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Abstract 

Pooled CRISPRi-mediated silencing of >1,000 transcriptional regulators expressed in 

single colorectal adenocarcinoma cells, followed by single-cell RNA-seq profiling at two 

timepoints, 1 day and 4 days, allowed reverse engineering the underlying tumor context-

specific, causal regulatory network. Furthermore, the availability of experimentally 

derived, highly multiplexed gene reporter assays for each regulator, as identified by this 

analysis, allowed accurate assessment of differential protein activity following silencing 

of each regulator, thus providing proof-of-concept for generating comprehensive, tissue-

specific networks of transcriptional and post-translational interactions. Analysis of this 

causal network allowed elucidation of complex autoregulatory mechanisms that have 

eluded previous computational approaches and supported systematic elucidation of 

cooperative mechanisms, where one regulatory protein can modulate the activity of 

another regulatory protein, as well as transcriptional mimicry, where one regulatory 

protein can phenocopy others. 
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Introduction 

Precise control of transcriptional cell state by transcription factors and co-factors is 

critically required across all aspects of mammalian cell pathophysiology: from 

determining cell identity during lineage differentiation to providing mechanistic control of 

cancer cell plasticity. Yet, while global regulatory mechanisms involved in lineage 

specification have been experimentally elucidated in a few model organisms, such as C. 

elegans (Murray 2018) and sea urchin (Davidson, Rast et al. 2002), those relevant to 

pathophysiology of mammalian cells are only sparsely understood, mostly as a result of 

small-scale, hypothesis-driven assays (Takahashi 2017), or from sparsely validated 

computational reverse engineering algorithms (Basso, Margolin et al. 2005, Huynh-Thu, 

Irrthum et al. 2010). A key limitation of existing gene regulatory network (GRN) models is 

their inability to resolve the directionality (i.e., causality) of transcriptional interactions, 

thus limiting our ability to elucidate complex autoregulatory logic controlling cellular 

homeostasis, in both physiologic and pathologic cell states. Homeostatic control of cell 

state represents one of the most critical functions of GRNs, which is directly responsible 

for the adaptive behavior necessary to maintaining cellular identity and function in 

normal cell physiology as well as for the cell adaptation mechanisms that allow disease-

related cells to adapt and escape pharmacological treatment. Indeed, elucidation of 

autoregulatory loops has been the Achilles’ heel of virtually all proposed computational 

approaches and has required complex, multi-gene experimental assays for identification 

and validation, even on a relatively small scale (Rajbhandari, Lopez et al. 2018).  

Moreover, we and others have shown that the availability of accurate and 

comprehensive GRN models is critical for the utilization of network-based algorithms for 

the study of cellular phenotypes and functions. These include methodologies for (a) 

accurately measuring protein activity from RNA-seq profiles (Alvarez, Shen et al. 2016), 

including at the single-cell level (Obradovic, Chowdhury et al. 2021), (b) elucidating key 

regulators of cellular programs (Boorsma, Lu et al. 2008, Alvarez, Shen et al. 2016, 

Aibar, Gonzalez-Blas et al. 2017), (c) elucidating Master Regulators representing 

mechanistic determinants of cell state in cancer and other diseases (Carro, Lim et al. 

2010, Aytes, Mitrofanova et al. 2014, Rajbhandari, Lopez et al. 2018), (d) predicting 

proteins capable of reprogramming cell-state (Dutta, Le Magnen et al. 2016, Arumugam, 
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Shin et al. 2020), (e) dissecting drug Mechanism of Action (MoA) (Woo, Shimoni et al. 

2015). 

Unfortunately, since most GRNs have been computationally dissected (Basso, Margolin 

et al. 2005, Pe'er 2005, Wang, Saito et al. 2009) and only sparsely validated, there are 

still lingering concerns about whether they may truly recapitulate the underlying 

regulatory logic of the cell. Finally, virtually all computationally dissected GRNs have 

been reconstructed from steady-state molecular profiles - i.e., representative of cells 

whose dynamics are slow compared to the half-life of gene products. These GRNs will 

thus, by definition, miss key elements of dynamic/time-dependent gene regulation, 

including the ability to model autoregulatory loop-mediated oscillatory behavior following 

exogenous and endogenous perturbations (Ma, Wagner et al. 2005).  

Unfortunately, in contrast to the experimental elucidation of protein-protein interaction 

networks (Rual, Venkatesan et al. 2005), the development of genome-wide experimental 

technologies for the reverse engineering of GRNs is challenging and remains elusive. 

Ideally, one would perturb each regulatory protein and assess its effect on the 

expression and activity of all other genes and proteins they encode, respectively, at 

multiple timepoints. While this would have been essentially unfeasible, due to cost and 

effort, until now, we were able to combine several recently-developed technologies into a 

fully integrated experimental pipeline for the systematic, single-cell-based dissection of 

GRNs. This Transcriptional Regulator Knockdown (TReK) pipeline leverages highly-

multiplexed, pooled CRISPRi-mediated silencing of transcriptional regulators in single 

cells, followed by single-cell RNA sequencing (scRNA-seq) at multiple timepoints, 

including a short timepoint (24h) to capture transient regulatory interactions and a longer 

timepoint (96h) to capture regulatory interactions as cells start to achieve steady-states. 

While still coarse, we expect this to provide an initial framework to start revealing time-

dependent regulatory cascades controlling critical genetic programs (Figure 1A). 

To achieve optimal CRISPRi-mediated silencing of target genes, we combined an 

enhanced CRISPRi repressor (Yeo, Chavez et al. 2018) with improved single guide RNA 

(sgRNA) predictions (Sanson, Hanna et al. 2018) into pooled, single-cell CRISPRi 

screens with transcriptomic readout using the recently developed CROP-seq technology 

(Datlinger, Rendeiro et al. 2017). In addition, we developed an inducible version of Yeo 

et al.’s enhanced CRISPR repressor (Yeo, Chavez et al. 2018), thus allowing precise 
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timing of cell harvesting and scRNA-seq profiling as early as 12h after repressor 

induction and gene silencing.  

As a proof of concept, we applied TReK pipeline to dissect colorectal cancer-specific 

GRNs, via single-cell perturbation and scRNA-seq profiling of HT-29 cells. Specifically, 

we generated single-cell profiles of >150,000 HT-29 cells at two timepoints (24h and 

96h), following pooled, CRISPRi-mediated, single-cell silencing of 1,007 transcriptional 

regulators, thus measuring 6 billion unique molecules (UMI-gene pairs), while 

dramatically reducing labor, assay costs, and potential batch effects. The genes silenced 

in this study were selected to include virtually all actively transcribed transcriptional 

regulators (hereafter TRs) - including transcription factors (TFs) and co-factors (co-TFs), 

such as (de)acetylases, (de)methylases, and other chromatin remodeling enzymes - that 

were detected as either significantly expressed or transcriptionally active in this cell line. 

Colorectal adenocarcinoma (COAD) was selected as a relevant tumor context because 

of lack of effective therapy and recent elucidation of Master Regulator proteins defining 8 

molecularly distinct subtypes, including 3 subtypes highly enriched in MSI-high tumors 

and an aggressive, genomically-stable subtype characterized by very poor outcome 

(Paull, Aytes et al. 2021). Thus, we expected that a high-quality experimentally dissected 

GRN would be a first step towards the elucidation of critical COAD tumorigenesis and 

progression mechanisms.  

When integrated into existing computational reverse engineering methods, the TReK 

data was instrumental in allowing significant improvement in GRN model accuracy, as 

objected assessed based on the ability to recapitulate changes in the activity of the 

proteins encoded by silenced genes both at 24h and 96h. These studies allowed 

reconstructing many established transcriptional and post-translational mechanisms, 

refining our understanding of protein-protein interactions in complexes, and most 

critically, reconstructing fully integrated, causal GRNs that include both transcriptional 

and post-translational interactions (Figure 1B). 

Results 

Large-scale CRISPRi-mediated TR silencing in HT-29 cells at two timepoints: To 

generate the perturbational data needed for the systematic dissection of COAD-specific 
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molecular interactions, leading to a full GRN, we used assays that combine CRISPRi 

(Gilbert, Horlbeck et al. 2014) and CROP-seq (Datlinger, Rendeiro et al. 2017) 

technologies (Figure S1; Methods). Specifically, we measured changes in gene 

expression, within individual HT-29 cells, as measured by Chromium scRNA-seq profiles, 

following pooled CRISPR/dCas9-mediated silencing of each significantly expressed or 

active transcriptional regulator protein (see Methods) (Figure 1C). 

Using this pipeline, we thus generated scRNA-seq profiles following silencing of 1,007 

genes in HT-29 cells, at two timepoints (T1 = 24h, T2 = 96h), using three sgRNAs per 

gene. To select target genes, we first leveraged a manually curated repertoire of 2,527 

transcriptional regulators (hereafter TRs) annotated as either TFs or co-TFs in Gene 

Ontology (Alvarez, Shen et al. 2016) and then sub-selected those that were either 

significantly expressed or active in HT-29 cells (see Methods). Thirty scrambled sgRNAs 

(sgCtrls) were also included as non-targeting negative controls, resulting in a library 

comprising 3,051 sgRNAs (Table S2). To achieve robust CRISPRi-mediated gene 

silencing, we engineered lentiviral plasmids supporting either constitutive or doxycycline-

inducible expression of the enhanced repressor dCas9-KRAB-MeCP2 (Yeo, Chavez et 

al. 2018) (Figures S2A and S2B; Methods). To assess the actual length of effective gene 

silencing, we assessed the time required for the CRISPRi repressor to be transcribed 

and translated, following its doxycycline-inducible expression (Figure S2B; Methods). 

This shows that cells collected at 24h following dCas9-KRAB-MeCP2 induction (T1), 

have effectively undergone ~12h of sustained repression. For the second timepoint, we 

used cells transduced with a constitutive dCas9-KRAB-MeCP2 expression plasmid 

(Figure S2C), harvested at 96h following lentivirally-mediated transduction with the 

sgRNA library (T2). HT-29 cells were selected also because, in mid-log growth, they 

have high transcriptome complexity, with a median of 35,000-42,000 UMIs/cell, at about 

30% sequencing saturation and >90% of reads in cells, thus supporting follow-up 

analyses. 

At each timepoint, >70,000 single-cell transcriptomes were sequenced (Figure 1D), 

followed by removal of low-quality profiles (<5,000 UMIs) and of profiles with two or more 

detected sgRNAs. More than 60% of the single cells passed this strict QC filter, thus 

producing a dataset with a median of 14-15 high-quality single-cell transcriptomes for 

each sgRNA (Figure 1E), yielding a total of 44-47 cells, on average, in which each target 

gene had been silenced by one of the three corresponding sgRNAs.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2021.06.28.449297doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.449297
http://creativecommons.org/licenses/by-nc-nd/4.0/


Achieving efficient, systematic gene silencing across a large pooled gene library is still a 

rather elusive goal with first-generation CRISPRi. Thus, it was critical to validate the 

performance of our second-generation CRISPRi implementation (Sanson, Hanna et al. 

2018, Yeo, Chavez et al. 2018). To accomplish this, we performed a careful quality-

control analysis. We analyzed the efficacy of gene silencing compared to controls 

(Figure S4), measured the correlation between different gRNAs targeting the same gene 

(Figures S5A and S5B), and compared our scRNA-seq gene silencing to published 

CRISPR knockout data (Figures S5G and S5H). In addition, we analyzed the factors that 

affect successful silencing (Figures S5C-S5F; Methods). Overall, we found that for 70% 

of tested TRs, we could achieve 50% silencing, sufficient to reliably identify targets, at 

both timepoints, with the later timepoint providing critical information for proteins with a 

long half-life. 

Reconstruction of GRNs inferred from computational, experimental, and 

integrative analysis: As previously discussed, computationally inferred GRNs are 

typically reverse engineered from steady-state data, thus potentially reflecting broad co-

expression patterns that may not be representative of direct regulatory events. 

Moreover-with the exception of Dynamic Bayesian Networks (Smith, Yu et al. 2006), 

which have never been validated in a mammalian context-, these methodologies are 

unable to elucidate auto-regulatory control mechanisms and fail to adequately represent 

regulators proteins whose expression represents an inadequate proxy of transcriptional 

activity.  

For instance, while the ARACNe algorithm (Margolin, Nemenman et al. 2006) effectively 

eliminates indirect interactions using the Data Processing Inequality theorem and has 

been extensively experimentally validated, it still suffers from the above-mentioned 

limitations. To objectively assess the ability of TReK assays to improve GRN 

reconstruction quality, we compared three networks, including (a) purely 

computationally-inferred ARACNe networks inferred from the TReK scRNA-seq profiles 

at T1 or T2, (b) a purely experimental network assembled from genes that are 

differentially expressed following silencing of each regulator’s silencing at T1 or T2, and 

(c) an integrated network that combines both computational and experimental analyses 

(see Methods). For the latter, we modified a two-branch generalized linear model (GLM) 

that was previously used for single-cell differential expression analysis (Finak, McDavid 

et al. 2015) (Figure 2A; Methods). The integrated network combines ARACNe p-values 
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for individual regulator-target interactions as well as the differential expression of the 

target following silencing of the regulator in the TReK assays, thus accounting for both 

interaction directionality and strength. Following GLM analysis, 65% and 61% of the TR 

targets inferred at T1 and T2 were derived from TReK data, respectively, with the 

remaining 35% and 39% coming from ARACNe.  

Integrative GRN reverse engineering outperforms both computational and 

experimental methodologies: To assess network quality, we combined two metrics 

including (a) detection of regulatory protein activity decrease in the subset of cells where 

they were effectively silenced, (b) consistency with DNase-seq data (Mei, Qin et al. 2017, 

Zheng, Wan et al. 2019). For the first metric, we assessed protein activity using the 

VIPER algorithm, as determined by the differential expression of its target genes as 

represented in each of the three networks (computational, experimental, and integrated). 

A highly accurate network would show gene expression increase of induced targets and 

decrease of repressed targets in cells where the regulator is silenced. Thus, the more 

accurate the network is, the more accurately the activity of a TR should be measured by 

the differential expression of its regulon genes.  

For this analysis, we selected 250 TRs, whose CRISPRi-mediated silencing produced ≥ 

50% silencing at both timepoints, in at least 15 cells/sgRNA (see Methods), as the gold 

standard set, based on the assumption that their transcriptional activity would be 

significantly affected by silencing and presented in a sufficient number of cells to support 

the analysis. We then assessed GRN accuracy by 5-fold cross-validation within each 

timepoint (see Methods), based on VIPER-based TR inactivation assessment based on 

the differential gene expression signature of cells where the TR was effectively silenced 

vs. negative control cells transduced with non-targeting sgRNAs. In addition, we also 

performed cross-timepoint validation—i.e., assessing how well GRNs inferred at one 

timepoint could improve protein activity inference accuracy at the other timepoint (see 

Methods). The analysis clearly shows that while the experimental GRN outperforms the 

computational one, especially at the shorter timepoint (24h) the integrated GRN 

significantly outperforms both (Figure 2B). These results are consistent with 

expectations that computational GRNs will perform better as cells achieve steady-state 

and will thus fail to identify transient regulatory events that may be compensated by 

autoregulatory loops. It also suggests that the pure experimental data may be noisy and 
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thus introduce false positive and false negative targets that are then optimally refined by 

the computational analysis. 

To understand the factors that most contributed to improved GRN performance, we first 

tested whether TRs inducing a larger signature of significantly differentially expressed 

genes would outperform those with smaller effect size. Indeed, inferred protein activity 

accuracy was significantly correlated with the number of differentially expressed genes 

(p < 2.7e-9) (Figure 2C). We also tested whether silencing the most likely Master 

Regulators of cell-state would induce stronger transcriptional signatures. Specifically, we 

first inferred the differential activity of all tested TRs in HT-29 against the average of all 

CCLE cell lines (Ghandi, Huang et al. 2019) using VIPER with the integrated network 

(see Methods). We then measured the correlation between their VIPER-inferred 

differential activity in HT-29 cells and their differential activity following CRISPRi-

mediated silencing. Correlations were significant (p = 2.4e-3 at T1; p = 4.1e-9 at T2) 

suggesting that silencing critical regulators of cell-state would induce stronger 

transcriptional signatures (Figure 2D). Finally, across 4 cross-validations, 27 of the 38 

TRs (71%) that were silenced in ≥60 cells were significantly inactivated based on VIPER 

analysis (Figures 2C and 2D), suggesting that TR targets inference—and thus activity 

measurement—could be further improved by increasing the number of cell profiles in 

TReK assays. Indeed, saturation analysis shows that the VIPER-measured protein 

activity of most TRs sampled in ≥ 60 cells converged to a narrow range as an increasing 

number of cells were included in the analysis (Figure S6).  

For the second metric, we show that the consistency of target gene genomic loci with 

open chromatin, as assessed by DNase-seq in HT-29 cell lines (Mei, Qin et al. 2017, 

Zheng, Wan et al. 2019), significantly (p = 1.52e-8 at T1; p = 3.43e-7 at T2) improves in 

the integrated GRN at both timepoints, compared to the ARACNe computational 

networks (Figure 2E).  

Based on these results, the integrated computational/experimental GRNs was selected 

as the optimal one in all subsequent analyses. 

Integrated GRNs capture multi-layer molecular interactions: A key goal of cellular 

network reverse engineering has been the assembly of molecular interaction networks 

that integrate distinct mechanisms of gene-product interaction. GRNs capture 
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transcriptional regulation effects, mediated by regulatory proteins binding the regulatory 

region of a target gene, either directly or via cognate binding partners. However, these 

networks fail to capture the post-transcriptional effect of protein X on protein Y. For 

instance, two transcription factors may bind the same DNA-binding motif (e.g., ARNT 

and MYC binding E-boxes) thus inducing a stoichiometric mediated dependency where 

over/under-expression of one (e.g., ARNT) may induce activity increase/reduction of the 

latter (i.e., MYC), respectively (Wang, Saito et al. 2009). Similarly, a chromatin 

remodeling enzyme may result in epigenetic silencing of the targets of another TR. 

Finally, a TR may regulate a ubiquitin ligase adapter protein, thus inducing 

proteasomally-mediated degradation of another TR (Chen, Alvarez et al. 2014). A 

unique advantage of the TReK data is that it supports dissection of both transcriptional 

and post-transcriptional interactions, based on the VIPER inferred activity of each TR, 

following silencing of another TR, allowing reverse engineering of the first integrated, 

multi-layer TRN (transcriptional regulatory network) and ARN (activity regulatory network) 

for a human cell. 

To further improve sensitivity, we integrated the T1 and T2 ARN networks, by taking the 

union of the regulons inferred at each timepoint, while removing mode-inverted 

interactions at T2—i.e., interactions detected as positive at T1 and repressive at T2, or 

vice versa (see Methods). This produced an integrated ARN comprising 23,607 activity-

regulating interactions (false discovery rate, FDR < 0.1) involving 949 of the 1007 TRs. 

Since protein activity can be regulated by many complementary mechanisms, we 

studied several TR interaction mechanisms in greater detail. Specifically, we considered 

four non-mutually exclusive mechanisms that may account for ARN interactions, 

including transcriptional regulation, direct or indirect relationships in the same pathway, 

physical protein-protein interactions, and co-regulation of the same target genes.  

To assess transcriptionally mediated ARN interactions—i.e., interactions where silencing 

of TRx affects the activity of TRy because TRx transcriptionally regulates TRy, we 

assessed how much of the differential activity of each TR could be accounted for by the 

differential expression of its encoding gene. Overall, only 2.9% (n = 685) of inferred ARN 

interactions could be accounted for by this mechanism (Figures 3A and 3B). Second, an 

examination of each TR’s pathway membership showed that ~44% (n = 10,347) of ARN 

interactions were detected between same-pathway TRs. Third, ~7.0% (n = 1,650) of 

ARN interactions were between structural cognate binding partners, as reported in 
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protein-protein interaction databases (see Methods). Finally, a small fraction (4.2%, n = 

980) of the interactions were explained by significant overlap between regulons (see 

Methods). In addition to ARN interactions, the TRN comprised n = 121,414 interactions 

(FDR < 0.2) detected by differential expression analysis, including n = 9,812 TR-TR 

interactions. 

Analysis of integrated TRN/ARN networks: Integration of TRN and ARN interactions 

into a multi-layer network (MLN = TRN + ARN) contributes to a more holistic 

understanding of biological mechanisms. For instance, we used the more 

comprehensive T2 network to analyze an MLN sub-network comprising MYC and six 

established MYC regulators in the Wnt and TGF-β pathways (Figures 3C-3E). Both 

pathways are known to play critical roles in COAD, contributing to increased activity of 

the MYC proto-oncogene, by repression of TGF-β signaling and hyperactivation of Wnt 

signaling (Cancer Genome Atlas 2012). Our analysis recapitulated key, well-established 

interactions, such as the reciprocal activation (positive feedback loop)  between TCF7L2 

and CTNNB1 (Brantjes, Barker et al. 2002), which is a crucial step in the activation of 

the Wnt signaling pathway. Notably, the essential proto-oncogenes (MYC, CTNNB1, and 

TCF7L2) form a highly interconnected module with multiple activating interactions 

(Figure 3E, red edges). In contrast, the non-essential tumor suppressors SMAD2 and 

SMAD3 are identified as repressors of the MYC-centric oncogenic module (Figure 3E, 

blue edges). While some of these interactions are well-established in the literature (Yagi, 

Furuhashi et al. 2002, Rennoll and Yochum 2015), our analysis identified several novel 

interactions, such as the MYC-mediated transcriptional activation of TCF7L2 and 

CTNNB1, and the negative feedback loops formed by SOX9 with MYC, CTNNB1, and 

TCF7L2, which further increase our understanding of TGF-β/Wnt-mediated MYC 

dysregulation in COAD. Not surprisingly, consistent with the fact that SMAD4 has a 

nonsense mutation in HT-29, according to the COSMIC database (Tate, Bamford et al. 

2019), we did not detect SMAD4 interactions with other proteins.  

Analysis of the full MLN identified a preponderance of ARN vs. TRN TR interactions (n = 

23,607 vs. n = 9,812, respectively) (Figure S7A). To further delineate transcriptional and 

post-transcriptional regulation in the ARN, we removed ARN interactions that were 

explained by a corresponding TRN interaction, this process resulted in n = 22,922 post-

transcriptional interactions, including activating vs. repressive TR interactions (n = 

20,278 vs. 12,456, respectively) (Figure S7B). The resulting networks showed 
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statistically significant overlap with both MultiNet (p = 2.94e-19) (Khurana, Fu et al. 2013) 

and HumanNet (p = 3.86e-60) (Hwang, Kim et al. 2019) (Table S3). 

Auto-regulatory loops are significantly over-represented in the multi-layer network: 

Auto-regulatory feedback represents a ubiquitous regulatory mechanism in biological 

systems, and some associated feedback loop motifs are significantly overrepresented 

(Alon 2007). A unique aspect of the TReK assays is that they allow direct, causal 

dissection of autoregulatory loops because each TR is independently silenced, thus 

breaking the upstream but not the downstream logic of the loops in which it is involved. 

2-Protein Loops: Systematic analysis of feedback loops comprising 2 proteins in the 

MLN identified 1,816 instances, comprising 3 different motifs: positive feedback (two 

positive interactions), negative feedback (one positive and one repressive interaction), 

and genetic switches (two repressive interactions) (Figure 3F). Compared to the null 

distribution obtained by randomizing MLN edges, while preserving its overall topology, 

we observed significant overrepresentation of all loop motifs (3.3x, 2.4x, 1.89x) (Figure 

3G). Interestingly, compared to the total number of 2-protein loops, positive feedback 

loops were further over-represented, while negative feedback loops and genetic 

switches were slightly under-represented (p < 2.2e-16 by chi-square test).  

3-Protein Loops: In addition, 10,260 3-protein loops were identified across 4 different 

motifs (Figure 3H), depending on the number of positive and negative interactions 

(Figure 3I). Similar to 2-protein loops, we observed overrepresentation of positive loops 

(p < 8.94e-12 by chi-square test). 

Loops comprising proteins with greater differential activity in HT-29 cells were more 

likely to be detected. Indeed, our analysis showed that loops comprising proteins in the 

first quintile of all TRs, ranked based on their differential activity in HT-29 against the 

average of CCLE, formed almost twice as many loops compared to other proteins 

(Figure 3J). This suggests that the proteins responsible for implementing and 

maintaining cell-state homeostasis are more likely to participate in feedback loops. 

Variable knockdown efficacy and time-course data reveal systematic use of 

autoregulatory feedback: While variable sgRNA silencing efficacy is normally seen as 

a potential limitation of the CRISPRi technology, in the context of GRN reverse 

engineering, it can actually help further elucidate the presence of regulatory feedback 
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(auto-regulation). In the absence of auto-regulatory feedback, the more effective the 

silencing of a TR, the stronger the activation or repression of its targets. However, auto-

regulatory loops may induce significant, time-dependent oscillations in regulatory targets 

expression or activity.  

For instance, of the 3 sgRNAs targeting MYC, two induced moderate (60%) and weak 

(17%) silencing, respectively, while the third failed to produce any silencing. Gene Set 

Enrichment Analysis (GSEA) (Subramanian, Tamayo et al. 2005) confirmed that 

enrichment of MYC targets in genes under-expressed following its silencing tracked with 

silencing efficacy (Figures 4A-4C). Similar correlation between silencing efficacy and 

target gene expression in the associated pathways was observed for many other genes, 

such as CTNNB1/Wnt and MYBL2/cell cycle (Figure S8). More interestingly, however, 

for some TRs, we observed virtual inversion of gene expression signature behavior as a 

function of sgRNA efficacy, implicating the existence of strong autoregulatory 

mechanisms. E2F7, a transcriptional repressor of the E2F family (de Bruin, Maiti et al. 

2003, Di Stefano, Jensen et al. 2003, Westendorp, Mokry et al. 2012), provides an 

interesting example of such behavior. Under normal circumstances, repressing E2F7 

activity will cause upregulation of its target genes (Segeren, van Rijnberk et al. 2020). 

Indeed, three sgRNAs targeting E2F7 induced significant E2F target upregulation (p = 

0.01, 0.037, and 0.23, respectively) at the earlier timepoint (T1) (Figures S9A-S9C). 

However, at the later timepoint (T2 = 96h) the guide with the highest efficacy induced 

complete inversion of target expression (mode inversion), with significant E2F target 

downregulation (p < 0.001) (Figures 4D, 4E, and S9D). Since E2F targets, which are 

involved in cell cycle progression, are known to undergo oscillatory behavior 

(Westendorp, Mokry et al. 2012), consistent with overcompensation and mode inversion 

following its most significant silencing. Similar to E2F7, we observed highest-efficacy vs. 

low-efficacy mode inversion for 57 additional TRs at T2, suggesting their participation in 

strong autoregulatory loops. For 10 (>17.5%) of those highest-efficacy sgRNAs we 

observed mode inversion between T1 and T2 (Table S4). This is 7-fold what would be 

expected in the null hypothesis (see Methods). 

Regulation of Hallmark Cellular Processes: To elucidate regulators of fundamental 

cellular processes, as cell achieve stable state, we assessed enrichment of genes 

differentially expressed at 96h following silencing of each TR in genes comprising 50 

“hallmark” cellular processes by GSEA analysis (Liberzon, Subramanian et al. 2011, 
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Liberzon, Birger et al. 2015). Potential mode of regulation was categorized as activation 

if silencing a TR caused downregulation of a cellular process, repression if silencing a 

TR caused upregulation of a cellular process. To address the effect of potential auto-

regulatory loops (see previous section), we included a third category called “mixed” if 

both downregulation and upregulation were observed after silencing a TR with different 

sgRNAs (see Methods). To minimize false discovery rates, we only considered TRs for 

which at least 2 sgRNAs produced concordant enrichment. While this undoubtedly 

prevents detection of bona fide hallmark process regulators, for which there was only 1 

effective sgRNA, the analysis revealed many COAD-specific hallmark process regulators, 

including both established and previously uncharacterized ones. For example, 

considering 16 TRs in the Wnt/TGF pathway (Figure 4F), we recapitulated regulation of 

both mTORC1 signaling and DNA repair by MYC (Hironaka, Factor et al. 2003, Karlsson, 

Deb-Basu et al. 2003, Yue, Jiang et al. 2017), of spermatogenesis by ID2 (Sablitzky, 

Moore et al. 1998), and of epithelial-mesenchymal-transition (EMT) by β-catenin (Vu and 

Datta 2017). Indeed, cursory search of the literature supported 24 of the 55 inferred 

hallmark regulatory interactions associated with the 16 TRs (Table S5). Thus, availability 

of this analysis to all 1,007 TRs provides a powerful new resource to study regulatory 

processes and mechanisms in this COAD (Table S6). 

Identification of upstream regulators and co-factors: The TReK assays also support 

identification of regulatory hierarchies and co-transcriptional factors. For instance, as 

expected, CRISPRi-mediated silencing of MAX, an established co-factor and modulator 

of Myc activity (Dang 2012), significantly affected MYC target expression (p < 0.001) 

(Figures S10A-S10D). To further confirm enrichment of potential MYC modulators in 

TRs that affect expression of MYC tatgets, we first assessed all TRs whose silencing 

affected the targets of a second TR, using the CINDy algorithm (Giorgi, Lopez et al. 

2014), CINDy is an improvement of the original MINDy algorithm (Wang, Saito et al. 

2009), which uses the conditional mutual information I[TR;T|M] between a TR and its 

targets T, given the expression of a candidate modulator M to predict TR activity 

modulators. Experimental validation rates for these algorithms have been in the 70%-

80% range and they have been shown to recapitulate 60% to 70% of known upstream 

pathway interactions in lung adenocarcinoma and lymphoma (Wang, Saito et al. 2009, 

Giorgi, Lopez et al. 2014). 
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We found significant overlap between CINDY and TReK-based predictions of candidate 

MYC-activity modulators (Figure S10E), with 115 of the 289 TReK-predicted ones also 

predicted by CINDY (p = 0.014 by Fisher’s exact test). MLN-based characterization of 

these 115 TRs in the MLN identified 5 as upstream MYC transcriptional regulators, 13 as 

upstream post-transcriptional regulators, and 27 as physical interactors, based on 

PrePPI protein-protein interactions (Zhang, Petrey et al. 2013) (Figure S10F). 

 

Discussion 

While experimental and computational methodologies for the dissection of protein-

protein interaction (PPI) networks have achieved relative maturity (Zhang, Petrey et al. 

2012, Rolland, Tasan et al. 2014), the inference of transcriptional and post-

transcriptional interactions is still broadly debated, despite the role they have played in 

elucidating novel biological mechanisms, disease drivers, and phenotype (Chen, Alvarez 

et al. 2014, Alvarez, Shen et al. 2016, Rajbhandari, Lopez et al. 2018, Arumugam, Shin 

et al. 2020). Among others, current limitations include: (a) the relatively low value of 

DNA-binding motifs, given their ubiquitous presence in open chromatin regions, the fact 

that most TFs do not bind DNA via their canonical motif, and the uncertainty of whether 

binding induces functional regulation (b) the inability of computational methods to assess 

causality and directionality thus preventing detection of autoregulatory loops playing a 

key role in cell homeostasis and (c) the very sparse experimental validation of 

transcriptional targets. This is largely due to the fact that technologies for the systematic 

RNA-seq profiling of specific cellular contexts following perturbation of each 

transcriptional regulator (TR) have been lacking or have been excessively labor-

intensive and costly. 

By combining two technologies, including 2nd generation, inducible, CRISPRi-mediated 

gene silencing and CROP-Seq, supporting single-cell RNA-seq profiling with knowledge 

of the specific single guide RNA(s) in each cell, we have developed a Transcriptional 

Regulator Knockdown methodology (TReK) for the systematic, experimentally-based 

reconstruction of gene regulatory (GRN) and activity regulatory (ARN) networks. GRNs 

comprise molecular interactions where a specific TR affects the expression of another 
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gene, while ARNs comprise molecular interactions where a specific TR affects the 

transcriptional activity of another TR. 

While the current implementation of TReK provides a critical proof-of-concept of the 

technology, its application to a colorectal cell line HT-29 already overcomes critical 

limitations of current methodologies for GRN inference, while allowing construction of 

previously unavailable ARNs representing key, biologically relevant post-transcriptional 

and post-translational interactions. In particular, TReK provides key experimental 

evidence supporting TR target inference based on changes in their expression following 

CRISPRi-mediated TR silencing at two timepoints. The rationale for the two timepoints is 

multifold. First, this allows incorporating proteins with different half-lives in the analysis. 

Second, this allows detection of autoregulatory effects where the targets of a TR are 

inversely correlated in their expression at the two timepoints; critically, decoupling TRs 

from their upstream regulation, via direct biochemical perturbation, allows deconvoluting 

both interaction directionality (i.e., A→B vs. A←B) and autoregulatory loops (e.g., 

A→B→A), which has been challenging using computational approaches. The data 

presented here, which include analysis of >150,000 single-cell profiles representing 

CRISPRi-mediated silencing of 1,007 expressed TRs in HT-29 cells at 24h and 96h, not 

only confirms previous interactions, such as those between MYC and WNT/β-catenin 

pathway proteins in colon cancer, but identifies thousands of novel interactions and 

experimentally assessed effects of individual TRs on cancer hallmarks, 

including >15,000 experimentally dissected 2- and 3-protein loops contributing to cellular 

homeostasis.  

Critically, while still limited, this study provides key indications on the number of cells that 

will be necessary for future implementations of the TReK assays to ensure accurate 

representation of all transcriptional regulators. Specifically, saturation analysis (Figure 

S6) suggests that ≥ 60 cells per silenced TR would be sufficient to stabilize protein 

activity predictions based on TR targets, using the VIPER algorithm, thus opening the 

way to dramatic improvements in the assessment of mechanistic determinants of cellular 

phenotypes, not only in cancer but across all accessible cell states. In addition, similar 

studies targeting signaling proteins would also be possible, allowing the activity of TRs to 

be used as gene reporter assays for their upstream signaling modulators as well as for 

deconvoluting the complete logic of signal transduction, including autoregulatory loops. 

The cost of a TReK experiment is still relatively high; however, the results of this proof-
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of-concept experiment combined with the advent of additional technologies such as scifi-

RNA-seq (Datlinger, Rendeiro et al. 2021) and the ever-decreasing cost of sequencing 

suggests that a full TReK experiment including all TRs and signaling proteins (~6,500 

proteins in total) at 4 timepoints and with an average of 60 cells per silenced protein, 

could be performed for less than $20,000, thus providing an entirely novel perspective 

on transcriptional and post-translational regulation.  Furthermore, inclusion of proteins 

representing targets of FDA-approved or late-stage development small molecular 

compounds, combined with their genome-wide perturbational profiles (Woo, Shimoni et 

al. 2015), could provide a remarkable ability to deconvolute drug mechanism of action 

and to identify drugs capable of activating or inactivating any desired regulatory program, 

as previously shown using computationally based GRNs, only with dramatically 

improved accuracy and sensitivity. 

Among the limitations of the current approach, one should consider that perturbations 

may be implemented in single cells in different stages of cell cycle. As a result, cell 

cycle-dependent regulatory events may require additional regression of cell cycle stage. 

However, with ≥ 60 cells per silenced TR, such regression would become eminently 

possible. Additionally, current sgRNAs present highly different gene silencing efficiency, 

with about 10% to 20% of the genes not silenced at all. However, this can be effectively 

addressed by performing a smaller-scale TReK experiment to first select sgRNAs that 

provide optimal silencing, thus saving significant effort and cost in the larger experiments 

by removing the need to sequence a large number of cells where the target gene is not 

effectively silenced.  

Analysis of the GRN and ARN networks already produced key novel findings. However, 

much as it has happened for PPI networks, comprehensive assessment of the TReK 

GRN/ARN networks will only be possible as they are explored by biologists with precise, 

phenotypically driven questions. 
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Methods 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Chemicals, Competent Cells, and Recombinant Proteins 

FastDigest BamHI ThermoFisher cat. no. FD0054 

FastDigest SbfI ThermoFisher cat. no. FD1194 

FastDigest FspAI ThermoFisher cat. no. FD1664 

FastDigest PmeI ThermoFisher cat. no. FD1344 

FastDigest Mph1103I ThermoFisher cat. no. FD0734 

FastDigest Eco105I ThermoFisher cat. no. FD0404 

FastDigest Esp3I ThermoFisher cat. no. FD0454 

Q5 Hot Start High-
Fidelity 2× Master Mix 

NEB cat. no. M0494L 

Thermo T4 DNA 
Ligase 

Thermo 
Scientific 

cat. no. EL0011 

One Shot™ Stbl3™ 
Chemically 
Competent E. coli 

Invitrogen cat. no. C737303 

NEBuilder HiFi DNA 
assembly master mix 

NEB cat. no. E2621L 

NEB T4 ligation buffer NEB cat. no. B0202S 

T4 polynucleotide 
kinase 

NEB cat. no. M0201S 

FastAP 
Thermosensitive 
Alkaline Phosphatase 

ThermoFisher cat. no. EF0651 

Endura E. coli cells Lucigen cat. no. 60242-1 

DMEM medium Gibco cat. no. 10569010 

McCoy’s 5A Modified 
Medium 

Gibco cat. no. 16-600-082 
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Tetracycline-free FBS Omega 
Scientific 

cat. no. FB-15 

Lipofectamine 3000 Invitrogen cat. no. L3000015 

polybrene Millipore cat. no. TR-1003-G 

blasticidin Research 
Product 
International 

cat. no. B12200-0.05 

puromycin AG Scientific cat. no. P-1033 

RIPA buffer Fisher Scientific cat. no. 50-843-016 

protease inhibitor Fisher Scientific cat. no. PI78430 

blocking buffer Fisher Scientific cat. no. PI37536 

Recombinant DNA 

pLX-UCOE-SFFV-
dCas9-KRAB-MeCP2-
P2A-BSD 

This paper Addgene Plasmid #122205 

UCOE-SFFV-dCas9-
BFP-KRAB 

Adamson et al., 
2016 

Addgene Plasmid #85969 

dCas9-KRAB-MeCP2 Yeo et al., 2018 Addgene Plasmid #110821 

pLX-TRE-dCas9-
KRAB-MeCP2-P2A-
BSD 

This paper Addgene Plasmid #140690 

PB-TRE-dCas9-KRAB-
MeCP2 

This paper Addgene Plasmid #122267 

PB-TRE-dCas9-VPR Chavez et al., 
2015 

Addgene Plasmid #63800 

CROPseq-Guide-Puro Datlinger et al., 
2017 

Addgene Plasmid #86708 

CROPseq-
CaptureSeq-Guide-
Puro 

This paper In deposit to Addgene 

pMDLg/pRRE Dull et al., 1998 Addgene Plasmid #12251 

pRSV-Rev Dull et al., 1998 Addgene Plasmid #12253 
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pMD2.G Trono Lab 
Packaging and 
Envelope 
Plasmids 
(Unpublished) 

Addgene Plasmid #12259 

Critical Commercial Assays, Kits and Devices 

 QIAquick Gel 
Extraction Kit 

QIAGEN cat. no. 28704 

AMPure XP bead Beckman 
Coulter 

cat. no. A63880 

1 mm electroporation 
cuvettes 

BioRad cat. no. 1652089 

Amaxa™ 
Nucleofector™ II 

Lonza N/A 

ZymoPURE II Plasmid 
Midiprep 

Zymo Research cat. no. D4200 

0.45 µm PVDF Millex-
HV Syringe Filter 

Millipore cat. no. SLHV033RS 

Amicon Ultra-15 
Ultracel-100 
Centrifugal Filters 

Millipore cat. no. UFC910024 

Dead Cell Removal Kit Miltenyi cat. no. 130-090-101 

CellTiter-Glo® 
Luminescent Cell 
Viability Assay 

Promega cat. no. G7570 

Pierce™ BCA Protein 
Assay Kit 

Thermo Fisher cat. no. 23225 

Pierce™ ECL Western 
Blotting Substrate 

Fisher Scientific cat. no. PI32106 

NuPAGE 4%–12% Bis-
Tris Gel 

Invitrogen cat. no. NP0335BOX 

iBlot 2 Dry Blotting 
System 

ThermoFisher N/A 

nitrocellulose 
membrane 

Fisher Scientific cat. no. IB23001 
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Experimental Models: Cell Lines 

HT-29 ATCC HTB-38 

Antibodies 

mouse polycloncal 
anti-Cas9 

Takara Bio cat. no. 632607 

mouse monoclonal 
anti-β-actin 

Cell Signaling 
Technology 

cat. no. 3700S 

mouse monoclonal 
anti-rabbit IgG-HRP 

Santa Cruz 
Biotechnology 

cat. no. sc-2357 

goat monoclonal anti-
mouse IgG HRP 

Santa Cruz 
Biotechnology 

cat. no. sc-2031 

Software and Algorithms 

R-3.5.1 The R project https://www.r-project.org/ 

Cell Ranger- 3.2.0 10X Genomics https://support.10xgenomics.com/single-
cell-geneexpression/ 

software/pipelines/latest/what-is-
cellranger 

 

Name Sequence (5’ to 3’) Use 

TRE-dCas9-
KRAB-MeCP2-
P2A_FWD 

GCTAGCTGCATTCGTC
TTCAAGAATTCCTC 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

TRE-dCas9-
KRAB-MeCP2-
P2A_REV 

GCTTGGCCATTCCGGA
TCTATCCATGAATTCA
GGGC 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

BSD-WPRE-
3’LTR-
AmpR_FWD 

TAGATCCGGAATGGCC
AAGCCTTTGTCTCA 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

BSD-WPRE-
3’LTR-AmpR_REV 

AGTGCTGCAATGATAC
CGCGAG 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

ori-pSV40_FWD CTCGCGGTATCATTGC
AGCACT 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2021.06.28.449297doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.449297
http://creativecommons.org/licenses/by-nc-nd/4.0/


ori-pSV40_REV AGCAGTGCAGCTTTTT
CCTTTGTGG 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

5’LTR-RRE-
cPPT/CTS_FWD 

CCACAAAGGAAAAAGC
TGCACTGCT 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

5’LTR-RRE-
cPPT/CTS_REV 

TGAAGACGAATGCAGC
TAGCTTGCCAAACCT 

pLX-TRE-dCas9-KRAB-MeCP2-
P2A-BSD cloning 

CDX2_sgRNA-1 GGTAGTCCGGGTACT
GCGGG 

Validation of pLX-TRE-dCas9-KRAB-
MeCP2-P2A-BSD 

sgRNA-Amp-FWD TGGAAAGGACGAAACA
CCG 

sgRNA library 

oligonucleotide amplification 

sgRNA-Amp-REV AACTTGCTATGCTGTT
TCCAGC 

sgRNA oligonucleotide library 
amplification 

 

Experimental procedures  

Cloning and validation of the pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD 

plasmid  

To clone the pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD plasmid, we prepared 

the vector backbone by incubating 5 ug of UCOE-SFFV-dCas9-BFP-KRAB (Addgene 

#85969) for 2 h at 37 °C with 2 ul of FastDigest BamHI (ThermoFisher cat. no. FD0054) 

and 2 ul of FastDigest SbfI (ThermoFisher cat. no. FD1194) in a total volume of 50 μl 1× 

ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8% 

agarose gel. The 13,792 bp fragment was cut under UV-free blue light and purified using 

the QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The KRAB-MeCP2-P2A-BSD 

cassette was synthesized by Integrated DNA Technology as 1,634 bp dsDNA fragments 

with a BamHI restriction site on 5’ end and a SbfI restriction site on 3’ end. The 

synthesized product was digested by incubation for 1 h at 37 °C with 1 ul of FastDigest 

BamHI (ThermoFisher cat. no. FD0054) and 1 ul of FastDigest SbfI (ThermoFisher cat. 

no. FD1194) in a total volume of 20 μl 1× ThermoFisher Green FastDigest Buffer. The 

digested product was run on a 1.6% agarose gel. The 1,606 bp fragment was cut under 

UV-free blue light and purified using the QIAquick Gel Extraction Kit (QIAGEN cat. no. 

28704). The vector backbone and KRAB-MeCP2-P2A-BSD cassette were ligated by the 
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following T4 ligase reaction: 100 ng of vector backbone, 50 ng of KRAB-MeCP2-P2A-

BSD cassette, 2 μl 10× Thermo Scientific T4 DNA Ligase Buffer, 2 μl 50% PEG 4000 

solution, 1 μl T4 DNA Ligase (Thermo Scientific cat. no. EL0011) and water up to 20 μl, 

incubated at room temperature for 1 h. 5 μl of the ligation product were chemically 

transformed into Invitrogen™ One Shot™ Stbl3™ Chemically Competent E. coli 

(Invitrogen cat. no. C737303) following the manufacturer's high-efficiency protocol. We 

screened for correctly assembled clones by colony PCR and further validated the 

assembly by restriction digestion with FspI, SbfI, AgeI and BamHI as well as Sanger 

sequencing. 

Cloning and validation of the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid  

To clone the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid, we first prepare the 

vector backbone by incubating 5 ug of PB-TRE-dCas9-VPR (Addgene #63800) for 2 h at 

37°C with 2 ul of FastDigest FspAI (ThermoFisher cat. no. FD1664) and 2 ul of 

FastDigest PmeI (ThermoFisher cat. no. FD1344) in a total volume of 50 μl 1× 

ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8% 

agarose gel. The 10,992 bp was cut under UV-free blue light and purified using the 

QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The truncated-dCas9-KRAB-

MeCP2 cassette was synthesized by Integrated DNA Technology as 2,450 bp dsDNA 

fragments with a FspAI restriction site on 5’ end and a PmeI restriction site on 3’ end. 

The synthesized product was digested by incubation for 1 h at 37 °C with 1 ul of 

FastDigest FspAI (ThermoFisher cat. no. FD0054) and 1 ul of FastDigest PmeI 

(ThermoFisher cat. no. FD1194) in a total volume of 20 μl 1× ThermoFisher Green 

FastDigest Buffer. The digested product was run on a 1.6% agarose gel. The 2,432 bp 

fragment was cut under UV-free blue light and purified using the QIAquick Gel Extraction 

Kit (QIAGEN cat. no. 28704). The vector backbone and truncated-dCas9-KRAB-MeCP2 

cassette were ligated by the following T4 ligase reaction: 100 ng of vector backbone, 

100 ng of truncated-dCas9-KRAB-MeCP2 cassette, 2 μl 10× Thermo Scientific T4 DNA 

Ligase Buffer, 2 μl 50% PEG 4000 solution, 1 μl T4 DNA Ligase (Thermo Scientific cat. 

no. EL0011) and water up to 20 μl, incubated at room temperature for 1 h. 5 μl of the 

ligation product were chemically transformed into Invitrogen™ One Shot™ Stbl3™ 

Chemically Competent E. coli (Invitrogen cat. no. C737303) following the manufacturer's 

high-efficiency protocol. We screened for correctly assembled clones by colony PCR 
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and further validated the assembly by restriction digestion with SalI, FspAI and PmeI as 

well as Sanger sequencing. 

To clone the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid, the TRE-dCas9-KRAB-

MeCP2-P2A cassette (7,500 bp) was amplified from PB-TRE-dCas9-KRAB-MeCP2 and 

purified using protocol described above. The pLX vector backbone was amplified as 3 

fragments (BSD-WPRE-3’LTR-AmpR cassette as 3,066 bp fragment, ori-pSV40 

cassette as 2,942 bp fragment, 5’LTR-RRE-cPPT/CTS cassette as 3,543 bp fragment) 

from pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD and purified using the protocol 

described above. Primers for amplification were designed to contain >15bp homology 

arm on each side with adjacent fragments. The 4 fragments were assembled using 

Gibson's isothermal assembly: 500ng of total amplified fragments were combined with 

10μl of NEBuilder HiFi DNA assembly master mix (NEB cat. no. E2621L) and water to 

20μl. After 1 h of incubation at 50 °C, reactions were purified by AMPure XP bead clean-

up (Beckman Coulter cat. no. A63880), and 5μl of the ligation product were chemically 

transformed into Invitrogen™ One Shot™ Stbl3™ Chemically Competent E. coli 

(Invitrogen cat. no. C737303) following the manufacturer's high-efficiency protocol. We 

screened for correctly assembled clones by colony PCR and further validated the 

assembly by restriction digestion with AdeI, FspAI and PmeI as well as Sanger 

sequencing. 

Cloning and validation of the CROPseq-CaptureSeq-Guide-Puro plasmid  

To clone the CROPseq-CaptureSeq-Guide-Puro plasmid, we prepared the vector 

backbone by incubating 5 ug of CROPseq-Guide-Puro (Addgene #86708) for 2 h at 

37 °C with 2 ul of FastDigest Mph1103I (ThermoFisher cat. no. FD0734) and 2 ul of 

FastDigest Eco105I (ThermoFisher cat. no. FD0404) in a total volume of 50 μl 1× 

ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8% 

agarose gel. The 9,766 bp fragment was cut under UV-free blue light and purified using 

the QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The trcrRNA-CaptureSeq-

5’LTR(truncated) cassette was synthesized by Integrated DNA Technology as 520 bp 

dsDNA fragments with 20 bp of homology on each end of the digested vector backbone, 

respectively.  
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The vector backbone and trcrRNA-CaptureSeq-5’LTR(truncated) cassette were 

assembled using Gibson's isothermal assembly: 100ng of vector backbone and 20ng of 

trcrRNA-CaptureSeq-5’LTR(truncated) cassette were combined with 10 μl of NEBuilder 

HiFi DNA assembly master mix (NEB cat. no. E2621L) and water to 20 μl. After 1 h of 

incubation at 50 °C, reactions were purified by AMPure XP bead clean-up (Beckman 

Coulter cat. no. A63880), and 5 μl of the ligation product were chemically transformed 

into Invitrogen™ One Shot™ Stbl3™ Chemically Competent E. coli (Invitrogen cat. no. 

C737303) following the manufacturer's high-efficiency protocol. We screened for 

correctly assembled clones by colony PCR and further validated the assembly by 

restriction digestion with Mph1103I, AdeI and BsmbI as well as Sanger sequencing. 

Cloning of individual sgRNAs into the CROPseq-CaptureSeq-Guide-Puro plasmid 

sgRNA cassettes were annealed from two oligonucleotides (top: 5’-CACCG(N)19-20-3’ 

bottom: 5’-AAAC(N)19-20-3’) by combining 1 μl of each 100 μM oligonucleotide with 1 μl of 

10× T4 ligation buffer (NEB cat. no. B0202S), 6.5 μl of water, and 0.5 μl of T4 

polynucleotide kinase (NEB cat. no. M0201S), incubating as follows: 37 °C for 30 min 

(oligonucleotide phosphorylation), 95 °C for 5 min, then ramping from 90 °C to 25 °C at 

5 °C/min. Vector backbone was prepared by digesting and dephosphorylating 5 μg of 

CROPseq-CaptureSeq-Guide-Puro with 5 μl of FastDigest Esp3I (ThermoFisher cat. no. 

FD0454) and 2 μl of FastAP Thermosensitive Alkaline Phosphatase (ThermoFisher cat. 

no. EF0651) in a total volume of 50 μl 1× ThermoFisher Green FastDigest Buffer, 

incubating for 1 h at 37 °C. The digested product was run on a 1.6% agarose gel. The 

8,361 bp fragment was cut under UV-free blue light and purified using the QIAquick Gel 

Extraction Kit (QIAGEN cat. no. 28704). 

Ligation reactions were set up as follows: 60 μg of CROPseq-CaptureSeq-Guide-Puro 

backbone, 1 μl gRNA cassette (diluted 1:200 in water), 2 μl 10× Thermo Scientific T4 

DNA Ligase Buffer, 2 μl 50% PEG 4000 solution, 1 μl T4 DNA Ligase (Thermo Scientific 

cat. no. EL0011) and water up to 20 μl, incubated at room temperature for 1 h. The 

ligation reaction was chemically transformed into Invitrogen™ One Shot™ Stbl3™ 

Chemically Competent E. coli (Invitrogen cat. no. C737303) following the manufacturer's 

high-efficiency protocol. 
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Cloning of pooled sgRNA libraries into the CROPseq-CaptureSeq-Guide-Puro 

plasmid 

Vector backbone was prepared by digesting 5 μg of CROPseq-CaptureSeq-Guide-Puro 

with 5 μl of FastDigest Esp3I (Thermo Scientific cat. no. FD0454) in a total volume of 50 

μl 1× Thermo Scientific FastDigest Green Buffer, incubating for 1 h at 37 °C. The 

digested product was run on a 1.6% agarose gel. The 8,361 bp fragment was cut under 

UV-free blue light and purified using the QIAquick Gel Extraction Kit (QIAGEN cat. no. 

28704).  

sgRNA insert fragments were synthesized by TWIST Bioscience as 74 nt 

oligonucleotides with 18 and 35 nt of homology to the hU6 promoter and guide RNA 

scaffold, respectively. Oligonucleotides were diluted to 1 ng/ul and pooled in equal 

amounts. The oligonucleotide pool was further amplified by mixing 12.5 μl KAPA HiFi 

HotStart 2× ReadyMix (KAPA Biosystems cat. no. KK2601), 0.75 μl of 10 μM forward 

primer, 0.75 μl of 10 μM reverse primer, 2 ng oligonucleotide pool and water up to 25 μl 

and incubating as follows: 95 °C for 3 min, 9× (98 °C for 20 s, 63 °C for 15 s, 72 °C for 

15 s), 72 °C for 1 min, hold at 4 °C. PCR product was run on a 2% agarose gel. The 74 

bp fragment was cut under UV-free blue light and purified using the QIAquick Gel 

Extraction Kit (QIAGEN cat. no. 28704). 

sgRNA libraries were cloned by Gibson's isothermal assembly: 22 fmoles (113.7 ng) of 

CROPseq-CaptureSeq-Guide-Puro backbone and 400 fmoles (18.31ng) of amplified 

dsDNA oligonucleotides were combined with 10 μl of NEBuilder HiFi DNA assembly 

master mix (NEB cat. no. E2621L) and water to 20 μl. After 1 h of incubation at 50 °C, 

reactions were purified by AMPure XP bead clean-up (Beckman Coulter cat. no. 

A63880), and 10 μl of the reaction was electroporated into 50 μl of Lucigen Endura E. 

coli cells (Lucigen cat. no. 60242-1) using prechilled 1 mm electroporation cuvettes 

(BioRad cat. no. 1652089) in a Lonza Amaxa™ Nucleofector™ II device set to Bacteria 

Program 4. Within seconds after the pulse, 1 ml of 37 °C Lucigen Recovery Medium was 

added and the bacteria were grown in a round-bottom tube for 1 h at 37 °C while 

shaking at 200 r.p.m. Then, 1 ml of the bacterial culture was plated on a 25 × 25 cm 

bioassay plate containing LB medium (Miller) with 100 μg/ml carbenicillin. Plates were 

incubated at 30 °C for 20 h, then LB medium was added and bacteria colonies were 

scraped off the plate. Bacterial cells were pelleted by 30 min of centrifugation at 3,000 
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RCF at 4 °C, and plasmid DNA was extracted with multiple ZymoPURE II Plasmid 

Midiprep columns (Zymo Research cat. no. D4200). Library coverage was estimated by 

counting the number of bacterial colonies on a 1:1,000 dilution plate and a 1:10,000 

dilution plate. All the sgRNA libraries were cloned with at least 500× coverage. 

Lentivirus production for single sgRNAs and pooled CROP-seq screens 

HEK293T cells were plated into 100mm dishes at 2 million cells per dish in 12 ml of 

culture medium (DMEM (Gibco cat. no. 10569010), 10% Tetracycline-free FBS (Omega 

Scientific cat. no. FB-15), no antibiotics) and grown to reach 50% to 70% confluence. 

6ml of culture medium was removed from the dishes and the cells were transfected with 

lipofectamine 3000 (Invitrogen cat. no. L3000015) using either 10.2 μg of CROPseq-

CaptureSeq-Guide-Puro (containing single sgRNAs or libraries) or dCas9 expressing 

plasmid, and 4.5 μg each of the three packaging plasmids pMDLg/pRRE (Addgene 

#12251), pRSV-Rev (Addgene #12253), and pMD2.G (Addgene #12259). The medium 

was exchanged for fresh culture medium 16 h after the transfection. The supernatant 

containing viral particles was harvested at 30 h and passed through a 0.45 µm PVDF 

Millex-HV Syringe Filter (Millipore cat. no. SLHV033RS) to remove cells and debris. Viral 

particles were further concentrated by 40min centrifugation at 4,000 r.p.m. using Amicon 

Ultra-15 Ultracel-100 Centrifugal Filters (Millipore cat. no. UFC910024). The 

concentrated virus was aliquoted and stored at −80 °C. 

Production of constitutive/inducible dCas9 expressing cell lines 

For adherent cell lines HT-29, cells were seeded into 100mm dishes at 5 million cells per 

dish in 12 ml of complete culture medium (McCoy’s 5A Modified Medium for HT-29 

(Gibco cat. no. 16-600-082) with 10% Tetracycline-free FBS (Omega Scientific cat. no. 

FB-15), no antibiotics). The cells were then transduced with 8 μg/ml polybrene (Millipore 

cat. no. TR-1003-G) and the proper amount of lentivirus containing dCas9 vector to 

ensure Multiplicity of Infection (MOI) equal to 1. An extra dish served as the 

untransduced control. After addition of the virus, cells were incubated overnight at 37 °C, 

5% CO2. At 24 h post-transduction, selection with 20 μg/ml blasticidin (Research 

Product International cat. no. B12200-0.05) began. After 5 days of blasticidin selection, 

live cells were trypsinized and seeded into 100mm dishes at 2 million cells per dish in 
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fresh complete culture medium containing 10 μg/ml blasticidin to allow for cell number 

amplification while renewing the medium (containing blasticidin) every 3 days. 

Lentiviral transduction with sgRNA libraries or single sgRNAs 

For adherent cell lines HT-29, cells were seeded into 100mm dishes at 5 million cells per 

dish in 12 ml of complete culture medium (McCoy’s 5A Modified Medium for HT-29 

(Gibco cat. no. 16-600-082) with 10% Tetracycline-free FBS (Omega Scientific cat. no. 

FB-15), no antibiotics) containing 10 μg/ml blasticidin (Research Product International 

cat. no. B12200-0.05) to maintain selection for dCas9 expression. The cells were then 

transduced with 8 μg/ml polybrene (Millipore cat. no. TR-1003-G) and the proper amount 

of lentivirus containing sgRNA libraries to ensure Multiplicity of Infection (MOI) equal to 

0.3. An extra dish served as the untransduced control. After addition of the virus, cells 

were incubated overnight at 37 °C, 5% CO2. At 24 h post-transduction, selection with 8 

μg/ml puromycin (AG Scientific cat. no. P-1033) began. After 3 days of puromycin 

selection, live cells were trypsinized and seeded into 100mm dishes at 2 million cells per 

dish in fresh complete culture medium containing blasticidin and 4 μg/ml  puromycin. 

After overnight incubation at 37 °C, 5% CO2 to allow for reattaching, the cells are ready 

for doxycycline induction. 

Lentivirus titration for single sgRNAs 

Cells were seeded into 24-well plates at 50,000 cells per well in 500 μl of proper culture 

medium and grown overnight to reach 30% to 50% confluence. The next day, medium 

was exchanged for 450 μl per well of fresh culture medium containing 8 μg/ml polybrene 

(Millipore cat. no. TR-1003-G), which was also used to dilute the viral stock. Lentivirus 

aliquots were thawed from storage at −80 °C and titrated in a 1:2 dilution series ranging 

over six wells (1:2 to 1:32). Each dilution was tested in duplicate by adding 50 μl per well. 

At least two wells per dilution served as un-selected controls and at least two wells per 

plate served as untransduced controls. 24 h after the transduction, the medium was 

exchanged for 500 μl per well of selection medium prepared as described above, every 

2–3 days. The blasticidin selection took 5 days and the puromycin selection took 3 days 

for HT-29. As soon as the selection was completed and all cells in the untransduced 

controls had died, cell viability was measured by CellTiter-Glo® Luminescent Cell 

Viability Assay (Promega cat. no. G7570). The virus titer (transducing units per ml) was 
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calculated as follows: (initial number of cells × percentage of viable cells × dilution factor) 

× (1,000 μl /50 μl). 

Quantification of dCas9 by Western Blot 

 To evaluate inducible dCas9 expression, HT-29 cells were transduced with pLX-

TRE-dCas9-KRAB-MeCP2-P2A-BSD as described above. Transduced HT-29 were then 

plated in RPMI medium (Gibco cat. no. 21875-034) on 6-well plates at 0.5 million cells 

per well. Cells were recovered overnight and doxycycline (Fisher Scientific cat. no. 

BP26535) was added to culture medium at 1 μg/ml. At 6, 9, 12 and 24 h post 

doxycycline induction, respectively, cells were lysed in 300 μl RIPA buffer (Fisher 

Scientific cat. no. 50-843-016) with protease inhibitor (Fisher Scientific cat. no. PI78430). 

Protein concentration was measured by Pierce™ BCA Protein Assay Kit (Thermo Fisher 

cat. no. 23225). 20 ug of total protein from each lysate was loaded and separated on a 

NuPAGE 4%–12% Bis-Tris Gel (Invitrogen cat. no. NP0335BOX). Subsequently, the 

protein was transferred onto a nitrocellulose membrane (Fisher Scientific cat. no. 

IB23001) by iBlot 2 Dry Blotting System (ThermoFisher), which was then blocked by 

blocking buffer (Fisher Scientific cat. no. PI37536) for 1 h at room temperature. The 

blocked membrane was incubated overnight at 4 ℃ in primary antibodies: mouse 

polyclonal anti-Cas9 (Takara Bio, cat. no. 632607), mouse monoclonal anti-β-actin 

(8H10D10) (Cell Signaling Technology, cat. no. 3700S). After incubation, the membrane 

was washed 3 times with PBS-T buffer and then incubated at room temperature for 1 h 

with secondary antibodies: mouse monoclonal anti-rabbit IgG-HRP (Santa Cruz 

Biotechnology, cat. no. sc-2357), goat monoclonal anti-mouse IgG HRP (Santa Cruz 

Biotechnology, cat. no. sc-2031). The membrane was then washed 3 times with PBS-T 

buffer, activated by Pierce™ ECL Western Blotting Substrate (Fisher Scientific cat. no. 

PI32106), and imaged by X-Ray film. The film was then scanned and digital images 

were processed using ImageJ. 

 

Computational procedures 

Preprocessing of single-cell sequencing data 
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Single-cell sequencing data were aligned using CellRanger v3.0.2 to the human 

reference genome assembly (Ensembl GRCh38 release) with default parameters. 

CellRanger pipeline uses STAR for alignment. Briefly, reads aligned to exons are tagged 

with their respective gene names (annotated by Ensembl Gene ID). Then counts of 

unique molecular identifier (UMI)-deduplicated reads per gene within the same cell were 

counted to build a gene expression matrix comprising all cells with UMI counts. For 

downstream analysis, low expression genes–defined by being detected in less than 10% 

cells–are discarded. We found this step is critical for controlling noise. Furthermore, as 

quality control at single-cell level, cells with either low transcriptome complexity (<5000 

UMI counts) or multiple sgRNAs were discarded. Cells with high mitochondrial reads 

fraction (>15%) were excluded in differential expression analysis and further 

downstream analyses. 

Assignment of sgRNA to single-cell transcriptome 

In the setting of this project, we enabled the detection of two types of sgRNA transcripts 

by incorporating Capture Sequence (Replogle, Norman et al. 2020) into the CROP-Seq 

sgRNA expressing vector CROP-Seq-GuidePuro (Datlinger, Rendeiro et al. 2017). 

Polyadenylated sgRNA transcripts synthesized by RNA polymerase II were captured by 

oligo-dT primers and subsequently sequenced as part of whole-transcriptome library. 

Non-polyadenylated sgRNA transcripts synthesized by RNA polymerase III were 

captured by CaptureSeq primers and were separately prepared as Feature Barcode 

libraries following 10X Genomics protocol (User Guide for Chromium Single Cell 3ʹ 

Reagent Kits v3). Feature Barcode libraries were separately indexed and sequenced as 

spike-ins alongside the whole-transcriptome single-cell RNA-seq libraries. Final UMI and 

cell barcode assignments were made for each Feature Barcode read by alignment with 

CellRanger v3.0.2, as was done for the whole transcriptome libraries. 

To computationally detect both types of sgRNA transcripts, we adapted and modified the 

sgRNA identification approach described in (Hill, McFaline-Figueroa et al. 2018). We 

allowed a maximal Hamming distance of 1 between the protospacer sequences 

extracted from the sequencing reads and the input sgRNA library. To account for 

background sgRNA reads resulting from low level of sgRNA transcripts released from 

lysed cells, we adopted a 2-Gaussian Mixture Model strategy described in CellRanger’s 

“CRISPR Algorithm” (https://support.10xgenomics.com/single-cell-gene-
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expression/software/pipelines/latest/algorithms/crispr) and in (Replogle, Norman et al. 

2020). We then made sgRNA assignments separately for whole-transcriptome library 

and Feature Barcode library. For each library, a cell was considered to express only one 

sgRNA if the most abundant sgRNA was five times more abundant than the second 

most abundant sgRNA; they were considered to express multiple sgRNAs if this ratio 

was smaller than five. To consolidate the sgRNA assignment from the two libraries, cells 

were considered to express unique sgRNA if 1) the same unique sgRNA was detected in 

the two libraries or 2) only one sgRNA is detected in one library and no sgRNA was 

detected in the other. Cells were considered to express multiple sgRNAs if 1) multiple 

sgRNAs were detected in either library or 2) different sgRNAs are detected in the two 

libraries. 

This dual sgRNA detection strategy helps more thorough detection of sgRNA transcripts 

in single cells and effective removal of multiplets. We performed TReK experiments 

using MOI=0.3 to ensure that most of the single cells express only one sgRNA. As 

expected, for the majority (roughly 60% across two timepoints) of unique-sgRNA cells, 

the same sgRNA was identified from the two sgRNA-containing libraries. Our data also 

shows that while two libraries generated highly consistent sgRNA-cell association maps, 

each can detect sgRNAs the other strategy cannot detect in a small subset of cells 

(Figures S3E-S3G).  

We observed that cells expressing only one sgRNA are enriched in the 10,000-50,000 

UMI count range (Figures S3C and S3D). On the lower UMI count side, the majority of 

cells do not have any sgRNA detected due to lower transcriptome complexity. On the 

higher UMI count side, a significant proportion of cells have multiple sgRNAs detected, 

indicating that these transcriptomes likely resulted from droplets with multiple single cells, 

considering that the proportion of cells expressing multiple sgRNAs are theoretically 

minimal with low MOI transduction. The association between abnormally high 

transcriptome complexity and the detection of multiple sgRNAs indicates that with the 

dual sgRNA detection strategy, we were able to retrospectively remove potential 

doublets and triplets—a source of significant noise in single-cell sequencing--by simply 

removing cells with multiple sgRNAs. 

Determination of on-target knockdown efficacy 
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To measure the extent to which each sgRNA reduces the expression of its target gene 

(knockdown efficacy), we compared cells expressing the corresponding sgRNA to cells 

expressing scrambled sgRNAs (sgCtrls). For each sgRNA, we estimated its target gene 

expression level by aggregating all cells that express the corresponding sgRNA. We also 

estimated the unperturbed expression level by aggregating the same number of 

randomly sampled cells that express sgCtrls. The sampling was done 100 times and the 

median value was taken. The knockdown efficacy of the sgRNA was then calculated as 

the fraction of target gene expression (normalized as count per million, or CPM) that was 

reduced due to the presence of the corresponding sgRNA. 

Broadly, we observed acceptable silencing for most genes, with 1,877/3,016 sgRNAs 

(62%) achieving ≥ 50% knockdown and 1,275/3,016 sgRNAs (42%) achieving at least 

80% knockdown at 96h (Figures S4A and S4B; Table S7; Methods). Since 3 sgRNAs 

per TR were used, most TRs were silenced at different silencing efficacies (Figures S4C 

and S4D). This turned out to be a useful feature, for instance, to dissect compensatory, 

dosage-dependent effects (Figure 4). When comparing silencing efficacy between 

timepoints, we generally observed a stronger knockdown at T2 = 96h vs. T1 = 24h 

(Figures S4A and Figure S4B). While this difference may be partly due to differences in 

the strengths of the constitutive and inducible promoters, we believe that much of the 

reduced efficacy at T1 is due to a combination of two factors: First, the dCas9-KRAB-

MeCP2 abundance necessary for effective knockdown may vary from gene to gene. 

Second, mRNA degradation kinetics and the size of the extant mRNA pool can vary 

widely across genes. 

Differential expression analysis 

To perform differential expression analysis for each sgRNA perturbation, a pseudo-bulk 

sample was generated by aggregating the transcriptomes of all the single cells 

expressing that particular sgRNA. A pseudo-bulk gene expression signature was 

obtained by comparing the expression level of each gene against 200 reference pseudo-

bulk samples as 1) z-scores generated by viperSignature function from viper R package 

and 2) log fold change. The reference pseudo-bulk samples were obtained by 

aggregating the transcriptomes of randomly sampled cells expressing other sgRNAs. To 

control for the variation resulted from cell number, each reference pseudo-bulk sample 

was aggregated from the same number of cells as the “tested” pseudo-bulk sample. 
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To perform differential expression analysis for each perturbed TR (as shown in Figures 

2C, 3, S5G, and S5H), we first grouped cells expressing any of the 3 sgRNAs targeting 

that particular TR. These cells were then sorted by the normalized expression level of 

the perturbed TR. The top 50% of the cells are then selected to represent the TR-

perturbed cell population. (If two cells have the same level of TR expression, the cell 

expressing more efficient sgRNA was selected. If two cells express the same sgRNA, 

the cell with a higher total UMI count was selected.) The differential expression analysis 

for the particular TR was then conducted in the same way as described in sgRNA-wise 

differential expression analysis. 

Assessing the reproducibility of TReK differential expression 

An unbiased approach to assess gene knockdown reproducibility is to compare different 

technologies. Searching the published literature, we found that RNA-sequencing of HT-

29 cells following CRISPRi-mediated TCF7L2 silencing had been performed to 

investigate this gene’s role in colorectal cancer invasion and migration (Wenzel, Rose et 

al. 2020). Impressively, even when pooling only 17 or 21 cells (at T1 and T2, 

respectively), the overlap in terms of differentially expressed genes between our data 

and Wenzel et al. data is highly significant (empirical p < 0.001) (Figures S5G and S5H). 

We were interested in the factors that affect the correlation between the differentially 

expressed gene signatures induced by different sgRNAs targeting the same gene. Not 

surprisingly, our analysis confirmed that the TRs with the most correlated gene 

signatures (Figures S5A and S5B) tended to be those with multiple high-efficiency 

sgRNAs (Figure S5C). Additionally, TRs with multiple, high-efficiency sgRNAs affected a 

greater fraction of downstream transcriptional targets (Figure S5D) and were 

characterized by slightly higher coverage (cells per sgRNA) (Figure S5E). 

We were also interested in the effect of protein turnover on differential gene expression 

at early timepoints. For instance, one would expect that proteins with low turnover 

should affect a greater number of downstream target genes at T2 vs. T1 compared to 

proteins with high turnover. To investigate, we collected published data on protein 

stability as measured by mass-spectrometry (Cambridge, Gnad et al. 2011). Although 

we could find protein stability data for only a relatively small fraction of the TRs silenced 

in our assays, we observed that more stable proteins tend to have a weaker differential 
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expression at the earlier timepoint T1 compared to T2 and thus a higher intra-gene 

sgRNA correlation at T2 vs. T1 (Figure S5F). 

Gene Set Enrichment Analysis 

One-set Gene Set Enrichment Analysis (GSEA) was implemented as described in 

(Subramanian, Tamayo et al. 2005). Briefly, the gene expression signature of interest 

was sorted and scanned by calculating an enrichment score (ES) starting with the most 

upregulated gene. If the encountered gene was present in the gene set, the running ES 

was increased. If the encountered gene was not present in the gene set, then the 

running ES was decreased. The final ES was determined by the maximum running ES 

and the leading edge subset was defined as the genes that were encountered before 

reaching maximum ES. The statistical significance of the ES was calculated by 

permuting differential expression-ordered genes 1,000 times, computing the ES to 

generate a null distribution, and comparing the unpermuted ES score to the null 

distribution of ES. Normalized enrichment score (NES) was calculated as the z-score 

transformed ES against the null distribution. An empirical p-value was calculated as the 

fraction of permuted ES that were more extreme than the actual ES.  

For two-set GSEA (Figures S5G and S5H), the query gene set was divided into two 

subsets: a positive subset containing genes that were positively correlated with the gene 

set term, and a negative subset containing genes that were negatively correlated with 

the gene set term. The gene expression signature of interest was sorted and scanned as 

described in the one-set GSEA process. However, the ES for the positive and negative 

subset, respectively, were calculated separately and subsequently added together. The 

NES and empirical p-values were computed as described above. 

Determination of mode of regulation (Figure 4F, Table S6) 

To determine the mode of regulation of a TR within a specific pathway, GSEA analysis 

was conducted on the gene expression signature of all 3 sgRNAs targeting the particular 

TR. If the NES of at least two sgRNAs were statistically significant (p < 0.05) and have 

the same sign, the NES of the third sgRNA was taken into account. If the third sgRNA 

perturbation showed statistically significant NES with the same sign or 2) showed no 

statistically significant NES, the mode of regulation was determined by the first two 
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sgRNAs. If the third sgRNA perturbation showed statistically significant NES with 

opposite sign, the mode of regulation was determined as “mixed”. 

ARACNe network reconstruction 

For each sgRNA, a pseudo-bulk sample was generated by aggregating transcriptomes 

of 15 single cells expressing that particular sgRNA. To maximize the transcriptome 

coverage, we included sgRNAs covered by more than 15 cells. This procedure 

generated 1,447 pseudo-bulk expression profiles for 14,773 transcriptionally informative 

genes (defined as being expressed by >10% samples) from T1 dataset and 1,310 

pseudo-bulk expression profiles for 18,426 transcriptionally informative genes from T2 

dataset. These expression profiles were used to generate ARACNe networks (“purely 

computational networks”) for transcription factors (TFs), coTFs and signaling proteins as 

previously described in (Basso, Margolin et al. 2005).  

Hurdle model-based generalized linear model 

Hurdle model was firstly described in (Cragg 1971) and applied in the context of single-

cell RNA-seq in (Finak, McDavid et al. 2015) as MAST (Model-based Analysis of Single-

cell Transcriptomics) approach. Here we modified MAST to be compatible with the 

single-cell CRISPRi perturbation setting. Normalized gene expression (count per million 

or CPM) was modeled as a generalized regression model (GLM) with two branches, one 

in binary space and the other in continuous space. For a specific gene, the probability of 

detecting non-zero CPM in a cell was modeled by binomial distribution, whereas the 

exact CPM|CPM>0 was modeled as Poisson distribution.  

Besides the intercept unit in the GLM, we included two covariates in the regression. The 

first covariate represents the expression level of the TR of interest. When its expression 

level was unavailable due to low expression, protein activity inferred by VIPER was used 

to estimate the abundance of the TR. Secondly, as several publications found that the 

consideration of “cellular detection rate” (CDR), defined as the proportion of genes 

detected in a single cell, significantly improved the differential expression analysis in 

single-cell sequencing context (Finak, McDavid et al. 2015, Dixit, Parnas et al. 2016, 

Soneson and Robinson 2018), we included CDR as the second covariate. 
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Regression coefficients were estimated and regularized as described in (Finak, McDavid 

et al. 2015). For the binary model, coefficients were regularized using informative priors 

(Gelman et al., 2008) from which information from the ARACNe network can be 

incorporated. In practice, we assigned a 4x larger prior variance to any TR-target 

associations that were identified by the ARACNe network. For each TR, only a subset of 

the transcriptome was considered as candidate target genes. For the “integrated 

network”, the candidate target genes came from two sources: 1) target genes identified 

by ARACNe network and 2) the top 200 most differentially expressed genes after the TR 

perturbation. For the “purely experimental network”, the top 200 most differentially 

expressed genes after the TR perturbation were considered as candidate target genes. 

Determination of regulon parameters 

We define the “regulon” of a specific TR as all the transcriptional target genes of that TR. 

To generate regulons that can be used to infer protein activity of a TR, two sets of 

parameters have to be determined: tfmode and likelihood. As described in (Alvarez, 

Shen et al. 2016), the tfmode parameter represents the direction as well as strength of 

the TR-target regulation. The likelihood parameter denotes the statistical confidence of 

the TR-target regulation. For the “purely computational” ARACNe network, tfmode was 

calculated as the Pearson correlation of the corresponding regulator and target gene 

expression, and likelihood was calculated as scaled pairwise mutual information. For 

“purely experimental” networks and integrated networks, the linear model coefficient 

statistics were used to generate calculate the regulon parameters. We first determined 

the statistical significance of each coefficient assuming a Gaussian distribution. For each 

TR-target association in the regulon, the use of the continuous versus binary model was 

determined by greater coefficient significance. The tfmode parameter was then 

determined as the sign (1 or -1) of the coefficient. The likelihood parameter was 

determined as the significance (1 - p-value) of the corresponding coefficient. 

5-fold cross-validation and cross-timepoint validation 

Within the dataset of each timepoint, 5-fold cross-validation was used to assess the 

ability of a specific regulon to infer the protein activities of the corresponding TR. For 

each TR, a single-cell dataset was firstly assembled by including all the perturbed cells 

and cells expressing a scrambled sgRNA. The dataset was subsequently divided into 5 
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equally-sized sub-datasets. The regulon was reconstructed from 4 sub-datasets (training 

sets) and validated on the single left-out sub-dataset (test set). The protein activities of 

the TR in each perturbed cell were then calculated by VIPER based on computational 

network, experimental network or integrated network. For cross-timepoint validation, we 

simply reconstructed regulons based on one timepoint (training set) and validated the 

regulons on the other timepoint (test set).  

For both within-timepoint and cross-timepoint cross-validations, we selected 340 

sgRNAs that 1) had at least medium-efficacy (>50% knockdown) and 2) were covered 

by more than 15 cells at both timepoint. Out of the 250 TRs (thus 250 regulons) targeted 

by the 340 sgRNAs, 247 were successfully reconstructed by T1 dataset and 241 were 

reconstructed by T2 dataset. The unsuccessful regulon reconstruction was mainly due to 

low level of TR expression in single cells.  

DNase-Seq validation 

DNase-Seq data were accessed from Cistrome database (Liu, Ortiz et al. 2011) on Apr 

29, 2020. Context-specific data were extracted by limiting the “Cell_line” to contain 

“HT29”. A peak was considered to be associated with a specific gene if it overlaps with 

the genomic region of that gene. Peaks that did not overlap with any gene were removed. 

Protein activity inference of CCLE HT-29 and TR-perturbed HT-29  

The gene expression profile of HT-29 was accessed from the Cancer Cell Line 

Encyclopedia (CCLE) database on Jul 10, 2020. The gene expression signature of HT-

29 was then generated by z-score transformation implemented by viperSignature 

function from the VIPER R package, comparing the normalized expression level of HT-

29 against all the other CCLE cell lines. The gene expression signatures of TR-

perturbations were calculated as z-score as described in “Differential expression 

analysis”.   

For all the gene expression signatures described above, the R package VIPER (Alvarez, 

Shen et al. 2016) was used to infer protein activity. Specifically, metaVIPER (Ding, 

Douglass et al. 2018) (as implement in the VIPER R package) was used to combine the 

information of T1 network and T2 network. 

Characterization of activity regulating network (ARN) edges (Figure 3A) 
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The activity regulating network was first constructed by extracting TR-TR edges with 

statistically significant (FDR < 0.1) differential protein activity after perturbing one of the 

TRs. To consolidate the network constructed at T1 and T2, we took the union of the two 

networks. For edges with different modes of regulation (activation or repression) at T1 

and T2, we kept the T1 edge and discarded the T2 edge. 

An ARN edge was characterized by “transcriptional” if the differential protein activity had 

a corresponding differential gene expression (FDR < 0.2) of the same TR following the 

same perturbation. An interaction was characterized by “pathway” if the two TRs co-exist 

in a “pathway” gene set. ‘‘Pathway’’ gene sets were taken from a collection of the 

curated gene sets (c2) from MSigDB (Liberzon, Subramanian et al. 2011, Liberzon, 

Birger et al. 2015). Protein-protein interactions (PPI) were taken from PrePPI (Zhang, 

Petrey et al. 2012), BioPlex 3.0 Network for HCT116 (Huttlin, Bruckner et al. 2020), and 

CORUM (Ruepp, Waegele et al. 2010). Two TRs were characterized by “overlapping 

regulons” if the top 50 targets (ranked by likelihood) of the two regulons have statistically 

significant overlap (by Fisher’s exact test, FDR < 0.1). 

Multi-layer regulatory network reconstruction 

The multi-layer network (MLN) was reconstructed in the following 2 steps: 1) ARN and 

TRN were reconstructed separately by extracting TR-TR edges with statistically 

significant differential protein activity (FDR < 0.1) or different expression (FDR < 0.2) 

after perturbing one of the TRs; for edges with different modes of regulation (activation 

or repression) at T1 and T2, we kept the T1 edge and discarded the T2 edge; 2) ARN 

edges that had corresponding TRN edges were discarded. 

Criteria for choosing TRs to include in TReK 

Beginning with a list of 2,527 TRs (Table S1), we first removed TRs that were unlikely to 

be actively transcribed in HT-29 using a Gaussian mixture model. The remaining 1,826 

genes were filtered to include candidate COAD regulators by PanCancer VIPER 

analysis (n = 30), MOMA-inferred checkpoint regulators (Paull, Aytes et al. 2021) (n = 

69), the union of top VIPER scores by absolute value in TCGA stomach and esophageal 

carcinoma (STES) and COAD (n = 513), CHOPD TCGA PanCancer checkpoint 

regulators (n = 293), and gene expression (n = 95). 
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We began with a manually curated list of 2,527 Transcriptional Regulator genes 

(hereafter TRs) annotated by the Gene Ontology as either transcription factors or 

transcription cofactors (Table S1) (Alvarez, Shen et al. 2016). Candidate genes were 

selected by first removing TRs whose expression was not distinguishable from noise, 

and then by ranking remaining TRs based on their overall transcription levels and 

potential role as Master Regulators in COAD, based on MOMA analysis (Paull, Aytes et 

al. 2021) (see Methods). Each gene was targeted by the 3 best sgRNAs predicted by 

(Sanson, Hanna et al. 2018). 

 

Figure Legends 

Figure 1. Conceptual overview of study and summary of dataset. (A) Concept of 

capturing dynamic transcriptional targets by early timepoint data collection. (B) 

Computational flowchart. Raw input data (red) was processed to directly generate 

biological readout (blue) or with the help of transcriptional network/regulons (yellow) 

construction. (C) Timeline for sgRNA transduction, selection, and doxycycline-induction. 

Lentiviral sgRNA library including >3,000 sgRNA species was transduced into colorectal 

cancer cell line HT-29 pre-transduced with constitutive dCas9 vector. Puromycin (8 

ug/ml x 3 days) was added 24 hours post-transduction to select for sgRNA-positive cells. 

T2 sample was directly collected after 3 days of puromycin selection. For T1 experiment, 

HT-29 was pre-transduced and selected for the inducible dCas9 vector. At the time of 

the experiment, 1ug/ml doxycycline was added and cells were collected after 1 day of 

doxycycline induction. (D) Important metrics across two timepoints. At both timepoints, 

we profiled CRISPRi-perturbed transcriptomes in 70k to 80k single cells. Around 95% of 

these cells generated a high amount of UMI counts and 60-70% of the cells had one 

unique sgRNA detected. Knockdown efficacy for each TR was estimated based on the 

most efficient sgRNA among all 3 sgRNAs targeting that particular TR. (E) Cell coverage 

per sgRNA perturbation in T2 experiment. Only single cells with a unique sgRNA and 

more than 5,000 total UMI counts are considered.  

Figure 2. Gene regulatory network reconstructed by CRISPRi perturbation data. (A) 

Regulatory coefficient matrices on continuous space or binary space were fitted to the 

single-cell normalized expression matrix or binarized expression matrix given the target 
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TR perturbation and other covariates in the design matrix. Coefficient matrices were 

subsequently consolidated and converted to VIPER-compatible regulons. (B) Barplot 

showing fraction of significantly inactivated (p < 0.05) TRs inferred by different networks. 

For each TR, protein activities were inferred in each perturbed single cell and then 

integrated by Stouffer’s method. (C) Correlation between perturbed protein activities 

inferred by integrated network and number of target genes. Each dot represents a TR. 

The number of target genes is represented by the number of differentially expressed 

genes (DEGs) after the TR perturbation. (D) Correlation between perturbed protein 

activities and “importance scores”. Each dot represents a TR. “Importance score” of 

each TR is represented by its protein activity in HT-29 comparing to other CCLE cell 

lines, as calculated in Methods. The integrated network was used in HT-29 VIPER 

analysis. (E) HT-29-specific DNase-Seq peaks are obtained from Cistrome database 

(Liu, Ortiz et al. 2011) as described in Methods. Statistical significance was calculated 

using the one-tailed Mann-Whitney U test. 

Figure 3. TReK multi-layer regulatory network. (A) Mechanisms contributing to edges 

in the activity regulatory network. Multiple analyses and datasets were used to 

characterize each edge (Methods). The fraction of edges annotated by each mechanism 

is shown in bars. The cumulative fraction of all edges with at least one mechanism is 

shown by the line. Transcriptional, characterized as transcriptional by the RPT analysis. 

PPI, protein-protein interaction. Regulon, overlapping regulon. (B) Overlap of edge 

mechanistic characterizations that are summarized in (A).  (C,D) Heatmaps representing 

gene expression (C) and protein activity (D) profiles after perturbation of Wnt-TGF 

pathway regulators. Statistical insignificant values (p > 0.05) are set to be white. (E) 

Multi-layer regulatory network represented by (C,D). If both transcriptional and activity-

level regulation are present, only transcriptional regulation is shown. Essential genes are 

defined as having Achilles dependency scores higher than 0.9. (F,G) Distribution of 

different patterns of 2-gene feedback loops in multi-level regulatory networks. (H,I) 

Distribution of different patterns of 3-gene feedback loops in multi-level regulatory 

networks. (J) Number of 2-gene or 3-gene feedback loops participated by different TRs. 

TRs were grouped into quintiles by their VIPER-inferred protein activities in HT-29 

against all other CCLE cell lines. Integrated networks were used for inferring protein 

activities. 
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Figure 4. Different modes of regulation revealed by different patterns of 

transcriptome responses. (A-C) Correlation between MYC perturbation efficacy and 

differential expression enrichment of MYC targets. (A) Log(CPM+1) of MYC expressed 

in cells expressing sgRNA targeting a different gene (“All Other”), cells expressing 

scrambled sgRNAs (“NonTargeting”), and cells expressing MYC-targeting sgRNAs 

shown in violin-boxplots. (B) Gene set enrichment analysis of MYC targets on gene 

expression signatures after 3 different MYC-targeting sgRNA perturbations. Empirical p-

values are shown. (C) Correlation between MYC perturbation efficacy and differential 

expression enrichment of MYC targets. Since knockdown efficacy was calculated 

against 100 randomly sampled pseudo-bulk control samples (see Methods), the median 

± SD for all 100 knockdown efficacy values are shown as horizontal error bars. Each 

GSEA analysis was run 5 times and the median ± SD of 5 normalized enrichment scores 

(NES) are shown as vertical error bars. (D) Log(CPM+1) of E2F7 expressed in different 

groups of cells. (E) Correlation between E2F7 perturbation efficacy and enrichment of 

E2F targets at both timepoints. (F) Mode of regulation of Wnt-TGF pathway regulators 

on hallmark cellular processes. Specific regulations that are corroborated by published 

evidence are listed in Table S5. Summary across each row or column is shown as 

stacked histograms. Results from T2 experiment are shown. 

Figure S1. Overview of TReK experimental framework. CROP-seq and related 

methods are based on the realization that, when using CRISPR technologies, cells can 

replace wells as the experimental vessel as long as we know which sgRNA(s) each cell 

contained. To that end, a number of strategies for capturing sgRNAs in single cells have 

been described (Adamson et al., 2016; Datlinger et al., 2017; Dixit et al., 2016; Hill et al., 

2018; Replogle et al., 2020). In CROP-Seq, the sgRNA expression cassette is 

duplicated during lentiviral integration. One copy of the sgRNA, though not functional, is 

polyadenylated and, consequently, can be captured by oligo(dT) primers. An alternative 

strategy is to directly capture non-polyadenylated, functional sgRNA transcripts by 

incorporating primer binding sites (Capture Sequence or CaptureSeq) into the sgRNA 

scaffold (Replogle et al., 2020). Here we combined the two strategies by replacing the 

original sgRNA scaffold on CROPSeq-Guide-Puro with Capture Sequence-containing 

sgRNA scaffold. To conduct TReK experiment, each single cell is transduced with a 

single sgRNA. The resulting pool of cells is subject to single-cell RNA sequencing. 

Transcripts containing the sgRNA sequence are expressed by both RNA polymerase II  
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and RNA polymerase III and are captured by oligo-dT primer and 10X Chromium 

CaptureSeq gel beads, respectively. The resulting whole transcriptome sequencing data 

is demultiplexed based on cell barcode as well as the sgRNAs that were expressed in 

each cell. 

Figure S2. Constitutive and inducible dCas9-expressing vectors. The constitutive 

dCas9 expressing vector (B) (Addgene #122205) was constructed based on the 

backbone of Addgene #85969 (Adamson, Norman et al. 2016) with UCOE (ubiquitous 

chromatin open element) (Antoniou, Harland et al. 2003) in the upstream of the promoter 

and blasticidin resistance as selection marker. To improve knockdown efficacy, we 

incorporated the bipartite repressor dCas9-KRAB-MeCP2 (Yeo, Chavez et al. 2018) into 

our vector. We also constructed a doxycycline-inducible dCas9-KRAB-MeCP2 vector (A) 

(Addgene #140690) using a TRE promoter (Gossen, Freundlieb et al. 1995). (C) 

Validation of the inducible vector. Colorectal cancer cell line HT-29 was lentiviral 

transduced with pLX-TRE-dCas9-KRAB-MeCP-P2A-BSD. After antibiotic selection with 

blasticidin (20 ug/ml for 5 days), 1 ug/ml doxycycline was added and cell lysate was 

collected after indicated time for subsequent western blot analysis of protein abundance. 

Figure S3. Preprocessing of TReK data. (A) Overview of preprocessing pipeline. (B) 

Background correction for sgRNA expression. A conceptual illustration of the distribution 

of log(CPM+1) of a specific sgRNA across all cells is plotted as a histogram. A 2-

Gaussian Mixture Model was fitted with red curve representing the low-mean Gaussian 

distribution and blue curve representing the high-mean Gaussian distribution. (C) 

Distribution of the number of detected genes in single cells with >5,000 UMI counts. (D) 

Relationship between total UMI count and number of sgRNA detected in single cells. All 

T2 cells were grouped into 6 equally-sized bins and the fraction of unique sgRNA, 

multiple sgRNA, and sgRNA-undetectable (no sgRNA) cells in each bin are shown. T2 

dataset was shown as a representative. (E-G) Number of RNA Polymerase II-

transcribed (polyA-ed), RNA Polymerase III-transcribed (non-polyA-ed), or consolidated 

sgRNA transcripts detected in each single cell.  

Figure S4. Robust knockdown achieved by short time CRISPR interference. (A,B) 

CRISPRi-mediated target gene depletion at pseudo-bulk sample level. For each sgRNA, 

the relative expression level of its target gene was calculated as described in Methods. 

Distribution of all sgRNAs is plotted. As a reference, a null distribution calculated from a 
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sgRNA-shuffled dataset is also shown. (C,D) CRISPRi-mediated target gene depletion 

at single-cell level in T2 experiment. Log(CPM+1) of target genes expressed in all cells 

expressing all other sgRNA (“All Other”), cells expressing scrambled sgRNAs 

(“NonTargeting”), and cells expressing on-target sgRNAs are shown in violin-boxplots. 

Figure S5. Consistency between perturbed gene expression signatures. (A,B) 

Pearson correlations between gene expression signatures of different sgRNAs targeting 

the same TR. For each perturbed TR, the highest correlation is shown among all 3 

pairwise correlations (from 3 sgRNAs). High-correlation perturbations (orange dots) are 

defined as sgRNAs having a Pearson correlation higher than the 99 percentile of 

Pearson correlations between sgRNAs targeting different TRs (grey dashed line). All 

Pearson correlations were calculated on 2,000 genes with the highest expression level 

variations across all perturbations. (C-E). Comparison of knockdown efficacy (C), 

number of differentially expressed genes (D), and number of cells (E) of high-correlation 

and low-correlation perturbations. Knockdown efficacy is shown as log2 fold change of 

target TR expression. Statistical significance was calculated using the two-tailed Mann-

Whitney U test. (F) Protein half-lives of early (T1) high-correlation TRs and late (T2) 

high-correlation TRs. Protein half-lives were measured in hours by mass spectrometry 

(Cambridge, Gnad et al. 2011). Statistical significance was calculated using the one-

tailed Mann-Whitney U test. (G,H) Consistency between genetically perturbed bulk 

sequencing and TReK perturbed transcriptomes. TReK gene expression signatures 

were calculated as described in Methods. In each GSEA plots, the upper gene set 

represents upregulated genes identified in bulk sequencing and the lower gene set 

represents downregulated genes. Bulk sequencing differentially expressed genes are 

taken from Wenzel et al., Oncogene 2020 by FDR=1x10-5 as threshold. 

Figure S6. Cell number saturation analysis of network refinement. 7 TRs are shown 

here selected based on two criteria: 1) TRs with statistically significant (p < 0.05) inactive 

activities in the T1 5-fold cross-validation; 2) TRs perturbed in more than 60 cells in T1 

5-fold cross-validation dataset. At each cell number, 20 sub-datasets were randomly 

down-sampled for 5-fold cross-validation and the median Stouffer’s method-integrated 

protein activities are shown. 
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Figure S7. Transcriptional and post-transcriptional interactions in multi-layer 

network. Intersections of different types of interactions in TRN and ARN interactions 

before (A) and after (B) removing ARN interactions with corresponding TRN interaction. 

Figure S8. Correlation between perturbation efficacy and enrichment of 

downstream transcriptional targets. (A) Correlation between CTNNB1 perturbation 

efficacy and enrichment of Wnt-β-catenin pathway genes. (B) Correlation between 

MYBL2 perturbation efficacy and enrichment of G2M checkpoint genes. 

Figure S9. Enrichment analysis of E2F targets after E2F7 perturbation at different 

timepoints. Gene set enrichment analysis of E2F targets on gene expression signatures 

after 3 different E2F7-targeting sgRNA perturbations. Empirical p-values are shown. 

Figure S10. Identification of upstream regulators and co-factors of MYC. (A) 

Log(CPM+1) of MAX expressed in all cells expressing sgRNA targeting other genes (“All 

Other”), cells expressing scrambled sgRNAs (“NonTargeting”), and cells expressing 

MAX-targeting sgRNAs shown in violin-boxplots. (B-D) GSEA of MYC targets after 

different MAX-targeting sgRNA perturbations. Empirical p-values are shown. (E) Venn 

diagram showing the overlap between TReK-predicted MYC modulators and CINDY-

predicted MYC modulators. Statistical significance of the overlap was calculated using 

the Fisher’s exact test. (F) Venn diagram showing MYC modulators, identified by both 

TReK and CINDY, with different mechanistic charaterizations. 
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