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Robustness in developing and homeostatic tissues is supported by various types of spatiotemporal cell-to-
cell interactions. Although live imaging and cell tracking are powerful in providing direct evidence of cell
coordination rules, extracting and comparing these rules across many tissues with potentially different length
and timescales of coordination requires a versatile framework of analysis. Here we demonstrate that graph
neural network (GNN) models are suited for this purpose, by showing how they can be applied to predict cell
fate in tissues and utilized to infer the cell interactions governing the multicellular dynamics. Analyzing the
live mammalian epidermis data, where spatiotemporal graphs constructed from cell tracks and cell contacts are
given as inputs, GNN discovers distinct neighbor cell fate coordination rules that depend on the region of the
body. This approach demonstrates how the GNN framework is powerful in inferring general cell interaction
rules from live data without prior knowledge of the signaling involved.

INTRODUCTION

Robustness in developing and homeostatic tissues is sup-
ported by the spatiotemporal cell-to-cell interactions, i.e.,
feedback mechanisms acting at various time and length scales
that prevent overgrowth or depletion. In the stem cell pool of
homeostatic tissues, the spatial aspect of feedback have been
shown to range from direct cell contacts [1-4] to more indirect
and longer range forms such as niche competition [5, 6]. The
fate correlation in time can come in different forms; growth
and loss of cells may occur almost simultaneously within the
tissue, or there could be regeneration cycles with longer time
scale as in the case of hair follicles [7]. Moreover, the order-
ing of the events in the feedback scheme can be different; cell
divisions can compensate for earlier cell loss, or vice versa.

Although there are promising attempts to probe the cell-to-
cell interactions from high-throughput single-cell analyses [8—
14], live imaging of tissues followed by accurate tracking of
the cells is still the most direct method to probe the details
of the spatiotemporal feedback [15]. In the case of the mouse
hind paw epidermis, analysis of the live images and cell tracks
led to the finding that the skin stem cells have coordinated fate
between the nearest-neighbors within a short time frame; cell
divisions were coordinating with neighboring cell delamina-
tion (due to differentiation) with 1-2 days delay [1]. However,
whether such short spatiotemporal range of coordination as
well as the time-ordering found in the hind paw epidermis is
adopted in other tissues is currently unknown. In fact, the de-
tailed rules of coordination and feedback have not been tested
even for mouse skin regions other than the hind paw.
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To compare the cell coordination rules adopted in different
tissues, it will be desirable to have a generic framework of
analysis where such rules can be suggested unbiasedly, rather
than preparing methods specific to each tissue. To this end,
we may train a model based on machine learning to predict
the future behavior of cells from past data, and later chal-
lenge the model to extract the rules that have been learned
by the machine. The input to this machine can include high-
content intracellular features such as the cell morphology and
gene expression, as well as the interaction between cells. The
key in this procedure will be to design a versatile machine
learning scheme that gives predictions of the future dynamics
while retaining high interpretability: the ability to partially
mask data, apply attribution methods, or use symbolic reduc-
tions. Such method will be in contrast to hypothesis-based ap-
proaches where certain coordination rules cannot be inferred
by design. For example, the analysis conducted to extract the
coordination features in the hind paw epidermis [1] assumed
cell behavior inducing other cell’s activity (i.e., cell division or
delamination), which cannot extract suppressive effects such
as induced silencing of neighboring cells [16, 17].

Machine learning methods have been heavily used to ex-
tract features of cells from live or fixed cell image sequences.
Applications include segmentation and tracking [18-20], in
silico labeling [21], and direct prediction of cell fates [22],
which typically use versions of convolutional neural networks
(CNN). The downside in using image data directly for cell fate
prediction is that images contain redundant information mak-
ing it difficult to focus on the most relevant components to
interpret the rules. For instance, a significant feature of cells
undergoing cell division is their size growth, which means that
the machine will likely learn through images that cell size is
a good predictor of cell fate. This strong association will be
a problem when we are interested in the mechanism upstream
of fate decision (i.e., commitment to cell division), since cell
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size is difficult to mask out from images without affecting the
other components. On the other hand, important aspects such
as cell tracks, lineages, and contacts are not trivially deducible
by the machines from the images, making it harder to conduct
interpretable rule extractions based on the experiences of in-
dividual cells. Other methods that have been proposed to infer
the rules of multi-component dynamics by interpretable ma-
chine learning frameworks [23] currently do not have the reso-
lution that enables the rule extraction at the level of individual
cells.

A promising machine learning approach toward automatic
cell interaction rule discoveries is the graph neural network
(GNN) scheme [24]. In GNN models, the structure of a graph
can be taken as an input as well as the features associated with
each node, which gives flexibility compared with conventional
methods such as CNNs. Taking advantage of its interpretabil-
ity, the GNN approach has succeeded in forward dynamics
predictions of physical systems [25] as well as in inferring the
rules of agent-interactions [26] and dynamical properties [27]
from timelapse data obtained by simulations and experiments.
The GNN framework is particularly suited for representing
the heterogeneous interactions between cells as well as the in-
tracellular features extractable from image data such as cell
shapes and gene expressions. The dynamical features of mul-
ticellular systems can be captured by further incorporating the
information of cell tracks and constructing a spatiotemporal
graph. However, while GNN models have been proposed to
deal with time-evolving graphs with nodes and edges being
added or removed [28-30], there is still no example where
replicating nodes are taken into account, which is important
in describing cell divisions.

In this work, we propose a GNN-based framework that in-
corporates the cell interactions as well as the cell tracks in-
cluding divisions, and demonstrate how the framework can be
applied to novel data to extract and compare the different cell
fate coordination rules across tissues. First, we observe that
a GNN model constructed from cell contacts and cell lineage
can predict the fates of the mouse skin stem cells, indicating
that the graph structure encodes significant information of cel-
Iular dynamics. Next, we demonstrate how the rules learned
by the GNN model can be extracted by ablating the input fea-
tures, re-configuring the model step-by-step, and employing
the attribution method. As a result, we find neighboring cell
fate coordination rules that have been overlooked in the paw
skin data, as well as rules that are consistent with the previ-
ously conducted fate imbalance analyses [1]. For our main
application, we analyze the novel tracking data of the ear skin
stem cells [31], and find an additional coordination rule that
is absent in the paw skin. We further confirm the validity of
the method by applying it to data generated by numerical sim-
ulations that encode stochastic cell dynamics mimicking the
homeostatic epidermis. Together, this work demonstrates how
the GNN model can be applied to highly stochastic kinetics
with agent loss and gain, and how it can be utilized in solving
the mechanism of multicellular kinetics systematically.

RESULTS
Data and construction of GNN

The epidermis is maintained by continuous cell divisions
occurring in a pseudo-two-dimensional region called the basal
layer. Cells in the basal layer can irreversibly delaminate
toward the suprabasal layer and differentiate (i.e., turn post-
mitotic), and eventually shed off (Fig 1A). We use the dataset
of cell tracks previously generated from live images collected
from the non-hairy mouse plantar (hind paw) skin [1], which
includes the tracks of all the cells within a region of the basal
layer. Between the time frames, cells conduct one of the three
possible behaviors; divide (Div), delaminate from the basal
layer and migrate into the suprabasal layer (Del), or stay (no
behavior, NB), typically with the ratio of 1:1:8 within the time
interval of the original image acquisition (12 hours). Loss by
cell death is negligibly rare in this tissue under homeostasis.
The relative motion between the cells is slow, meaning that
the main source of the cell motion is displacement due to cell
division and cell delamination.

In our GNN framework, we represent the spatio-temporal
dynamics of the tissue by graphs designed to capture 1) the
spatial relationship including the cell contacts as well as the
lineages and events such as cell delamination and division,
and 2) any cell feature such as the gene expression levels and
cell area in the basal layer. We first construct graphs with
the basal layer cells as nodes, connected by edges in spatial
and temporal directions. The spatial edges represent the cell-
to-cell contact obtained from the two-dimensional segmenta-
tion in the basal layer, based on the membrane reporter signal
(Fig 1B and S1 Video). The temporal edges are the tracks of
the cells, involving forks corresponding to cell divisions and
terminal ends representing cell delamination; we do not track
the cells after they have left the basal layer. In each node
(i.e., cell in a time frame), multiple features extracted from
the raw images can be assigned. For the hind paw data, we
chose the cross-section area of the cell in the two-dimensional
basal layer calculated from the segmentation, and the level of
the Fucci-Gl1 reporter [32] which is the integral of the corre-
sponding fluorescent channel within the segmented cell area.
The GNN model takes in the spatiotemporal graphs as well
as the features associated with each node, and outputs predic-
tions on the behavior of cells in the last frame (Div, Del, or
NB).

We trained a GNN model using training and test data taken
from two separate regions of the same mouse hind paw, each
involving more than 200 cells tracked over fifteen time frames
with a total of approximately 250 Div and Del events occur-
ring in each region. In the training of a V,-time model, we ex-
tracted graphs composed of sequential N, time frames, where
the time frames are indexed from r = —(V;—1) to 0 in temporal
order (Fig 1C), and conducted supervised machine learning to
predict the fate of the target cell in the last frame ¢ = 0.

The model calculates the output from the input by sequen-
tially updating the features in the nodes in the following way
(information flow schematically shown in Fig 1D: bidirec-
tional spatiotemporal GNN model). First, the model performs
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Fig. 1. Bidirectional spatiotemporal GNN model: analysis of the hind paw epidermis data. (A) Schematic of cell division and delamina-
tion in the basal layer of the mouse epidermis. (B) Schematic of the cell-contact graph and temporal edges in the basal layer. (C) Schematic of
the 241 dimensional spatiotemporal graph. A 3-time model is shown as an example. The spheres represent cells, and double-headed arrows
represent the neighboring cell connection and the temporal tracks. The GNN models predict the cell fate (NB, Del, Div) conducted in the final
layer (¢ = 0). (D) Schematic of the information flow in the bidirectional spatiotemporal GNN model. The information flow in a target cell’s
subgraph is shown. The target and the neighboring cells are represented by boxes and circles, respectively. Each arrow indicates the direction
of the information flow, the order of which is represented by the different colors. (E) The area under the curve score (AUC) of the bidirectional
spatiotemporal GNN models with sum and mean aggregation is shown for models under various feature conditions. The AUC for each cell
fate label is shown with different markers (NB: circle, Del: diamond, Div: square), which are obtained by averaging over six trained models.
Error bar: standard deviation. (F) Graph motifs that are potentially useful in predicting the target cell fate. The correlation of these motifs to
the target cell fate can be exploited to make predictions in the bidirectional spatiotemporal GNN model.

message passing (MP) on the temporal edges from the future
to the past N, — 1 times. Here, a single MP is conducted by
concatenating the features of adjacent nodes to be processed
through a multi-layer perceptron (MLP), and then passing on
that processed feature to the past node. Second, the model
performs MP bidirectionally on the spatial edges N, times
(Fig S1A in S1 Appendix).Third, the model performs MP
N; — 1 times on the temporal edges from the past towards the
future nodes. The order of the MP (Fig 1D) and the sum ag-
gregation method [33] are set this way so that the spatiotem-

poral graph structure is correctly reflected in the output. In
the end of the MP, the node feature in the last frame incor-
porates the information from its N,-frame ancestor nodes, N;-
step neighbor nodes of the ancestor nodes in the cell contact
graph, as well as the daughter cells of the ancestor neighbors
(Fig 1C). We fix N; = 1 in the following analyses since the
performance of the model were similar for Ny = 1 and 2
(Fig S1 in S1 Appendix), and also N, = 4, which will be
changed later. Finally, we decode the node feature in the last
frame via another MLP and output the softmax score for each
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cell fate label (Div, Del, and NB) to conduct three-class clas-
sification.

Spatiotemporal cell interaction graph predicts fate without cell
features

The GNN model was successfully trained using standard
methods employing a loss function (softmax-cross-entropy
loss for the three cell behavior labels) and the Adam opti-
mizer (Fig S2 in S1 Appendix). The Area Under the Curve
(AUC) score shows that all behaviors are predicted signifi-
cantly better than a random guess (AUC=0.5) (Fig 1E). Also,
the small standard deviations between the training samples in-
dicate the trained models are reproducible. In particular, we
found that cell divisions can be predicted with high accuracy
compared with Del and NB. We further found that by training
the model with reduced features (i.e., without the cell area,
G1-phase reporter signal, or both), the score decreased sig-
nificantly, indicating that these features are utilized in making
reliable predictions. Indeed, the cross-section area tends to
be larger for dividing cells (Fig S3A and E in S1 Appendix),
consistent with previous observations [1, 34]. Furthermore,
the G1-phase signal tends to be lower in dividing cells as ex-
pected, while there was no difference in the G1-phase signal
between NB and Del cells (Fig S3F in S1 Appendix).

Intriguingly, we found that even without the node features,
the GNN model can predict the fates with significant scores
(Fig 1E). This indicates that the graph structure itself encodes
useful information in predicting cell fate. A candidate struc-
ture in the graph that can be used in the prediction is the num-
ber of edges (i.e., neighboring cells, Fig 1F). Indeed, the num-
ber of neighboring cells is positively correlated with cell di-
vision in the next time frame, which is explained by the fact
that cells with a larger area tend to be in contact with more
cells in the basal layer (Fig S3C in S1 Appendix). To see
whether the number of edges is important in the prediction,
we changed the model to take mean aggregation in the calcu-
lation step of the spatial edges, which will make the number
of contacts invisible in the model. We found that this change
in the model only has a minor effect on the AUC score, sug-
gesting that there are other subgraph motifs that are utilized in
the prediction.

Other subgraph motifs which can be interpreted in the bio-
logical context include the temporal length up to the last cell
division point (Fig 1F). This is essentially the age of the tar-
get cell, which can be used to predict fate if the fate choice is
temporally non-random [35]. The neighbor cell fates are also
reflected as motifs, which should be important according to
previous results [1]. Similarly, the sibling cell behavior can
be exploited if there are sibling fate correlations such as in the
case of asymmetric division [36], although this is less relevant
for the current dataset [1, 35].

Reduced GNN model and attribution scores reveal cell
interaction rules in the hind paw and ear epidermis

In order to identify which subgraph motifs are responsible
for the predicted future cell dynamics, we next considered re-
ducing the GNN model to observe how the predictability de-
creases. By simply excluding the initial step of propagating
the information toward the past frames, the information from
the temporal branches in the sibling and neighboring cells (in-
cluding their fates, Fig 1F) will not be transmitted to the target
cell (Fig 2A: unidirectional spatiotemporal GNN model). To
add-back the information of neighboring cell fate, we intro-
duced an additional feature to each cell, the next frame be-
havior (NFB), which takes Div, Del, or NB (Fig 2B). Impor-
tantly, this additional feature was added only to the past cells
(t < —1), since the NFB of the cells at r = 0 is the target of
prediction.

The new GNN model predicts cell fates almost as well as
the previous model with and without the area and G1-phase
reporter signal features (Fig 2C and Fig S4 in S1 Appendix),
indicating that the key ingredients are captured without the
backward-time propagation as far as the neighboring cell fates
(NFB) are added back. By further eliminating the NFB and
seeing that the predictability drops, we confirmed that this
feature indeed has impact on the prediction of all behaviors
(Fig 2C and Fig S5 in S1 Appendix).

To further address the detail of the mechanism of predic-
tion, we next employed the attribution method called the inte-
grated gradient (IG) [37]. In this method, the impact of each
input variable on the output is quantified by integrating the
change in the output score level upon the gradual shift of each
input feature (Fig 2D, E and Fig S6 in S1 Appendix). The
IG also reflects the sign of the impact of each feature; a neg-
ative attribution score of feature f toward fate a means that
the observation of f will decrease the output score towards
predicting a. The AUC and the IG scores are complementary
to each other; the IG highlights the significance of inputs at a
finer scale than the AUC, but does not give quantitative values
of predictability. To account for the noise in IG induced by
finite sample size, we further added a random feature to the
cells, i.e., uniform random numbers ranging from O to 1 that
have no correlation with cell fate, and calculated its IG score
to identify the baseline for non-zero signal (orange shades,
Fig 2D, E and Fig S6 in S1 Appendix).

First, in Fig 2D and Fig S6A in S1 Appendix, the area of
target cells at + = 0 are found to give positive and negative
attribution for the prediction of cell division and delamina-
tion, respectively. This indicates that cells with large areas
tend to conduct cell division in the next frame, while they are
unlikely to delaminate. GNN models trained without spatial
MPs also show that the area of target cells has indeed signif-
icant predictability of the cell fates (Fig S7 in S1 Appendix).
On the other hand, in Fig S6B in S1 Appendix, negative at-
tribution is observed in the G1-phase signal of the target cells
at t+ = 0, which is consistent with the expectation that a high
Gl-phase signal of the target cell should predict no cell di-
vision in the next frame. Interestingly, the G1-phase signal
has a relatively low score when the cell area feature is present
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Fig. 2. Unidirectional spatiotemporal GNN model with sum aggregation. (A) The next frame behavior (NFB) feature introduced to
represent the local branch structure. (B) Schematic of the information flow in the model of the unidirectional spatiotemporal GNN (see
Fig 1D). (C) The AUC of the unidirectional spatiotemporal GNN is shown for models under various feature sets, obtained by averaging over
six trained models. Error bar: standard deviation. (D and E) The attributions of the unidirectional spatiotemporal GNN model are shown for
each feature condition: (Area, G1-phase signal, NFB, Random)= (+, +, +, +) (D) and (-, —, +, +) (E). The integrated gradients (IG) averaged
over six trained models is shown for each pooled feature. Positive and negative IGs represent the positive and negative effects of the features
(rows) on the fates (columns), respectively. Error bar: standard error. The upper and lower values of the IGs of the random features are shown

as the orange zone as an indicator of the baseline IG level.

(Fig 2D), indicating that the G1-phase signal is mostly redun-
dant for cell fate prediction. These results highlight how the
model is efficiently focusing on the important variables from
the multi-dimensional input.

Without the cell area and G1-phase reporter signal, non-
zero attribution scores are found for the prediction of fates
by the division of the target cell (Fig 2E). This is reflecting
how the age of the cell can be used in the cell fate predic-
tion; newly born cells tend to undergo a refractory period [35],
meaning that the target cell is less likely to divide again if it
divided (was born) recently. More generally, the distributions
of lifetime can be distinct between cells with different fates
(Fig S8 in S1 Appendix), which can be exploited in making
fate predictions. To eliminate the cell age information alto-
gether, we set all the features of the target cell sequence to

zero (Fig 3A: cell external model). We also took mean ag-
gregation in conducting the MP on spatial edges to make the
number of contacts invisible. This new model can still learn
to predict the fates significantly better than random (Fig 3B).
We found a high IG score indicating that Del of a neighbor-
ing cell 24 hours before (two frames prior) is useful informa-
tion in predicting Div. Consistent with this, when changing
the number of input time frames N,, the AUC score largely
increased between N, = 2 and 3 (Fig S9A in S1 Appendix).
These results match with the previous observation that cell de-
lamination correlates with neighboring cell division 1-2 days
later [1].

Moreover, the GNN model predicts that there is an effect of
neighboring Del suppressing Del in the next frame. This indi-
cates that cell delamination is not entirely random, and there
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Fig. 3. Cell external model with mean aggregation applied to hind paw and ear epidermis data. (A) Schematic of the information flow
in the cell external model (see Fig 1D). The zero value in the target cell’s box represents the null feature vector, which is assigned to the target
cell’s feature in the cell external model. (B) The AUC of the cell external model with mean aggregation is shown for models with and without
future fate, obtained by averaging over six trained models (left: paw, right: ear). Error bar: standard deviation. (C) The attribution of the cell
external model with mean aggregation is shown for the feature condition: (Area, G1 signal, NFB, Random)=(—, —, +, +) (top: paw, bottom:
ear). The IG averaged over six trained models is shown for each pooled feature. Error bar: standard error. The upper and lower values of the IG
of the random feature are shown as the orange zone. (D) Schematic of a delamination-induced division and lateral inhibition of delamination

by neighbor cell delamination.

may exist a mechanism to suppress two or more neighboring
cells to delaminate at the same time. This finding demon-
strates that the rule extraction procedure using the GNN model
is useful in predicting unexplored mechanisms. Importantly,
while the AUC is low for some cases due to the high stochas-
ticity in the cell fate events, it is still possible to determine the
fate correlations in neighboring cells.

We next analyzed the recently obtained mouse ear skin
data [31] to compare the mechanism of homeostasis across
different tissues. Although the ear skin has more structure
(i.e., hair follicles and other appendages), we have previously
observed that the behaviors of the interfollicular epidermal

basal cells in the ear skin are similar to that of the hairless hind
paw [1, 35]. A noticeable difference is that the rate of divi-
sions and delaminations were approximately two-fold slower
in the ear, which is why the interval between the frames was
set as 24 hours for the ear data acquisition. For our purpose,
we generated a novel dataset of whole region cell tracks from
6 regions in the ear epidermis with 54 time frames in total.

In Fig 3B and C, we show the AUC and the attributions for
the ear data; the largest positive (negative) IG score for Div
(Del) is attributed to the Del of neighboring cells from one
frame earlier, indicating the existence of the same rule as the
hind paw epidermis. Negative correlation between neighbor-
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ing cell fates was expected to exist in the ear as well as it is
critical in maintaining the stem cell pool [1]. However, the
actual coupling as well as the ordering of the events have not
been previously addressed.

In addition, there are large positive (negative) IG scores for
Del (Div) attributed to the Div of neighboring cells, which
were not seen in the hind paw epidermis. These scores imply
that a mechanism of neighboring Div-induced Del and Div-
suppression may exist. This difference was further confirmed
by conducting a neighbor-fate imbalance analysis (Fig S10A
and B in S1 Appendix). In this analysis, we focus on indi-
vidual cells that either divided or delaminated and follow the
subsequent behaviors of their six-nearest neighbor cells to cal-
culate the neighbor fate imbalance [1]. The average fate im-
balance indeed deviates from zero for the neighbors of divid-
ing cells in the ear, which is a distinct feature from the paw.

These results indicate that the GNN-based method can de-
tect cell fate coordination as efficiently as the previous neigh-
boring imbalance method [1] which was constructed specif-
ically for this purpose. The neighboring imbalance method
suffers from the subtlety of correcting the background tempo-
ral fluctuation of cell fates (i.e., some time frames have sig-
nificantly more Div of Del events than others), whereas for
the GNN method the baseline is statistically controlled. For
this reason, the method was sensitive enough to capture previ-
ously overlooked interactions of cell delamination suppress-
ing neighboring delamination; this is not capturable by the
neighboring imbalance analysis since it will only return a zero
signal.

Cell interaction rule inference from numerical simulation data

Finally, we conducted numerical simulations of different
coordinated cell fate models and tested whether artificially im-
plemented rules can be correctly extracted. In the simulated
models, cells are represented by points in the 2D space un-
dergoing repulsive interaction with each other. Cell divisions
and delaminations are recapitulated by abrupt point duplica-
tion (with small noise) and elimination, respectively (Fig 4A).
We encoded the cell fate coordination in the following ways
(Fig 4B). In the delamination-induced division setup, we first
randomly picked a cell to delaminate and chose another cell
randomly from its six-nearest neighbors to divide 24 hours
after the first cell delaminated. In the division-induced delam-
ination setup, the rules were flipped; a randomly picked cell
was set to divide while one of its six nearest neighbors was
randomly chosen to delaminate after the division. We also
tried another setup where these two rules were equally mixed.

Running the same GNN learning algorithm, we found that
the AUC scores of each fate are in the expected order (Fig 4C);
in the delamination-induced division setup, the division was
predictable and delamination was not, and vice versa. By test-
ing the attribution method on these simulated data, we con-
firmed that the inferred mechanisms indicate the implemented
rules (Fig 4D). We further noticed that the predictability of
the fates become significantly low for the mixed rule setup
(Fig 4C), which is close to the case of experimental data

(Fig 3B, C). Even in such situation, the attribution method
was able to pull out the coordination rules.

DISCUSSION

Here we have used the graph-based learning framework to
systematically infer how interactions correlate with cell fates
in the basal layer stem cell pool of the epidermis. The GNN
models were able to predict the future cell fate using the rela-
tionships of the target cell and the cells in contact in the past
time frames. We identified the cell features that are attributed
to the predictability of the model using IG, and clarified that
neighboring cell fates have a delayed effect on the target cell’s
fate outcome. The GNN-based approach gives interpretable
attributions in the words of the spatiotemporal relationship be-
tween the cells, which is an advantage compared with direct
image-based approaches employing CNNs.

The extracted rules from the dynamics in the epidermis in-
cluded the previously reported delamination-induced neigh-
boring division [1] as well as potentially novel interactions:
suppression (induction) of cell delamination by neighboring
delamination (division). Inhibition of certain behaviors by
cells in contact is a common motif observed in cell biol-
ogy [16, 38, 39]. Neighboring division-induced delamination
may be associated with local mechanical forces [40]. Testing
whether known molecular pathways responsible for lateral in-
hibition and mechanical signaling are playing roles in tissue
homeostasis will be an interesting next step.

The predicted rules are favorable mechanisms in keeping
the cell density in the homeostatic tissue, and it is intriguing
that there exist differences in the rules adopted in distinct re-
gions of the skin. A possible explanation for this is the cell
density; the hind paw epidermis is crowded compared with
the ear (26,000 cells/mm? versus 14,000 cells/mm?, with al-
most the same thickness, 15 um, Fig S11 in S1 Appendix).
In high cell density regions such as the hind paw, it is rea-
sonable that spontaneous cell division is suppressed and cells
can only proliferate when there is space provided by neighbor-
ing delamination. Interestingly, in the developing skin where
the cell density is much lower than the adult ear, the strati-
fication of cells has been reported to be driven by neighbor-
ing cell division [41]. Given these facts, we hypothesize that
the balance between cell differentiation and proliferation can
be maintained through distinct mechanisms depending on the
operating cell density regimes.

In predicting the kinetics, multiple time frames were re-
quired as inputs in our example (Fig S9 in S1 Appendix) due
to the significant time delay between the cell fate events. This
indicates that the proper treatment of the temporal axis was
necessary, which is why GNN approaches based on static
graphs [42-44] are not directly applicable to the problem
of multicellular kinetics. Furthermore, our GNN framework
takes into account the replication of nodes (i.e., cell division),
which has not been addressed in previous models involving
time-evolving graphs [28-30]. Since the incorporation of the
cell tracks including cell division is fundamental in the analy-
sis of multi-cellular systems, this study serves as an important
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Fig. 4. Validation of the GNN approach by in silico models of homeostasis. (A) Snapshots of simulation from the delamination-induced
division setup. Cell contacts are defined by the Voronoi tessellation. Delaminating cells and dividing cells are represented by blue stars
and red circle markers, respectively. (B) Schematic of the rules applied in in silico models of homeostasis: delamination-induced division,
division-induced delamination, and mixed. (C) The AUC of the cell external model with mean aggregation is shown for the three in silico
setups, obtained by averaging over six trained models. Error bar: standard deviation. (D) The attribution of the cell external model with mean
aggregation is shown for three in silico setups. The IG averaged over six trained models is shown for each pooled feature. Error bar: standard
error. The upper and lower values of the IG of the random feature are shown as the orange zone.

step towards building an unbiased rule extraction framework
for tissue dynamics.

Multicellular dynamics is inherently stochastic owing to
the complex interaction between cells and the environment as
well as the single-cell level fluctuations. Likely due to this
stochasticity, the prediction scores generated by the GNN in
this study were far from accurate. Nevertheless, the models
were able to provide sensible predictions and cell interaction
rules from the epidermis data and inferred the correct rules
from the simulation data. The success of the current approach
on data generated by highly stochastic kinetics suggests that
the framework is applicable not only for general multi-cellular
dynamics such as developing embryos, malignant tissues, and
organoids, but also for a wide range of systems where mod-
eling by stochastic interacting agents is effective such as in
disease spreading and ecology.

The current application relied on a relatively large data set
of curated cell tracks from whole regions of the mouse skin.
Although obtaining such data is still technically demanding in
other biological tissues, recent microscopy and cell tracking
methods are producing promising results in generating whole
tissue level tracks in many systems [15]. In analyzing data for
example from developing tissues, an important next step will
be to develop a method to interpret the effects of higher-order
subgraph motifs. We extracted the effects of neighboring cell
fates by converting the cell fate motif (branches and termina-
tion) into a node feature variable, which will need to be gener-

alized in order to capture more complex relations such as fate
imbalance across generations and three-body cell interactions.

METHODS
Data Preparation

The cell track data of the mouse hind paw epidermis basal
layer was generated in our previous work [1].

For the ear epidermis data, we used the images collected in
the work of [31], and conducted the semi-automated tracking
procedure similar to the previous method [1]. We first per-
formed 3D segmentation by cellpose [20] using the nucleus
channel (K14H2BmCherry) from a region size of 0.3 mm X
0.3 mm X 40 um and obtained the 3D masks of the cell nuclei.
We then defined the height of the interface between the epider-
mis and the dermis based on the 3D masks of the nuclei and
subtracted this height from the original 3D data to level the
basal layer position. From the height-corrected 3D images,
we took three consecutive z-positions containing the nucleus
of all the basal layer cells and averaged the intensity over the
three slices to obtain 2D images in each channel. We calcu-
lated the local maxima of the cell nuclei (K14H2BmCherry)
and automatically corrected the shifts between time frames
by minimizing the square distance between the nearest cell
positions across the frames using affine transformation. The
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cells included in all ten time frames were used in the follow-
ing analysis. The crop size in the 2D plane therefore varied
across different areas, ranging from 139 ym X 139 ym to 238
pum X 238 pym.

At each time frame, we segmented the cells using
the marker-controlled watershed algorithm using the mem-
tdTomato channel and the maxima of the cell nuclei posi-
tions. We assigned each cell (i.e., segmented area) to a seg-
mented area in the previous time frame with the largest over-
lap. Tracked cells were frequently lost or were associated with
more than one cell in the subsequent time frame, which in-
dicated cell delamination from the basal layer and cell divi-
sion, respectively. We then manually corrected the errors in
the tracking with a guide from the height-corrected 3D im-
ages using a pipeline employing napari [45], and cropped out
the region close to the edge so that the remaining region only
includes reliably tracked cells. The miss annotations are negli-
gible since the time intervals are significantly shorter than the
lifetimes of the cells (average lifetimes were 2.3 days in the
hind paw data compared to 0.5 day interval, and 4.0 days in
the ear data compared to one day interval). The script out-
putted the segmented areas of the cells at each time point
and their lineages, which was used to build the spatiotem-
poral graphs. In building the graphs, we determined the cell
neighbors from the segmentation images; edges were drawn
between cells that share more than one pixel as their periph-
ery. All codes involved in generating the basal layer cell tracks
in the ear epidermis were written in Python.

We used two areas of tracking data for the hind paw data,
and six areas for the ear data. The total number of cell-frames
in the spatiotemporal graphs was 5, 996 for the hind paw data
(~ 214 unique cells per area per time frame) and 12, 828 for
the ear data (~ 267 unique cells per area per time frame). We
split the graph data into two, the training set and the test set
(Fig S12 in S1 Appendix). The number of cell-frames in the
two sets was made to be comparable. The proportion of cells
that experience delamination and division in each frame were
both 9 % in the hind paw epidermis data and both 7 % in the
ear epidermis data.

For the neighbor fate net imbalance analysis, we applied the
same method as previously described [1] to the ear epidermis
data as well as to the simulation data.

Bidirectional spatiotemporal GNN model

The spatiotemporal graphs were created from N, sequen-
tial time frames from the segmented time-lapse images using
Deep Graph Library [46]. We first created the cell-contact
graphs for each time frame. The neighboring cells @ and 8
were connected by two directed edges pointing at each other.
We then added directional edges between the same cells in the
future and the past as well as their parents and daughter cells
in the sequential time frames. The cell feature vector x;, € R”
was assigned to each cell « for the i-th time frame. We used
the cell area and G1-phase reporter signal as components of
the feature vector, which were obtained from the original seg-
mented images. The features were normalized by dividing the

values by the maximum values among all the training and test
data. When reducing a feature, we set that particular feature
to zero in all nodes.

We processed these spatiotemporal graphs with a GNN
model using PyTorch. Our first GNN model is a collection
of models which consists of a backward temporal edge model
®Bedee 3 backward temporal node model ®B"°% a spatial
edge model ¢°%¢, a spatial node model $"°%, a forward tem-
poral edge model ®F°d° a forward temporal node model
@Frode and a decoder d/dec.

First, we propagated the information from the future to
the past using ®B<%¢ and then updated the node feature by
®Bnode By initializing the node feature a(.o) = &;,, the (k+1)-
(k+1)

th update (0 < k < N, — 2) of the node feature a; of cell
in the i-th frame (0 < i < N, — 1) is given by,
(k+1) B.edge (., (k) (k)
(o) +1,8) — =0 (al a’ t+1/3’) (1)
(k+1) _ (k+1)
B, = A v py @
(i+1,8)eD(,@)
gD = @Bnode gk+) ()
l(Y (D " C(B > l(l’) (3)

Here, the subscript (i, @) denotes cell @ in the i-th frame, and
(i, @) < (j,B) denotes the edge between cell « in the i-th frame
and cell B8 in j-th frame. We calculated Eq 1 for all the con-
nected pairs of cells in the spatiotemporal graphs. D(i, @) is
the set of the daughters of the cell @ in the i-th frame if the
cell a divides in the i-th frame; otherwise, D(i, @) is cell « it-
self in the (i + 1)-th frame. We set the features of the cells in
the final frame a(k D= a((()l) which was not updated. Further-
more, for cell Wthh delamlnates or exits the field of view
in the i-th frame, we set B SR}

Second, we calculated the edge features in each time frame
using ¢°%¢°, and then updated the cell feature vectors with the

edge features using ¢"°%. By initializing with b(O) = a(N =

the (/ + 1)-th update of the node feature bg;rl) of cell « in the
i-th frame is given by,

Hi L = 0% (. b, )
I = AGGUHL!)) .+ (iL,B) € NG,))  (5)
bl = grode (1) b)), (6)

Here, N(i, ) is the set of the neighbor cells of @ in the i-th
frame. In Eq 5, AGG represents either the sum aggregation
or the mean aggregation across the set of the neighbor cells.
We repeat this process for N; times to take into account the
N,-step neighbor interactions, in which case 0 </ < Ny — 1.
Third, we propagated the information from the past to the
future using ®F°42° and then updated the node feature by
@Fnode - By initializing with c(o) = b, the (m + 1)-th up-

La
(m+1)

date (0 < m < N; — 2) of the node feature Ciq of cell @ in
the i-th frame is given by,
(m+1) F.edge ¢ .(m) (Wl)
U(i+l(t)=(iﬁ) = (Cio > Cir1 ) (7
(m+1) _ yr(m+1)
V U(H—l L)&P(i+1,a)° (8)
c(m+l) oF node(V(WH'l) (Wl)) )
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Here, P(i + 1, @) is the parent of cell @ in the (i + 1)-th frame if
the cell « is born in the (i + 1)-th frame; otherwise, P(i + 1, @)
is cell « itself in the i-th frame. We set the features of the
cells in the final frame c(m”) c° Uf which was not updated.
Furthermore, for cell @ which pops in the field of view from
the outside in the i-th frame, we set V(m“) 0.

Finally, we decoded the cell feature of cell @ in the final

frame ((N; — 1)th frame) by:
Y1 = ¥y 0. (10)

For all the functions ®B-edee : R2 — R# @Bnode . R27 _,
Rn’(pedge - R Rn,(bnode - R Rn’q)F,edge - R
R, @Fnode . 22 _, R”,z,bdec : R"” - R3 in our GNN model,
we used the multi-layer perceptron (MLP), whose compo-
nents are (1) Nyer hidden layers which are respectively com-
posed of a fully-connected layer and a rectified linear unit
(ReLU), and (2) an output fully-connected layer.

Unidirectional spatiotemporal GNN model

For the unidirectional spatiotemporal model, we skipped
the backward temporal edge and node models in the bidirec-
tional spatiotemporal model. Hence, we initialized b(O) =i,
in the spatial edge and node models. In the cell external
model, we assigned a null feature vector for the target cells; in
the spatial edge model, we initialized b(o) =0 and b(o) =g
for the edges from cell S to cell @ in the i-th frame.

To represent the local lineage branch structure, we intro-
duced the next frame behavior (NFB) as a new feature, which
encodes the behavior of the next frame of that cell by a one-hot
vector, NB ([1,0,0]), Del ([0, 1, 0]), or Div ([0,0, 1]). Since
the NFB in the final frame of each network is what we aim
to predict, we set the NFB in the final frame to null vector
([0, 0, 0]).

Training

We trained the GNN models as a three-class classification
problem between the three possible fates, NB,Del and Div).
Since the proportion of the three cell fates is imbalanced,
we used the weighted softmax-cross-entropy loss where the
weight of each label was set to the inverse of the proportion
of the cell fate in the training data. To minimize the loss, we
used Adam optimizer with the learning rate Ir = 0.0001. In
the training, we input a spatiotemporal graph of N; sequential
time frames obtained from an imaging area to update the pa-
rameters of the GNN model. We repeated the update for all
the spatiotemporal graphs in a single epoch of the training.

To optimize the number of layers Niuyer, the number of
nodes Nyqe Of a hidden layer of the MLPs, and the dropout
rate p, we tested the performance of the GNN model by
changing these parameters. For this test, we used the simu-
lation data of delamination-induced division setup with NFB
and random features. First, we investigated the effect of Niayer
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by setting Npoge = 50 and p = 0. To quantify the perfor-
mance of the GNN model, we calculated the maximum value
of macro-F1 score of the test data during learning for 2000
epochs. We ran 5000 epochs for Njayer = 2, since the learning
was exceptionally slow. As shown in Fig S13A in S1 Ap-
pendix, Njgyer = 1 and Nyyer = 2 give comparable perfor-
mance. Second, we investigated the effect of Nyqe by setting
Niayer = 1 and p = 0. We found that Ny does not sig-
nificantly affect the performance (Fig S13B in S1 Appendix).
Hence, we chose Njayer = 1 and Npoge = 50 to minimize the
size of the GNN model. Finally, we changed p as shown in
Fig S13C in S1 Appendix, and found that p also does not sig-
nificantly affect the performance. We here chose p = 0.1 since
the average performance was slightly better and the standard
deviation is smaller compared with the other conditions.

In all the training, we set Njayer = 1, Nyoge = 50 and p = 0.1,
and ran 2000 epochs. We exceptionally ran 5000 epochs for
the bidirectional spatiotemporal model with mean aggregation
without any feature.

We also tested the effect of data size on the performance
(Fig S14 and S15 in S1 Appendix). We found that the predic-
tion score and attribution score are sufficiently high when the
number of cell-frames used in the training data is above 2000.

The AUC and attribution of each condition were calculated
for the GNN model obtained at the epoch at which the model
achieves the maximum macro-F1 score [47]. In Fig S2 in S1
Appendix, we show an example of the learning curves of the
cell external model for the hind paw data with NFB and the
random feature. The weighted softmax-cross-entropy loss,
macro-F1 score, recall, and precision curves are shown re-
spectively in Fig S2 in S1 Appendix. The vertical lines in Fig
S2A-D in S1 Appendix indicate the epoch at which the model
achieves the best macro-F1 score.

Attribution method

We used the integrated gradients (IG, [37]) for the attribu-
tion. The IG I;(g) of the k-th feature for an input subgraph g
of a target cell is given by:

p ) VOF/( X +a - (X - X))
I.(g) = (Xk_Xk)'f X da.(11)
0 k

The function F/ is the softmax score of fate f ¢
{NB, Del, Div} as a function of the input features calculated by
the trained network. X represents the concatenated features
of all the cells of g, and X is the value of the kth feature. X’
is the baseline, which is the null vector of the same size as X.
We calculated the IG for three cell fate labels of all the input
graphs.

Since the baseline should be neutral for calculating the at-
tribution, the GNN model must be trained for the null graphs
to provide equal soft-max scores for three cell fate labels. To
this end, we minimized the mean-squared-error (MSE) loss
defined as,

Lysg =

Zﬁ( fonull _) (12)
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together with the weighted softmax-cross-entropy loss. Here,
p{ Ml i< the softmax score of fate f € {NB,Del, Div} of the
null graph of the n-th target cell’s subgraph, and Ny, is the
number of the subgraphs. Within a single epoch, we first in-
put a spatiotemporal graph to update the parameters using the
weighted softmax-cross-entropy loss, and then input the cor-
responding null graph to update the parameters using the MSE
loss. By this learning method, we approximately obtained the
neutral baseline softmax scores for null graphs (Fig S16 in S1
Appendix).

In the analysis of the attribution, we pooled each feature
of each target cell’s subgraph into the relative spatiotempo-
ral position of the feature with respect to the target cell. We
calculated the average IG of each category for each cell fate
label. With respect to the average IG of NFB, we averaged the
IG of each category of NFB only among the cells in the cate-
gory. Finally, we calculated the mean of the average IG over
all the trained GNN models. We also defined the baseline for
non-zero signals shown as the orange shades in the attribution
plots. The minimum (maximum) value of the range of the
baseline is defined as the minimum (maximum) of the model-
average of 1G subtracted (added) by the standard error among
all the pooled random features.

Since 3 ; F/(X) = 1 for any X, we have

PRACIEIY (13)
f

To make the plots in Fig 2-4, we pooled the features according
to the spatiotemporal position. The pooled features, which we
denote as a, contain multiple features k in the original calcula-
tion. The attribution score for each pooled feature is evaluated
by

Siea 1] (@)
I(g) = == (14)
“ Zkea 1
Note that the normalization still holds:
)
Zlf( ) = ZkeaZf k(g —0 (15)
Zkea

Numerical Simulations

For the numerical data that mimics the dynamics of basal
layer dynamics, we took a simplified model of interacting par-
ticles that exclude each other through mechanical interactions
and undergo stochastic division and elimination events. We
placed Nj cells labeled by « in a two-dimensional plane with
size L X L and with periodic boundary conditions and let the
cells interact with each other through an interacting potential.
The equation of motion reads

Toll) = Za

PEa

T3), (16)

which is an overdamped kinetics without noise. r, is the po-
sition vector of cell @. The repulsive interacting potential has
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the typical length scale :

lK a -1 2
u(ry, r‘B) = {6 (Ir Tﬁ' )

The rules of cell division and delamination were imple-
mented by the Monte Carlo method. At the time frame of
cell division of cell @, a newly born cell ¢’ is generated at a
random position within a small distance d = 0.001 x L. Cell
delamination is conducted by eliminating a particle instanta-
neously. In both cases, the position of the cells quickly re-
laxes to a dispersed state due to the repulsive force between
the cells, Eq 16.

The stochastic rules of fate coordination that we tested are:

[ro — Tl < Can
lro —1pl 21

e Delamination-induced division: delaminating cells are
chosen randomly with rate A from the pool of cells that
have not yet committed to delaminate or to divide. The
chosen cells are committed to delaminate and are as-
signed a remaining lifetime chosen from a uniform dis-
tribution between 32.4 hours and 39.6 hours. At the
time point of delamination, one of the six-nearest neigh-
bors of the delaminating cell is randomly chosen, again
excluding the cells that have already committed to di-
vision or delamination, and is assigned to divide after a
randomly chosen remaining lifetime drawn from a uni-
form distribution between 44.4 hours and 51.6 hours.
Ny = 612.

e Division-induced delamination: dividing cells are cho-
sen randomly with the rate A from the pool of cells that
have not yet committed to delaminate or to divide. The
chosen cells are committed to dividing and are assigned
a remaining lifetime randomly chosen from a uniform
distribution between 32.4 hours and 39.6 hours. At the
time point of division, one of the six-nearest neighbors
of the dividing cell is randomly chosen, again exclud-
ing the cells that have already committed to division
or delamination, and is assigned to delaminate after a
randomly chosen remaining lifetime drawn from a uni-
form distribution between 44.4 hours and 51.6 hours.
Ny = 412.

e Mixed: the two schemes explained above were mixed,
with the rate of randomly assigning the delaminating
and dividing cells being almost halved so that the over-
all event rate does not change. Ny = 512.

We used K = 9 hours™!, 7 = 0.125, and L = 1 in all the
simulations. For the time steps, we took Ar = 1.2 hours.

In generating the data for the graph construction, we first
prepared Ny points randomly placed inside the box (size Lx L)
and simulated the time evolution according to Eq 16 by the
Euler method for 100 steps to obtain a dispersed cell configu-
ration. Next, we ran the simulation up to 300 steps (360 hours)
with both the equation of motion Eq 16 and the stochastic di-
visions and delaminations, to make sure that the system has
reached a steady-state (Fig S17 in S1 Appendix). Finally, we
ran the simulation for another 300 steps and sub-sampled the


https://doi.org/10.1101/2021.06.23.449559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449559; this version posted April 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

time points every 20 steps (24 hours) from this final time se-
ries to generate data resembling the ear epidermis. The ini-
tial number of cells Ny was changed in the three setups to
ensure that the number of cells in the frames at steady-state
are roughly the same (around 500, Fig S17 in S1 Appendix).
The rates of fates A were also tuned for each setup so that the
number of events that take place per cell per time frame is
comparable with the experiment.

We cropped out the edges and used the data from the points
in the center region 0.65 Lx0.65 L so that the number of points
per frame is roughly the same as the number of cells per frame
in the hind paw and ear data (around 210). The neighboring
cell network was generated by the two-dimensional Voronoi
tessellation, and by whole spatiotemporal network was fed to
the GNN learning process in the same way as the experimental
data.
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Fig S2. Learning curves and confusion matrix. The cell external model with mean aggregation was applied for the hind paw data with the
feature condition: (Area, G1 signal, NFB, Random)=(—, —, +, +). The curves of (A) the weighted softmax-cross-entropy loss, (B) macro-F1
score, (C) recall and (D) precision for training and test data, respectively. The vertical dashed lines indicate the epoch at which the model
achieves the best macro-F1 score. We evaluated the models with the best macro-F1 score in the main text. As shown in (A), the test loss
decreases only slightly due to the low predictability in this setting; higher AUC can be achieved even for high loss within this close-to-random
regime. In (E) and (F), the confusion matrices of the training and test data averaged over 6 models which achieve the best macro-F1 scores are
shown. The standard deviation is also shown. Note that the total number of events are fewer than the value reported in Fig S12 since cells near
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Fig S3. Statistical properties of the hind paw data. (A,E) Histogram of relative frequency and the boxplot of the normalized area. (B,F,G)
Histogram of relative frequency, the boxplot, and the plot of the average of the normalized G1 signal. The error bar in (G) is the standard
deviation. (C) The correlation matrix between the number of neighboring cells and normalized area. (D,H) Histogram of relative frequency,
the boxplot of the number of neighboring cells. In (E,F,H), the significance obtained by the two-sample two-sided Kolmogorov—Smirnov test
is shown (x : p < 0.05, %% : p < 0.01,% % : p < 0.001). In the boxplots, the box shows the quartiles of the dataset while the whiskers show the
rest of the distribution. The outliers are defined by the thresholds which are obtained by multiplying the interquartile range by 1.5 and adding
(reducing) it to (from) the third (first) quartile. The numbers of cells used for the analysis are 4953 (NB), 517 (Del) and 517 (Div), respectively.
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Fig S6. Attribution of unidirectional spatiotemporal GNN model with sum aggregation. The attributions of the unidirectional spatiotem-
poral GNN model are shown for each feature condition: (Area, G1-phase signal, NFB, Random)= (+, —, +,+) (A) and (-, +, +,+) (B). The
IG averaged over six trained models is shown for each pooled feature. Error bar: standard error. The upper and lower values of the IGs of the
random features are shown as the orange zone.
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Fig S7. The performance of the unidirectional spatiotemporal GNN model without spatial MP. The AUC of the unidirectional spatiotem-
poral GNN for models without spatial MP under various feature sets obtained by averaging over six trained models. We ran 5000 epochs for
(Area, G1-phase signal, NFB, Random)= (-, —, +, +) because the learning was slower than the other conditions. Error bar: standard deviation.
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Fig S8. Lifetime distribution. The lifetime distribution of delaminating and dividing cells as well as the box plots are presented for the (A,B)
hind paw and (C,D) ear. In (B) and (D), the significance of the two-sample two-sided Kolmogorov—Smirnov test is shown (* : p < 0.05, #x :
p < 0.01,% %% : p <0.001). In the boxplots, the box shows the quartiles of the dataset while the whiskers show the rest of the distribution.
The numbers of cells used for the analysis are 336 (Del in paw), 240 (Div in paw), 252 (Del in ear) and 178 (Div in ear), respectively.
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Fig S9. Dependence of the number of time frames on the performance. The cell external model with mean aggregation was applied for
the hind paw data with the feature condition: (NFB, Random)=(+, +). (A) The AUC for the different number of time frames. The AUC for
each cell fate label obtained by averaging the AUC over six trained models. Error bar: standard deviation. (B) The attribution of the five-time
model. The IG averaged over six trained models is shown for each pooled feature. Error bar: standard error.
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Fig S10. Neighbor fate net imbalance analysis for the epidermis data and simulations. Net imbalance of six-nearest neighbor cells around
a divided cell and a delaminated cell is plotted for the (A) hind paw and (B) ear data, as well as for data generated by simulations in the (C)
delamination-induced division setup, (D) division-induced delamination setup and (E) mixed setup. Error bar: standard error.
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Fig S11. Segmented images of the hind paw and ear epidermis. Segmented images are shown for the (A) hind paw and (B) ear epidermis.
Cells undergoing Div, Del, and NB are indicated by red, blue, and yellow circle markers. The cell-contact graph is also shown.
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9
Data type Area number #offrames #of NB # of Del #of Div  Total# of events Training/Test
Mouse paw 1 15 2481 269 265 3015 Training
Mouse paw 2 15 2472 257 252 2981 Test
Mouse ear 1 10 1729 150 137 2016 Training
Mouse ear 2 10 1638 151 111 1900 Training
Mouse ear 3 10 2110 185 201 2496 Training
Mouse ear 4 7 1114 97 105 1316 Test
Mouse ear 5 7 1297 111 92 1500 Test
Mouse ear 6 10 3163 236 201 3600 Test
Simulation del-div 1 15 2394 261 265 2920 Training
Simulation del-div 2 15 2458 235 240 2933 Test
Simulation div-del 1 15 2501 221 237 2959 Training
Simulation div-del 2 15 2500 252 251 3003 Test
Simulation Mix 1 15 2586 262 262 3110 Training
Simulation Mix 2 15 2560 257 264 3081 Test

0.50

0.45
0.40 —}

Macro-F1 score

0.30 14

Number of layers

Macro-F1 score

Fig S12. Summary of the data sets.
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Fig S13. Dependence of the performance of the GNN models on the hyperparameters. The cell external model of the unidirectional
GNN with mean aggregation is applied to the simulation data from delamination-induced division setup with the feature condition: (NFB,
Random)=(+, +). The macro-F1 score averaged over six trained models is plotted against the hyperparameters. Error bar: standard deviation.
(A) The effect of Ny, is tested with Npoge = 50 and p = 0. (B) The effect of Ny is tested with Nyuyer = 1 and p = 0. (C) The effect of p is
tested with Npoge = 50 and Nygyer = 1.
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Fig S14. Data size dependency on the prediction and attribution: mouse paw data. The cell external model with mean aggregation is
applied to the mouse paw data with the feature condition: (NFB, Random)=(+, +). (A) The AUC for the different number of cell-frames in
the training data obtained by averaging the AUC over six trained models. Error bar: standard deviation. (B-F) The attribution is shown for the
different numbers of cells: (B) 731, (C) 1557, (D) 2400 and (E) 3015. The result in the main text is for 3015 cells in the training data. The
IG averaged over six trained models is shown for each pooled feature. Error bar: standard error. The upper and lower values of the IG of the
random feature are shown as the orange zone.
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Fig S15. Data size dependency on the prediction and attribution: simulation data. The cell external model with mean aggregation is
applied to the simulation data from the delamination-induced division setup with the feature condition: (NFB, Random)=(+, +). (A) The
AUC for the different number of cell-frames in the training data obtained by averaging the AUC over six trained models. Error bar: standard
deviation. (B-F) The attribution is shown for the different numbers of cells: (B) 479, (C) 911, (D) 1913, (E) 2920 and (F) 3917. The result
in the main text is for 2920 cells in the training data. The IG averaged over six trained models is shown for each pooled feature. Error bar:
standard error. The upper and lower values of the IG of the random feature are shown as the orange zone.
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Fig S16. Baseline softmax score. The baseline softmax score, which is the softmax score for null-graphs, is shown for the four and five-time
cell external model with mean aggregation for the hind paw data. The feature condition is (Area, G1 signal, NFB, Random)=(—, —, +, +). The
horizontal dashed line indicates the target baseline softmax score 1/3.
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Fig S17. Numerical simulations of the homeostatic tissue model. (A) Time-evolution of the number of cells and (B) the number of fate
events in the simulations of the Del-induced Div model, Div-induced Del model, and the mixed model. We used the data from 15 to 30 days
in these simulations for the GNN analyses.
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