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Abstract

Cells in natural environments like tissue or soil sense and respond to extracellular ligands with intri-
cately structured and non-monotonic spatial distributions, sculpted by processes such as fluid flow and
substrate adhesion. In this work, we show that spatial sensing and navigation can be optimized by
adapting the spatial organization of signaling pathways to the spatial structure of the environment.
We develop an information-theoretic framework for computing the optimal spatial organization of a
sensing system for a given signaling environment. We find that receptor localization maximizes in-
formation acquisition in simulated natural contexts, including tissue and soil. Receptor localization
extends naturally to produce a dynamic protocol for continuously redistributing signaling receptors,
which when implemented using simple feedback, boosts cell navigation efficiency by 30-fold. Broadly,
our work shows how cells can maximize the fidelity of information transfer by adapting the spatial
organization of signaling molecules to the spatial structure of the environment.

Keywords— spatial organization, natural environmental statistics, cell navigation, information processing,
cell sensing

Introduction

Cells sense and respond in spatially-structured environments, where signal distributions are determined by var-
ious chemical and physical processes such as substrate binding and fluid flow [1]. In tissue and soil, distributions
of extracellular ligands can be spatially discontinuous, consisting of local ligand patches [2–14]. In tissue, dif-
fusive signaling molecules are transported by interstitial fluid through a porous medium. These molecules are
then captured by cells and a non-uniform network of extracellular matrix (ECM) fibers, taking on a stable and
highly reticulated distribution [2–4, 6–8]. For example, ECM-bound chemokine (CCL21) gradients extending
from lymphatic vessels take on stable spatial structures, characterized by regions of high ligand concentration
separated by spatial discontinuities [3]. Similar observations have been made for the distribution of other
chemokines, axon guidance cues, and morphogens in tissues [6–8, 13]. In soil, a heterogeneous pore network
influences the spatial distribution of nutrients by dictating both the locations of nutrient sources as well as
where nutrients likely accumulate [9–12]. Free-living cells detect chemical cues released by patchy distributions
of microorganisms, where molecules are moved via fluid flow and diffusion [9, 10]. Cells in these and other
natural environments experience surface ligand profiles with varying concentration peaks, non-continuity, and
large dynamic range [8, 15], differing strongly from smoothly-varying, purely-diffusive environments.

Modern signal processing theory shows that sensing strategies must adapt to the statistics of the input signals,
suggesting that spatial sensing in cells should be adapted to the spatial structure of signaling molecules in
the cells’ native environments [16]. For example, when designing electronic sensor networks sensing spatial
phenomena, adapting sensor placement to the spatial statistic of the signal can significantly improve information
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acquisition [17]. Furthermore, spatial navigation where sensing plays a key role may also benefit from sensor
placement adaptation, as suggested by work from both robot and insect navigation [18, 19]. For example,
when navigating turbulent plumes, locusts actively move their antennae to odorant locations to acquire more
information on source location [19]. In the context of cell navigation, interstitial gradients can potentially trap
cells in local concentration peaks [3]. Cells that can adapt sensing to the patchy structure of the gradient may
overcome local traps.

Traditional approaches to studying cell sensing often use highly simplified environmental models, where signals
are either uniform or monotonic, neglecting the complex spatial structure in natural cell environments [20–23].
Classic work, beginning with the seminal paper by Berg and Purcell (1977), studied cell sensing within homoge-
neous environments [20]. This and subsequent works were extended to study the detection of spatially-varying
concentrations, where monotonic gradients remain the canonical environmental model [21–23]. Recent work
has started to address spatial complexity [24], but much work remains to understand how cell sensing strategies
are affected by natural signal distributions, particularly spatially-correlated fluctuations. Such complexity can
pose challenges to cell engineering applications, such as CAR-T cell responses to tumor microenvironments [25].
Fundamentally, it is not clear what sense and response strategies are well-adapted to operate in environments
where signals take on complex spatial structures.

Interestingly, empirical observations suggest that cells might modulate the placement of their surface receptors
to exploit the spatial structure of ligand distribution in its environment [26–33]. For example, some axon guid-
ance receptors, such as Robo1 and PlxnA1, can dynamically rearrange on the surface of growth cones [26, 27].
In such cases, receptors constantly rearrange, adjusting local surface densities in response to changes in ligand
distribution across the cell surface. Some chemokine receptors in lymphocytes, such as CXCR4 and CCR2,
exhibit similar spatial dynamics [28–30]. Disrupting dynamic rearrangement of CCR2 on the surface of mes-
enchymal stem cells, without changing its expression level, severely inhibits targeted cell migration to damaged
muscle tissues [33]. However, other chemotactic receptors (such as C5aR on the surface of neutrophils) remain
uniform even when their ligands are distributed non-uniformly [34]. In addition, during antigen recognition,
T-cell receptors (TCRs) take on different placements, ranging from uniform to highly polarized, depending
on the density of antigen molecules on the surface of the opposing cell [35]. Thus, across a diverse range
of cell surface receptors, we see different, even contradictory rearrangement behavior in response to changes
in environmental structure. It remains unclear whether dynamic receptor rearrangement has an overarching
biological function across disparate biological contexts.

Inspired by previous works that applied information maximization principles to understand the design of bio-
logical systems for signal processing [36–43], we formulate an information-theoretic framework and show that
spatial localization of cell surface receptors is an effective spatial sensing strategy in natural cell environments,
but relatively inconsequential in purely diffusive environments. Our framework allows us to solve for receptor
placements that maximize information acquisition in natural environments, while generating such environ-
ments using existing computational models of tissue and soil microenvironments. We find that anisotropic
receptor dynamics previously observed in cells are nearly optimal. Specifically, information acquisition is max-
imized when receptors form localized patches at regions of maximal ligand concentration. Optimizing receptor
placement offers a significant gain in information acquisition over uniformly distributed receptors, but only in
natural cell habitats, leading to an average of ∼ 1 bit of information gain in tissues and soils but only ∼ 0.01
bits in purely diffusive gradients. The optimal strategy maximizes information by taking advantage of patchy
ligand distribution in natural environments, reallocating sensing resources to a small but high signal region on
the cell surface, while explicitly “ignoring” ligand information at low signal regions.

Our framework extends naturally to produce a dynamic protocol for continuously redistributing receptors
across the cell surface in response to a dynamic environment. We show through simulation that a simple
feedback circuit implements this protocol within a cell, redistributing receptors in a signal-dependent manner,
and in doing so significantly improving cell navigation. Compared to cells with uniform receptor placement,
cells with this circuit achieve more than 30-fold improvement in their ability to localize to the peak of sim-
ulated interstitial gradients. Furthermore, our model accurately predicts spatial distributions of membrane
receptors observed experimentally [26–30]. Importantly, our framework easily extends to study how spatial
organization of many different cellular components, beyond receptor placement, affects information processing
(see Discussion). Taken together, our model serves as a useful conceptual framework for understanding the
role of spatial organization of signal transduction pathways in cell sensing, and provides a sensing strategy that
is both effective in natural cell environments and amenable to cell engineering.
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Results

Figure 1: Adapting receptor placements to signal (input) statistic of natural cell environments (A)
(Left) tuning sensor placement can boost the performance of electronic sensor network. (Right) cell surface
receptors also function as a sensor network, taking as inputs ligand profiles C across the cell surface and
producing as outputs a profile of receptor activityA across the cell membrane. The optimal receptor placement
strategy φ∗ : c→ r maps each ligand profile to a receptor placement, such that the mutual information I(C;A)
is maximized. (B) The problem of optimal receptor placement formulated as a resource allocation problem
over parallel, noisy communication channels. The i-th channel represents the i-th region of the cell membrane,
with input Ci, output Ai and receptor number ri. The input statistic p(c) depends on the environment, and
the measurement kernel p(ai|ci, ri) is modeled as a Poisson counting process. The general formulation of the
optimal strategy φ∗ allocatesN receptors tom channels for each ligand profile c, such that I(C,A) is maximized
(Equation 2). The local formulation selected the receptor placement φ∗(c) that maximizes I(ĉ, â), where ĉ is a
Poisson random vector with mean equal to c (Equation 4). (C) i. Approximating input statistic by simulating
natural environments and sampling ligand profiles {c} by tiling cells uniformly across the environment; ii.
modeling ligand distribution in tissue microenvironment by incorporating diffusion, advection, ECM binding,
degradation, and cell uptakes. iii. modeling ligand distribution in soil microenvironment by generating bacteria
distributed in spatial patches, releasing diffusive ligands.
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An optimal coding framework allows the computation of optimal receptor
placement given spatial signal statistics

We are interested in optimal strategies for a task we refer to as spatial sensing. Spatial sensing is an inference
task where a cell infers external profiles of varying ligand level across its surface from an internal profile of
varying receptor activity across its membrane. This task is a useful model since optimizing performance on
this task should improve the cell’s ability to infer diverse environmental features.

We developed a theoretical framework to study whether manipulating the placement of cell surface receptors
can improve spatial sensing performance. Optimizing spatial sensing by tuning receptor placement is analogous
to optimizing distributed electronic sensor network by adjusting the location of sensors, which has been exten-
sively studied in signal processing [17]. In the optimization of distributed sensor networks monitoring spatial
phenomena (Figure 1A), it is well-known that adjusting the placement of a limited number of sensors can
significantly boost sensing performance, where the optimal placement strategy is dictated by the statistics of
the input signals [17, 44]. The collection of a limited number of receptors on the cell surface also functions as a
distributed sensor network, sensing a spatial profile of varying ligand concentration (Figure 1A). Therefore, we
hypothesized that receptor placement can be tuned to improve spatial sensing, and that the optimal strategy
depends on the statistics of ligand profiles that cells typically encounter. Unlike traditional works in sensor
optimization which focuses on finding a single “best” placement [17], cells can rearrange their receptors within
a matter of minutes [27], leading to a potentially much richer class of strategies.

Before presenting the general optimization problem, we set up the mathematical framework through the lens
of information theory. Consider a two-dimensional (2D) cell with a 1D membrane surface. By discretizing the
membrane into m equally-sized regions, we modeled the membrane-receptor system as m parallel communica-
tion channels (Figure 1B). The input to these m channels is C = (C1, ..., Cm), where Ci is a random variable
representing the amount of ligands at the i-th membrane region. The receptor profile r = (r1, .., rm) denotes
the amount of receptors allocated to each membrane region. The output A = (A1, ..., Am) is the amount of
active receptors across the membrane, which depends on c and r through p(A = a|c, r), the measurement
kernel. Consider a placement strategy φ : c→ r, mapping a ligand profile to a receptor placement (Figure 1B).
For a fixed number of receptors N , we are interested in the choice of φ that maximizes the mutual information
I(C;A) between the channels’ inputs C and outputs A, defined as,

I(C;A) =
∑
c∈C

∑
a∈A

p(c,a) log
p(c,a)

p(c)p(a)
. (1)

The mutual information quantifies the “amount of information” obtained about C by observing A. It is
minimized when C and A are independent, and maximized when one is a deterministic function of the other.
All logs are taken in base 2, so information is report in units of bits. Importantly, note the choice of m
(membrane bins) sets an upper bound on the mutual information, and hence sets the scale for all information
value reported in this paper (see supplement subsection 1.3 for derivations of this relation). Mathematically,
the optimal strategy φ∗ can be written as

φ∗p(c) = argmax
∀c φ(c)≥0∑
i φi(c)=N

I(C;A | φ, p(c)), (2)

whereN is the total number of receptors which is taken to be a constant. Note the mutual information converges
towards its upper bound as N increases (Figure S1A). The mutual information is agnostic to the decoding
process in that it does not assume any details about downstream signaling, nor the exact environmental features
a cell may try to decode, expanding the scope of our results.

To solve for φ∗, we needed to specify both a measurement kernel p(a|c, r) and an input statistic p(c). We
modeled p(a|c, r) assuming that each receptor binds ligands locally and activates independently. Furthermore,
each local sensing process is modeled as a Poisson counting process. These assumptions yield the following
measurement kernel,

p(A = a | C = c, r) =

m∏
i=1

µi
ai

ai!
e−µi , (3)

where µi = ri(
ci

ci+Kd
+ α Kd

ci+Kd
) is the average number of active receptors at the i-th membrane region. Kd

is the equilibrium dissociation constant and α accounts for constitutive activity of receptors observed in cells,
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including many GPCRs, which we take to be small (α� 1) [45, 46]. The bracket term represents the probability
of receptor activation, and the fractional term Kd

ci+Kd
ensures it is always less than 1 [47].

Next, we specify the input statistic p(c) for three classes of environments: soil, tissue, and monotonic gradient.
For each class of environment, we constructed p(c) empirically, by computationally generating a ligand concen-
tration field as the steady-state solution of a partial-differential equation (PDE), and sampling ligand profiles
({c}) from them by evaluating the PDE solution around cells placed at different spatial locations (Figure 1C-i)
(for details see Supplement, section 4). Putting the empirical measure on the samples {c} approximates the
true distribution of C. For soil, we follow mathematical models from [48] and [9], modeling diffusive ligands
released from a group of soil bacteria whose spatial distribution agrees with the statistical properties of real
soil colonies (Figure 1C-iii, Figure 2A). For tissue, we adopted models from [5] and [49], where they modeled
diffusive ligands released from a localized source, perturbed by in vivo processes such as interstitial fluid flow
and heterogeneous ECM binding, leading to an immobilized interstitial gradient (Figure 1C-ii, Figure 2B). We
also considered a monotonic gradient (Figure 2B) as an exponential fit to the simulated interstitial gradient.
Fitting ensures any difference between the two environments are due to differences in local structures, not
global features such as gradient decay length or average concentration. It is important to note that the overall
framework can accommodate any choice of p(c) and p(a|c) beyond what we have considered.

We are interested in the functional relationship between ligand profiles {c} and their optimal receptor place-
ments {φ∗(c)}. To this end, we computed the optimal receptor placement for each sampled profile c individu-
ally, reducing the general formulation to a local formulation. Given ligand profile c, random vector ĉ represents
local fluctuations of c due to stochasticity of reaction-diffusion events. In the case of unimolecular reaction-
diffusion processes, it can be shown that ĉ is a Poisson vector with mean equal to c, solution of the PDE.
Therefore, we can solve for φ∗(c) locally by maximizing the mutual information between ĉ and the resulting
output â,

φ∗(c) = argmax
r≥0∑
i ri=N

I(ĉ, â | r), (4)

where p(â) =
∑

c p(â|ĉ = c)p(ĉ = c). The main difference between the general formulation of (2) and local
formulation of (4) is their dependence on the input statistic p(c). In the general formulation, the strategy φ∗p(c)

is explicitly parametrized by p(c). In the local formulation, φ∗ is independent of the choice of p(c). However,
differences in p(c) between environments will still crucially affect the set of optimal receptor profiles that cells
will actually adopt, because changing p(c) changes the region of the domain of φ∗ that is most relevant, thus
changing the optimal receptor profiles that are actually used in different environments. For example, suppose
environment A and B have input statistic pA and pB , and any ligand profile observed in A is not observed
in B, and vice versa. Although φ∗ is the same between A and B, this function is being evaluated on entirely
different ligand profiles in A compared to B, so that receptor profiles observed in the two environment will
likely be very different, in ways dictated by differences between their input statistic pA and pB . As a result,
the statistical structure over the space of ligand profiles plays an important role in determining which receptor
placement is effective, even when the placements are computed locally for each ligand profile.
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Figure 2: Receptor localization optimizes information acquisition in natural environments. (A),
computationally generated ligand concentration fields using PDE models of soil (left), tissue (interstitium)
(middle), and simple exponential gradient (right, fitted to tissue with correlation index R2 = 0.98), all scalebar
= 100µm, see Table S1 for environment simulation parameters.
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Figure 2: (continue from previous page) (B), i) Example of optimal receptor profile φ∗(c) (colored) and the
corresponding ligand profile c (gray); ii) entropy for each optimal receptor placements in {φ∗(c)} colored by
environment, colored triangles indicate the entropy of three receptor placements shown in i); iii) scatter plot
where each dot corresponds to an optimal placement φ∗(c), x-axis is membrane position with the most receptor,
y-axis is membrane position with most ligand in c. (C), optimal efficacy η colored by environments, computed
with ligand profiles {c} sampled using cells of different radius, for receptors of different constitutive activity
α; see Figure S1B for result with different bin number m. (D), i) efficacy for soils environment simulated
using different values of σ2

bacteria, ii) efficacy for tissue environment simulated using different values of kECM,
and for exponential gradients fitted to each tissue (gradient). Stars correspond to parameter values used to
generate panel A-C and E. (E), scatterplot where each dot corresponds to a single pair of c and φ∗(c), where
c is sampled from environments as illustrated in Figure 1C-i; ηc is defined in Equation 10. Across all panels,
N = 1000, Kd = 40nM , α = 0.1, m = 100 (see Figure S4 and Figure 7B for η with other parameters).

Receptor localization yields optimal spatial sensing in natural environments

Optimal strategies of receptor placement are similar for soil and tissue environment, where receptors are
highly localized within membrane positions experiencing high ligand concentrations. Figure 2B-i shows three
examples of optimal receptor placements φ∗(c) (colored) with the corresponding ligand profile c, one from
each class of environments shown in Figure 2A. In all three cases, the peak of each optimal receptor profile
is oriented towards the position of highest ligand concentration. Compared to monotonic gradient, receptor
profiles optimized for the ligand profiles sampled from tissue and soil are highly localized, with around 80%
of receptors found within 10% of the membrane. In general, the optimal strategy consistently allocates more
receptors to regions of higher ligand concentration, but in a highly nonlinear manner. Figure 2B-iii shows,
across all sampled ligand profiles {c}, the peak of receptor profiles always align with the peak of ligand profiles.
But instead of allocating receptors proportional to ligand level, receptors tend to be highly localized to a few
membrane positions with the highest ligand concentrations.

Indeed, Figure 2B-ii shows that optimal receptor profiles tend to have low entropy. The entropy of receptor
profile r, defined as H(r) = −

∑
i
ri
N

log
(
ri
N

)
, can be used as a measure of localization. Note the maximal

value of this entropy measure is limited by the number of membrane bins m. Low entropy corresponds
to receptor profiles where most receptors are concentrated to a few membrane positions, forming localized
patches. Such high degree of localization is partly explained by low receptor numbers. When receptors are
limited, information gain per receptor within each membrane channel is approximately independent of receptor
number (for details see Supplement, section 2). Thus, the optimal solution allocates all receptors to the channel
with the highest information content (see Figure S2). In addition, receptors are more localized for sensing in soil
and tissue because locally, they exhibit greater spatial variations in ligand concentration compared to simple
gradients (Figure 2A) (for details see Supplement, section 3). Absolute ligand concentration also influences the
optimal strategy, which we take to be dilute in agreement with empirical measurements [50, 51]. In saturating
environments, the optimal solution completely switches, allocating most receptors to regions of lowest ligand
concentrations (for details see Supplement, subsection 3.2, Figure S3). In summary, the optimal placement
strategy φ∗ in the environments studied can be approximated by a simple scheme, where receptors localize to
form patches at positions of high ligand concentration.

Optimally placed receptors significantly improve information acquisition relative to uniform receptors, espe-
cially in soil and tissue environments. To make this statement precise, we quantified the efficacy of a receptor
placement strategy φ : c → r with respect to a set of ligand profiles {c}. First, we denote by Iφ the average
amount of information acquired by cells adopting the placement strategy φ,

Iφ = 〈I(ĉ; â | φ)〉c (5)

where 〈·〉c denotes averaging across the set of sample ligand profiles {c}, and recall ĉ is a Poisson-distributed
random vector with mean c. In particular, we are interested in information acquisition using the uniform
strategy φu (uniformly distributed receptors) and the optimal strategy φ∗,

Iunif := Iφu , Iopt := Iφ∗ . (6)

The efficacy of a placement strategy φ is the change in average information cells acquire by adopting the
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strategy φ compared to the uniform strategy,

η(φ) = Iφ − Iunif . (7)

In particular, we are interested in the optimal efficacy,

η(φ∗) = Iopt − Iunif , (8)

which we will refer to simply as η when the dependency is clear from context. For a particular η(φ∗), the set
of ligand profiles {c} referred to in its definition is always the same set that φ∗ is optimized for. The larger
η is, the more beneficial it is for cells to place receptors optimally rather than uniformly. We found that η
is an order-of-magnitude larger for soil and tissue environment compared to a simple gradient (Figure 2C).
This difference persists across cells of different size and across a wide range of receptor parameter values
(Figure 2C, Figure 7B, Figure S4). In other words, placing receptors optimally rather than uniformly benefits
cells in complex, natural environments significantly more than cells in simple, monotonic gradients. Note that
differences between tissue and monotonic gradient are due to differences in local spatial structure, not global
features such as gradient decay length or global average concentration, as both parameters were made to be
identical between the two environments. Lastly, although the mutual information is an exponential measure,
so an improvement by one bit has different meaning depending on the baseline Iunif , this fact does not hinder
interpretation of η as Iunif is similar between the three environments considered (Figure S4A).

In addition to the large difference in optimal efficacy (η) between natural environments and simple gradients,
Figure S4 shows similar differences exist when comparing other metrics assessing the benefit of optimizing
receptor placement, such as the relative information gain ((Iopt − Iunif)/Iunif) and the absolute increase in the
number of distinguishable input signals (2Iopt − 2Iunif ). For example, optimizing receptor placement increases
the number of distinguishable input states by 40 in tissue, while optimizing the same receptors in the (fitted)
gradient environment leads to an increase of 1 state (Figure S4A). Note that in the limit of strong constitutive
receptor activity, all placement strategies become equivalent to uniformly distributed receptors. Since receptor
activation in the absence of ligands reduces statistical dependence between ligand level and receptor activity,
the average information acquisition Iφ for any strategy φ converges to zero for large α, driving information
gain compared to the uniform strategy to zero (Figure S4A).

For both soil and tissue environment, the optimal efficacy η depends on a key parameter in their respective
PDE model. We illustrate this dependence by adjusting the value of each respective parameter, sampling new
ligand profiles {c}, solving for optimal placements {φ∗(c)}, and computing η. Figure 2D shows how η changes
as we adjust environmental parameters. In soil, η drops substantially as ligand sources (bacteria) become more
aggregated (Figure 2D-i), corresponding to an increase in the parameter σ2

bacteria of the random process (see
supplement, section 4) used to model bacterial distribution (star corresponds to empirical value from [9]). The
decrease in η is intuitive since increasing the extent of aggregation of sources makes the environment appear
more like a simple gradient generated from a single ligand source. In tissue, optimal efficacy dropped when
most ligands were found in solution, instead of bound to the ECM (Figure 2D-ii), corresponding to low ECM
binding rate (kECM). For reference, star indicates the empirical value of kECM for the chemokine CXCL13 [2].
Compared to its fitted monotonic gradient, η in the interstitial gradient remain significantly higher for all ECM
binding rates (Figure 2D-ii). In tissue, gradients made up of ECM-bound ligands are ubiquitous, suggesting
the optimization of receptor placement is highly relevant.

Optimal efficacy (η) is larger in soil and tissue because ligand profiles that cells encounter in such environments
tend to be more patchy, having most of the ligands concentrated in a small subset of membrane regions. We
make this statement precise by quantifying patchiness of a ligand profile c using a measure of sparsity,

sparsity(c) = 1− c

cRMS
, (9)

where the root-mean-square cRMS =
√

1
m

∑
i c

2
i and c = 1

m

∑
i ci is the average concentration of c across the

membrane. A ligand profile with a sparsity of one has all ligands contained in a single membrane region,
whereas a uniform distribution of ligands has a sparsity of zero. Next, we defined an efficacy measure ηc for
each ligand profile c,

ηc = I(ĉ; â | φ∗)− I(ĉ; â | φu) = Iopt,c − Iunif,c, (10)

where again φu denotes uniform receptor distribution. Unlike η as defined in Equation 8, ηc does not involve
the averaging across the entire set {c} through 〈·〉c, it measures improvement in information gain for only

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2021.07.01.450787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450787
http://creativecommons.org/licenses/by-nc-nd/4.0/


a single ligand profile c. The larger ηc is, the more useful the optimal placement is for sensing c compared
to a uniform profile. Each dot in Figure 2E corresponds to a ligand profile sampled from an environment,
as illustrated in Figure 1C-i. Figure 2E shows that 1) across a wide range of concentrations, sparser ligand
profiles tend to induce higher efficacy ηc, and 2) ligand profiles sampled from soil and tissue tend to be sparser
compared to profiles from the corresponding monotonic gradient. Taken together, since signals cells encounter
in natural environments tend to have sparse concentration profiles, cells can improve their spatial sensing
performance by localizing receptors to regions of high ligand concentration.

In summary, the value of optimizing receptor placement as a sensing strategy depends strongly on the environ-
mental structure. Patchy ligand distributions found in tissue and soil environments makes optimizing receptor
placement a highly effective sensing strategy. Our result demonstrates that uncovering effective cell sensing
strategies requires a careful consideration of the spatial structure of the cells’ natural habitat.
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Figure 3: Optimal efficacy η(φ∗) is robust to minor deviations in receptor placement away from
the optimal form. (A), the effect of different degrees of shifting and flattening applied to a receptor profile
(black curve). (B), colors of heat map represent ratio of perturbed efficacy η(φp) to optimal efficacy η(φ∗)
for different combinations of shifting and flattening, computed for ligand profiles {c} sampled from either soil
or tissue; call-out boxes corresponds to different sets of perturbations, showing the average of the optimal
{φ∗(c)} (gray) and perturbed {φp(c)} (red) receptor placements, after all ligand profile peaks were centered;
red numbers indicate the value on heat map; cell radius = 10 µm.

Spatial sensing via the optimal strategy is robust to imprecise placements
caused by biological constraints

Despite the optimal strategy φ∗ being highly localized and precisely oriented, we found that neither features are
necessary to achieve high efficacy. Given the stochastic nature of biochemical processes in cells, this robustness
is crucial as it makes the strategy feasible in cells. Fortunately, receptors do not need to adopt φ∗ precisely in
order to obtain substantial information gain. To illustrate, we perturb the optimal placements and show that
sensing efficacy persists when receptors partially align with ligand peak and localize weakly. For soil and tissue,
we circularly shift and flatten (by applying a moving average) all optimal receptor profiles {φ∗(c)} computed
from sample ligand profiles to obtain {φp(c)}, the corresponding set of perturbed profiles. Different degrees
of shifting and flattening represents different degrees of misalignment and weakened localization, respectively.
Figure 3A shows results of different perturbations (colored) applied to a receptor profile (black). To assess the
effect of these perturbations on sensing, we compute the efficacy η(φp) of the perturbed profiles, and compare
it to the optimal efficacy η(φ∗). The heatmap in Figure 3B shows the ratio of perturbed to optimal efficacy for
various combinations of perturbations, across soil and tissue. Figure 3B-i shows two examples of perturbations
(red dots) that drastically alter the receptor profile while still achieving high efficacy. The red and gray curve
in the call-out box represents what the “average” perturbed and optimal profiles look like, respectively. They
are obtained by circularly shifting each profile in {φp(c)} and {φ∗(c)} so the peak of c is center, followed by
averaging across the set of shifted profiles element-wise. Clearly, highly localized receptors (> 80% of receptors
found within 10% of membrane) are not necessary for effective sensing. In fact, compared to uniformly
distributed receptors, a modest enrichment of receptors oriented towards the ligand peak (4 folds relative
to uniform) already provides significant information gain (Figure 3B). Importantly, enrichment of receptors
(around the ligand peak) greater than 4-5 fold has been observed for different membrane receptors [29, 52],
and in some cases nearly all receptors redistribute towards the ligand peak [27]. Such robustness holds across
different cell sizes and efficacy metric (Figure S5). In tissue, the heatmap of Figure 3B-i also shows that weakly
localized receptors (large flatten factor) are more robust to misalignment (large shift factor). Altogether, the
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robustness results of Figure 3 suggest that biochemical implementations of receptor localization could improve
sensing in natural or engineered cells, even in the presence of stochastic fluctuations in a biological circuit
that induce imperfect localization. Moreover, the magnitude of receptor enrichment (around the ligand peak)
previously observed in cells is sufficient to obtain significant information gain [27, 29, 52].

Figure 4: A dynamic receptor placement protocol based on maximizing rate of information gain.
(A), schematic showing a cell moving along a path (gray curve) sensing a sequence of ligand profiles {ct}
at points (crosses) along the path, using receptor placements {r∗t } generated by the dynamic protocol. (B),
accounting for transport cost, the optimal placement strategy is modified to localize receptors to an intermediate
position between subsequent ligand peaks or form multiple receptor peaks.

Optimization framework extends naturally to produce a dynamic protocol
for sensing time-varying ligand profiles

Our framework extends naturally to produce a dynamic protocol for rearranging receptors in response to
dynamically changing ligand profiles. So far, we have viewed ligand profiles as static snapshots and considered
instantaneous protocols for receptor placement. In reality, cells sense while actively exploring their environment,
so that the ligand profile it experiences is changing in time, both due to intrinsic changes in the environment
state as well as due to the motion of the cell. As the ligand profile ct changes over time, we want the receptor
profile rt to change in an “efficient” manner to improve information acquisition (Figure 4A). Specifically,
we obtain a dynamic protocol by extending our framework to account for both information acquisition and a
“cost” for changing receptor location. We quantify the cost of moving receptors using the Wasserstein-1 distance
W1(rA, rB), which is the minimum distance receptors must move across the cell surface to redistribute from
profile rA to rB (for details see Supplement, section 5). For a cell sensing a sequence of ligand profiles {ct}Tt=1

over time, the optimal receptor placement r∗t for ct now depends additionally on r∗t−1, the optimal placement
for the previous ligand profile,

r∗t = argmax
r≥0∑
i ri=N

I (ĉt; â | r)− γW1 (r∗t−1, r) , (11)

where p(â) =
∑

c p(â|ĉt)p(ĉt), and γ ≥ 0 represents the cost of moving one receptor per unit distance. The
cost γ implicitly encodes a time scale for receptor redistribution. Smaller γ means less “cost” is associated
with redistributing receptors, hence the receptor profile becomes more dynamic. The exact relationship be-
tween γ and the speed of receptor redistribution depends on both receptor properties and the environment, see
Figure S6A-D for an example of how receptor speed scales with γ. For γ = 0, the formulation of Equation 11
reduces to the original static formulation of Equation 4. This dynamic formulation admits a natural interpreta-
tion as maximizing information rate (information per receptor-distance moved) instead of absolute information
gain. For t = 1, we define r∗t according to the original formulation. Hence, we refer to the dynamic protocol of
Equation 11 as the general optimal strategy since it encompasses φ∗. Figure 4B illustrates two salient features
of this dynamic protocol. Firstly (left), when the peak of the previous receptor profile r∗t−1 is near the peak
of the current ligand profile ct, r

∗
t is obtained by shifting receptors towards the current ligand peak but not
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aligning fully. Secondly (right), when the peak of the previous receptor profile is far from the current ligand
peak, some receptors are moved to form an additional patch at the current ligand peak (Figure S6F shows how
changing γ affects the receptor behavior in Figure 4B). Receptor properties such as the strength of constitutive
receptor activity (α) also affect receptor redistribution dynamics. For small α, receptors localize more readily
to align with new ligand peaks because the mutual information term in Equation 11 becomes dominant over
the cost of redistribution (Figure S6E). Although the formulation of Equation 11 is quite complex, this general
optimal strategy can be achieved by a simple receptor feedback scheme.
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Figure 5: Positive feedback scheme redistributes receptors to achieve near-optimal sensing efficacy
for both static and dynamic signals. (A), the cell is modeled as a one-dimensional membrane lattice
with a well-mixed cytosol. Receptors are subject to three redistribution mechanisms: endocytosis (koff),
activity-dependent incorporation into membrane (hAiRcyto), membrane diffusion (dm); the value of h sets the
feedback strength between receptor activity and the rate with which receptors incorporate into the membrane;
h = 4× 10−3 s−1, dm = 1× 10−2 µm2 s−1, koff = 1× 10−1 s−1 (see supplement, Table S2). (B), receptor
profiles (yellow) generated by simulating the feedback scheme for an initially uniform set of receptors, against
a static ligand profile from tissue and soil. (C), ratio of scheme efficacy η(φs) to optimal efficacy η(φ∗) for
static signals {c} sampled from soil and tissue, stars indicate parameter values used for simulation in panel
B. (D), (top) kymograph showing the entire temporal sequence of receptor profiles of a moving cell; (bottom)
position of ligand peak aligned in time with position of receptor peak as generated by the feedback scheme. (E),
snapshots of receptor profiles taken at select time points. (F), ratio of scheme efficacy η(φs) to optimal efficacy
η(φ∗) for a sequence of signals {ct} sampled by translating a cell through soil and tissue environment, stars
indicate parameter values used for simulation in panel D-E; cell radius = 10µm (see Figure S8B-C for results
with cell radius = 5µm). (G), histogram showing the distribution of ligand peak (gray) and receptor peak
(yellow) position on the membrane of the cell from panel D, dashed black line indicates the direction of the
global gradient with respect to membrane positions. See Table S2 for feedback scheme simulation parameters.
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Simple feedback scheme rearranges receptors to achieve near-optimal infor-
mation acquisition

We show that a positive feedback scheme implements the general optimal strategy (Equation 11), dynami-
cally redistributing receptors into localized poles to achieve near-optimal information acquisition. Asymmetric
protein localization is a fundamental building block of many complex spatial behaviors in cells, involved in
sensing, movement, growth, and division [53]. Many natural localization circuits are well-characterized down
to molecular details [54, 55]. Even synthetic networks have been experimentally constructed in yeast, capable
of reliably organizing membrane-bound proteins into one or more localized poles [56]. Such works demonstrate
the feasibility of engineering new spatial organization systems in cells.

Using a PDE model of receptor dynamics, we show that simple, local interactions can redistribute receptors
to achieve near-optimal information acquisition, for both static and dynamic signals. The core feedback
architecture of our circuit design uses similar motifs as have been demonstrated in existing synthetic biology
circuits [56]. Figure 5A illustrates the three mechanisms (arrows) in our feedback scheme that affects receptor
distribution (r), which can be expressed mathematically as

∂r(x, t)

∂t
= D∇2

membr − koff r + hARcyto, (12)

where x denotes membrane position and t denotes time. The first term represents lateral diffusion of receptors
on the membrane with uniform diffusivity D. The second term represents endocytosis of receptors with
rate koff. The last term represents incorporation of receptors to membrane position i from a homogeneous
cytoplasmic pool (Rcyto) with rates hAi, where h a proportionality constant and Ai is the local receptor
activity (for details see Supplement, section 6), including how parameter values were derived from literature).
Activity-dependent receptor recruitment provides the necessary feedback to enable ligand-dependent receptor
redistribution. Recent works suggest activity-dependent receptor recruitment can be achieved through biased
docking and fusion of secretory vesicles that carry the receptors, to regions of high receptor activity [52, 54, 57].
Budding yeasts Ste2 receptors achieve feedback using an interacting loop with intracellular polarity factor
Cdc42 [54]. Note that our feedback scheme is only meant to illustrate one possible implementation of the
dynamic rearrangement protocol. Feasible alternatives such as activity-dependent endocytosis or microtubule-
dependent receptor redistribution have also been proposed, providing a range of biochemical strategies for
implementation of the optimal placement strategy [27, 58].

Given a fixed ligand profile c, Figure 5B shows our feedback scheme can, within minutes, localize receptors
(yellow) towards the position of maximum ligand concentration. The rapid localization is robust to changes
in koff and h across at least an order of magnitude (Figure S8A). We denote the steady-state receptor profile
generated by our scheme in response to ligand profile c as φs(c). As Figure 5B shows, scheme-generated profiles
are far less localized than their optimal counterpart φ∗(c). Despite this, Figure 5C shows scheme efficacy η(φs)
are close to that of the optimal value η(φ∗). Recall η(φ∗) measures the absolute increase in average information
acquired using optimally-placed instead of uniform receptors. Therefore, the scheme efficacy η(φs) makes a
similar comparison between scheme-driven and uniform receptors. In Figure 5C, we see scheme efficacy is
robust to variations in both endocytosis (koff) and average membrane incorporation rate (〈hAi〉i), with other
parameters fixed to empirical values [59]. Stars represent parameters used to simulate profiles in Figure 5B.

Our feedback scheme (Equation 12) can continuously rearrange receptors in response to changes in ligand
profile, exhibiting dynamics similar to the optimal dynamic protocol (Equation 11). Figure 5D-E shows a time-
varying receptor profile, generated by the feedback scheme in a cell translating across the tissue environment.
In this dynamic setting, the scheme can still induce asymmetric redistribution of receptors. Figure 5D (top)
shows this dynamic asymmetry through a kymograph of a sequence of receptor profiles {φs(ct)}. As desired,
snapshots along this sequence show receptors localize towards regions of high ligand concentration (Figure 5E).
Receptor placements generated by our scheme exhibit features of the dynamic protocol shown in Figure 4B.
First, as the ligand peak changes position slightly, the receptor peak gets shifted in the same direction after
a delay. Figure 5D (bottom) illustrates this phenomena by aligning the time trace of both peak positions .
Here, a shift in the ligand peak (gray) is often followed by a corresponding shift in receptor peak (yellow) after
an appreciable delay, hence there is only partial peak-to-peak alignment. Second, if the ligand peak changes
position abruptly, a second receptor peak forms, oriented towards with the new ligand peak. Figure 5E-iii
illustrates this clearly by showing a new receptor peak forming precisely after a large shift in ligand peak
position (Figure 5D). We assess the performance of our scheme by comparing scheme-generated placements
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{φs(c)} and optimal placements {φ∗(c)} corresponding to the same sequence of ligand profiles {ct}. Figure 5F
shows that for cells moving in soil and tissue, scheme efficacy η(φs) (star) is not far from the optimal value
η(φ∗). Furthermore, scheme efficacy is robust to variations in endocytosis (koff) and average incorporation
rate (〈hai〉i). Taken together, our feedback scheme organizes receptors to achieve near-optimal information
acquisition, in both static and dynamic environments.

Our feedback scheme can align receptors with the global gradient direction, suggesting that this scheme may
allow cells to escape local ligand concentration peaks within interstitial gradients. On the one hand, Figure 5G
shows that the peak of ligand profiles (gray), as experienced by cells, do not always agree with the direction of
the global gradient (dashed line) – a known feature of interstitial gradients [3]. On the other hand, receptors
organized by the feedback scheme (yellow) align very well with the global gradient direction. The effect of
the feedback scheme comes from its ability to localize receptors and account for past receptor profiles. The
latter allows the current receptor profile to carry memory of past ligand profiles that the cell has encountered,
enabling a form of spatial averaging over ligand peaks. Alignment of receptors to the global gradient should
provide significant boost to cell navigation performance, especially in non-monotonic, interstitial gradients.
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Figure 6: In simulated interstitial gradient, cells localize to source quickly and precisely when
receptors are redistributed by the feedback scheme instead of uniformly distributed. (A), (left)
interstitial CCL21 gradient, (right) white curves represent haptotactic trajectories of dendritic cells [3]. (B),
(top) schematic of a navigation task where a cell (green flag) in a region of an interstitial gradient move
towards the source (red flag) by sensing spatially-distributed ligands and decoding source direction locally,
the ligand field shown is a region of the tissue environment in Figure 2A obtained through PDE simulation
(see supplement section 4); (bottom) red curve shows the tissue ligand field averaged over the y-direction,
and black curve is the fitted exponential gradient, scale bar: 10 µm. (C), sample trajectories of repeated
simulations of cells navigating with uniform receptors (blue) and with scheme-driven receptors (orange), all
scale bars: 10 µm. (D), (left) histogram of time taken to reach source across 600 cells at different starting
positions of equal distance from source, note the rightmost bar includes all cells that did not reach the source
after 8 hours; (right) barplot showing percentage of runs completed in 1 hrs (success rate), see also Figure S9
for success rate across different simulation parameters. (E), same type of data as in panel D for cells navigating
in an exponential gradient (fitted to the interstitial gradient used to generate panel D). (F), red stripes (left)
represent growth cones moving within specific lamina along a Slit gradient (right schematic), an ellipse-shaped
cell used for this simulation to mimic navigating growth cone, scale bar: 40 µm [60]. (G), (top) schematic of a
navigation task where a cell (green flag) senses its environment in order to remain close to source, solid white
line represents cell trajectory, dotted white line demarcates a distance of 5 µm from ligand source (see Table S3
for tissue simulation parameters),
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Figure 6: (continue from previous page) (bottom) red curve shows the tissue ligand field averaged over the
y-direction, and black curve is the fitted exponential gradient, scale bar: 2 µm. (H), sample trajectories of
repeated simulations of cells performing task with either uniform or scheme-driven receptors, all scale bars:
2 µm. (I), (left) histogram of time spent by cell at various distance from the ligand source (measured from
source to farthest point on cell, perpendicular to source edge) aggregated across 600 cells starting at different
positions, moving at 2 hours near the ligand source; (right) barplot shows percentage of time spent more than
5 µm from source (error rate), see also Figure S9 for error rate across different simulation parameters. (J),
same data type as panel I for cells navigating in an exponential gradient (fit to interstitial gradient of panel I).

Feedback scheme enables cells to search quickly and localize precisely in
simulated interstitial gradients

Cells using our feedback scheme effectively localizes to the ligand source of simulated interstitial gradients,
while cells with uniform receptors become trapped away from the source by local concentration peaks. Immune
cells can navigate towards the source of an interstitial gradient in a directed, efficient manner (Figure 6A) [3].
Efficient navigation can be difficult in complex tissue environments, partly due to the existence of local maxima
away from the ligand source, potentially trapping cells on their way to the source (Figure 6B). By simulating
cell navigation using standard models of directional decoding (for details see Supplement, section 7), we found
that cells with uniform receptors can indeed become trapped during navigation. Figure 6C demonstrates this
behavior through the trajectories of individual cells with uniform receptors (blue), as they consistently become
stuck within specific locations of the environment. On the other hand, using the same method of directional
decoding, cells with scheme-driven receptors (orange) reliably reach the source in an efficient manner. Figure 6D
illustrates this difference through a histogram of the time it took for a cell to reach the source, created by
simulating cells starting at uniformly-sampled locations 40 µm from the source, moving at a constant speed
of 2µm/min. Remarkably, for the circuit parameter values chosen, only 2% of cells (13/600) with uniform
receptors reached the source within 1 hour, compared to 73% of cells (436/600) using the feedback scheme,
boosting success rate by more than 30-folds. In fact, Figure 6D shows that > 97% of cells with uniform
receptors fail to reach the source even after 6 hours, as expected due to being trapped. Improvement in
success rate persists across a wide range of scheme parameters (orders-of-magnitude) and directional decoding
schemes (Figure S9). We emphasize that the poor performance of cells with uniform receptors is only partially
due to inaccuracy associated with decoding local gradients. Indeed, cells that only follow local gradients
have trouble finding the global peak (ligand source) in simulated interstitial gradients, as shown by the fact
that cells simulated to move precisely along local gradient directions (direction of maximal increase in ligand
concentration across the cell’s surface) become trapped at local ligand peaks on their way to the source
(Figure S9C). As expected, Figure 6E shows that the difference in performance between uniform and scheme-
driven receptors is relatively less pronounced in the simple gradient (black curve Figure 6B line plot) – a 2-fold
difference in success rate. We discuss the analogy between our feedback scheme and the infotaxis algorithm
[61] in the Discussion section .

Our feedback scheme can also help cells remain within a highly precise region along a chemical gradient. During
certain developmental programs, cells must restrict their movements within a region along a gradient in order
to form stable anatomical structures. Growth cones demonstrate an extraordinary ability in accomplishing this
task. Axon projections of retinal ganglion cells can remain within a band of tissue (lamina) of only 3 − 7µm
wide, at a specific point along a chemical gradient (Figure 6F) [60, 62]. Figure 6G illustrates how we assess
our scheme’s ability to achieve this level of precision. We initiate a cell at a gradient source and track the
proportion of time the cell was more than 5µm away from the source. As the cell moves along the gradient,
uneven ligand distribution in the environment can lead the cell to move erroneously away from the source.
Figure 6H shows that cells with uniform receptors (blue) can indeed make excursions away from the source.
But cells with the feedback scheme (orange) reliably stay close to the source for an extended period of time.
We quantify this difference by pooling from 600 trajectories of cells starting at different positions along the
source, decoding source direction and navigating for 2 hours. Figure 6I shows the number of time steps the
cells collectively spent at specific distances from the source. For the circuit parameter values chosen, cells
with uniform receptors are found more than 5 µm away from the source 15% of the time (22204/144000 steps).
On the other hand, cells with the feedback scheme do so only 2% of the time (3287/144000 steps), a 7-fold
reduction in error rate. Difference in error rate persists for a wide range of scheme parameters and directional
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decoding schemes (Figure S9D,F). Similar improvement in performance is found for cells navigating in fitted
exponential gradients (black curve Figure 6G line plot). Figure 6J shows the error rate is reduced by 10-fold
from cells with uniform to scheme-driven receptors (10% vs. 1%). This result is intuitive as the gradients used
for this task has extremely short decay length (5 µm) to mimic in vivo gradients that growth cones encounter.
As a result, the fitted exponential becomes similar to the simulated interstitial gradient. Taken together, our
feedback scheme is functionally effective in simulated patchy gradients found in tissue, enabling cells to solve
common navigation tasks with significantly improved accuracy and precision.

Figure 7: Optimal efficacy η predicts observed distributions of cell surface receptors using their
surface expression level and binding affinity. (A) observed membrane distributions of receptors in
heterogeneous environments, i. white arrowheads indicate Slit receptor Robo1 of commissural growth cones
navigating in an interstitial Slit gradient [26]. ii. Human T lymphocytes migrating towards a CCL5-loaded
pipette (bottom edge of each panel), top row of panels show brightfield images of a cell taken at different
time, bottom row show the corresponding fluorescence images of GFP-tagged CCR5 on the cell surface (time
stamp at lower right corner of panel) [63], iii. Effect of a GABA gradient on the distribution of GABAARs in a
growth cone (GC). The arrow indicates direction of the source. (left) Transmission image of GC. (center, right)
Images show individual quantum dots-tagged GABAARs detected by their fluorescence, recorded during the
first 10 min of stimulation (center) and during the next 10 min (right) [27], iv. C5aR-GFP remains uniformly
distributed in response to a point source of a C5aR agonist, delivered by micropipette (white dot), open
arrowheads point to leading edges of cells [64]. Scale bars i,iii: 5 µm, ii,iv: 10 µm. (B) optimal efficacy η for
different values of Kd and N ; values computed using the tissue environment, where the ratio between average
ligand concentration and Kd is fixed, α = 0.1; red dots correspond to receptors that polarize in heterogeneous
environments (CCR2, CXCR4, CCR5, GABAAR, Robo1), white dots represent receptors that are constantly
uniform (IL-2R, TNFR1, TGFβR2, CR3, C5aR), roman numerals correspond to receptors in panel A, see
Table S4 for receptor data.

Optimal efficacy accurately predicts experimental observations of membrane
receptor distribution

In addition to generating optimal sensing strategies for simulated environments, our framework can be used
to predict receptor distribution of natural cell surface receptors (Figure 7A), using both the environmental
structure in which the receptors function and their biological properties. In addition to environmental structure,
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receptor properties such as cell surface expression level (N) and binding affinity (Kd) also play a role in
determining the optimal strategy by affecting the measurement kernel (Equation 3). For a simulated tissue
environment, Figure 7B shows that despite offering significant information gain (η ∼ 1) for a wide range of N
and Kd values, optimizing receptor placement offers nearly zero gain in information (η � 10−2) when N/Kd

is large. High N and low Kd improve information acquisition by allowing the receptor activities to be more
sensitive to changes in input level, and since the total amount of information available to the cell is fixed, the
amount of additional gain that can be made by optimizing receptor placement is reduced.

Figure 7B suggests that for real cell surface receptors, we may be able to predict their membrane distribution by
specifying both their environment and biological parameters (N , Kd). Specifically for receptors functioning in
tissue, we predict those with parameters that fall within the high η regime (Figure 7B) are more likely to adapt
the optimal localized distribution. Although data are limited, empirical observations of real receptors agree
with this prediction. Comparing data across cell surface receptors from multiple cell types found in human
tissue, Figure 7B show that receptors (red dots) with parameters corresponding to large η have been observed
to localize in non-uniform environments (Figure 7A-i-iii). Importantly, the localized receptors concentrate at
the region of the membrane with the highest ligand concentration, consistent with the theoretically optimal
strategy. Such localization is clearly illustrated in panels A-ii and A-iii. Figure 7A-ii shows, within 5 minutes,
uniform CCR5 redistributes towards the source of CCL5 placed at the bottom edge. Figure 7A-iii shows GABA
receptors localize over time to the membrane region experiencing the highest GABA concentration (arrow
indicates source direction). Receptors (white dots) with parameters (Kd, N) corresponding to small η, however,
are always uniformly-distributed (Figure 7A-iv), even when the environment is non-uniform. Furthermore,
although Figure 7B is based on a fixed α (constitutive receptor activity), the striking relationship between
receptor organization and optimal efficacy η holds for values of α spanning at least two orders-of-magnitude
(Figure S10B). More detailed comparisons between the experimental receptor distributions and the theoretical
optimum is unfortunately not possible, because quantitative descriptions of the ligand profiles experienced by
the observed cells are not available. This agreement between theory and observations is not meant to imply that
evolution optimizes receptor placement. Indeed, there are key caveats such as variations in receptor expression
over time and differences between the environments of different receptors. Our theory does, however, provide a
framework for studying natural variations in the spatial organization of receptors, such as differences observed
between chemotactic receptors in the same T-cell [28].

Discussion

A rich collection of works, spanning diverse areas including developmental biology, systems biology, and neu-
roscience, put forth the idea of optimizing mutual information to predict the design of information processing
systems in biology [36–43]. For example, information maximization principles have been applied to derive
fundamental limits on the fidelity of information transfer in biochemical networks [43, 65]. Inspired by these
works, we formulated an information-theoretic framework that enables us to compute effective cell sensing
strategies across different environments. We applied the framework to different signaling microenvironments,
including tissues and soils, to discover a receptor localization strategy that significantly improves both cell
sensing and navigation. More broadly, our work has a series of conceptual and practical implications. Our the-
ory suggests a functional role for spatial organization in cellular information processing, conceptually showing
how spatially-organized intracellular components can be used by cells to more accurately infer the state of its
external environment, here through sensing and chemoreceptors. Furthermore, our theory conceptually shows
how spatial organization of a cell’s sensing apparatus can actually reflect spatial structure of its environment.
Similar results are found in neuroscience, but it is interesting to see how such an efficient coding perspective
can help understand spatial organization within a cell. Lastly, our theory has practical consequences for cell
engineering. Currently, most synthetic circuits function without spatial modulation and are studied in well
mixed compartments. Our work shows how spatial control over synthetic sense and response architectures can
provide new strategies for engineering circuits that function in natural environments.

Adapting framework to optimize other cell properties with respect to envi-
ronmental statistic

One can easily adapt our framework to understand how variables other than receptor placement affects spatial
sensing. Although this work is about optimizing receptor placement, the key quantity being tuned is the spatial
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distribution of receptor activity, hence our result is relevant to any variable that 1) affects receptor activity
and 2) redistributes across space. To illustrate, consider a generalized model of receptor activation,

E[Ai | ci] = f(θi)
( ci
ci +Kd

+ α
Kd

ci +Kd

)
, (13)

where f is an unspecified function of an arbitrary set of variables θi, and f(θi) represents the “effective”
number of receptors at position i. In this work, we considered the case where θi = ri and f(ri) = ri, but
other factors such as phosphorylation level and membrane curvature also affect local receptor activity Ai [66].
In this way, one can optimize spatial sensing by tuning variables other than receptor placement, by specifying
alternative forms of f . For example, it is known that given uniformly distributed receptors, those found in
membrane regions of higher curvature can exhibit higher activity [66]. Suppose we want to know the optimal
way to adjust cell shape to maximize information acquisition, by assuming a linear relationship between local
curvature βi and “effective” receptor number, i.e. f(ri, βi) = βiri. Given uniform receptors and a constraint
on total contour length (or area) of the membrane, we quickly arrive at the optimal solution since this problem
is now identical to our original formulation. The optimal strategy is to increase membrane curvature at regions
of high ligand concentration, by making narrow protrusions (for details see Supplement, section 9).

Connection between information acquisition and navigation

We showed that a receptor placement strategy aimed at maximizing information rate can boost cell navigation
performance. Since information content increases towards the ligand source, receptors are more likely to move
towards the side of the membrane closer to the source rather than away, enforcing movement up gradients.
Furthermore, the trade-off between information acquisition and receptor redistribution in Equation 11 can
be viewed as combining exploitative and exploratory tendencies, where larger redistribution “cost” favors
exploitation. This strategy is similar in principle to the infotaxis algorithm [61], where one can view receptors
as “navigating agents”, whose movements guide the cell towards the target. Although the idea is quite intuitive,
the exact relationship between navigation and information acquisition requires further investigation. On the
one hand, the feedback scheme is most effective in the case of limited sampling of inputs (Figure S9B,E), which
suggests maximizing information content indeed helps with navigation. On the other hand, moving receptors to
maximize information rate is significantly more effective as a navigation strategy compared to only maximizing
absolute information (Figure S7).

Optimizing spatial organization at different stages of information processing

Optimizing information transmission by organizing effectors in space can happen at all stages of signal pro-
cessing within the cell, but is likely most effective at the receptor level. The most obvious reason is due to
the data processing inequality, which states that post-processing cannot increase information. Therefore, only
optimization at the level of receptor activation can increase the total amount of information that is available to
the cell. The second reason is due to the “hourglass” topology of cell signaling networks, which represent the
fact that a large number of signaling inputs converge onto a small number of effectors internal to the cell [67].
For example, G-protein-coupled receptors, one of the largest group of cell surface receptors, drive downstream
signaling through the same G-proteins. This feature makes optimizing spatial organization at later stages of
information processing very difficult, since information can be easily lost by diffusion of effector molecules
activated by different inputs, which ends up “mixing” different spatial signals.

Data availability

All analysis, simulation and plotting scripts are openly available at: https://github.com/neonine2/receptor-code.
All data generated in this work is openly available at: http://dx.doi.org/10.22002/D1.2149.

Material availability

This paper did not generate new reagents.
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[37] T. R. Sokolowski, G. Tkačik, Optimizing information flow in small genetic networks. iv. spatial coupling,
Physical Review E 91 (6) (2015) 062710.

[38] M. Monti, D. K. Lubensky, P. R. Ten Wolde, Optimal entrainment of circadian clocks in the presence of
noise, Physical Review E 97 (3) (2018) 032405.
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