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Abstract

Pooled CRISPRi-mediated silencing of >1,000 transcriptional regulators expressed in
single colorectal adenocarcinoma cells, followed by single-cell RNA-seq profiling at two
timepoints, 1 day and 4 days, allowed reverse engineering the underlying tumor context-
specific, causal regulatory network. Furthermore, the availability of experimentally
derived, highly multiplexed gene reporter assays for each regulator, as identified by this
analysis, allowed accurate assessment of differential protein activity following silencing
of each regulator, thus providing proof-of-concept for generating comprehensive, tissue-
specific networks of transcriptional and post-translational interactions. Analysis of this
causal network allowed elucidation of complex autoregulatory mechanisms that have
eluded previous computational approaches and supported systematic elucidation of
cooperative mechanisms, where one regulatory protein can modulate the activity of
another regulatory protein, as well as transcriptional mimicry, where one regulatory

protein can phenocopy others.
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Introduction

Precise control of transcriptional cell state by transcription factors and co-factors is

critically required across all aspects of mammalian cell pathophysiology: from

determining cell identity during lineage differentiation to providing mechanistic control of
cancer cell plasticity. Yet, while global regulatory mechanisms involved in lineage
specification have been experimentally elucidated in a few model organisms, such as C.
elegans (Murray 2018) and sea urchin (Davidson, Rast et al. 2002), those relevant to
pathophysiology of mammalian cells are only sparsely understood, mostly as a result of

small-scale, hypothesis-driven assays (Takahashi 2017), or from sparsely validated

computational reverse engineering algorithms (Basso, Margolin et al. 2005, Huynh-Thu,
Irrthum et al. 2010). A key limitation of existing gene regulatory network (GRN) models is
their inability to resolve the directionality (i.e., causality) of transcriptional interactions,
thus limiting our ability to elucidate complex autoregulatory logic controlling cellular
homeostasis, in both physiologic and pathologic cell states. Homeostatic control of cell
state represents one of the most critical functions of GRNs, which is directly responsible
for the adaptive behavior necessary to maintaining cellular identity and function in
normal cell physiology as well as for the cell adaptation mechanisms that allow disease-
related cells to adapt and escape pharmacological treatment. Indeed, elucidation of
autoregulatory loops has been the Achilles’ heel of virtually all proposed computational
approaches and has required complex, multi-gene experimental assays for identification

and validation, even on a relatively small scale (Rajbhandari, Lopez et al. 2018).

Moreover, we and others have shown that the availability of accurate and
comprehensive GRN models is critical for the utilization of network-based algorithms for
the study of cellular phenotypes and functions. These include methodologies for (a)
accurately measuring protein activity from RNA-seq profiles (Alvarez, Shen et al. 2016),
including at the single-cell level (Obradovic, Chowdhury et al. 2021), (b) elucidating key
regulators of cellular programs (Boorsma, Lu et al. 2008, Alvarez, Shen et al. 2016,
Aibar, Gonzalez-Blas et al. 2017), (c) elucidating Master Regulators representing
mechanistic determinants of cell state in cancer and other diseases (Carro, Lim et al.
2010, Aytes, Mitrofanova et al. 2014, Rajbhandari, Lopez et al. 2018), (d) predicting

proteins capable of reprogramming cell-state (Dutta, Le Magnen et al. 2016, Arumugam,
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Shin et al. 2020), (e) dissecting drug Mechanism of Action (MoA) (Woo, Shimoni et al.
2015).

Unfortunately, since most GRNs have been computationally dissected (Basso, Margolin
et al. 2005, Pe'er 2005, Wang, Saito et al. 2009) and only sparsely validated, there are
still lingering concerns about whether they may truly recapitulate the underlying
regulatory logic of the cell. Finally, virtually all computationally dissected GRNs have
been reconstructed from steady-state molecular profiles - i.e., representative of cells
whose dynamics are slow compared to the half-life of gene products. These GRNs wiill
thus, by definition, miss key elements of dynamic/time-dependent gene regulation,
including the ability to model autoregulatory loop-mediated oscillatory behavior following

exogenous and endogenous perturbations (Ma, Wagner et al. 2005).

Unfortunately, in contrast to the experimental elucidation of protein-protein interaction
networks (Rual, Venkatesan et al. 2005), the development of genome-wide experimental
technologies for the reverse engineering of GRNs is challenging and remains elusive.
Ideally, one would perturb each regulatory protein and assess its effect on the
expression and activity of all other genes and proteins they encode, respectively, at
multiple timepoints. While this would have been essentially unfeasible, due to cost and
effort, until now, we were able to combine several recently-developed technologies into a
fully integrated experimental pipeline for the systematic, single-cell-based dissection of
GRNs. This Transcriptional Regulator Knockdown (TReK) pipeline leverages highly-
multiplexed, pooled CRISPRi-mediated silencing of transcriptional regulators in single
cells, followed by single-cell RNA sequencing (scRNA-seq) at multiple timepoints,
including a short timepoint (24h) to capture transient regulatory interactions and a longer
timepoint (96h) to capture regulatory interactions as cells start to achieve steady-states.
While still coarse, we expect this to provide an initial framework to start revealing time-

dependent regulatory cascades controlling critical genetic programs (Figure 1A).

To achieve optimal CRISPRi-mediated silencing of target genes, we combined an
enhanced CRISPRI repressor (Yeo, Chavez et al. 2018) with improved single guide RNA
(sgRNA) predictions (Sanson, Hanna et al. 2018) into pooled, single-cell CRISPRI
screens with transcriptomic readout using the recently developed CROP-seq technology
(Datlinger, Rendeiro et al. 2017). In addition, we developed an inducible version of Yeo

et al.’s enhanced CRISPR repressor (Yeo, Chavez et al. 2018), thus allowing precise
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timing of cell harvesting and scRNA-seq profiing as early as 12h after repressor

induction and gene silencing.

As a proof of concept, we applied TReK pipeline to dissect colorectal cancer-specific

GRNs, via single-cell perturbation and scRNA-seq profiling of HT-29 cells. Specifically,

we generated single-cell profiles of >150,000 HT-29 cells at two timepoints (24h and
96h), following pooled, CRISPRi-mediated, single-cell silencing of 1,007 transcriptional
regulators, thus measuring 6 billion uniqgue molecules (UMI-gene pairs), while
dramatically reducing labor, assay costs, and potential batch effects. The genes silenced
in this study were selected to include virtually all actively transcribed transcriptional
regulators (hereafter TRs) - including transcription factors (TFs) and co-factors (co-TFs),
such as (de)acetylases, (de)methylases, and other chromatin remodeling enzymes - that
were detected as either significantly expressed or transcriptionally active in this cell line.
Colorectal adenocarcinoma (COAD) was selected as a relevant tumor context because
of lack of effective therapy and recent elucidation of Master Regulator proteins defining 8
molecularly distinct subtypes, including 3 subtypes highly enriched in MSI-high tumors
and an aggressive, genomically-stable subtype characterized by very poor outcome
(Paull, Aytes et al. 2021). Thus, we expected that a high-quality experimentally dissected
GRN would be a first step towards the elucidation of critical COAD tumorigenesis and

progression mechanisms.

When integrated into existing computational reverse engineering methods, the TReK
data was instrumental in allowing significant improvement in GRN model accuracy, as
objected assessed based on the ability to recapitulate changes in the activity of the
proteins encoded by silenced genes both at 24h and 96h. These studies allowed
reconstructing many established transcriptional and post-translational mechanisms,
refining our understanding of protein-protein interactions in complexes, and most
critically, reconstructing fully integrated, causal GRNs that include both transcriptional

and post-translational interactions (Figure 1B).

Results

Large-scale CRISPRi-mediated TR silencing in HT-29 cells at two timepoints: To

generate the perturbational data needed for the systematic dissection of COAD-specific
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molecular interactions, leading to a full GRN, we used assays that combine CRISPRI
(Gilbert, Horlbeck et al. 2014) and CROP-seq (Datlinger, Rendeiro et al. 2017)
technologies (Figure S1; Methods). Specifically, we measured changes in gene
expression, within individual HT-29 cells, as measured by Chromium scRNA-seq profiles,
following pooled CRISPR/dCas9-mediated silencing of each significantly expressed or

active transcriptional regulator protein (see Methods) (Figure 1C).

Using this pipeline, we thus generated scRNA-seq profiles following silencing of 1,007
genes in HT-29 cells, at two timepoints (T1 = 24h, T2 = 96h), using three sgRNAS per
gene. To select target genes, we first leveraged a manually curated repertoire of 2,527
transcriptional regulators (hereafter TRs) annotated as either TFs or co-TFs in Gene
Ontology (Alvarez, Shen et al. 2016) and then sub-selected those that were either
significantly expressed or active in HT-29 cells (see Methods). Thirty scrambled sgRNAs
(sgCtrls) were also included as non-targeting negative controls, resulting in a library
comprising 3,051 sgRNAs (Table S2). To achieve robust CRISPRi-mediated gene
silencing, we engineered lentiviral plasmids supporting either constitutive or doxycycline-
inducible expression of the enhanced repressor dCas9-KRAB-MeCP2 (Yeo, Chavez et
al. 2018) (Figures S2A and S2B; Methods). To assess the actual length of effective gene
silencing, we assessed the time required for the CRISPRI repressor to be transcribed
and translated, following its doxycycline-inducible expression (Figure S2B; Methods).
This shows that cells collected at 24h following dCas9-KRAB-MeCP2 induction (T1),
have effectively undergone ~12h of sustained repression. For the second timepoint, we
used cells transduced with a constitutive dCas9-KRAB-MeCP2 expression plasmid
(Figure S2C), harvested at 96h following lentivirally-mediated transduction with the
sgRNA library (T2). HT-29 cells were selected also because, in mid-log growth, they
have high transcriptome complexity, with a median of 35,000-42,000 UMIls/cell, at about
30% sequencing saturation and >90% of reads in cells, thus supporting follow-up

analyses.

At each timepoint, >70,000 single-cell transcriptomes were sequenced (Figure 1D),
followed by removal of low-quality profiles (<5,000 UMIs) and of profiles with two or more
detected sgRNAs. More than 60% of the single cells passed this strict QC filter, thus
producing a dataset with a median of 14-15 high-quality single-cell transcriptomes for
each sgRNA (Figure 1E), yielding a total of 44-47 cells, on average, in which each target

gene had been silenced by one of the three corresponding sgRNASs.
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Achieving efficient, systematic gene silencing across a large pooled gene library is still a
rather elusive goal with first-generation CRISPRI. Thus, it was critical to validate the
performance of our second-generation CRISPRi implementation (Sanson, Hanna et al.
2018, Yeo, Chavez et al. 2018). To accomplish this, we performed a careful quality-
control analysis. We analyzed the efficacy of gene silencing compared to controls
(Figure S4), measured the correlation between different gRNAs targeting the same gene
(Figures S5A and S5B), and compared our scRNA-seq gene silencing to published
CRISPR knockout data (Figures S5G and S5H). In addition, we analyzed the factors that
affect successful silencing (Figures S5C-S5F; Methods). Overall, we found that for 70%
of tested TRs, we could achieve 50% silencing, sufficient to reliably identify targets, at
both timepoints, with the later timepoint providing critical information for proteins with a

long half-life.

Reconstruction of GRNs inferred from computational, experimental, and
integrative analysis: As previously discussed, computationally inferred GRNs are
typically reverse engineered from steady-state data, thus potentially reflecting broad co-
expression patterns that may not be representative of direct regulatory events.
Moreover-with the exception of Dynamic Bayesian Networks (Smith, Yu et al. 2006),
which have never been validated in a mammalian context-, these methodologies are
unable to elucidate auto-regulatory control mechanisms and fail to adequately represent
regulators proteins whose expression represents an inadequate proxy of transcriptional

activity.

For instance, while the ARACNe algorithm (Margolin, Nemenman et al. 2006) effectively
eliminates indirect interactions using the Data Processing Inequality theorem and has
been extensively experimentally validated, it still suffers from the above-mentioned
limitations. To objectively assess the ability of TReK assays to improve GRN
reconstruction quality, we compared three networks, including (a) purely
computationally-inferred ARACNe networks inferred from the TReK scRNA-seq profiles
at T1 or T2, (b) a purely experimental network assembled from genes that are
differentially expressed following silencing of each regulator’s silencing at T1 or T2, and
(c) an integrated network that combines both computational and experimental analyses
(see Methods). For the latter, we modified a two-branch generalized linear model (GLM)
that was previously used for single-cell differential expression analysis (Finak, McDavid
et al. 2015) (Figure 2A; Methods). The integrated network combines ARACNe p-values
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for individual regulator-target interactions as well as the differential expression of the
target following silencing of the regulator in the TReK assays, thus accounting for both
interaction directionality and strength. Following GLM analysis, 65% and 61% of the TR
targets inferred at T1 and T2 were derived from TReK data, respectively, with the
remaining 35% and 39% coming from ARACNe.

Integrative GRN reverse engineering outperforms both computational and
experimental methodologies: To assess network quality, we combined two metrics
including (a) detection of regulatory protein activity decrease in the subset of cells where
they were effectively silenced, (b) consistency with DNase-seq data (Mei, Qin et al. 2017,
Zheng, Wan et al. 2019). For the first metric, we assessed protein activity using the
VIPER algorithm, as determined by the differential expression of its target genes as
represented in each of the three networks (computational, experimental, and integrated).
A highly accurate network would show gene expression increase of induced targets and
decrease of repressed targets in cells where the regulator is silenced. Thus, the more
accurate the network is, the more accurately the activity of a TR should be measured by
the differential expression of its regulon genes.

For this analysis, we selected 250 TRs, whose CRISPRi-mediated silencing produced =
50% silencing at both timepoints, in at least 15 cells/sgRNA (see Methaods), as the gold
standard set, based on the assumption that their transcriptional activity would be
significantly affected by silencing and presented in a sufficient number of cells to support
the analysis. We then assessed GRN accuracy by 5-fold cross-validation within each
timepoint (see Methods), based on VIPER-based TR inactivation assessment based on
the differential gene expression signature of cells where the TR was effectively silenced
vs. negative control cells transduced with non-targeting sgRNAs. In addition, we also
performed cross-timepoint validation—i.e., assessing how well GRNs inferred at one
timepoint could improve protein activity inference accuracy at the other timepoint (see
Methods). The analysis clearly shows that while the experimental GRN outperforms the
computational one, especially at the shorter timepoint (24h) the integrated GRN
significantly outperforms both (Figure 2B). These results are consistent with
expectations that computational GRNs will perform better as cells achieve steady-state
and will thus fail to identify transient regulatory events that may be compensated by

autoregulatory loops. It also suggests that the pure experimental data may be noisy and
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thus introduce false positive and false negative targets that are then optimally refined by
the computational analysis.

To understand the factors that most contributed to improved GRN performance, we first
tested whether TRs inducing a larger signature of significantly differentially expressed
genes would outperform those with smaller effect size. Indeed, inferred protein activity
accuracy was significantly correlated with the number of differentially expressed genes
(p < 2.7e-9) (Figure 2C). We also tested whether silencing the most likely Master
Regulators of cell-state would induce stronger transcriptional signatures. Specifically, we

first inferred the differential activity of all tested TRs in HT-29 against the average of all
CCLE cell lines (Ghandi, Huang et al. 2019) using VIPER with the integrated network
(see Methods). We then measured the correlation between their VIPER-inferred
differential activity in HT-29 cells and their differential activity following CRISPRI-
mediated silencing. Correlations were significant (p = 2.4e-3 at T1; p = 4.1e-9 at T2)
suggesting that silencing critical regulators of cell-state would induce stronger
transcriptional signatures (Figure 2D). Finally, across 4 cross-validations, 27 of the 38
TRs (71%) that were silenced in 260 cells were significantly inactivated based on VIPER
analysis (Figures 2C and 2D), suggesting that TR targets inference—and thus activity
measurement—could be further improved by increasing the number of cell profiles in
TReK assays. Indeed, saturation analysis shows that the VIPER-measured protein
activity of most TRs sampled in = 60 cells converged to a narrow range as an increasing

number of cells were included in the analysis (Figure S6).

For the second metric, we show that the consistency of target gene genomic loci with
open chromatin, as assessed by DNase-seq in HT-29 cell lines (Mei, Qin et al. 2017,
Zheng, Wan et al. 2019), significantly (p = 1.52e-8 at T1; p = 3.43e-7 at T2) improves in
the integrated GRN at both timepoints, compared to the ARACNe computational
networks (Figure 2E).

Based on these results, the integrated computational/experimental GRNs was selected

as the optimal one in all subsequent analyses.

Integrated GRNs capture multi-layer molecular interactions: A key goal of cellular
network reverse engineering has been the assembly of molecular interaction networks

that integrate distinct mechanisms of gene-product interaction. GRNs capture
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transcriptional regulation effects, mediated by regulatory proteins binding the regulatory
region of a target gene, either directly or via cognate binding partners. However, these
networks fail to capture the post-transcriptional effect of protein X on protein Y. For
instance, two transcription factors may bind the same DNA-binding motif (e.g., ARNT
and MYC binding E-boxes) thus inducing a stoichiometric mediated dependency where
over/under-expression of one (e.g., ARNT) may induce activity increase/reduction of the
latter (i.e., MYC), respectively (Wang, Saito et al. 2009). Similarly, a chromatin
remodeling enzyme may result in epigenetic silencing of the targets of another TR.
Finally, a TR may regulate a ubiquitin ligase adapter protein, thus inducing
proteasomally-mediated degradation of another TR (Chen, Alvarez et al. 2014). A
unique advantage of the TReK data is that it supports dissection of both transcriptional
and post-transcriptional interactions, based on the VIPER inferred activity of each TR,
following silencing of another TR, allowing reverse engineering of the first integrated,
multi-layer TRN (transcriptional regulatory network) and ARN (activity regulatory network)

for a human cell.

To further improve sensitivity, we integrated the T1 and T2 ARN networks, by taking the
union of the regulons inferred at each timepoint, while removing mode-inverted
interactions at T2—i.e., interactions detected as positive at T1 and repressive at T2, or
vice versa (see Methods). This produced an integrated ARN comprising 23,607 activity-
regulating interactions (false discovery rate, FDR < 0.1) involving 949 of the 1007 TRs.
Since protein activity can be regulated by many complementary mechanisms, we
studied several TR interaction mechanisms in greater detail. Specifically, we considered
four non-mutually exclusive mechanisms that may account for ARN interactions,
including transcriptional regulation, direct or indirect relationships in the same pathway,

physical protein-protein interactions, and co-regulation of the same target genes.

To assess transcriptionally mediated ARN interactions—i.e., interactions where silencing
of TRy affects the activity of TRy because TR, transcriptionally regulates TRy, we
assessed how much of the differential activity of each TR could be accounted for by the
differential expression of its encoding gene. Overall, only 2.9% (n = 685) of inferred ARN
interactions could be accounted for by this mechanism (Figures 3A and 3B). Second, an
examination of each TR’s pathway membership showed that ~44% (n = 10,347) of ARN
interactions were detected between same-pathway TRs. Third, ~7.0% (n = 1,650) of

ARN interactions were between structural cognate binding partners, as reported in
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protein-protein interaction databases (see Methods). Finally, a small fraction (4.2%, n =
980) of the interactions were explained by significant overlap between regulons (see
Methods). In addition to ARN interactions, the TRN comprised n = 121,414 interactions
(FDR < 0.2) detected by differential expression analysis, including n = 9,812 TR-TR

interactions.

Analysis of integrated TRN/ARN networks: Integration of TRN and ARN interactions
into a multi-layer network (MLN = TRN + ARN) contributes to a more holistic
understanding of biological mechanisms. For instance, we used the more
comprehensive T2 network to analyze an MLN sub-network comprising MYC and six
established MYC regulators in the Wnt and TGF-B pathways (Figures 3C-3E). Both
pathways are known to play critical roles in COAD, contributing to increased activity of
the MYC proto-oncogene, by repression of TGF-f signaling and hyperactivation of Wnt
signaling (Cancer Genome Atlas 2012). Our analysis recapitulated key, well-established
interactions, such as the reciprocal activation (positive feedback loop) between TCF7L2
and CTNNB1 (Brantjes, Barker et al. 2002), which is a crucial step in the activation of
the Wnt signaling pathway. Notably, the essential proto-oncogenes (MYC, CTNNB1, and
TCF7L2) form a highly interconnected module with multiple activating interactions
(Figure 3E, red edges). In contrast, the non-essential tumor suppressors SMAD2 and
SMAD3 are identified as repressors of the MYC-centric oncogenic module (Figure 3E,
blue edges). While some of these interactions are well-established in the literature (Yagi,
Furuhashi et al. 2002, Rennoll and Yochum 2015), our analysis identified several novel
interactions, such as the MYC-mediated transcriptional activation of TCF7L2 and
CTNNB1, and the negative feedback loops formed by SOX9 with MYC, CTNNB1, and
TCF7L2, which further increase our understanding of TGF-B/Wnt-mediated MYC
dysregulation in COAD. Not surprisingly, consistent with the fact that SMAD4 has a
nonsense mutation in HT-29, according to the COSMIC database (Tate, Bamford et al.
2019), we did not detect SMAD4 interactions with other proteins.

Analysis of the full MLN identified a preponderance of ARN vs. TRN TR interactions (n =
23,607 vs. n = 9,812, respectively) (Figure S7A). To further delineate transcriptional and
post-transcriptional regulation in the ARN, we removed ARN interactions that were
explained by a corresponding TRN interaction, this process resulted in n = 22,922 post-
transcriptional interactions, including activating vs. repressive TR interactions (n =
20,278 vs. 12,456, respectively) (Figure S7B). The resulting networks showed
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statistically significant overlap with both MultiNet (p = 2.94e-19) (Khurana, Fu et al. 2013)
and HumanNet (p = 3.86e-60) (Hwang, Kim et al. 2019) (Table S3).

Auto-regulatory loops are significantly over-represented in the multi-layer network:
Auto-regulatory feedback represents a ubiquitous regulatory mechanism in biological
systems, and some associated feedback loop motifs are significantly overrepresented
(Alon 2007). A unique aspect of the TReK assays is that they allow direct, causal
dissection of autoregulatory loops because each TR is independently silenced, thus

breaking the upstream but not the downstream logic of the loops in which it is involved.

2-Protein_Loops: Systematic analysis of feedback loops comprising 2 proteins in the

MLN identified 1,816 instances, comprising 3 different motifs: positive feedback (two
positive interactions), negative feedback (one positive and one repressive interaction),
and genetic switches (two repressive interactions) (Figure 3F). Compared to the null
distribution obtained by randomizing MLN edges, while preserving its overall topology,
we observed significant overrepresentation of all loop motifs (3.3x, 2.4x, 1.89x) (Figure
3G). Interestingly, compared to the total number of 2-protein loops, positive feedback
loops were further over-represented, while negative feedback loops and genetic
switches were slightly under-represented (p < 2.2e-16 by chi-square test).

3-Protein _Loops: In addition, 10,260 3-protein loops were identified across 4 different

motifs (Figure 3H), depending on the number of positive and negative interactions
(Figure 3l). Similar to 2-protein loops, we observed overrepresentation of positive loops

(p < 8.94e-12 by chi-square test).

Loops comprising proteins with greater differential activity in HT-29 cells were more
likely to be detected. Indeed, our analysis showed that loops comprising proteins in the
first quintile of all TRs, ranked based on their differential activity in HT-29 against the
average of CCLE, formed almost twice as many loops compared to other proteins
(Figure 3J). This suggests that the proteins responsible for implementing and

maintaining cell-state homeostasis are more likely to participate in feedback loops.

Variable knockdown efficacy and time-course data reveal systematic use of
autoregulatory feedback: While variable sgRNA silencing efficacy is normally seen as
a potential limitation of the CRISPRIi technology, in the context of GRN reverse

engineering, it can actually help further elucidate the presence of regulatory feedback
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(auto-regulation). In the absence of auto-regulatory feedback, the more effective the
silencing of a TR, the stronger the activation or repression of its targets. However, auto-
regulatory loops may induce significant, time-dependent oscillations in regulatory targets

expression or activity.

For instance, of the 3 sgRNAs targeting MYC, two induced moderate (60%) and weak
(17%) silencing, respectively, while the third failed to produce any silencing. Gene Set
Enrichment Analysis (GSEA) (Subramanian, Tamayo et al. 2005) confirmed that
enrichment of MYC targets in genes under-expressed following its silencing tracked with
silencing efficacy (Figures 4A-4C). Similar correlation between silencing efficacy and
target gene expression in the associated pathways was observed for many other genes,
such as CTNNB1/Wnt and MYBL2/cell cycle (Figure S8). More interestingly, however,
for some TRs, we observed virtual inversion of gene expression signature behavior as a
function of sgRNA efficacy, implicating the existence of strong autoregulatory
mechanisms. E2F7, a transcriptional repressor of the E2F family (de Bruin, Maiti et al.
2003, Di Stefano, Jensen et al. 2003, Westendorp, Mokry et al. 2012), provides an
interesting example of such behavior. Under normal circumstances, repressing E2F7
activity will cause upregulation of its target genes (Segeren, van Rijnberk et al. 2020).
Indeed, three sgRNAs targeting E2F7 induced significant E2F target upregulation (p =
0.01, 0.037, and 0.23, respectively) at the earlier timepoint (T1) (Figures S9A-S9C).
However, at the later timepoint (T2 = 96h) the guide with the highest efficacy induced
complete inversion of target expression (mode inversion), with significant E2F target
downregulation (p < 0.001) (Figures 4D, 4E, and S9D). Since E2F targets, which are
involved in cell cycle progression, are known to undergo oscillatory behavior
(Westendorp, Mokry et al. 2012), consistent with overcompensation and mode inversion
following its most significant silencing. Similar to E2F7, we observed highest-efficacy vs.
low-efficacy mode inversion for 57 additional TRs at T2, suggesting their participation in
strong autoregulatory loops. For 10 (>17.5%) of those highest-efficacy sgRNAs we
observed mode inversion between T1 and T2 (Table S4). This is 7-fold what would be

expected in the null hypothesis (see Methods).

Regulation of Hallmark Cellular Processes: To elucidate regulators of fundamental
cellular processes, as cell achieve stable state, we assessed enrichment of genes
differentially expressed at 96h following silencing of each TR in genes comprising 50

“hallmark” cellular processes by GSEA analysis (Liberzon, Subramanian et al. 2011,
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Liberzon, Birger et al. 2015). Potential mode of regulation was categorized as activation
if silencing a TR caused downregulation of a cellular process, repression if silencing a
TR caused upregulation of a cellular process. To address the effect of potential auto-
regulatory loops (see previous section), we included a third category called “mixed” if
both downregulation and upregulation were observed after silencing a TR with different
sgRNAs (see Methods). To minimize false discovery rates, we only considered TRs for
which at least 2 sgRNAs produced concordant enrichment. While this undoubtedly
prevents detection of bona fide hallmark process regulators, for which there was only 1
effective sgRNA, the analysis revealed many COAD-specific hallmark process regulators,
including both established and previously uncharacterized ones. For example,
considering 16 TRs in the Wnt/TGF pathway (Figure 4F), we recapitulated regulation of
both mTORCL1 signaling and DNA repair by MYC (Hironaka, Factor et al. 2003, Karlsson,
Deb-Basu et al. 2003, Yue, Jiang et al. 2017), of spermatogenesis by ID2 (Sablitzky,
Moore et al. 1998), and of epithelial-mesenchymal-transition (EMT) by B-catenin (Vu and
Datta 2017). Indeed, cursory search of the literature supported 24 of the 55 inferred
hallmark regulatory interactions associated with the 16 TRs (Table S5). Thus, availability
of this analysis to all 1,007 TRs provides a powerful new resource to study regulatory
processes and mechanisms in this COAD (Table S6).

Identification of upstream regulators and co-factors: The TReK assays also support
identification of regulatory hierarchies and co-transcriptional factors. For instance, as
expected, CRISPRi-mediated silencing of MAX, an established co-factor and modulator
of Myc activity (Dang 2012), significantly affected MYC target expression (p < 0.001)
(Figures S10A-S10D). To further confirm enrichment of potential MYC modulators in
TRs that affect expression of MYC tatgets, we first assessed all TRs whose silencing
affected the targets of a second TR, using the CINDy algorithm (Giorgi, Lopez et al.
2014), CINDy is an improvement of the original MINDy algorithm (Wang, Saito et al.
2009), which uses the conditional mutual information I[TR;T|M] between a TR and its
targets T, given the expression of a candidate modulator M to predict TR activity
modulators. Experimental validation rates for these algorithms have been in the 70%-
80% range and they have been shown to recapitulate 60% to 70% of known upstream
pathway interactions in lung adenocarcinoma and lymphoma (Wang, Saito et al. 2009,
Giorgi, Lopez et al. 2014).
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We found significant overlap between CINDY and TReK-based predictions of candidate
MY C-activity modulators (Figure S10E), with 115 of the 289 TReK-predicted ones also
predicted by CINDY (p = 0.014 by Fisher’'s exact test). MLN-based characterization of
these 115 TRs in the MLN identified 5 as upstream MYC transcriptional regulators, 13 as
upstream post-transcriptional regulators, and 27 as physical interactors, based on
PrePPI protein-protein interactions (Zhang, Petrey et al. 2013) (Figure S10F).

Discussion

While experimental and computational methodologies for the dissection of protein-
protein interaction (PPI) networks have achieved relative maturity (Zhang, Petrey et al.
2012, Rolland, Tasan et al. 2014), the inference of transcriptional and post-
transcriptional interactions is still broadly debated, despite the role they have played in
elucidating novel biological mechanisms, disease drivers, and phenotype (Chen, Alvarez
et al. 2014, Alvarez, Shen et al. 2016, Rajbhandari, Lopez et al. 2018, Arumugam, Shin
et al. 2020). Among others, current limitations include: (a) the relatively low value of
DNA-binding matifs, given their ubiquitous presence in open chromatin regions, the fact
that most TFs do not bind DNA via their canonical motif, and the uncertainty of whether
binding induces functional regulation (b) the inability of computational methods to assess
causality and directionality thus preventing detection of autoregulatory loops playing a
key role in cell homeostasis and (c) the very sparse experimental validation of
transcriptional targets. This is largely due to the fact that technologies for the systematic
RNA-seq profiling of specific cellular contexts following perturbation of each
transcriptional regulator (TR) have been lacking or have been excessively labor-

intensive and costly.

By combining two technologies, including 2" generation, inducible, CRISPRi-mediated
gene silencing and CROP-Seq, supporting single-cell RNA-seq profiling with knowledge
of the specific single guide RNA(s) in each cell, we have developed a Transcriptional
Regulator Knockdown methodology (TReK) for the systematic, experimentally-based
reconstruction of gene regulatory (GRN) and activity regulatory (ARN) networks. GRNs

comprise molecular interactions where a specific TR affects the expression of another
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gene, while ARNs comprise molecular interactions where a specific TR affects the
transcriptional activity of another TR.

While the current implementation of TReK provides a critical proof-of-concept of the
technology, its application to a colorectal cell line HT-29 already overcomes critical
limitations of current methodologies for GRN inference, while allowing construction of
previously unavailable ARNs representing key, biologically relevant post-transcriptional
and post-translational interactions. In particular, TReK provides key experimental
evidence supporting TR target inference based on changes in their expression following
CRISPRi-mediated TR silencing at two timepoints. The rationale for the two timepoints is
multifold. First, this allows incorporating proteins with different half-lives in the analysis.
Second, this allows detection of autoregulatory effects where the targets of a TR are
inversely correlated in their expression at the two timepoints; critically, decoupling TRs
from their upstream regulation, via direct biochemical perturbation, allows deconvoluting
both interaction directionality (i.e., A—B vs. A—B) and autoregulatory loops (e.g.,
A—B—A), which has been challenging using computational approaches. The data
presented here, which include analysis of >150,000 single-cell profiles representing
CRISPRi-mediated silencing of 1,007 expressed TRs in HT-29 cells at 24h and 96h, not
only confirms previous interactions, such as those between MYC and WNT/B-catenin
pathway proteins in colon cancer, but identifies thousands of novel interactions and
experimentally assessed effects of individual TRs on cancer hallmarks,
including >15,000 experimentally dissected 2- and 3-protein loops contributing to cellular

homeostasis.

Critically, while still limited, this study provides key indications on the number of cells that
will be necessary for future implementations of the TReK assays to ensure accurate
representation of all transcriptional regulators. Specifically, saturation analysis (Figure
S6) suggests that = 60 cells per silenced TR would be sufficient to stabilize protein
activity predictions based on TR targets, using the VIPER algorithm, thus opening the
way to dramatic improvements in the assessment of mechanistic determinants of cellular
phenotypes, not only in cancer but across all accessible cell states. In addition, similar
studies targeting signaling proteins would also be possible, allowing the activity of TRs to
be used as gene reporter assays for their upstream signaling modulators as well as for
deconvoluting the complete logic of signal transduction, including autoregulatory loops.

The cost of a TReK experiment is still relatively high; however, the results of this proof-
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of-concept experiment combined with the advent of additional technologies such as scifi-
RNA-seq (Datlinger, Rendeiro et al. 2021) and the ever-decreasing cost of sequencing
suggests that a full TReK experiment including all TRs and signaling proteins (~6,500
proteins in total) at 4 timepoints and with an average of 60 cells per silenced protein,
could be performed for less than $20,000, thus providing an entirely novel perspective
on transcriptional and post-translational regulation. Furthermore, inclusion of proteins
representing targets of FDA-approved or late-stage development small molecular
compounds, combined with their genome-wide perturbational profiles (Woo, Shimoni et
al. 2015), could provide a remarkable ability to deconvolute drug mechanism of action
and to identify drugs capable of activating or inactivating any desired regulatory program,
as previously shown using computationally based GRNs, only with dramatically

improved accuracy and sensitivity.

Among the limitations of the current approach, one should consider that perturbations
may be implemented in single cells in different stages of cell cycle. As a result, cell
cycle-dependent regulatory events may require additional regression of cell cycle stage.
However, with = 60 cells per silenced TR, such regression would become eminently
possible. Additionally, current sSgRNAs present highly different gene silencing efficiency,
with about 10% to 20% of the genes not silenced at all. However, this can be effectively
addressed by performing a smaller-scale TReK experiment to first select sgRNAs that
provide optimal silencing, thus saving significant effort and cost in the larger experiments
by removing the need to sequence a large number of cells where the target gene is not

effectively silenced.

Analysis of the GRN and ARN networks already produced key novel findings. However,
much as it has happened for PPI networks, comprehensive assessment of the TReK
GRN/ARN networks will only be possible as they are explored by biologists with precise,

phenotypically driven questions.
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Methods

REAGENT or | SOURCE IDENTIFIER
RESOURCE

Chemicals, Competent Cells, and Recombinant Proteins

FastDigest BamHI ThermoFisher cat. no. FD0054
FastDigest Sbfl ThermoFisher cat. no. FD1194
FastDigest FspAl ThermoFisher cat. no. FD1664
FastDigest Pmel ThermoFisher cat. no. FD1344

FastDigest Mph1103| ThermoFisher cat. no. FD0734

FastDigest Eco105I ThermoFisher cat. no. FD0404

FastDigest Esp3l ThermoFisher cat. no. FD0454

Q5 Hot Start High- | NEB cat. no. M0494L

Fidelity 2x Master Mix

Thermo T4 DNA | Thermo cat. no. ELO011

Ligase Scientific

One Shot™ StbI3™ | Invitrogen cat. no. C737303
Chemically

Competent E. coli

NEBuilder HiFi DNA | NEB cat. no. E2621L
assembly master mix

NEB T4 ligation buffer | NEB cat. no. B0202S
T4 polynucleotide | NEB cat. no. M0201S
kinase

FastAP ThermoFisher cat. no. EF0651

Thermosensitive
Alkaline Phosphatase

Endura E. coli cells Lucigen cat. no. 60242-1
DMEM medium Gibco cat. no. 10569010
McCoy’s 5A Modified | Gibco cat. no. 16-600-082

Medium
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Tetracycline-free FBS | Omega cat. no. FB-15
Scientific
Lipofectamine 3000 Invitrogen cat. no. L3000015
polybrene Millipore cat. no. TR-1003-G
blasticidin Research cat. no. B12200-0.05
Product
International
puromycin AG Scientific cat. no. P-1033
RIPA buffer Fisher Scientific | cat. no. 50-843-016
protease inhibitor Fisher Scientific | cat. no. PI78430
blocking buffer Fisher Scientific | cat. no. PI37536

Recombinant DNA

pLX-UCOE-SFFV-
dCas9-KRAB-MeCP2-
P2A-BSD

This paper

Addgene Plasmid #122205

UCOE-SFFV-dCas9-
BFP-KRAB

Adamson et al.,
2016

Addgene Plasmid #85969

dCas9-KRAB-MeCP2

Yeo et al., 2018

Addgene Plasmid #110821

pLX-TRE-dCas9- This paper Addgene Plasmid #140690
KRAB-MeCP2-P2A-

BSD

PB-TRE-dCas9-KRAB- | This paper Addgene Plasmid #122267

MeCP2

PB-TRE-dCas9-VPR

Chavez et al.,
2015

Addgene Plasmid #63800

CROPseg-Guide-Puro

Datlinger et al.,
2017

Addgene Plasmid #86708

CROPseq- This paper In deposit to Addgene
CaptureSeq-Guide-

Puro

pMDLg/pRRE Dull et al., 1998 | Addgene Plasmid #12251
pRSV-Rev Dull et al., 1998 | Addgene Plasmid #12253
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pMD2.G

Trono Lab
Packaging and
Envelope
Plasmids

(Unpublished)

Addgene Plasmid #12259

Critical Commercial Assays, Kits and Devices

QIAquick Gel | QIAGEN cat. no. 28704

Extraction Kit

AMPure XP bead Beckman cat. no. A63880
Coulter

1 mm electroporation | BioRad cat. no. 1652089

cuvettes

Amaxa™ Lonza N/A

Nucleofector™ II

ZymoPURE Il Plasmid | Zymo Research | cat. no. D4200

Midiprep

0.45 pm PVDF Millex- | Millipore cat. no. SLHVO33RS

HV Syringe Filter

Amicon Ultra-15 | Millipore cat. no. UFC910024

Ultracel-100

Centrifugal Filters

Dead Cell Removal Kit | Miltenyi cat. no. 130-090-101

CellTiter-Glo® Promega cat. no. G7570

Luminescent Cell

Viability Assay

Pierce™ BCA Protein | Thermo Fisher cat. no. 23225

Assay Kit

Pierce™ ECL Western | Fisher Scientific | cat. no. P132106

Blotting Substrate

NuPAGE 4%-12% Bis- | Invitrogen cat. no. NP0O335BOX

Tris Gel

iBlot 2 Dry Blotting | ThermoFisher N/A

System

nitrocellulose
membrane

Fisher Scientific

cat. no. 1B23001
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Experimental Models: Cell Lines

HT-29 ATCC HTB-38
Antibodies

mouse polycloncal | Takara Bio cat. no. 632607
anti-Cas9

mouse monoclonal | Cell  Signaling | cat. no. 3700S
anti--actin Technology

mouse monoclonal | Santa Cruz | cat. no. sc-2357
anti-rabbit IgG-HRP Biotechnology

goat monoclonal anti- | Santa Cruz | cat. no. sc-2031
mouse IgG HRP Biotechnology

Software and Algorithms

R-3.5.1 The R project https://www.r-project.org/

Cell Ranger- 3.2.0 10X Genomics https://support.10xgenomics.com/single-
cell-geneexpression/

software/pipelines/latest/what-is-

cellranger

Name Sequence (5’ to 3’) Use
TRE-dCas9- GCTAGCTGCATTCGTC | pLX-TRE-dCas9-KRAB-MeCP2-
KRAB-MeCP2- TTCAAGAATTCCTC P2A-BSD cloning
P2A FWD
TRE-dCas9- GCTTGGCCATTCCGGA | pLX-TRE-dCas9-KRAB-MeCP2-
KRAB-MeCP2- TCTATCCATGAATTCA | P2A-BSD cloning
P2A REV GGGC
BSD-WPRE- TAGATCCGGAATGGCC | pLX-TRE-dCas9-KRAB-MeCP2-
JLTR- AAGCCTTTGTCTCA P2A-BSD cloning
AmpR_FWD
BSD-WPRE- AGTGCTGCAATGATAC | pLX-TRE-dCas9-KRAB-MeCP2-
3LTR-AmpR_REV | CGCGAG P2A-BSD cloning
ori-pSv40_FWD CTCGCGGTATCATTGC | pLX-TRE-dCas9-KRAB-MeCP2-

AGCACT P2A-BSD cloning
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ori-pSV40_REV AGCAGTGCAGCTTTTT | pLX-TRE-dCas9-KRAB-MeCP2-

CCTTTGTGG P2A-BSD cloning
5LTR-RRE- CCACAAAGGAAAAAGC | pLX-TRE-dCas9-KRAB-MeCP2-
cPPT/CTS FWD | TGCACTGCT P2A-BSD cloning
5LTR-RRE- TGAAGACGAATGCAGC | pLX-TRE-dCas9-KRAB-MeCP2-

cPPT/CTS_REV TAGCTTGCCAAACCT P2A-BSD cloning

CDX2_sgRNA-1 GGTAGTCCGGGTACT | Validation of pLX-TRE-dCas9-KRAB-
GCGGG MeCP2-P2A-BSD

SgRNA-Amp-FWD | TGGAAAGGACGAAACA | sgRNA library
CCG
oligonucleotide amplification

SgRNA-AmMp-REV | AACTTGCTATGCTGTT | sgRNA oligonucleotide library
TCCAGC amplification

Experimental procedures

Cloning and validation of the pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD

plasmid

To clone the pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD plasmid, we prepared
the vector backbone by incubating 5 ug of UCOE-SFFV-dCas9-BFP-KRAB (Addgene
#85969) for 2 h at 37 °C with 2 ul of FastDigest BamHI (ThermoFisher cat. no. FD0054)
and 2 ul of FastDigest Sbfl (ThermoFisher cat. no. FD1194) in a total volume of 50 pl 1x
ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8%
agarose gel. The 13,792 bp fragment was cut under UV-free blue light and purified using
the QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The KRAB-MeCP2-P2A-BSD
cassette was synthesized by Integrated DNA Technology as 1,634 bp dsDNA fragments
with a BamHI restriction site on 5 end and a Sbfl restriction site on 3’ end. The
synthesized product was digested by incubation for 1 h at 37 °C with 1 ul of FastDigest
BamHI (ThermoFisher cat. no. FD0054) and 1 ul of FastDigest Sbfl (ThermoFisher cat.
no. FD1194) in a total volume of 20 pl 1x ThermoFisher Green FastDigest Buffer. The
digested product was run on a 1.6% agarose gel. The 1,606 bp fragment was cut under
UV-free blue light and purified using the QIAquick Gel Extraction Kit (QIAGEN cat. no.
28704). The vector backbone and KRAB-MeCP2-P2A-BSD cassette were ligated by the
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following T4 ligase reaction: 100 ng of vector backbone, 50 ng of KRAB-MeCP2-P2A-
BSD cassette, 2 yl 10x Thermo Scientific T4 DNA Ligase Buffer, 2 pl 50% PEG 4000
solution, 1 yl T4 DNA Ligase (Thermo Scientific cat. no. EL0011) and water up to 20 pl,
incubated at room temperature for 1 h. 5 pl of the ligation product were chemically
transformed into Invitrogen™ One Shot™ Stbl3™ Chemically Competent E. coli
(Invitrogen cat. no. C737303) following the manufacturer's high-efficiency protocol. We
screened for correctly assembled clones by colony PCR and further validated the
assembly by restriction digestion with Fspl, Sbfl, Agel and BamHI as well as Sanger

sequencing.
Cloning and validation of the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid

To clone the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid, we first prepare the
vector backbone by incubating 5 ug of PB-TRE-dCas9-VPR (Addgene #63800) for 2 h at
37°C with 2 ul of FastDigest FspAl (ThermoFisher cat. no. FD1664) and 2 ul of
FastDigest Pmel (ThermoFisher cat. no. FD1344) in a total volume of 50 ul 1x
ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8%
agarose gel. The 10,992 bp was cut under UV-free blue light and purified using the
QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The truncated-dCas9-KRAB-
MeCP2 cassette was synthesized by Integrated DNA Technology as 2,450 bp dsDNA
fragments with a FspAl restriction site on 5 end and a Pmel restriction site on 3’ end.
The synthesized product was digested by incubation for 1 h at 37 °C with 1 ul of
FastDigest FspAl (ThermoFisher cat. no. FD0054) and 1 ul of FastDigest Pmel
(ThermoFisher cat. no. FD1194) in a total volume of 20 pl 1x ThermoFisher Green
FastDigest Buffer. The digested product was run on a 1.6% agarose gel. The 2,432 bp
fragment was cut under UV-free blue light and purified using the QIAquick Gel Extraction
Kit (QIAGEN cat. no. 28704). The vector backbone and truncated-dCas9-KRAB-MeCP2
cassette were ligated by the following T4 ligase reaction: 100 ng of vector backbone,
100 ng of truncated-dCas9-KRAB-MeCP2 cassette, 2 yl 10x Thermo Scientific T4 DNA
Ligase Buffer, 2 yl 50% PEG 4000 solution, 1 yl T4 DNA Ligase (Thermo Scientific cat.
no. ELO011) and water up to 20 pl, incubated at room temperature for 1 h. 5 pl of the
ligation product were chemically transformed into Invitrogen™ One Shot™ Stbl3™
Chemically Competent E. coli (Invitrogen cat. no. C737303) following the manufacturer's

high-efficiency protocol. We screened for correctly assembled clones by colony PCR
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and further validated the assembly by restriction digestion with Sall, FspAl and Pmel as
well as Sanger sequencing.

To clone the pLX-TRE-dCas9-KRAB-MeCP2-P2A-BSD plasmid, the TRE-dCas9-KRAB-
MeCP2-P2A cassette (7,500 bp) was amplified from PB-TRE-dCas9-KRAB-MeCP2 and
purified using protocol described above. The pLX vector backbone was amplified as 3
fragments (BSD-WPRE-3'LTR-AmpR cassette as 3,066 bp fragment, ori-pSV40
cassette as 2,942 bp fragment, 5’LTR-RRE-cPPT/CTS cassette as 3,543 bp fragment)
from pLX-UCOE-SFFV-dCas9-KRAB-MeCP2-P2A-BSD and purified using the protocol
described above. Primers for amplification were designed to contain >15bp homology
arm on each side with adjacent fragments. The 4 fragments were assembled using
Gibson's isothermal assembly: 500ng of total amplified fragments were combined with
10ul of NEBuilder HiFi DNA assembly master mix (NEB cat. no. E2621L) and water to
20ul. After 1 h of incubation at 50 °C, reactions were purified by AMPure XP bead clean-
up (Beckman Coulter cat. no. A63880), and 5ul of the ligation product were chemically
transformed into Invitrogen™ One Shot™ Stbl3™ Chemically Competent E. coli
(Invitrogen cat. no. C737303) following the manufacturer's high-efficiency protocol. We
screened for correctly assembled clones by colony PCR and further validated the
assembly by restriction digestion with Adel, FspAl and Pmel as well as Sanger

sequencing.
Cloning and validation of the CROPseq-CaptureSeq-Guide-Puro plasmid

To clone the CROPseq-CaptureSeq-Guide-Puro plasmid, we prepared the vector
backbone by incubating 5 ug of CROPseq-Guide-Puro (Addgene #86708) for 2 h at
37 °C with 2 ul of FastDigest Mph1103Il (ThermoFisher cat. no. FD0734) and 2 ul of
FastDigest Eco105| (ThermoFisher cat. no. FD0404) in a total volume of 50 pl 1x
ThermoFisher Green FastDigest Buffer. The digested product was run on a 0.8%
agarose gel. The 9,766 bp fragment was cut under UV-free blue light and purified using
the QIAquick Gel Extraction Kit (QIAGEN cat. no. 28704). The trcrRNA-CaptureSeq-
5’LTR(truncated) cassette was synthesized by Integrated DNA Technology as 520 bp
dsDNA fragments with 20 bp of homology on each end of the digested vector backbone,

respectively.
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The vector backbone and trcrRNA-CaptureSeq-5’LTR(truncated) cassette were
assembled using Gibson's isothermal assembly: 100ng of vector backbone and 20ng of
trcrRNA-CaptureSeqg-5’LTR(truncated) cassette were combined with 10 pl of NEBuilder
HiFi DNA assembly master mix (NEB cat. no. E2621L) and water to 20 pl. After 1 h of
incubation at 50 °C, reactions were purified by AMPure XP bead clean-up (Beckman
Coulter cat. no. A63880), and 5 ul of the ligation product were chemically transformed
into Invitrogen™ One Shot™ StbI3™ Chemically Competent E. coli (Invitrogen cat. no.
C737303) following the manufacturer's high-efficiency protocol. We screened for
correctly assembled clones by colony PCR and further validated the assembly by

restriction digestion with Mph1103l, Adel and Bsmbl as well as Sanger sequencing.
Cloning of individual sgRNAs into the CROPseq-CaptureSeq-Guide-Puro plasmid

sgRNA cassettes were annealed from two oligonucleotides (top: 5-CACCG(N)19-20-3’
bottom: 5’-AAAC(N)19.20-3’) by combining 1 ul of each 100 uM oligonucleotide with 1 ul of
10x T4 ligation buffer (NEB cat. no. B0202S), 6.5 ul of water, and 0.5 ul of T4
polynucleotide kinase (NEB cat. no. M0201S), incubating as follows: 37 °C for 30 min
(oligonucleotide phosphorylation), 95 °C for 5 min, then ramping from 90 °C to 25 °C at
5 °C/min. Vector backbone was prepared by digesting and dephosphorylating 5 ug of
CROPseg-CaptureSeq-Guide-Puro with 5 pl of FastDigest Esp3l (ThermoFisher cat. no.
FD0454) and 2 pl of FastAP Thermosensitive Alkaline Phosphatase (ThermoFisher cat.
no. EF0651) in a total volume of 50 pl 1x ThermoFisher Green FastDigest Buffer,
incubating for 1 h at 37 °C. The digested product was run on a 1.6% agarose gel. The
8,361 bp fragment was cut under UV-free blue light and purified using the QlAquick Gel
Extraction Kit (QIAGEN cat. no. 28704).

Ligation reactions were set up as follows: 60 ug of CROPseq-CaptureSeq-Guide-Puro
backbone, 1 yl gRNA cassette (diluted 1:200 in water), 2 pl 10x Thermo Scientific T4
DNA Ligase Buffer, 2 pl 50% PEG 4000 solution, 1 yl T4 DNA Ligase (Thermo Scientific
cat. no. EL0O011) and water up to 20 pl, incubated at room temperature for 1 h. The
ligation reaction was chemically transformed into Invitrogen™ One Shot™ Stbl3™
Chemically Competent E. coli (Invitrogen cat. no. C737303) following the manufacturer's

high-efficiency protocol.
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Cloning of pooled sgRNA libraries into the CROPseq-CaptureSeq-Guide-Puro
plasmid

Vector backbone was prepared by digesting 5 ug of CROPseq-CaptureSeq-Guide-Puro
with & pl of FastDigest Esp3l (Thermo Scientific cat. no. FD0454) in a total volume of 50
pl 1x Thermo Scientific FastDigest Green Buffer, incubating for 1 h at 37 °C. The
digested product was run on a 1.6% agarose gel. The 8,361 bp fragment was cut under
UV-free blue light and purified using the QIAquick Gel Extraction Kit (QIAGEN cat. no.
28704).

sgRNA insert fragments were synthesized by TWIST Bioscience as 74 nt
oligonucleotides with 18 and 35 nt of homology to the hU6 promoter and guide RNA
scaffold, respectively. Oligonucleotides were diluted to 1 ng/ul and pooled in equal
amounts. The oligonucleotide pool was further amplified by mixing 12.5 pyl KAPA HiFi
HotStart 2x ReadyMix (KAPA Biosystems cat. no. KK2601), 0.75 pl of 10 yM forward
primer, 0.75 ul of 10 uM reverse primer, 2 ng oligonucleotide pool and water up to 25 pl
and incubating as follows: 95 °C for 3 min, 9x (98 °C for 20 s, 63 °C for 15 s, 72 °C for
15 s), 72 °C for 1 min, hold at 4 °C. PCR product was run on a 2% agarose gel. The 74
bp fragment was cut under UV-free blue light and purified using the QIAquick Gel
Extraction Kit (QIAGEN cat. no. 28704).

sgRNA libraries were cloned by Gibson's isothermal assembly: 22 fmoles (113.7 ng) of
CROPseqg-CaptureSeq-Guide-Puro backbone and 400 fmoles (18.31ng) of amplified
dsDNA oligonucleotides were combined with 10 pl of NEBuilder HiFi DNA assembly
master mix (NEB cat. no. E2621L) and water to 20 ul. After 1 h of incubation at 50 °C,
reactions were purified by AMPure XP bead clean-up (Beckman Coulter cat. no.
A63880), and 10 pl of the reaction was electroporated into 50 pl of Lucigen Endura E.
coli cells (Lucigen cat. no. 60242-1) using prechilled 1 mm electroporation cuvettes
(BioRad cat. no. 1652089) in a Lonza Amaxa™ Nucleofector™ |l device set to Bacteria
Program 4. Within seconds after the pulse, 1 ml of 37 °C Lucigen Recovery Medium was
added and the bacteria were grown in a round-bottom tube for 1 h at 37 °C while
shaking at 200 r.p.m. Then, 1 ml of the bacterial culture was plated on a 25 x 25 cm
bioassay plate containing LB medium (Miller) with 100 pg/ml carbenicillin. Plates were
incubated at 30 °C for 20 h, then LB medium was added and bacteria colonies were

scraped off the plate. Bacterial cells were pelleted by 30 min of centrifugation at 3,000
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RCF at 4 °C, and plasmid DNA was extracted with multiple ZymoPURE Il Plasmid
Midiprep columns (Zymo Research cat. no. D4200). Library coverage was estimated by
counting the number of bacterial colonies on a 1:1,000 dilution plate and a 1:10,000
dilution plate. All the sgRNA libraries were cloned with at least 500% coverage.

Lentivirus production for single sgRNAs and pooled CROP-seq screens

HEK293T cells were plated into 100mm dishes at 2 million cells per dish in 12 ml of
culture medium (DMEM (Gibco cat. no. 10569010), 10% Tetracycline-free FBS (Omega
Scientific cat. no. FB-15), no antibiotics) and grown to reach 50% to 70% confluence.
6ml of culture medium was removed from the dishes and the cells were transfected with
lipofectamine 3000 (Invitrogen cat. no. L3000015) using either 10.2 ug of CROPseg-
CaptureSeq-Guide-Puro (containing single sgRNAs or libraries) or dCas9 expressing
plasmid, and 4.5 ug each of the three packaging plasmids pMDLg/pRRE (Addgene
#12251), pRSV-Rev (Addgene #12253), and pMD2.G (Addgene #12259). The medium
was exchanged for fresh culture medium 16 h after the transfection. The supernatant
containing viral particles was harvested at 30 h and passed through a 0.45 um PVDF
Millex-HV Syringe Filter (Millipore cat. no. SLHV033RS) to remove cells and debris. Viral
particles were further concentrated by 40min centrifugation at 4,000 r.p.m. using Amicon
Ultra-15 Ultracel-100 Centrifugal Filters (Millipore cat. no. UFC910024). The

concentrated virus was aliquoted and stored at —80 °C.
Production of constitutive/inducible dCas9 expressing cell lines

For adherent cell lines HT-29, cells were seeded into 100mm dishes at 5 million cells per
dish in 12 ml of complete culture medium (McCoy’s 5A Modified Medium for HT-29
(Gibco cat. no. 16-600-082) with 10% Tetracycline-free FBS (Omega Scientific cat. no.
FB-15), no antibiotics). The cells were then transduced with 8 ug/ml polybrene (Millipore
cat. no. TR-1003-G) and the proper amount of lentivirus containing dCas9 vector to
ensure Multiplicity of Infection (MOI) equal to 1. An extra dish served as the
untransduced control. After addition of the virus, cells were incubated overnight at 37 °C,
5% CO2. At 24 h post-transduction, selection with 20 pg/ml blasticidin (Research
Product International cat. no. B12200-0.05) began. After 5 days of blasticidin selection,

live cells were trypsinized and seeded into 100mm dishes at 2 million cells per dish in


https://doi.org/10.1101/2021.06.28.449297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.449297; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fresh complete culture medium containing 10 pg/ml blasticidin to allow for cell number

amplification while renewing the medium (containing blasticidin) every 3 days.
Lentiviral transduction with sgRNA libraries or single sgRNAs

For adherent cell lines HT-29, cells were seeded into 100mm dishes at 5 million cells per
dish in 12 ml of complete culture medium (McCoy’s 5A Modified Medium for HT-29
(Gibco cat. no. 16-600-082) with 10% Tetracycline-free FBS (Omega Scientific cat. no.
FB-15), no antibiotics) containing 10 ug/ml blasticidin (Research Product International
cat. no. B12200-0.05) to maintain selection for dCas9 expression. The cells were then
transduced with 8 ug/ml polybrene (Millipore cat. no. TR-1003-G) and the proper amount
of lentivirus containing sgRNA libraries to ensure Multiplicity of Infection (MOI) equal to
0.3. An extra dish served as the untransduced control. After addition of the virus, cells
were incubated overnight at 37 °C, 5% CO2. At 24 h post-transduction, selection with 8
Mg/ml puromycin (AG Scientific cat. no. P-1033) began. After 3 days of puromycin
selection, live cells were trypsinized and seeded into 100mm dishes at 2 million cells per
dish in fresh complete culture medium containing blasticidin and 4 pg/ml puromycin.
After overnight incubation at 37 °C, 5% CO2 to allow for reattaching, the cells are ready
for doxycycline induction.

Lentivirus titration for single sgRNAs

Cells were seeded into 24-well plates at 50,000 cells per well in 500 pl of proper culture
medium and grown overnight to reach 30% to 50% confluence. The next day, medium
was exchanged for 450 pl per well of fresh culture medium containing 8 pg/ml polybrene
(Millipore cat. no. TR-1003-G), which was also used to dilute the viral stock. Lentivirus
aliquots were thawed from storage at —80 °C and titrated in a 1:2 dilution series ranging
over six wells (1:2 to 1:32). Each dilution was tested in duplicate by adding 50 ul per well.
At least two wells per dilution served as un-selected controls and at least two wells per
plate served as untransduced controls. 24 h after the transduction, the medium was
exchanged for 500 pl per well of selection medium prepared as described above, every
2-3 days. The blasticidin selection took 5 days and the puromycin selection took 3 days
for HT-29. As soon as the selection was completed and all cells in the untransduced
controls had died, cell viability was measured by CellTiter-Glo® Luminescent Cell

Viability Assay (Promega cat. no. G7570). The virus titer (transducing units per ml) was
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calculated as follows: (initial number of cells x percentage of viable cells x dilution factor)
% (1,000 pl /50 pl).

Quantification of dCas9 by Western Blot

To evaluate inducible dCas9 expression, HT-29 cells were transduced with pLX-
TRE-dCas9-KRAB-MeCP2-P2A-BSD as described above. Transduced HT-29 were then
plated in RPMI medium (Gibco cat. no. 21875-034) on 6-well plates at 0.5 million cells
per well. Cells were recovered overnight and doxycycline (Fisher Scientific cat. no.
BP26535) was added to culture medium at 1 pg/ml. At 6, 9, 12 and 24 h post
doxycycline induction, respectively, cells were lysed in 300 pl RIPA buffer (Fisher
Scientific cat. no. 50-843-016) with protease inhibitor (Fisher Scientific cat. no. PI78430).
Protein concentration was measured by Pierce™ BCA Protein Assay Kit (Thermo Fisher
cat. no. 23225). 20 ug of total protein from each lysate was loaded and separated on a
NUPAGE 4%-12% Bis-Tris Gel (Invitrogen cat. no. NP0O335BOX). Subsequently, the
protein was transferred onto a nitrocellulose membrane (Fisher Scientific cat. no.
IB23001) by iBlot 2 Dry Blotting System (ThermoFisher), which was then blocked by
blocking buffer (Fisher Scientific cat. no. PI37536) for 1 h at room temperature. The
blocked membrane was incubated overnight at 4 °C in primary antibodies: mouse
polyclonal anti-Cas9 (Takara Bio, cat. no. 632607), mouse monoclonal anti-B-actin
(8H10D10) (Cell Signaling Technology, cat. no. 3700S). After incubation, the membrane
was washed 3 times with PBS-T buffer and then incubated at room temperature for 1 h
with secondary antibodies: mouse monoclonal anti-rabbit IgG-HRP (Santa Cruz
Biotechnology, cat. no. sc-2357), goat monoclonal anti-mouse IgG HRP (Santa Cruz
Biotechnology, cat. no. sc-2031). The membrane was then washed 3 times with PBS-T
buffer, activated by Pierce™ ECL Western Blotting Substrate (Fisher Scientific cat. no.
P132106), and imaged by X-Ray film. The film was then scanned and digital images

were processed using ImageJ.

Computational procedures

Preprocessing of single-cell sequencing data
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Single-cell sequencing data were aligned using CellRanger v3.0.2 to the human
reference genome assembly (Ensembl GRCh38 release) with default parameters.
CellRanger pipeline uses STAR for alignment. Briefly, reads aligned to exons are tagged
with their respective gene names (annotated by Ensembl Gene ID). Then counts of
unique molecular identifier (UMI)-deduplicated reads per gene within the same cell were
counted to build a gene expression matrix comprising all cells with UMI counts. For
downstream analysis, low expression genes—defined by being detected in less than 10%
cells—are discarded. We found this step is critical for controlling noise. Furthermore, as
guality control at single-cell level, cells with either low transcriptome complexity (<5000
UMI counts) or multiple sgRNAs were discarded. Cells with high mitochondrial reads
fraction (>15%) were excluded in differential expression analysis and further

downstream analyses.
Assignment of sgRNA to single-cell transcriptome

In the setting of this project, we enabled the detection of two types of sgRNA transcripts
by incorporating Capture Sequence (Replogle, Norman et al. 2020) into the CROP-Seq
sgRNA expressing vector CROP-Seq-GuidePuro (Datlinger, Rendeiro et al. 2017).
Polyadenylated sgRNA transcripts synthesized by RNA polymerase Il were captured by
oligo-dT primers and subsequently sequenced as part of whole-transcriptome library.
Non-polyadenylated sgRNA transcripts synthesized by RNA polymerase Il were
captured by CaptureSeq primers and were separately prepared as Feature Barcode
libraries following 10X Genomics protocol (User Guide for Chromium Single Cell 3'
Reagent Kits v3). Feature Barcode libraries were separately indexed and sequenced as
spike-ins alongside the whole-transcriptome single-cell RNA-seq libraries. Final UMI and
cell barcode assignments were made for each Feature Barcode read by alignment with

CellRanger v3.0.2, as was done for the whole transcriptome libraries.

To computationally detect both types of sgRNA transcripts, we adapted and modified the
sgRNA identification approach described in (Hill, McFaline-Figueroa et al. 2018). We
allowed a maximal Hamming distance of 1 between the protospacer sequences
extracted from the sequencing reads and the input sgRNA library. To account for
background sgRNA reads resulting from low level of sgRNA transcripts released from
lysed cells, we adopted a 2-Gaussian Mixture Model strategy described in CellRanger’s

“‘CRISPR Algorithm” (https://support.10xgenomics.com/single-cell-gene-
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expression/software/pipelines/latest/algorithms/crispr) and in (Replogle, Norman et al.
2020). We then made sgRNA assignments separately for whole-transcriptome library
and Feature Barcode library. For each library, a cell was considered to express only one
SgRNA if the most abundant sgRNA was five times more abundant than the second
most abundant sgRNA; they were considered to express multiple sgRNAs if this ratio
was smaller than five. To consolidate the sgRNA assignment from the two libraries, cells
were considered to express unigue sgRNA if 1) the same unique sgRNA was detected in
the two libraries or 2) only one sgRNA is detected in one library and no sgRNA was
detected in the other. Cells were considered to express multiple sgRNAs if 1) multiple
sgRNAs were detected in either library or 2) different sgRNAs are detected in the two

libraries.

This dual sgRNA detection strategy helps more thorough detection of sgRNA transcripts
in single cells and effective removal of multiplets. We performed TReK experiments
using MOI=0.3 to ensure that most of the single cells express only one sgRNA. As
expected, for the majority (roughly 60% across two timepoints) of uniqgue-sgRNA cells,
the same sgRNA was identified from the two sgRNA-containing libraries. Our data also
shows that while two libraries generated highly consistent sgRNA-cell association maps,
each can detect sgRNAs the other strategy cannot detect in a small subset of cells
(Figures S3E-S3G).

We observed that cells expressing only one sgRNA are enriched in the 10,000-50,000
UMI count range (Figures S3C and S3D). On the lower UMI count side, the majority of
cells do not have any sgRNA detected due to lower transcriptome complexity. On the
higher UMI count side, a significant proportion of cells have multiple sgRNAs detected,
indicating that these transcriptomes likely resulted from droplets with multiple single cells,
considering that the proportion of cells expressing multiple sgRNAs are theoretically
minimal with low MOI transduction. The association between abnormally high
transcriptome complexity and the detection of multiple sgRNAs indicates that with the
dual sgRNA detection strategy, we were able to retrospectively remove potential
doublets and triplets—a source of significant noise in single-cell sequencing--by simply

removing cells with multiple sgRNAs.

Determination of on-target knockdown efficacy
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To measure the extent to which each sgRNA reduces the expression of its target gene
(knockdown efficacy), we compared cells expressing the corresponding sgRNA to cells
expressing scrambled sgRNAs (sgCtrls). For each sgRNA, we estimated its target gene
expression level by aggregating all cells that express the corresponding sgRNA. We also
estimated the unperturbed expression level by aggregating the same number of
randomly sampled cells that express sgCtrls. The sampling was done 100 times and the
median value was taken. The knockdown efficacy of the sgRNA was then calculated as
the fraction of target gene expression (normalized as count per million, or CPM) that was

reduced due to the presence of the corresponding sgRNA.

Broadly, we observed acceptable silencing for most genes, with 1,877/3,016 sgRNAs
(62%) achieving = 50% knockdown and 1,275/3,016 sgRNAs (42%) achieving at least
80% knockdown at 96h (Figures S4A and S4B; Table S7; Methods). Since 3 sgRNAs
per TR were used, most TRs were silenced at different silencing efficacies (Figures S4C
and S4D). This turned out to be a useful feature, for instance, to dissect compensatory,
dosage-dependent effects (Figure 4). When comparing silencing efficacy between
timepoints, we generally observed a stronger knockdown at T2 = 96h vs. T1 = 24h
(Figures S4A and Figure S4B). While this difference may be partly due to differences in
the strengths of the constitutive and inducible promoters, we believe that much of the
reduced efficacy at T1 is due to a combination of two factors: First, the dCas9-KRAB-
MeCP2 abundance necessary for effective knockdown may vary from gene to gene.
Second, mMRNA degradation kinetics and the size of the extant mMRNA pool can vary

widely across genes.
Differential expression analysis

To perform differential expression analysis for each sgRNA perturbation, a pseudo-bulk
sample was generated by aggregating the transcriptomes of all the single cells
expressing that particular sgRNA. A pseudo-bulk gene expression signature was
obtained by comparing the expression level of each gene against 200 reference pseudo-
bulk samples as 1) z-scores generated by viperSignature function from viper R package
and 2) log fold change. The reference pseudo-bulk samples were obtained by
aggregating the transcriptomes of randomly sampled cells expressing other sgRNAs. To
control for the variation resulted from cell number, each reference pseudo-bulk sample

was aggregated from the same number of cells as the “tested” pseudo-bulk sample.
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To perform differential expression analysis for each perturbed TR (as shown in Figures
2C, 3, S5G, and S5H), we first grouped cells expressing any of the 3 sgRNAs targeting
that particular TR. These cells were then sorted by the normalized expression level of
the perturbed TR. The top 50% of the cells are then selected to represent the TR-
perturbed cell population. (If two cells have the same level of TR expression, the cell
expressing more efficient sgRNA was selected. If two cells express the same sgRNA,
the cell with a higher total UMI count was selected.) The differential expression analysis
for the particular TR was then conducted in the same way as described in sgRNA-wise

differential expression analysis.
Assessing the reproducibility of TReK differential expression

An unbiased approach to assess gene knockdown reproducibility is to compare different
technologies. Searching the published literature, we found that RNA-sequencing of HT-
29 cells following CRISPRi-mediated TCF7L2 silencing had been performed to
investigate this gene’s role in colorectal cancer invasion and migration (Wenzel, Rose et
al. 2020). Impressively, even when pooling only 17 or 21 cells (at T1 and T2,
respectively), the overlap in terms of differentially expressed genes between our data
and Wenzel et al. data is highly significant (empirical p < 0.001) (Figures S5G and S5H).

We were interested in the factors that affect the correlation between the differentially
expressed gene signatures induced by different sgRNAs targeting the same gene. Not
surprisingly, our analysis confirmed that the TRs with the most correlated gene
signatures (Figures S5A and S5B) tended to be those with multiple high-efficiency
sgRNAs (Figure S5C). Additionally, TRs with multiple, high-efficiency sgRNAs affected a
greater fraction of downstream transcriptional targets (Figure S5D) and were

characterized by slightly higher coverage (cells per sgRNA) (Figure S5E).

We were also interested in the effect of protein turnover on differential gene expression
at early timepoints. For instance, one would expect that proteins with low turnover
should affect a greater number of downstream target genes at T2 vs. T1 compared to
proteins with high turnover. To investigate, we collected published data on protein
stability as measured by mass-spectrometry (Cambridge, Gnad et al. 2011). Although
we could find protein stability data for only a relatively small fraction of the TRs silenced

in our assays, we observed that more stable proteins tend to have a weaker differential
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expression at the earlier timepoint T1 compared to T2 and thus a higher intra-gene
SgRNA correlation at T2 vs. T1 (Figure S5F).

Gene Set Enrichment Analysis

One-set Gene Set Enrichment Analysis (GSEA) was implemented as described in
(Subramanian, Tamayo et al. 2005). Briefly, the gene expression signature of interest
was sorted and scanned by calculating an enrichment score (ES) starting with the most
upregulated gene. If the encountered gene was present in the gene set, the running ES
was increased. If the encountered gene was not present in the gene set, then the
running ES was decreased. The final ES was determined by the maximum running ES
and the leading edge subset was defined as the genes that were encountered before
reaching maximum ES. The statistical significance of the ES was calculated by
permuting differential expression-ordered genes 1,000 times, computing the ES to
generate a null distribution, and comparing the unpermuted ES score to the null
distribution of ES. Normalized enrichment score (NES) was calculated as the z-score
transformed ES against the null distribution. An empirical p-value was calculated as the
fraction of permuted ES that were more extreme than the actual ES.

For two-set GSEA (Figures S5G and S5H), the query gene set was divided into two
subsets: a positive subset containing genes that were positively correlated with the gene
set term, and a negative subset containing genes that were negatively correlated with
the gene set term. The gene expression signature of interest was sorted and scanned as
described in the one-set GSEA process. However, the ES for the positive and negative
subset, respectively, were calculated separately and subsequently added together. The

NES and empirical p-values were computed as described above.

Determination of mode of regulation (Figure 4F, Table S6)

To determine the mode of regulation of a TR within a specific pathway, GSEA analysis
was conducted on the gene expression signature of all 3 sgRNAs targeting the particular
TR. If the NES of at least two sgRNAs were statistically significant (p < 0.05) and have
the same sign, the NES of the third sgRNA was taken into account. If the third sgRNA
perturbation showed statistically significant NES with the same sign or 2) showed no

statistically significant NES, the mode of regulation was determined by the first two
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SgRNAs. If the third sgRNA perturbation showed statistically significant NES with

opposite sign, the mode of regulation was determined as “mixed”.
ARACNe network reconstruction

For each sgRNA, a pseudo-bulk sample was generated by aggregating transcriptomes
of 15 single cells expressing that particular sgRNA. To maximize the transcriptome
coverage, we included sgRNAs covered by more than 15 cells. This procedure
generated 1,447 pseudo-bulk expression profiles for 14,773 transcriptionally informative
genes (defined as being expressed by >10% samples) from T1 dataset and 1,310
pseudo-bulk expression profiles for 18,426 transcriptionally informative genes from T2
dataset. These expression profiles were used to generate ARACNe networks (“purely
computational networks”) for transcription factors (TFs), coTFs and signaling proteins as

previously described in (Basso, Margolin et al. 2005).
Hurdle model-based generalized linear model

Hurdle model was firstly described in (Cragg 1971) and applied in the context of single-
cell RNA-seq in (Finak, McDavid et al. 2015) as MAST (Model-based Analysis of Single-
cell Transcriptomics) approach. Here we modified MAST to be compatible with the
single-cell CRISPRI perturbation setting. Normalized gene expression (count per million
or CPM) was modeled as a generalized regression model (GLM) with two branches, one
in binary space and the other in continuous space. For a specific gene, the probability of
detecting non-zero CPM in a cell was modeled by binomial distribution, whereas the

exact CPM|CPM>0 was modeled as Poisson distribution.

Besides the intercept unit in the GLM, we included two covariates in the regression. The
first covariate represents the expression level of the TR of interest. When its expression
level was unavailable due to low expression, protein activity inferred by VIPER was used
to estimate the abundance of the TR. Secondly, as several publications found that the
consideration of “cellular detection rate” (CDR), defined as the proportion of genes
detected in a single cell, significantly improved the differential expression analysis in
single-cell sequencing context (Finak, McDavid et al. 2015, Dixit, Parnas et al. 2016,

Soneson and Robinson 2018), we included CDR as the second covariate.
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Regression coefficients were estimated and regularized as described in (Finak, McDavid
et al. 2015). For the binary model, coefficients were regularized using informative priors
(Gelman et al.,, 2008) from which information from the ARACNe network can be
incorporated. In practice, we assigned a 4x larger prior variance to any TR-target
associations that were identified by the ARACNe network. For each TR, only a subset of
the transcriptome was considered as candidate target genes. For the ‘“integrated
network”, the candidate target genes came from two sources: 1) target genes identified
by ARACNe network and 2) the top 200 most differentially expressed genes after the TR
perturbation. For the “purely experimental network”, the top 200 most differentially

expressed genes after the TR perturbation were considered as candidate target genes.
Determination of regulon parameters

We define the “regulon” of a specific TR as all the transcriptional target genes of that TR.
To generate regulons that can be used to infer protein activity of a TR, two sets of
parameters have to be determined: tfmode and likelihood. As described in (Alvarez,
Shen et al. 2016), the tfmode parameter represents the direction as well as strength of
the TR-target regulation. The likelihood parameter denotes the statistical confidence of
the TR-target regulation. For the “purely computational” ARACNe network, tfmode was
calculated as the Pearson correlation of the corresponding regulator and target gene
expression, and likelihood was calculated as scaled pairwise mutual information. For
“purely experimental’” networks and integrated networks, the linear model coefficient
statistics were used to generate calculate the regulon parameters. We first determined
the statistical significance of each coefficient assuming a Gaussian distribution. For each
TR-target association in the regulon, the use of the continuous versus binary model was
determined by greater coefficient significance. The tfmode parameter was then
determined as the sign (1 or -1) of the coefficient. The likelihood parameter was

determined as the significance (1 - p-value) of the corresponding coefficient.
5-fold cross-validation and cross-timepoint validation

Within the dataset of each timepoint, 5-fold cross-validation was used to assess the
ability of a specific regulon to infer the protein activities of the corresponding TR. For
each TR, a single-cell dataset was firstly assembled by including all the perturbed cells

and cells expressing a scrambled sgRNA. The dataset was subsequently divided into 5
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equally-sized sub-datasets. The regulon was reconstructed from 4 sub-datasets (training
sets) and validated on the single left-out sub-dataset (test set). The protein activities of
the TR in each perturbed cell were then calculated by VIPER based on computational
network, experimental network or integrated network. For cross-timepoint validation, we
simply reconstructed regulons based on one timepoint (training set) and validated the

regulons on the other timepoint (test set).

For both within-timepoint and cross-timepoint cross-validations, we selected 340
sgRNAs that 1) had at least medium-efficacy (>50% knockdown) and 2) were covered
by more than 15 cells at both timepoint. Out of the 250 TRs (thus 250 regulons) targeted
by the 340 sgRNAs, 247 were successfully reconstructed by T1 dataset and 241 were
reconstructed by T2 dataset. The unsuccessful regulon reconstruction was mainly due to

low level of TR expression in single cells.
DNase-Seq validation

DNase-Seq data were accessed from Cistrome database (Liu, Ortiz et al. 2011) on Apr
29, 2020. Context-specific data were extracted by limiting the “Cell_line” to contain
“‘HT29”. A peak was considered to be associated with a specific gene if it overlaps with
the genomic region of that gene. Peaks that did not overlap with any gene were removed.

Protein activity inference of CCLE HT-29 and TR-perturbed HT-29

The gene expression profile of HT-29 was accessed from the Cancer Cell Line
Encyclopedia (CCLE) database on Jul 10, 2020. The gene expression signature of HT-
29 was then generated by z-score transformation implemented by viperSignature
function from the VIPER R package, comparing the normalized expression level of HT-
29 against all the other CCLE cell lines. The gene expression signatures of TR-
perturbations were calculated as z-score as described in “Differential expression

analysis”.

For all the gene expression signatures described above, the R package VIPER (Alvarez,
Shen et al. 2016) was used to infer protein activity. Specifically, metaVIPER (Ding,
Douglass et al. 2018) (as implement in the VIPER R package) was used to combine the

information of T1 network and T2 network.

Characterization of activity regulating network (ARN) edges (Figure 3A)
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The activity regulating network was first constructed by extracting TR-TR edges with
statistically significant (FDR < 0.1) differential protein activity after perturbing one of the
TRs. To consolidate the network constructed at T1 and T2, we took the union of the two
networks. For edges with different modes of regulation (activation or repression) at T1
and T2, we kept the T1 edge and discarded the T2 edge.

An ARN edge was characterized by “transcriptional” if the differential protein activity had
a corresponding differential gene expression (FDR < 0.2) of the same TR following the
same perturbation. An interaction was characterized by “pathway” if the two TRs co-exist
in a “pathway” gene set. “Pathway” gene sets were taken from a collection of the
curated gene sets (c2) from MSigDB (Liberzon, Subramanian et al. 2011, Liberzon,
Birger et al. 2015). Protein-protein interactions (PPI) were taken from PrePPl (Zhang,
Petrey et al. 2012), BioPlex 3.0 Network for HCT116 (Huttlin, Bruckner et al. 2020), and
CORUM (Ruepp, Waegele et al. 2010). Two TRs were characterized by “overlapping
regulons” if the top 50 targets (ranked by likelihood) of the two regulons have statistically

significant overlap (by Fisher's exact test, FDR < 0.1).
Multi-layer regulatory network reconstruction

The multi-layer network (MLN) was reconstructed in the following 2 steps: 1) ARN and
TRN were reconstructed separately by extracting TR-TR edges with statistically
significant differential protein activity (FDR < 0.1) or different expression (FDR < 0.2)
after perturbing one of the TRs; for edges with different modes of regulation (activation
or repression) at T1 and T2, we kept the T1 edge and discarded the T2 edge; 2) ARN
edges that had corresponding TRN edges were discarded.

Criteria for choosing TRs to include in TReK

Beginning with a list of 2,527 TRs (Table S1), we first removed TRs that were unlikely to
be actively transcribed in HT-29 using a Gaussian mixture model. The remaining 1,826
genes were filtered to include candidate COAD regulators by PanCancer VIPER
analysis (n = 30), MOMA-inferred checkpoint regulators (Paull, Aytes et al. 2021) (n =
69), the union of top VIPER scores by absolute value in TCGA stomach and esophageal
carcinoma (STES) and COAD (n = 513), CHOPD TCGA PanCancer checkpoint

regulators (n = 293), and gene expression (n = 95).
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We began with a manually curated list of 2,527 Transcriptional Regulator genes
(hereafter TRs) annotated by the Gene Ontology as either transcription factors or
transcription cofactors (Table S1) (Alvarez, Shen et al. 2016). Candidate genes were
selected by first removing TRs whose expression was not distinguishable from noise,
and then by ranking remaining TRs based on their overall transcription levels and
potential role as Master Regulators in COAD, based on MOMA analysis (Paull, Aytes et
al. 2021) (see Methods). Each gene was targeted by the 3 best sgRNAs predicted by

(Sanson, Hanna et al. 2018).

Figure Legends

Figure 1. Conceptual overview of study and summary of dataset. (A) Concept of
capturing dynamic transcriptional targets by early timepoint data collection. (B)
Computational flowchart. Raw input data (red) was processed to directly generate
biological readout (blue) or with the help of transcriptional network/regulons (yellow)
construction. (C) Timeline for sgRNA transduction, selection, and doxycycline-induction.
Lentiviral sgRNA library including >3,000 sgRNA species was transduced into colorectal
cancer cell line HT-29 pre-transduced with constitutive dCas9 vector. Puromycin (8
ug/ml x 3 days) was added 24 hours post-transduction to select for sgRNA-positive cells.
T2 sample was directly collected after 3 days of puromycin selection. For T1 experiment,
HT-29 was pre-transduced and selected for the inducible dCas9 vector. At the time of
the experiment, 1ug/ml doxycycline was added and cells were collected after 1 day of
doxycycline induction. (D) Important metrics across two timepoints. At both timepoints,
we profiled CRISPRI-perturbed transcriptomes in 70k to 80k single cells. Around 95% of
these cells generated a high amount of UMI counts and 60-70% of the cells had one
unique sgRNA detected. Knockdown efficacy for each TR was estimated based on the
most efficient sgRNA among all 3 sgRNAs targeting that particular TR. (E) Cell coverage
per sgRNA perturbation in T2 experiment. Only single cells with a unique sgRNA and

more than 5,000 total UMI counts are considered.

Figure 2. Gene regulatory network reconstructed by CRISPRI perturbation data. (A)
Regulatory coefficient matrices on continuous space or binary space were fitted to the

single-cell normalized expression matrix or binarized expression matrix given the target
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TR perturbation and other covariates in the design matrix. Coefficient matrices were
subsequently consolidated and converted to VIPER-compatible regulons. (B) Barplot
showing fraction of significantly inactivated (p < 0.05) TRs inferred by different networks.
For each TR, protein activities were inferred in each perturbed single cell and then
integrated by Stouffer's method. (C) Correlation between perturbed protein activities
inferred by integrated network and number of target genes. Each dot represents a TR.
The number of target genes is represented by the number of differentially expressed
genes (DEGs) after the TR perturbation. (D) Correlation between perturbed protein
activities and “importance scores”. Each dot represents a TR. “Importance score” of
each TR is represented by its protein activity in HT-29 comparing to other CCLE cell
lines, as calculated in Methods. The integrated network was used in HT-29 VIPER
analysis. (E) HT-29-specific DNase-Seq peaks are obtained from Cistrome database
(Liu, Ortiz et al. 2011) as described in Methods. Statistical significance was calculated

using the one-tailed Mann-Whitney U test.

Figure 3. TReK multi-layer regulatory network. (A) Mechanisms contributing to edges
in the activity regulatory network. Multiple analyses and datasets were used to
characterize each edge (Methods). The fraction of edges annotated by each mechanism
is shown in bars. The cumulative fraction of all edges with at least one mechanism is
shown by the line. Transcriptional, characterized as transcriptional by the RPT analysis.
PPI, protein-protein interaction. Regulon, overlapping regulon. (B) Overlap of edge
mechanistic characterizations that are summarized in (A). (C,D) Heatmaps representing
gene expression (C) and protein activity (D) profiles after perturbation of Wnt-TGF
pathway regulators. Statistical insignificant values (p > 0.05) are set to be white. (E)
Multi-layer regulatory network represented by (C,D). If both transcriptional and activity-
level regulation are present, only transcriptional regulation is shown. Essential genes are
defined as having Achilles dependency scores higher than 0.9. (F,G) Distribution of
different patterns of 2-gene feedback loops in multi-level regulatory networks. (H,l)
Distribution of different patterns of 3-gene feedback loops in multi-level regulatory
networks. (J) Number of 2-gene or 3-gene feedback loops participated by different TRs.
TRs were grouped into quintiles by their VIPER-inferred protein activities in HT-29
against all other CCLE cell lines. Integrated networks were used for inferring protein

activities.
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Figure 4. Different modes of regulation revealed by different patterns of
transcriptome responses. (A-C) Correlation between MYC perturbation efficacy and
differential expression enrichment of MYC targets. (A) Log(CPM+1) of MYC expressed
in cells expressing sgRNA targeting a different gene (“All Other”), cells expressing
scrambled sgRNAs (“NonTargeting”), and cells expressing MYC-targeting SgRNAs
shown in violin-boxplots. (B) Gene set enrichment analysis of MYC targets on gene
expression signatures after 3 different MY C-targeting sgRNA perturbations. Empirical p-
values are shown. (C) Correlation between MYC perturbation efficacy and differential
expression enrichment of MYC targets. Since knockdown efficacy was calculated
against 100 randomly sampled pseudo-bulk control samples (see Methods), the median
+ SD for all 100 knockdown efficacy values are shown as horizontal error bars. Each
GSEA analysis was run 5 times and the median = SD of 5 normalized enrichment scores
(NES) are shown as vertical error bars. (D) Log(CPM+1) of E2F7 expressed in different
groups of cells. (E) Correlation between E2F7 perturbation efficacy and enrichment of
E2F targets at both timepoints. (F) Mode of regulation of Wnt-TGF pathway regulators
on hallmark cellular processes. Specific regulations that are corroborated by published
evidence are listed in Table S5. Summary across each row or column is shown as

stacked histograms. Results from T2 experiment are shown.

Figure S1. Overview of TReK experimental framework. CROP-seq and related
methods are based on the realization that, when using CRISPR technologies, cells can
replace wells as the experimental vessel as long as we know which sgRNA(s) each cell
contained. To that end, a number of strategies for capturing sgRNAs in single cells have
been described (Adamson et al., 2016; Datlinger et al., 2017; Dixit et al., 2016; Hill et al.,
2018; Replogle et al., 2020). In CROP-Seq, the sgRNA expression cassette is
duplicated during lentiviral integration. One copy of the sgRNA, though not functional, is
polyadenylated and, consequently, can be captured by oligo(dT) primers. An alternative
strategy is to directly capture non-polyadenylated, functional sgRNA transcripts by
incorporating primer binding sites (Capture Sequence or CaptureSeq) into the sgRNA
scaffold (Replogle et al., 2020). Here we combined the two strategies by replacing the
original sgRNA scaffold on CROPSeq-Guide-Puro with Capture Sequence-containing
sgRNA scaffold. To conduct TReK experiment, each single cell is transduced with a
single sgRNA. The resulting pool of cells is subject to single-cell RNA sequencing.

Transcripts containing the sgRNA sequence are expressed by both RNA polymerase I
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and RNA polymerase lll and are captured by oligo-dT primer and 10X Chromium
CaptureSeq gel beads, respectively. The resulting whole transcriptome sequencing data
is demultiplexed based on cell barcode as well as the sgRNAs that were expressed in
each cell.

Figure S2. Constitutive and inducible dCas9-expressing vectors. The constitutive
dCas9 expressing vector (B) (Addgene #122205) was constructed based on the
backbone of Addgene #85969 (Adamson, Norman et al. 2016) with UCOE (ubiquitous
chromatin open element) (Antoniou, Harland et al. 2003) in the upstream of the promoter
and blasticidin resistance as selection marker. To improve knockdown efficacy, we
incorporated the bipartite repressor dCas9-KRAB-MeCP2 (Yeo, Chavez et al. 2018) into
our vector. We also constructed a doxycycline-inducible dCas9-KRAB-MeCP2 vector (A)
(Addgene #140690) using a TRE promoter (Gossen, Freundlieb et al. 1995). (C)
Validation of the inducible vector. Colorectal cancer cell line HT-29 was lentiviral
transduced with pLX-TRE-dCas9-KRAB-MeCP-P2A-BSD. After antibiotic selection with
blasticidin (20 ug/ml for 5 days), 1 ug/ml doxycycline was added and cell lysate was
collected after indicated time for subsequent western blot analysis of protein abundance.

Figure S3. Preprocessing of TReK data. (A) Overview of preprocessing pipeline. (B)
Background correction for sgRNA expression. A conceptual illustration of the distribution
of log(CPM+1) of a specific sgRNA across all cells is plotted as a histogram. A 2-
Gaussian Mixture Model was fitted with red curve representing the low-mean Gaussian
distribution and blue curve representing the high-mean Gaussian distribution. (C)
Distribution of the number of detected genes in single cells with >5,000 UMI counts. (D)
Relationship between total UMI count and number of sSgRNA detected in single cells. All
T2 cells were grouped into 6 equally-sized bins and the fraction of unique sgRNA,
multiple sgRNA, and sgRNA-undetectable (no sgRNA) cells in each bin are shown. T2
dataset was shown as a representative. (E-G) Number of RNA Polymerase II-
transcribed (polyA-ed), RNA Polymerase llI-transcribed (non-polyA-ed), or consolidated

sgRNA transcripts detected in each single cell.

Figure S4. Robust knockdown achieved by short time CRISPR interference. (A,B)
CRISPRi-mediated target gene depletion at pseudo-bulk sample level. For each sgRNA,
the relative expression level of its target gene was calculated as described in Methods.

Distribution of all sgRNAs is plotted. As a reference, a null distribution calculated from a
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sgRNA-shuffled dataset is also shown. (C,D) CRISPRi-mediated target gene depletion
at single-cell level in T2 experiment. Log(CPM+1) of target genes expressed in all cells
expressing all other sgRNA (“All Other”), cells expressing scrambled sgRNAs
(“NonTargeting”), and cells expressing on-target SgRNAs are shown in violin-boxplots.

Figure S5. Consistency between perturbed gene expression signatures. (A,B)
Pearson correlations between gene expression signatures of different sgRNAs targeting
the same TR. For each perturbed TR, the highest correlation is shown among all 3
pairwise correlations (from 3 sgRNAs). High-correlation perturbations (orange dots) are
defined as sgRNAs having a Pearson correlation higher than the 99 percentile of
Pearson correlations between sgRNAs targeting different TRs (grey dashed line). All
Pearson correlations were calculated on 2,000 genes with the highest expression level
variations across all perturbations. (C-E). Comparison of knockdown efficacy (C),
number of differentially expressed genes (D), and number of cells (E) of high-correlation
and low-correlation perturbations. Knockdown efficacy is shown as log2 fold change of
target TR expression. Statistical significance was calculated using the two-tailed Mann-
Whitney U test. (F) Protein half-lives of early (T1) high-correlation TRs and late (T2)
high-correlation TRs. Protein half-lives were measured in hours by mass spectrometry
(Cambridge, Gnad et al. 2011). Statistical significance was calculated using the one-
tailed Mann-Whitney U test. (G,H) Consistency between genetically perturbed bulk
sequencing and TReK perturbed transcriptomes. TReK gene expression signatures
were calculated as described in Methods. In each GSEA plots, the upper gene set
represents upregulated genes identified in bulk sequencing and the lower gene set
represents downregulated genes. Bulk sequencing differentially expressed genes are
taken from Wenzel et al., Oncogene 2020 by FDR=1x10"° as threshold.

Figure S6. Cell number saturation analysis of network refinement. 7 TRs are shown
here selected based on two criteria: 1) TRs with statistically significant (p < 0.05) inactive
activities in the T1 5-fold cross-validation; 2) TRs perturbed in more than 60 cells in T1
5-fold cross-validation dataset. At each cell number, 20 sub-datasets were randomly
down-sampled for 5-fold cross-validation and the median Stouffer's method-integrated

protein activities are shown.
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Figure S7. Transcriptional and post-transcriptional interactions in multi-layer
network. Intersections of different types of interactions in TRN and ARN interactions
before (A) and after (B) removing ARN interactions with corresponding TRN interaction.

Figure S8. Correlation between perturbation efficacy and enrichment of
downstream transcriptional targets. (A) Correlation between CTNNB1 perturbation
efficacy and enrichment of Wnt-3-catenin pathway genes. (B) Correlation between

MYBL2 perturbation efficacy and enrichment of G2M checkpoint genes.

Figure S9. Enrichment analysis of E2F targets after E2F7 perturbation at different
timepoints. Gene set enrichment analysis of E2F targets on gene expression signatures

after 3 different E2F7-targeting sgRNA perturbations. Empirical p-values are shown.

Figure S10. ldentification of upstream regulators and co-factors of MYC. (A)
Log(CPM+1) of MAX expressed in all cells expressing sgRNA targeting other genes (“All
Other”), cells expressing scrambled sgRNAs (“NonTargeting”), and cells expressing
MAX-targeting sgRNAs shown in violin-boxplots. (B-D) GSEA of MYC targets after
different MAX-targeting sgRNA perturbations. Empirical p-values are shown. (E) Venn
diagram showing the overlap between TReK-predicted MYC modulators and CINDY-
predicted MYC modulators. Statistical significance of the overlap was calculated using
the Fisher’s exact test. (F) Venn diagram showing MYC modulators, identified by both
TReK and CINDY, with different mechanistic charaterizations.
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