minimizing similarity between train and test
data points. (B) Paratope-epitope prediction accuracy and (C) LD of predicted epitopes compared to the matching epitope of the
two NLP architectures after balancing and after removing data leakage. The data processing conditions are shown on the x-axis.
8000 paratope-epitope pairs were used for training, 800 for testing. For each condition, the training and test datasets have the
same data distribution. The “unbalanced” condition represents the settings shown in Figure 5 as a control. The “balanced”
conditions represent datasets generated with 10 000 paratopes per epitope, before sampling 8000 sequences for the training. The
“no leakage” condition represents datasets where paratope similarity clusters (as shown in (A)) were split such that CDRH3
sequences from the same cluster and matching the same epitope are either in the train or test dataset but not both (see Methods),
thereby preventing that the trained models learn from similarity, and possibly increasing generalization. In the “no leakage”
condition, for each epitope, some clusters were assigned to train and some to test, therefore most of the time the same epitope
appears in both training and test (although with dissimilar paratopes). Therefore, to provide a fair comparison, the results of
conditions “unbalanced” and “balanced” are only shown for test epitopes that were also present in the training dataset.
Altogether, the ranking of encodings according to their accuracy was preserved both after balancing and removing data leakage.
Balancing induced a reduced accuracy in some conditions, meaning a part of the unbalanced accuracy was achieved by accurate
prediction on larger classes. Removing data leakage generally increased accuracy and decreased the LD of predicted epitopes to
their target, compared to both balanced and unbalanced conditions, showing that high accuracy could be achieved despite the
reduced similarity between train and test pairs. Therefore, the trained models were able to learn generalizable patterns to some
extent.
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Supplementary Figure 22 (refers to Methods) | Generation of binding hotspots from a list of antibody binding structures.

(A) The epitope residues of each binding (i to viii, upper panel) are extracted (turquoise residues, lower panel), provided they bind
to an antibody residue of degree at least D (D=1 in this example). The IDs (numbering) of the epitope residues are shown below
the images. (B) Each antigen residue is matched with all corresponding binding structures where it belongs to the epitope. (C) All
possible K-sets (example with K=4 here) of residues are associated with the binding structures that share these K residues. The
K-set covering the most structures is taken as the first binding hotspot; these structures are removed, and the next K-set that covers
the most remaining structures is taken as the second binding hotspot, etc. The two hotspots for 5SDO2_B are highlighted in purple.
(D) Example of all binding structures of the 6.9 million murine CDRH3 sequences around the antigen with PDB ID 5DO2, chain B.
Each antibody (11-mer) structure has a different color and potentially overlaps with other antibodies. (E) The two binding hotspots
associated with all binding structures to antigen 5DO2_B. Each hotspot represents a group of epitopes (/binding structures).
Among a group, the turquoise residues are 100% shared, and are K amino acid or more by definition. The level of red is a 3D
heatmap on the percent of hotspot associated antibodies that cover this residue (with the degree constraint), and therefore shows
the diversity of epitope residues from different binding structures within a binding hotspot. (F) Impact of the size of K-sets on the
number of hotspots and their shape for antigen 5T5F_A. Smaller values of K cluster binding structures with a too small overlap in
their epitopes. Higher values of K lead to duplicate overlapping hotspots, and K=4 was chosen as a good trade-off among 50
inspected antigens (not shown) (G-I) Example of the diversity of hotspots for the 6.9 million sequences, with two non-overlapping
ones in E, a unique one in G, two non-overlapping hotspots in H, or three overlapping hotspots in |. Although the hotspots tend to
form concave topologies, the antigen S5F3B_C in panel H shows a more “immunogenic” pocket (P1) and a “non-immunogenic”
pocket (P2), demonstrating that antigen pockets are not necessarily binding hotspots in the Absolut! framework.
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Supplementary Figure 23 (refers to Methods and Figure 5) | Architecture of the encoder-decoder (NMT) and transformer used for
the paratope-epitope prediction task.

(A) Input paratope-epitope pairs were encoded according to a range of sequence-structures encodings as described in Figure 5A,
start and end positions were encoded by the start and end tokens, and sequences were padded with zero-padding to match the
length of the longest sequence in the dataset. Degree-explicit encodings are tokenized by words of size two (with gaps as one
word, as shown here), while degree-free encodings are tokenized by words of size one. (B) lllustration of the encoder-decoder
architecture (neural machine translation, NMT ¥). Numerical representation of the input (paratope) sequence was learned by the
embedding layer, the output of the embedding layer was passed to the encoder layer (gated recurrent unit, GRU of hidden
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dimension 512; see Methods) and finally a decoder layer with attention was used to translate the encoded input into an epitope. A
Bahdanau attention layer (see panel C) weighs the encoder outputs according to the previous hidden state of the decoder.
Numbers in brackets denote tensor dimensions. N;: maximum input size; No: maximum output size; E: Embedding dimension (6);
H: Hidden layer dimension (512); Vi/Vo: number of possible tokens in input/output tokenized language. GRUs with the same color
share the same parameters. Word by word, the output of the decoder is transformed into the next token of highest weight
(softmax). Forced training denotes when the next target word (not the predicted one) is used to generate the next token. (C)
llustration of the Bahdanau attention layer. (D) lllustration of the transformer architecture ®. The encoder layer comprises N

stacked-encoders with self attention and the decoder layer comprises N stacked-decoders with attention and self-attention layers
(see Methods).
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Supplementary Figure 24 (refers to Figure 3) | Impact of data imbalance on ML performance. To examine the impact of dataset
imbalance (binders/non-binders ratio) on prediction accuracy across different ML methods, we created 11 datasets (A-K) wherein
binder to non-binder ratios decreased in the increment of 0.03 from 0.52-0.31 as described in Mason et al *. In agreement with
the findings by Mason et al., we found that the accuracy and F1 score decreased as the imbalance in the datasets increased
(non-binder>binder) *. The overall performance ranking of Methods reported in Mason et al. was also preserved. To be consistent
with other results in the manuscript, the type of hyperparameters in the RF and LR architectures were kept the same as in other
tasks, (i.e., not taken from Mason et al.). The low performance of the RF architecture suggests that RF is particularly sensitive to
training data class imbalance.
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Supplementary Table 1 (refers to Figure 2A) | List of the 159 antigens provided in the Absolut! database.
The PDB ID, the discretized chain, and information on the antibody-antigen crystal structure are provided. (*) these antigens with
more than one discretization were not considered for ML tasks involving multiple antigens, to avoid considering the same antigen
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twice, leading to 142 remaining antigens for multi-class antigen ML tasks (see Figure 3, Supplementary Figure 9). (3£) antigens

containing glycans.

Antigen Antibody Resoluti
PDB | Chain 9 Name Species of Antigen Linked Disease / Relevance | on (A)
4AEI A | Aah2 scorpion a-mammal toxin scorpion Fab4C1 Androctonus australis Venom 23
40KV E | Anopheles anti-platelet protein 8H7 Anopheles stephensi Antlcoagulka)rilte/ Mosquito 1.8
1FSK A | major birch pollen allergen Bet v 1 BV16 Betula pendula Allergy 29
1RJL C | OspB-CT: Outer surface protein B H6831 26
Borrelia burgdorferi Infection - Lyme Diseas -
10SP O | OSPA: Outer Surface Protein A 184.1 2
5L0Q A ADAM’IO: . D'ismtegrir? and metalloproteinase 8C7 Bos Taurus )
domain-containing protein 10 28
2R56 A | BLG: B-lactoglobulin (allergen of bovine milk) - Bos taurus Allergy 28
3JBQ B |Phosphodiesterase 5/6 chimera catalytic domain ROS-1 Bos Taurus 1
4QWW | A | ACHE: Acetylcholinesterase (snake venom) Fab410 Bungarus fasciatus Poison 27
2YC1 C B-mammal toxin Cn2 from Scorpion 9004G Centruroides noxius Poison 19
S5EPM C |Cm1a: Beta-theraphotoxin from Tarantula - Ceratogyrus marshalli Poison 18
4NP4 A | TOXB: Toxin B bezlotkc))xuma Clostridium Difficile Infection 209
5KTE A | MntH Divalent metal cation transporter - Deinococcus radiodurans - 39
2R2936 A Envelope Protein E - Dengue virus type 2 Infection 3
3RW A | DERF1: Peptidase 1 (group 1 house dust mite allergen) 4C1 Dermatophagoides farinae Allergy 19
4PP1 A | DERP1: Peptidase 1 (Der P 1 house dust mite allergen) 5H8 Dermatophagoides pteronyssinus Allergy 3
2JEL P ptsH:‘ Phosphocarrier protein HPr, histidine containing JEL42 Escherichia coli (strain K12) Infection
protein 2.5
3RKD . . - . .

32 A | ORF2: Capsid Protein 8C11 Hepatitis E virus genotype 1 Infection 19
3VRL C HIV Gag protein A10F9 32
5DHV M |HIV-1 Rev NTD dimers - Human immunodeficiency virus 1 Infection - HIV 23
5EU7 A IN: HIV-1 integrase catalytic core - 26

2DD8 * S m396 23
SARS-CoV Virus Spike glycoprotein Human SARS coronavirus Infection - SARS -
3BGF

39 S F26G19 Fab 3
4%:2“3 A N1 neuraminidase CDé6 Influenza A (H1N1) 28
ngéA N NC41 Infection - Flu 25

N9 Neuraminidase Influenza A virus (H11N9) -
TNCB N NC41

e 2.5
5D02 . MERS (human betacoronavidur 2¢ .

e B |S protein 4C2 EMC/2012) Infection - MERS 24
3GI9 C | ApcT: NA+ dependent amino acid Transporter 7F11 Methanocaldococcus jannaschii - 25
4CAD C |RCE1: RAS and A-factor converting enzyme - Methanococcus maripaludis Cancer 25
4H88 A | Major prion protein mouse POM1 Mus musculus Prion disease 19
2YPV A |fHbp: factor H binding protein (Lipoprotein) 12C1 Infection - Virulence factor 18

Neisseria meningitidis serogroup B -
5T5F A |fHbp: factor H binding protein variant B24 Jar5 Infection - Meningitis 3
1FBI X | Guinea Fowl Lysozyme F9.13.7 Numida meleagris - 3
2VvXQ A | PHLPII: Pollen allergen Phl p 2 - Phleum pratense Allergy 19
4QEX A |EBA-175: Erythrocyte-binding antigen-175 - 45
10B1 C  |MSP1: Merozoite Surface Protein 1 (C-term fragment) - Plasmodium falciparum Infection - Malaria

2.9
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4U1G A RH5: Reticulocyte binding protein 5 QA1 31
2Q8A A |AMAT: Malaria Apical membrane antigen 1 1F9 24
5EZO A | CyRPA: Cysteine-Rich Protective Antigen - 36
Computationally Designed RSV-Presenting Epitope ) o )
4N9G C Scaffold 17HD9 Respiratory syncytial virus Infection 25
5H35 C Membrane protein TRIC: trimeric intracellular cation } Saccharolobus solfataricus )
channel orthologue 2.6
3KS0 J heme domain of flavocytochrome b2 B2B4 - 27
Saccharomyces cerevisiae -
SEll G | Histone chaperone ASF1 - - 24
3NCY A | AdiC: arginine agmatine antiporter - Salmonella typhimurium Infection 32
10AZ A | TRXA: Thioredoxin 1 SPE7 Shigella flexneri Infection - Shigellosis 28
4RGM S Enterotoxin type B 20B1 27
5HDQ A |MNTC:ABC transporter substrate-binding protein 305-78-7 18
TNSN S | SNASE: Staphylococcal nuclease complex N10 Staphylococcus aureus Infection 28
4U6V A |a-HL: Alpha-hemolysin MEDI4893 26
5Jw4 . ’
ap A | Clumping factor A Tefibazumab 3.7
3EFD K KesA (cytoplasmic domain of KcsA) K(+) ) Streptomyces lividans )
voltage-dependent channel 26
2IH3 C |KCSA: Voltage-gated potassium channel - Streptomyces lividans - 17
4%'%0*': A A2C7 23
A33R Vaccinia virus Infection - Smallpox -
4LU5 B A20G2 29
1ZTX3 E  |West Nile Virus Envelope Protein DIl E16 25
West Nile virus Infection -
40l A NS1: Non-structural protein NS1 22NS1 3
1TQB A |PRNP: Prion Protein VRQ14 Ovis aries Prion Diseases 26
2W9E A PRNP: Major Prion Protein ICSM 18 Prion Disease 29
3VG9 A |ADORA2A: A2A Adenosine receptor - - 27
1THOD C |Angiogenin 26-2F Cancer 2
4ZFG | A |ANGPT2: Angiopoietin-2 5A12 neovascular age-related
macular degeneration 23
4750 E B7-Hé6 (tumor cell ligand for NKp30) - Cancer 25
3R1G B |BACE1: Beta-secretase 1 YW412.8.31 - 2.8
BAFFR (Tumor necrosis factor receptor superfamily
2HFG | R | ember 130) CB3s i 2.6
5Jz27 A - 34
5J77 * B Beta-nerve growth factor MEDI578 - 3.4
5J77 * E Homo Sapiens - 34
3NH7 A BMPR1A: Bone morphogenetic protein receptor type-1A AbD1556 .
Human 2.7
3Q3G E CD11b: Integrin alpha-M 107 - 27
3NFP | CD25: IL-2Ra daclizumab Organ Transplantation 29
47FO F CD269/B§MA: Tumor  necrosis  factor  receptor 122.9-xi Cancer - Multiple myeloma
superfamily member 17 19
M2177,
5TLJ_3 X |CD27 M2191 - 35
1YJDE| C |CD28: T-cell-specific surface glycoprotein CD28 5.11A1 - 27
3RAJ A | CD38: ADP-Ribosyl cyclase 1 HB7 - 3
5DMI A CD40 CHI220 Autoimmunity

3.7



https://doi.org/10.1101/2021.07.06.451258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451258; this version posted July 31, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

80
5TZ238| C |CD47 C47B222 Cancer 23
5DFV A | CD81: Tetraspanin-28 - - 28
1QFW | AB |CGB: chorionic gonadotropin, alpha subunit - Pregnancy Diagnosis 35
5IKC M | DBCN: Neuronal migration protein doublecortin 6H10 - 21
3SKJ | E or F |EphA2: Ephrin type-A receptor 2 1C1 -
2.5
4Y5V C | EpoR: Erythropoietin receptor human Diabody 305 Cancer 26
5E8D A | EREG: Proepiregulin 9ES5 Cancer - Colon Cancer 25
S5E8E | LH |F2: Thrombin - P'?ﬁ'cf;fbaifgz‘:gfje"rz/ .
4KI5 M F8: Coagulation factor VIII human 3E6, G99 - 25
4WV1 F FGFR2: Fibroblast growth factor receptor 2 - - 24
4HJO * A | GIPR: Gastric inhibitory polypeptide receptor Gipg013 - 3
4HJO B | GIPR: Gastric inhibitory polypeptide receptor Gipg013 - 3
5E94 G | GLP-1R: Glucagon-like peptide 1 receptor Fab 3F52 Diabetes 2
5C7X A giﬂt;’?i‘Fuer:anulocyte»macrophage colony-stimulating MOR04357 . .
1578 B HER2: Receptor protein-tyrosine kinase erbB-2 pertuzumab Cancer 33
4K3J A |HGF: Hepatocyte growth factor Onartkl;zuma - 28
2ROK * A |HGFA: Hepatocyte growth factor activator Fab58 - 35
2WUC A |HGFA: Hepatocyte growth factor activator long chain FAB:%?EELT - 27
22Uzl R |hras: GTPase Hras - Cancer 2
4YPG C |IFNa2: Interferon a-2 Sifalimumab - 3
3KR3 D |IGFIl: Insulin-like growth factor Il human DX-2647 Cancer 22
Rheumatoid
1ADQ A |1GGA Fe region autﬁ)aacr:fiéod AUtOImmUXirEc{w;it'i?:eumatOid
y 3.2
2077 7 1113 Iebrikgzuma . o
2XQB A |IL-15 DISC0280 - 26
SHI4 B [IL17-A CAT-2000 Autoimmunity 18
2VXT I IL-18 125-2H - 15
ki juvenile idiopathic arthritis
5BVP IL-1B cana tl)numa (sJIA)_ or_cryopyrin-associated
periodic syndrome (CAPS) 22
stos | A |12 Mimobods : ’
4DKE A IL-34 Fab1.1 - 3
3L5W * | Interleukin-13 C836 - 2
3L5X A |Interleukin-13 H2L6 - 19
3DVG XY | Ké63-linked ubiquitin Apu.3A8 - 26
3V60 A LEPR: Leptin receptor 9F8 Obesity 2
3TT1 A LeuT: Leucine transporter, Conformation 1 - - 31
3HlI6 A |LFA1: Integrin alpha-L AL-57 - 23
AMXV B LTA Lymphotoxin-a - - 32
4HC1 B MADCAM1: Mucosal addressin cell adhesion molecule 1 10G3 -

2.9
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4K9E C Mast/stem cell growth factor receptor Kit D4D fragment Fab19 - 27
5TH9 A | MMP9: Matrix metalloproteinase-9 GS-5745 Cancer 3
3BN9 A MT-SP1: Membranel—typ‘e‘ serine  protease 1/ ST14: E2 Cancer
Suppressor of tumorigenicity 14 protein 22
anes* | A MT-SP1: Membrane_—typ_eA serine protease 1 / ST14: 54 :
Suppressor of tumorigenicity 14 protein 15
3503*| A MT-SP1: Membrane.—typg serine protease 1/ ST14: A1 )
Suppressor of tumorigenicity 14 protein 21
5F3B C Myostatin (Growth/differentiation factor 8) RK35 - 18
3L95 X |NOTCH?1: Neurogenic locus notch homolog protein 1 - - 22
5C7v A Notch3 NRR: Notch 3 Neurogenic locus notch homolog Fab 20350 Cancer - T-cell ALL
protein 3 3.2
3SQ0 A | PCSK9: Proprotein convertase substilisin/kexin type 9 J16 Arteriosclerosis 27
. ) Pembrolizu
5B8C C |PD1: Programmed cell death protein 1 mab Cancer 25
4QCI D |PDGF-B: Platelet-derived growth factor subunit B - - 23
4RQY D |PF4: Platelet factor 4 human KKO Autmmmgne thrombotic
disorder 4.1
2FD6 AU PLAU + PLAUR: Urokinase-type plasminogen activator ATN-615 B
and receptor 19
4118 R | PRLR: Prolactin receptor human - - 32
autoimmune diseases,
ischemic reperfusion injury
SFB8 C |pro-iL1e 14.1 (IRI), and tissue transplant
rejection 2.1
2ZCH P PSA: Prostate-specific antigen 8G8F5 Cancer 238
5D93 A Cancer - adenocarcinomas 23
QSOX1: Sulfhydryl oxidase 1 - -
4143 * A - 27
1JPS T | TF: tissue factor (cofactor for the serine protease F.Vlla) D3h44 Platelets aggregation /
Thrombic disorders 19
4M7L* T TF: tissue factor (cofactor for the serine protease F.VIla) 10H10 Platelets gggregatlon /
Thrombic disorders 34
5KN5 C |TGFa/Epiregulin LY3016859 - 28
4KXZ A - 28
4KXZ * B | TGFB-2 Transforming growth factor B-2 Fresolk;muma - 28
*
4KXZ E - 28
3WD5 A |TNFa adalimumab Inflammation / Autoimmunity 3.1
2XWT . . Autoimmunity - Thyroid
3¢ C TSHR: Thyrotropin receptor K1-70 disease 19
3G04*| C |TSHR: Thyrotropin receptor MZZ (th¥r0|d Autmmmgnlty - Thyroid
stimulating) disease 24
5J13 A | TSLP (Thymic stromal lymphopoietin) Tezepsluma Allergy 23
4K24 A |UPAR: Urokinase-type plasminogen activator ATN-658 Cancer 45
1FNS A |vWV: von Willebrand factor - Arterial thrombosis 2
2R4R A | B2 adrenergic receptor - - 34
5MES A MCL1 (leukemia factor), chimeric mouse and human - Homo Sapiens Chimeric + Mus Cancer
Musculus 2.2
scvh | asc Hf2 class A | histocompatibility ~antigen + beta2 25.D1.16 MHC Mus musculus + OVA Gallus Anti p-MHC antibodies
microglobulin + OVA Gallus 209
TWEJ F CYC: Cytochrome C E8 Equus caballus - 18
3'\£§9 A |JAML: Junctional adhesion molecule-like HL4E10 - 3
3UBX A CD1d (+ microbulin) L363 Mus musculus TCR-like antibody
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3R08 E CD3e: T-cell surface glycoprotein CD3 epsilon chain 2C11 - 41
2ARJ RQ |CD8a YTS 105.18 - 29
3B9K * A |CD8a - - 28
5CON A |FABP4: Fatty acid-binding protein, adipocyte CA33 Diabetes / Fatty liver disease 3
Transplantation /
4YUE c 2 54B6 Autoimmunity / Cancer 29
3U9P C ll\lGAL:' Siderocalin  (Neutrophil gelatinase-associated ) Anti-infective
lipocalin) 2.8
TCRap: fusion of light and heavy chains (scFv, clone .
1KB5 AB KB5-C20 from cytotoxic T cells) Desire-1 B 25
2B2X A |ltgal or VLA1: integrin alpha 1 AQC2 - 29
TMHP . . )
. A |ltgal or VLAT: integrin alpha 1, residues 169-360 AQC2 - 28
Rattus norvegicus s v Mool -
1PKQ J MOG: Myelin Oligodendrocyte Glycoprotein 8-18C5 utoimmunity - Multipie
Sclerosis 3
3KJ4 A NgRI: Reticulon-4 receptor or Nogo-66 receptor 1D9 Spinal Cord Regeneration

3.1
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