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Abstract 22 

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved 23 
CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep 24 
longevity and genomic data. We use a ‘pan-mammalian’ microarray that provides a common 25 
platform for assaying the methylome across mammalian clades. We computed epigenetic 26 
clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic 27 
variation. We describe the multifactorial variance of methylation at these CpGs, and show that 28 
high fat diet augments the age-associated changes. Entropy increases with age. The progression 29 
to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-30 
dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a 31 
given age. We identified two genetic loci that modulate rates of epigenetic age acceleration 32 
(EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and a 33 
second on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated 34 
with EAA in humans including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome 35 
analyses revealed associations with oxidation-reduction, metabolic, and immune response 36 
pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a 37 
tight coupling between the metabolic state and epigenetic aging. 38 
 39 
 40 
Keywords: epigenetic clock, lifespan, entropy, DNA methylation, genetic mapping, QTL, weight, 41 
diet  42 
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Introduction 43 

Epigenetic clocks are widely used molecular biomarkers of aging.1 These DNA methylation 44 
(DNAm) age predictors are based on the methylation levels of select CpGs that are distributed 45 
across the genome. Each CpG that is used in a clock model is assigned a specific weight, 46 
typically derived from supervised training algorithms,2-4 and collectively, the methylation status 47 
across this ensemble of “clock CpGs” are used to estimate the epigenetic age (DNAmAge). This 48 
estimate tracks closely, but not perfectly, with an individual’s chronological age. How much the 49 
DNAmAge deviates from the known chronological age can be a measure of the rate of 50 
biological aging. Denoted as “epigenetic age acceleration” (or EAA), a more accelerated clock 51 
(positive EAA) suggests an older biological age, and a decelerated clock (negative EAA) suggests 52 
a younger biological age. While DNAmAge predicts age, its age-adjusted counterpart, EAA, is 53 
associated with variation in health, fitness, exposure to stressors, body mass index (BMI), and 54 
even life expectancy.5-9  55 

These DNAm clocks were initially reported for humans.10-12 Since then, many different models 56 
of human DNAm clock have been develop, and this rapid expansion was made possible by 57 
reliable DNAm microarrays that provide a fixed CpG content—starting with the Illumina 58 
Infinium 27K to the current 850K EPIC array.11,13-15 These clock variants differ in the subset of 59 
CpGs that go into the age estimation model. Some clock models are specific to cells or tissues, 60 
others are multi-tissue. Some clocks perform better at predicting chronological age, others 61 
better capture biological aging and predict health and life expectancy. 8,16-18 The performance of 62 
these clocks depend heavily on the training models, and the size and tissue types of the training 63 
set.13   64 

This age biomarker has also been extended to model organisms, and this has opened up the 65 
possibility of directly testing the effects of different interventions such as calorie restriction, 66 
rapamycin, and genetic manipulation.3,19-23 However, one point to note is that model organisms 67 
have not benefitted from a microarray platform comparable to that of the human methylation 68 
Infinium arrays. Most rodent studies have used enrichment-based DNAm sequencing, and this 69 
limits the transferability and reproducibility of clocks between datasets since the same CpGs 70 
are not always covered.21 Moreover, these studies are usually performed in a single inbred 71 
strain (for mouse, the canonical C57BL/6), or at most, a few genetic backgrounds, and this 72 
makes it impossible to carry out genetic mapping studies that can complement the human 73 
genome-wide association studies (GWAS) of epigenetic aging.24-28 74 

A new microarray was recently developed to profile CpGs that have high conservation in 75 
mammals. This pan-mammalian DNAm array (HorvathMammalMethylChip40) surveys over 37K 76 
CpGs and provides a unifying platform to study epigenetic aging in mammals.29 This array has 77 
been used to build multi-tissue universal clocks and lifespan predictors that are applicable to a 78 
variety of mammalian species.30,31 Here, we use this array to examine the dynamism and 79 
variability of the conserved CpGs in a genetically diverse cohort of mice belonging to the BXD 80 
family.32,33  81 

The BXDs are one of the pre-eminent murine genetic reference panels used as the experimental 82 
paradigm of precision medicine.34  They are a large family of recombinant inbred (RI) strains 83 
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made by crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains. The family has been 84 
expanded to 150 fully sequenced progeny strains.34,35 The individual members of the BXD family 85 
(e.g., BXD1, BXD27, BXD102), each represents a replicable isogenic cohort. The family 86 
segregates for a high level of genetic variation, and likewise, family members have high 87 
variation in their metabolic profiles, responses to diet, aging rates, and life expectancies.32-34,36-88 
38 The availability of deep sequence data, and unrivaled multi-omic and phenomic data make 89 
the BXDs a powerful tool with which to evaluate the causal linkage between genome, 90 
epigenome, and aging rates.  91 

In our previous work, we used an enrichment-based sequencing to assay the methylome in a 92 
modest number of BXD mice, and reported rapid age-dependent methylation changes in mice 93 
on high fat diet, and in mice with higher body weight.39 In the present work, we start by testing 94 
the performance of new pan-tissue and liver-specific epigenetic mouse clocks, and evaluate 95 
how these relate to metabolic states, genotype-dependent life expectancy, and methylome 96 
entropy. We also apply a multi-factor analysis of site-specific CpG methylation to understand 97 
association among four key variables—chronological age, diet, weight, and lifespan—and the 98 
liver methylome. We perform quantitative trait locus (QTL) mapping, along with multi-omic 99 
gene expression analyses, and identify upstream gene loci that modulate the DNAm clocks in 100 
mice. 101 

Our results are consistent with a faster clock for cases on HFD, and with higher body weight. 102 
This may be partly because exposure to HFD augmented the age-dependent gains in 103 
methylation at specific CpGs. We also observed that BXD genotypes with longer life expectancy 104 
tend to have lower methylation at CpGs that undergo age-dependent methylation gains, and 105 
the entropy computed from this set of CpGs have a significant inverse correlation with strain 106 
lifespan. QTL mapping uncovered loci on chromosomes (Chrs) 11 and 19 that are associated 107 
with EAA. A strong candidate gene in the chromosome (Chr) 11 interval (referred to as Eaa11) is 108 
Stxbp4, a gene that has been consistently associated with EAA by human genome-wide 109 
association studies (GWAS).24,26,27 The Chr19 QTL (Eaa19) also harbors strong contenders 110 
including Cyp26a1, Myof, Cutc, and Nkx2–3, and the conserved genes in humans have been 111 
associated with longevity and EAA.27,40,41 We performed gene expression analyses using 112 
transcriptomic and proteomic data to clarify the molecular pathways associated with epigenetic 113 
aging, and this highlighted metabolic networks, and also apolipoproteins (including APOE) as 114 
strong expression correlates. 115 

Results 116 

Description of samples 117 

Liver DNAm data was from 321 female and 18 male belonging to 45 members of the BXD 118 
family, including both parental strains and F1 hybrids. Age ranged from 5.6 to 33.4 months. 119 
Mice were all weaned onto a normal chow (control diet; CD) and a balanced subset of cases 120 
were then randomly assigned to HFD (see Roy et al. for details33). Tissues were collected at 121 
approximately six months intervals (see Williams et al.32). Individual-level data are in Data S1.  122 

DNAm clocks, entropy, and chronological age prediction 123 
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We built three different mouse clocks, and each was developed as a pair depending on whether 124 
the training set used all tissues (pan-tissue) or a specific tissue (in this case, liver). These are: (1) 125 
a general DNAm clock (referred to simply as DNAmAge): clock trained without pre-selecting for 126 
any specific CpGs; (2) developmental clock (dev.DNAmAge): built from CpGs that change during 127 
development (defined as the period from prenatal to 1.6 months); and (3) interventional clock 128 
(int.DNAmAge): built from CpGs that change in response to aging related interventions (calorie 129 
restriction and growth hormone receptor knockout). The clocks we report here were trained in 130 
a larger mouse dataset that excluded the BXDs and are therefore unbiased to the 131 
characteristics of the BXD Family.30,31,42 The specific clock CpGs and coefficients for DNAmAge 132 
computation are in Data S2. All the mouse clocks performed well in age estimation and had an 133 
average r of 0.89 with chronological age. However, the interventional clocks had higher 134 
deviation from chronological age and higher median predictive error (Table 1; Fig 1a). The age-135 
adjusted EAA derived from these clocks showed wide individual variation (Fig 1b). 136 

We next estimated the methylome-wide entropy as a measure of randomness and information 137 
loss. This was computed from 27966 probes that provide high-quality data and have been 138 
validated to perform well in mice.29 Consistent with previous reports,10,43 this property 139 
increased with chronological age, and age accounted for about 6% (in CD) to 28% (in HFD) of 140 
the variance in entropy (Fig 1c). As direct correlates of chronological age, all the DNAmAge 141 
estimates also had significant positive correlations with entropy (Table 1). We hypothesized 142 
that higher entropy levels will be associated with higher EAA, and based on this bivariate 143 
comparison, most of the EAA showed a significant positive correlation with entropy (Data S3; 144 
Fig 1d). 145 

Table 1. Chronological age prediction and correlation with methylome-wide entropy 146 

Clock type DNAmAge 
name Tissue r with age 

(n=339) 1 

Age 
prediction 

median 
error 

r with entropy 
(n=339)1, 2 

Standard 
clocks 

DNAmAge 
pan 0.89 0.12 0.43 

liver 0.92 0.10 0.40 

Developmental 
clocks 

dev.DNAmAge 
pan 0.87 0.14 0.39 

liver 0.91 0.12 0.37 

Interventional 
clocks 

int.DNAmAge 
pan 0.85 0.17 0.29 

liver 0.86 0.15 0.47 
1p < .0001; 2p < .0001 Methylome-wide entropy calculated from ~28K CpGs 147 

How the epigenetic readouts relate to diet, sex, and metabolic traits 148 

Diet. HFD was associated with higher EAA for four of the clocks (Table 2). For instance, the 149 
liver-specific interventional clock diverged between the diets (Fig 1a), and CD mice had an 150 
average of –0.04 years of age deceleration, and HFD mice had an average of +0.11 years of age 151 
acceleration (Table 2). The two clocks that were not affected by diet were the liver general and 152 
developmental clocks. Methylome-wide entropy was not different between the diets. 153 

Body weight. Body weight was first measured when mice were at an average age of 4.5 ± 2.7 154 
months. We refer to this initial weight as baseline body weight (BW0). For mice on HFD, this  155 
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  156 

 
Fig 1. Correlates and modifiers of epigenetic clocks and methylome-wide entropy 
(a) Correlation between chronological age and predicted age (shown for the liver 
intervention clock or int.DNAmAge). Black circles are control diet (CD, n = 210); red crosses 
are high fat diet mice (HFD, n = 128) (b) Violin plots of age-adjusted epigenetic age 
acceleration (EAA) (“int” stands for interventional, “dev” stands for developmental). (c) 
Shannon entropy, calculated from the full set of high quality CpGs, increases with age. (d) 
Methylome entropy has a direct correlation with EAA (shown for the liver int.EAA). (e) For 
48 mice, initial body weight (BW0) was measured 1 or 3 days after introduction to HFD, 
and these showed significant correlation with EAA. (f) Weight was first measured at mean 
age of 4.5 ± 2.7 months (BW0), and then at 6.3 ± 2.8 months (BW1). Weight gains during 
this interval (deltaBW = BW1 – BW0) is a direct correlate of EAA. (g) For BXD genotypes 
with males and females samples, males have higher age acceleration. Bars represent mean 
± standard error; 40 females (26 CD, 14 HFD) and 18 males (10 CD, 8 HFD). (h) Relative 
effects of different predictor variables on EAA shown as logworth scores (-log10p). The 
dashed lines correspond to p = 0.01. Positive logworth values indicate positive regression 
estimates (for diet, positive means higher in high fat diet compared to control diet). BWF is 
final weight; Chol is serum total cholesterol; Gluc is fasted glucose levels. (g) The residual 
plot display association between methylome-wide entropy and the pan-tissue int.EAA 
after adjustment for diet, age, weight, glucose, cholesterol, and batch. 
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Table 2. Association with diet and weight, and heritability of the epigenetic readouts 157 
Type EAA Diet Mean (SD) Diet 

(p) 
r 

BW0 a 
p 

BW0 
r 

BWF a 
p 

BWF H2 Strain 
r b 

Mouse 
clocks 

EAA, pan 
CD -0.05 ± 0.21 

<.0001 
0.19 0.006 0.29 <.0001 0.49 

0.54 HFD 0.07 ± 0.21 0.21 0.01 0.42 <.0001 0.50 

EAA, liver 
CD 0 ± 0.17 

ns 
0.09 ns 0.20 0.003 0.40 

0.73 HFD 0.03 ± 0.14 0.22 0.01 0.49 <.0001 0.52 
dev.EAA, 
pan 

CD -0.04 ± 0.23 
0.004 

0.09 ns 0.22 0.001 0.53 
0.76 HFD 0.03 ± 0.22 0.27 0.002 0.45 <.0001 0.61 

dev.EAA, 
liver 

CD 0 ± 0.2 
ns 

0.19 0.002 0.29 <.0001 0.46 
0.78 HFD 0 ± 0.16 0.29 0.0007 0.47 <.0001 0.60 

int.EAA, pan 
CD -0.05 ± 0.25 

0.0003 
0.03 ns 0.21 0.002 0.27 

0.66 HFD 0.06 ± 0.33 0.22 0.01 0.46 <.0001 0.45 
int.EAA, 
liver 

CD -0.04 ± 0.22 
<.0001 

0.05 ns 0.18 0.01 0.59 
0.80 HFD 0.11 ± 0.25 0.27 0.002 0.58 <.0001 0.54 

Entropy - 
CD 2.67 ± 0.02 

ns 
0.09 ns 0.05 ns 0.31 0.24 

(ns) HFD 2.67 ± 0.02 0.15 0.09 0.15 0.09 0.32 
a BW0 is body weight at about 4.5 months of age (n = 339; 210 CD and 129 HFD); BWF is final weight at tissue collection (1 HFD case missing data; n = 338; 210 158 
CD and 128 HFD) 159 
b Pearson correlation between strain means for n = 29 BXD genotypes kept on CD and HFD160 
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was usually before introduction to the diet, except for 48 cases that were first weighed 1 or 3 161 
days after HFD (Data S1). In the CD group, only the EAA from the pan-tissue standard and liver 162 
developmental clocks showed modest but significant positive correlations with BW0 (Table 2). 163 
In the HFD group, the positive correlation with BW0 was more robust and consistent across all 164 
the clocks, and this may have been due to the inclusion of the 48 cases that had been on HFD 165 
for 1 or 3 days. Taking only these 48 cases, we found that higher weight even after 1 day of HFD 166 
had an age-accelerating effect on all the clocks (Data S3), and this was particularly strong for 167 
the interventional clocks (r = 0.45, p = 0.001 for the pan-tissue int.EAA; r = 0.58, p < 0.0001 for 168 
the liver int.EAA) (Fig 1e). Second weight was measured 7.4 ± 5.2 weeks after BW0 (mean age 169 
6.3 ± 2.8 months).  We refer to this as BW1 and we estimated the weight change as deltaBW = 170 
BW1 – BW0. DeltaBW was a positive correlate of EAA on both diets, albeit more pronounce in 171 
the HFD group (Fig 1f; Data S3). The final body weight (BWF) was measured at the time of 172 
tissue harvest, and EAA from all the mouse clocks were significant correlates of BWF on both 173 
diets (Table 2). In contrast, entropy did not show an association with either BW0 or BWF. We 174 
do note that when stratified by diet, the entropy level had a slight positive correlation with 175 
BW1 in the HFD group (r = 0.23, p = 0.008), but not in the CD group (Data S3). 176 

Sex. Four BXD genotypes (B6D2F1, D2B6F1, BXD102, B6) had cases from both males and 177 
females. We used these to test for sex effects. All the clocks showed significant age acceleration 178 
in male mice, and this effect was particularly strong for the both dev.EAA, and the pan-tissue 179 
int.EAA (Fig 1g; Data S3). This effect was independent of the higher BWF of males, and the 180 
higher age-acceleration in males was detected after adjusting for BWF (Table S1). There was no 181 
significant difference in entropy between the sexes. 182 

Metabolic measures. 278 cases with DNAm data also had fasted serum glucose and total 183 
cholesterol,32,33 and we examined whether these metabolic traits were associated with either 184 
the EAA measures or methylome entropy. Since these are highly dependent on diet, weight, 185 
and age, we applied a multivariable model to jointly examine how the different metabolic 186 
variables (cholesterol and glucose, as well as diet and weight) and entropy relate to EAA after 187 
adjusting for age. To test the robustness of associations, we also include the methylation array 188 
batch as another covariate (Data S1 has batch information; Data S4 has the full statistics). Fig 189 
1h shows the relative strengths and directions of associations between these variables and the 190 
EAA traits. Except for the pan-tissue interventional clock, entropy had a strong positive 191 
association with EAA. For example, a plot of residuals between entropy and the liver int.EAA 192 
indicates that after adjusting for all the other covariates, the methylome-wide entropy explains 193 
17% of the variance in int.EAA (Fig 1i). Since diet strongly influences BWF, the inclusion of BWF 194 
in the regression diminished the effect of diet. For the two clocks that were not influenced by 195 
diet (the liver EAA and liver dev.EAA), adjusting for the effect of BWF resulted in an inverse 196 
association with diet (i.e., the residual EAA values after accounting for BWF were slightly lower 197 
in the HFD group). Fasted glucose did not have a significant effect on EAA. Cholesterol had a 198 
positive association with the interventional clocks but the effects were modest (residual R2 = 199 
0.02 and p = 0.02 for cholesterol and the pan-tissue int.EAA) (Data S4). 200 

We also performed a similar analysis with BW0 instead of BWF (Fig S1), and here, HFD 201 
remained as an accelerator of the pan-tissue EAA and liver int.EAA. Cholesterol also became a 202 
significant positive correlate of EAA for the interventional clocks (Fig S1). This would suggest 203 
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that the effect of diet on EAA is mostly mediated by its impact on physiological and metabolic 204 
traits, and BWF becomes a prominent predictor of EAA.  205 

To summarize, our results indicate that the degree of disorder in the methylome increases with 206 
age, and may partly contribute to the epigenetic clocks as higher entropy is associated with 207 
higher EAA. The EAA traits were also associated with biological variables (i.e., body weight, diet, 208 
and sex). Of these, BWF was the strongest modulator of EAA.  209 

How the epigenetic readouts relate to strain longevity 210 

We next obtained longevity data from a parallel cohort of female BXD mice that were allowed 211 
to age on CD or HFD.33 Since the strain lifespan was determined from female BXDs, we 212 
restricted this to only the female cases. For strains with natural death data from n ≥ 5, we 213 
computed the minimum (minLS), 25th quartile (25Q-LS), mean, median lifespan, 75th quartile 214 
(75Q-LS), and maximum lifespan (maxLS) (Data S1). Specifically, we postulated an accelerated 215 
clock for strains with shorter lifespan (i.e., inverse correlation). Overall, the EAA measures 216 
showed the expected inverse correlation trend with the lifespan statistics. However, these 217 
correlations were weak. The correlations were significant only for the pan-tissue general clock 218 
(Fig S2a) and the liver intervention clock, with explained variance in lifespan of only ~3% (Table 219 
S2; Fig S2b, S2c).  When separated by diet, these correlations became weaker indicating that 220 
while we see the expected inverse relationship, the EAA is only weakly predictive of strain 221 
longevity. Entropy estimated from the full set of CpGs was unrelated to strain longevity. 222 

Multifactor variance of the conserved CpGs 223 

Both the entropy and clock readouts capture the overall variation across multiple CpGs, and to 224 
gain insights into the underlying variance patterns, we performed a multivariable epigenome-225 
wide association study (EWAS). For this, we applied a site-by-site regression on the 27966 226 
validated CpGs,29 and tested for association with age, BWF, diet, and genotype-dependent 227 
strain median lifespan (full set of probes, annotations, and EWAS results in Data S5). 228 

Age was clearly the most influential variable, and this is apparent from the volcano plots (Fig 229 
2a–d). We used a cutoff of Bonferroni p ≤ 0.05 to define differentially methylated CpGs (DMCs), 230 
and 6553 CpGs were associated with age (referred to as age-DMCs), 733 with weight (weight-231 
DMCs), 321 with diet (diet-DMCs), and 236 with genotype-dependent lifespan (LS-DMCs). We  232 
note extensive overlap among the lists of DMCs that shows that variation at these CpGs are 233 
multifactorial in nature (1e). Majority of the age-DMCs (77%) gained methylation (or age-gain), 234 
and consistent with previous observations, age-gain CpGs tended to be in regions with low 235 
methylation, whereas age-DMCs that declined in methylation (age-loss) were in regions with 236 
high methylation (Fig 2f).39,43,44 By overlaying the volcano plots with the age-gain and age-loss 237 
information, we see distinct patterns in how these age-DMCs vary with weight (Fig 2b), diet (Fig 238 
2c), and genotype lifespan (Fig 2d). While the majority of CpGs, including several age-loss CpGs, 239 
had negative regression estimates for weight (i.e., decrease in DNAm with unit increase in 240 
weight), HFD was associated with higher methylation levels (positive regression estimates) 241 
including at several age-DMCs (Fig 2c). This pattern of inverse correlation with weight but 242 
heightened methylation due to HFD is illustrated by the CpG in the 3’UTR of Mettl23 243 
(cg10587537) (Fig 2g). Taking the 6553 age-DMCs, a comparison of the regression estimates for 244 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 10 

age (i.e., the change in methylation per day of aging) versus diet (difference in HFD relative to 245 
CD) shows that the age-gains were augmented in methylation by HFD (Fig 2h), and again, this is 246 
illustrated by the CpG in the Mettl23 3’UTR (Fig 2i). For the LS-DMCs, sites that had negative 247 
regression estimates for lifespan (i.e., lower DNAm per day increase in strain median longevity) 248 
had higher proportion of age-gain CpGs (Fig 2d). A comparison between the regression 249 

 
Fig 2. Multivariable analysis of site-specific methylation 
(a) Volcano plot comparing regression estimates (change in methylation beta-value per day 
of age) versus the statistical significance for age effect. Dashed line denotes the Bonferroni 
p = 0.05 for ~28K tests). Similar volcano plots for predictor variables: (b) final body weight 
(regression estimates are change per gram of weight), (c) diet (change in high fat compared 
to control diet), and (d) strain median lifespan (per day increase in median longevity). CpGs 
that were significantly associated with age are denoted by colored markers (red circles: 
age-gain; yellow triangles: age-loss). (e) Overlap among the lists of differentially methylated 
CpGs. (f) Each dot represents the mean methylation beta-values for the 5030 age-gain, and 
1523 age-loss CpGs. (g) Correlation between body weight and methylation beta-values for 
the CpG (cg10587537) located in the 3’UTR of Mettl23. Mice on high fat diet (HFD) have 
higher methylation than mice on control diet (CD), but the inverse correlation with weight 
is consistent for both groups (r = –0.45, p < .0001 for CD; r = –0.15, p = 0.08 for HFD). (h) 
Contour density plot for the 6553 CpGs that are significantly associated with age (age-
DMCs). This relates the pattern of change with age (x-axis) with change on HFD (y-axis). 
CpGs that gain methylation with age are also increased in methylation by HFD. (i) 
Correlation between age and methylation at the Mettl23 3’UTR CpG (r = 0.35 for CD; r = 
0.46). (j) For the 6553 age-DMCs, the contour density plot relates the pattern of change 
with age (x-axis) vs. change with median longevity (y-axis). CpGs that gain methylation with 
age have lower methylation with higher lifespan. 
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estimates for age versus the regression estimates for lifespan shows that CpGs that gain 250 
methylation with age tended to have lower methylation in strains with longer lifespan (Fig 2j).  251 

As in Sziráki et al.,43 we divided the CpGs by age effect: age-gain, age-loss, and those that do not 252 
change strongly with age (age-ns; i.e., the remaining 21413 CpGs that were not classified as 253 

 
Fig 3. Entropy at age-associated CpGs 
Entropy values were calculated for the 5020 age-gain and 1523 age-loss CpGs separately. 
For both control diet (CD) and high fat diet (HFD), there is significant increase in entropy 
with age at the (a) age-gain and (b) age-loss CpGs. (c) The HFD mice also showed a slight 
increase in entropy at CpGs that were not strongly associated with age (age-ns). (d) The 
methylome-wide distribution of beta-values in a young adult mouse (0.6 year old; black 
dashed line), and an older mouse (2.3 year old; red line); both CD mice. The young mouse 
has higher peaks at the hypo-methylated (closer to 0.1) and hyper-methylated (around 0.9) 
beta-values compared to the older mouse. (e) The HFD group has higher entropy at the age-
gain CpGs compared to the CD group. (f) Entropy at age-loss CpGs is higher with higher 
baseline weight (BW0). (g) Relative effects of predictor variables on entropy shown as 
logworth scores (-log10p). The dashed lines correspond to p = 0.01. Positive values indicate 
positive regression estimates (for diet, positive value means higher in HFD). BWF is final 
weight; Chol is serum total cholesterol; Gluc is fasted glucose levels; LS is the strain median 
lifespan. (h) The residual plot (adjusted for age, diet, BWF, glucose, cholesterol, and batch) 
shows the inverse association between entropy at age-gain sites, and lifespan. Similar 
residual plots show the association between (i) BWF and age-loss entropy, and (j) between 
fasted serum glucose and age-gain entropy.  
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age-DMCs). For these conserved CpGs, both sets of age-DMCs had significant increases in 254 
entropy with age regardless of diet (Fig 3a, 3b), and even the age-ns showed a modest entropy 255 
gain with age in the HFD group (Fig 3c). The reason for this increase in disorder becomes 256 
evident when we compare the density plots using the full set of CpGs for one of the younger 257 
mice (UT319; 0.56 years old) and one of the older mice (UT573; 2.3 years) (Fig 3d). Concordant 258 
with previous reports,43,45 the older sample showed a subtle flattening of the bimodal peaks 259 
towards a slightly more hemi-methylated state. The entropy of the age-gain CpGs was modestly 260 
but significantly higher in the HFD group (p = 0.001; Fig 3e). Entropy of the age-loss and age-ns 261 
CpGs were not different between the diets. Body weight on the other hand, was associated 262 
specifically with the entropy score of the age-loss CpGs, and both higher BW0 (Fig 3f) and BWF 263 
predicted higher entropy for age-loss CpGs.  264 

We applied a multivariable regression to compare the relative effects of age, diet, BWF, 265 
glucose, cholesterol, and strain median lifespan (Fig 3g; full statistics in Data S6). Entropy of 266 
age-gain CpGs was increased by HFD but was not associated with BWF. Strain median lifespan 267 
showed a significant inverse correlation with the entropy of age-gain CpGs with an explained 268 
variance of 6% (Fig 3h). Entropy of the age-loss CpGs had a significant positive correlation with 269 
BWF (Fig 3i), but was not associated with diet, and also had a modestly significant inverse 270 
correlation with median lifespan. Cholesterol was unrelated to the entropy values. Glucose on 271 
the other hand, showed a significant inverse association with entropy of both the age-gain (Fig 272 
3j) and age-loss CpGs, and this suggests slightly lower entropy with higher fasted glucose. 273 

Taken together, our results show that the conserved CpGs are influenced by multiple 274 
predictors. HFD augmented the age-dependent changes with a prominent effect on age-gain 275 
CpGs. Body weight showed a strong association with the age-loss CpGs. Additionally, strains 276 
with longer life expectancy tended to have lower methylation levels at age-gain CpGs with an 277 
overall lower entropy state at these CpGs that suggests a more “youthful” methylome for 278 
longer lived genotypes. 279 

Functional and genomic context of DMCs 280 

To uncover the potential biological pathways represented by the DMCs, we performed genomic 281 
regions enrichment analyses for the CpGs.46 The age-gain CpGs were highly enriched in 282 
transcription factors, regulators of development and growth, menarche and menstrual phases, 283 
energy metabolism, and transcription factor networks such as HNF1 and HNF3B pathways (Data 284 
S7). The age-loss CpGs had somewhat modest enrichment, and represented cell adhesion and 285 
cytoskeletal processes, endothelial cell proliferation, and p38 signaling (Data S7). The BW-DMCs 286 
were enriched in actin and protein metabolism, and WNT, and platelet-derived growth factor 287 
(PDGF) and ErbB signaling. Similarly, the diet-DMCs were highly enriched in PDGF, epidermal 288 
growth factor (EGFR) and ErbB signaling, as well as the mTOR signaling pathway, and regulation 289 
of energy homeostasis (Data S7). Seeming to converge on common pathways, the LS-CpGs that 290 
were negatively correlated with lifespan had modest enrichment in cell signaling pathways such 291 
as EGFR, PDGF, and ErbB signaling. The LS-CpGs with positive correlation with lifespan were 292 
highly enriched in lipid metabolic genes, and also included pathways related to chromosome 293 
maintenance and telomere expansion (Data S7). 294 
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We next examined the genomic annotations and chromatin states of the DMCs (Data S8). 295 
Consistent with previous reports,39,43 age-gain CpGs were enriched in promoter and 5’UTR 296 
CpGs, but depleted in 3’UTR, exon, and intergenic CpGs (Data S8; Fig S3a). Diet- and weight-297 
DMCs were depleted in promoter regions, and enriched in exons and 3’UTR, and along with the 298 
age-loss CpGs, enriched in introns. For chromatin states, we annotated the CpG regions using 299 
the 15-states chromatin data for neonatal (P0) mouse liver (Data S8 has annotations for each 300 
site).47,48 Also included were regions labelled as No Reproducible State or NRS; i.e., regions that 301 
were not replicated.48 Compared to the array content as background, the age-gain CpGs were 302 
selectively enrich in polycomb associated heterochromatin (Hc-P) and bivalent promoters (Pr-303 
Bi), chromatin states that were highly depleted among the other DMCs (Fig S3b; Data S8). In 304 
contrast, strong and permissive transcription sites (Tr-S and Tr-P, respectively) were depleted 305 
among the age-gain CpGs, and enriched among the BW- and diet-DMCs (Fig S3b). Age-loss CpGs 306 
were enriched in Tr-P and Tr-I (transcription initiation). Distal enhancers (strong distal or En-Sd, 307 
and poised distal or En-Pd) were also highly enriched among the BW- and diet-DMCs, and also 308 
showed some enrichment among the age-DMCs (Fig S3b). 309 

For an overview of the general methylation and variance patterns by chromatin annotations, 310 
we used the full set of 27966 CpGs and computed the average methylation beta-values, and 311 
average regression coefficients (i.e, change in beta-value per unit change in the respective 312 
predictor variable, or contrast between diets). As expected, promoter CpGs and Hc-P were sites 313 
with the lowest methylation. Hc-H, Tr-S, and Tr-P had higher methylation, and many of the 314 
enhancer sites were in the hemi-methylated zone (Fig S3c, d, e). For age effect, mean 315 
regression estimates had a significant inverse linear fit with mean methylation (r = –0.63, p = 316 
0.009; Fig S3c) and this is consistent with the greater age-loss at hypermethylated CpGs, and 317 
greater age-gains at hypomethylated CpGs (Fig 2f). The effects of diet and weight were not 318 
linearly related to the mean methylation of the chromatin states. Instead, both showed a U-319 
shaped fit with a significant negative quadratic effect for diet (R2 = 0.69, p = 0.0005, quadratic 320 
estimate = –0.05; Fig S3d), and a positive quadratic effect for weight (R2 = 0.50, p = 0.01, 321 
quadratic estimate = 0.001; Fig S3e). Methylation variation as a function on strain longevity did 322 
not relate to mean methylation with either a linear or polynomial fit, and indicates that 323 
variance due to background genotype is less dependent on the chromatin and mean 324 
methylation status. While this is a very low-resolution and broad view of methylation levels and 325 
methylation variation, the observations show that while aging results in erosion of the hypo- 326 
and hypermethylated peaks, diet and body weight appear to have generally stronger 327 
associations with hemi-methylated sites.  328 

Genetic analysis of epigenetic age acceleration 329 

The EAA traits had moderate heritability at an averaged H2 of 0.50 (Table 2).34 Another way to 330 
gauge level of genetic correlation is to compare between members of strains maintained on 331 
different diets. All the EAA traits shared high strain-level correlations between diets, indicating 332 
an effect of background genotype that is robust to dietary differences (Table 2). The 333 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 14 

methylome-wide entropy had a heritability of ~0.30, and had no strain-level correlation 334 
between diets.  335 

To uncover genetic loci, we applied QTL mapping using mixed linear modeling that corrects for 336 
the BXD kinship structure.49 First, we performed the QTL mapping for each EAA traits with 337 
adjustment for diet and body weight. EAA from the two interventional clocks had the strongest 338 
QTLs (Data S9). The pan-tissue int.EAA had a significant QTL on Chr11 (90–99 Mb) with the 339 
highest linkage at ~93 Mb (p = 3.5E-06; equivalent to a LOD score of 4.7) (Fig 4a). Taking a 340 
genotype marker at the peak interval (BXD variant ID DA0014408.4 at Chr11, 92.750 Mb)34, we 341 

 
Fig 4. QTL maps for the DNAm readouts 
The Manhattan plots represent the location of genotyped markers (x-axis), and linkage –
log10p (y-axis). (a) The peak quantitative trait locus (QTL) for age acceleration from the 
pan-tissue interventional clock (int.EAA) is on chromosome (Chr) 11 at ~93 Mb. The inset 
shows the mean (± standard error) trait values for BXDs the are homozygous for the 
C57BL/6J allele (BB; grey) versus BXDs homozygous for the DBA/2J allele (DD; black) on 
control diet (CD) and high fat diet (HFD). (b) The liver-specific int.EAA has a peak QTL on 
Chr19 (~38 Mb). Trait means by genotype at this locus are shown in inset; BB has higher 
age acceleration. (c) Linkage statistics are weaker for the methylome-wide entropy. 
However, there is a nominally significant linkage on the Chr19 loci, but the peak markers 
are at ~47.5 Mb. Here the BB genotype has higher entropy. 
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segregated the BXDs homozygous for either the D2 (DD) or the B6 (BB) alleles. Strains with DD 342 
genotype at this locus had significantly higher int.EAA (Fig 4a inset). The liver int.EAA had the 343 
highest QTL on Chr19 (35–45 Mb) with the most significant linkage at markers between 38–42 344 
Mb (p = 9E-07; LOD score of 5.2) (Fig 4b). We selected a marker at the peak interval 345 
(rs48062674 at Chr19, 38.650 Mb), and the BB genotype had significantly higher liver int.EAA 346 
compared to DD (Fig 4b inset).  347 

We performed a similar QTL mapping for methylome-wide entropy with adjustment for major 348 
covariates (diet, chronological age, and body weight). There were no genome-wide significant 349 
QTLs. A region on Chr19 that overlapped the liver int.EAA showed a modest peak (Fig 4c; Data 350 
S9). However, the peak markers for entropy were located slightly distal to the peak EAA QTL 351 
(~47.5 Mb at rs30567369, minimum p = 0.0005). At this locus, the BB genotype had higher 352 
average entropy. 353 

To identify regulatory loci that are consistent across the different EAA measures, we applied a 354 
multi-trait analysis and derived the linkage meta-p-value using a p-value combination for the six 355 
EAA traits.50 The peaks on Chrs 11 and 19 attained the highest consensus p-values (Fig S4a; 356 
Data S9). There was another potential consensus peak at combined –log10p > 6 on Chr3 (~54 357 
Mb). We focus on the Chrs 11 and 19 QTLs and refer to these as EAA QTL on Chr 11 (Eaa11), 358 
and EAA QTL on Chr 19 (Eaa19). Eaa11 extends from 90–99 Mb. For Eaa19, we delineated a 359 
broader interval from 35–48 Mb that also encompasses the peak markers for entropy. 360 

We performed marker-specific linkage analyses for each of the clocks using a regression model 361 
that adjusted for diet. With the exception of the liver int.EAA, all the EAA traits had nominal to 362 
highly significant associations with the representative Eaa11 marker (DA0014408.4), and the 363 
DD genotype had higher age acceleration (Table 3). Mean plots by genotype and diet shows 364 
that this effect was primarily in the CD mice (Fig S4b). The effect of this locus appeared to be 365 
higher for the pan-tissue clocks compared to the corresponding liver-specific clocks. For 366 
proximal Eaa19, the representative marker (rs48062674) was associated with all the EAA traits 367 
and the BB mice had higher age acceleration on both diets (Fig S4c). We also tested if these 368 
peak markers were associated with the recorded lifespan phenotype and we found no 369 
significant association with the observed lifespan of the BXDs. 370 

Table 3: Marker specific linkage analyses for epigenetic age acceleration and body weight 371 
trajectory 372 

 Linear regression1 
Predictor Outcome Estimate Std Error t Ratio p 

Eaa11 
DA0014408.4[DD] 

Chr11, 92.750 Mb 

(133 BB cases, 

and 173 DD cases) 

EAA, pan 0.096 0.023 4.184 3.8E-05 

EAA, liver 0.067 0.017 3.880 0.0001 

dev.EAA, pan 0.077 0.025 3.041 0.003 

dev.EAA, liver 0.037 0.020 1.878 0.06 

int.EAA, pan 0.153 0.029 5.278 2.5E-07 

int.EAA, liver -0.033 0.025 -1.284 0.20 

Eaa19 
rs48062674[DD] 

Chr19, 38.650 Mb 

EAA, pan -0.083 0.028 -2.954 0.003 

EAA, liver -0.137 0.020 -6.972 2.0E-11 

dev.EAA, pan -0.206 0.029 -7.218 4.3E-12 
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(238 BB cases, 

and 67 DD cases) 
dev.EAA, liver -0.124 0.023 -5.461 9.9E-08 

int.EAA, pan -0.143 0.035 -4.028 7.1E-05 

int.EAA, liver -0.250 0.027 -9.238 4.6E-18 

 Mixed model for longitudinal change in body weight2 
Predictor Outcome Estimate Std Error t Ratio p 
Eaa11 
DA0014408.4[DD] 

Number of 

observations = 

6885; number of 

individuals = 2112 

Body weight 0.619 0.345 1.794 0.07 

Eaa19 
rs48062674[DD] 

Number of 

observations =  

6132; number of 

individuals = 1852 

Body weight -1.847 0.374 -4.945 7.6E-07 

1Regression model: lm(EAA ~ genotype + diet); 2lmer(weight ~ age + diet + genotype + (1|mouseID)  373 

Association of EAA QTLs with body weight trajectory 374 

Since gain in body weight with age was an accelerator of the clocks, we examined whether the 375 
selected markers in Eaa11 and Eaa19 were also related to body weight change. We retrieved 376 
longitudinal weight data from a larger cohort of the aging BXD mice that were weighed at 377 
regular intervals. After excluding heterozygotes, we tested the effect of genotype. Concordant 378 
with the higher EAA for the DD genotype at Eaa11 in the CD group, the DD genotype in the CD 379 
group also had slightly higher mean 380 
weight at older adulthood (12 and 18 381 
months; Fig 5a). However, this marker 382 
had no significant association with 383 
body weight when tested using a 384 
mixed effects model (p = 0.07; Table 385 
3). In Eaa19, it was the BB genotype 386 
that consistently exhibited an 387 
accelerated clock on both diets, and 388 
also higher entropy, and the BB 389 
genotype had higher average body 390 
weight by 6 months of age (Fig 5b), 391 
and this locus had a significant 392 
influence on the body weight 393 
trajectory (p = 7.6E-07; Table 3). 394 

Candidate genes for epigenetic 395 

age acceleration 396 

There are several positional candidate 397 
genes in Eaa11 and Eaa19. To narrow 398 
the list, we applied two selection 399 

 
Fig 5. Body weight trajectory by diet and genotype 
Body weight was measured at regular age intervals 
(x-axis) from (a) 2112 BXD mice that were 
homozygous at the Eaa11 marker (DA0014408.4; 
842 BB, 1279 DD), and (b) 1852 BXD mice that were 
homozygous at the proximal Eaa19 marker 
(rs48062674; 1252 BB, 600 DD). Mice were 
maintained on either control diet (CD) or high fat 
diet (HFD). The graphs show the segregation of 
body weight over time by diet and genotype. Mean 
± standard error; heterozygotes were excluded. 
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criteria: genes that (1) contain missense and/or stop variants, and/or (2) contain non-coding 400 
variants and regulated by cis-acting expression QTLs (eQTL). For the eQTL analysis, we utilized 401 
an existing liver transcriptome data from the same aging cohort.32 We identified 24 positional 402 
candidates in Eaa11 that includes Stxbp4, Erbb2 (Her-2 oncogenic gene), and Grb7 (growth 403 
factor receptor binding) (Data S10; Fig 4a). Eaa19 has 81 such candidates that includes a cluster 404 
of cytochrome P450 genes, and Chuk (inhibitor of NF-kB) in the proximal region, and Pcgf6 405 
(epigenetic regulator) and Elovl3 (lipid metabolic gene) in the distal region (Data S10; Fig 4b, 406 
4c).  407 

For further prioritization, we converted the mouse QTL regions to the corresponding syntenic 408 
regions in the human genome, and retrieved GWAS annotations for these intervals.51 We 409 
specifically searched for the traits: epigenetic aging, longevity, age of 410 
menarche/menopause/puberty, Alzheimer’s disease, and age-related cognitive decline and 411 
dementia. This highlighted 5 genes in Eaa11, and 3 genes in Eaa19 (Table S3). We also 412 
identified a GWAS study that found associations between variants near Myof-Cyp26a1 and 413 
human longevity,41 and a meta-GWAS that found gene-level associations between Nkx2–3 and 414 
Cutc, and epigenetic aging (Table S3).27 415 

Gene expression correlates of EAA 416 

A subset of the BXD cases had liver RNA-seq data (94 CD, and 59 HFD).32 Using this set, we 417 
performed transcriptome-wide correlation analysis for the general pan-tissue EAA, and the 418 
more specific liver int.EAA. To gain insights into biological pathways, we selected the top 2000 419 
transcriptome correlates for functional enrichment analysis (Data S11). The common themes 420 
for both clocks were: (1) there were far fewer negative correlates (223 out of 2000 for pan-421 
tissue EAA, and 337 out of 2000 transcripts for liver int.EAA) than positive correlates, (2) the 422 
negative correlates were highly enriched (Bonferroni correct p < 0.05) in oxidation-reduction 423 
and mitochondrial genes (Data S12, Data S13). The pan-tissue general clock was also highly 424 
enriched in pathways related to steroid metabolism, epoxygenase p450 pathway, and 425 
xenobiotics, which are pathways that are particularly relevant to liver. The p450 genes included 426 
candidates that are in Eaa19 (e.g., Cyp2c29, Cyp2c37). The positive correlates were enriched in 427 
a variety of gene functions including mitosis for both clocks, and immune and inflammatory 428 
response for the general pan-tissue clock (functions that are not specific to liver). 563 429 
transcripts (315 unique genes) were correlated with both the pan-tissue EAA, and the liver 430 
int.EAA. Based on hierarchical clustering (HC) of these common mRNA correlates of EAA, the 431 
transcripts could be clustered into 3 groups (Fig 6a; heatmap in Fig S5a). While none of these 432 
were significantly enriched in any particular gene ontology (GO), cluster 3 included several 433 
oxidation-reduction genes including the Eaa11 candidate, Cyp2c29, and cluster 2 included 434 
several cell cycle genes (Fig 6a). To verify that these transcriptomic associations are robust to 435 
the effect of diet, we repeated the correlation and enrichment analysis in the CD group only for 436 
the pan-tissue general clock (n = 94). Again, taking the top 2000 correlates (|r| ≤ 0.22; p ≤ 0.03), 437 
we found the same enrichment profiles for the positive correlates (immune, cell cycle) and the 438 
negative correlates (oxidation-reduction and mitochondrial) (Data S12).  439 

Liver proteome was also available for 164 of the BXDs, and 53 also had adipose proteome. The 440 
liver proteome data quantifies over 32000 protein variants from 3940 unique genes and has 441 
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been reported in Williams et al.32 Similar to the transcriptome-wide analysis, we extracted the 442 
top 2000 protein correlates of EAA (Data S14), and performed functional enrichment analysis 443 
(Data S12, S13). For both the liver int.EAA  and the pan-tissue EAA, the top liver protein 444 
correlate was APOE, and higher expression of APOE was associated with higher age acceleration 445 
(Fig 6b, c). Similar to the transcriptome, the negative correlates of EAA were highly enriched in 446 
oxidation-reduction (several cytochrome proteins), steroid metabolism, and epoxygenase 450 447 
pathway. The positive correlates were also highly enriched in oxidation-reduction (several 448 
hydroxy-delta-5 steroid dehydrogenases proteins), lipid and carbohydrate metabolism, as well 449 
as phospholipid efflux (particularly enriched for the liver int.EAA) (Data S13). There was a high 450 
degree of overlap at the proteomic level for the two clocks and 1241 proteins variants (332 451 
unique genes) were correlated with both the pan-tissue EAA and the liver int.EAA (Data S14). 452 
For these common protein correlates, the HC divided the proteins into clusters that 453 

 
Fig 6. Gene expression correlates of epigenetic age acceleration 
(a) mRNAs that were correlated with the acceleration of both the pan-tissue general clock 
(pan EAA), and the liver interventional clock (liver int.EAA) were grouped based on 
unsupervised hierarchical clustering (HC). Few representative genes and gene ontologies are 
highlighted. For liver proteome, the level of APOE was the strongest correlate for both the 
(b) liver int.EAA, and (c) the pan-tissue EAA. (d) For liver proteins that were correlated with 
both pan-tissue EAA and liver int.EAA, HC grouped the proteins into clusters that were 
enriched in oxidation-reduction and lipid metabolism, and a cluster enriched in glycogen 
metabolism. In adipose tissue, the expression level of the APOE protein was higher with 
higher age acceleration for both the (e) liver int.EAA, and (f) the pan-tissue EAA. 
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represented metabolic pathways mainly related to steroid metabolism, but also glycolysis and 454 
gluconeogenesis (Fig 6d; heatmap in Fig S5b).  455 

Finally, we used the adipose proteome data for a proteome-wide correlational analysis for the 456 
pan-tissue EAA and liver int.EAA. We took only the top 1000 correlates (due to the small sample 457 
size), and a functional enrichment analysis showed consistent enrichment in metabolic 458 
pathways related to fatty acids and also carbohydrates, and cell proliferation genes for the pan-459 
tissue EAA (Data S12, S13). For the adipose proteome, the cytochrome p450 genes were no 460 
longer enriched. However, the overall functional profile highlighted metabolic pathways as 461 
important gene expression correlates of EAA. Furthermore, for both the liver and adipose 462 
proteomes, APOE levels were highly correlated with EAA that indicates a higher level of this 463 
apolipoprotein in both tissues is associated with higher age acceleration (Fig 6e, 6f). 464 

Discussion 465 

Here we have tested the performance of DNAm clocks derived from highly conserved CpGs, and 466 
described the dynamism and variability of site-specific methylation. While age is a major source 467 
of variance, we detected joint modulation by diet, body weight, and genotype-by-diet life 468 
expectancy. HFD had an age accelerating effect on the clocks, and this is concordant with our 469 
previous report where we found more rapid age-associated changes in methylation.39 This also 470 
concurs with studies in humans that have found that obesity accelerates epigenetic aging.52,53 471 
However, when BWF was included in the regression term, the effect of diet became 472 
inconsistent. This suggests that the effect of diet on EAA is mediated by the changes in weight 473 
and metabolic traits such as total cholesterol. Body weight in particular, had a strong age-474 
accelerating effect. The effect of weight may manifest early on, and even in the CD group, 475 
higher weight gains at younger age (between 4–6 months) was associated with higher EAA later 476 
in life.  477 

We tested different mouse DNAm clocks, and the main difference between these clocks was 478 
the subsets of CpGs that were used for training. It is well-known that DNAm clocks have high 479 
level of degeneracy.3,14 In other words, highly accurate predictors of chronological age can be 480 
built from entirely different sets of CpGs and different weight coefficients. This is likely because 481 
a large proportion of CpGs undergo some degree of change with age, and combinatorial 482 
information from any subset of this is informative of age. For instance, even at a very stringent 483 
cutoff of Bonferroni 0.05 that treated the 27966 CpGs as “independent”, we still detected 6553 484 
CpGs as age-DMC, i.e., close to a quarter of the CpGs we tested. Clocks built from pre-selected 485 
CpGs that are at conserved sequences are known to be sensitive to the effects of pro-longevity 486 
interventions such as calorie restriction and growth hormone receptor deletion.3,54 And while 487 
all these DNAm clocks achieve reasonably high prediction of chronological age, the age 488 
divergence derived from these different clocks (EAA) can capture slightly different facets of 489 
biological aging, and the better a clock is at predicting chronological age, the lower its 490 
association with mortality risk.13,14 In the present study, we find that the interventional clocks 491 
deviated most from chronological age, and this is expected as these were built from a much 492 
smaller set of CpGs (see Methods). The interventional clocks were also associated with BWF 493 
and cholesterol, but had weaker associations with BW0. The liver int.EAA had the highest 494 
positive correlation with methylome-wide entropy, and was the clock that had the strongest 495 
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inverse correlation with strain longevity. In contrast, the developmental clocks, which were 496 
based on CpGs that change early in life, showed a stronger association with BW0. The contrast 497 
between the interventional and developmental clocks suggests that while one is more 498 
modifiable, the other is more informative of baseline characteristics that influence aging later in 499 
life. The pan-tissue clock, which was not constrained to any preselected set of CpGs or tissue, 500 
also performed well in capturing biological aging and was accelerated by both BW0 and BWF, 501 
diet (when BW0 was the weight term in the regression model), higher entropy, and had a 502 
modest but significant inverse correlation with strain lifespan.  503 

Entropy, a measure of noise and information loss, increases as a function of time and age.10,55-57 504 
In the context of the methylome, the shift to higher entropy represents a tendency for the 505 
highly organized hypo- and hypermethylated landscape to erode towards a more hemi-506 
methylated state.10,43,45 This increase in disorder, particularly across CpGs that are highly 507 
conserved, could have important functional consequences. The entropy of age-gain CpGs 508 
predicted strain lifespan, and was increase by HFD. Overall, we find that mice belonging to 509 
longer-lived BXD strains had a more “youthful” methylome with lower entropy at the age-gain 510 
CpGs. The entropy of age-loss CpGs on the other hand, was related to the body weight of mice, 511 
and both higher BW0 and BWF were associated with higher entropy. This leads us to suggest 512 
that the rate of noise accumulation, an aspect of epigenomic aging, can vary between 513 
individuals, and the resilience or susceptibility to this shift towards higher noise may be partly 514 
modulate by diet as well as genetic factors.  515 

Somewhat surprising was the inverse correlation between the entropy of age-DMCs and fasted 516 
glucose. This lower entropy of age-gain CpGs with higher glucose is somewhat counter to the 517 
general tendency for strains with shorter lifespan to have higher glucose.33 In biological 518 
systems, entropy is kept at bay by the uptake of chemical energy, and investment in 519 
maintenance and repair,57 and we can only speculate that at least in mice, the higher amount of 520 
glucose after overnight fast may be associated with a more ordered methylome. The centrality 521 
of bioenergetics for biological systems may explain why we detect this coupling between the 522 
DNAm readouts (i.e., the clocks, and entropy), and indices of metabolism including weight, diet, 523 
levels of macronutrients, and even expression of metabolic genes. As cogently highlighted by 524 
Donohoe and Bultman,58 many metabolites (e.g., SAM, NAD+, ATP) are essential co-factors for 525 
enzymes that shape the epigenome, and these could serve as nutrient sensors and mechanistic 526 
intermediaries that regulate how the epigenome is organized in response to metabolic 527 
conditions. Close interactions between macro- and micronutrients, and DNAm is a conserved 528 
process and plays a critical role in defining both physiology and body morphology.59,60 Overall, 529 
our results suggests that a higher metabolic state is associated with higher entropy and EAA, 530 
and potentially, lower lifespan. 531 

For the BXDs, life expectancy is highly dependent on the background genotype, and mean 532 
lifespan varies from under 16 months for strains such as BXD8 and BXD13, to over 28 months in 533 
strains such as BXD91 and BXD175.33,36,38  The EAA showed the expected inverse correlation 534 
with lifespan, but the effect was modest and only significant for the pan-tissue EAA and the 535 
liver int.EAA. The association of lifespan with the entropy of age-gain CpGs was slightly 536 
stronger. We must point out that the analysis between the epigenetic readouts and lifespan 537 
was an indirect comparison. Unlike the comparison with body weight and metabolic traits, 538 
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which were traits measured from the same individual, the lifespan data are strain 539 
characteristics computed from a parallel cohort of mice that were allowed to survive till natural 540 
mortality, and this may partly explain the weaker associations with EAA. Nonetheless, our 541 
observations indicate that genotypes with higher life-expectancy have generally lower entropy, 542 
and lower methylation levels at the age-gain CpGs, and these properties of the methylome are 543 
likely to be partly under genetic modulation. 544 

Our goal was to take these different clocks and identify regulatory loci that were the most 545 
stable and robust to the slight algorithmic differences in building the clocks. A notable 546 
candidate in Eaa11 is Syntaxin binding protein 4 (Stxbp4, aka, Synip), located at 90.5 Mb. Stxbp4 547 
is a high-priority candidate due to the concordant evidence from human genetic studies. The 548 
conserved gene in humans is a replicated GWAS hit for the intrinsic rate of epigenetic 549 
aging.24,26,27 In the BXDs, Stxbp4 contains several non-coding variants, and a missense mutation 550 
(rs3668623), and the expression of Stxbp4 in liver is modulated by a cis-eQTL. Stxbp4 plays a 551 
key role in insulin signaling,61 and has oncogenic activity and implicated in different cancers.62,63 552 
Furthermore, GWAS have also associated STXBP4 with age of menarche.64,65 Eaa11 corresponds 553 
to the 17q12-21 region in humans, and the location of additional oncogenic genes, e.g., 554 
ERBB2/HER2, GRB7, and BRCA1.66 The mouse Brca1 gene is a little distal to the peak QTL region 555 
and is not considered a candidate here, although it does segregate for two missense variants in 556 
the BXDs. Erbb2 and Grb7 are in the QTL region, and Erbb2 contains a missense variant 557 
(rs29390172), and Grb7 is modulated by a cis-eQTL. Nr1d1 is another candidate in Eaa11, and 558 
the co-activation of Erbb1, Grb7, and Nr1d1 has been linked to breast and other cancers.67,68  559 

Eaa19 was consistently associated with EAA from all the clocks we evaluated, and also with 560 
body weight gains, irrespective of diet. DNAm entropy may also have a weak association with 561 
markers at this interval. The EAA traits have peak markers in the proximal part of Eaa19 562 
(around the cytochrome cluster), and the methylome-wide entropy had a weak peak that was 563 
in the distal portion (over candidates like Elovl3, Pcgf3). Two candidates in Eaa19 have been 564 
implicated in epigenetic aging in humans based on gene-level meta-GWAS: NK homeobox 3 565 
(Nkx2-3, a developmental gene), and CutC copper transporter (Cutc).27 Eaa19 is also the 566 
location of the Cyp26a1-Myof genes, and the human syntenic region is associated with 567 
longevity, metabolic traits, and lipid profiles.41,69,70 Another noteworthy candidate in Eaa19 is 568 
Chuk, a regulator of mTORC2, that has been associated with age at menopause.64,71 Eaa19 569 
presents a complex and intriguing QTL related to the DNAm readouts that may also influence 570 
body weight gains over the course of life. Both Eaa19 and Eaa11 exemplify the major challenge 571 
that follows when a genetic mapping approach leads to gene- and variant-dense regions.72,73 572 
Both loci have several biologically relevant genes, and identifying the causal gene (or genes) will 573 
require a more fine-scaled functional genomic dissection. 574 

The gene expression analyses highlighted metabolic pathways. At the mRNA level, the negative 575 
correlates of EAA were highly enriched in metabolic genes related to oxidation-reduction and 576 
steroid metabolism, while the positive correlates were enriched in pathways related to mitosis, 577 
and immune response for the pan-tissue general EAA. This convergence on metabolic, immune 578 
and cell division genes is very consistent with previous reports.14,28,44 Here we should note that 579 
depending on the tissue(s) in which the clocks are trains, and the tissue from which the 580 
DNAmAge is estimated, the EAA derivative may put an emphasis on biological pathways or 581 
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genes that are most relevant to that tissue. For instance, clocks optimized for neural tissue are 582 
more closely related to neurodegeneration and neuropathologies.18,74 With the liver clocks, 583 
expression correlates highlighted aspects of metabolism that are relevant to liver function (e.g., 584 
the cytochrome p450 epoxygenase genes), and this is detected both at the transcriptomic, and 585 
proteomic levels. For the adipose tissue proteome, the cytochrome genes become less 586 
prominent, but the enriched pathways still remained consistent (i.e., oxidation-reduction, lipid 587 
and carbohydrate metabolism, and cell proliferation for the positive correlates of the pan-tissue 588 
EAA). At the proteome level, we also find several phospholipid efflux genes (APOC1, APOA2, 589 
APOC3, APOA1, APOA4, APOE) that are positive correlates of EAA. For both the liver and 590 
adipose proteomes, APOE stands out as the top protein correlate of EAA. A recent human study 591 
has also identified the APOE locus as the strongest GWAS hit for two measures of biological age 592 
acceleration (the phenoAge, and the bioAge).28 While more specific to liver, the cytochrome 593 
P450 genes presents as both positional candidates, and expression correlates of EAA. These 594 
genes have high expression in liver, and have major downstream impact on metabolism.75-77 595 
One caveat is that these CYP genes are part of a gene cluster in Eaa19 that includes transcripts 596 
with cis-eQTLs (e.g., Cyp2c66, Cyp2c39, Cyp2c68), and the tight clustering of the genes, and 597 
proximity of trait QTL and eQTLs may result in tight co-expression due to linkage 598 
disequilibrium.78 Nonetheless, the cytochrome genes in Eaa19 are strong candidate modulators 599 
of EAA derived from liver tissue that calls for further investigation.  600 

Aside from Eaa11 and Eaa19, another locus with evidence for consensus QTL was detected on 601 
Chr3. We do not delve into this in the present work, but the Chr3 interval is near genes 602 
associated with human epigenetic aging (Ift80, Trim59, Kpna4).24,27 However, this QTL is 603 
dispersed across a large interval, and the peak markers do not exactly overlap these human EAA 604 
GWAS hits. While we have focused on Eaa11 and Eaa19, the Chr3 locus presents a potentially 605 
important region for EAA. 606 

In summary, we have identified two main QTLs—Eaa11 and Eaa19—that contribute to variation 607 
in EAA. Eaa11 contains several genes with oncogenic properties (e.g., Stxbp4, Erbb2), while 608 
Eaa19 contains a dense cluster of metabolic genes (e.g., Elovl3, Chuk, the cytochrome genes). 609 
We demonstrate that metabolic profile and body weight are closely related to epigenetic aging 610 
and methylome entropy. The convergence of evidence from genetic and gene expression 611 
analyses indicates that genes involved in metabolism and energy balance contribute to the age-612 
dependent restructuring of the methylome, which in turn forms the basis of the epigenetic 613 
clocks.  614 

Materials and Methods 615 

Biospecimen collection and processing 616 

Samples for this study were selected from a larger colony of BXD mice that were housed in a 617 
specific pathogen-free (SPF) facility at the University of Tennessee Health Science Center 618 
(UTHSC). All animal procedures were in accordance with a protocol approved by the 619 
Institutional Animal Care and Use Committee (IACUC) at the UTHSC. Detailed description of 620 
housing conditions and diet can be found in.32,33 Mice were given ad libitum access to water, 621 
and either standard laboratory chow (Harlan Teklad; 2018, 18.6% protein, 6.2% fat, 75.2% 622 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 23 

carbohydrates), or high-fat chow (Harlan Teklad 06414; 18.4% protein, 60.3% fat, 21.3% 623 
carbohydrate). Animals were first weighed within the first few days of assignment to either 624 
diets, and this was mostly but not always prior to introduction to HFD. Following this, animals 625 
were weighed periodically, and a final time (BWF) when animals were humanely euthanized 626 
(anesthetized with avertin at 0.02 ml per g of weight, followed by perfusion with phosphate-627 
buffered saline) at specific ages for tissue collection. The present work utilizes the biobanked 628 
liver specimens that were pulverized and stored in -80 °C, and overlaps samples described in 629 
Williams et al.32 DNA was extracted using the DNeasy Blood & Tissue Kit from Qiagen. Nucleic 630 
acid purity was inspected with a NanoDrop spectrophotometer, and quantified using a Qubit 631 
fluorometer dsDNA BR Assay. 632 

Methylation array and quality checks 633 

DNA samples from ~350 BXD mice were profiled on the Illumina HorvathHumanMethylChip40 634 
array. Samples were in 96-well plate format (Data S1), and the plates were randomized for 635 
major covariates such as age and diet. Details of this array are described in Arneson et al.29 The 636 
array contains probes that target ~36K highly conserved CpGs in mammals. Over 33K probes 637 
map to homologous regions in the mouse genome. For downstream statistical tests, we further 638 
filtered the probes and used only 27966 probes that have been validated for the mouse 639 
genome using calibration data generated from synthetic mouse DNA.29 Data was normalized 640 
using the SeSame method.79 Unsupervised HC was performed to identify outliers and failed 641 
arrays, and those were excluded. We also performed strain verification as an additional quality 642 
check. While majority of the probes were free of DNA sequence variants, we found 45 probes 643 
that overlapped variants in the BXD family. We leveraged these as proxies for genotypes, and 644 
performed a principal component analysis (PCA). The top genotype principal components 645 
(genoPC1 and genoPC2; Data S1) segregated the samples by strain identity, and samples that 646 
did not cluster close to the reported strains were removed. After excluding outliers, failed 647 
arrays, and samples that failed strain verification, the final liver DNAm data consisted of 339 648 
samples. The beta-values for these ~28K probes in the 339 samples show the expected bimodal 649 
distribution (Fig S6a), but for these highly conserved CpGs, we note a much higher 650 
representation of hypermethylated CpGs instead of the slightly hypomethylated state of the 651 
methylome when a wider spectrum of CpGs is assayed.43 652 

BXD-unbiased mouse clock estimation 653 

Three different mouse clocks are reported here, and all three are based on penalized regression 654 
modeling using glmnet.80  Training was done in a larger mouse dataset that excluded the 655 
BXDs.30,31,42 The clocks are therefore unbiased to the characteristics of the BXDs. For pan-tissue 656 
clocks, all mouse samples were used for training. For the liver specific clocks, the training was 657 
limited to data from liver samples.  658 

The general DNAmAge clock did not preselect for any CpGs and the full set of CpGs that map to 659 
Mus musculus was used. First, a log-linear transformation was applied to the chronological age 660 
using the function: 661 
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!(#$%) = 	)
#$%

1.2 + 0.06 + log(1.2 + 0.06) −
1.2

1.2 + 0.06 , #$% > 1.2
log(#$% + 0.06), #$% ≤ 1.2

 662 

This is similar to the age transformation described in the original Horvath pan-tissue human 663 
clock, but with offset at 0.06, and adult mouse age at 1.2.11  Following this transformation, an 664 
elastic net regression was implemented to regress the transformed chronological age on the 665 
CpG beta-values in the training data. The alpha was set at 0.5, and the optimal lamda 666 
parameter was determined by 10-fold cross-validation (function cv.glmnet). This selected 667 
subsets of clock CpGs and coefficients (see Data S2 for the lists of clock CpG, intercepts, and 668 
coefficients). DNAmAge was then calculated as:  669 

78#9#$% = 	!!" :;# + ;"<=>" + ;$<=>$ +⋯+ ;%<=>%
;# + ;" + ;$ +⋯+ ;%

@ 670 

where b0 is the intercept, and b1 to bi are the coefficients, and CpG1 to CpGi denote the beta-671 
values for the respective clock CpGs, and f-1() denotes the inverse function of f(). 672 

A similar method was used to build the developmental and interventional clocks, but for these, 673 
the CpGs were pre-selected. For the liver-specific developmental clock, CpGs that change 674 
during mouse development was selected in liver samples based on Pearson correlation with 675 
age in mice that were <1.6 months old. The top 1000 negative and top 1000 positive correlates 676 
were then classified as “developmental CpGs”, and the training was done using only this subset 677 
of CpGs. For the pan-tissue dev.DNAmAge, the top 1000 positive and top 1000 negative 678 
developmental CpGs were based on a multi-tissues EWAS, also using Pearson correlation with 679 
age for mice <1.6 months old, and these are CpGs that are strongly correlated with age during 680 
the mouse developmental period when all available tissues are considered.  681 

Training for the interventional clock started with 537 CpGs that relate to gold-standard anti-682 
aging interventions (calorie restriction, growth hormone receptor knockout).42,81 These 683 
“interventional CpGs” were identified from an independent mouse liver calorie restriction (n = 684 
95), and one growth hormone receptor knockout (n = 71) data that were not included in the 685 
clock estimation.42 Top CpGs associated with these interventions were identified and the 537 686 
CpGs are the sites that are consistently associated with these anti-aging interventions. Of the 687 
537, 121 CpGs increased in methylation, and 417 decreased in methylation with application of 688 
the pro-longevity interventions. Given the small number of CpGs that went into training for the 689 
int.DNAmAge, we expected this clock to be less correlated with chronological age, and possibly 690 
more responsive variables such as diet. 691 

Entropy calculation 692 

Methylome-wide entropy was calculated from the 27966 probes. The beta-values were 693 
discretized into 20 bins, and the Shannon entropy for each sample was estimated using the R 694 
package, “entropy” (v1.2.1) with method = “ML”: maximum likelihood.82 The optimal number of 695 
bins was determined using the Freedman-Diaconis rule (breaks = “FD” for the hist() function in 696 
R). We also estimated the methylome-wide entropy after discretizing into 100 and 2000 bins 697 
(values provided in Data S1), and the results we report are consistent and robust to the number 698 
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of bins. For the age-gain, age-loss, and age-ns CpGs, entropy for each set was estimated, also 699 
following discretization into 20 bins. 700 

Statistics 701 

Statistical analyses were done using R or the JMP Pro software (version 15). Association 702 
between the epigenetic predictors and continuous variables (body weight, strain lifespan, 703 
fasted serum glucose, and total cholesterol) were based on Pearson correlations, and t-test was 704 
used to evaluate the effect of categorical predictors (sex, diet). Multivariable regression models 705 
were also used to control for covariates (R regression equations provided with Table S1, Data 706 
S4, S6, and Table 3). All these traits are directly accessible from GeneNetwork 2 (GN2; more 707 
information on how to retrieve these data from GN2 are provided in Data S15).83,84 Longevity 708 
data was obtained from a parallel cohort of BXD mice housed in the same UTHSC colony, and 709 
members of this “longevity cohort” were allowed to age until natural death (more detail on the 710 
longevity cohort can be found in 33). Males were excluded and strain-by-diet lifespan summary 711 
statistics were derived. Only strain-by-diet groups with 5 or more observations were included in 712 
the correlational analyses with the epigenetic predictors.  713 

Multivariable EWAS 714 

Site-by-site differential methylation analysis (EWAS) was performed on the 27966 CpGs using a 715 
multivariable regression model. As such genome-wide explorations are vulnerable to 716 
unmeasured confounders, we included the top PC derived from a PCA of the 27966 probes.85 717 
The top 10 principal components PCs cumulatively accounted for ~62% of the variance (Fig 718 
S6b). A plot of PC1 (19% of variance) and PC2 (14% of variance) showed that PC1 captured 719 
some noise due to batch (Fig S6c). The remaining top PCs (PC2 onwards) were strongly 720 
associated with biological variables, particular age, and also weight and diet (top 10 PCs 721 
provided in Data S1). For this reason, we included PC1 as a correction factor in the EWAS. The 722 
regression model we used was: lm(CpGi~ age + median lifespan + diet + BWF+ PC1), where CpGi 723 
is the ith CpG from 1 to 27966. As lifespan was from female mice, this EWAS excluded the few 724 
male samples. 725 

CpG annotation and enrichment  726 

Functional annotation and enrichment analyses for the DMCs were done using the genomic 727 
region enrichment R package, rGREAT (version 3.0.0)46 with the array content (i.e., the 27966 728 
CpGs) as background. Enrichment p-values are based on hypergeometric tests, and categories 729 
with Benjamini-Hochberg adjusted p-values ≤ 0.05 are reported. Annotations were for the 730 
GRCm38/mm10 reference genome. 731 

For chromatin state annotation, we used bedtools to annotate the 27966 CpGs coordinates 732 
using chromatin annotation .bed files for neonatal (P0) mouse liver tissue created by Gorkin et 733 
al.48,86 This provides the 15-states model using ChromHMM,47 and we downloaded the file for 734 
the “replicated set” (here, the regions annotated as NRS are sites that did not produce 735 
replicable signal). Enrichment and depletion analyses for genomic annotations, and chromatin 736 
annotations were based on the hypergeometric test (phyper R function). The R codes are 737 
provided with the results data (Data S8).   738 
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Genetic analyses 739 

The broad sense heritability within diet was estimated as the fraction of variability that was 740 
explained by background genotype.34,87,88 For this, we applied an anova: aov(EAA ~ strain), and 741 
heritability was computed as: H2 = SSqstrain/(SSqstrain + SSqresidual), where SSqstrain is the strain sum 742 
of squares, and SSqresidual is the residual sum of squares.  743 

All QTL mapping was done on the GN2 platform (trait accession IDs provided in Data S15).83  In 744 
the GN2 home page, the present set of BXD mice belongs to the Group: BXD NIA Longevity 745 
Study, and GN2 provides a direct interface to the genotype data. All QTL mapping was done for 746 
genotypes with minor allele frequency ≥ 0.05 using the genome-wide efficient mixed model 747 
association (GEMMA) algorithm,49 which corrects for the BXD kinship matrix. For the EAA traits, 748 
diet, weight at 6 months, and final weight were fitted as cofactor. Chronological age had not 749 
correlation with EAA and this was not included as a cofactor (including age does not change the 750 
results). Genome-wide linkage statistics were downloaded for the full set of markers that were 751 
available from GN2 (7320 markers in Data S9). For the combined p-values, QTL mapping was 752 
done separately using GEMMA for each EAA traits, then the Fisher’s p-value combination was 753 
applied to get the meta-p-value.50 We used this method to simply highlight loci that had 754 
consistent linkage across the different EAA measures. QTL mapping for methylome-wide 755 
entropy was done using GEMMA with adjustment for chronological age, diet, weight at 6 756 
months, and final weight. 757 

For marker specific linkage, we selected SNPs located at the peak QTL regions (DA0014408, 758 
rs48062674), and grouped the BXDs by their genotypes (F1 hybrids and other heterozygotes 759 
were excluded from this), and marker specific linkage was tested using ANOVA and linear 760 
regression (R regression equation given in Table 3). rs48062674 is a reference variant that is 761 
already catalogued in dbSNP,89 and is used as a marker in the QTL mapping. DA0014408.4 is an 762 
updated variant at a recombinant region in the Chr11 interval and within the peak QTL 763 
interval.34 Genotypes at these markers for individual BXD samples are in Data S1. 764 

To test the effect of genotype on body weight change, body weight data measured at 765 
approximately 4 (baseline), 6, 12, 18, and 24 months were downloaded from GN2 (Data S15). 766 
Detailed description of these weight data are in Roy et al.33 We then applied a mixed effects 767 
regression model using the lme4 R package90: lmer(weight ~ age + diet + genotype + (1|ID)), 768 
where ID is the identifier for individual mouse.  769 

Bioinformatic tools for candidate genes selection 770 

Sequence variation between B6 and D2 in the QTL intervals (Chr11:90–99 Mb, and Chr19:35–48 771 
Mb) were retrieved from the Wellcome Sanger Institute Mouse Genomes Project database 772 
(release 1505 for GRCm38/mm10).91-93 Positional candidates were required to contain at least 773 
one coding variant (missense and/or nonsense variants), or have non-coding variants with 774 
evidence of cis-regulation in liver tissue of the BXDs. Cis-eQTLs for the candidate genes were 775 
obtained from the liver RNA-seq data described in 32. An interface to search and analyze this 776 
transcriptome data is available from GN2, and is catalogued under Group: BXD NIA Longevity 777 
Study; Type: Liver mRNA; and Dataset: UTHSC BXD Liver RNA-seq (Oct 19) TMP Log2.  778 
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For human GWAS annotations, we navigated to the corresponding syntenic regions on the 779 
human genome by using the coordinate conversion tool in the UCSC Genome Browser. The 780 
Chr11 90–95 Mb interval on the mouse reference genome (GRCm38/mm10) corresponds to 781 
human Chr17:50.14–55.75 Mb (GRCh38/hg38) (40.7% of bases; 100% span). The Chr11 95–99 782 
Mb interval in the mouse corresponds to human Chr17:47.49–50.14 Mb (29.3% of bases, 57.9% 783 
span), and Chr17:38.19–40.39 Mb (20.7% of bases, 44.1% span). Likewise, for the Chr19 QTL, 784 
the mm10 35–40 Mb corresponds to hg38 Chr10:89.80–95.06 Mb (32.2% of bases, 89.2% span), 785 
40–45 Mb corresponds to hg38 Chr10:95.23–100.98 Mb (46.6% of bases, 95.6% span), and 45–786 
48 Mb corresponds to hg38 Chr10:100.98–104.41 Mb (46.5% of bases, 100% span). We then 787 
downloaded the GWAS data for these regions from the NHGRI-EBI GWAS catalogue,51 and 788 
retained the GWAS hits that were related to aging. 789 

Transcriptome and proteome analyses 790 

The liver RNA-seq data mentioned above was also used for the transcriptome-wide 791 
correlational analysis for EAA in the 153 cases that had both DNAm and RNA-seq data. We 792 
considered the top 2000 highest mRNA correlates (|r| = 0.24, p = 0.003 for the pan-tissue EAA; 793 
|r| = 0.3, p = 0.0002 for the liver int.EAA), and the list of transcripts were collapsed to a non-794 
redundant list of gene symbols, and this was uploaded to the DAVID Bioinformatics Database 795 
(version 2021 update) for GO enrichment analysis.94,95  Proteome correlational analysis was 796 
carried out using the data: Group: BXD NIA Longevity Study; Type: Liver Proteome; and Dataset: 797 
EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19). Detailed description of this data is in Williams 798 
et al.32 164 BXD cases had both DNAm and liver proteomics, and similar to the RNA-seq, we 799 
selected the top 2000 correlates ((|r| = 0.24, p = 0.002 for both the pan-tissue EAA and liver 800 
int.EAA) for enrichment analysis. 801 

59 of the BXD cases also have proteome data from adipose tissue (Group: BXD NIA Longevity 802 
Study; Type: Adipose Proteome; and Dataset: Riken-Wu BXD Liver Proteome CD-HFD (Sep20)). 803 
While small in sample number, we used this data to test whether we could recapitulate the 804 
same functional enrichment profiles in a different tissue. Details on sample preparation and 805 
processing steps for the adipose proteome is provided in the dataset’s “Info” page on GN2. In 806 
brief, protein was extracted from the adipose samples by first lysis in a buffer with protease 807 
inhibitor, followed by homogenization with a glass dounce and sonication. The protein fraction 808 
was isolated from the homogenate by centrifugation, and processed for assay on a liquid 809 
chromatography tandem mass spectrometry (LC-M/MS) using a modified Phase Transfer 810 
Surfactant Method as described in Mostafa et al.96,97 Samples were measured using a Q 811 
Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher). For each sample, 600 ng was 812 
injected and the samples were measured with data-independent acquisition (DIA).  A portion of 813 
the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-814 
Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher Scientific) to generate a spectral library. 815 
For the HPRP fractions, 450 ng was injected and the samples were measured with data-816 
dependent acquisition (DDA). For protein identification, the raw measurement files were 817 
searched against a mouse database using the (uniprot-reviewed_Mus_musculus_10090_.fasta) 818 
using Proteome Discoverer v2.4 software (Thermo Fisher Scientific). Filtered output was used to 819 
generate a sample-specific spectral library using the Spectronaut software (Biognosys, 820 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 28 

Switzerland). Raw files from DIA measurements were used for quantitative data extraction with 821 
the generated spectral library, as previously described.97 The false discovery rate was estimated 822 
with the mProphet approach and set to 0.01 at both peptide precursor level and protein 823 
level.98,99 Due to the small sample size, for this dataset, we considered the top 1000 protein 824 
correlates of EAA (|r| = 0.25, p = 0.06 for the pan-tissue EAA; |r| = 0.31, p = 0.02 for the liver 825 
int.EAA). 826 

Data availability 827 

The full microarray data will be released via NCBI’s Gene Expression Omnibus upon official 828 
publication. Genome annotations of the CpGs can be found on Github 829 
https://github.com/shorvath/MammalianMethylationConsortium. Individual level BXD data, 830 
including the processed microarray data are  available on www.genenetwork.org on FAIR+ 831 
compliant format; data identifiers, and way to retrieve data are described in Data S15.  832 
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