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Abstract

Genes act in concert with each other in speci�c contexts to perform their functions. Determining how
these genes in�uence complex traits requires a mechanistic understanding of expression regulation
across di�erent conditions. It has been shown that this insight is critical for developing new therapies.
In this regard, the role of individual genes in disease-relevant mechanisms can be hypothesized with
transcriptome-wide association studies (TWAS), which have represented a signi�cant step forward in
testing the mediating role of gene expression in GWAS associations. However, modern models of the
architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin
and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait
associations and pharmacological perturbation data into a common latent representation for a joint
analysis. This representation is based on modules of genes with similar expression patterns across
the same conditions. We observed that diseases were signi�cantly associated with gene modules
expressed in relevant cell types, and our approach was accurate in predicting known drug-disease
pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid
regulation, we found that functionally important players lacked TWAS associations but were
prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes,
PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene
strategies.

Introduction

Genes work together in context-speci�c networks to carry out di�erent functions [1,2]. Variations in
these genes can change their functional role and, at a higher level, a�ect disease-relevant biological
processes [3]. In this context, determining how genes in�uence complex traits requires
mechanistically understanding expression regulation across di�erent cell types [4,5,6], which in turn
should lead to improved treatments [7,8]. Previous studies have described di�erent regulatory DNA
elements [5,9,10,11,12] including genetic e�ects on gene expression across di�erent tissues [4].
Integrating functional genomics data and GWAS data [13,13,14,15] has improved the identi�cation of
these transcriptional mechanisms that, when dysregulated, commonly result in tissue- and cell
lineage-speci�c pathology [16,17,18].

Given the availability of gene expression data across several tissues [4,19,20,21], an e�ective
approach to identify these biological processes is the transcription-wide association study (TWAS),
which integrates expression quantitative trait loci (eQTLs) data to provide a mechanistic interpretation
for GWAS �ndings. TWAS relies on testing whether perturbations in gene regulatory mechanisms
mediate the association between genetic variants and human diseases [22,23,24,25], and these
approaches have been highly successful not only in understanding disease etiology at the
transcriptome level [26,27,28] but also in disease-risk prediction (polygenic scores) [29] and drug
repurposing [30] tasks. However, TWAS works at the individual gene level, which does not capture
more complex interactions at the network level.

These gene-gene interactions play a crucial role in current theories of the architecture of complex
traits, such as the omnigenic model [31], which suggests that methods need to incorporate this
complexity to disentangle disease-relevant mechanisms. Widespread gene pleiotropy, for instance,
reveals the highly interconnected nature of transcriptional networks [32,33], where potentially all
genes expressed in disease-relevant cell types have a non-zero e�ect on the trait [31,34]. One way to
learn these gene-gene interactions is using the concept of gene module: a group of genes with similar
expression pro�les across di�erent conditions [2,35,36]. In this context, several unsupervised
approaches have been proposed to infer these gene-gene connections by extracting gene modules
from co-expression patterns [37,38,39]. Matrix factorization techniques like independent or principal
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component analysis (ICA/PCA) have shown superior performance in this task [40] since they capture
local expression e�ects from a subset of samples and can handle modules overlap e�ectively.
Therefore, integrating genetic studies with gene modules extracted using unsupervised learning could
further improve our understanding of disease origin [36] and progression [41].

Here we propose PhenoPLIER, an omnigenic approach that provides a gene module perspective to
genetic studies. The �exibility of our method allows integrating di�erent data modalities into the same
representation for a joint analysis. In this work, we show that this module perspective can infer how
groups of functionally-related genes in�uence complex traits, detect shared and distinct
transcriptomic properties among traits, and predict how pharmacological perturbations a�ect genes’
activity to exert their e�ects. PhenoPLIER maps gene-trait associations and drug-induced
transcriptional responses into a common latent representation. For this, we integrated thousands of
gene-trait associations (using TWAS from PhenomeXcan [42]) and transcriptional pro�les of drugs
(from LINCS L1000 [43]) into a low-dimensional space learned from public gene expression data on
tens of thousands of RNA-seq samples (recount2 [19,44]). We used a latent representation de�ned by
a matrix factorization approach [44,45] that extracts gene modules with certain sparsity constraints
and preferences for those that align with prior knowledge (pathways). When mapping gene-trait
associations to this reduced expression space, we observed that diseases were signi�cantly
associated with gene modules expressed in relevant cell types: such as hypothyroidism with T cells,
corneal endothelial cells with keratometry measurements, hematological assays on speci�c blood cell
types, plasma lipids with adipose tissue, and neuropsychiatric disorders with di�erent brain cell types.
Moreover, since PhenoPLIER can use models derived from large and heterogeneous RNA-seq
datasets, we could also identify modules associated with cell types under speci�c stimuli or disease
states. We observed that signi�cant module-trait associations in PhenomeXcan (our discovery cohort)
replicated in the Electronic Medical Records and Genomics (eMERGE) network phase III [27,46] (our
replication cohort). Furthermore, we performed a CRISPR screen to analyze lipid regulation in HepG2
cells. We observed more robust trait associations with modules than with individual genes, even when
single genes known to be involved in lipid metabolism did not reach genome-wide signi�cance.
Compared to a single-gene approach, our module-based method also better predicted FDA-approved
drug-disease links by capturing tissue-speci�c pathophysiological mechanisms linked with the
mechanism of action of drugs (e.g., niacin with cardiovascular traits via a known immune mechanism).
This improved drug-disease prediction suggested that modules may provide a better means to
examine drug-disease relationships than individual genes. Finally, exploring the phenotype-module
space revealed stable trait clusters associated with relevant tissues, including a complex branch
involving lipids with cardiovascular, autoimmune, and neuropsychiatric disorders. In summary,
instead of considering single genes associated with di�erent complex traits, PhenoPLIER incorporates
groups of genes that act together to carry out di�erent functions in speci�c cell types. This approach
improves robustness in detecting and interpreting genetic associations, and here we show how it can
prioritize alternative and potentially more promising candidate targets even when known single gene
associations are not detected. The approach represents a conceptual shift in the interpretation of
genetic studies. It has the potential to extract mechanistic insight from statistical associations to
enhance the understanding of complex diseases and their therapeutic modalities.

Results

PhenoPLIER: an integration framework based on gene co-expression
patterns
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Figure 1:  Schematic of the PhenoPLIER framework. a) High-level schematic of PhenoPLIER (a gene module-based
method) in the context of TWAS (single-gene) and GWAS (genetic variants). PhenoPLIER integrates groups of genes co-
expressed in speci�c cell types (gene modules) with gene-trait and gene-drug associations. b) The integration consists of
projecting gene-trait/gene-drug associations from PhenomeXcan/LINCS L1000 (bottom) to a latent space based on gene
modules (represented by latent variables/LVs) from MultiPLIER (top). This process generates matrices  and , where
LVs now describe each drug/trait. In the middle, we show the three main computational components provided by
PhenoPLIER to perform this integration: 1) an LV-based regression model, 2) a clustering framework to learn groups of
traits, and 3) an LV-based drug repurposing approach. c) LV603, termed as a neutrophil signature in the original
MultiPLIER study, was associated in PhenoPLIER with neutrophil counts and other white blood cells (bottom, showing
the top 10 traits for LV603 after projecting gene-trait associations in PhenomeXcan). Genes that are part of LV603 were
expressed in relevant cell types (top). PBMC: peripheral blood mononuclear cells; mDCs: myeloid dendritic cells.

PhenoPLIER is a �exible computational framework that combines gene-trait and gene-drug
associations with gene modules expressed in speci�c contexts (Figure 1a). The approach uses a latent
representation (with latent variables or LVs representing gene modules) derived from a large gene
expression compendium (Figure 1b, top) to integrate TWAS with drug-induced transcriptional
responses (Figure 1b, bottom) for a joint analysis. The approach consists in three main components
(Figure 1b, middle, see Methods): 1) an LV-based regression model to compute an association
between an LV and a trait, 2) a clustering framework to learn groups of traits with shared
transcriptomic properties, and 3) an LV-based drug repurposing approach that links diseases to
potential treatments. We performed extensive simulations for our regression model (Supplementary
Note 1) and clustering framework (Supplementary Note 2) to ensure proper calibration and expected
results under a model of no association.

We used TWAS results from PhenomeXcan [42] and the eMERGE network [27] as discovery and
replication cohorts, respectively (Methods). PhenomeXcan provides gene-trait associations for 4,091
di�erent diseases and traits from the UK Biobank [47] and other studies, whereas the analyses on
eMERGE were performed across 309 phecodes. TWAS results were derived using two statistical
methods (see Methods): 1) Summary-MultiXcan (S-MultiXcan) associations were used for the
regression and clustering components, and 2) Summary-PrediXcan (S-PrediXcan) associations were
used for the drug repurposing component. In addition, we also used colocalization results, which
provide a probability of overlap between the GWAS and eQTL signals. For the drug-repurposing
approach, we used transcriptional responses to small molecule perturbations from LINCS L1000 [43]
comprising 1,170 compounds.

L̂ M̂
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The latent gene expression representation was obtained from the MultiPLIER models [44], which were
derived by applying a matrix factorization method (the pathway-level information extractor or PLIER
[45]) to recount2 [19] – a uniformly-curated collection of transcript-level gene expression quanti�ed by
RNA-seq in a large, diverse set of samples collected across a range of disease states, cell types
di�erentiation stages, and various stimuli (see Methods). The MultiPLIER models extracted 987 LVs by
optimizing data reconstruction but also the alignment of LVs with prior knowledge/pathways.

Each LV or gene module represents a group of weighted genes expressed together in the same
tissues and cell types as a functional unit. Since LVs might represent a functional set of genes
regulated by the same transcriptional program [48,49], we conjecture that the projection of TWAS and
pharmacologic perturbations data into this latent space could provide a better mechanistic
understanding. For this projection of di�erent data modalities into the same space, PhenoPLIER
converts gene associations to an LV score: all genes’ standardized e�ect sizes for a trait (from TWAS)
or di�erential expression values for a drug (from pharmacologic perturbation data) are multiplied by
the LV genes’ weights and summed, producing a single value. Instead of looking at individual genes,
this process links di�erent traits and drugs to functionally-related groups of genes or LVs. PhenoPLIER
uses LVs annotations about the speci�c conditions where the group of genes is expressed, such as cell
types and tissues, even at speci�c developmental stages, disease stages or under distinct stimuli.
Although this is not strictly necessary for PhenoPLIER to work, these annotations can dramatically
improve the interpretability of results. MultiPLIER’s models provide this information by linking LVs to
samples, which may be annotated for experimental conditions (represented by matrix  at the top of
Figure 1b) in which genes in an LV are expressed. An example of this is shown in Figure 1c. In the
original MultiPLIER study, the authors reported that one of the latent variables, identi�ed as LV603,
was associated with a known neutrophil pathway and highly correlated with neutrophil count
estimates from whole blood RNA-seq pro�les [50]. We analyzed LV603 using PhenoPLIER and found
that 1) neutrophil counts and other white blood cell traits were ranked among the top 10 traits out of
4,091 (Figure 1c, bottom), and basophils count and percentage were signi�cantly associated with this
LV when using our regression method (Supplementary Table 5), and 2) LV603’s genes were expressed
in highly relevant cell types (Figure 1c, top). These initial results suggested that groups of functionally
related and co-expressed genes tend to correspond to groups of trait-associated genes, and the
approach can link transcriptional mechanisms from large and diverse dataset collections to complex
traits.

Therefore, PhenoPLIER allows the user to address speci�c questions, namely: do disease-associated
genes belong to modules expressed in speci�c tissues and cell types? Are these cell type-speci�c
modules associated with di�erent diseases, thus potentially representing a “network pleiotropy”
example from an omnigenic point of view [31]? Is there a subset of module’s genes that is closer to
the de�nition of “core” genes (i.e., directly a�ecting the trait with no mediated regulation of other
genes [34]) and thus represents alternative and potentially better candidate targets? Are drugs
perturbing these transcriptional mechanisms, and can they suggest potential mechanisms of action?

LVs link genes that alter lipid accumulation with relevant traits and
tissues

Our �rst experiment attempted to answer whether genes in a disease-relevant LV could represent
potential therapeutic targets. For this, the �rst step was to obtain a set of genes strongly associated
with a phenotype of interest. Therefore, we performed a �uorescence-based CRISPR-Cas9 in the
HepG2 cell line and identi�ed 462 genes associated with lipid regulation (Methods). From these, we
selected two high-con�dence gene sets that either caused a decrease or increase of lipids: a lipids-
decreasing gene-set with eight genes: BLCAP, FBXW7, INSIG2, PCYT2, PTEN, SOX9, TCF7L2, UBE2J2;
and a lipids-increasing gene-set with six genes: ACACA, DGAT2, HILPDA, MBTPS1, SCAP, SRPR
(Supplementary File 2).

B

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


a b

Figure 2:  Tissues and traits associated with a gene module related to lipid metabolism (LV246). a) Top cell
types/tissues in which LV246’s genes are expressed. Values in the -axis come from matrix  in the MultiPLIER models
(Figure 1b, see Methods). In the -axis, cell types/tissues are sorted by the maximum sample value. b) Gene-trait
associations (S-MultiXcan; threshold at -log( )=10) and colocalization probability (fastENLOC) for the top traits in LV246.
The top 40 genes in LV246 are shown, sorted by their LV weight (matrix ), from largest (the top gene SCD) to smallest
(FAR2); DGAT2 and ACACA, in boldface, are two of the six high-con�dence genes in the lipids-increasing gene set from
the CRISPR screen. Cardiovascular-related traits are in boldface. SGBS: Simpson Golabi Behmel Syndrome; CH2DB: CH2
groups to double bonds ratio; HDL: high-density lipoprotein; RCP: locus regional colocalization probability.

Next, we analyzed all 987 LVs using Fast Gene Set Enrichment Analysis (FGSEA) [51], and found 15 LVs
nominally enriched (unadjusted P < 0.01) with these lipid-altering gene-sets (Supplementary Tables 2
and 3). Among those with reliable sample metadata, LV246, the top LV associated with the lipids-
increasing gene-set, contained genes mainly co-expressed in adipose tissue (Figure 2a), which plays a
key role in coordinating and regulating lipid metabolism. Using our regression framework across all
traits in PhenomeXcan, we found that gene weights for this LV were predictive of gene associations
for plasma lipids, high cholesterol, and Alzheimer’s disease (Supplementary Table 8, FDR < 1e-23).
These lipids-related associations also replicated across the 309 traits in eMERGE (Supplementary
Table 9), where LV246 was signi�cantly associated with hypercholesterolemia (phecode: 272.11, FDR <
4e-9), hyperlipidemia (phecode: 272.1, FDR < 4e-7) and disorders of lipoid metabolism (phecode: 272,
FDR < 4e-7).

Two high-con�dence genes from our CRISPR screening, DGAT2 and ACACA, are responsible for
encoding enzymes for triglycerides and fatty acid synthesis and were among the highest-weighted
genes of LV246 (Figure 2b, in boldface). However, in contrast to other members of LV246, DGAT2 and
ACACA were not associated nor colocalized with any of the cardiovascular-related traits and thus
would not have been prioritized by TWAS alone; instead, other members of LV246, such as SCD, LPL,
FADS2, HMGCR, and LDLR, were signi�cantly associated and colocalized with lipid-related traits. This
lack of association of two high-con�dence genes from our CRISPR screen might be explained from an
omnigenic point of view [34]. Assuming that the TWAS models for DGAT2 and ACACA capture all
common cis-eQTLs (the only genetic component of gene expression that TWAS can capture) and there
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are no rare cis-eQTLs, these two genes might represent “core” genes (i.e., they directly a�ect the trait
with no mediated regulation of other genes), and many of the rest in the LV are “peripheral” genes
that trans-regulate them.

LVs predict drug-disease pairs better than single genes

We next determined how substituting LVs for individual genes predicted known treatment-disease
relationships. For this, we used the transcriptional responses to small molecule perturbations pro�led
in LINCS L1000 [43], which were further processed and mapped to DrugBank IDs [52,53,54]. Based on
an established drug repurposing strategy that matches reversed transcriptome patterns between
genes and drug-induced perturbations [55,56], we adopted a previously described framework that
uses imputed transcriptomes from TWAS to prioritize drug candidates [30]. For this, we computed a
drug-disease score by calculating the negative dot product between the -scores for a disease (from
TWAS) and the -scores for a drug (from LINCS) across sets of genes of di�erent sizes (see Methods).
Therefore, a large score for a drug-disease pair indicated that higher (lower) predicted expression
values of disease-associated genes are down (up)-regulated by the drug, thus predicting a potential
treatment. Similarly, for the LV-based approach, we estimated how pharmacological perturbations
a�ected the gene module activity by projecting expression pro�les of drugs into our latent
representation (Figure 1b). We used a manually-curated gold standard set of drug-disease medical
indications [53,57] for 322 drugs across 53 diseases to evaluate the prediction performance.

Figure 3:  Drug-disease prediction performance for gene-based and LV-based approaches. The receiver operating
characteristic (ROC) (left) and the precision-recall curves (right) for a gene-based and LV-based approach. AUC: area
under the curve; AP: average precision.

It is important to note that the gene-trait associations and drug-induced expression pro�les projected
into the latent space represent a compressed version of the entire set of results. Despite this
information loss, the LV-based method outperformed the gene-based one with an area under the
curve of 0.632 and an average precision of 0.858 (Figure 3). The prediction results suggested that this
low-dimensional space captures biologically meaningful patterns that can link pathophysiological
processes with the mechanism of action of drugs.

We examined a speci�c drug-disease pair to determine whether the LVs driving the prediction were
biologically plausible. Nicotinic acid (niacin) is a B vitamin widely used clinically to treat lipid disorders,
although there is controversy on its clinical utility in preventing cardiovascular disease [58,59,60].
Niacin exerts its e�ects on multiple tissues, although its mechanisms are not well understood
[61,62,63,64]. This compound can increase high-density lipoprotein (HDL) by inhibiting an HDL
catabolism receptor in the liver. Niacin also inhibits diacylglycerol acyltransferase–2 (DGAT2), which
decreases the production of low-density lipoproteins (LDL) either by modulating triglyceride synthesis

z
z

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


in hepatocytes or by inhibiting adipocyte triglyceride lipolysis [61]. Niacin was one of the drugs in the
gold standard set indicated for atherosclerosis (AT) and coronary artery disease (CAD). We observed
that this compound was predicted by the gene-based and LV-based approach as a medical indication
for coronary artery disease (CAD), with scores above the mean (0.51 and 0.96, respectively). For AT,
the LV-based approach predicted niacin as a therapeutic drug with a score of 0.52, whereas the gene-
based method assigned a negative score of -0.01 (below the mean). Since LVs represent interpretable
features associated with speci�c cell types, we analyzed which LVs positively contributed to these
predictions (i.e., with an opposite direction between niacin and the disease). Notably, LV246 (Figure 2),
expressed in adipose tissue and liver and associated with plasma lipids and high cholesterol
(Supplementary Table 8), was the 16th most important module in the prediction of niacin as a
therapeutic drug for AT. Besides the gold standard set, LV246 was among the top modules for other
cardiovascular diseases, such as ischaemic heart disease (wide de�nition, 15th module) and high
cholesterol (7th module).

Figure 4:  Top cell types/tissues where LV116’s genes are expressed. Values in the -axis come from matrix  in the
MultiPLIER models (Figure 1b). In the -axis, cell types/tissues are sorted by the maximum sample value. The �gure
shows a clear immune response with cell types under di�erent stimuli. MS: multiple sclerosis; HSV: treated with herpes
simplex virus; WNV: infected with West Nile virus; IFNa: treated with interferon-alpha; HMDM: human peripheral blood
mononuclear cell-derived macrophages; Salm: infected with Salmonella typhimurium; Yers: infected with Yersinia
pseudotuberculosis; ISM: Interferon Signature Metric; SLE: Systemic lupus erythematosus.

The analysis of other top niacin-contributing LVs across di�erent cardiovascular diseases revealed
additional mechanisms of action. For example, GPR109A/HCAR2 encodes a G protein-coupled high-
a�nity niacin receptor in adipocytes and immune cells, including monocytes, macrophages,
neutrophils and dendritic cells [65,66]. It was initially thought that the antiatherogenic e�ects of niacin
were solely due to the inhibition of lipolysis in adipose tissue. However, it has been shown that
nicotinic acid can reduce atherosclerosis progression independently of its antidyslipidemic activity by
activating GPR109A in immune cells [67], thus boosting anti-in�ammatory processes [68]. In addition,
�ushing, a common adverse e�ect of niacin, is also produced by the activation of GPR109A in
Langerhans cells (macrophages of the skin). This alternative mechanism for niacin could have been
hypothesized by examining the cell types where the top-contributing modules are expressed: for
instance, LV116 and LV931 (Figure 4, Supplementary Figure 17, and Supplementary Tables 10 and 11)
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were the top two modules for AT, with a strong signature in monocytes, macrophages, neutrophils,
dendritic cells, among others. In Figure 4, it can be seen that LV116’s genes are expressed as an
immune response when these cell types are under di�erent stimuli, such as diarrhea caused by
di�erent pathogens [69], samples from multiple sclerosis or systemic lupus erythematosus [70,71], or
infected with di�erent viruses (such as herpes simplex [72], West Nile virus [73], Salmonella
typhimurium [74], among others). These three LVs (LV246, LV116 and LV931) were among the top 20
modules contributing to the niacin prediction across di�erent cardiovascular traits (Table 1).

Table 1:  LVs among the top 20 contributors to the prediction of niacin for �ve cardiovascular diseases. “Heart attack,
angina, stroke or hypertension” refers to the UK Biobank data-�eld 6150. GWAS sample size: Atherosclerosis (361,194 in
total and 566 cases), Chronic ischaemic heart disease (361,194 in total and 12,769 cases), Heart attack, angina, stroke or
hypertension (360,420 in total and 253,565 cases), Ischaemic heart disease/wide de�nition (361,194 in total and 20,857
cases), High cholesterol/self-reported (361,141 in total and 43,957 cases).

LV Cell type Disease

LV116 Immune cells, skin Atherosclerosis (ICD10 I70)

Chronic ischaemic heart disease (ICD10 I25)

Heart attack, angina, stroke or hypertension

Ischaemic heart disease (wide de�nition)

LV931 Immune cells Atherosclerosis (ICD10 I70)

Heart attack, angina, stroke or hypertension

Ischaemic heart disease (wide de�nition)

LV246 Adipose tissue, liver Atherosclerosis (ICD10 I70)

High cholesterol (self-reported)

Ischaemic heart disease (wide de�nition)

Beyond cardiovascular traits, there are other potentially interesting LVs that could extend our
understanding of the mechanisms of niacin. For example, LV66, one of the top LVs a�ected by niacin
(Supplementary Figure 18), was mainly expressed in ovarian granulosa cells. This compound has been
very recently considered a potential therapeutic for ovarian diseases [75,76], as it was found to
promote follicle growth and inhibit granulosa cell apoptosis in animal models.

LVs reveal trait clusters with shared transcriptomic properties
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Figure 5:  Cluster analysis on traits using the latent gene expression representation. a) The projection of TWAS
results on 3,752 traits into the latent gene expression representation is the input data to the clustering process. A linear
(PCA) and non-linear (UMAP) dimensionality reduction techniques were applied to the input data, and �ve di�erent
clustering algorithms processed all data versions. These algorithms derive partitions from the data using di�erent
parameters (such as the number of clusters), leading to an ensemble of 4,428 partitions. Then, a distance matrix is
derived by counting how many times a pair of traits was grouped in di�erent clusters across the ensemble. Finally, a
consensus function is applied to the distance matrix to generate consolidated partitions with di�erent numbers of
clusters (from 2 to  60). These �nal solutions were represented in the clustering tree (Figure 6). b) The clusters
found by the consensus function were used as labels to train a decision tree classi�er on the original input data, which
detects the LVs that better di�erentiate groups of traits.

We used the projection of gene-trait associations into the latent space to �nd groups of clusters linked
by the same transcriptional processes. Since individual clustering algorithms have di�erent biases
(i.e., assumptions about the data structure), we designed a consensus clustering framework that
combines solutions or partitions of traits generated by di�erent methods (Methods). Consensus or
ensemble approaches have been recommended to avoid several pitfalls when performing cluster
analysis on biological data [77]. Since diversity in the ensemble is crucial for these methods, we
generated di�erent data versions which were processed using di�erent methods with varying sets of
parameters (Figure 5a). Then, a consensus function combines the ensemble into a consolidated

√n ≈
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solution, which has been shown to outperform any individual member of the ensemble [78,79]. Our
clustering pipeline generated 15 �nal consensus clustering solutions (Supplementary Figure 15). The
number of clusters of these partitions (between 5 to 29) was learned from the data by selecting the
partitions with the largest agreement with the ensemble [78]. Instead of selecting one of these �nal
solutions with a speci�c number of clusters, we used a clustering tree [80] (Figure 6) to examine stable
groups of traits across multiple resolutions. To understand which latent variables di�erentiated the
group of traits, we trained a decision tree classi�er on the input data  using the clusters found as
labels (Figure 5b, see Methods).
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Figure 6:  Clustering tree using multiple resolutions for clusters of traits. Each row represents a partition/grouping
of the traits, and each circle is a cluster from that partition. The number of clusters goes from 5 to 29. Arrows indicate
how traits in one cluster move across clusters from di�erent partitions. Most of the clusters are preserved across
di�erent resolutions, showing highly stable solutions even with independent runs of the clustering algorithm. RDW: red
cell (erythrocyte) distribution width; BMI: body mass index; WC: waist circumference; HC: hip circumference; RA:
rheumatoid arthritis; SLE: systemic lupus erythematosus; HTN: Hypertension; IBD: in�ammatory bowel disease; SCZ:
Schizophrenia; CAD: Coronary artery disease; AD: Alzheimer’s disease; Descriptions of traits by cluster ID (from left to
right): 12: also includes lymphocyte count and allergies such as allergic rhinitis or eczema; 4: includes reticulocyte count
and percentage, immature reticulocyte fraction, and high light scatter reticulocytes count and percentage; 2: includes
mean corpuscular volume, mean corpuscular hemoglobin, mean reticulocyte volume, mean sphered cell volume; 5:
includes erythrocyte count, hemoglobin concentration, and hematocrit percentage; 20: also includes weight, waist and
hip circumference; 18: also includes body impedance measures and ankle spacing width; 19: also includes basal
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metabolic rate; 1: includes platelet count, crit, mean volume, and distribution width; 13: diabetes refers to age when
diabetes was �rst diagnosed; 25: also includes vascular problems such as angina, deep vein thrombosis (DVT),
intraocular pressure, eye and mouth problems, pulse rate, hand-grip strength, several measurements of physical
activity, jobs involving heavy physical work, types of transport used, intake of vitamin/mineral supplements, and various
types of body pain and medications for pain relief; 21: also includes attention de�cit hyperactivity disorder (ADHD),
number of years of schooling completed, bone density, and intracranial volume measurement; 28: includes diabetes,
gout, arthrosis, and respiratory diseases (and related medications such as ramipril, allopurinol, and lisinopril), urine
assays, female-speci�c factors (age at menarche, menopause, �rst/last live birth), and several environmental/behavioral
factors such as intake of a range of food/drink items including alcohol, time spent outdoors and watching TV, smoking
and sleeping habits, early-life factors (breastfed as a baby, maternal smoking around birth), education attainment,
psychological and mental health, and health satisfaction; 11: also includes fasting blood glucose and insulin
measurement; 16: lipids include high and low-density lipoprotein (HDL and LDL) cholesterol, triglycerides, and average
number of methylene groups per a double bond; 14: includes myocardial infarction, coronary atherosclerosis, ischaemic
heart disease (wide de�nition); 7: includes monocyte count and percentage; 24: includes lymphocyte count and
percentage; 9: includes neutrophil count, neutrophil+basophil count, neutrophil+eosinophil count, granulocyte count,
leukocyte count, and myeloid cell count; 3: includes eosinophil count, eosinophil percentage, and eosinophil+basophil
count.

We found that phenotypes were grouped into �ve clear branches, de�ned by their �rst node at the
top of the Figure 6: 0) a “large” branch that includes most of the traits subdivided only starting at =16
(with asthma, subjective well-being traits, and nutrient intake clusters), 1) heel bone-densitometry
measurements, 2) hematological assays on red blood cells, 3) physical measures, including spirometry
and body impedance, and anthropometric traits with fat-free and fat mass measures in separate sub-
branches, and 4) a “complex” branch including keratometry measurements, assays on white blood
cells and platelets, skin and hair color traits, autoimmune disorders, and cardiovascular diseases
(which also included other cardiovascular-related traits such as hand-grip strength [81], and
environmental/behavioral factors such as physical activity and diet) (see Supplementary Files 3-6 for
clustering results). Within these branches, results were relatively stable, with the same traits often
clustered together across di�erent resolutions. Arrows between clusters show traits moving from one
group to another, and this mainly happens between clusters within the “complex” branch (4) and
between clusters from the “large” branch (0) to the “complex” branch. This behavior is expected since
complex diseases are usually associated with shared genetic and environmental factors and are thus
hard to categorize into a single cluster.

k
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Figure 7:  Cluster-speci�c and general transcriptional processes associated with di�erent diseases. The plot
shows a submatrix of  for the main trait clusters at =29, considering only LVs (rows) that are well-aligned with at
least one pathway.

Next, we analyzed which LVs were driving these clusters of traits. For this, we trained decision tree
classi�ers on the input data using each cluster at =29 (bottom of Figure 6) as labels (see Methods).
This procedure yielded the top LVs that were most discriminative for each cluster. Several of these LVs
were well-aligned to existing pathways (Figure 7), whereas others were not aligned to prior knowledge
but still expressed in relevant tissues (Supplementary Figure 16). In Figure 7, it can be seen that some
LVs were highly speci�c to certain traits, while others were associated with a wide range of di�erent
phenotypes, thus potentially involved in more general biological functions. We used our regression
framework to determine whether these LVs were signi�cantly associated with di�erent traits. For
example, LVs such as LV928 and LV30, which were well-aligned to early progenitors of the
erythrocytes lineage [82] (Supplementary Tables 13 and 16), were predominantly expressed in early
di�erentiation stages of erythropoiesis (Supplementary Figures 19 and 20) and strongly associated
with di�erent assays on red blood cells (FDR < 0.05; Supplementary Tables 14, 15, and 18). In contrast,
other LVs were highly speci�c, such as LV730, which is expressed in thrombocytes from di�erent
cancer samples (Supplementary Figures 21 and Supplementary Table 19), and strongly associated
with hematological assays on platelets (FDR < 0.05, Supplementary Table 20); or LV598, whose genes
were expressed in corneal endothelial cells (Supplementary Figures 22 and Supplementary Table 22)
and associated with keratometry measurements (Supplementary Table 23).

The sub-branches of autoimmune and cardiovascular diseases merged together at  (middle of
Figure 6), so we expected to �nd LVs that speci�cally a�ect one or both of these types of diseases. For
example, LV57, expressed in T cells (Supplementary Figure 23 and Supplementary Table 25), was the
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most strongly associated gene module with autoimmune disorders in PhenomeXcan (Supplementary
Table 26), with signi�cant associations with hypothyroidism that were replicated in eMERGE (27).
However, this LV was also strongly associated with deep venous thrombosis in both PhenomeXcan
and eMERGE. On the other hand, LV844 was more autoimmune-speci�c, with associations to
polymyalgia rheumatica, type 1 diabetes, rheumatoid arthritis, and celiac disease in PhenomeXcan
(Supplementary Table 29). However, these did not replicate in eMERGE. This LV was expressed in a
wide range of cell types, including blood, breast organoids, myeloma cells, lung �broblasts, and
di�erent cell types from the brain (Supplementary Figure 24 and Supplementary Table 28).

The cardiovascular sub-branch had 129 signi�cant LV-trait associations in PhenomeXcan and 23 in
eMERGE. LV136, aligned with known collagen formation and muscle contraction pathways
(Supplementary Table 31), was associated with coronary artery disease and keratometry
measurements in PhenomeXcan (Supplementary Tables 32). In eMERGE, this LV was associated with
coronary atherosclerosis (phecode: 411.4) (Supplementary Table 33). LV136 was expressed in a wide
range of cell types, including �broblasts, mesenchymal stem cells, osteoblasts, pancreatic stellate
cells, cardiomyocytes, and adipocytes (Supplementary Figure 25). Within the cardiovascular sub-
branch, we found neuropsychiatric and neurodevelopmental disorders such as Alzheimer’s disease,
schizophrenia, and attention de�cit hyperactivity disorder (ADHD). These disorders were previously
linked to the cardiovascular system [83,84,85,86] and share several risk factors, including
hypertension, high cholesterol, obesity, smoking, among others [87,88]. However, our results grouped
these diseases by potentially shared transcriptional processes expressed in speci�c tissues/cell types.
Alzheimer’s disease (not present in eMERGE), for instance, was signi�cantly associated with LV21 in
PhenomeXcan (Supplementary Table 35). LV21, a gene module not aligned to prior pathways, was
strongly expressed in a variety of soft tissue sarcomas, monocytes/macrophages (including microglia
from cortex samples), and aortic valves (Supplementary Figure 26 and Supplementary Table 34). This
LV was also strongly associated with lipids and high cholesterol in PhenomeXcan and hyperlipidemia
(phecode: 272.1) in eMERGE (Supplementary Table 36). As discussed previously, macrophages play a
key role in the reverse cholesterol transport and thus atherogenesis [89], and lipid metabolism in
microglia has been recently identi�ed as an important factor in the development of
neurodegenerative diseases [90].

Discussion

We have introduced a novel computational strategy that integrates statistical associations from TWAS
with groups of genes (gene modules) that have similar expression patterns across the same cell types.
Our key innovation is that we project gene-trait associations through a latent representation derived
not strictly from measures of normal tissue but also from cell types under a variety of stimuli and at
various developmental stages. This improves interpretation by going beyond statistical associations to
infer cell type-speci�c features of complex phenotypes. Our approach can identify disease-relevant
cell types from summary statistics, and several disease-associated gene modules were replicated in
eMERGE. Using a CRISPR screen to analyze lipid regulation, we found that our gene module-based
approach can prioritize causal genes even when single gene associations are not detected. We
interpret these �ndings with an omnigenic perspective of “core” and “peripheral” genes, suggesting
that the approach can identify genes that directly a�ect the trait with no mediated regulation of other
genes and thus prioritize alternative and potentially more attractive therapeutic targets.

Using our gene module perspective, we also integrated drug-induced transcriptional pro�les, which
allowed us to connect diseases, drugs, and cell types. We showed that the LV-based drug-repurposing
approach outperformed the gene-based one when predicting drug-disease links for 322 drugs across
53 diseases. Furthermore, and beyond statistical prediction, we focused on cardiovascular traits and a
particular drug, niacin, to show that the approach connects pathophysiological processes with known
mechanisms of action, including those in adipose tissue, immune cells, and ovarian granulosa cells.
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Our LV-based approach could be helpful in generating novel hypotheses to evaluate potential
mechanisms of action, or even adverse e�ects, of known or experimental drugs.

We found that the analysis of associations through latent representations provided reasonable
groupings of diseases and traits a�ected by shared and distinct transcriptional mechanisms
expressed in highly relevant tissues. Our cluster analysis approach also detected the LVs that were
most discriminative for each cluster. Several of these LVs were also signi�cantly associated with
di�erent traits. Some LVs were strongly aligned with known pathways, but others (like LV57) were not,
which might represent novel disease-relevant mechanisms. In some cases, the features/LVs linked to
phenotypes appear to be associated with speci�c cell types. Associations with such cell type marker
genes may reveal potentially causal cell types for a phenotype with more precision. We observed
modules expressed primarily in one tissue (such as adipose in LV246 or ovary in LV66). Others
appeared to be expressed in many contexts, which may capture pathways associated with related
complex diseases. For example, LV136 is associated with cardiovascular disease and measures of
corneal biomechanics and is expressed in �broblasts, osteoblasts, pancreas, liver, and
cardiomyocytes, among others. Other examples include LV844, expressed in whole blood samples
and associated with a range of autoimmune diseases; or LV57, which is clearly expressed in T cells
and strongly associated with autoimmune and venous thromboembolism. From an omnigenic point
of view, these patterns might represent cases of “network pleiotropy,” where the same cell types
mediate molecularly related traits. To our knowledge, projection through a representation learned on
complementary but distinct datasets is a novel approach to identifying cell type and pathway e�ects
on complex phenotypes that is computationally simple to implement.

We also demonstrated that clustering trees, introduced initially as a means to examine developmental
processes in single-cell data, provide a multi-resolution grouping of phenotypes based on latent
variable associations. We employed hard-partitioning algorithms (one trait belongs exclusively to one
cluster) where the distance between two traits takes into account all gene modules. However, it is also
plausible for two complex diseases to share only a few biological processes instead of being similar
across most of them. Another important consideration is that our TWAS results were derived from a
large set of GWAS of di�erent sample sizes and qualities. Although the potential issues derived from
this data heterogeneity were addressed before performing our cluster analyses on traits, data
preprocessing steps are always challenging and might not avoid bias altogether. Considering groups
of related diseases was previously shown to be more powerful in detecting shared genetic etiology
[91,92], and clustering trees provide a way to explore such relationships in the context of latent
variables.

Finally, we developed an LV-based regression framework to detect whether gene modules are
associated with a trait using TWAS -values. We used PhenomeXcan as a discovery cohort across four
thousand traits, and many LV-trait associations replicated in eMERGE. In PhenomeXcan, we found
3,450 signi�cant LV-trait associations (FDR < 0.05) with 686 LVs (out of 987) associated with at least
one trait and 1,176 traits associated with at least one LV. In eMERGE, we found 196 signi�cant LV-trait
associations, with 116 LVs associated with at least one trait/phecode and 81 traits with at least one LV.
We only focused on a few disease types from our trait clusters, but the complete set of associations
on other disease domains is available in our Github repository for future research. As noted in
Methods, one limitation of the regression approach is that the gene-gene correlations are only
approximately accurate, which could lead to false positives if the correlation among the top genes in a
module is not precisely captured. The regression model, however, is approximately well-calibrated,
and we did not observe in�ation when running the method in real data.

Our approach rests on the assumption that gene modules with coordinated expression patterns will
also manifest coordinated pathological e�ects. Our implementation in this work integrates two
complementary approaches. The �rst is MultiPLIER, which extracts latent variables from large
expression datasets, and these LVs could represent either real transcriptional processes or technical
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factors (“batch e�ects”). We used a previously published model derived from recount2, which was
designed to analyze rare disorders but might not be the optimal latent representation for the wide
range of complex diseases considered here. Also, the underlying factorization method rests on linear
combinations of variables, which could miss important and more complex co-expression patterns. In
addition, recount2, the training dataset used, has since been surpassed in size and scale by other
resources [20,93]. However, it is important to note that our models impose very few assumptions on
the latent expression representation. Therefore, we should be able to easily replace MultiPLIER with
other similar approaches like GenomicSuperSignature [94]. The second approach we used in this
study is TWAS, where we are only considering the hypothesis that GWAS loci a�ect traits via changes
in gene expression. Other e�ects, such as coding variants disrupting protein-protein interactions, are
not captured. Additionally, TWAS has several limitations that can lead to false positives [95,96]. Like
GWAS, which generally detects groups of associated variants in linkage disequilibrium (LD), TWAS
usually identi�es several genes within the same locus [25,97]. This is due to sharing of GWAS variants
in gene expression models, correlated expression of nearby genes, or even correlation of their
predicted expression due to eQTLs in LD, among others [95]. Our LV-based regression framework,
however, accounts for these gene-gene correlations in TWAS reasonably well.

Our �ndings are concordant with previous studies showing that drugs with genetic support are more
likely to succeed through the drug development pipeline [7,30]. In this case, projecting association
results through latent variables better prioritized disease-treatment pairs than considering single-
gene e�ects alone. An additional bene�t is that the latent variables driving predictions represent
interpretable genetic features that can be examined to infer potential mechanisms of action. Here we
prioritized drugs for diseases with very di�erent tissue etiologies, and a challenge of the approach is
to select the most appropriate tissue model from TWAS to �nd reversed transcriptome patterns
between genes and drug-induced perturbations.

Ultimately, the quality of the representations is essential to performance. Here we used a
representation derived from a factorization of bulk RNA-seq data. Detailed perturbation datasets and
single-cell pro�ling of tissues, with and without perturbagens, and at various stages of development
provide an avenue to generate higher quality and more interpretable representations. On the other
hand, the key to interpretability is driven by the annotation of sample metadata. New approaches to
infer and annotate with structured metadata are promising and can be directly applied to existing
data [98]. Rapid improvements in both areas set the stage for latent variable projections to be widely
applied to disentangle the genetic basis of complex human phenotypes. By providing a new
perspective for a mechanistic understanding of statistical associations from TWAS, our method can
generate testable hypotheses for the post-GWAS functional characterization of complex diseases,
which will likely be an area of great importance in the coming years.

Methods and materials

PhenoPLIER is a framework that combines di�erent computational approaches to integrate gene-trait
associations and drug-induced transcriptional responses with groups of functionally-related genes
(referred to as gene modules or latent variables/LVs). Gene-trait associations are computed using the
PrediXcan family of methods, whereas latent variables are inferred by the MultiPLIER models applied
on large gene expression compendia. PhenoPLIER provides 1) a regression model to compute an LV-
trait association, 2) a consensus clustering approach applied to the latent space to learn shared and
distinct transcriptomic properties between traits, and 3) an interpretable, LV-based drug repurposing
framework. We provide the details of these methods below.

The PrediXcan family of methods for gene-based associations
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We used Summary-PrediXcan (S-PrediXcan) [99] and Summary-MultiXcan (S-MultiXcan) [24] as the
gene-based statistical approaches, which belong to the PrediXcan family of methods [25]. We broadly
refer to these approaches as TWAS (transcription-wide association studies). S-PrediXcan, the
summary-based version of PrediXcan, computes the univariate association between a trait and a
gene’s predicted expression in a single tissue. In contrast, S-MultiXcan, the summary-based version of
MultiXcan, computes the joint association between a gene’s predicted expression in all tissues and a
trait. S-PrediXcan and S-MultiXcan only need GWAS summary statistics instead of individual-level
genotype and phenotype data.

Here we brie�y provide the details about these TWAS methods that are necessary to explain our
regression framework later (see the referenced articles for more information). In the following, we
refer to  as a vector of traits for  individuals that is centered for convenience (so that no intercept is
necessary);  is the gene’s predicted expression for all individuals in tissue , 
is the genotype of SNP  and  its weight in the tissue prediction model ; and  is the standardized
version of  with mean equal to zero and standard deviation equal to one.

S-PrediXcan [99] is the summary version of PrediXcan [25]. PrediXcan models the trait as a linear
function of the gene’s expression on a single tissue using the univariate model

where  is the estimated e�ect size or regression coe�cient, and  are the error terms with variance
. The signi�cance of the association is assessed by computing the -score  for a

gene’s tissue model . PrediXcan needs individual-level data to �t this model, whereas S-PrediXcan
approximates PrediXcan -scores using only GWAS summary statistics with the expression

where  is the variance of SNP ,  is the variance of the predicted expression of a gene in tissue ,
and  is the estimated e�ect size of SNP  from the GWAS. In these TWAS methods, the genotype
variances and covariances are always estimated using the Genotype-Tissue Expression project (GTEx
v8) [4] as the reference panel. Since S-PrediXcan provides tissue-speci�c direction of e�ects (for
instance, whether a higher or lower predicted expression of a gene confers more or less disease risk),
we used the -scores in our drug repurposing approach (described below).

S-MultiXcan [24], on the other hand, is the summary version of MultiXcan. MultiXcan is more powerful
than PrediXcan in detecting gene-trait associations, although it does not provide the direction of
e�ects. Its main output is the -value (obtained with an F-test) of the multiple tissue model

where  is a matrix with  columns ,  is the estimated e�ect size for the predicted gene
expression in tissue  (and thus  is a vector with  estimated e�ect sizes ), and  are the error
terms with variance . Given the high correlation between predicted expression values for a gene
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across di�erent tissues, MultiXcan uses the principal components (PCs) of  to avoid collinearity
issues. S-MultiXcan derives the joint regression estimates (e�ect sizes and their variances) in Equation
(3) using the marginal estimates from S-PrediXcan in Equation (2). Under the null hypothesis of no
association, , and therefore the signi�cance of the association in S-MultiXcan is

estimated with

where  is a vector with  -scores (Equation (2)) for each tissue available for the gene, and  is
the autocorrelation matrix of . Since  is singular for many genes, S-MultiXcan computes the
pseudo-inverse  using the  top PCs, and thus . To arrive at this
expression, S-MultiXcan uses the conservative approximation , that is, the variance of the
error terms in the joint regression is approximately equal to the residual variance of the marginal
regressions. Another important point is that  is estimated using a global genotype covariance
matrix, whereas marginal  in Equation (2) are approximated using tissue-speci�c genotype
covariances. Although S-MultiXcan yields highly concordant estimates compared with MultiXcan,
results are not perfectly correlated across genes [24]. As we explain later, these di�erences are
important for our LV-based regression model when computing the gene-gene correlation matrix. We
used S-MultiXcan results for our LV-based regression model and our cluster analyses of traits.

TWAS resources

We used two large TWAS resources from di�erent cohorts for discovery and replication, all obtained
from European ancestries. PhenomeXcan [42], our discovery cohort, provides results on 4,091 traits
across di�erent categories. Supplemenetary File 1 has all the details about the included GWAS,
sample size and disease/trait categories. In PhenomeXcan, these publicly available GWAS summary
statistics were used to compute 1) gene-based associations with the PrediXcan family of methods
(described before), and 2) a posterior probability of colocalization between GWAS loci and cis-eQTL
with fastENLOC [42,96]. We refer to the matrix of -scores from S-PrediXcan (Equation (2)) across 
traits and  genes in tissue  as . As explained later, matrices  were used in our LV-
based drug repurposing framework since they provide direction of e�ects. The S-MultiXcan results
(22,515 gene associations across 4,091 traits) were used in our LV-based regression framework and
our cluster analyses of traits. For the cluster analyses, we used the -values converted to -scores: 

, where  is the probit function. Higher -scores correspond to stronger
associations.

Our discovery cohort was eMERGE [46], where the same TWAS methods were run on 309 phecodes
[27] across di�erent categories (more information about traits are available in [27]). We used these
results to replicate the associations found with our LV-based regression framework in PhenomeXcan.

MultiPLIER and Pathway-level information extractor (PLIER)

MultiPLIER [44] extracts patterns of co-expressed genes from recount2 [19] (without including GTEx
samples), a large gene expression dataset. The approach applies the pathway-level information
extractor method (PLIER) [45], which performs unsupervised learning using prior knowledge
(canonical pathways) to reduce technical noise. PLIER uses a matrix factorization approach that
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deconvolutes gene expression data into a set of latent variables (LV), where each LV represents a gene
module. The MultiPLIER models reduced the dimensionality in recount2 to 987 LVs.

Given a gene expression dataset  with  genes and  experimental conditions and a prior
knowledge matrix  for  MSigDB pathways [100] (so that  if gene  belongs to
pathway ), PLIER �nds , , and  minimizing

subject to ;  are the gene loadings with  latent variables,  is the latent space
for  conditions,  speci�es which of the  prior-information pathways in  are represented for
each LV, and  are di�erent regularization parameters used in the training step.  is a low-
dimensional representation of the gene space where each LV aligns as much as possible to prior
knowledge, and it might represent either a known or novel gene module (i.e., a meaningful biological
pattern) or noise.

For our drug repurposing and cluster analyses, we used this model to project gene-trait (from TWAS)
and gene-drug associations (from LINCS L1000) into this low-dimensional gene module space. For
instance, TWAS associations  (either from S-PrediXcan or S-MultiXcan) were projected using

where  is a matrix where traits are represented by gene modules instead of single genes. As
explained later, we used the same approach to project drug-induced transcriptional pro�les in LINCS
L1000 to obtain a representation of drugs using gene modules.

Regression model for LV-trait associations

We adapted the gene-set analysis framework from MAGMA [101] to TWAS. We used a competitive test
to predict gene-trait associations from TWAS using gene weights from an LV, testing whether top-
weighted genes for an LV are more strongly associated with the phenotype than other genes with
relatively small or zero weights. Thus, we �t the model

where  is a vector of S-MultiXcan gene -values for a trait (with a  transformation);  is a
binary indicator vector with  for the top 1% of genes with the largest loadings for LV  (from )
and zero otherwise;  is a gene property used as a covariate;  are e�ect sizes (with  as the
intercept); and  is a vector of error terms with a multivariate normal distribution
(MVN) where  is the matrix of gene correlations.

The model tests the null hypothesis  against the one-sided hypothesis . Therefore, 
re�ects the di�erence in trait associations between genes that are part of LV  and genes outside of it.
Following the MAGMA framework, we used two gene properties as covariates: 1) gene size, de�ned as
the number of PCs retained in S-MultiXcan, and 2) gene density, de�ned as the ratio of the number of
PCs to the number of tissues available.
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Since the error terms  could be correlated, we cannot assume they have independent normal
distributions as in a standard linear regression model. In the PrediXcan family of methods, the
predicted expression of a pair of genes could be correlated if they share eQTLs or if these are in LD
[95]. Therefore, we used a generalized least squares approach to account for these correlations. The
gene-gene correlation matrix  was approximated by computing the correlations between the model
sum of squares (SSM) for each pair of genes under the null hypothesis of no association. These
correlations are derived from the individual-level MultiXcan model (Equation (3)), where the predicted
expression matrix  of a gene  across  tissues is projected into its top  PCs, resulting in
matrix . From the MAGMA framework, we know that the SSM for each gene is proportial
to . Under the null hypothesis of no association, the covariances between the SSM of genes
 and  is therefore given by . The standard deviations of each SSM are given

by . Therefore, the correlation between the SSMs for genes  and  can be written
as follows:

where columns  are standardized,  is the trace of a matrix, and the cross-correlation matrix
between PCs  is given by

where  is the cross-correlation matrix between the predicted expression levels of
genes  and , and columns of  and scalars  are the eigenvectors and eigenvalues of ,
respectively. S-MultiXcan keeps only the top eigenvectors using a condition number threshold of 

. To estimate the correlation of predicted expression levels for genes  in tissue  and

gene  in tissue ,  (  is the th column of ), we used [24]
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where  is the genotype of SNP ,  is the weight of SNP  for gene expression prediction in the
tissue model , and  is the genotype covariance matrix
using GTEx v8 as the reference panel, which is the same used in all TWAS methods described here.
The variance of the predicted expression values of gene  in tissue  is estimated as [99]:

Note that, since we used the MultiXcan regression model (Equation (3)),  is only an approximation of
gene correlations in S-MultiXcan. As explained before, S-MultiXcan approximates the joint regression
parameters in MultiXcan using the marginal regression estimates from S-PrediXcan in (2) with some
simplifying assumptions and di�erent genotype covariance matrices. This complicates the derivation
of an S-MultiXcan-speci�c solution to compute . To account for this, we used a submatrix 
corresponding to genes that are part of LV  only (top 1% of genes) instead of the entire matrix .
This simpli�cation is conservative since correlations are accounted for top genes only. Our simulations
(Supplementary Note 1) show that the model is approximately well-calibrated and can correct for LVs
with adjacent and highly correlated genes at the top (e.g., Figure 9). The model can also detect LVs
associated with relevant traits (Figure 2 and Table 8) that are replicated in a di�erent cohort (Table 9).

In Equation (10), for each gene, we only considered tissue models present in S-PrediXcan results, as
well as SNPs present in GWAS used as input for the TWAS approaches. This is necessary to obtain
more accurate correlations estimates [24]. Therefore, we computed di�erent correlation matrices for
PhenomeXcan and eMERGE. In PhenomeXcan, most of the GWAS (4,049) were obtained from the UK
Biobank using the same pipeline and including the same set of SNPs, so a single correlation matrix
was used for this set. For the rest, we used a single correlation matrix for each group of traits that
shared the same or most of the SNPs.

We ran our regression model for all 987 LVs across the 4,091 traits in PhenomeXcan. For replication,
we ran the model in the 309 phecodes in eMERGE. We adjusted the -values using the Benjamini-
Hochberg procedure.

= Cor(ti
k
, t

j

l
)

=

=

=

= ,

(T⊤
i Tj)kl
n − 1

Cov(tk, tl)

√v̂ar(tk)v̂ar(tl)

Cov(∑
a∈modelk

wk
aXa,∑

b∈modell
wl
b
Xb)

√v̂ar(tk)v̂ar(tl)

∑a∈modelk
b∈modell

wk
aw

l
b
Cov(Xa,Xb)

√v̂ar(tk)v̂ar(tl)

∑a∈modelk
b∈modell

wk
aw

l
b
Γab

√v̂ar(tk)v̂ar(tl)

(10)

Xa a wk
a a

k Γ = v̂ar(X) = (X − X̄)⊤(X − X̄)/(n − 1)

i k

v̂ar(tik) = (W
k)⊤Γk

W
k

= ∑
a∈modelk
b∈modelk

wk
aw

k
b
Γk
ab

. (11)

R

R Rℓ
ℓ R

p

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


LV-based drug repurposing approach

For the drug-disease prediction, we derived an LV-based method based on a drug repositioning
framework previously used for psychiatry traits [30], where individual/single genes associated with a
trait are anticorrelated with expression pro�les for drugs. We compared our LV-based method with
this previously published, single-gene approach. For the single-gene method, we computed a drug-
disease score by multiplying each S-PrediXcan set of signed -scores in tissue , , with another set
of signed -scores from transcriptional responses pro�led in LINCS L1000 [43],  (for 
compounds). Here  contains information about whether a higher or lower predicted expression of
a gene is associated with disease risk, whereas  indicates whether a drug increases or decreases the
expression of a gene. Therefore, these two matrices can be multiplied to compute a score for a drug-
disease pair. The result of this product is , where  refers to the number of most
signi�cant gene associations in  for each trait. As suggested in [30],  could be either all genes or
the top 50, 100, 250, and 500; then, we averaged score ranks across all  and obtained . Finally, for
each drug-disease pair, we took the maximum prediction score across all tissues: 

.

The same procedure was used for the LV-based approach, where we projected  and  into the

gene module latent space using Equation (6), leading to  and , respectively. Finally, 

, where in this case  could be all LVs or the top 5, 10, 25 and 50 (since we have
an order of magnitude less LVs than genes).

Since the gold standard of drug-disease medical indications is described with Disease Ontology IDs
(DOID) [102], we mapped PhenomeXcan traits to the Experimental Factor Ontology [103] using [104],
and then to DOID.

Consensus clustering of traits

We performed two preprocessing steps on the S-MultiXcan results before the cluster analysis. First,
we combined results in  (with -values converted to -scores, as described before) for traits that
mapped to the same Experimental Factor Ontology (EFO) [103] term using the Stou�er’s method: 

, where  is a weight based on the GWAS sample size for trait , and  is the -

score for gene . Second, we divided all -scores for each trait  by their sum to reduce the e�ect of
highly polygenic traits: . Finally, we projected this data matrix using Equation (6),

obtaining  with =3,752 traits and =987 LVs as the input of our clustering pipeline.

A partitioning of  with  traits into  clusters is represented as a label vector . Consensus
clustering approaches consist of two steps: 1) the generation of an ensemble  with  partitions of
the dataset: , and 2) the combination of the ensemble into a consolidated
solution de�ned as:

where  is a set of data indices with known cluster labels for partition ,  is a
function that measures the similarity between two partitions, and  is a measure of central tendency,
such as the mean or median. We used the adjusted Rand index (ARI) [105] for  and the median for 
. To obtain , we de�ne a consensus function  with  as the input. We used
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consensus functions based on the evidence accumulation clustering (EAC) paradigm [79], where  is
�rst transformed into a distance matrix , where  is the number of times traits  and 
were grouped in di�erent clusters across all  partitions in . Then,  can be any similarity-based
clustering algorithm, which is applied on  to derive the �nal partition .

For the ensemble generation step, we used di�erent algorithms to create a highly diverse set of
partitions (see Figure 5) since diversity is an important property for ensembles [106,107,108]. We used
three data representations: the raw dataset, its projection into the top 50 principal components, and
the embedding learned by UMAP [109] using 50 components. For each of these, we applied �ve
clustering algorithms covering a wide range of di�erent assumptions on the data structure: -means
[110], spectral clustering [111], a Gaussian mixture model (GMM), hierarchical clustering, and DBSCAN
[112]. For -means, spectral clustering and GMM, we speci�ed a range of  between 2 and ,
and for each  we generated �ve partitions using random seeds. For hierarchical clustering, for each 
, we generated four partitions using common linkage criteria: ward, complete, average and single. For
DBSCAN, we combined di�erent ranges for parameters  (the maximum distance between two data
points to be considered part of the same neighborhood) and minPts (the minimum number of data
points in a neighborhood for a data point to be considered a core point), based on the procedure in
[113]. Speci�cally, we used minPts values from 2 to 125. For each data representation (raw, PCA and
UMAP), we determined a plausible range of  values by observing the distribution of the mean
distance of the minPts-nearest neighbors across all data points. Since some combinations of minPts
and  might not produce a meaningful partition (for instance, when all points are detected as noisy or
only one cluster is found), we resampled partitions generated by DBSCAN to ensure an equal
representation of this algorithm in the ensemble. This procedure generated a �nal ensemble of 4,428
partitions of 3,752 traits.

Finally, we used spectral clustering on  to derive the �nal consensus partitions.  was �rst
transformed into a similarity matrix by applying an RBF kernel  using four di�erent values
for  that we empirically determined to work best. Therefore, for each  between 2 and 60, we
derived four consensus partitions and selected the one that maximized Equation (12). We further
�ltered this set of 59 solutions to keep only those with an ensemble agreement larger than the 75th
percentile (Supplementary Figure 15), leaving a total of 15 �nal consensus partitions shown in Figure
6.

The input data in our clustering pipeline undergoes several linear and nonlinear transformations,
including PCA, UMAP and the ensemble transformation using the EAC paradigm (distance matrix ).
Although consensus clustering has clear advantages for biological data [114], this set of data
transformations complicates the interpretation of results. To circumvent this, we used a supervised
learning approach to detect which gene modules/LVs are the most important for each cluster of traits
(Figure 5b). Note that we did not use this supervised model for prediction but only to learn which
features (LVs) were most discriminative for each cluster. For this, we used the highest resolution
partition ( =29, although any could be used) to train a decision tree model using each of the clusters
as labels and the projected data  as the training samples. For each , we built a set of binary labels
with the current cluster’s traits as the positive class and the rest of the traits as the negative class.
Then, we selected the LV in the root node of the trained model only if its threshold was positive and
larger than one standard deviation. Next, we removed this LV from  (regardless of being previously
selected or not) and trained the model again. We repeated this procedure 20 times to extract the top
20 LVs that better discriminate traits in a cluster from the rest.

In Supplementary Note 2, we performed several analyses under a null hypothesis of no structure in
the data to verify that the clustering results detected by this pipeline were real.

CRISPR-Cas9 screening
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Cell culture. HepG2 cells were obtained from ATCC (ATCC® HB-8065™), and maintained in Eagle’s
Minimum Essential Medium with L-Glutamine (EMEM, Cat. 112-018-101, Quality Biology)
supplemented with 10% Fetal Bovine Serum (FBS, Gibco, Cat.16000-044), and 1% Pen/Strep (Gibco,
Cat.15140-122). Cells were kept at 37oC in a humidity-controlled incubator with 5% CO2, and were
maintained at a density not exceeding more than 80% con�uency.

Genome-wide lentiviral pooled CRISPR-Cas9 library. 3rd lentiviral generation, Broad GPP genome-
wide Human Brunello CRISPR knockout Pooled library was provided by David Root and John Doench
from Addgene (Cat. 73179-LV), and was used for HepG2 cell transduction. It consists of 76,441
sgRNAs, and targets 19,114 genes in the human genome with an average of 4 sgRNAs per gene. Each
20nt sgRNA cassette was inserted into the lentiCRIS-PRv2 backbone between U6 promoter and gRNA
sca�old. Through cell transduction, the lentiviral vectors which encode Cas9 were used to deliver the
sgRNA cassette containing plasmids into cells during cell replication. Unsuccessful transduced cells
were excluded through puromycin selection.

Lentiviral titer determination. No-spin lentiviral transduction was utilized for the screen. In a
Collagen-I coated 6-wells plate, approximate 2.5 M cells were seeded each well in the presence of
8ug/ml polybrene (Millipore Sigma, Cat. TR-1003 G), and a di�erent titrated virus volume (e.g., 0, 50,
100, 200, 250, and 400ul) was assigned to each well. EMEM complete media was added to make the
�nal volume of 1.24ml. 16-18hrs post-transduction, virus/polybrene-containing media was removed
from each well. Cells were washed twice with 1x DPBS and replaced with fresh EMEM. At 24h, cells in
each well were trypsinized, diluted (e.g.,1:10), and seeded in pairs of wells of 6-well plates. At 60hr
post-transduction, cell media in each well was replaced with fresh EMEM. 2ug/ml of puromycin (Gibco,
Cat. A1113803) was added to one well out of the pair. 2-5 days after puromycin selection, or the 0
virus well treated with puromycin had no survival of cells, cells in both wells with/without puromycin
were collected and counted for viability. Percentage of Infection (PI%) was obtained by comparing the
cell numbers with/without puromycin selection within each pair. By means of Poisson’s distribution
theory, when transduction e�ciency (PI%) is between 30-50%, which corresponds to an MOI
(Multiplicity of Infection) of ~0.35-0.70. At MOI equal to or close to 0.3, around 95% of infected cells
are predicted to have only one copy of the virus. Therefore, a volume of virus (120ul) yielding 30-40%
of transduction e�ciency was chosen for further large-scale viral transduction.

Lentiviral Transduction in HepG2 Using Brunello CRISPR Knockout Pooled Library. In order to
achieve a coverage (representation) of at least 500 cells per sgRNA, and at an MOI between 0.3-0.4 to
ensure 95% of infected cells get only one viral particle per cell, ~200M cells were initiated for the
screen. Transduction was carried out in a similar fashion as described above. Brie�y, 2.5M cells were
seeded in each well of 14 6-well plates, along with 8ug/ml of polybrene. A volume of 120ul of the virus
was added to each experimental well. 18hrs post-transduction, virus/PB mix medium was removed,
and cells in each well were collected, counted, and pooled into T175 �asks. At 60hr post-transduction,
2ug/ml of puromycin was added to each �ask. Mediums were changed every two days with fresh
EMEM, topped with 2ug/ml puromycin. Seven days after puromycin selection, cells were collected,
pooled, counted, and replated.

Fluorescent dye staining. 9 days after puromycin selection, cells were assigned to 2 groups. 20-30M
cells were collected as Unsorted Control. The cell pellet was spun down at 500 x g for 5min at 4oC. The
dry pellet was kept at -80oC for further genomic DNA isolation. The rest of the cells (approximately
200M) were kept in 100mm dishes and stained with a �uorescent dye (LipidSpotTM 488, Biotium, Cat.
70065-T). In Brief, LipidSpot 488 was diluted to 1:100 with DPBS. 4ml of staining solution was used for
each dish and incubated at 37oC for 30min. Cell images were captured through �uorescent
microscope EVOS for GFP signal detection (Figure S1).

Fluorescence-activated cell sorting (FACS). Cells were immediately collected into 50ml tubes (From
this point on, keep cells cold), and spun at 500 x g for 5min at 4oC. After DPBS wash, cell pellets were
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resuspended with FACS Sorting Bu�er (1x DPBS without Ca2+/Mg2+, 2.5mM EDTA, 25mM HEPES, 1%
BSA. The solution was �lter sterilized, and kept at 4oC), pi-pet gently to make single cells. The cell
solution was then �ltered through a cell strainer (Falcon, Cat. 352235) and was kept on ice, protected
from light. Collected cells were sorted on FACSJazz. 100um nozzle was used for sorting. ~20% of each
GFP-High and GFP-Low (Figure S2) were collected into 15ml tubes. After sorting, cells were
immediately spun down. Pellets were kept at -80oC for further genomic DNA isolation.

Genomic DNA isolation and veri�cation. Three conditions of Genomic DNA (Un-Sorted Control,
lentiV2 GFP-High, and lentiV2 GFP-Low) were extracted using QIAamp DNA Blood Mini Kit (Qiagen,
Cat.51104), followed by UV Spectroscopy (Nanodrop) to access the quality and quantity of the gDNA. A
total of 80-160ug of gDNA was isolated for each condition. sgRNA cassette and lentiviral speci�c
transgene in isolated gDNA were veri�ed through PCR (Figure S3).

Illumina libraries generation and sequencing. The fragment containing sgRNA cassette was
ampli�ed using P5 /P7 primers, as indicated in [115], and primer sequences were adapted from Broad
Institute protocol (Figure S4). Stagger sequence (0-8nt) was included in P5 and 8bp uniquely barcoded
sequence in P7. Primers were synthesized through Integrated DNA Technologies (IDT), and each
primer was PAGE puri�ed. 32 PCR reactions were set up for each condition. Each 100ul PCR reaction
consists of roughly 5ug of gDNA, 5ul of each 10uM P5 and P7. ExTaq DNA Polymerase (TaKaRa, Cat.
RR001A) was used to amplify the amplicon. PCR Thermal Cycler Parameters set as Initial at 95oC for
1min; followed by 24 cycles of Denaturation at 94oC for 30 seconds, Annealing at 52.5oC for 30
seconds, Extension at 72oC for 30 seconds. A �nal Elongation at 72oC for 10 minutes. 285bp-293bp
PCR products were expected (Figure S5 A). PCR products within the same condition were pooled and
puri�ed using SPRIselect beads (Beckman Coulter, Cat. B23318). Puri�ed Illumina libraries were
quantitated on Qubit, and the quality of the library was analyzed on Bio-analyzer using High Sensitivity
DNA Chip. A single approximate 285bp peak was expected. (Figure S5 B). Final Illumina library samples
were sequenced on Nova-seq 6000. Samples were pooled and loaded on an SP �ow cell, along with a
20% PhiX control v3 library spike-in.

Code and data availability

The code and data to reproduce all the analyses in this work are available in
https://github.com/greenelab/phenoplier.
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Supplementary material

Regression model for LV-trait associations

Supplementary Note 1: mean type I error rates and calibration of LV-based
regression model

We assessed our GLS model type I error rates (proportion of -values below 0.05) and calibration
using a null model of random traits and genotype data from 1000 Genomes Phase III. We selected 312
individuals with European ancestry, and then analyzed 1,000 traits drawn from a standard normal
distribution . We ran all the standard procedures for the TWAS approaches (S-PrediXcan and
S-MultiXcan), including: 1) a standard GWAS using linear regression under an additive genetic model,
2) di�erent GWAS processing steps, including harmonization and imputation procedures as de�ned in
[116], 3) S-PrediXcan and S-MultiXcan analyses. Below we provide details for each of these steps.

Step 1 - GWAS. We performed standard QC procedures such as �ltering out variants with missing call
rates eexceeding 0.01, MAF below 1% or MAC below 20, and HWE below 1e-6, and removing samples
with high sex-discrepancy and high-relatedness (�rst and second degree). We included sex and the
top 20 principal components as covariates, performing the association test on 5,923,554 variants
across all 1,000 random phenotypes.

Step 2 - GWAS processing. These steps include harmonization of GWAS and imputation of -scores,
which are part of the TWAS pipeline and are needed in order to ensure an acceptable overlap with
SNPs in prediction models. The scripts to run these steps are available in [117]. These procedures
were run for all 1,000 random phenotypes and generated a total number of 8,325,729 variants,
including those with original and imputed -scores.

Step 3 - TWAS. We processed the imputed GWAS with S-PrediXcan using the MASHR prediction
models on 49 tissues from GTEx v8. Then, S-MultiXcan was ran using the GWAS and S-PrediXcan
outputs to generate gene-trait association -values.

Finally, we ran our GLS model (Equation (7)) to compute an association between each of the 987 LVs in
MultiPLIER and the 1,000 S-MultiXcan results on random phenotypes. For this, we built a gene
correlation matrix speci�cally for this cohort (see Methods). Then, we compared the GLS results with
an equivalent, baseline ordinarly least squares (OLS) model assuming independence between genes.
Figure 8 compares the distribution of -values of the OLS and GLS models. The GLS model has a
slightly smaller mean type I error rate (0.0558, SD=0.0127) than the baseline OLS model (0.0584,
SD=0.0140), and -values follow more closely the expected uniform distribution. Importantly, the GLS
model is able to correct for LVs with adjacent and highly correlated genes at the top such as LV234
(Figure 9), LV847 (Figure 10), LV45 (Figure 11), or LV800 (Figure 12), among others. In contrast and as
expected, the OLS model has higher mean type I errors and smaller-than-expected -values in all
these cases.

We also detected other LVs with higher-than-expected mean type I errors for both the GLS and OLS
models, although they don’t have a relatively large number of adjacent genes at the top. One example
is LV914, shown in Figure 13. In�ation in these LVs might be explained by inaccuracies in correlation
estimates between the individual-level MultiXcan model and its summary-based version (see
Methods). Therefore, we �agged those with a type I error rate larger than 0.07 (127 LVs) and excluded
them from our main analyses.
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Figure 8:  QQ-plots for OLS (baseline) and GLS (PhenoPLIER) models on random phenotypes.

Figure 9:  QQ-plots for LV234 on random phenotypes. Among the top 1% of genes in this LV, 17 are located in band
6p22.2, 5 in 6p22.1 and 3 in 7q11.23.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


Figure 10:  QQ-plots for LV847 on random phenotypes. Among the top 1% of genes in this LV, 15 are located in band
6p22.2, 5 in 6p22.1 and 2 in 15q26.1.

Figure 11:  QQ-plots for LV45 on random phenotypes. Among the top 1% of genes in this LV, 12 are located in band
6p22.2, 6 in 6p22.1 and 3 in 1q23.3.

Figure 12:  QQ-plots for LV800 on random phenotypes. Among the top 1% of genes in this LV, 16 are located in band
19q13.43, 9 in 19p13.2 and 9 in 19q13.31.
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Figure 13:  QQ-plots for LV914 on random phenotypes. Among the top 1% of genes in this LV, 2 are located in band
13q13.3, 2 in 7p15.2 and 2 in 19q13.2.

LV-trait associations in real data

Figure 14:  QQ-plots of LV-trait associations in real data. QQ-plot in PhenomeXcan (left, discovery cohort) across
4,091 traits and 987 LVs, and eMERGE (right, replication cohort) across 309 traits and 987 LVs.

CRISPR-Cas9

Screening steps
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Figure S1:  EVOS Fluorescent Microscope Image Capture. A. HepG2_lentiV2_Ctrl with no-viral transduction. B.
HepG2_lentiV2 with viral transduction.

Figure S2:  Fluorescence-Activated Cell Sorting Gate Setting. A. HepG2_UnStained WT. B. HepG2_lentiV2 with viral
transduction.
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Figure S3:  Veri�cation of sgRNA cassette and lentiV2 transgene. A. 20nt sgRNA cassette was veri�ed in lentiV2
transduced genomic DNA population, 163 bp PCR product obtained, while WT HepG2 didn’t possess the cassette, thus,
no PCR product. B. lentiviral-speci�c transgene WPRE was veri�ed in lentiV2 transduced genomic DNA population, while
no transduced WT didn’t have the transgene, therefore, no 173 bp PCR product observed.

Figure S4:

Figure S5:  Illumina library generation. A. Construct for generating illumina libraries. B. Final illumina library from HS
DNA —showed a single ~285bp peak was generated.

Gene modules enrichment for lipids gene-sets

Table 2:  Gene modules (LVs) nominally enriched for the lipids-increasing gene-set from the CRISPR-screen (P < 0.01).
LVs signi�cantly aligned with pathways (FDR < 0.05) from the MultiPLIER models are shown in boldface.

Gene module Lipids gene-set Leading edge p-value
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Gene module Lipids gene-set Leading edge p-value

LV246 increase DGAT2, ACACA 0.0035

LV702 increase ACACA, DGAT2 0.0046

LV607 increase ACACA, DGAT2 0.0058

LV890 increase ACACA, DGAT2 0.0067

LV74 increase MBTPS1, DGAT2 0.0078

LV865 increase ACACA, DGAT2 0.0092

LV841 increase ACACA, DGAT2 0.0096

Table 3:  Gene modules (LVs) nominally enriched for the lipids-decreasing gene-set from the CRISPR-screen (P < 0.01).
LVs signi�cantly aligned with pathways (FDR < 0.05) from the MultiPLIER models are shown in boldface.

Gene module Lipids gene-set Leading edge p-value

LV520 decrease FBXW7, TCF7L2 0.0006

LV801 decrease UBE2J2, TCF7L2 0.0022

LV512 decrease FBXW7, TCF7L2 0.0025

LV612 decrease PTEN, FBXW7 0.0036

LV41 decrease PCYT2, TCF7L2 0.0041

LV838 decrease UBE2J2, TCF7L2 0.0070

LV302 decrease TCF7L2, PTEN 0.0083

LV959 decrease TCF7L2, PTEN 0.0092

Consensus clustering of traits

Supplementary Note 2: Cluster analyses under the null hypothesis of no
structure in the data

For our clustering pipeline, we simulated di�erent escenarios where there is no structure in the input
data matrix  (gene-trait associations from PhenomeXcan projected into the latent gene expression
representation). For this, we simulated two cases where any groupings of traits are removed: 1) the
gene-trait association matrix  (from S-MultiXcan) does not have any meaningful structure to �nd
groups of traits, while preserving the latent variables in  from the MultiPLIER models; and 2) the
latent variables in matrix  does not have any meaningful structure to �nd groups of traits, while
preserving the gene-trait association matrix .

For the �rst scenario, we shu�ed genes in  for each trait, and this randomized matrix was then
projected into the latent space. For the second scenario, we projected matrix  into the latent space,
and then shu�ed LVs in  for each trait. For each of these scenarios, we ran exactly the same
clustering pipeline we used for the real data (Methods), generating an ensemble of partitions that was
later combined using the same consensus functions to derive the �nal partitions of traits. Finally, we
computed 1) stability statistics on the ensemble partitions from di�erent algorithms and 2) the
agreement of the �nal consensus partition with the ensemble.
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Figure 15:  Agreement of consensus partitions with ensemble. A real and two simulated scenarios with no data
structure are shown. For each scenario, one �nal consensus partition was derived for each  from 2 to 60 ( -axis)
following our clustering pipeline. For each partition, the agreement with the corresponding ensemble was computed
using the ARI ( -axis). For the real data scenario, partitions with an agreement above the 75th percentile (dashed line)
were selected for follow-up analyses in the main text.

The results of this analysis (Figure 15) show that, under the two simulated null scenarios, the
agreement of the consensus partitions with the ensemble is very close to zero. This means, as
expected, that there is no consensus among ensemble partitions generated with di�erent clustering
algorithms and data representations. In contrast, using the real data, the consensus clustering
approach �nds trait pairs that are grouped together across the di�erent members of the ensemble.
The partitions above the 75th percentile were considered in the main analyses, and are shown in the
clustering tree in Figure 6.

Cluster-speci�c and general transcriptional processes associated with
disease

k x

y
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Figure 16:  Cluster-speci�c and general transcriptional processes associated with disease using novel LVs. The
plot shows a submatrix of  for the main trait clusters at =29, considering only LVs (rows) that are not aligned with
any pathway. Standardized values from -6 (lighter color) to 21 (darker color).

Latent variables (gene modules) information

LV603

Table 4:  Pathways aligned to LV603 from the MultiPLIER models.

Pathway AUC FDR

IRIS Neutrophil-Resting 0.91 4.51e-35

SVM Neutrophils 0.98 1.43e-09

PID IL8CXCR2 PATHWAY 0.81 7.04e-03

SIG PIP3 SIGNALING IN B LYMPHOCYTES 0.77 1.95e-02

Table 5:  Signi�cant trait associations of LV603 in PhenomeXcan.

Trait description Sample size Cases FDR

Basophill percentage 349,861 1.19e‑10

Basophill count 349,856 1.89e‑05

Treatment/medication code: ispaghula husk 361,141 327 1.36e‑02

Table 6:  Signi�cant trait associations of LV603 in eMERGE.

Phecode Trait description Sample size Cases FDR

No signi�cant associations

M̂ k
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Phecode Trait description Sample size Cases FDR

LV246

Table 7:  Pathways aligned to LV246 from the MultiPLIER models.

Pathway AUC FDR

REACTOME FATTY ACID TRIACYLGLYCEROL AND KETONE BODY METABOLISM 0.89 3.97e-16

REACTOME METABOLISM OF LIPIDS AND LIPOPROTEINS 0.67 1.14e-08

REACTOME TRIGLYCERIDE BIOSYNTHESIS 0.86 6.52e-04

KEGG PYRUVATE METABOLISM 0.82 2.66e-03

KEGG PROPANOATE METABOLISM 0.83 4.27e-03

Table 8:  Signi�cant trait associations of LV246 in PhenomeXcan.

Trait description Sample
size

Case
s FDR

Triglycerides NMR 21,559 1.66e‑26

LDL Cholesterol NMR 13,527 3.92e‑26

High cholesterol (self-reported) 361,141 43,9
57 1.08e‑24

Cholesterol lowering medication 193,148 24,2
47 4.28e‑24

Treatment/medication code: simvastatin 361,141 40,9
21 2.56e‑19

CH2DB NMR 24,154 1.05e‑15

Cholesterol lowering medication 165,340 38,0
57 9.58e‑15

Treatment/medication code: atorvastatin 361,141 10,8
05 2.54e‑14

Illnesses of mother: Alzheimer’s disease/dementia 331,041 28,5
07 2.76e‑08

Illnesses of father: Alzheimer’s disease/dementia 312,666 15,0
22 2.76e‑08

Alzheimers Disease 54,162 17,0
08 1.10e‑07

Non-butter spread type details: Flora Pro-Active or Benecol 190,094 29,0
48 5.63e‑07

Illnesses of siblings: Alzheimer’s disease/dementia 279,062 1,60
9 6.16e‑07

Any dementia 361,194 243 2.86e‑05

Illnesses of father: None of the above (group 1) 314,797 116,
736 3.56e‑05

Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones
(females) 193,148 133,

338 1.10e‑04

Treatment/medication code: lipitor 10mg tablet 361,141 2,58
4 1.55e‑04
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Trait description Sample
size

Case
s FDR

Treatment/medication code: rosuvastatin 361,141 2,22
7 1.37e‑03

Illnesses of father: Heart disease 318,570 104,
110 1.89e‑03

Dementia 361,194 157 9.58e‑03

Mother still alive 355,029 140,
246 1.76e‑02

Job SOC coding: Librarians 91,149 1,24
8 3.22e‑02

Alzheimer’s disease 361,194 119 3.61e‑02

Table 9:  Signi�cant trait associations of LV246 in eMERGE.

Phecode Trait description Sample size Cases FDR

272.11 Hypercholesterolemia 40,786 14,138 4.40e‑09

272.1 Hyperlipidemia 55,843 29,195 3.57e‑07

272 Disorders of lipoid metabolism 55,892 29,244 3.79e‑07

292.3 Memory loss 48,785 2,094 1.80e‑02

LV116

Table 10:  Pathways aligned to LV116 from the MultiPLIER models.

Pathway AUC FDR

REACTOME INTERFERON SIGNALING 0.84 3.48e-09

SVM Macrophages M1 0.92 2.09e-05

REACTOME INTERFERON ALPHA BETA SIGNALING 0.94 3.36e-05

REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM 0.67 1.53e-04

IRIS DendriticCell-LPSstimulated 0.65 1.09e-03

KEGG CYTOSOLIC DNA SENSING PATHWAY 0.84 3.22e-03

REACTOME NEGATIVE REGULATORS OF RIG I MDA5 SIGNALING 0.81 1.61e-02

LV931
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Figure 17:  Cell types for LV931.

Table 11:  Pathways aligned to LV931 from the MultiPLIER models.

Pathway AUC FDR

MIPS SPLICEOSOME 0.63 3.13e-02

PID TGFBRPATHWAY 0.71 3.99e-02

LV66

Figure 18:  Cell types for LV66.

Table 12:  Pathways aligned to LV66 from the MultiPLIER models.

Pathway AUC FDR

REACTOME METABOLISM OF LIPIDS AND LIPOPROTEINS 0.62 3.12e-04

LV928
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Figure 19:  Cell types for LV928.

Table 13:  Pathways aligned to LV928 from the MultiPLIER models.

Pathway AUC FDR

DMAP ERY3 0.81 1.16e-24

DMAP ERY4 0.78 2.49e-17

Table 14:  Signi�cant trait associations of LV928 in PhenomeXcan.

Trait description Sample size Cases FDR

Mean sphered cell volume 344,729 1.60e‑20

Mean corpuscular haemoglobin concentration 350,468 1.42e‑17

Mean reticulocyte volume 344,728 1.77e‑17

Reticulocyte count 344,729 2.28e‑10

Reticulocyte percentage 344,728 1.37e‑09

Red blood cell (erythrocyte) distribution width 350,473 2.90e‑09

Reticulocyte Count 173,480 1.09e‑07

Mean corpuscular volume 350,473 1.46e‑03

High light scatter reticulocyte count 344,729 3.49e‑03

Age at �rst episode of depression 61,033 1.33e‑02

High Light Scatter Reticulocyte Count 173,480 1.48e‑02

Mean corpuscular haemoglobin 350,472 4.02e‑02

Table 15:  Signi�cant trait associations of LV928 in eMERGE.

Phecode Trait description Sample size Cases FDR
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Phecode Trait description Sample size Cases FDR

No signi�cant associations

LV30

Figure 20:  Cell types for LV30.

Table 16:  Pathways aligned to LV30 from the MultiPLIER models.

Pathway AUC FDR

DMAP ERY3 0.95 5.62e-52

DMAP ERY4 0.98 5.28e-51

DMAP ERY5 0.98 1.96e-49

Table 17:  Signi�cant trait associations of LV30 in PhenomeXcan.

Trait description Sample size Cases FDR

Mean reticulocyte volume 344,728 1.09e‑32

Mean sphered cell volume 344,729 1.38e‑24

Reticulocyte Count 173,480 6.28e‑18

Reticulocyte percentage 344,728 1.27e‑17

Mean corpuscular haemoglobin concentration 350,468 1.62e‑17

Reticulocyte count 344,729 1.62e‑17

High light scatter reticulocyte count 344,729 4.78e‑11

High Light Scatter Reticulocyte Count 173,480 8.49e‑11

Immature reticulocyte fraction 344,728 4.31e‑10

High light scatter reticulocyte percentage 344,729 1.21e‑05

Mean corpuscular volume 350,473 2.28e‑05

Red blood cell (erythrocyte) distribution width 350,473 3.00e‑05

Mean platelet (thrombocyte) volume 350,470 6.75e‑04
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Trait description Sample size Cases FDR

Mean corpuscular haemoglobin 350,472 3.90e‑03

Illnesses of adopted mother: Chronic bronchitis/emphysema 2,938 238 1.92e‑02

Table 18:  Signi�cant trait associations of LV30 in eMERGE.

Phecode Trait description Sample size Cases FDR

No signi�cant associations

LV730

Figure 21:  Cell types for LV730.

Table 19:  Pathways aligned to LV730 from the MultiPLIER models.

Pathway AUC FDR

DMAP MEGA2 0.82 2.64e-05

Table 20:  Signi�cant trait associations of LV730 in PhenomeXcan.

Trait description Sample size Cases FDR

Platelet distribution width 350,470 1.13e‑10

Mean platelet (thrombocyte) volume 350,470 3.47e‑04

Reason former drinker stopped drinking alcohol: Financial reasons 12,110 233 3.71e‑02

Table 21:  Signi�cant trait associations of LV730 in eMERGE.

Phecode Trait description Sample size Cases FDR

No signi�cant associations

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


LV598

Figure 22:  Cell types for LV598.

Table 22:  Pathways aligned to LV598 from the MultiPLIER models.

Pathway AUC FDR

PID SYNDECAN 1 PATHWAY 0.81 1.20e-02

REACTOME COLLAGEN FORMATION 0.77 1.89e-02

Table 23:  Signi�cant trait associations of LV598 in PhenomeXcan.

Trait description Sample size Cases FDR

Corneal resistance factor (right) 76,630 4.05e‑04

Corneal resistance factor (left) 76,510 1.86e‑03

6mm strong meridian (left) 65,551 2.58e‑03

Corneal hysteresis (right) 76,630 1.21e‑02

6mm strong meridian (right) 66,256 2.18e‑02

Treatment/medication code: evening primrose oil product 361,141 814 2.58e‑02

6mm weak meridian (left) 65,551 3.67e‑02

Hand grip strength (left) 359,704 4.15e‑02

3mm strong meridian (left) 75,398 4.74e‑02

Table 24:  Signi�cant trait associations of LV598 in eMERGE.

Phecode Trait description Sample size Cases FDR

No signi�cant associations

LV57
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Figure 23:  Cell types for LV57.

Table 25:  Pathways aligned to LV57 from the MultiPLIER models.

Pathway AUC FDR

KEGG T CELL RECEPTOR SIGNALING PATHWAY 0.70 1.26e-03

SVM T cells CD4 memory activated 0.79 2.59e-03

IRIS CD4Tcell-Th2-restimulated12hour 0.78 7.57e-03

KEGG ALLOGRAFT REJECTION 1.00 1.09e-02

Custom Treg 0.98 1.37e-02

PID NFAT TFPATHWAY 0.74 1.52e-02

IRIS MemoryTcell-RO-activated 0.70 2.87e-02

Table 26:  Signi�cant trait associations of LV57 in PhenomeXcan.

Trait description Sample
size

Cas
es FDR

Non-cancer illness code, self-reported: deep venous thrombosis (dvt) 361,141 7,2
37 1.76e‑13

Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by
doctor: Blood clot in the leg (DVT) 360,527 7,3

86 1.22e‑12

Diagnoses - main ICD10: I80 Phlebitis and thrombophlebitis 361,194 2,2
89 7.62e‑12

DVT of lower extremities 361,194 2,1
16 1.27e‑09

Venous thromboembolism 361,194 4,6
20 2.28e‑08

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


Trait description Sample
size

Cas
es FDR

DVT of lower extremities and pulmonary embolism 361,194 4,3
19 4.36e‑08

In�ammatory Bowel Disease 34,652 12,
882 1.95e‑05

hypothyroidism (self-reported) 361,141 17,
574 3.84e‑05

Medication: levothyroxine sodium 361,141 14,
689 8.43e‑05

Mouth/teeth dental problems: Mouth ulcers 359,841 36,
831 1.02e‑03

Crohns Disease 20,833 5,9
56 1.02e‑02

Facial ageing 330,409 1.04e‑02

Ulcerative Colitis 27,432 6,9
68 1.27e‑02

Hair colour (natural, before greying): Black 360,270 15,
809 1.99e‑02

Hair colour (natural, before greying): Light brown 360,270
147
,56
0

4.69e‑02

Table 27:  Signi�cant trait associations of LV57 in eMERGE.

Phecode Trait description Sample size Cases FDR

286 Coagulation defects 50,182 2,976 1.33e‑11

452 Other venous embolism and thrombosis 40,476 3,816 1.52e‑05

452.2 Deep vein thrombosis [DVT] 38,791 2,131 4.47e‑05

244.4 Hypothyroidism NOS 53,968 9,284 1.12e‑02

244 Hypothyroidism 54,404 9,720 1.42e‑02

LV844
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Figure 24:  Cell types for LV844.

Table 28:  Pathways aligned to LV844 from the MultiPLIER models.

Pathway AUC FDR

KEGG ANTIGEN PROCESSING AND PRESENTATION 0.80 1.35e-03

Table 29:  Signi�cant trait associations of LV844 in PhenomeXcan.

Trait description Sample size Cases FDR

Non-cancer illness code, self-reported: polymyalgia rheumatica 361,141 753 5.22e‑06

Non-cancer illness code, self-reported: type 1 diabetes 361,141 318 4.71e‑05

Type 1 diabetes with ketoacidosis 361,194 168 1.03e‑04

Age diabetes diagnosed 16,166 3.86e‑04

Milk type used: Other type of milk 360,806 4,213 5.48e‑04

Non-cancer illness code, self-reported: appendicitis 361,141 3,058 6.12e‑04

Diabetic ketoacidosis 361,194 234 7.13e‑04

Rheumatoid Arthritis 80,799 19,234 7.46e‑04

Type 1 diabetes without complications 361,194 247 1.05e‑03

Started insulin within one year diagnosis of diabetes 16,415 1,999 1.30e‑03

Insulin medication (males) 165,340 2,248 3.61e‑03

Medication: insulin product 361,141 3,545 5.48e‑03

Insulin medication (females) 193,148 1,476 7.93e‑03

Type 1 diabetes 361,194 583 1.04e‑02

Diagnoses - main ICD10: E10 Insulin-dependent diabetes mellitus 361,194 470 1.08e‑02

Treatment/medication code: sulfasalazine 361,141 710 1.10e‑02
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Trait description Sample size Cases FDR

malabsorption/coeliac disease (self-reported) 361,141 1,587 3.12e‑02

Job coding: school inspector, education inspector 89,866 238 3.71e‑02

Seropositive rheumatoid arthritis 361,194 327 3.86e‑02

Non-cancer illness code, self-reported: rheumatoid arthritis 361,141 4,017 4.21e‑02

Age hayfever or allergic rhinitis diagnosed by doctor 20,904 4.44e‑02

Other/unspeci�ed seropositiverheumatoid arthritis 361,194 299 4.88e‑02

Table 30:  Signi�cant trait associations of LV844 in eMERGE.

Phecode Trait description Sample size Cases FDR

No signi�cant associations

LV136

Figure 25:  Cell types for LV136. Pulmonary microvascular endothelial cells were exposed to hypoxia for 24 hours or
more [118];

Table 31:  Pathways aligned to LV136 from the MultiPLIER models.

Pathway AUC FDR

PID INTEGRIN1 PATHWAY 0.88 9.35e-06

KEGG ECM RECEPTOR INTERACTION 0.80 7.29e-05

REACTOME COLLAGEN FORMATION 0.87 2.00e-04

REACTOME MUSCLE CONTRACTION 0.75 1.49e-02

Table 32:  Signi�cant trait associations of LV136 in PhenomeXcan.

Trait description Sample size Cases FDR

Coronary atherosclerosis 361,194 14,334 1.84e‑09
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Trait description Sample size Cases FDR

Chronic ischaemic heart disease (ICD10 I25) 361,194 12,769 3.52e‑09

Ischaemic heart disease (wide de�nition) 361,194 20,857 3.95e‑08

Coronary Artery Disease 184,305 60,801 4.18e‑08

3mm strong meridian (right) 75,410 5.54e‑05

6mm strong meridian (left) 65,551 1.35e‑04

Corneal resistance factor (right) 76,630 2.02e‑04

6mm strong meridian (right) 66,256 2.58e‑04

Heart attack 360,420 8,288 3.75e‑04

Myocardial infarction 361,194 7,018 4.85e‑04

Myocardial infarction, strict 361,194 7,018 4.85e‑04

3mm strong meridian (left) 75,398 6.65e‑04

heart attack/myocardial infarction (self-reported) 361,141 8,239 1.07e‑03

6mm weak meridian (left) 65,551 1.10e‑03

6mm weak meridian (right) 66,256 1.61e‑03

Acute myocardial infarction (ICD10 I21) 361,194 5,948 2.24e‑03

3mm weak meridian (right) 75,410 3.69e‑03

3mm weak meridian (left) 75,398 3.96e‑03

Intra-ocular pressure, Goldmann-correlated (right) 76,630 8.64e‑03

6mm asymmetry angle (right) 41,390 1.03e‑02

Corneal resistance factor (left) 76,510 1.03e‑02

Other speci�ed disorders of muscle 361,194 257 1.09e‑02

Major coronary heart disease event excluding revascularizations 361,194 10,157 2.44e‑02

Major coronary heart disease event 361,194 10,157 2.44e‑02

Non-cancer illness code, self-reported: angina 361,141 11,370 4.53e‑02

Eye problems/disorders: Glaucoma 117,890 5,092 4.94e‑02

Table 33:  Signi�cant trait associations of LV136 in eMERGE.

Phecode Trait description Sample size Cases FDR

411.4 Coronary atherosclerosis 52,836 13,715 1.42e‑03

LV21
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Figure 26:  Cell types for LV21.

Table 34:  Pathways aligned to LV21 from the MultiPLIER models.

Pathway AUC FDR

No pathways signi�cantly enriched

Table 35:  Signi�cant trait associations of LV21 in PhenomeXcan.

Trait description Sample size Cases FDR

LDL Cholesterol NMR 13,527 1.08e‑12

HDL Cholesterol NMR 19,270 3.03e‑11

Alzheimers Disease 54,162 17,008 1.96e‑09

Triglycerides NMR 21,559 2.05e‑09

Illnesses of mother: Alzheimer’s disease/dementia 331,041 28,507 1.36e‑08

Illnesses of father: Alzheimer’s disease/dementia 312,666 15,022 3.15e‑08

Illnesses of siblings: Alzheimer’s disease/dementia 279,062 1,609 1.55e‑07

Any dementia 361,194 243 5.63e‑07

Treatment/medication code: simvastatin 361,141 40,921 2.88e‑06

Cholesterol lowering medication 193,148 24,247 4.45e‑05

High cholesterol (self-reported) 361,141 43,957 9.90e‑05

Cholesterol lowering medication 165,340 38,057 4.86e‑04

Dementia 361,194 157 9.80e‑04

Alzheimer’s disease 361,194 119 1.33e‑03

Mean reticulocyte volume 344,728 1.76e‑03

Father’s age at death 266,231 6.68e‑03

Illnesses of mother: None of the above (group 1) 332,611 138,29
1 1.42e‑02

ECG, phase time 53,998 1.60e‑02

Treatment/medication code: atorvastatin 361,141 10,805 2.92e‑02
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Trait description Sample size Cases FDR

Mean sphered cell volume 344,729 3.33e‑02

Non-cancer illness code, self-reported: cellulitis 361,141 232 3.40e‑02

Medication for cholesterol, blood pressure or diabetes (males) 165,340 110,37
2 3.66e‑02

Mother still alive 355,029 140,24
6 4.96e‑02

Table 36:  Signi�cant trait associations of LV21 in eMERGE.

Phecode Trait description Sample size Cases FDR

272.1 Hyperlipidemia 55,843 29,195 4.22e‑03

272 Disorders of lipoid metabolism 55,892 29,244 4.50e‑03
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