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Abstract

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved
CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep
longevity and genomic data. We use a ‘pan-mammalian’ microarray that provides a common
platform for assaying the methylome across mammalian clades. We computed epigenetic
clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic
variation. We describe the multifactorial variance of methylation at these CpGs, and show that
high fat diet augments the age-associated changes. Entropy increases with age. The progression
to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-
dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a
given age. We identified two genetic loci that modulate rates of epigenetic age acceleration
(EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and a
second on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated
with EAA in humans including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome
analyses revealed associations with oxidation-reduction, metabolic, and immune response
pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a
tight coupling between the metabolic state and epigenetic aging.

Keywords: epigenetic clock, lifespan, entropy, DNA methylation, genetic mapping, QTL, weight,
diet
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Introduction

Epigenetic clocks are widely used molecular biomarkers of aging.! These DNA methylation
(DNAm) age predictors are based on the methylation levels of select CpGs that are distributed
across the genome. Each CpG that is used in a clock model is assigned a specific weight,
typically derived from supervised training algorithms,?* and collectively, the methylation status
across this ensemble of “clock CpGs” are used to estimate the epigenetic age (DNAmAge). This
estimate tracks closely, but not perfectly, with an individual’s chronological age. How much the
DNAmAge deviates from the known chronological age can be a measure of the rate of
biological aging. Denoted as “epigenetic age acceleration” (or EAA), a more accelerated clock
(positive EAA) suggests an older biological age, and a decelerated clock (negative EAA) suggests
a younger biological age. While DNAmAge predicts age, its age-adjusted counterpart, EAA, is
associated with variation in health, fitness, exposure to stressors, body mass index (BMI), and
even life expectancy.>”®

These DNAm clocks were initially reported for humans.1%12 Since then, many different models
of human DNAm clock have been develop, and this rapid expansion was made possible by
reliable DNAm microarrays that provide a fixed CpG content—starting with the lllumina
Infinium 27K to the current 850K EPIC array.1V131> These clock variants differ in the subset of
CpGs that go into the age estimation model. Some clock models are specific to cells or tissues,
others are multi-tissue. Some clocks perform better at predicting chronological age, others
better capture biological aging and predict health and life expectancy. 81%18 The performance of
these clocks depend heavily on the training models, and the size and tissue types of the training
set.13

This age biomarker has also been extended to model organisms, and this has opened up the
possibility of directly testing the effects of different interventions such as calorie restriction,
rapamycin, and genetic manipulation.3'%23 However, one point to note is that model organisms
have not benefitted from a microarray platform comparable to that of the human methylation
Infinium arrays. Most rodent studies have used enrichment-based DNAm sequencing, and this
limits the transferability and reproducibility of clocks between datasets since the same CpGs
are not always covered.?! Moreover, these studies are usually performed in a single inbred
strain (for mouse, the canonical C57BL/6), or at most, a few genetic backgrounds, and this
makes it impossible to carry out genetic mapping studies that can complement the human
genome-wide association studies (GWAS) of epigenetic aging.2428

A new microarray was recently developed to profile CpGs that have high conservation in
mammals. This pan-mammalian DNAm array (HorvathMammalMethylChip40) surveys over 37K
CpGs and provides a unifying platform to study epigenetic aging in mammals.?® This array has
been used to build multi-tissue universal clocks and lifespan predictors that are applicable to a
variety of mammalian species.3%3! Here, we use this array to examine the dynamism and
variability of the conserved CpGs in a genetically diverse cohort of mice belonging to the BXD
family.32:33

The BXDs are one of the pre-eminent murine genetic reference panels used as the experimental
paradigm of precision medicine.3* They are a large family of recombinant inbred (RI) strains
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84  made by crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains. The family has been

85 expanded to 150 fully sequenced progeny strains.343> The individual members of the BXD family
86 (e.g., BXD1, BXD27, BXD102), each represents a replicable isogenic cohort. The family
87  segregates for a high level of genetic variation, and likewise, family members have high
88  variation in their metabolic profiles, responses to diet, aging rates, and life expectancies.
89 38 The availability of deep sequence data, and unrivaled multi-omic and phenomic data make
90 the BXDs a powerful tool with which to evaluate the causal linkage between genome,

91 epigenome, and aging rates.

32-34,36-

92  Inour previous work, we used an enrichment-based sequencing to assay the methylome in a

93  modest number of BXD mice, and reported rapid age-dependent methylation changes in mice

94  on high fat diet, and in mice with higher body weight.3° In the present work, we start by testing

95 the performance of new pan-tissue and liver-specific epigenetic mouse clocks, and evaluate

96 how these relate to metabolic states, genotype-dependent life expectancy, and methylome

97 entropy. We also apply a multi-factor analysis of site-specific CpG methylation to understand

98 association among four key variables—chronological age, diet, weight, and lifespan—and the

99 liver methylome. We perform quantitative trait locus (QTL) mapping, along with multi-omic
100 gene expression analyses, and identify upstream gene loci that modulate the DNAm clocks in
101  mice.

102  Our results are consistent with a faster clock for cases on HFD, and with higher body weight.
103  This may be partly because exposure to HFD augmented the age-dependent gains in

104  methylation at specific CpGs. We also observed that BXD genotypes with longer life expectancy
105 tend to have lower methylation at CpGs that undergo age-dependent methylation gains, and
106  the entropy computed from this set of CpGs have a significant inverse correlation with strain
107 lifespan. QTL mapping uncovered loci on chromosomes (Chrs) 11 and 19 that are associated
108  with EAA. A strong candidate gene in the chromosome (Chr) 11 interval (referred to as Eaal1) is
109  Stxbp4, a gene that has been consistently associated with EAA by human genome-wide

110  association studies (GWAS).24#2%27 The Chr19 QTL (Eaa19) also harbors strong contenders

111 including Cyp26a1, Myof, Cutc, and Nkx2-3, and the conserved genes in humans have been

112  associated with longevity and EAA.274041 We performed gene expression analyses using

113 transcriptomic and proteomic data to clarify the molecular pathways associated with epigenetic
114  aging, and this highlighted metabolic networks, and also apolipoproteins (including APOE) as
115  strong expression correlates.

116 Results

117  Description of samples

118  Liver DNAm data was from 321 female and 18 male belonging to 45 members of the BXD

119  family, including both parental strains and F1 hybrids. Age ranged from 5.6 to 33.4 month:s.
120  Mice were all weaned onto a normal chow (control diet; CD) and a balanced subset of cases
121  were then randomly assigned to HFD (see Roy et al. for details33). Tissues were collected at
122  approximately six months intervals (see Williams et al.32). Individual-level data are in Data S1.

123  DNAm clocks, entropy, and chronological age prediction
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124  We built three different mouse clocks, and each was developed as a pair depending on whether
125 the training set used all tissues (pan-tissue) or a specific tissue (in this case, liver). These are: (1)
126  ageneral DNAm clock (referred to simply as DNAmAge): clock trained without pre-selecting for
127  any specific CpGs; (2) developmental clock (dev.DNAmAge): built from CpGs that change during
128 development (defined as the period from prenatal to 1.6 months); and (3) interventional clock
129  (int.DNAmAge): built from CpGs that change in response to aging related interventions (calorie
130 restriction and growth hormone receptor knockout). The clocks we report here were trained in
131  alarger mouse dataset that excluded the BXDs and are therefore unbiased to the

132  characteristics of the BXD Family.393142 The specific clock CpGs and coefficients for DNAmAge
133  computation are in Data S2. All the mouse clocks performed well in age estimation and had an
134  average r of 0.89 with chronological age. However, the interventional clocks had higher

135 deviation from chronological age and higher median predictive error (Table 1; Fig 1a). The age-
136  adjusted EAA derived from these clocks showed wide individual variation (Fig 1b).

137  We next estimated the methylome-wide entropy as a measure of randomness and information
138  loss. This was computed from 27966 probes that provide high-quality data and have been

139  validated to perform well in mice.?° Consistent with previous reports,!%43 this property

140 increased with chronological age, and age accounted for about 6% (in CD) to 28% (in HFD) of
141  the variance in entropy (Fig 1c). As direct correlates of chronological age, all the DNAmAge

142  estimates also had significant positive correlations with entropy (Table 1). We hypothesized
143  that higher entropy levels will be associated with higher EAA, and based on this bivariate

144  comparison, most of the EAA showed a significant positive correlation with entropy (Data S3;
145  Fig 1d).

146 Table 1. Chronological age prediction and correlation with methylome-wide entropy

Age
DNAmAge . r with age prediction r with entropy
Clock type name Tissue (n=339)1 median (n=339)%2
error
an 0.89 0.12 0.43
Standard DNAmAge p
clocks liver 0.92 0.10 0.40
an 0.87 0.14 0.39
Developmental dev.DNAmAge p
clocks liver 0.91 0.12 0.37
i an 0.85 0.17 0.29
Interventional int.DNAmAge p
clocks liver 0.86 0.15 0.47

147  !p<.0001; %p <.0001 Methylome-wide entropy calculated from ~28K CpGs
148 How the epigenetic readouts relate to diet, sex, and metabolic traits

149  Diet. HFD was associated with higher EAA for four of the clocks (Table 2). For instance, the

150 liver-specific interventional clock diverged between the diets (Fig 1a), and CD mice had an

151  average of —0.04 years of age deceleration, and HFD mice had an average of +0.11 years of age
152  acceleration (Table 2). The two clocks that were not affected by diet were the liver general and
153  developmental clocks. Methylome-wide entropy was not different between the diets.

154  Body weight. Body weight was first measured when mice were at an average age of 4.5+ 2.7
155 months. We refer to this initial weight as baseline body weight (BWO0). For mice on HFD, this
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Fig 1. Correlates and modifiers of epigenetic clocks and methylome-wide entropy

(a) Correlation between chronological age and predicted age (shown for the liver
intervention clock or int. DNAmAge). Black circles are control diet (CD, n = 210); red crosses
are high fat diet mice (HFD, n = 128) (b) Violin plots of age-adjusted epigenetic age
acceleration (EAA) (“int” stands for interventional, “dev” stands for developmental). (c)
Shannon entropy, calculated from the full set of high quality CpGs, increases with age. (d)
Methylome entropy has a direct correlation with EAA (shown for the liver int.EAA). (e) For
48 mice, initial body weight (BWO0) was measured 1 or 3 days after introduction to HFD,
and these showed significant correlation with EAA. (f) Weight was first measured at mean
age of 4.5 + 2.7 months (BWO0), and then at 6.3 + 2.8 months (BW1). Weight gains during
this interval (deltaBW = BW1 — BWO) is a direct correlate of EAA. (g) For BXD genotypes
with males and females samples, males have higher age acceleration. Bars represent mean
+ standard error; 40 females (26 CD, 14 HFD) and 18 males (10 CD, 8 HFD). (h) Relative
effects of different predictor variables on EAA shown as logworth scores (-logiop). The
dashed lines correspond to p = 0.01. Positive logworth values indicate positive regression
estimates (for diet, positive means higher in high fat diet compared to control diet). BWF is
final weight; Chol is serum total cholesterol; Gluc is fasted glucose levels. (g) The residual
plot display association between methylome-wide entropy and the pan-tissue int.EAA
after adjustment for diet, age, weight, glucose, cholesterol, and batch.

156
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157 Table 2. Association with diet and weight, and heritability of the epigenetic readouts

. Diet r p r p , | Strain
Type EAA Diet Mean (SD) 0) BWO® BWO | BWE® BWE H Pb
CD -0.05+0.21 0.19 0.006 0.29 <.0001 | 0.49
EAA, pan <.0001 0.54
HFD | 0.07 £0.21 0.21 0.01 0.42 <.0001 | 0.50
. CcD 0+0.17 0.09 ns 0.20 0.003 0.40
EAA, liver ns 0.73
HFD | 0.03+0.14 0.22 0.01 0.49 <.0001 | 0.52
CcD -0.04£0.23 0.09 ns 0.22 0.001 0.53
dev.EAA, 0.004 0.76
Mouse  pPan HFD | 0.03+0.22 0.27 0.002 0.45 <.0001 | 0.61
clocks dev.EAA, CD 0+0.2 0.19 0.002 0.29 <.0001 | 0.46
. ns 0.78
liver HFD | 0+0.16 0.29 0.0007 | 0.47 <.0001 | 0.60
. CcD -0.05+0.25 0.03 ns 0.21 0.002 0.27
int.EAA, pan 0.0003 0.66
HFD | 0.06 +0.33 0.22 0.01 0.46 <.0001 | 0.45
i CcD -0.04 £0.22 0.05 ns 0.18 0.01 0.59
Int.EAA, <.0001 0.80
liver HFD | 0.11+0.25 0.27 0.002 0.58 <.0001 | 0.54
CD | 2.67+0.02 0.09 ns 0.05 ns 031 | 024
Entropy - ns
HFD | 2.67 £0.02 0.15  0.09 0.15  0.09 0.32 | (ns)

158 2 BWO is body weight at about 4.5 months of age (n = 339; 210 CD and 129 HFD); BWF is final weight at tissue collection (1 HFD case missing data; n = 338; 210
159 CD and 128 HFD)
160 b Pearson correlation between strain means for n = 29 BXD genotypes kept on CD and HFD


https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449634; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

161  was usually before introduction to the diet, except for 48 cases that were first weighed 1 or 3
162  days after HFD (Data S1). In the CD group, only the EAA from the pan-tissue standard and liver
163  developmental clocks showed modest but significant positive correlations with BWO (Table 2).
164  Inthe HFD group, the positive correlation with BWO was more robust and consistent across all
165  the clocks, and this may have been due to the inclusion of the 48 cases that had been on HFD
166  for 1 or 3 days. Taking only these 48 cases, we found that higher weight even after 1 day of HFD
167 had an age-accelerating effect on all the clocks (Data S3), and this was particularly strong for
168 theinterventional clocks (r = 0.45, p = 0.001 for the pan-tissue int.EAA; r = 0.58, p < 0.0001 for
169  the liver int.EAA) (Fig 1e). Second weight was measured 7.4 + 5.2 weeks after BWO (mean age
170 6.3 £ 2.8 months). We refer to this as BW1 and we estimated the weight change as deltaBW =
171  BW1-BWO. DeltaBW was a positive correlate of EAA on both diets, albeit more pronounce in
172  the HFD group (Fig 1f; Data S3). The final body weight (BWF) was measured at the time of

173  tissue harvest, and EAA from all the mouse clocks were significant correlates of BWF on both
174  diets (Table 2). In contrast, entropy did not show an association with either BWO or BWF. We
175 do note that when stratified by diet, the entropy level had a slight positive correlation with
176  BW1 in the HFD group (r = 0.23, p = 0.008), but not in the CD group (Data S3).

177  Sex. Four BXD genotypes (B6D2F1, D2B6F1, BXD102, B6) had cases from both males and

178 females. We used these to test for sex effects. All the clocks showed significant age acceleration
179  in male mice, and this effect was particularly strong for the both dev.EAA, and the pan-tissue
180 int.EAA (Fig 1g; Data S3). This effect was independent of the higher BWF of males, and the

181 higher age-acceleration in males was detected after adjusting for BWF (Table S1). There was no
182  significant difference in entropy between the sexes.

183  Metabolic measures. 278 cases with DNAm data also had fasted serum glucose and total

184  cholesterol,??33 and we examined whether these metabolic traits were associated with either
185 the EAA measures or methylome entropy. Since these are highly dependent on diet, weight,
186 and age, we applied a multivariable model to jointly examine how the different metabolic

187  variables (cholesterol and glucose, as well as diet and weight) and entropy relate to EAA after
188  adjusting for age. To test the robustness of associations, we also include the methylation array
189  batch as another covariate (Data S1 has batch information; Data S4 has the full statistics). Fig
190 1h shows the relative strengths and directions of associations between these variables and the
191  EAAtraits. Except for the pan-tissue interventional clock, entropy had a strong positive

192  association with EAA. For example, a plot of residuals between entropy and the liver int.EAA
193  indicates that after adjusting for all the other covariates, the methylome-wide entropy explains
194  17% of the variance in int.EAA (Fig 1i). Since diet strongly influences BWF, the inclusion of BWF
195 inthe regression diminished the effect of diet. For the two clocks that were not influenced by
196 diet (the liver EAA and liver dev.EAA), adjusting for the effect of BWF resulted in an inverse
197  association with diet (i.e., the residual EAA values after accounting for BWF were slightly lower
198 inthe HFD group). Fasted glucose did not have a significant effect on EAA. Cholesterol had a
199  positive association with the interventional clocks but the effects were modest (residual R? =
200 0.02 and p = 0.02 for cholesterol and the pan-tissue int.EAA) (Data S4).

201  We also performed a similar analysis with BWO instead of BWF (Fig S1), and here, HFD
202 remained as an accelerator of the pan-tissue EAA and liver int.EAA. Cholesterol also became a
203  significant positive correlate of EAA for the interventional clocks (Fig S1). This would suggest
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204  that the effect of diet on EAA is mostly mediated by its impact on physiological and metabolic
205  traits, and BWF becomes a prominent predictor of EAA.

206  To summarize, our results indicate that the degree of disorder in the methylome increases with
207  age, and may partly contribute to the epigenetic clocks as higher entropy is associated with

208 higher EAA. The EAA traits were also associated with biological variables (i.e., body weight, diet,
209  and sex). Of these, BWF was the strongest modulator of EAA.

210 How the epigenetic readouts relate to strain longevity

211  We next obtained longevity data from a parallel cohort of female BXD mice that were allowed
212  toage on CD or HFD.33 Since the strain lifespan was determined from female BXDs, we

213  restricted this to only the female cases. For strains with natural death data from n > 5, we

214  computed the minimum (minLS), 25t quartile (25Q-LS), mean, median lifespan, 75" quartile
215  (75Q-LS), and maximum lifespan (maxLS) (Data S1). Specifically, we postulated an accelerated
216  clock for strains with shorter lifespan (i.e., inverse correlation). Overall, the EAA measures

217  showed the expected inverse correlation trend with the lifespan statistics. However, these
218  correlations were weak. The correlations were significant only for the pan-tissue general clock
219  (Fig S2a) and the liver intervention clock, with explained variance in lifespan of only ~3% (Table
220 S2; Fig S2b, S2c). When separated by diet, these correlations became weaker indicating that
221  while we see the expected inverse relationship, the EAA is only weakly predictive of strain

222 longevity. Entropy estimated from the full set of CpGs was unrelated to strain longevity.

223 Multifactor variance of the conserved CpGs

224  Both the entropy and clock readouts capture the overall variation across multiple CpGs, and to
225  gaininsights into the underlying variance patterns, we performed a multivariable epigenome-
226  wide association study (EWAS). For this, we applied a site-by-site regression on the 27966

227 validated CpGs,?° and tested for association with age, BWF, diet, and genotype-dependent
228  strain median lifespan (full set of probes, annotations, and EWAS results in Data S5).

229  Age was clearly the most influential variable, and this is apparent from the volcano plots (Fig
230 2a-d). We used a cutoff of Bonferroni p < 0.05 to define differentially methylated CpGs (DMCs),
231 and 6553 CpGs were associated with age (referred to as age-DMCs), 733 with weight (weight-
232 DMCs), 321 with diet (diet-DMCs), and 236 with genotype-dependent lifespan (LS-DMCs). We
233 note extensive overlap among the lists of DMCs that shows that variation at these CpGs are
234 multifactorial in nature (1e). Majority of the age-DMCs (77%) gained methylation (or age-gain),
235  and consistent with previous observations, age-gain CpGs tended to be in regions with low

236  methylation, whereas age-DMCs that declined in methylation (age-loss) were in regions with
237  high methylation (Fig 2f).394344 By overlaying the volcano plots with the age-gain and age-loss
238 information, we see distinct patterns in how these age-DMCs vary with weight (Fig 2b), diet (Fig
239  2c), and genotype lifespan (Fig 2d). While the majority of CpGs, including several age-loss CpGs,
240 had negative regression estimates for weight (i.e., decrease in DNAm with unit increase in

241  weight), HFD was associated with higher methylation levels (positive regression estimates)

242  including at several age-DMCs (Fig 2c). This pattern of inverse correlation with weight but

243 heightened methylation due to HFD is illustrated by the CpG in the 3'UTR of Mett/23

244  (cgl10587537) (Fig 2g). Taking the 6553 age-DMCs, a comparison of the regression estimates for
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Fig 2. Multivariable analysis of site-specific methylation

(a) Volcano plot comparing regression estimates (change in methylation beta-value per day
of age) versus the statistical significance for age effect. Dashed line denotes the Bonferroni
p = 0.05 for ~28K tests). Similar volcano plots for predictor variables: (b) final body weight
(regression estimates are change per gram of weight), (c) diet (change in high fat compared
to control diet), and (d) strain median lifespan (per day increase in median longevity). CpGs
that were significantly associated with age are denoted by colored markers (red circles:
age-gain; yellow triangles: age-loss). (e) Overlap among the lists of differentially methylated
CpGs. (f) Each dot represents the mean methylation beta-values for the 5030 age-gain, and
1523 age-loss CpGs. (g) Correlation between body weight and methylation beta-values for
the CpG (cg10587537) located in the 3’UTR of Mett/23. Mice on high fat diet (HFD) have
higher methylation than mice on control diet (CD), but the inverse correlation with weight
is consistent for both groups (r =—-0.45, p <.0001 for CD; r =—0.15, p = 0.08 for HFD). (h)
Contour density plot for the 6553 CpGs that are significantly associated with age (age-
DMCs). This relates the pattern of change with age (x-axis) with change on HFD (y-axis).
CpGs that gain methylation with age are also increased in methylation by HFD. (i)
Correlation between age and methylation at the Mett/23 3'UTR CpG (r = 0.35 for CD; r =
0.46). (j) For the 6553 age-DMCs, the contour density plot relates the pattern of change
with age (x-axis) vs. change with median longevity (y-axis). CpGs that gain methylation with
age have lower methylation with higher lifespan.

age (i.e., the change in methylation per day of aging) versus diet (difference in HFD relative to
CD) shows that the age-gains were augmented in methylation by HFD (Fig 2h), and again, this is
illustrated by the CpG in the Mett/23 3’UTR (Fig 2i). For the LS-DMCs, sites that had negative
regression estimates for lifespan (i.e., lower DNAm per day increase in strain median longevity)
had higher proportion of age-gain CpGs (Fig 2d). A comparison between the regression
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250 estimates for age versus the regression estimates for lifespan shows that CpGs that gain
251  methylation with age tended to have lower methylation in strains with longer lifespan (Fig 2j).
252  Asin Szirdki et al.,*®* we divided the CpGs by age effect: age-gain, age-loss, and those that do not
253  change strongly with age (age-ns; i.e., the remaining 21413 CpGs that were not classified as
a CD: r=0.59, p<.0001 b CD: r=0.58, p<.0001 c CD: r=0
HFD: r=0.76, p<.0001 5 g HFD:r=0.76, p<.0001 HFD: r=0.31 Opf0.0004 3l - =UT319 (0.6 y) A
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Fig 3. Entropy at age-associated CpGs

Entropy values were calculated for the 5020 age-gain and 1523 age-loss CpGs separately.
For both control diet (CD) and high fat diet (HFD), there is significant increase in entropy
with age at the (a) age-gain and (b) age-loss CpGs. (¢) The HFD mice also showed a slight
increase in entropy at CpGs that were not strongly associated with age (age-ns). (d) The
methylome-wide distribution of beta-values in a young adult mouse (0.6 year old; black
dashed line), and an older mouse (2.3 year old; red line); both CD mice. The young mouse
has higher peaks at the hypo-methylated (closer to 0.1) and hyper-methylated (around 0.9)
beta-values compared to the older mouse. (e) The HFD group has higher entropy at the age-
gain CpGs compared to the CD group. (f) Entropy at age-loss CpGs is higher with higher
baseline weight (BWO0). (g) Relative effects of predictor variables on entropy shown as
logworth scores (-logiop). The dashed lines correspond to p = 0.01. Positive values indicate
positive regression estimates (for diet, positive value means higher in HFD). BWF is final
weight; Chol is serum total cholesterol; Gluc is fasted glucose levels; LS is the strain median
lifespan. (h) The residual plot (adjusted for age, diet, BWF, glucose, cholesterol, and batch)
shows the inverse association between entropy at age-gain sites, and lifespan. Similar
residual plots show the association between (i) BWF and age-loss entropy, and (j) between
fasted serum glucose and age-gain entropy.
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254  age-DMCs). For these conserved CpGs, both sets of age-DMCs had significant increases in

255  entropy with age regardless of diet (Fig 3a, 3b), and even the age-ns showed a modest entropy
256  gain with age in the HFD group (Fig 3c). The reason for this increase in disorder becomes

257  evident when we compare the density plots using the full set of CpGs for one of the younger
258  mice (UT319; 0.56 years old) and one of the older mice (UT573; 2.3 years) (Fig 3d). Concordant
259  with previous reports,*** the older sample showed a subtle flattening of the bimodal peaks
260 towards a slightly more hemi-methylated state. The entropy of the age-gain CpGs was modestly
261  but significantly higher in the HFD group (p = 0.001; Fig 3e). Entropy of the age-loss and age-ns
262  CpGs were not different between the diets. Body weight on the other hand, was associated
263  specifically with the entropy score of the age-loss CpGs, and both higher BWO (Fig 3f) and BWF
264  predicted higher entropy for age-loss CpGs.

265  We applied a multivariable regression to compare the relative effects of age, diet, BWF,

266  glucose, cholesterol, and strain median lifespan (Fig 3g; full statistics in Data S6). Entropy of
267  age-gain CpGs was increased by HFD but was not associated with BWF. Strain median lifespan
268 showed a significant inverse correlation with the entropy of age-gain CpGs with an explained
269  variance of 6% (Fig 3h). Entropy of the age-loss CpGs had a significant positive correlation with
270  BWEF (Fig 3i), but was not associated with diet, and also had a modestly significant inverse

271  correlation with median lifespan. Cholesterol was unrelated to the entropy values. Glucose on
272 the other hand, showed a significant inverse association with entropy of both the age-gain (Fig
273 3j) and age-loss CpGs, and this suggests slightly lower entropy with higher fasted glucose.

274  Taken together, our results show that the conserved CpGs are influenced by multiple

275  predictors. HFD augmented the age-dependent changes with a prominent effect on age-gain
276  CpGs. Body weight showed a strong association with the age-loss CpGs. Additionally, strains
277  with longer life expectancy tended to have lower methylation levels at age-gain CpGs with an
278  overall lower entropy state at these CpGs that suggests a more “youthful” methylome for
279  longer lived genotypes.

280 Functional and genomic context of DMCs

281  To uncover the potential biological pathways represented by the DMCs, we performed genomic
282  regions enrichment analyses for the CpGs.*® The age-gain CpGs were highly enriched in

283  transcription factors, regulators of development and growth, menarche and menstrual phases,
284  energy metabolism, and transcription factor networks such as HNF1 and HNF3B pathways (Data
285  S7). The age-loss CpGs had somewhat modest enrichment, and represented cell adhesion and
286  cytoskeletal processes, endothelial cell proliferation, and p38 signaling (Data S7). The BW-DMCs
287  were enriched in actin and protein metabolism, and WNT, and platelet-derived growth factor
288  (PDGF) and ErbB signaling. Similarly, the diet-DMCs were highly enriched in PDGF, epidermal
289  growth factor (EGFR) and ErbB signaling, as well as the mTOR signaling pathway, and regulation
290 of energy homeostasis (Data S7). Seeming to converge on common pathways, the LS-CpGs that
291  were negatively correlated with lifespan had modest enrichment in cell signaling pathways such
292  as EGFR, PDGF, and ErbB signaling. The LS-CpGs with positive correlation with lifespan were

293  highly enriched in lipid metabolic genes, and also included pathways related to chromosome
294  maintenance and telomere expansion (Data S7).
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295  We next examined the genomic annotations and chromatin states of the DMCs (Data S8).

296  Consistent with previous reports,3>*3 age-gain CpGs were enriched in promoter and 5’UTR

297  CpGs, but depleted in 3’UTR, exon, and intergenic CpGs (Data S8; Fig S3a). Diet- and weight-
298 DMCs were depleted in promoter regions, and enriched in exons and 3’UTR, and along with the
299  age-loss CpGs, enriched in introns. For chromatin states, we annotated the CpG regions using
300 the 15-states chromatin data for neonatal (PO) mouse liver (Data S8 has annotations for each
301 site).*”*® Also included were regions labelled as No Reproducible State or NRS; i.e., regions that
302 were not replicated.*® Compared to the array content as background, the age-gain CpGs were
303 selectively enrich in polycomb associated heterochromatin (Hc-P) and bivalent promoters (Pr-
304  Bi), chromatin states that were highly depleted among the other DMCs (Fig S3b; Data S8). In
305 contrast, strong and permissive transcription sites (Tr-S and Tr-P, respectively) were depleted
306 among the age-gain CpGs, and enriched among the BW- and diet-DMCs (Fig S3b). Age-loss CpGs
307 were enriched in Tr-P and Tr-I (transcription initiation). Distal enhancers (strong distal or En-Sd,
308 and poised distal or En-Pd) were also highly enriched among the BW- and diet-DMCs, and also
309 showed some enrichment among the age-DMCs (Fig S3b).

310 For an overview of the general methylation and variance patterns by chromatin annotations,
311  we used the full set of 27966 CpGs and computed the average methylation beta-values, and
312  average regression coefficients (i.e, change in beta-value per unit change in the respective

313  predictor variable, or contrast between diets). As expected, promoter CpGs and Hc-P were sites
314  with the lowest methylation. Hc-H, Tr-S, and Tr-P had higher methylation, and many of the

315 enhancer sites were in the hemi-methylated zone (Fig S3c, d, e). For age effect, mean

316 regression estimates had a significant inverse linear fit with mean methylation (r=-0.63, p =
317  0.009; Fig S3c) and this is consistent with the greater age-loss at hypermethylated CpGs, and
318 greater age-gains at hypomethylated CpGs (Fig 2f). The effects of diet and weight were not

319 linearly related to the mean methylation of the chromatin states. Instead, both showed a U-
320 shaped fit with a significant negative quadratic effect for diet (R? = 0.69, p = 0.0005, quadratic
321  estimate = —0.05; Fig S3d), and a positive quadratic effect for weight (R = 0.50, p = 0.01,

322  quadratic estimate = 0.001; Fig S3e). Methylation variation as a function on strain longevity did
323  not relate to mean methylation with either a linear or polynomial fit, and indicates that

324  variance due to background genotype is less dependent on the chromatin and mean

325  methylation status. While this is a very low-resolution and broad view of methylation levels and
326  methylation variation, the observations show that while aging results in erosion of the hypo-
327 and hypermethylated peaks, diet and body weight appear to have generally stronger

328  associations with hemi-methylated sites.

329 Genetic analysis of epigenetic age acceleration

330 The EAA traits had moderate heritability at an averaged H? of 0.50 (Table 2).3* Another way to
331 gauge level of genetic correlation is to compare between members of strains maintained on
332  different diets. All the EAA traits shared high strain-level correlations between diets, indicating
333  an effect of background genotype that is robust to dietary differences (Table 2). The
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334 methylome-wide entropy had a heritability of ~0.30, and had no strain-level correlation
335  between diets.
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Fig 4. QTL maps for the DNAm readouts

The Manhattan plots represent the location of genotyped markers (x-axis), and linkage —
logiop (y-axis). (@) The peak quantitative trait locus (QTL) for age acceleration from the
pan-tissue interventional clock (int.EAA) is on chromosome (Chr) 11 at ~93 Mb. The inset
shows the mean (t standard error) trait values for BXDs the are homozygous for the
C57BL/6J allele (BB; grey) versus BXDs homozygous for the DBA/2)J allele (DD; black) on
control diet (CD) and high fat diet (HFD). (b) The liver-specific int.EAA has a peak QTL on
Chr19 (~38 Mb). Trait means by genotype at this locus are shown in inset; BB has higher
age acceleration. (c) Linkage statistics are weaker for the methylome-wide entropy.
However, there is a nominally significant linkage on the Chr19 loci, but the peak markers
are at ~47.5 Mb. Here the BB genotype has higher entropy.

336 To uncover genetic loci, we applied QTL mapping using mixed linear modeling that corrects for
337  the BXD kinship structure.*® First, we performed the QTL mapping for each EAA traits with

338 adjustment for diet and body weight. EAA from the two interventional clocks had the strongest
339 QTLs (Data S9). The pan-tissue int.EAA had a significant QTL on Chr11 (90-99 Mb) with the

340 highest linkage at ~93 Mb (p = 3.5E-06; equivalent to a LOD score of 4.7) (Fig 4a). Taking a

341 genotype marker at the peak interval (BXD variant ID DA0014408.4 at Chr11, 92.750 Mb)34, we
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342  segregated the BXDs homozygous for either the D2 (DD) or the B6 (BB) alleles. Strains with DD
343  genotype at this locus had significantly higher int.EAA (Fig 4a inset). The liver int.EAA had the
344  highest QTL on Chr19 (35-45 Mb) with the most significant linkage at markers between 38-42
345 Mb (p = 9E-07; LOD score of 5.2) (Fig 4b). We selected a marker at the peak interval

346  (rs48062674 at Chr19, 38.650 Mb), and the BB genotype had significantly higher liver int.EAA
347  compared to DD (Fig 4b inset).

348 We performed a similar QTL mapping for methylome-wide entropy with adjustment for major
349  covariates (diet, chronological age, and body weight). There were no genome-wide significant
350 QTLs. Aregion on Chrl9 that overlapped the liver int.EAA showed a modest peak (Fig 4c; Data
351  S9). However, the peak markers for entropy were located slightly distal to the peak EAA QTL
352  (~47.5 Mb at rs30567369, minimum p = 0.0005). At this locus, the BB genotype had higher
353  average entropy.

354  To identify regulatory loci that are consistent across the different EAA measures, we applied a
355  multi-trait analysis and derived the linkage meta-p-value using a p-value combination for the six
356  EAA traits.>® The peaks on Chrs 11 and 19 attained the highest consensus p-values (Fig S4a;

357 Data S9). There was another potential consensus peak at combined —logiop > 6 on Chr3 (~54
358 Mb). We focus on the Chrs 11 and 19 QTLs and refer to these as EAA QTL on Chr 11 (Eaall),
359 and EAA QTL on Chr 19 (Eaal19). Eaall extends from 90-99 Mb. For Eaal9, we delineated a
360 broader interval from 35-48 Mb that also encompasses the peak markers for entropy.

361  We performed marker-specific linkage analyses for each of the clocks using a regression model
362 that adjusted for diet. With the exception of the liver int.EAA, all the EAA traits had nominal to
363 highly significant associations with the representative Eaa11 marker (DA0014408.4), and the
364 DD genotype had higher age acceleration (Table 3). Mean plots by genotype and diet shows
365 that this effect was primarily in the CD mice (Fig S4b). The effect of this locus appeared to be
366 higher for the pan-tissue clocks compared to the corresponding liver-specific clocks. For

367 proximal Eaal9, the representative marker (rs48062674) was associated with all the EAA traits
368 and the BB mice had higher age acceleration on both diets (Fig S4c). We also tested if these
369 peak markers were associated with the recorded lifespan phenotype and we found no

370 significant association with the observed lifespan of the BXDs.

371 Table 3: Marker specific linkage analyses for epigenetic age acceleration and body weight
372  trajectory

Linear regression!

Predictor Outcome Estimate Std Error tRatio p
EAA, pan 0.096 0.023 4.184  3.8E-05
Eaall EAA, liver 0.067 0.017 3.880  0.0001
DA0014408.4[DD] 4o\ EAp pan  0.077 0.025 3041  0.003
Chrl1, 92.750 Mb
(133 BB cases, dev.EAA, liver  0.037 0.020 1.878  0.06
and 173 DD cases) int.EAA, pan 0.153 0.029 5.278  2.5E-07
int.EAA, liver  -0.033 0.025 -1.284  0.20
Eqal9 EAA, pan -0.083 0.028 -2.954  0.003
rs48062674[DD]  EAA, liver -0.137 0.020 -6.972  2.0E-11
Chrl9,38.650 Mb  dev.EAA, pan  -0.206 0.029 -7.218  4.3E-12
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(238 BB cases, dev.EAA, liver -0.124 0.023 -5.461 9.9E-08

and 67 DD cases)  jht EAA, pan  -0.143 0.035 -4.028  7.1E-05
int.EAA, liver -0.250 0.027 -9.238 4.6E-18

Mixed model for longitudinal change in body weight?

Predictor Outcome Estimate Std Error t Ratio p

Eaall

DA0014408.4[DD]

Number of Body weight  0.619 0.345 1794  0.07

observations =

6885; number of

individuals = 2112

Eaal9

rs48062674[DD]

Number of Body weight  -1.847 0.374 4945  7.6E-07

observations =
6132; number of
individuals = 1852

1Regression model: Im(EAA ~ genotype + diet); 2Imer(weight ~ age + diet + genotype + (1| mouselD)

Association of EAA QTLs with body weight trajectory

Since gain in body weight with age was an accelerator of the clocks, we examined whether the
selected markers in Eaall and Eaal9 were also related to body weight change. We retrieved
longitudinal weight data from a larger cohort of the aging BXD mice that were weighed at
regular intervals. After excluding heterozygotes, we tested the effect of genotype. Concordant
with the higher EAA for the DD genotype at Eaall in the CD group, the DD genotype in the CD

group also had slightly higher mean
weight at older adulthood (12 and 18
months; Fig 5a). However, this marker
had no significant association with
body weight when tested using a
mixed effects model (p = 0.07; Table
3). In Eaa19, it was the BB genotype
that consistently exhibited an
accelerated clock on both diets, and
also higher entropy, and the BB
genotype had higher average body
weight by 6 months of age (Fig 5b),
and this locus had a significant
influence on the body weight
trajectory (p = 7.6E-07; Table 3).

Candidate genes for epigenetic
age acceleration
There are several positional candidate

genes in Eaall and Eaal9. To narrow
the list, we applied two selection

a Eaatil b  Eaar9
P
¥ O Ty e )
) 236
%) 4 :-QD g = f_CD
7 /N%%; ’:/;“21\\—(
24- === 24 = ~
4 6 12 18 24 4 6 12 18 24
Age (months) Genotype Age (months)
BB
--DD

Fig 5. Body weight trajectory by diet and genotype
Body weight was measured at regular age intervals
(x-axis) from (a) 2112 BXD mice that were
homozygous at the Eaall marker (DA0014408.4;
842 BB, 1279 DD), and (b) 1852 BXD mice that were
homozygous at the proximal Eaa19 marker
(rs48062674; 1252 BB, 600 DD). Mice were
maintained on either control diet (CD) or high fat
diet (HFD). The graphs show the segregation of
body weight over time by diet and genotype. Mean
* standard error; heterozygotes were excluded.
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400 criteria: genes that (1) contain missense and/or stop variants, and/or (2) contain non-coding
401 variants and regulated by cis-acting expression QTLs (eQTL). For the eQTL analysis, we utilized
402  an existing liver transcriptome data from the same aging cohort.3? We identified 24 positional
403 candidates in Eaal1 that includes Stxbp4, Erbb2 (Her-2 oncogenic gene), and Grb7 (growth

404  factor receptor binding) (Data S10; Fig 4a). Eaal19 has 81 such candidates that includes a cluster
405  of cytochrome P450 genes, and Chuk (inhibitor of NF-kB) in the proximal region, and Pcgf6

406 (epigenetic regulator) and Elovi3 (lipid metabolic gene) in the distal region (Data S10; Fig 4b,
407  A4c).

408  For further prioritization, we converted the mouse QTL regions to the corresponding syntenic
409  regions in the human genome, and retrieved GWAS annotations for these intervals.>! We

410 specifically searched for the traits: epigenetic aging, longevity, age of

411 menarche/menopause/puberty, Alzheimer’s disease, and age-related cognitive decline and
412  dementia. This highlighted 5 genes in Eaal1, and 3 genes in Eaa19 (Table S3). We also

413  identified a GWAS study that found associations between variants near Myof-Cyp26al and
414  human longevity,*! and a meta-GWAS that found gene-level associations between Nkx2-3 and
415  Cutc, and epigenetic aging (Table $3).%7

416  Gene expression correlates of EAA

417 A subset of the BXD cases had liver RNA-seq data (94 CD, and 59 HFD).32 Using this set, we

418 performed transcriptome-wide correlation analysis for the general pan-tissue EAA, and the

419 more specific liver int.EAA. To gain insights into biological pathways, we selected the top 2000
420 transcriptome correlates for functional enrichment analysis (Data $11). The common themes
421  for both clocks were: (1) there were far fewer negative correlates (223 out of 2000 for pan-
422  tissue EAA, and 337 out of 2000 transcripts for liver int.EAA) than positive correlates, (2) the
423  negative correlates were highly enriched (Bonferroni correct p < 0.05) in oxidation-reduction
424  and mitochondrial genes (Data S12, Data S13). The pan-tissue general clock was also highly
425  enriched in pathways related to steroid metabolism, epoxygenase p450 pathway, and

426  xenobiotics, which are pathways that are particularly relevant to liver. The p450 genes included
427  candidates that are in Eaa19 (e.g., Cyp2c29, Cyp2c37). The positive correlates were enriched in
428  avariety of gene functions including mitosis for both clocks, and immune and inflammatory
429 response for the general pan-tissue clock (functions that are not specific to liver). 563

430 transcripts (315 unique genes) were correlated with both the pan-tissue EAA, and the liver

431  int.EAA. Based on hierarchical clustering (HC) of these common mRNA correlates of EAA, the
432  transcripts could be clustered into 3 groups (Fig 6a; heatmap in Fig S5a). While none of these
433  were significantly enriched in any particular gene ontology (GO), cluster 3 included several

434  oxidation-reduction genes including the Eaal1 candidate, Cyp2c29, and cluster 2 included

435  several cell cycle genes (Fig 6a). To verify that these transcriptomic associations are robust to
436  the effect of diet, we repeated the correlation and enrichment analysis in the CD group only for
437  the pan-tissue general clock (n = 94). Again, taking the top 2000 correlates (|r| £0.22; p £0.03),
438  we found the same enrichment profiles for the positive correlates (immune, cell cycle) and the
439  negative correlates (oxidation-reduction and mitochondrial) (Data S12).

440  Liver proteome was also available for 164 of the BXDs, and 53 also had adipose proteome. The
441  liver proteome data quantifies over 32000 protein variants from 3940 unique genes and has
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Fig 6. Gene expression correlates of epigenetic age acceleration

(a) mRNAs that were correlated with the acceleration of both the pan-tissue general clock
(pan EAA), and the liver interventional clock (liver int.EAA) were grouped based on
unsupervised hierarchical clustering (HC). Few representative genes and gene ontologies are
highlighted. For liver proteome, the level of APOE was the strongest correlate for both the
(b) liver int.EAA, and (c) the pan-tissue EAA. (d) For liver proteins that were correlated with
both pan-tissue EAA and liver int.EAA, HC grouped the proteins into clusters that were
enriched in oxidation-reduction and lipid metabolism, and a cluster enriched in glycogen
metabolism. In adipose tissue, the expression level of the APOE protein was higher with
higher age acceleration for both the (e) liver int.EAA, and (f) the pan-tissue EAA.

442  been reported in Williams et al.32 Similar to the transcriptome-wide analysis, we extracted the
443  top 2000 protein correlates of EAA (Data S14), and performed functional enrichment analysis
444  (Data S12,S13). For both the liver int.EAA and the pan-tissue EAA, the top liver protein

445  correlate was APOE, and higher expression of APOE was associated with higher age acceleration
446  (Fig 6b, c). Similar to the transcriptome, the negative correlates of EAA were highly enriched in
447  oxidation-reduction (several cytochrome proteins), steroid metabolism, and epoxygenase 450
448  pathway. The positive correlates were also highly enriched in oxidation-reduction (several

449  hydroxy-delta-5 steroid dehydrogenases proteins), lipid and carbohydrate metabolism, as well
450 as phospholipid efflux (particularly enriched for the liver int.EAA) (Data S$13). There was a high
451  degree of overlap at the proteomic level for the two clocks and 1241 proteins variants (332
452  unique genes) were correlated with both the pan-tissue EAA and the liver int.EAA (Data S14).
453 For these common protein correlates, the HC divided the proteins into clusters that
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represented metabolic pathways mainly related to steroid metabolism, but also glycolysis and
gluconeogenesis (Fig 6d; heatmap in Fig S5b).

Finally, we used the adipose proteome data for a proteome-wide correlational analysis for the
pan-tissue EAA and liver int.EAA. We took only the top 1000 correlates (due to the small sample
size), and a functional enrichment analysis showed consistent enrichment in metabolic
pathways related to fatty acids and also carbohydrates, and cell proliferation genes for the pan-
tissue EAA (Data S12, S13). For the adipose proteome, the cytochrome p450 genes were no
longer enriched. However, the overall functional profile highlighted metabolic pathways as
important gene expression correlates of EAA. Furthermore, for both the liver and adipose
proteomes, APOE levels were highly correlated with EAA that indicates a higher level of this
apolipoprotein in both tissues is associated with higher age acceleration (Fig 6e, 6f).

Discussion

Here we have tested the performance of DNAm clocks derived from highly conserved CpGs, and
described the dynamism and variability of site-specific methylation. While age is a major source
of variance, we detected joint modulation by diet, body weight, and genotype-by-diet life
expectancy. HFD had an age accelerating effect on the clocks, and this is concordant with our
previous report where we found more rapid age-associated changes in methylation.3 This also
concurs with studies in humans that have found that obesity accelerates epigenetic aging.>%>3
However, when BWF was included in the regression term, the effect of diet became
inconsistent. This suggests that the effect of diet on EAA is mediated by the changes in weight
and metabolic traits such as total cholesterol. Body weight in particular, had a strong age-
accelerating effect. The effect of weight may manifest early on, and even in the CD group,
higher weight gains at younger age (between 4—6 months) was associated with higher EAA later
in life.

We tested different mouse DNAm clocks, and the main difference between these clocks was
the subsets of CpGs that were used for training. It is well-known that DNAm clocks have high
level of degeneracy.>!* In other words, highly accurate predictors of chronological age can be
built from entirely different sets of CpGs and different weight coefficients. This is likely because
a large proportion of CpGs undergo some degree of change with age, and combinatorial
information from any subset of this is informative of age. For instance, even at a very stringent
cutoff of Bonferroni 0.05 that treated the 27966 CpGs as “independent”, we still detected 6553
CpGs as age-DMC, i.e., close to a quarter of the CpGs we tested. Clocks built from pre-selected
CpGs that are at conserved sequences are known to be sensitive to the effects of pro-longevity
interventions such as calorie restriction and growth hormone receptor deletion.3>* And while
all these DNAm clocks achieve reasonably high prediction of chronological age, the age
divergence derived from these different clocks (EAA) can capture slightly different facets of
biological aging, and the better a clock is at predicting chronological age, the lower its
association with mortality risk.1>14 In the present study, we find that the interventional clocks
deviated most from chronological age, and this is expected as these were built from a much
smaller set of CpGs (see Methods). The interventional clocks were also associated with BWF
and cholesterol, but had weaker associations with BWO. The liver int.EAA had the highest
positive correlation with methylome-wide entropy, and was the clock that had the strongest
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496 inverse correlation with strain longevity. In contrast, the developmental clocks, which were

497  based on CpGs that change early in life, showed a stronger association with BWO. The contrast
498 between the interventional and developmental clocks suggests that while one is more

499  modifiable, the other is more informative of baseline characteristics that influence aging later in
500 life. The pan-tissue clock, which was not constrained to any preselected set of CpGs or tissue,
501 also performed well in capturing biological aging and was accelerated by both BW0O and BWF,
502 diet (when BWO was the weight term in the regression model), higher entropy, and had a

503  modest but significant inverse correlation with strain lifespan.

504  Entropy, a measure of noise and information loss, increases as a function of time and age.1%>°>-7
505 Inthe context of the methylome, the shift to higher entropy represents a tendency for the

506  highly organized hypo- and hypermethylated landscape to erode towards a more hemi-

507 methylated state.1%434 This increase in disorder, particularly across CpGs that are highly

508 conserved, could have important functional consequences. The entropy of age-gain CpGs

509 predicted strain lifespan, and was increase by HFD. Overall, we find that mice belonging to

510 longer-lived BXD strains had a more “youthful” methylome with lower entropy at the age-gain
511 CpGs. The entropy of age-loss CpGs on the other hand, was related to the body weight of mice,
512  and both higher BWO and BWF were associated with higher entropy. This leads us to suggest
513 that the rate of noise accumulation, an aspect of epigenomic aging, can vary between

514 individuals, and the resilience or susceptibility to this shift towards higher noise may be partly
515 modulate by diet as well as genetic factors.

516 Somewhat surprising was the inverse correlation between the entropy of age-DMCs and fasted
517  glucose. This lower entropy of age-gain CpGs with higher glucose is somewhat counter to the
518 general tendency for strains with shorter lifespan to have higher glucose.®? In biological

519 systems, entropy is kept at bay by the uptake of chemical energy, and investment in

520 maintenance and repair,”’ and we can only speculate that at least in mice, the higher amount of
521  glucose after overnight fast may be associated with a more ordered methylome. The centrality
522  of bioenergetics for biological systems may explain why we detect this coupling between the
523 DNAm readouts (i.e., the clocks, and entropy), and indices of metabolism including weight, diet,
524  levels of macronutrients, and even expression of metabolic genes. As cogently highlighted by
525 Donohoe and Bultman,*® many metabolites (e.g., SAM, NAD*, ATP) are essential co-factors for
526  enzymes that shape the epigenome, and these could serve as nutrient sensors and mechanistic
527 intermediaries that regulate how the epigenome is organized in response to metabolic

528 conditions. Close interactions between macro- and micronutrients, and DNAm is a conserved
529  process and plays a critical role in defining both physiology and body morphology.>%%° Overall,
530  our results suggests that a higher metabolic state is associated with higher entropy and EAA,
531 and potentially, lower lifespan.

532  For the BXDs, life expectancy is highly dependent on the background genotype, and mean

533 lifespan varies from under 16 months for strains such as BXD8 and BXD13, to over 28 months in
534  strains such as BXD91 and BXD175.333638 The EAA showed the expected inverse correlation
535  with lifespan, but the effect was modest and only significant for the pan-tissue EAA and the
536 liverint.EAA. The association of lifespan with the entropy of age-gain CpGs was slightly

537  stronger. We must point out that the analysis between the epigenetic readouts and lifespan
538 was an indirect comparison. Unlike the comparison with body weight and metabolic traits,
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539  which were traits measured from the same individual, the lifespan data are strain

540 characteristics computed from a parallel cohort of mice that were allowed to survive till natural
541  mortality, and this may partly explain the weaker associations with EAA. Nonetheless, our

542  observations indicate that genotypes with higher life-expectancy have generally lower entropy,
543  and lower methylation levels at the age-gain CpGs, and these properties of the methylome are

544  likely to be partly under genetic modulation.

545  Our goal was to take these different clocks and identify regulatory loci that were the most

546  stable and robust to the slight algorithmic differences in building the clocks. A notable

547  candidate in Eaall is Syntaxin binding protein 4 (Stxbp4, aka, Synip), located at 90.5 Mb. Stxbp4
548 s a high-priority candidate due to the concordant evidence from human genetic studies. The
549  conserved gene in humans is a replicated GWAS hit for the intrinsic rate of epigenetic

550 aging.24?%27 In the BXDs, Stxbp4 contains several non-coding variants, and a missense mutation
551  (rs3668623), and the expression of Stxbp4 in liver is modulated by a cis-eQTL. Stxbp4 plays a
552  key role in insulin signaling,®! and has oncogenic activity and implicated in different cancers.®23
553  Furthermore, GWAS have also associated STXBP4 with age of menarche.®*® Eaa11 corresponds
554  tothe 17g12-21 region in humans, and the location of additional oncogenic genes, e.g.,

555  ERBB2/HER2, GRB7, and BRCA1.%® The mouse Brcal gene is a little distal to the peak QTL region
556 andis not considered a candidate here, although it does segregate for two missense variants in
557  the BXDs. Erbb2 and Grb7 are in the QTL region, and Erbb2 contains a missense variant

558  (rs29390172), and Grb7 is modulated by a cis-eQTL. Nr1d1 is another candidate in Eaal1, and
559 the co-activation of Erbb1, Grb7, and Nrl1d1 has been linked to breast and other cancers.®”:%®

560 Eaal9 was consistently associated with EAA from all the clocks we evaluated, and also with
561 body weight gains, irrespective of diet. DNAm entropy may also have a weak association with
562  markers at this interval. The EAA traits have peak markers in the proximal part of Eaa19

563  (around the cytochrome cluster), and the methylome-wide entropy had a weak peak that was
564  inthe distal portion (over candidates like ElovI3, Pcgf3). Two candidates in Eaa19 have been
565 implicated in epigenetic aging in humans based on gene-level meta-GWAS: NK homeobox 3
566  (Nkx2-3, a developmental gene), and CutC copper transporter (Cutc).?” Eaal9 is also the

567 location of the Cyp26al1-Myof genes, and the human syntenic region is associated with

568 longevity, metabolic traits, and lipid profiles.*1®%7% Another noteworthy candidate in Eaa19 is
569  Chuk, a regulator of mTORC2, that has been associated with age at menopause.®*’! Eaa19

570 presents a complex and intriguing QTL related to the DNAm readouts that may also influence
571  body weight gains over the course of life. Both Eaa19 and Eaall exemplify the major challenge
572  that follows when a genetic mapping approach leads to gene- and variant-dense regions.”%’3
573  Both loci have several biologically relevant genes, and identifying the causal gene (or genes) will
574  require a more fine-scaled functional genomic dissection.

575  The gene expression analyses highlighted metabolic pathways. At the mRNA level, the negative
576  correlates of EAA were highly enriched in metabolic genes related to oxidation-reduction and
577  steroid metabolism, while the positive correlates were enriched in pathways related to mitosis,
578 and immune response for the pan-tissue general EAA. This convergence on metabolic, immune
579  and cell division genes is very consistent with previous reports.#?844 Here we should note that
580 depending on the tissue(s) in which the clocks are trains, and the tissue from which the

581 DNAmAge is estimated, the EAA derivative may put an emphasis on biological pathways or
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582  genes that are most relevant to that tissue. For instance, clocks optimized for neural tissue are
583  more closely related to neurodegeneration and neuropathologies.’®’4 With the liver clocks,

584  expression correlates highlighted aspects of metabolism that are relevant to liver function (e.g.,
585 the cytochrome p450 epoxygenase genes), and this is detected both at the transcriptomic, and
586  proteomic levels. For the adipose tissue proteome, the cytochrome genes become less

587  prominent, but the enriched pathways still remained consistent (i.e., oxidation-reduction, lipid
588 and carbohydrate metabolism, and cell proliferation for the positive correlates of the pan-tissue
589  EAA). At the proteome level, we also find several phospholipid efflux genes (APOC1, APOA2,
590 APOC3, APOA1, APOA4, APOE) that are positive correlates of EAA. For both the liver and

591 adipose proteomes, APOE stands out as the top protein correlate of EAA. A recent human study
592  has also identified the APOE locus as the strongest GWAS hit for two measures of biological age
593  acceleration (the phenoAge, and the bioAge).?® While more specific to liver, the cytochrome
594  P450 genes presents as both positional candidates, and expression correlates of EAA. These
595  genes have high expression in liver, and have major downstream impact on metabolism.”>”’
596 One caveat is that these CYP genes are part of a gene cluster in Eaa19 that includes transcripts
597  with cis-eQTLs (e.g., Cyp2c66, Cyp2c39, Cyp2c68), and the tight clustering of the genes, and

598  proximity of trait QTL and eQTLs may result in tight co-expression due to linkage

599 disequilibrium.”® Nonetheless, the cytochrome genes in Eaa19 are strong candidate modulators
600 of EAA derived from liver tissue that calls for further investigation.

601 Aside from Eaall and Eaal19, another locus with evidence for consensus QTL was detected on
602  Chr3. We do not delve into this in the present work, but the Chr3 interval is near genes

603  associated with human epigenetic aging (Ift80, Trim59, Kpna4).2*?” However, this QTL is

604  dispersed across a large interval, and the peak markers do not exactly overlap these human EAA
605  GWAS hits. While we have focused on Eaall and Eaal9, the Chr3 locus presents a potentially
606 important region for EAA.

607 In summary, we have identified two main QTLs—Eaal1 and Eaal19—that contribute to variation
608 in EAA. Eaall contains several genes with oncogenic properties (e.g., Stxbp4, Erbb2), while

609  Eaal9 contains a dense cluster of metabolic genes (e.g., Elovi3, Chuk, the cytochrome genes).
610 We demonstrate that metabolic profile and body weight are closely related to epigenetic aging
611 and methylome entropy. The convergence of evidence from genetic and gene expression

612  analyses indicates that genes involved in metabolism and energy balance contribute to the age-
613  dependent restructuring of the methylome, which in turn forms the basis of the epigenetic

614  clocks.

615 Materials and Methods

616 Biospecimen collection and processing

617  Samples for this study were selected from a larger colony of BXD mice that were housed in a
618  specific pathogen-free (SPF) facility at the University of Tennessee Health Science Center
619  (UTHSC). All animal procedures were in accordance with a protocol approved by the

620 Institutional Animal Care and Use Committee (IACUC) at the UTHSC. Detailed description of
621  housing conditions and diet can be found in.3233 Mice were given ad libitum access to water,
622  and either standard laboratory chow (Harlan Teklad; 2018, 18.6% protein, 6.2% fat, 75.2%
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623  carbohydrates), or high-fat chow (Harlan Teklad 06414; 18.4% protein, 60.3% fat, 21.3%

624  carbohydrate). Animals were first weighed within the first few days of assignment to either
625  diets, and this was mostly but not always prior to introduction to HFD. Following this, animals
626  were weighed periodically, and a final time (BWF) when animals were humanely euthanized
627  (anesthetized with avertin at 0.02 ml per g of weight, followed by perfusion with phosphate-
628 buffered saline) at specific ages for tissue collection. The present work utilizes the biobanked
629 liver specimens that were pulverized and stored in -80 °C, and overlaps samples described in
630  Williams et al.32 DNA was extracted using the DNeasy Blood & Tissue Kit from Qiagen. Nucleic
631  acid purity was inspected with a NanoDrop spectrophotometer, and quantified using a Qubit
632  fluorometer dsDNA BR Assay.

633 Methylation array and quality checks

634  DNA samples from ~350 BXD mice were profiled on the lllumina HorvathHumanMethylChip40
635 array. Samples were in 96-well plate format (Data S1), and the plates were randomized for

636  major covariates such as age and diet. Details of this array are described in Arneson et al.?° The
637  array contains probes that target ~36K highly conserved CpGs in mammals. Over 33K probes
638 map to homologous regions in the mouse genome. For downstream statistical tests, we further
639 filtered the probes and used only 27966 probes that have been validated for the mouse

640 genome using calibration data generated from synthetic mouse DNA.2° Data was normalized
641  using the SeSame method.”® Unsupervised HC was performed to identify outliers and failed
642  arrays, and those were excluded. We also performed strain verification as an additional quality
643  check. While majority of the probes were free of DNA sequence variants, we found 45 probes
644  that overlapped variants in the BXD family. We leveraged these as proxies for genotypes, and
645 performed a principal component analysis (PCA). The top genotype principal components

646  (genoPC1 and genoPC2; Data S1) segregated the samples by strain identity, and samples that
647  did not cluster close to the reported strains were removed. After excluding outliers, failed

648  arrays, and samples that failed strain verification, the final liver DNAm data consisted of 339
649  samples. The beta-values for these ~28K probes in the 339 samples show the expected bimodal
650 distribution (Fig S6a), but for these highly conserved CpGs, we note a much higher

651 representation of hypermethylated CpGs instead of the slightly hypomethylated state of the
652 methylome when a wider spectrum of CpGs is assayed.*?

653 BXD-unbiased mouse clock estimation

654  Three different mouse clocks are reported here, and all three are based on penalized regression
655  modeling using glmnet.8% Training was done in a larger mouse dataset that excluded the

656  BXDs.3%3142 The clocks are therefore unbiased to the characteristics of the BXDs. For pan-tissue
657  clocks, all mouse samples were used for training. For the liver specific clocks, the training was
658 limited to data from liver samples.

659  The general DNAmAge clock did not preselect for any CpGs and the full set of CpGs that map to
660  Mus musculus was used. First, a log-linear transformation was applied to the chronological age
661  using the function:
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Age

— +1log(1.24+0.06) - ——
662  f(Age) = {12+ 0.06 " 10812 +0.06) — ===

log(Age + 0.06),Age < 1.2

,Age > 1.2

663  Thisis similar to the age transformation described in the original Horvath pan-tissue human
664  clock, but with offset at 0.06, and adult mouse age at 1.2.1! Following this transformation, an
665  elastic net regression was implemented to regress the transformed chronological age on the
666  CpG beta-values in the training data. The alpha was set at 0.5, and the optimal lamda

667 parameter was determined by 10-fold cross-validation (function cv.glmnet). This selected
668  subsets of clock CpGs and coefficients (see Data S2 for the lists of clock CpG, intercepts, and
669  coefficients). DNAmAge was then calculated as:

bo + blchl + bZCpGZ + b + bleGl)
b0+b1+b2+"'+bl

670 DNAmAge = f‘1<

671  where by is the intercept, and b; to b; are the coefficients, and CpGi1 to CpGi denote the beta-
672  values for the respective clock CpGs, and f1() denotes the inverse function of f{).

673  Asimilar method was used to build the developmental and interventional clocks, but for these,
674  the CpGs were pre-selected. For the liver-specific developmental clock, CpGs that change

675  during mouse development was selected in liver samples based on Pearson correlation with
676  age in mice that were <1.6 months old. The top 1000 negative and top 1000 positive correlates
677  were then classified as “developmental CpGs”, and the training was done using only this subset
678  of CpGs. For the pan-tissue dev.DNAmAge, the top 1000 positive and top 1000 negative

679 developmental CpGs were based on a multi-tissues EWAS, also using Pearson correlation with
680 age for mice <1.6 months old, and these are CpGs that are strongly correlated with age during
681 the mouse developmental period when all available tissues are considered.

682  Training for the interventional clock started with 537 CpGs that relate to gold-standard anti-
683  aging interventions (calorie restriction, growth hormone receptor knockout).*>2! These

684  “interventional CpGs” were identified from an independent mouse liver calorie restriction (n =
685  95), and one growth hormone receptor knockout (n = 71) data that were not included in the
686  clock estimation.*? Top CpGs associated with these interventions were identified and the 537
687  CpGs are the sites that are consistently associated with these anti-aging interventions. Of the
688 537,121 CpGs increased in methylation, and 417 decreased in methylation with application of
689 the pro-longevity interventions. Given the small number of CpGs that went into training for the
690 int.DNAmAge, we expected this clock to be less correlated with chronological age, and possibly
691 more responsive variables such as diet.

692 Entropy calculation

693 Methylome-wide entropy was calculated from the 27966 probes. The beta-values were

694  discretized into 20 bins, and the Shannon entropy for each sample was estimated using the R
695  package, “entropy” (v1.2.1) with method = “ML”: maximum likelihood.®? The optimal number of
696  bins was determined using the Freedman-Diaconis rule (breaks = “FD” for the hist() function in
697 R). We also estimated the methylome-wide entropy after discretizing into 100 and 2000 bins
698  (values provided in Data S1), and the results we report are consistent and robust to the number

24


https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449634; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

699  of bins. For the age-gain, age-loss, and age-ns CpGs, entropy for each set was estimated, also
700 following discretization into 20 bins.

701  Statistics

702  Statistical analyses were done using R or the JMP Pro software (version 15). Association

703  between the epigenetic predictors and continuous variables (body weight, strain lifespan,

704  fasted serum glucose, and total cholesterol) were based on Pearson correlations, and t-test was
705 used to evaluate the effect of categorical predictors (sex, diet). Multivariable regression models
706  were also used to control for covariates (R regression equations provided with Table S1, Data
707  S4, S6, and Table 3). All these traits are directly accessible from GeneNetwork 2 (GN2; more
708 information on how to retrieve these data from GN2 are provided in Data $15).8384 Longevity
709  data was obtained from a parallel cohort of BXD mice housed in the same UTHSC colony, and
710 members of this “longevity cohort” were allowed to age until natural death (more detail on the
711  longevity cohort can be found in 23). Males were excluded and strain-by-diet lifespan summary
712  statistics were derived. Only strain-by-diet groups with 5 or more observations were included in
713  the correlational analyses with the epigenetic predictors.

714  Multivariable EWAS

715  Site-by-site differential methylation analysis (EWAS) was performed on the 27966 CpGs using a
716  multivariable regression model. As such genome-wide explorations are vulnerable to

717  unmeasured confounders, we included the top PC derived from a PCA of the 27966 probes.?>
718  The top 10 principal components PCs cumulatively accounted for ~62% of the variance (Fig
719  S6b). A plot of PC1 (19% of variance) and PC2 (14% of variance) showed that PC1 captured

720 some noise due to batch (Fig S6c). The remaining top PCs (PC2 onwards) were strongly

721  associated with biological variables, particular age, and also weight and diet (top 10 PCs

722  provided in Data S1). For this reason, we included PC1 as a correction factor in the EWAS. The
723  regression model we used was: Im(CpG;~ age + median lifespan + diet + BWF+ PC1), where CpG;
724  isthe it CpG from 1 to 27966. As lifespan was from female mice, this EWAS excluded the few
725  male samples.

726  CpG annotation and enrichment

727  Functional annotation and enrichment analyses for the DMCs were done using the genomic
728  region enrichment R package, rGREAT (version 3.0.0)*¢ with the array content (i.e., the 27966
729  CpGs) as background. Enrichment p-values are based on hypergeometric tests, and categories
730  with Benjamini-Hochberg adjusted p-values < 0.05 are reported. Annotations were for the
731  GRCm38/mm10 reference genome.

732 For chromatin state annotation, we used bedtools to annotate the 27966 CpGs coordinates
733 using chromatin annotation .bed files for neonatal (P0O) mouse liver tissue created by Gorkin et
734 al.*88% This provides the 15-states model using ChromHMM,* and we downloaded the file for
735  the “replicated set” (here, the regions annotated as NRS are sites that did not produce

736  replicable signal). Enrichment and depletion analyses for genomic annotations, and chromatin
737  annotations were based on the hypergeometric test (phyper R function). The R codes are

738  provided with the results data (Data S8).
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739  Genetic analyses

740  The broad sense heritability within diet was estimated as the fraction of variability that was
741  explained by background genotype.348788 For this, we applied an anova: aov(EAA ~ strain), and
742  heritability was computed as: H? = SSQstrain/(SSstrain + SSQresidual), Where SSqstrain is the strain sum
743  of squares, and SSQresidual is the residual sum of squares.

744  All QTL mapping was done on the GN2 platform (trait accession IDs provided in Data $15).23 In
745  the GN2 home page, the present set of BXD mice belongs to the Group: BXD NIA Longevity
746  Study, and GN2 provides a direct interface to the genotype data. All QTL mapping was done for
747  genotypes with minor allele frequency > 0.05 using the genome-wide efficient mixed model
748  association (GEMMA) algorithm,* which corrects for the BXD kinship matrix. For the EAA traits,
749  diet, weight at 6 months, and final weight were fitted as cofactor. Chronological age had not
750  correlation with EAA and this was not included as a cofactor (including age does not change the
751  results). Genome-wide linkage statistics were downloaded for the full set of markers that were
752  available from GN2 (7320 markers in Data S9). For the combined p-values, QTL mapping was
753  done separately using GEMMA for each EAA traits, then the Fisher’s p-value combination was
754  applied to get the meta-p-value.>® We used this method to simply highlight loci that had

755  consistent linkage across the different EAA measures. QTL mapping for methylome-wide

756  entropy was done using GEMMA with adjustment for chronological age, diet, weight at 6

757  months, and final weight.

758  For marker specific linkage, we selected SNPs located at the peak QTL regions (DA0014408,
759  rs48062674), and grouped the BXDs by their genotypes (F1 hybrids and other heterozygotes
760  were excluded from this), and marker specific linkage was tested using ANOVA and linear

761  regression (R regression equation given in Table 3). rs48062674 is a reference variant that is
762  already catalogued in dbSNP,® and is used as a marker in the QTL mapping. DA0014408.4 is an
763  updated variant at a recombinant region in the Chrl1 interval and within the peak QTL

764  interval.3* Genotypes at these markers for individual BXD samples are in Data S1.

765  To test the effect of genotype on body weight change, body weight data measured at

766  approximately 4 (baseline), 6, 12, 18, and 24 months were downloaded from GN2 (Data S15).
767  Detailed description of these weight data are in Roy et al.33> We then applied a mixed effects
768  regression model using the Ime4 R package®: Imer(weight ~ age + diet + genotype + (1]1D)),
769  where ID is the identifier for individual mouse.

770  Bioinformatic tools for candidate genes selection

771  Sequence variation between B6 and D2 in the QTL intervals (Chr11:90—-99 Mb, and Chr19:35-48
772  Mb) were retrieved from the Wellcome Sanger Institute Mouse Genomes Project database

773  (release 1505 for GRCm38/mm10).°1%3 Positional candidates were required to contain at least
774  one coding variant (missense and/or nonsense variants), or have non-coding variants with

775  evidence of cis-regulation in liver tissue of the BXDs. Cis-eQTLs for the candidate genes were
776  obtained from the liver RNA-seq data described in 32. An interface to search and analyze this
777  transcriptome data is available from GN2, and is catalogued under Group: BXD NIA Longevity
778  Study; Type: Liver mRNA; and Dataset: UTHSC BXD Liver RNA-seq (Oct 19) TMP Log2.
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779  For human GWAS annotations, we navigated to the corresponding syntenic regions on the

780  human genome by using the coordinate conversion tool in the UCSC Genome Browser. The

781  Chrl11 90-95 Mb interval on the mouse reference genome (GRCm38/mm10) corresponds to
782  human Chr17:50.14-55.75 Mb (GRCh38/hg38) (40.7% of bases; 100% span). The Chr11 95-99
783 Mb interval in the mouse corresponds to human Chr17:47.49-50.14 Mb (29.3% of bases, 57.9%
784  span), and Chr17:38.19-40.39 Mb (20.7% of bases, 44.1% span). Likewise, for the Chr19 QTL,
785  the mm10 35-40 Mb corresponds to hg38 Chr10:89.80-95.06 Mb (32.2% of bases, 89.2% span),
786  40-45 Mb corresponds to hg38 Chr10:95.23—-100.98 Mb (46.6% of bases, 95.6% span), and 45—
787 48 Mb corresponds to hg38 Chr10:100.98-104.41 Mb (46.5% of bases, 100% span). We then
788  downloaded the GWAS data for these regions from the NHGRI-EBI GWAS catalogue,®! and

789  retained the GWAS hits that were related to aging.

790 Transcriptome and proteome analyses

791  The liver RNA-seq data mentioned above was also used for the transcriptome-wide

792  correlational analysis for EAA in the 153 cases that had both DNAm and RNA-seq data. We

793  considered the top 2000 highest mRNA correlates (|r| = 0.24, p = 0.003 for the pan-tissue EAA;
794  |r| =0.3, p=0.0002 for the liver int.EAA), and the list of transcripts were collapsed to a non-
795  redundant list of gene symbols, and this was uploaded to the DAVID Bioinformatics Database
796  (version 2021 update) for GO enrichment analysis.?*% Proteome correlational analysis was
797  carried out using the data: Group: BXD NIA Longevity Study; Type: Liver Proteome; and Dataset:
798  EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19). Detailed description of this data is in Williams
799 et al.3? 164 BXD cases had both DNAm and liver proteomics, and similar to the RNA-seq, we
800 selected the top 2000 correlates ((|r| = 0.24, p = 0.002 for both the pan-tissue EAA and liver
801 int.EAA) for enrichment analysis.

802 59 of the BXD cases also have proteome data from adipose tissue (Group: BXD NIA Longevity
803  Study; Type: Adipose Proteome; and Dataset: Riken-Wu BXD Liver Proteome CD-HFD (Sep20)).
804  While small in sample number, we used this data to test whether we could recapitulate the

805 same functional enrichment profiles in a different tissue. Details on sample preparation and
806  processing steps for the adipose proteome is provided in the dataset’s “Info” page on GN2. In
807  brief, protein was extracted from the adipose samples by first lysis in a buffer with protease
808 inhibitor, followed by homogenization with a glass dounce and sonication. The protein fraction
809 was isolated from the homogenate by centrifugation, and processed for assay on a liquid

810 chromatography tandem mass spectrometry (LC-M/MS) using a modified Phase Transfer

811  Surfactant Method as described in Mostafa et al.°®°” Samples were measured using a Q

812  Exactive Plus Orbitrap LC—-MS/MS System (Thermo Fisher). For each sample, 600 ng was

813 injected and the samples were measured with data-independent acquisition (DIA). A portion of
814  the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-
815  Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher Scientific) to generate a spectral library.
816  For the HPRP fractions, 450 ng was injected and the samples were measured with data-

817 dependent acquisition (DDA). For protein identification, the raw measurement files were

818  searched against a mouse database using the (uniprot-reviewed_Mus_musculus_10090_.fasta)
819  using Proteome Discoverer v2.4 software (Thermo Fisher Scientific). Filtered output was used to
820 generate a sample-specific spectral library using the Spectronaut software (Biognosys,
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821  Switzerland). Raw files from DIA measurements were used for quantitative data extraction with
822  the generated spectral library, as previously described.®” The false discovery rate was estimated
823  with the mProphet approach and set to 0.01 at both peptide precursor level and protein

824  level.%%% Due to the small sample size, for this dataset, we considered the top 1000 protein
825  correlates of EAA (|r| = 0.25, p = 0.06 for the pan-tissue EAA; |r| = 0.31, p = 0.02 for the liver
826 int.EAA).

827 Data availability

828  The full microarray data will be released via NCBI’s Gene Expression Omnibus upon official
829  publication. Genome annotations of the CpGs can be found on Github

830  https://github.com/shorvath/MammalianMethylationConsortium. Individual level BXD data,
831 including the processed microarray data are available on www.genenetwork.org on FAIR+
832  compliant format; data identifiers, and way to retrieve data are described in Data S15.
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