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Abstract

We propose a novel heuristic to predict RNA secondary structure formation pathways that has two components:
(i) a folding algorithm and (ii) a kinetic ansatz. This heuristic is inspired by the kinetic partitioning mechanism,
by which molecules follow alternative folding pathways to their native structure, some much faster than others.
Similarly, our algorithm RAFFT starts by generating an ensemble of concurrent folding pathways ending in multiple
metastable structures, which is in contrast with traditional thermodynamic approaches that find single structures
with minimal free energies. When we constrained the algorithm to predict only 50 structures per sequence, near-
native structures were found for RNA molecules of length < 200 nucleotides. Our heuristic has been tested on the
coronavirus frameshifting stimulation element (CFSE): an ensemble of 68 distinct structures allowed us to produce
complete folding kinetic trajectories, whereas known methods require evaluating millions of sub-optimal structures

to achieve this result.
efficient, with complexity O(L?log L).

Introduction

The function of noncoding RNAs is largely determined
by their three-dimensional structure [7]. For instance, the
catalytic function of ribozymes can often be analyzed in
terms of basic structural motifs, such as hammerhead or
hairpin structures [I3]. Other RNAs, like riboswitches, in-
volve changes between alternative structures [50]. Under-
standing the relation sequence and structure is therefore
a central challenge in molecular biology. Because mea-
suring the structure of RNAs through X-ray crystallog-
raphy or NMR is difficult and expensive, computational
approaches have played a central role in the analysis of
natural RNAs [41, [I5], and also in the design of synthetic
RNAs [14].

Three levels of structures are used to describe RNA
molecules: (1) the primary structure, that is, the nu-
cleotide sequence itself; (2) the secondary structure
formed by Watson-Crick (or wobble) base pairings; (3) the
tertiary structure represents the molecule shape in three-
dimensional space. Unlike proteins, RNA structures are
usually formed hierarchically; the secondary structure is
formed first, followed by the tertiary structure [48]. This
separation of time scales justifies focusing on the predic-
tion of secondary structures; evidence suggests that the
resulting tertiary structures (as well as the kinetic bottle-
necks towards their formation) are indeed largely deter-
mined by the RNA’s secondary structure.

Although base pairs can be formed with various con-
figurations [27], we only consider here the canonical in-
teractions: G-C, A-U, and G-U. Moreover, while vari-
ous subtleties are involved in the definition of the sec-
ondary structure, we use here the formal definition called
pseudoknot-free [52]. In the rest of this work, ‘structure’

Thanks to the fast Fourier transform on which RAFFT is based, these computations are

refers specifically to this notion of RNA secondary struc-
ture.

The thermodynamic stability AG; of a structure s is
the free energy difference with respect to the completely
unfolded state. To predict biologically relevant structures,
most computational methods search for structures that
minimize this free energy. To this aim, structures are de-
composed into components called loops, such that using
the additivity principle [12], the free energy of a struc-
ture can be approximated by the sum of its constituent
loops free energies. Many models allow to compute the
free energies of those constituent loops, but the domi-
nant one is the nearest-neighbor loop energy model [49].
This model associates tabulated free energy values to loop
types and nucleotide compositions; the Turner2004 [32] is
one of the most widely used set of parameters. This struc-
ture decomposition allows an efficient dynamic program-
ming algorithm that can determine the minimum free en-
ergy (MFE) structure of a sequence in the entire structure
space [56].

The MFE structure is commonly used in free-energy
based predictions; however, it represents one structural
estimate among many others, including the maximum ex-
pected accuracy (MEA).

Several existing tools implement the Zuker dynamic
programming algorithm [56], e.g. RNAfold [24], Mfold
[55], or RNAstructure [35]. While these methods were
found to predict RNA structures accurately, as shown
in recent benchmarks [39] 25], the additivity principle is
expected to break down when structures are too large.
Moreover, thermodynamic models tend to ignore pseu-
doknot loops, which can sometimes limit their biological
relevance.

Recently, machine learning (ML) approaches were in-
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Figure 1: RAFFT framework. Starting from a sequence, (1) an ensemble of structure describing folding pathways
is formed, then (2) the kinetic ansatz is applied to monitor the population of structure adopted by this RNA molecule

over time.

vestigated and seemed to overcome some of these short-
comings. ML-based structure prediction tools provide
substantial improvements [43, 39]. However, in addition
to some over-fitting concerns [36], these approaches can-
not give dynamical information, as few data are available
on structural dynamics. In addition, ML methods do not
follow from first principles: structural training data are
mostly obtained through phylogenetic analyses. Conse-
quently, the predictions from those methods may be bi-
ased, e.g. due to in vivo third-party elements.

From the dynamical standpoint, the RNA molecule
navigates its structure space by following a free energy
landscape. Three rate models describing elementary steps
in the structure space are currently used to study RNAs
folding dynamics: (1) the base stack model uses base
stacks formations and breaking as elementary moves [53];
(2) the base pair model as implemented in kinfold [I7]
gives the finest resolution with base pair steps, but at the
cost of computation time; (3) the stem model [30] provides
a coarse-grained description of the dynamics, where free
energy changes due to stem formation guide the folding
process. The latter makes a notable assumption: transi-
tion states (or saddle points) involved in the formation of
a stem are not considered [64]. An alternative approach,
implemented in kinwalker [20], used the observation that
folded intermediates are generally locally optimal confor-
mations.

In folding experiments, Pan and coworkers observed
two kinds of pathways in the free energy landscape of a
natural ribozyme [34]. Firstly, the experiments revealed
fast-folding pathways, in which a sub-population of RNAs
folded rapidly into the native state. The second pop-
ulation, however, quickly reached metastable misfolded
states, then slowly folded into the native structure. In
some cases, these metastable states are functional. These
phenomena are direct consequences of the rugged nature
of the RNA folding landscape [45]. The experiments per-
formed by Russell and coworkers also revealed the pres-
ence of multiple deep channels separated by high energy
barriers on the folding landscape, leading to fast and
slow folding pathways [37]. The formal description of
the above mechanism, called kinetic partitioning mech-
anism, was first introduced by Guo and Thirumalai in
the context of protein folding [2I]. In the free energy
landscape, these metastable conformations form compet-
ing attraction basins in which RNA molecules are tem-
porarily trapped. However, in vivo, folding into the na-

tive states can be promoted by molecular chaperones [§],
which means that the active structure depends on factors
other than the sequence. This may rise some discrepancy
when comparing thermodynamic modelling to real data.

Here, we propose a novel approach to RNA structure
prediction and dynamics inspired by the kinetic partition-
ing mechanism. Our method has two components: (1) a
folding algorithm that models the fast-folding pathways
and (2) a kinetic ansatz that displays how the conforma-
tions are populated over time (Figure [I).

The folding algorithm constructs multiple parallel
folding pathways by sequentially forming stems. This
procedure yields an ensemble of structures modelling the
complete folding process, from the unfolded state to mul-
tiple folded states. The FFT algorithm on which RAFFT is
based has already been used in the analysis of sequences
[B]; for example, it powers MAFFT, a well-known multiple-
sequence-alignment tool [16].

The quality of the predicted ensembles of struc-
tures has been assessed on a the well-curated dataset
ArchiveII [3I]. The results were compared to two
structure estimates: the MFE structure computed with
RNAfold, and the ML structure computed with MXfold2
[39] since methods of each approaches displayed similar
performances.

Using RAFFT, we investigated the folding kinetic of the
Coronavirus frameshifting stimulation element (CFSE)
[3]. RAFFT’s procedure displayed results qualitatively sim-
ilar to the state-of-the-art barrier kinetics [I7]. However,
our procedure requires drastically fewer structures and
models the complete folding process from the unfolded
state. Our kinetic modelling revealed that the native
structure of the CFSE is a kinetic trap while the MFE
structure only appears some time after.

Material and Methods

Folding algorithm

We start from a sequence of nucleotides S = (S7...5L)
of length L, and its associated unfolded structure. We
first create a numerical representation of S where each
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nucleotide is replaced by a unit vector of 4 components:

1 0 0 0

0 1 0 0
A— 0 ,C — 0 ,G — 1 U — 0 (1)
0 0 0 1

This encoding gives us a (4 x L)-matrix we call X, where
each row corresponds to a nucleotide as shown below:

XN /XA XA2) XA(L)
Y Xl xXC(1) Xx92) X(L) )
T X | XG0 XE(2) XC(L) (2)
XU ) AXY(1) XY(2) XY(L)

For example, X4(i) = 1 if S; = A. Next, we create a
second copy S = (S, ...S1) for which we reversed the se-
quence order. Then, each nucleotide of S is replaced by
one of the following vectors:

0 0 0 Wt
is|® ,C— 0 G | Y| o 0
0 Wee 0 Wy
Wyy 0 Wy 0

A (respectively C,G,U) is the complementary of A (re-
spectively C,G,U). way, wge, wgy represent the
weights associated with each canonical base pair; these
parameters are chosen empirically. We call this comple-
mentary copy X, the mirror of X.

Stack 1

Unfolded
'
B

Figure 2: Fast folding graph constructed using
RAFFT. In this example, the sequence is folded in two
steps: starting from the unfolded structure, the N = 5
most stable stems found are stored in stack 1. From stack
1, multiple stems can be formed but only the N = 5 most
stable are stored in stack 2. All secondary structure visu-
alizations were obtained using VARNA [I0].

To search for stems, we use the complementary re-
lation between X and X with the correlation function
cor(k). This correlation is defined as the sum of individ-
ual X and X row correlations:

cor(k) = Z

ac{A,C,G,U}

cxa e (), (4)

where a row correlation between X and X is given by:

o X)) X(i + k)
cxexe®)= Y TEEETIS O
1<i<L
1<i+k<L

For each a € {A,C,G,U}, X“(i) x X*(i + k) is non-zero
if sites ¢ and 7 + k can form a base pair, and will have
the value of the chosen weight as described above. If all
the weights are set to 1, cor(k) gives the likelihood of
base pairs for a positional lag k. Although the correlation
naively requires O(L?) operations, it can take advantage
of the FFT which reduces its complexity to O(L logL).

Large cor(k) values between the two copies indicate
positional lags k where the frequency of base pairs is high;
however, this does not allow to determine the exact stem
positions. Hence, we use a sliding window strategy to
search for the largest stem within the positional lag (since
the copies are symmetrical, we only need to slide over
one-half of the positional lag). Once the largest stem is
identified, we compute the free energy change associated
with the formation of that stem. We perform this search
for the n highest correlation values, which gives us n po-
tential stems. Then, we define the stem with the lowest
free energy as the current structure. Here, free energies
were computed using the ViennaRNA package APT [28].

We are now left with two independent parts, the in-
terior and the exterior of the newly formed stem. If the
exterior part is composed of two fragments, they are con-
catenated into one. Then, we apply recursively the same
procedure on the two parts independently in a breadth-
first fashion to form new consecutive base pairs. The
procedure stops when no base pair formation can improve
the energy. When multiple stems can be formed in these
independent fragments, we combine all of them and pick
the composition with the best overall stability. If too
many compositions can be formed, we restrict this to the
103 best in terms of energy. Figure [3| shows an example
of a single step to illustrate the procedure.

The complexity of this algorithm depends on the num-
ber and size of the stems formed. The main operations
performed for each stem formed are: (1) the evaluation
of the correlation function cor(k), (2) the sliding-window
search for stems, and (3) the energy evaluation. We based
our approximate complexity on the correlation evaluation
since it is the most computationally demanding step; the
other operations only contribute a multiplicative constant
at most. The best case is the trivial structure composed
of one large stem where the algorithm stops after evalu-
ating the correlation on the complete sequence. At the
other extreme, the worst case is one where at most L/2
stems of size 1 (exactly one base pair per stem) can be
formed. The approximate complexity therefore depends
on Y E2(L - 2i)log(L — 2i) = O(L*log L).

The algorithm described so far tends to be stuck in the
first local minima found along the folding trajectory. To
alleviate this, we implemented a stacking procedure where
the N best trajectories are saved in stacks and evolved in
parallel. As shown in Figure 2] the algorithm starts with
the unfolded structure; then, the N most stable stems
are saved iteratively in stacks, leading to the construction
of a graph we call fast-folding graph. The empirical time
complexity of the naive algorithm and the stacked version
only changes by a scaling pre-factor (Figure . Linear-
fold [25] is the fastest tool whereas RNAstructure is the
slowest.
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Figure 3: Algorithm execution for one example sequence which requires two steps. (Step 1) From the
correlation cor(k), we select one peak which corresponds to a position lag k. Then, we search for the largest stem and
form it. Two fragments, “In” (the interior part of the stem) and “Out” (the exterior part of the stem), are left, but
only the “Out” may contain a new stem to add. (Step 2) The procedure is called recursively on the “Out” sequence
fragment only. The correlation cor(k) between the “Out” fragment and its mirror is then computed and analyzing
the k positional lags allows to form a new stem. Finally, no more stem can be formed on the fragment left (colored in

blue), so the procedure stops.
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Figure 4: Execution time comparisons. For samples
of 30 sequences per length, we averaged the execution
times of five folding tools. The empirical time complex-
ity O(L") where 7 is obtained by non-linear regression.
RAFFT denotes the naive algorithm whereas RAFFT(50)
denotes the algorithm where 50 structures can be saved
per stack.

Kinetic ansatz

Our folding kinetic ansatz uses the fast-folding graph to
model the slow processes by which RNA molecules slowly
escape from metastable structures. As described in Fig-
ure [2] transitions follows the formation or destruction of
stems. The fast-folding graph follows the idea that paral-
lel pathways quickly reach their endpoints; however, when
the endpoints are non-native states, this ansatz allows
slowly folding back into the native state [34].

As usually done,

the kinetics is modelled as a

continuous-time Markov chain [29], where populations of
structures evolve according to transition rates. In this
context, an Arrhenius formulation is commonly used to
derive transition rates r(x — y) o exp(—BE*), where E*
is the activation energy separating x from y. In contrast,
our kinetic ansatz uses transition rates r(x — y) based on
the Metropolis scheme already used in [26], and defined
as

r(x — y) = ko X min(1, exp(—SAAG(z — y))), (6)

where AAG(z — y) is the stability change between struc-
ture x and y. Here kg is a conversion constant that we
set to 1 for the sake of simplicity. These transitions are
only allowed if y is connected to z in the graph (i.e. y is
in the neighborhood of z, y € X'). Here, we initialize the
population p,(0) with only unfolded structures; therefore,
the trajectory represents a complete folding process. The
frequency of a structure x evolves according to the master
equation

dpcglﬁt(t) — Z r(y = x)py(t) —r(x = yv)p(t), (7)

yeEX

where the sum runs over the neighborhood X of x.

The traditional kinetic approach starts by enumerat-
ing the whole space (or a carefully chosen subspace) of
structures using RNAsubopt. Next, this ensemble is di-
vided into local attraction basins separated from one an-
other by energy barriers. This coarsening is usually done
with the tool barriers. Then, following the Arrhenius
formulation, one simulates a coarse grained kinetics be-
tween basins. In contrast, the Metropolis scheme used
in our kinetic ansatz is based on the stability difference
between structures, which may hide energy barriers. Due
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to this approximation, we referred to our approach as a
kinetic ansatz.

Benchmark dataset

To build the dataset for the folding task application, we
started from the ArchiveII dataset derived from multiple
sources [2] 6], [4) 111, 01 57, 58], 511 46, [47] [44) 40| [33] B8], 23]
22], 19]. We first removed all the structures with pseudo-
knots, since the tools considered here do not handle them.
Next, we evaluated the structures’ energies and removed
all the unstable structures (i.e. structures with energies
AG; > 0). This dataset is composed of 2,698 sequences
with their corresponding known structures. 240 sequences
were found multiple times (from 2 to 8 times); 19 of them
were mapped to different structures. For the sequences
that appeared with different structures, we picked the
structure with the lowest energy. In the end, we obtained
a dataset of 2,296 sequences-structures.

Structure prediction protocols for bench-
marks

To evaluate the structure prediction accuracy of the pro-
posed method, we compared it to two structure estimates:
the MFE structure and the ML structure. To compute the
MFE structure, we used RNAfold 2.4.13 with the default
parameters. We computed the prediction using MXfold2
0.1.1 with the default parameters for the ML structure.
Therefore, only one structure prediction per sequence for
those two methods was used for the statistics.

Two parameters are critical for RAFFT, the number of
positional lags in which stems are searched, and the num-
ber of structures stored in the stack. For our computa-
tional experiments, we searched for stems in the n = 100
best positional lags and stored N = 50 structures. The
correlation function cor(k), which allows to choose the
positional lags, is computed using the weights wge = 3,
way = 2, and way = 1.

To assess the performance of RAFFT, we analyzed the
output in two different ways. First, we considered only the
structure with the lowest energy found for each sequence.
This procedure allows us to assess RAFFT performance in
search of low energy structure only. Second, we com-
puted the accuracy of all N = 50 structures saved in the
last stack for each sequence and displayed only the best
structure in terms of accuracy (RAFFT*). As mentioned
above, the lowest energy structure found may not be the
active structure. Therefore, this second procedure allows
us to assess whether one of the pathways constituting the
ensemble is biologically relevant.

We used two metrics to measure the prediction accu-
racy: the positive predictive value (PPV) and the sen-
sitivity. The PPV measures the fraction of correct base
pairs in the predicted structure, while the sensitivity mea-
sure the fraction of base pairs in the accepted structure
that are predicted. These metrics are defined as follows:

TP
T TP+ FP’

TP

Prv TP+ FN’

Sensitivity = (8)
where TP, FN, and FP stand respectively for the number
of correctly predicted base pairs (true positives), the num-

ber of base pairs not detected (false negatives), and the

number of wrongly predicted base pairs (false positives).
To be consistent with previous studies, we computed these
metrics using the scorer tool provided by Matthews et al.
[31], which also provides a more flexible estimate where
shifts are allowed.

Structure space visualization

We used a Principal Component Analysis (PCA) to vi-
sualize the loop diversity in the datasets considered here.
To extract the weights associated with each structure loop
from the dataset, we first converted the structures into
weighted coarse-grained tree representation [42]. In the
tree representation, the nodes are generally labelled as E
(exterior loop), I (interior loop), H (hairpin), B (bulge), S
(stacks or stem-loop), M (multi-loop) and R (root node).
We separately extracted the corresponding weights for
each node, and the weights are summed up and then nor-
malized. Excluding the root node, we obtained a table
of 6 features and n entries. This allows us to compute
a 6 x 6 correlation matrix that we diagonalize using the
eigen routine implemented in the scipy package. For
visual convenience, the structure compositions were pro-
jected onto the first two Principal Components (PC).

Results

Application to the folding task

Table 1: Average performance displayed in terms of
PPV and sensitivity. The metrics were first averaged
at fixed sequence length, limiting the over-representation
of shorter sequences. The first two rows show the aver-
age performance for all the sequences for each method.
The bottom two rows correspond to the performances for
the sequences of length < 200 nucleotides. For the ML
and MFE only one prediction per sequence and for RAFFT
50 predictions per sequence were used. Here RAFFT (re-
spectively RAFFT*) refers to the case when the lowest free
energy (resp. highest PPV) from the ensemble of 50 pre-
dictions is selected.

RAFFT ML MFE | RAFFT*

All sequences
PPV 47.7 704 559 60.0
Sensitivity 52.8 771 63.3 62.8
Sequences with lengths < 200
PPV 579 76.7 59.5 79.4
Sensitivity 63.2 829 65.5 81.2

We started by analyzing the prediction performances with
respect to sequence lengths: we averaged the perfor-
mances at fixed sequence length. Figure 5] shows the per-
formance in PPV and sensitivity for the three methods.
It shows that the ML method consistently outperformed
RAFFT and MFE predictions. A t-test between the ML and
the MFE predictions revealed not only a significant dif-
ference (p-value ~ 107'2) but also a substantial improve-
ment of 14.5% in PPV. RAFFT showed performances simi-
lar to the MFE predictions for shorter sequences; however,


https://doi.org/10.1101/2021.07.02.450908
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450908; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Performances
QQ nt . & ) Lt
N O\ S S 4
a Mte Tl e PR L Ty
\‘ b ﬂ.‘ A syt : ' S v o
Q \"\I‘/‘? 3"'(‘1 4'?'."\.:':,.'.\-".. ’ % S oa? NI s
X i \‘-. by .t _\«-.-..?-.:':1‘._ : . l-"_"’ ™Iy
ARSI Bt N o NS A AP S Wy
TRl 1o KR AT Y A AT L
4 * et Iy . I . ®Nre c il L. - "
Q 1 ‘ol .,’}yh‘ i ‘l\s;‘\)'l\\‘ o N N T ‘\\;- b e
y Jht! } “ U LT BN ORI S T P
© v v VS Y \ g by
e [ Bt 20 QTN R P S W (0 Ll
> Wl T VN TR
A ‘ R AN N AR
Q - LS 3 L Pl Uy ]" phes I:.. LR %
D_‘ b" \_’I.. . . YTy \\‘\’\ hf’u”‘ \*‘
. ¥ 22 L v 3\\/" AN
. CEP AL |
PN i
Q -
Vv . . .-
RAFFT WM RNAfold WM MXfold2 '
T T T T T
R PP L) TR
Y LE M IO AP e S I ..
'I"-'I "L i VAR '&‘t “
n o o YA LI N 1 N *0
>\ 1! Il LY. I ; J 7"1\."\4"‘\“,;‘. | \\./:,.',‘\.' o
= \ [l bt W Ir ARG o
> Q T 'S 4 s NA T i b . 1\ . :\"7 ’M\\
o % \ J | flall T s : \V-"\I‘; AU 3 N oTA N
— r ¥ 4 S MRAL I ALy o d\L
= . ) L ST R0 AR 1N PN ga N
N i ! . R - . AR R & r _" L W AT A !‘,
oL ’ RO S AL S 1
q \, -a...'l“- ;’b'.\lt".\
GRS B Rt U e
CD L : N . i
Q -
Vv | o
RAFFT [ RNAfold Il MXfold2 U
Q T T T T T T T T T T T
D O D D DN DD N0 DD
Vo7 ORI AP ART N D P

Sequence length

Figure 5: RAFFT’s performance on folding task. PPV and sensitivity vs sequence length. In the left panels, RAFFT
(in blue) shows the scores when for the structure (out of N = 50 predictions) with the lowest free energy, whereas
RAFFT* (in green) shows the best PPV score in that ensemble. Each dot corresponds to the mean performance for a
given sequence length, and vertical lines display their standard deviation. The right panels of both figures show the

distribution of PPV and sensitivity sequence-wise.

RAFFT is significantly less accurate for sequences of length
greater than 300 nucleotides.

However, are there relevant structures in the ensem-
ble predicted by our method? To address this question
we retained the structure with the best score among the
50 recorded structures per sequence. We obtained an av-
erage PPV of 57.9% and an average sensitivity of 63.2%
over all the dataset. The gain in terms of PPV /sensitivity
is especially pronounced for sequences of length < 200 nu-
cleotides, indicating the presence of biologically more rel-
evant structures in the predicted ensemble than the ther-
modynamically most stable one (PPV was =79.4%, and
sensitivity=81.2%). The average scores are shown in Ta-

ble [l We also investigated the relation to the number
of bases between paired bases (base pair spanning), but
we found no striking effect, as already pointed out in one
previous study [I].

All methods performed poorly on two groups of se-
quences: one group of 80 nucleotides long RNAs, and the
second group of around 200 nucleotides (two of these se-
quences are shown in Figure SI). The PCA analysis of
the known structure space, shown in Figure [6] reveals a
propensity for interior loops and the presence of large un-
paired regions like hairpins or external loops. The struc-
ture space produced by the ML predictions seems closer
to the native structure space. In contrast, the structure
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spaces produced by RAFFT and RNAfold (MFE) are simi-
lar and more diverse.

Structure space

True

PC2

PC2

-0.4

-0.25 0.00 0.25
PC1

-0.25 0.00 0.25
PC1

Figure 6: Structure space analysis. PCA for the pre-
dicted structures using RAFFT, RNAfold, MxFold2 com-
pared to the known structures denoted “True”.

Test case: the investigation of the CFSE
folding dynamics

We applied the RAFFT framework (folding + kinetics)
to the CFSE, a natural RNA sequence of 82 nucleotides,
where the structure has been determined by sequence
analysis and obtained from the RFAM database. This
structure has a pseudoknot which is not taken into ac-
count here.

Figures [7A and [7B respectively show the fast-folding
graph constructed using RAFFT, and the MFE and native
structures for the CFSE. The fast-folding graph is com-
puted in four steps. At each step, stems are constructed
by searching for n = 100 positional lags and, a set of
N = 20 structures (selected according to their free en-
ergies) are stored in a stack. The resulting fast-folding
graph consists of 68 distinct structures, each of which
is labelled by a number. Among the structures in the
graph, 6 were found similar to the native structure (16,/19
base pairs differences). The structure labelled “29” in the
graph leading to the MFE structure “59” is the 9" in the
second stack. When storing less than 9 structures in the
stack at each step, we cannot obtain the MFE structure
using RAFFT; this is a direct consequence of the greediness
of the proposed method. To visualize the energy land-
scape drawn by RAFFT, we arranged the structures in the
fast-folding graph onto a surface according to their base-
pair distances; for this we used the multidimensional scal-
ing algorithm implemented in the scipy package. Figure
[7D shows the landscape interpolated with all the struc-
tures found; this landscape illustrates the bi-stability of
the CFSE, where the native and MFE structures are in
distinct regions of the structure space.

From the fast-folding graph produced using RAFFT,
the transition rates from one structure in the graph to
another are computed using the formula given in Eq [6]

Starting from a population of unfolded structure and us-
ing the computed transition rates, the native of struc-
tures is calculated using Eq[7] Figure [7IC shows the fre-
quency of each structure; as the frequency of the unfolded
structure decreases to 0, the frequency of other structures
increases. Gradually, the structure labelled “44” which
represents the CFSE native structure, takes over the pop-
ulation and gets trapped for a long time, before the MFE
structure (labelled ”59”) eventually becomes dominant.
Even though the fast-folding graph does not allow com-
puting energy landscape properties (saddle, basin, etc.),
the kinetics built on it reveals a high barrier separating
the two meta-stable structures (MFE and native).

Our kinetic simulation was then compared to Treekin
[18]. First, we generated 1.5 x 10% sub-optimal struc-
tures up to 15 kcal/mol above the MFE structure
using RNAsubopt [28]. Since the MFE is AG, =
—25.8 kecal/mol, the unfolded structure could not be sam-
pled. Second, the ensemble of structures is coarse-grained
into 40 competing basins using the tool barriers [I§],
with the connectivity between basins represented as a bar-
rier tree (see Figure ) When using Treekin, the choice
of the initial population is not straightforward. Therefore
we resorted to two initial structures I1 and I (see Figure
and [B[C, respectively). In Figure 8B, the trajectories
show that only the kinetics initialized in the structure Iy
can capture the complete folding dynamics of CFSE, in
which the two metastable structures are visible. Thus,
in order to produce a folding kinetics in which the native
and the MFE structures are visible, the kinetic simula-
tion performed using Treekin required a particular initial
condition and a barrier tree representation of the energy
landscape built from a set of 1.5 x 10% structures. By
contrast, using the fast-folding graph produced by RAFFT,
which consists only of 68 distinct structures, our kinetic
simulation produces complete folding dynamics starting
from a population of unfolded structure.

Discussion

We have proposed a method for RNA folding dynamics
predictions called RAFFT. Our method was inspired by
the experimental observation of parallel fast-folding path-
ways. RAFFT has two components: a folding algorithm and
a kinetic ansatz.

First, we showed that our algorithm produces ensem-
bles that contain biologically relevant structures. Two
structure estimates were compared with: the MFE struc-
ture computed using RNAfold, and the ML estimate us-
ing MXfold2. Other thermodynamic-based and ML-based
tools were investigated but not shown here because their
performances were found to be very similar to the one
of MXfold2 and RNAfold (See SI for the complete bench-
mark). When we considered the lowest energy structure,
the comparison of RAFFT to existing tools confirmed the
overall validity of our approach. In more detail, compar-
ison with thermodynamic/ML models yielded the follow-
ing results. First, the ML predictions performed consis-
tently better than both RAFFT and the MFE approaches,
where the PPV = 70.4% and sensitivity = 77.1% on av-
erage. Second, the ML methods produced loops, such as
long hairpins or external loops. We argue that the density
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Figure 7: Application of the folding kinetic ansatz on CFSE. (A) Fast-folding graph in four steps and N = 20
structures stored in a stack at each step. The edges are coloured according to AAG. At each step, the structures are
ordered by their free energy from top to bottom. The minimum free energy structure found is at the top left of the
graph. A unique ID annotates visited structures in the kinetics. For example, “59” is the ID of the MFE structure.
(B) MFE (computed with RNAfold) and the native CFSE structure. (C)The change in structure frequencies over
time. The simulation starts with the whole population in the open-chain or unfolded structure (ID 0). The native
structure (Nat.l) is trapped for a long time before the MFE structure (MFE.1) takes over the population. (D) Folding
landscape derived from the 68 distinct structures predicted using RAFFT. The axes are the components optimized by
the MDS algorithm, so the base pair distances are mostly preserved. Observed structures are also annotated using
the unique ID. MFE-like structures (MFE.l) are at the bottom of the figure, while native-like (Nat.l) are at the top.
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Figure 8: Folding kinetics of CFSE using Treekin. A) Barrier tree of the CFSE. From a set of 1.5 x 105 sub-
optimal structures, 40 local minima were found, connected through saddle points. The tree shows two alternative
structures separated by a high barrier with the global minimum (MFE structure) on the right side. (B) Folding kinet-
ics with initial population I;. Starting from an initial population of I, as the initial frequency decreases, the others
increase, and gradually the MFE structure is the only one populated. (C) Folding kinetics with initial population
I,. When starting with a population of I, the native structure (labelled Nat.1 ) is observable, and gets kinetically
trapped for a long time due to the high energy barrier separating it from the MFE structure.

of those loops correlate with the ones in the benchmark
dataset, which a PCA analysis revealed too. In contrast,
the density of loops was lower in the structure spaces
produced by RAFFT and MFE, implying some over-fitting
in the ML model. Finally, known structures obtained
through covariation analysis reflect structures in vivo con-

ditions. Therefore, the structures predicted by ML meth-
ods may not only result from their sequences alone but
also from their molecular environment, e.g. chaperones.
We expect the thermodynamic methods to provide a more
robust framework for the study of sequence-to-structure
relations.
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So how does RAFFT predictions contain structures that
are more relevant than the MFE, although these struc-
tures are less thermodynamically stable? The interplay
of three effects may explain this finding. First, the MFE
structure may not be relevant because active structures
can be in kinetic traps. Second, RAFFT forms a set of path-
ways that cover the free energy landscape until they reach
local minima, yielding multiple long-lived structures ac-
cessible from the unfolded state. Third, the energy func-
tion is not perfect, so that the MFE structures computed
by minimizing it may not in fact be the most stable.

However, identifying these structures in the ensembles
produced by RAFFT is not trivial. In contrast to the used
benchmark data, the native structure is usually unknown,
necessitating further analyses of the ensembles output by
RAFFT. We showed that the fast-folding graph produced by
RAFFT can be used to reproduce state-of-the-art kinetics,
at least qualitatively. Our method demonstrated three
main benefits. First, the kinetics can be drawn from as
few as 68 structures, whereas the barrier tree may require
millions. Second, the kinetics ansatz describes the com-
plete folding mechanism starting from the unfolded state.
Third, for the length range tested here, the procedure
did not require any additional coarse-graining into basins.
(Longer RNAs might require such a coarse-graining step,
in which structures connected in the fast-folding graph
are merged together).

Based on our results, we believe that the proposed
method is a robust heuristic for structure prediction in
conjunction with folding dynamics. The folding landscape
depicted by RAFFT was designed to follow the kinetic parti-
tioning mechanism, where multiple folding pathways span
the folding landscape. This approach has shown good
predictive potential. Furthermore, we derived a kinetic
ansatz from the fast-folding graph to model the slow part
of the folding dynamics. It was shown to approximate
the usual kinetics framework qualitatively, albeit requir-
ing drastically fewer structures. Our findings suggest that
the kinetic partitioning mechanism of the RNA folding is
indeed following the stem competition at the foundation
of RAFFT.

However, further improvements and extensions of the
algorithm may be investigated. For starters, the choice
of stems is limited to the largest in each positional lag,
a greedy choice which may not be optimal. Furthermore,
we have constructed parallel pathways leading to a diver-
sity of accessible structures, but we have not given any
thermodynamic-based criterion to identify which are more
likely to resemble the native structure. We suggest using
an ML-optimized score to this effect. Our method can
also find applications in RNA design, where the design
procedure could start with the identification of long-lived
intermediates and use them as target structures. More-
over, the efficient stem sampling enabled by the FFT can
also be straightforwardly apply to the search for RNA-
RNA interactions.

Data availability

RAFFT and the benchmark data wused in this
manuscript are available at https://github.com/
strevol-mpi-mis/RAFFT. We also provide the scripts

used for the figures and kinetic analyses.
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