

1 **A role for worm *cutl-24* in background- and parent-of-origin-
2 dependent ER stress resistance**

3 Wenke Wang^{1,2}^, Anna G. Flury^{1,2}^, Andrew T. Rodriguez^{1,3}^, Jennifer L. Garrison^{1,3,4*}, and
4 Rachel B. Brem^{1,2,3*}

5 ¹Buck Institute for Research on Aging, Novato, CA

6 ²Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA

7 ³Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA

8 ⁴Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA;
9 Global Consortium for Reproductive Longevity & Equality, Novato, CA

10 ^Authors contributed equally to this work.

11 *Authors for correspondence: jgarrison@buckinstitute.org, rbrem@berkeley.edu.

12

13 **Abstract**

14 Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the
15 programs endogenous to humans. Finding the molecular basis of such natural resistance
16 characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward
17 this end can perform poorly in organismal systems that lack high rates of meiotic recombination,
18 like *Caenorhabditis* worms. Here we discovered unique ER stress resistance in a wild Kenyan *C.*
19 *elegans* isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid
20 offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to
21 explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene
22 candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed,
23 cuticlin-like gene *cutl-24* for validation. In gene disruption and controlled crossing experiments,
24 we found that *cutl-24* was required in Kenyan hermaphrodite mothers for ER stress tolerance in
25 their inter-strain hybrid offspring; *cutl-24* was also a contributor to the trait in purebred
26 backgrounds. These data establish the Kenyan strain allele of *cutl-24* as a determinant of a
27 natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity
28 in invertebrate animals without the need for a panel of meiotic recombinants.

29

30 **Introduction**

31 Understanding mechanisms of trait diversity in organisms from the wild is a central goal of
32 modern genetics. Classical methods toward this end, namely association and linkage mapping,
33 have enabled landmark successes in the field (Flint and Mott 2001). These tools are well-suited
34 to organismal systems in which highly polymorphic, well-mixed recombinant populations exist in
35 the wild or can be generated in the lab. Such features are lacking in the nematode worm
36 *Caenorhabditis*. The laboratory strain of *C. elegans* has been a fixture of the biology literature
37 for decades (Nigon and Félix 2017). Dissecting natural variation in nematodes has proven to be
38 a challenge owing to low rates of polymorphism and meiotic recombination (Hillers and
39 Villeneuve 2003; Andersen *et al.* 2012). Landmark resources have been established to break
40 down these limitations (Li *et al.* 2006; Reddy *et al.* 2009; Rockman and Kruglyak 2009; McGrath
41 *et al.* 2009; Doroszuk *et al.* 2009; Seidel *et al.* 2011; Bendesky *et al.* 2012; Ghosh *et al.* 2012,
42 2015; Balla *et al.* 2015; Andersen *et al.* 2015; Large *et al.* 2016; Ben-David *et al.* 2017),
43 including recent progress with genome-wide association scans (Webster *et al.* 2019; Na *et al.*
44 2020; Evans *et al.* 2021). Despite these advances, for many nematode strains and species our
45 access to the full power of natural variation genetics remains limited.

46 The reciprocal hemizygosity test (Stern 2014) is a strategy to map genotype to phenotype that
47 complements linkage and association approaches. This approach starts with an F1 hybrid
48 formed from the mating of two genetically distinct lines of interest. An induced mutation in the
49 hybrid at a given gene disrupts the allele from each parent in turn, uncovering the other allele in
50 a hemizygous state. The set of hemizygote mutants allow a comparison of phenotypes
51 conferred by the two parents' alleles, controlled for background and ploidy. Strengths of the
52 method include the ability for trait dissection without a panel of meiotic recombinants, and the
53 potential for genetic insights into traits unique to hybrid backgrounds (heterosis, for example,
54 and imprinting and other parent-of-origin effects; (Comings and MacMurray 2000; Reinhold
55 2002; Wolf and Wade 2009; Timberlake 2013; Monk *et al.* 2019)). Our group previously
56 established genome-wide reciprocal hemizygosity mapping in yeast (RH-seq; (Weiss *et al.*
57 2018)), and we reasoned that nematodes could serve as a useful testbed for an extension of the
58 method to multicellular animals.

59 For a case study using RH-seq, we set out to identify natural stress resistance states in wild
60 worm isolates and to probe their genetics. We chose to focus on ER protein folding quality
61 control, which is essential in eukaryotes for development and stress response, and is a linchpin
62 of diabetes, neurodegenerative disease, and other human disorders (Hebert and Molinari 2007;
63 Roth *et al.* 2010). Surveying *C. elegans* isolates, we characterized a Kenyan strain with an ER
64 stress resistance phenotype, and we discovered a robust parent-of-origin effect in hybrids
65 derived from this strain. To enable the search for determinants of this trait variation, we
66 developed an implementation of RH-seq for the worm which achieved unbiased, partial
67 coverage of the genome. From the results we focused on one gene hit, *cutl-24*, for validation of
68 its impact on ER stress response.

69 **Results**

70 **Tunicamycin resistance in wild *C. elegans* and its parent-of-origin dependence**

71 Tunicamycin, a N-glycosylation inhibitor and ER stress inducer, causes developmental delay in
72 nematodes (Richardson *et al.* 2011; Shen *et al.* 2001). To identify *C. elegans* strains resistant to
73 this defect, we collected eggs from each of a panel of wild isolates and the laboratory strain N2,
74 exposed them to a toxic concentration of tunicamycin, and tabulated the number of successfully
75 developed adults after 96 hours at 20°C. Among these strains, the predominant phenotype was
76 of marked sensitivity, in which most eggs exposed to tunicamycin failed to reach adulthood, and
77 indeed never reached the larval stage of development (Figure 1). All isolates we assayed fit this

78 description except one: ED3077, originally isolated from a park in Nairobi, Kenya, had a rate of
79 development in the presence of the drug outstripping that of the rest of the panel by >2-fold
80 (Figure 1). We earmarked this tunicamycin resistance phenotype in ED3077 as a compelling
81 target for genetic dissection, and we chose to use N2 as a representative of the tunicamycin-
82 sensitive state.

83 To begin to investigate the genetics of tunicamycin resistance in ED3077, we mated this strain
84 to N2, and subjected the resulting F1 hybrid eggs to our tunicamycin development assay.
85 Results made clear that the hybrid phenotype depended on the direction of the cross (Figure 2).
86 ED3077 hermaphrodites, mated to N2 males, yielded eggs that developed in tunicamycin
87 conditions at a rate approaching that of the ED3077 purebred (Figure 2, third column). By
88 contrast, hybrids with N2 as the hermaphrodite parent had almost no ability to develop in the
89 presence of tunicamycin (Figure 2, fourth column). Thus, the ED3077 phenotype was partially
90 dominant over that of N2, but only when ED3077 was the hermaphrodite in the cross. We
91 hypothesized that the mechanism of this maternal effect could bear on the genetics of the trait
92 difference between purebred ED3077 and N2. In what follows, we describe our experiments to
93 probe both facets of the system.

94 **RH-seq reveals effects of variation in *cutl-24* in an inter-strain hybrid**

95 We sought to investigate the genetic basis of the parent-of-origin-dependent tunicamycin
96 resistance trait in the ED3077 x N2 system using RH-seq. The method requires large cohorts of
97 hybrids harboring disrupting mutations in one of the two copies of each gene in turn, and we
98 chose the Mos1 transposon system (Bessereau *et al.* 2001; Williams *et al.* 2005; Duverger *et al.*
99 2007) for this purpose. We set up a workflow to generate transposon mutants in ED3077 or N2
100 and mate each to the wild-type of the other respective parent, yielding hemizygote eggs (Figure
101 3). In each case we used hermaphrodites as the transposon mutant parent and males as the
102 wild-type, in light of the importance of the hermaphrodite genotype in hybrids (Figure 2). We
103 incubated hemizygote eggs in tunicamycin or untreated control conditions and then collected
104 animals that reached adulthood for DNA isolation and sequencing.

105 We expected that deploying RH-seq at moderate scale could serve as a proof of concept for the
106 method and help discover candidate determinants of tunicamycin resistance in the ED3077 x
107 N2 hybrid. To this end, we generated and detected a total of 56,979 hemizygote genotypes from
108 DNA of animals reaching adulthood in tunicamycin and in control conditions, after quality-control
109 filtering of sequencing data (Supplementary Tables 2 and 3).

110 Focusing on the 2,721 highest-coverage genes, for each we assessed the difference in
111 normalized sequencing representation among tunicamycin-treated adults between two cohorts
112 of hemizygotes—those with the ED3077 allele uncovered and those with the N2 allele
113 uncovered. In this test, no results reached significance after correction for multiple testing
114 (Supplementary Figure 1 and Supplementary Table 4). Nonetheless, we reasoned that the top-
115 scoring loci represented our most compelling candidate determinants of tunicamycin response.
116 Manual inspection of the top ten RH-seq hits revealed that for each of the top three,
117 *WBGene00023395/Y82E9BL.9*, *WBGene00015173/trpp-11*, and *WBGene00021396/cutl-24*,
118 RH-seq data supported the inference of a pro-resistance function for the ED3077 allele
119 (Supplementary Figure 2). That is, at each such locus, genotypes with the ED3077 allele
120 disrupted in the hybrid, leaving the N2 uncovered and functional, were on average at low
121 abundance in sequencing of tunicamycin-treated adults relative to controls; genotypes with the
122 ED3077 allele intact and the N2 allele disrupted were abundant on average in these samples.
123 We considered genes with effects of this direction in RH-seq to hold the most promise in helping
124 explain the tunicamycin resistance of purebred ED3077. Among them, we noted that agreement
125 in RH-seq abundance measures between independent transposon inserts was strongest for
126 *cutl-24*, encoding a largely uncharacterized protein containing a cuticlin-like domain (Figure 4).

127 On this basis, we had the highest confidence in *cutl-24* as a potential determinant of
128 tunicamycin resistance, and we chose it as a target for experiments to validate the role of the
129 gene, and its inter-strain variation, on the trait.

130 ***cutl-24* as a determinant of tunicamycin resistance in hybrids and purebreds**

131 To investigate the impact of *cutl-24* on tunicamycin response in the ED3077 x N2 system, we
132 first focused on the hybrid background, where this gene had been a top scorer in the RH-seq
133 screen (Figure 4). We used Cas9 to generate stable lines of purebred N2 and ED3077
134 harboring a nonsense mutation in *cutl-24* (Supplementary Table 5). We mated each mutant as
135 the hermaphrodite to the wild-type male of the respective other strain, as in our RH-seq
136 framework (Figures 3-4), and we subjected the progeny to high-sensitivity development assays
137 in the presence of tunicamycin. The results showed that disrupting *cutl-24* in ED3077
138 hermaphrodites, followed by crossing to wild-type male N2, compromised tunicamycin
139 resistance of the hybrid by 28.5% (Figure 5a; compare second and first columns), consistent
140 with the trend we had observed in RH-seq (Figure 4). Mutating *cutl-24* in N2 hermaphrodites,
141 followed by mating with wild-type ED3077 males, had no such effect (Figure 5a; compare fourth
142 and third columns). These data establish *cutl-24* as a driver of the unique tunicamycin
143 resistance phenotype of the hybrid progeny of ED3077 hermaphrodites, serving as a validation
144 of the RH-seq approach.

145 We also examined the importance of *cutl-24* in the male parent of inter-strain hybrids. *cutl-24*
146 mutation in ED3077 males had no detectable effect on tunicamycin resistance of their hybrid
147 progeny from crosses with N2 hermaphrodites (Figure 5a; compare sixth and third columns); the
148 same was true when N2 mutants were the male parent of a cross with ED3077 hermaphrodites
149 (Figure 5a; compare fifth and first columns). This result echoed our finding from wild-type
150 crosses that hermaphrodite genotype matters most for tunicamycin resistance in hybrids (Figure
151 2). Together, our genetic analyses establish *cutl-24* as a determinant of the parent-of-origin-
152 dependent tunicamycin resistance in ED3077 x N2 hybrids, with the ED3077 allele in the
153 hermaphrodite sufficient to explain the hybrid resistance phenotype entirely.

154 We hypothesized that *cutl-24* could also contribute to tunicamycin resistance in a purebred
155 context. In purebred ED3077, we observed a 13.9% drop in tunicamycin resistance in the *cutl-24*
156 mutant relative to wild-type (Figure 5b, red); the trend persisted, though not significantly so,
157 in the N2 background, where survival in tunicamycin was almost nil to start with (reduced by
158 66.7% upon *cutl-24* mutation; Figure 5b, blue). These relatively modest effects of *cutl-24*
159 mutation in purebreds contrasted with the stronger dependence of the resistance phenotype on
160 *cutl-24* in hybrids (Figure 5a), pointing to the hybrid as a sensitized background in which *cutl-24*
161 dependence is amplified and drives appreciable parent-of-origin effects. In purebreds, we infer
162 that *cutl-24* acts as a modifier of tunicamycin resistance, likely one of many determinants of a
163 complex genetic architecture.

164 **Evidence for *cutl-24* as a neuronal factor**

165 To help formulate models for *cutl-24* activity and function, we characterized the localization of its
166 gene product with an expression analysis approach. In whole-worm developmental timecourses
167 (Dillman *et al.* 2015; Hashimshony *et al.* 2015), *cutl-24* expression was high in embryos and
168 lower but appreciable in larvae and adults (Figure 6). Lineage-traced single-cell transcriptomes
169 through development (Packer *et al.* 2019) detected *cutl-24* in glia of the inner labial sensilla, and,
170 at lower levels, in many other neurons (Figure 7). Likewise, in adult hermaphrodites, RNA
171 tagging for a marker of outer labial sensilla neurons and PVD nociceptors revealed significant
172 *cutl-24* expression (Smith *et al.* 2010). These results establish the presence of the *cutl-24* gene
173 product in a range of neuronal cells and raise the possibility that *cutl-24* may exert its effect on
174 development and stress resistance in this context.

175 Discussion

176 The search for genes underlying natural trait variation has been a mandate for geneticists since
177 Mendel. Wild nematodes have great potential as a study system for ecological genetics (Frézal
178 and Félix 2015; Cook *et al.* 2017). In these animals, landmark studies have identified variants
179 with Mendelian (de Bono and Bargmann 1998; Reddy *et al.* 2009; McGrath *et al.* 2009;
180 Bendesky *et al.* 2012; Ghosh *et al.* 2012, 2015; Balla *et al.* 2015; Large *et al.* 2016) and
181 maternal- and paternal-effect (Ben-David *et al.* 2017; Ewe *et al.* 2020; Seidel *et al.* 2011) modes
182 of action that underlie phenotypes of interest. Many of these successes have derived from
183 model advanced intercross mapping populations in *C. elegans* (Li *et al.* 2006; Rockman and
184 Kruglyak 2009; Doroszuk *et al.* 2009; Andersen *et al.* 2015). In non-model nematode strains and
185 species, statistical genetics continues to pose challenges, owing to population structure among
186 wild isolates (Webster *et al.* 2019) and low meiotic recombination rates in lab crosses (Hillers
187 and Villeneuve 2003).

188 In this work, we have established strain differences and parent-of-origin effects in worm ER
189 stress resistance. And we have used a new tool, RH-seq, alongside classical genetics to identify
190 *cutl-24* as a determinant of the variation. By discovering maternal-effect and stress-tolerance
191 functions of this uncharacterized gene, our study underscores the utility of the natural variation
192 approach, and RH-seq in particular, in nematodes.

193 The RH-seq approach in *C. elegans*

194 RH-seq shares with several other worm screening methods (Frézal *et al.* 2018; Burga *et al.*
195 2019; Webster *et al.* 2019) the ability to streamline phenotyping assays by bulk sequencing of
196 naturally varying strains. The chief distinction of RH-seq is its ability to map genotype to
197 phenotype without recombinant progeny from crosses, in the lab or in the wild (Weiss *et al.*
198 2018; Weiss and Brem 2019). Here the technique has enabled partial-coverage genetic
199 dissection in non-model *C. elegans* ED3077, in the absence of a panel of recombinant inbred
200 lines. More broadly, the utility of RH-seq for any worm strains or species will be a function of
201 mutagenesis throughput and phenotyping signal-to-noise ratio, which will govern coverage and
202 statistical power. Our mapping of *cutl-24* in a screen of limited depth and power serves as a first
203 proof of concept of the method.

204 Maternal effects of strain variation and *cutl-24* function

205 Starting from the discovery of a unique tunicamycin resistance phenotype in the Kenyan *C.*
206 *elegans* isolate ED3077, we found that ED3077 x N2 hybrid embryos develop best in
207 tunicamycin when they arise from ED3077 hermaphrodite parents rather than ED3077 males.
208 These hybrid progeny rely on parent *cutl-24* more than do ED3077 purebreds, under
209 tunicamycin treatment. Plausibly, hybrids could act as a sensitized background for perturbations
210 in *cutl-24* owing to stresses from genome incompatibility, as has been documented in other *C.*
211 *elegans* crosses (Dolgin *et al.* 2007; Snoek *et al.* 2014). If so, hermaphrodite *cutl-24* could help
212 maintain homeostasis under this burden, when compounded by tunicamycin.

213 Our work also leaves open the mechanism by which *cutl-24* in hermaphrodites affects
214 developing progeny. Given its expression in multiple neuronal types, *cutl-24* could participate in
215 the pathway linking neuronal serotonin in mothers with stress-protective transcription in their
216 progeny (Das *et al.* 2020). Alternatively, acting in labial sensilla in particular, *cutl-24* could follow
217 the precedent from other maternal-effect genes that directly modulate egg-laying and egg
218 structure in the worm (Daniele *et al.* 2020; Min *et al.* 2020; Baugh and Hu 2020). Or *cutl-24*
219 transcripts could be expressed in the germline and maternally deposited in the embryo for
220 activity early in development, as is the case for other well-characterized maternal-effect factors
221 (Robertson and Lin 2015). As one potential clue to the mechanism of *cutl-24* genetics, we noted
222 that there was no identifiable DNA sequence variation between ED3077 and N2 in genome

223 resequencing data or Sanger sequencing, in or near the gene. It is thus tempting to speculate
224 that a heritable epigenetic polymorphism, dependent on parent sex and background, could drive
225 the differences in phenotypic impact we have seen between the strains' alleles at *cutl-24* and
226 contribute to the overall parent-of-origin effects we have noted in ED3077 x N2 crosses. Such a
227 mechanism at *cutl-24* would dovetail with the classic literature describing paramutation in maize
228 (Pilu 2015) and the more modern mapping of epialleles to phenotype in a number of systems
229 (Quadrana *et al.* 2014; Bertozzi *et al.* 2021; Pignatta *et al.* 2018).

230 Under any of these scenarios, ED3077 hermaphrodites, reared under standard conditions in our
231 assay design, would lay eggs better equipped to handle environmental and/or genetic
232 challenges, in part mediated by *cutl-24*. Consistent with this notion, in a previous study of wild *C.*
233 *elegans*, the ED3077 strain was distinguished by a marked ability for L1 larvae to develop
234 successfully after starvation (Webster *et al.* 2019). The emerging picture is one of a unique,
235 broad stress-resistant phenotype in ED3077. Further work will establish its complete genetic
236 architecture and the evolutionary forces that drove its appearance in the wild.

237 **Acknowledgements**

238 This work was funded by NIH R01 GM120430 to R.B.B. and J.L.G., by NIA T32 AG052374 to
239 A.T.R., and by a Glenn Foundation fellowship to W.W. The authors thank Jean-Louis Bessereau
240 and Jonathan Ewbank for their generosity with unpublished resources, and Christian Frøkjær-
241 Jensen, Marie Delattre, and Marie-Anne Félix for discussions.

242 **Materials and methods**

243 **Worm strains and maintenance**

244 Strains and plasmids used in this work are listed in Supplementary Table 1. For maintenance
245 and crossing, worms were maintained on nematode growth media (NGM) plates seeded with
246 *Escherichia coli* OP50. Tunicamycin resistance assays and RH-seq screening (see below) used
247 5X OP50 and 1.5X agar to inhibit burrowing. All incubations were at 20°C except as described.
248 Wild-type strains of *C. elegans* AB1 (Adelaide, Australia), CB4856 (Hawaii, USA), CB4932
249 (Taunton, Great Britain), ED3052 (Ceres, South Africa), ED3077 (Nairobi, Kenya), GXW1
250 (Wuhan, China), JU1088 (Kakegawa, Japan), JU1172 (Concepcion, Chile), JU1652
251 (Montevideo, Uruguay), JU262 (Indre, France), JU393 (Hermanville, France), JU779 (Lisbon,
252 Portugal), MY16 (Munster, Germany), N2 (Bristol, Great Britain) and PX179 (Eugene, USA)
253 were used in this study, all from the *Caenorhabditis* Genetics Center.

254 **High-sensitivity tunicamycin resistance assays**

255 Tunicamycin resistance assays were performed as described (Henis-Korenblit *et al.* 2010) with
256 modifications as follows. For Figure 1, 2-3 gravid adults were placed onto NGM plates, which
257 were prepared with 5 µg/mL tunicamycin in DMSO (InSolution, Sigma) or DMSO at the
258 analogous percentage by volume for control plates prior to plate pouring, and allowed to lay
259 eggs for 12 hours, after which the adults were removed from the plates. The number of eggs
260 was counted (typically 50-200) and compared with the number of animals that reached the adult
261 stage within 96 hours at 20°C. On control plates, ~100% of eggs hatched for a given strain. For
262 each bar of Figure 2, 5-10 L4 hermaphrodites of one strain were incubated with 10-20 males of
263 another strain for 24 hours to allow mating. The hermaphrodites were then transferred onto
264 plates containing 5 µg/mL tunicamycin (InSolution, Sigma) as above and allowed to lay eggs for
265 12 hours. The proportion of eggs from the indicated cross that developed to adulthood in the
266 presence of tunicamycin was measured as above and was normalized to the analogous quantity
267 from wild-type ED3077. Experiments for Figure 5 were as Figure 2 with the following changes:
268 10 µg/mL tunicamycin (InSolution, Sigma) was used, and the number of eggs that reached the
269 adult stage, on the egg-lay tunicamycin plate or on a separate tunicamycin plate to which ~100

270 eggs were transferred, was counted after 66-68 hours at 25°C, to match the conditions used in
271 high-throughput RH-seq phenotyping (see below).

272 **RH-seq in *C. elegans* and high-throughput tunicamycin resistance screening**

273 *RH-seq parental strain construction*

274 To enable the heat-induced Mos1 transposon system (Bessereau *et al.* 2001; Williams *et al.*
275 2005; Duverger *et al.* 2007) in the ED3077 and N2 backgrounds, we proceeded as follows.

276 For mutagenesis in N2, we used IG358 (*oxEx229* [Mos1 transposon + *Pmyo-2::GFP*]), an N2
277 transgenic which carries multiple copies of the Mos1 transposon and pharynx-specific green
278 fluorescent protein (GFP) expression, and IG444 (*frEx113* [(pJL44 = *Phsp-16.48::Mos1*
279 transposase) + *Pcol-12::DsRed*]), an N2 transgenic which carries the coding sequence of the
280 Mos1 transposase under the control of a heat-shock promoter and an epidermis-specific DsRed
281 reporter.

282 For the corresponding strains in the ED3077 background, we amplified the Mos1 transposon
283 used in IG358 (from a plasmid kindly provided by Christian Frøkjaer-Jensen) and cloned it into
284 the pSM plasmid backbone to create pWW1. We then injected pWW1 at 25 ng/µL, pCFJ421
285 (*Pmyo-2::gfp::h2b::tbb-2utr*) at 10 ng/µL, and pSM at 65 ng/µL to yield JAZ418. We injected
286 pJL44 (*Phsp16.48::Mos1 transposase::glh-2utr*) at 50 ng/µL, pCFJ90 (*Pmyo-2::mCherry::unc-*
287 *54utr*) at 2 ng/µL, and pSM at 48ng/µL to create JAZ419.

288 Separately, for wild-type marked strains to be used as males in the generation of hemizygotes
289 (see below), wild-type ED3077 and N2 were injected at 5 ng/µL with pCFJ104 (*Pmyo-*
290 *3::mCherry::unc-54utr*) and pCFJ90 (*Pmyo-2::mCherry::unc-54utr*), after which the respective
291 transgene was integrated into the worm genome by UV/TMP treatment (60 µg/mL TMP and 30
292 mJ of UV exposure at 365 nm) and the worms were outcrossed 3 times, generating JAZ420 and
293 JAZ421, respectively.

294 *RH-seq hemizygote construction and phenotyping*

295 Our RH-seq workflow proceeded in 12 rounds in N2. For each round of hemizygotes bearing
296 mutations in the N2 alleles of genes, we first made Mos1-ready N2 animals by picking 100-200
297 L4 hermaphrodites of IG358 and 200 L4 males of IG444 onto one NGM plate. After 12 hours at
298 25°C, the hermaphrodites and males were transferred to a new NGM plate for egg-lay. 100-200
299 F1 progeny exhibiting GFP and mCherry marker expression (*i.e.*, containing both transposon
300 and transposase arrays) were picked at the L4 stage.

301 In these Mos1-ready N2 animals, we induced Mos1 transposition at the young adult stage by
302 heat-shock treatment essentially as described (34°C for 1 h, 20°C for 1 h and then 34°C for
303 1 h) (Boulin and Bessereau 2007). We collected the putatively mutant eggs and selfed them for
304 two generations to ensure appreciable numbers of clones of a given mutant genotype. We
305 collected 20,000-50,000 F3 progeny and sorted in a Union Biometrica COPAS Biosort for those
306 that had lost the transposon array and transposase array (*i.e.*, they lacked GFP and mCherry
307 expression) to prevent continued transposition for the rest of the experiment.

308 We transferred 10,000-20,000 of these putatively mutant N2 hermaphrodites to NGM plates with
309 5,000-10,000 JAZ420 males (marked, non-mutated ED3077) and allowed mating to occur for
310 1.5 days at 15°C. The mated hermaphrodites were lysed, and ~30,000 eggs were transferred to
311 one plate (5-10 plates per round) containing 10 µg/mL tunicamycin, followed by incubation for
312 development for 66-68 hours at 25°C.

313 Afterward, 3,000-12,000 surviving worms were collected and sorted, with only hermaphrodite
314 adults (assessed based on size) and hybrid progeny of the marked ED3077 parent (assessed
315 based on mCherry marker expression) retained for DNA isolation and sequencing (see below).

316 11 rounds of hemizygotes bearing mutations in the ED3077 alleles of genes proceeded as
317 above, except that we mated JAZ418 with JAZ419 to make Mos1-ready ED3077, and after
318 mutagenesis, we mated the resulting putatively mutant hermaphrodites in the ED3077
319 background to JAZ421 males (marked, non-mutated N2) to yield hemizygotes.

320 **Genomic DNA extraction from *C. elegans***

321 Animals from hemizygote pools that had been collected after control or tunicamycin treatment
322 from a given RH-seq round were collected and snap-frozen in liquid nitrogen. Genomic DNA
323 (gDNA) from the worm pellets was extracted using the DNeasy Blood & Tissue Kit (Qiagen) and
324 a *C. elegans* gDNA extraction protocol from the Kaganovich lab (University Medical Center
325 Göttingen, <http://www.kaganovichlab.com/celegans.html>). The purified gDNA was quantified
326 using a Nanodrop.

327 **Transposon insertion sequencing library construction**

328 Illumina transposon sequencing libraries were constructed using the FS DNA Library Kit (NEB)
329 as follows. By following the protocol, gDNA was enzymatically digested and ligated with E-
330 adapters (a duplex whose upper strand is longer than the lower). The E-adapter upper arm was
331 GGGCGTAGATTACCGTCCGCGACTCGTACTGTGGCGCGCC*T (*T indicates T overhang),
332 and the E-adapter lower arm was /Phos/GGCGCGCCACAGTACTTGACTGAGCTTTA/3dC.
333 Sequences containing the 3' junction of each inserted Mos1 transposon to the genome were
334 amplified using a Mos1 transposon primer (5'-
335 AATGATACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTCTCCGATCTNNN
336 NNNXXXXXXGATTAAAAAAACGACATTCATAC-3' N, random sequence; XXXXXX,
337 barcode indices; GATTAAAAAAACGACATTCATAC, Mos1 transposon sequences) and a
338 primer homologous to a region of the adapter
339 (CAAGCAGAAGACGGCATACGAGATACATGGGGCGTAGATTACCGTCCGCGACTC).
340 The thermocycler protocol was as follows: 98°C for 30 seconds, (98°C for 10 seconds, 65°C for
341 1 minute and 15 seconds) x 24, 65°C for 10 minutes, 4°C hold. Single-end sequencing of 100
342 bp was then done on a NovaSeq machine at the Vincent J. Coates Genomics Sequencing Lab
343 at the University of California, Berkeley. In total, we sequenced 22 libraries from pools of
344 hemizygotes bearing mutations in the ED alleles of genes (representing one tunicamycin-
345 treated and one untreated pool from each of 11 rounds), and 24 libraries from pools bearing
346 mutations in the N2 alleles of genes (representing one tunicamycin-treated and one untreated
347 pool from each of 12 rounds), generating ~4-20 million reads per library (Supplementary Table
348 2).

349 **RH-seq read-mapping**

350 For a given library of reads reporting transposon insertion sequencing from hemizygotes after
351 tunicamycin or control treatment for RH-seq, we first removed adapter sequences from the end
352 of the reads using fastx_clipper from the fastx toolkit. Then, using fastx_trimmer from the fastx
353 toolkit, we removed the first 6 bp of every read, so every read would now begin with the barcode
354 index sequence. We then demultiplexed the barcode indexes using fastx_barcode_splitter from
355 the fastx toolkit. Using a custom python script, we retained for analysis only reads containing the
356 last 28 bp of the Mos1 transposon, allowing for no mismatches. For this subset of reads
357 containing the transposon, we excised the sequence immediately flanking the end of the
358 transposon sequence and mapped the remainder of the read (containing the stretch of genome
359 adjoining the transposon insertion) to the respective genome using BLAT
360 (<https://genome.ucsc.edu/cgi-bin/hgBlat>) with minimum sequence identity = 100 and tile size= 12.

362 For pools of hemizygotes bearing transposon insertions in the N2 alleles of genes, we mapped
363 to the N2 genome from BioProject PRJNA13758, release WS271. For hemizygotes with
364 insertions in the ED3077 alleles, we mapped to a ED3077 reference genome made as follows.

365 We downloaded raw genome sequencing reads for ED3077 from
366 <https://www.elegansvariation.org/> (Cook *et al.* 2017). These reads were aligned to genome
367 assembly WS271 of the reference sequence of the *C. elegans* N2 strain using bowtie2
368 (<http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml>) with default parameters. Samtools,
369 bcftools, and bgzip were used to call SNPs, retaining those with a quality score of >20 and
370 combined depth of >5 and <71. We then generated a pseudogenome by replacing the reference
371 N2 allele with that of ED3077 at each SNP using bcftools.

372 We eliminated reads whose genomic sequence portion was shorter than 30 bp and/or mapped
373 to more than one location in the genome. For analysis of a given sequencing library, we inferred
374 that reads that mapped to genomic positions within 100 bp of each other originated from the
375 same transposon mutant clone and assigned the sum of their counts to the position which had
376 the most mapped reads. Then, for a given insertion in a given library, we considered the number
377 of reads mapped to that position, n_{insert} , as the relative proportional abundance of the mutant in
378 the worm pellet whose gDNA was sequenced. In order to compare abundances across samples
379 and libraries, we divided n_{insert} by the total number of reads in the sample to get the normalized
380 abundance.

381 **RH-seq data analysis**

382 We used N2 genome annotations from BioProject PRJNA13758, release WS271, to determine
383 whether an inferred transposon insertion position was genic or non-coding, and we retained only
384 those insertions which were genic. For a given insertion observed in sequencing from a given
385 RH-seq round (comprising a pool of hemizygotes split into tunicamycin- and control-treated
386 subpools), we tabulated the \log_2 ratio of the normalized abundance in the control sample
387 divided by the normalized abundance in the tunicamycin-treatment sample, which we call the
388 tunicamycin effect on the respective transposon mutant as detected by RH-seq. In formulating
389 this ratio, we assigned a pseudocount of 1 for each case of an insertion with zero reads in either
390 the tunicamycin-treated or control sample of its respective round. For insertions detected in
391 multiple rounds, we averaged the tunicamycin effect across all rounds before proceeding. For a
392 given gene, we compiled all transposon insertion mutants in the gene as observed across all
393 RH-seq rounds, and we used a two-sample Mann-Whitney test to compare the tunicamycin
394 effects between two sets of mutants: those in the N2 allele of the respective gene and those in
395 the ED3077 allele. We corrected for multiple testing using the Benjamini-Hochberg method. One
396 gene from the raw screen data, WBGene00013255, was eliminated from further consideration
397 owing to ambiguity in its annotation across WormBase genome releases.

398 **Generating and phenotyping Cas9 mutants of *cutl-24***

399 CRISPR-mediated genome editing was performed as described (Friedland *et al.* 2013) with
400 modifications as follows. We first cloned sgRNA sequences into the pUC57 vector backbone
401 using EcoRI and HindIII restriction enzymes to yield PU6::*cutl-24* sgRNA plasmids, pWW2 and
402 pWW3 for the N2 background (sgRNA sequences GGACAAAGACACACAAACGT and
403 GCAGGGCTCCAATAAGCCGG, respectively) and pWW4 and pWW5 for the ED3077
404 background (sgRNA sequences GCTGAGATTGAGgttaagt, and
405 GACAAAACCTCAAAGATAAC, respectively; uppercase, exonic sequence; lowercase, intronic
406 sequence; see also Supplementary Table 1). Wild-type N2 and ED3077 strains as day 1 adult
407 hermaphrodites were injected with pDD162 (Peft-3::Cas9::tbb-2utr) at 50 ng/μL, pCFJ90 (P_{myo-2}::*mCherry*) at 5 ng/μL, and pWW2 and pWW3 or pWW4 and pWW5 respectively, each at 100
408 ng/μL. Surviving worms were separated, and F1 mCherry-positive animals were collected; their
409 progeny, representing the F2 generation, were genotyped for the *cutl-24* gene. Mutant
410 genotypes (*cutl-24(jlg1)* and *cutl-24(jlg2[ED3077])*, respectively) are reported in Supplementary
411 Table 5. The resulting N2 and ED3077 *cutl-24* mutants were subsequently crossed with the

413 marked N2 and ED3077 strains JAZ421 and JAZ420 (see *RH-seq parental strain construction*
414 above) to generate JAZ422 and JAZ423, respectively.

415 For inter-strain crosses in Figure 5a, we mated marked wild-type (JAZ421 for N2 background,
416 JAZ420 for ED3077 background) or *cutl-24* mutant (JAZ422 for N2 background, JAZ423 for
417 ED3077 background) males to marked wild-type or *cutl-24* mutant hermaphrodites of the other
418 respective strain background (ED3077 or N2). We transferred eggs from these crosses to
419 tunicamycin or control plates and carried out development and scoring as above, except that
420 any adult hermaphrodite progeny observed under a fluorescence microscope to lack the
421 respective male marker (*Pmyo-3::mCherry* from an ED3077 background parent or *Pmyo-*
422 *2::mCherry* from an N2 background parent) were censored from the plate as non-hybrid, and
423 the count of eggs (used as the denominator when calculating the final proportion of developed
424 animals) was reduced correspondingly. All adult male progeny were considered to be hybrids
425 due to the link between mating and the generation of male progeny. Purebred worms in Figure
426 5b were generated by selfing and assayed as above.

427 ***cutl-24* expression analysis**

428 For Figure 6, the *cutl-24* expression pattern was obtained from (Dillman *et al.* 2015;
429 Hashimshony *et al.* 2015). For Figure 7, the *cutl-24* expression pattern in single cell resolution
430 was obtained from (Packer *et al.* 2019). Cell type labels follow the format
431 CellType:StartTime_EndTime, where times represent development following fertilization: ILso,
432 Inner labial socket; AMso, Amphid socket; CEPsh, Cephalic sheath; CEPso, Cephalic socket;
433 ADEsh, Anterior dereid sheath; PHB_and_possibly_PHA, PHB/PHA neuron;
434 ILsh_OLLsh_OLQsh, Inner/outer labial sheath; XXX, Glia and excretory cells; ASG, ADL, AWA,
435 ASH and ADE, neurons of other types; AMso_PHso, Amphid and phasmid socket;
436 ADE_CEP_PDE, neurons.

437 **Availability of data and materials**

438 RH-seq data have been deposited in the Sequence Read Archive (SRA), submission ID
439 SUB9564728. Custom Python and R scripts used for RH-seq data analysis are available at
440 <https://github.com/annagflury/RHseq-scripts>.

441 **Ethics declarations**

442 The authors declare that they have no competing interests.

443 References

444 Andersen, E. C., Gerke, J. P., Shapiro, J. A., Crissman, J. R., Ghosh, R., Bloom, J. S., Félix, M.-
445 A., & Kruglyak, L. (2012). Chromosome-scale selective sweeps shape *Caenorhabditis*
446 *elegans* genomic diversity. *Nature Genetics*, 44(3), 285–290.
447 <https://doi.org/10.1038/ng.1050>

448 Andersen, E. C., Shimko, T. C., Crissman, J. R., Ghosh, R., Bloom, J. S., Seidel, H. S., Gerke, J.
449 P., & Kruglyak, L. (2015). A powerful new quantitative genetics platform, combining
450 *Caenorhabditis elegans* high-throughput fitness assays with a large collection of
451 recombinant strains. *G3 Genes/Genomes/Genetics*, 5(5), 911–920.
452 <https://doi.org/10.1534/g3.115.017178>

453 Balla, K. M., Andersen, E. C., Kruglyak, L., & Troemel, E. R. (2015). A wild *C. elegans* strain
454 has enhanced epithelial immunity to a natural microsporidian parasite. *PLoS Pathogens*,
455 11(2), e1004583. <https://doi.org/10.1371/journal.ppat.1004583>

456 Baugh, L. R., & Hu, P. J. (2020). Starvation responses throughout the *Caenorhabditis elegans*
457 life cycle. *Genetics*, 216(4), 837–878. <https://doi.org/10.1534/genetics.120.303565>

458 Ben-David, E., Burga, A., & Kruglyak, L. (2017). A maternal-effect selfish genetic element in
459 *Caenorhabditis elegans*. *Science (New York, N.Y.)*, 356(6342), 1051–1055.
460 <https://doi.org/10.1126/science.aan0621>

461 Bendesky, A., Pitts, J., Rockman, M. V., Chen, W. C., Tan, M.-W., Kruglyak, L., & Bargmann, C.
462 I. (2012). Long-range regulatory polymorphisms affecting a GABA receptor constitute a
463 quantitative trait locus (QTL) for social behavior in *Caenorhabditis elegans*. *PLoS Genetics*,
464 8(12), e1003157. <https://doi.org/10.1371/journal.pgen.1003157>

465 Bertozzi, T. M., Takahashi, N., Hanin, G., Kazachenka, A., & Ferguson-Smith, A. C. (2021). A
466 spontaneous genetically-induced epiallele at a retrotransposon shapes host genome
467 function. *ELife*, 10(e65233). <https://doi.org/10.7554/ELIFE.65233>

468 Bessereau, J.-L., Wright, A., Williams, D. C., Schuske, K., Davis, M. W., & Jorgensen, E. M.
469 (2001). Mobilization of a Drosophila transposon in the *Caenorhabditis elegans* germ line.
470 *Nature*, 413(6851), 70–74. <https://doi.org/10.1038/35092567>

471 Boulin, T., & Bessereau, J. L. (2007). Mos1-mediated insertional mutagenesis in *Caenorhabditis*
472 *elegans*. *Nature Protocols*, 2(5), 1276–1287. <https://doi.org/10.1038/nprot.2007.192>

473 Burga, A., Ben-David, E., Lemus Vergara, T., Boocock, J., & Kruglyak, L. (2019). Fast genetic
474 mapping of complex traits in *C. elegans* using millions of individuals in bulk. *Nature
475 Communications*, 10(1), 2680. <https://doi.org/10.1038/s41467-019-10636-9>

476 Comings, D. E., & MacMurray, J. P. (2000). Molecular heterosis: a review. *Molecular Genetics
477 and Metabolism*, 71(1–2), 19–31. <https://doi.org/10.1006/mgme.2000.3015>

478 Cook, D. E., Zdraljevic, S., Roberts, J. P., & Andersen, E. C. (2017). CeNDR, the
479 *Caenorhabditis elegans* natural diversity resource. *Nucleic Acids Research*, 45(D1), D650–
480 D657. <https://doi.org/10.1093/nar/gkw893>

481 Daniele, J. R., Higuchi-Sanabria, R., Durieux, J., Monshietehadi, S., Ramachandran, V.,
482 Tronnes, S. U., Kelet, N., Sanchez, M., Metcalf, M. G., Garcia, G., Frankino, P. A., Benitez,
483 C., Zeng, M., Esping, D. J., Joe, L., & Dillin, A. (2020). UPR^{ER} promotes lipophagy
484 independent of chaperones to extend life span. *Science Advances*, 6(1), eaaz1441.
485 <https://doi.org/10.1126/sciadv.aaz1441>

486 Das, S., Ooi, F. K., Cruz Corchado, J., Fuller, L. C., Weiner, J. A., & Prahlad, V. (2020).
487 Serotonin signaling by maternal neurons upon stress ensures progeny survival. *ELife*, 9.
488 <https://doi.org/10.7554/eLife.55246>

489 de Bono, M., & Bargmann, C. I. (1998). Natural variation in a neuropeptide Y receptor homolog
490 modifies social behavior and food response in *C. elegans*. *Cell*, 94(5), 679–689.
491 [https://doi.org/10.1016/s0092-8674\(00\)81609-8](https://doi.org/10.1016/s0092-8674(00)81609-8)

492 Dillman, A. R., Macchietto, M., Porter, C. F., Rogers, A., Williams, B., Antoshechkin, I., Lee, M.
493 M., Goodwin, Z., Lu, X., Lewis, E. E., Goodrich-Blair, H., Stock, S. P., Adams, B. J.,
494 Sternberg, P. W., & Mortazavi, A. (2015). Comparative genomics of *Steinerinema* reveals
495 deeply conserved gene regulatory networks. *Genome Biology*, 16(1), 9–11.
496 <https://doi.org/10.1186/s13059-015-0746-6>

497 Dolgin, E. S., Charlesworth, B., Baird, S. E., & Cutter, A. D. (2007). Inbreeding and outbreeding
498 depression in *Caenorhabditis* nematodes. *Evolution; International Journal of Organic
499 Evolution*, 61(6), 1339–1352. <https://doi.org/10.1111/j.1558-5646.2007.00118.x>

500 Doroszuk, A., Snoek, L. B., Fradin, E., Riksen, J., & Kammenga, J. (2009). A genome-wide
501 library of CB4856/N2 introgression lines of *Caenorhabditis elegans*. *Nucleic Acids
502 Research*, 37(16), e110. <https://doi.org/10.1093/nar/gkp528>

503 Duverger, Y., Belougne, J., Scaglione, S., Brandli, D., Beclin, C., & Ewbank, J. J. (2007). A
504 semi-automated high-throughput approach to the generation of transposon insertion
505 mutants in the nematode *Caenorhabditis elegans*. *Nucleic Acids Research*, 35(2), 1–8.
506 <https://doi.org/10.1093/nar/gkl1046>

507 Evansid, K. S., Witid, J., Stevensid, L., Hahnel, S. R., Rodriguezid, B., Parkid, G., Zamanianid,
508 M., Brady, S. C., Chaoid, E., Introcasoid, K., Tannyid, R. E., & Andersenid, E. C. (2021).
509 Two novel loci underlie natural differences in *Caenorhabditis elegans* abamectin responses.
510 *PLoS Pathogens*, 17(3), 1–26. <https://doi.org/10.1371/journal.ppat.1009297>

511 Ewe, C. K., Torres Cleuren, Y. N., Flowers, S. E., Alok, G., Snell, R. G., & Rothman, J. H.
512 (2020). Natural cryptic variation in epigenetic modulation of an embryonic gene
513 regulatory network. *Proceedings of the National Academy of Sciences of the United States
514 of America*, 117(24), 13637–13646. <https://doi.org/10.1073/pnas.1920343117>

515 Flint, J., & Mott, R. (2001). Finding the molecular basis of quantitative traits: successes and
516 pitfalls. *Nature Reviews Genetics*, 2(6), 437–445. <https://doi.org/10.1038/35076585>

517 Frézal, L., Demoinet, E., Braendle, C., Miska, E., & Félix, M.-A. (2018). Natural genetic variation
518 in a multigenerational phenotype in *C. elegans*. *Current Biology* □: CB, 28(16), 2588–
519 2596.e8. <https://doi.org/10.1016/j.cub.2018.05.091>

520 Frézal, L., & Félix, M. A. (2015). *C. elegans* outside the Petri dish. *eLife*, 4, 1–14.
521 <https://doi.org/10.7554/eLife.05849>

522 Friedland, A. E., Tzur, Y. B., Esveld, K. M., Colaiácovo, M. P., Church, G. M., & Calarco, J. A.
523 (2013). Heritable genome editing in *C. elegans* via a CRISPR-Cas9 system. *Nature
524 Methods*, 10(8), 741–743. <https://doi.org/10.1038/nmeth.2532>

525 Ghosh, R., Andersen, E. C., Shapiro, J. A., Gerke, J. P., & Kruglyak, L. (2012). Natural variation
526 in a chloride channel subunit confers avermectin resistance in *C. elegans*. *Science (New
527 York, N.Y.)*, 335(6068), 574–578. <https://doi.org/10.1126/science.1214318>

528 Ghosh, R., Bloom, J. S., Mohammadi, A., Schumer, M. E., Andolfatto, P., Ryu, W., & Kruglyak,
529 L. (2015). Genetics of intraspecies variation in avoidance behavior induced by a thermal
530 stimulus in *Caenorhabditis elegans*. *Genetics*, 200(4), 1327–1339.
531 <https://doi.org/10.1534/genetics.115.178491>

532 Hashimshony, T., Feder, M., Levin, M., Hall, B. K., & Yanai, I. (2015). Spatiotemporal
533 transcriptomics reveals the evolutionary history of the endoderm germ layer. *Nature*,
534 519(7542), 219–222. <https://doi.org/10.1038/nature13996>

535 Hebert, D. N., & Molinari, M. (2007). In and out of the ER: protein folding, quality control,
536 degradation, and related human diseases. *Physiological Reviews*, 87(4), 1377–1408.
537 <https://doi.org/10.1152/physrev.00050.2006>

538 Hillers, K. J., & Villeneuve, A. M. (2003). Chromosome-wide control of meiotic crossing over in
539 *C. elegans*. *Current Biology* CB, 13(18), 1641–1647.

540 Large, E. E., Xu, W., Zhao, Y., Brady, S. C., Long, L., Butcher, R. A., Andersen, E. C., &
541 McGrath, P. T. (2016). Selection on a subunit of the NURF chromatin remodeler modifies
542 life history traits in a domesticated strain of *Caenorhabditis elegans*. *PLoS Genetics*, 12(7),
543 e1006219. <https://doi.org/10.1371/journal.pgen.1006219>

544 Li, Y., Alvarez, O. A., Gutteling, E. W., Tijsterman, M., Fu, J., Riksen, J. A. G., Hazendonk, E.,
545 Prins, P., Plasterk, R. H. A., Jansen, R. C., Breitling, R., & Kammenga, J. E. (2006).
546 Mapping determinants of gene expression plasticity by genetical genomics in *C. elegans*.
547 *PLoS Genetics*, 2(12), e222. <https://doi.org/10.1371/journal.pgen.0020222>

548 McGrath, P. T., Rockman, M. V., Zimmer, M., Jang, H., Macosko, E. Z., Kruglyak, L., &
549 Bargmann, C. I. (2009). Quantitative mapping of a digenic behavioral trait implicates globin
550 variation in *C. elegans* sensory behaviors. *Neuron*, 61(5), 692–699.
551 <https://doi.org/10.1016/j.neuron.2009.02.012>

552 Min, H., Youn, E., & Shim, Y.-H. (2020). Maternal caffeine intake disrupts eggshell integrity and
553 retards larval development by reducing yolk production in a *Caenorhabditis elegans* model.
554 *Nutrients*, 12(5). <https://doi.org/10.3390/nu12051334>

555 Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R., & Riccio, A. (2019). Genomic
556 imprinting disorders: lessons on how genome, epigenome and environment interact.
557 *Nature Reviews Genetics*, 20(4), 235–248. <https://doi.org/10.1038/s41576-018-0092-0>

558 Na, H., Zdraljevic, S., Tanny, R. E., Walhout, A. J. M., & Andersen, E. C. (2020). Natural
559 variation in a glucuronosyltransferase modulates propionate sensitivity in a *C. elegans*
560 propionic acidemia model. *PLoS Genetics*, 16(8 August), 1–20.
561 <https://doi.org/10.1371/JOURNAL.PGEN.1008984>

562 Nigon, V. M., & Félix, M.-A. (2017). History of research on *C. elegans* and other free-living
563 nematodes as model organisms. *WormBook* : The Online Review of *C. Elegans Biology*,
564 2017, 1–84. <https://doi.org/10.1895/wormbook.1.181.1>

565 Packer, J. S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., Stefanik, D.,
566 Tan, K., Trapnell, C., Kim, J., Waterston, R. H., & Murray, J. I. (2019). A lineage-resolved
567 molecular atlas of *C. elegans* embryogenesis at single-cell resolution. *Science*, 365(6459).
568 <https://doi.org/10.1126/science.aax1971>

569 Pignatta, D., Novitzky, K., Satyaki, P. R. V., & Gehring, M. (2018). A variably imprinted epiallele
570 impacts seed development. *PLOS Genetics*, 14(11), e1007469.
571 <https://doi.org/10.1371/JOURNAL.PGEN.1007469>

572 Pilu, R. (2015). Paramutation phenomena in plants. *Seminars in Cell & Developmental Biology*,
573 44, 2–10. <https://doi.org/10.1016/J.SEMCDB.2015.08.015>

574 Quadrana, L., Almeida, J., Asís, R., Duffy, T., Dominguez, P. G., Bermúdez, L., Conti, G.,
575 Corrêa Da Silva, J. V., Peralta, I. E., Colot, V., Asurmendi, S., Fernie, A. R., Rossi, M., &
576 Carrari, F. (2014). Natural occurring epialleles determine vitamin E accumulation in tomato
577 fruits. *Nature Communications*, 5(1), 1–11. <https://doi.org/10.1038/ncomms5027>

578 Reddy, K. C., Andersen, E. C., Kruglyak, L., & Kim, D. H. (2009). A polymorphism in npr-1 is a
579 behavioral determinant of pathogen susceptibility in *C. elegans*. *Science (New York, N.Y.)*,
580 323(5912), 382–384. <https://doi.org/10.1126/science.1166527>

581 Reinhold, K. (2002). Maternal effects and the evolution of behavioral and morphological
582 characters: a literature review indicates the importance of extended maternal care. *Journal
583 of Heredity*, 93(6), 400–405. <https://doi.org/10.1093/jhered/93.6.400>

584 Richardson, C. E., Kinkel, S., & Kim, D. H. (2011). Physiological IRE-1-XBP-1 and PEK-1
585 signaling in *Caenorhabditis elegans* larval development and immunity. *PLoS Genetics*,
586 7(11), e1002391. <https://doi.org/10.1371/journal.pgen.1002391>

587 Robertson, S., & Lin, R. (2015). The maternal-to-zygotic transition in *C. elegans*. *Current Topics
588 in Developmental Biology*, 113, 1–42. <https://doi.org/10.1016/bs.ctdb.2015.06.001>

589 Rockman, M. V., & Kruglyak, L. (2009). Recombinational landscape and population genomics of
590 *Caenorhabditis elegans*. *PLoS Genetics*, 5(3), e1000419.
591 <https://doi.org/10.1371/journal.pgen.1000419>

592 Roth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K. G., Le Fourn, V., Santimaria, R., Guhl,
593 B., & Cho, J. W. (2010). Protein N-glycosylation, protein folding, and protein quality control.
594 *Molecules and Cells*, 30(6), 497–506. <https://doi.org/10.1007/s10059-010-0159-z>

595 Seidel, H. S., Ailion, M., Li, J., van Oudenaarden, A., Rockman, M. V., & Kruglyak, L. (2011). A
596 novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio
597 distortion in *C. elegans*. *PLoS Biology*, 9(7), e1001115.
598 <https://doi.org/10.1371/journal.pbio.1001115>

599 Shen, X., Ellis, R. E., Lee, K., Liu, C. Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R.,
600 Kurnit, D. M., Mori, K., & Kaufman, R. J. (2001). Complementary signaling pathways
601 regulate the unfolded protein response and are required for *C. elegans* development. *Cell*,
602 107(7), 893–903. [https://doi.org/10.1016/S0092-8674\(01\)00612-2](https://doi.org/10.1016/S0092-8674(01)00612-2)

603 Smith, C. J., Watson, J. D., Spencer, W. C., O'Brien, T., Cha, B., Albeg, A., Treinin, M., & Miller,
604 D. M. (2010). Time-lapse imaging and cell-specific expression profiling reveal dynamic
605 branching and molecular determinants of a multi-dendritic nociceptor in *C. elegans*.
606 *Developmental Biology*, 345(1), 18–33. <https://doi.org/10.1016/j.ydbio.2010.05.502>

607 Snoek, L. B., Orbidans, H. E., Stastna, J. J., Aartse, A., Rodriguez, M., Riksen, J. A. G.,
608 Kammenga, J. E., & Harvey, S. C. (2014). Widespread genomic incompatibilities in
609 *Caenorhabditis elegans*. *G3 (Bethesda, Md.)*, 4(10), 1813–1823.
610 <https://doi.org/10.1534/g3.114.013151>

611 Stern, D. L. (2014). Identification of loci that cause phenotypic variation in diverse species with
612 the reciprocal hemizygosity test. *Trends in Genetics* □: TIG, 30(12), 547–554.
613 <https://doi.org/10.1016/j.tig.2014.09.006>

614 Timberlake, W. E. (2013). Heterosis. In S. Maloy & K. Hughes (Eds.), *Brenner's Encyclopedia of
615 Genetics* (Second Edition, pp. 451–453). Academic Press, San Diego.
616 <https://doi.org/10.1016/B978-0-12-374984-0.00705-1>

617 Webster, A. K., Hung, A., Moore, B. T., Guzman, R., Jordan, J. M., Kaplan, R. E. W., Hibshman,
618 J. D., Tanny, R. E., Cook, D. E., Andersen, E., & Ryan Baugh, L. (2019). Population
619 selection and sequencing of *Caenorhabditis elegans* wild isolates identifies a region on
620 chromosome III affecting starvation resistance. *G3 Genes/Genomes/Genetics*, 9(10),
621 3477–3488. <https://doi.org/10.1534/g3.119.400617>

622 Weiss, C. V., & Brem, R. B. (2019). Dissecting trait variation across species barriers. *Trends in
623 Ecology & Evolution*, 34(12), 1131–1136. <https://doi.org/10.1016/j.tree.2019.07.013>

624 Weiss, C. V., Roop, J. I., Hackley, R. K., Chuong, J. N., Grigoriev, I. V., Arkin, A. P., Skerker, J.
625 M., & Brem, R. B. (2018). Genetic dissection of interspecific differences in yeast
626 thermotolerance. *Nature Genetics*, 50(11), 1501–1504. [https://doi.org/10.1038/s41588-018-0243-4](https://doi.org/10.1038/s41588-
627 018-0243-4)

628 Williams, D. C., Boulin, T., Ruaud, A. F., Jorgensen, E. M., & Bessereau, J. L. (2005).
629 Characterization of Mos1-mediated mutagenesis in *Caenorhabditis elegans*: A method for
630 the rapid identification of mutated genes. *Genetics*, 169(3), 1779–1785.
631 <https://doi.org/10.1534/genetics.104.038265>

632 Wolf, J. B., & Wade, M. J. (2009). What are maternal effects (and what are they not)?
633 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364(1520), 1107–
634 1115. <https://doi.org/10.1098/rstb.2008.0238>

635

636

637

638

639 **Figure captions**

640 **Figure 1. Tunicamycin resistance phenotypes of wild *C. elegans* isolates.** The y-axis
641 reports the proportion of eggs from the indicated wild isolate that developed to adulthood in the
642 presence of tunicamycin. For a given column, each dot represents results from one replicate
643 population, and the bar height reports the mean. ****, unpaired two-tailed t -test $p < 0.0001$.

644 **Figure 2. Tunicamycin resistance of inter-strain hybrids depends on the parent of origin.**
645 The y-axis reports the proportion of eggs from the indicated cross that developed to adulthood
646 in the presence of tunicamycin, normalized to the analogous quantity from wild-type ED3077.
647 For a given column, each dot represents results from one replicate population; the white cross
648 reports the mean; box and whiskers report the interquartile range and the 10-90 percentile
649 range, respectively, of the replicate measurement distribution. ED, ED3077. *, unpaired two-
650 tailed t -test $p < 0.05$; **, $p < 0.001$.

651 **Figure 3. Making hemizygote mutants for RH-seq.** RH-seq requires hemizygote hybrids
652 (purple) from crosses between mutants of one background (red) and wild-types of another
653 (blue). Top: arrays (circles) harboring the Mos1 transposon (green) and heat-shock-inducible
654 transposase enzyme gene (orange) in the red background come together into one strain.
655 Center: after heat shock, a transposon copy integrates into the genome (straight black line) of
656 an egg of the red background, which is fertilized by a wild-type male of the blue background.
657 Bottom: the resulting F1 hybrids are hemizygous throughout the soma and are used as input
658 into a sequencing-based tunicamycin resistance assay.

659 **Figure 4. RH-seq reveals *cutl-24* as a candidate gene at which inter-strain variation
660 contributes to tunicamycin resistance.** In a given panel, in each row the left-hand cartoon
661 represents the region of *cutl-24* in the hybrid genome (blue line, ED3077 chromosome; red line,
662 N2 chromosome), and the triangle denotes the position of insertion of a Mos1 transposon as
663 detected by transposon sequencing. The right-hand cell reports the \log_2 of the abundance of the
664 respective mutant, detected by sequencing, after development in tunicamycin, relative to the
665 analogous quantity from development in untreated control conditions. The p -value reports the
666 result of a two-tailed Mann-Whitney statistical test for a difference in the abundance after
667 tunicamycin selection, relative to the abundance in an untreated control, of hemizygotes
668 harboring transposon insertions in the two parents' orthologs. Supplementary Table 4 reports
669 Mos1 insertion positions and raw quantitation data, with the Benjamini-Hochberg method used
670 to correct for multiple testing. Top, hemizygotes harboring transposon insertions in the N2 allele;
671 bottom, hemizygotes harboring transposon insertions in the ED3077 allele.

672 **Figure 5. *cutl-24* in ED3077 mothers is required for tunicamycin resistance in their inter-
673 strain hybrid progeny.** (a) The y-axis reports tunicamycin resistance measurements in F1
674 hybrid animals from crosses between wild-type or *cutl-24* mutant ED3077 and N2 as indicated,
675 normalized per experiment with respect to the mean value from the wild-type ED3077
676 hermaphrodite x N2 male F1. (b) Data are as in (a) except that strains were purebred *cutl-24*
677 mutants or wild-type controls, and measurements were normalized to the mean value from wild-
678 type ED3077. For a given column, each dot represents results from one replicate population;
679 the white cross reports the mean; box and whiskers report the interquartile range and the 10-90
680 percentile range, respectively, of the replicate measurement distribution. ED, ED3077. *,
681 unpaired two-tailed t -test $p < 0.05$; **, $p < 0.01$; ****, $p < 0.0001$.

682 **Figure 6. *cutl-24* expression across *C. elegans* developmental stages.** In a given panel,
683 each bar reports average expression (FPKM, Fragments Per Kilobase of transcript per Million
684 mapped reads) of *cutl-24* in wild-type animals of the N2 background from (Dillman *et al.* 2015;
685 Hashimshony *et al.* 2015) in the indicated developmental stage (a) or sex of adult animals (b).
686 Error bars report standard deviation ($n = 2$).

687 **Figure 7. *cutl-24* is expressed in neurons.** In a given panel, each bar reports *cutl-24*
688 expression (TPM, Transcripts Per Million kilobases) in the indicated cell type from single cell
689 transcriptomes (Packer *et al.* 2019), in embryos at the indicated developmental time in minutes
690 (a) or in L2 larvae (b). The highest expression was seen in inner labial socket (ILso), cephalic
691 socket (CEPso), and phasmid socket (PHso) cells; for other abbreviations in labels, see
692 Methods.

693 **Supplementary figure captions**

694 **Supplementary Figure 1. Genomic distribution of significance measures from RH-seq**
695 **mapping of tunicamycin resistance.** Each point reports results from a reciprocal hemizygosity
696 test for the impact, at one gene, of variation between ED3077 and N2 on development of their
697 F1 hybrid in the presence of tunicamycin. The x-axis reports genome position of the respective
698 gene, and the y-axis reports the negative \log_{10} of the *p*-value from a Mann-Whitney test
699 comparing two sets of sequencing-based measurements of hybrid strain abundance after
700 development in tunicamycin: those from hybrid hemizygotes bearing a disruption in the ED3077
701 allele of the gene, uncovering the N2 allele, and those from hemizygotes bearing a disruption in
702 the N2 allele (see Methods). Results for the focal gene of this study, *cutl-24*, are denoted in red.

703 **Supplementary Figure 2. Top-scoring loci from RH-seq mapping of tunicamycin**
704 **resistance.** Data are as in Figure 4 of the main text except that each panel reports results from
705 the top 10 most significant genes from reciprocal hemizygosity tests for the impact of variation
706 between ED3077 and N2 on development of their F1 hybrid in the presence of tunicamycin.

707

708 **Supplementary table captions**

709 **Supplementary Table 1. Strains and plasmids used in this work.**

710 **Supplementary Table 2. RH-seq library sizes.** Each row reports sequencing results from
711 hemizygotes in the N2 x ED3077 diploid hybrid background, made from transposon mutants of
712 the indicated strain mated to the wild-type of the other.

713 **Supplementary Table 3. Abundance of hemizygote mutants in tunicamycin RH-seq.**

714 Abundances of transposon-mutant Mos1 insertion site in the F1 hybrid of N2 or ED3077 allele
715 from RH-seq. Each row reports results of sequencing one transposon insertion in the N2 x
716 ED3077 diploid hybrid after selection of the transposon mutant pool, reflecting the abundance in
717 the pool of the respective hemizygote clone harboring the insertion. Gene, chromosome, and
718 position report the fine-scale position of the insertion. Allele, the strain parent's homolog in
719 which the transposon insertion lay. Control_count and treatment_count report read counts of the
720 transposon insertion sequenced after selection of the mutant pool in the indicated condition,
721 normalized for library size. Transposon insertions not detected in any replicate of the indicated
722 selection were assigned an abundance of 1. Round reports the batch of Mos1 mutants in which
723 the respective mutant was detected (1-12 for mutagenesis in the N2 parent, 1-11 for
724 mutagenesis in the ED3077 parent).

725 **Supplementary Table 4. Effects of inter-strain variation in tunicamycin RH-seq.** Each row
726 reports the results of reciprocal hemizygote tests of tunicamycin resistance of hemizygote
727 transposon mutants at the indicated gene in the N2 x ED3077 diploid hybrid. N2_control_count,
728 N2_treatment_count, ED3077_control_count, and ED3077_treatment_count report normalized
729 abundances of a hemizygote harboring a transposon insertion in the indicated parent's homolog
730 after culture in the indicated condition, as a mean across transposon mutants, from all biological
731 replicates. The last two columns report results of a two-tailed Mann-Whitney statistical test for a
732 difference in the abundance after tunicamycin selection, relative to the abundance in an
733 untreated control, of hemizygotes harboring transposon insertions in the two parents' homologs.
734 The Benjamini-Hochberg method was used to correct for multiple testing.

735 **Supplementary Table 5. *cutl-24* mutants.** Each pair of rows reports the context of a Cas9-
736 induced mutation (red) in the *cutl-24* gene of the indicated *C. elegans* strain. Uppercase, exonic
737 sequence; lowercase, intronic sequence.

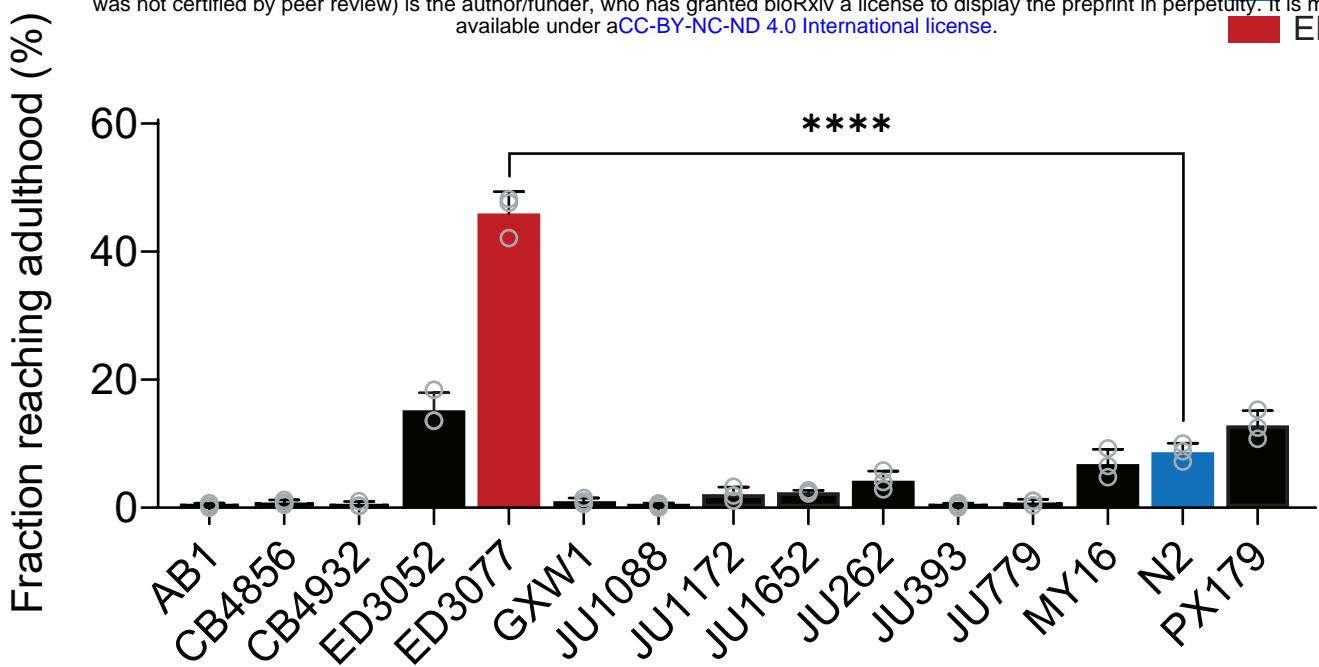


Figure 1

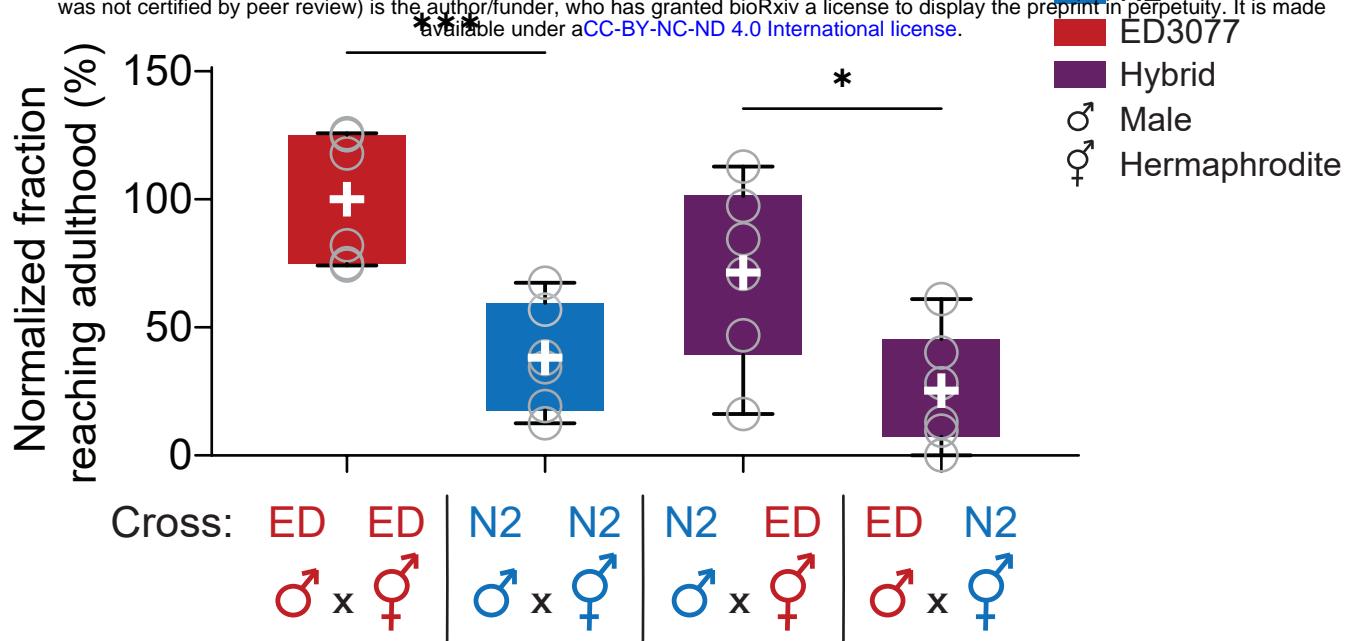


Figure 2

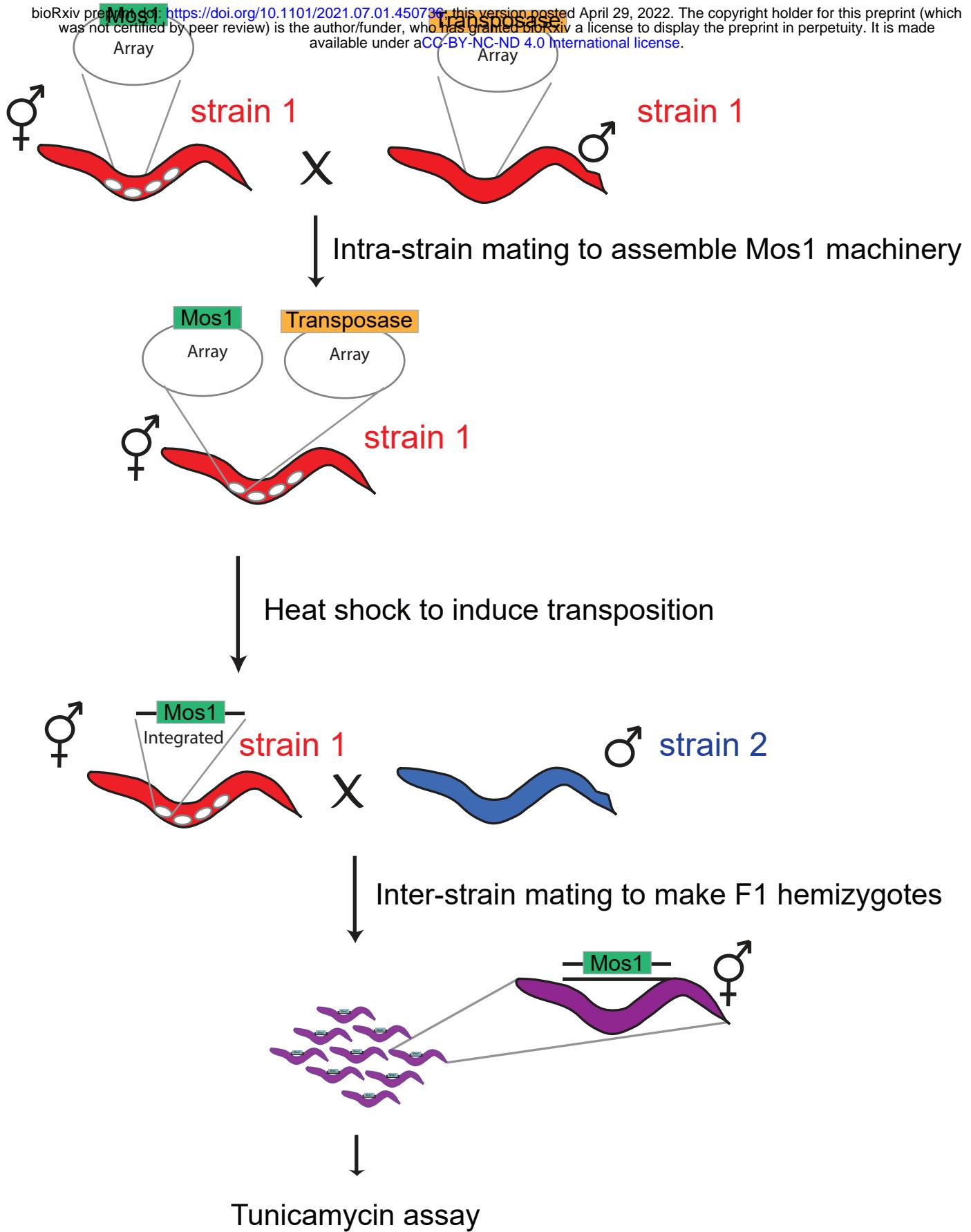
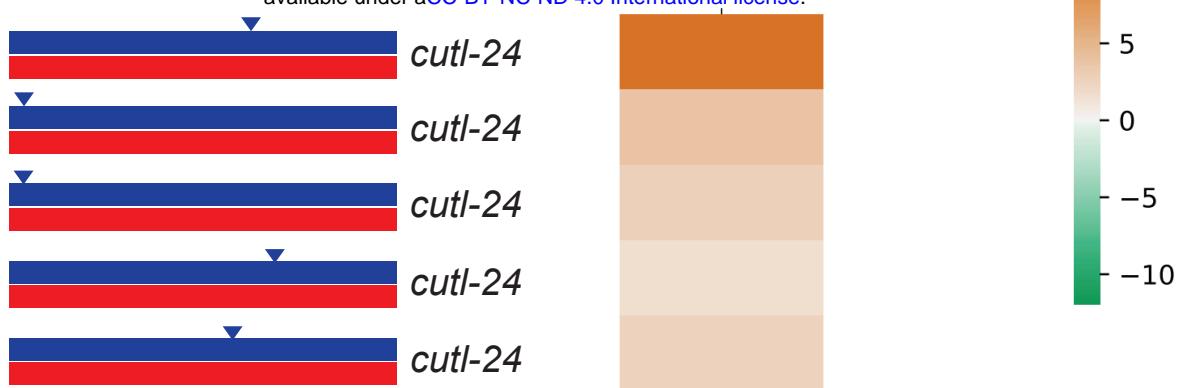
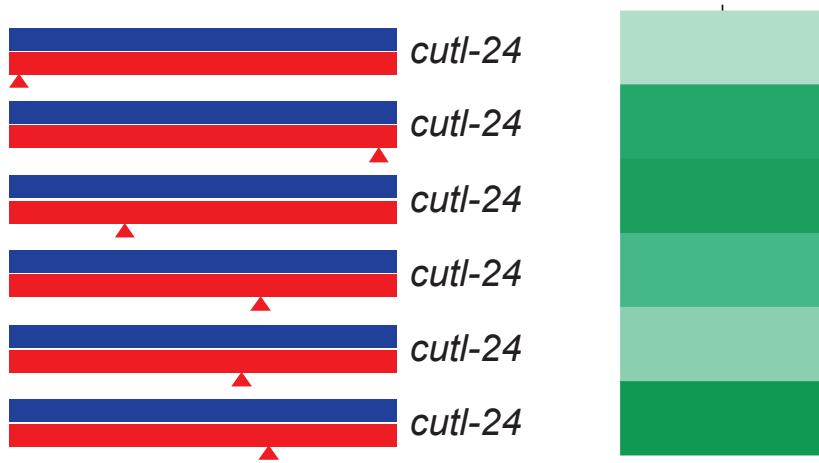




Figure 3

N2 male X ED3077 mutant $\log_2(\text{Treatment/Control})$

WBGene00021396
pvalue=0.0043

Figure 4

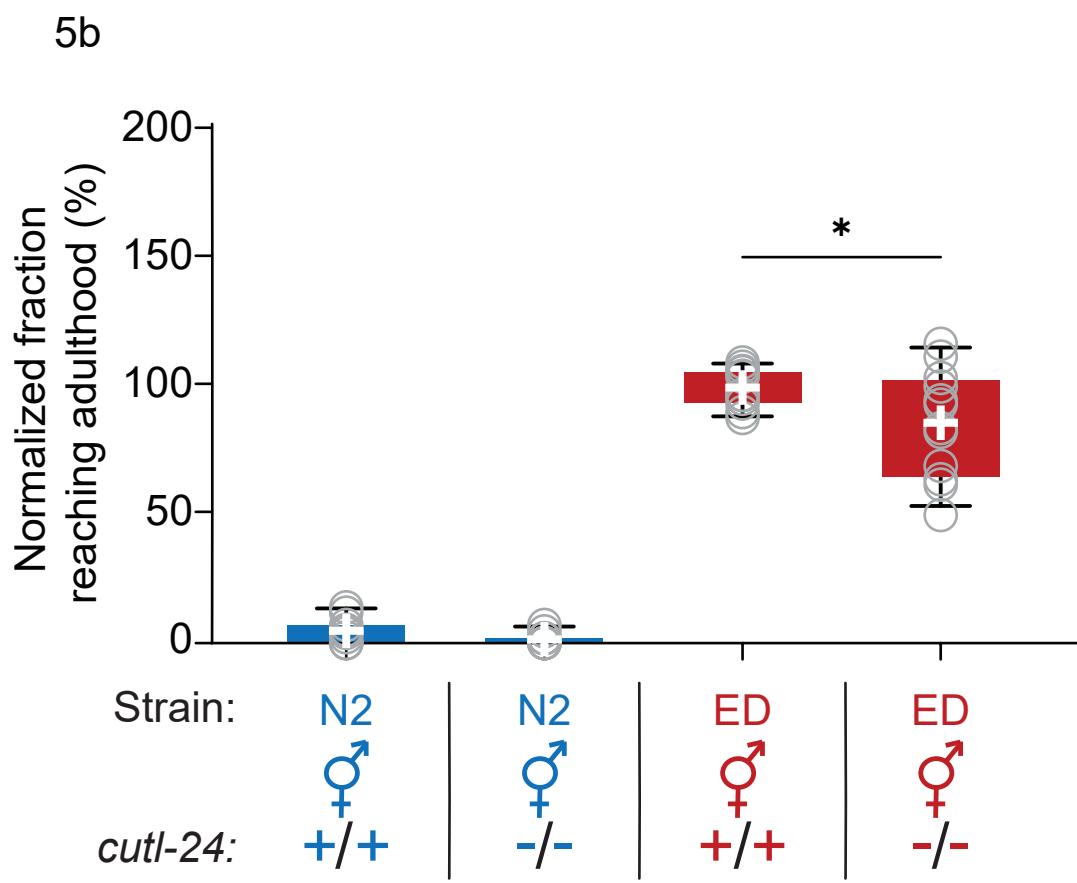
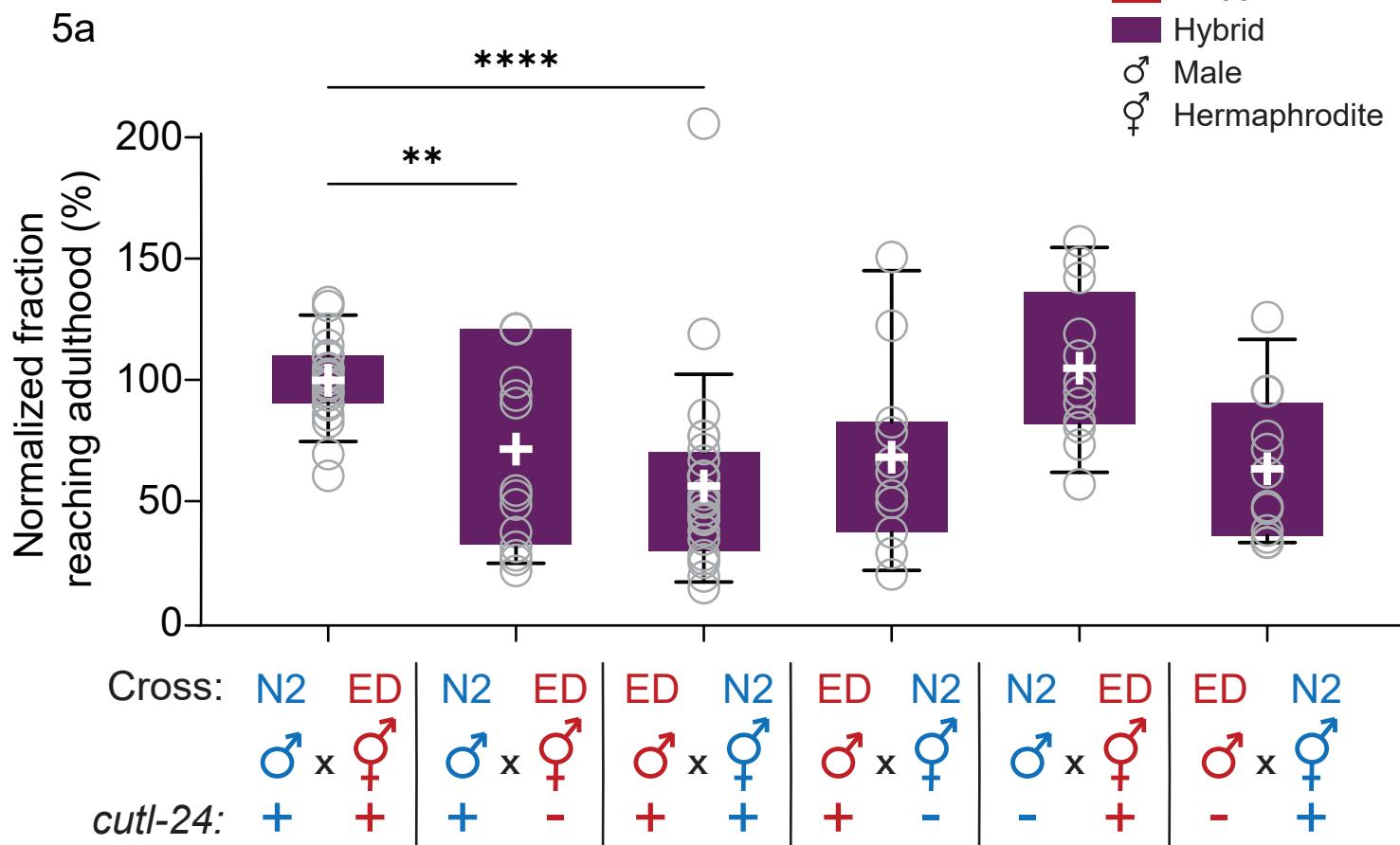



Figure 5

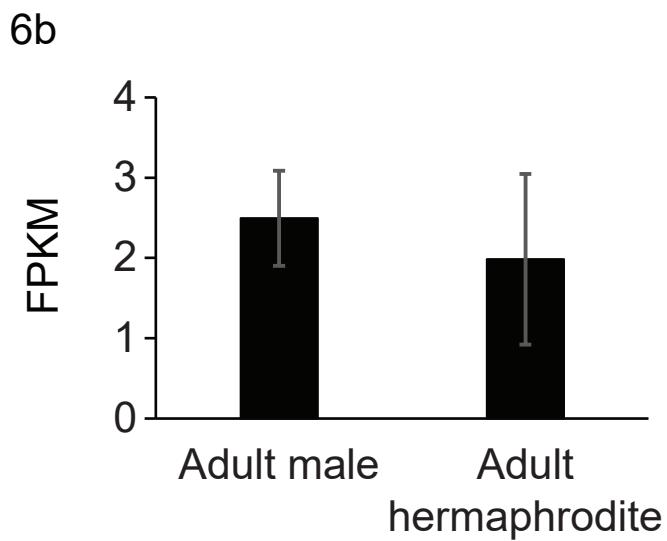
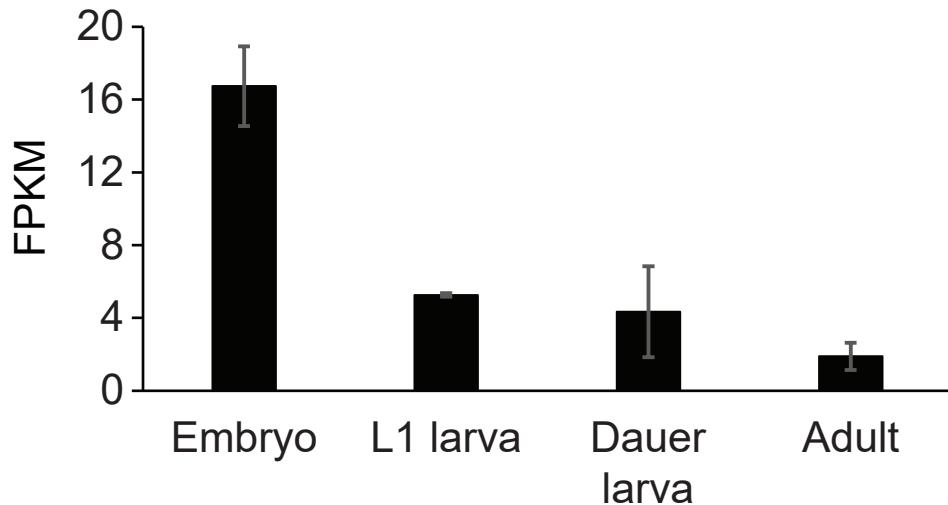



Figure 6

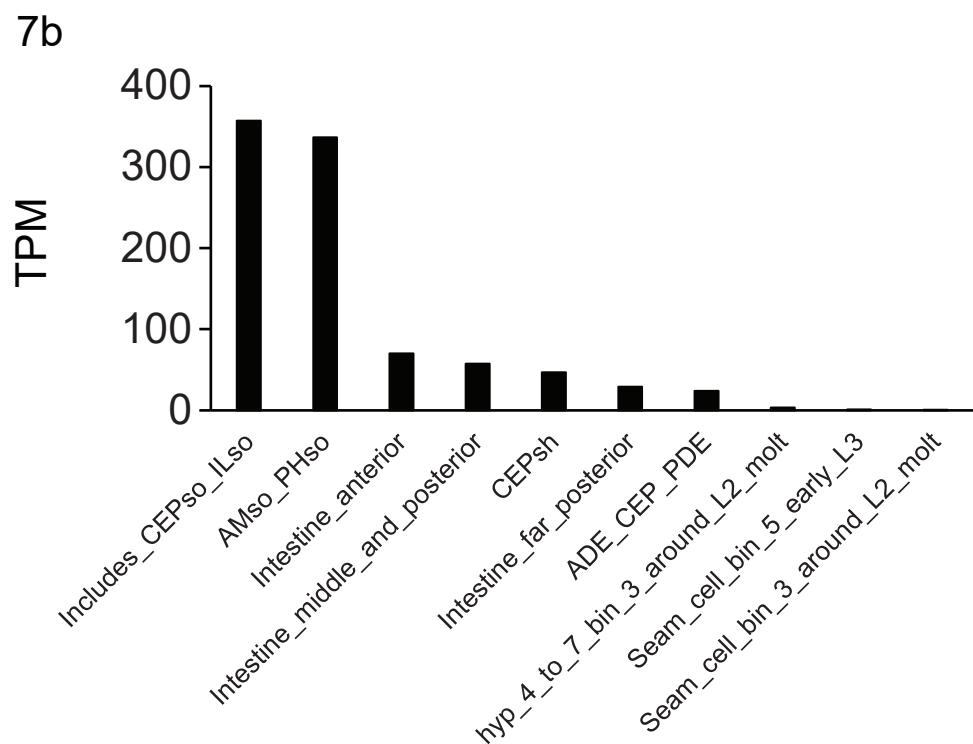
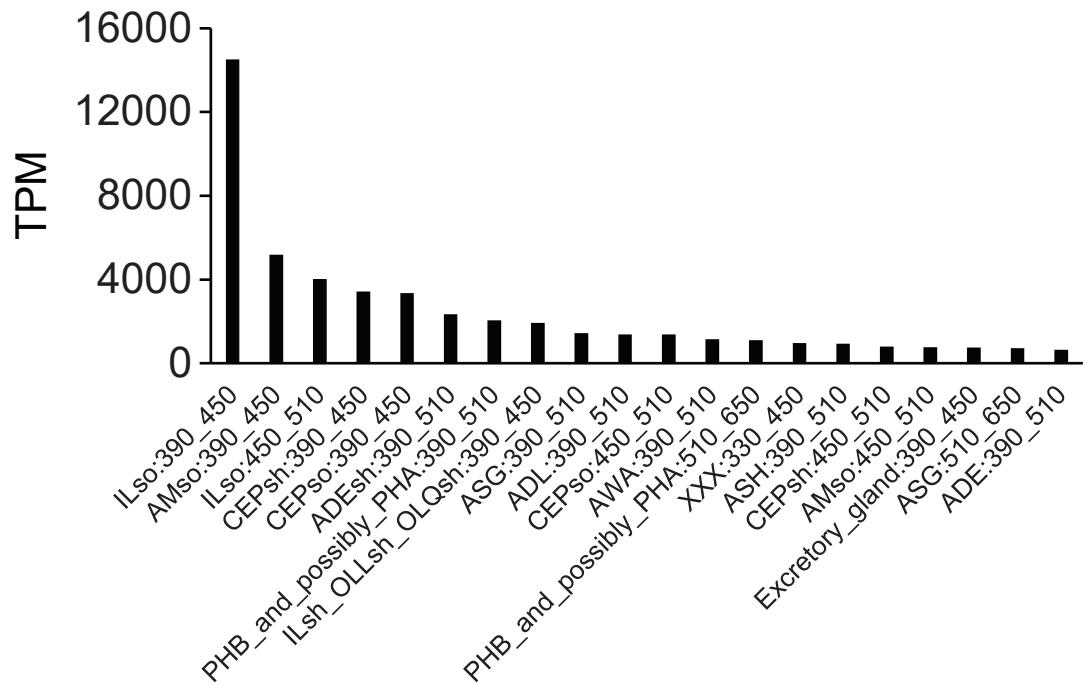



Figure 7