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ABSTRACT

microRNAs are important post-transcriptional regulators of gene expression, but the identification of

functionally relevant targets is still challenging. Recent research has shown improved prediction of

microRNA-mediated repression using a biochemical model combined with empirically-derived k-mer

affinity predictions. Here, we translate this approach into a flexible and user-friendly bioconductor

package, scanMiR, also available through a web interface. Using lightweight linear models, scanMiR

efficiently scans for binding sites, estimates their affinity, and predicts aggregated transcript

repression. Moreover, flexible 3’-supplementary alignment enables the prediction of unconventional

interactions, such as bindings potentially leading to target-directed microRNA degradation (TDMD) or

slicing. We showcase scanMiR through a systematic scan for such unconventional sites on neuronal

transcripts, including lncRNAs and circRNAs.

Keywords: miRNA, post-transcriptional regulation, circRNA, target-directed miRNA degradation,
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BACKGROUND

Since their initial discovery in C.elegans, microRNAs (miRNAs) have been shown to act on a plethora

of biological pathways in diverse eukaryotic lineages (Bartel, 2018). They derive from short stem-loop

precursor sequences, and after maturation associate with Argonaute (Ago) proteins to form the

RNA-induced silencing complex (RISC) (Bartel, 2004). As part of this complex, miRNAs bind

predominantly to the 3’ untranslated region (UTR) of mRNAs to induce post-transcriptional silencing

(Jonas & Izaurralde, 2015). In animals, post-transcriptional silencing primarily comprises a

combination of translational inhibition and mRNA degradation, with only a few miRNA target

transcripts undergoing endonucleolytic cleavage (“slicing”) (Ameres & Zamore, 2013). Notable

exceptions are target RNA-directed miRNA-degradation (TDMD) sites, which lead to a degradation of

the bound miRNA (de la Mata et al., 2015; Fuchs Wightman et al., 2018; Han et al., 2020; Kleaveland

et al., 2018; Shi et al., 2020). Binding specificity is determined in particular by the 5’ end of the

miRNA, via the initial pairing of the so-called seed region that encompasses miRNA nucleotides 2-7

(Bartel, 2009), which can sometimes then propagate throughout the 3’part of the miRNA (Schirle et

al., 2014; Sheu‐Gruttadauria et al., 2019). The degree of repression that a miRNA imposes on its

targets is determined by the time the RISC spends at individual sites, hence by the affinity of a miRNA

for its mRNA targets (Denzler et al., 2016; McGeary et al., 2019). Strikingly, due to the influence of

Ago on the functional properties of this interaction, the binding kinetics do not resemble conventional

RNA:RNA hybridization (Salomon et al., 2015), making it difficult to predict binding efficiency through

traditional computational methods.

To date, several bioinformatic approaches have been proposed to identify functional miRNA targets

and to approximate their repression efficiency (e.g. TargetScan 7 (Agarwal et al., 2015),

DIANA-microT-CDS (Reczko et al., 2012), MIRZA-G (Gumienny & Zavolan, 2015), and MirTarget (Liu

& Wang, 2019); see Kern et al. (2020) for a comprehensive review). Most of these methods follow

correlative approaches in that they try to infer a repression score from a number of features shown to

correlate with repression efficiency of miRNAs, for example structural accessibility, predicted pairing

stability, local AU-content, site-type, and 3’UTR length (Agarwal et al., 2015; Grimson et al., 2007;

Gumienny & Zavolan, 2015; Krek et al., 2005; Nielsen et al., 2007). Some of these algorithms include
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the probability of sequence conservation since it has been shown that some of the parameters

mentioned before are enriched in the proximity of evolutionarily conserved sites (Grimson et al., 2007;

Nielsen et al., 2007). One of the publicly-available prediction tools most accurate in explaining

observed repression in cellular contexts (TargetScan7) has been reported to perform as well as recent

CLIP experiments (Agarwal et al., 2015). Nevertheless, TargetScan7 still explains only a small fraction

(~14%) of the variance in logFC in cells perturbed with miRNA mimics (Agarwal et al., 2015).

Recently, several high-throughput studies have attempted to shed light on the biochemical

determinants of miRNA-mRNA targeting (Becker et al., 2019; McGeary et al., 2019, 2021; Salomon et

al., 2015). In one of these studies, the investigators used purified Ago-miRNA complexes in

combination with RNA bind-n-seq (RBNS) to determine the affinities of six miRNAs (miR-1, let-7a,

miR-7, miR-124, miR-155 and lsy-6, selected based on their conserved sequence and existing

functional data), to any possible 12 nt long (12-mer) sequence (McGeary et al., 2019). They showed

that the affinities and the corresponding dissociation constants (log(KD)-values) of different canonical

site-types correlate very well with repression observed in cellular contexts, substantially outperforming

a retrained version of TargetScan7. In an attempt to extrapolate these findings to other miRNAs, the

authors trained a convolutional neural network (CNN) using the empirically obtained data. They

demonstrated that repression scores based on affinity values obtained via the CNN outperform

TargetScan7 by ~50% across 12 different miRNAs in another cell-type (McGeary et al., 2019).

While the model and experimental data provided by McGeary et al. (2019) represent major advances

in target prediction, they are not available to a broader class of users. Indeed, while occupancy scores

based on the biochemical model have been added to TargetScan8, such widely used platforms fail to

offer the needed flexibility: TargetScan for instance includes only a handful of species, covers only a

subset of the transcriptome (single curated UTR per protein-coding gene), does not provide

information on non-canonical or open reading frame (ORF) binding sites and is very tedious to apply

to custom sequences. Finally, despite the prevalence of R and Bioconductor in bioinformatics, there is

a relative paucity of R-based miRNA target prediction tools. We therefore sought to address these

needs by integrating and extending the biochemical model of McGeary et al. (2019) within the

Bioconductor framework to offer a generally applicable, flexible, and user-friendly package and
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accompanying web app, scanMiR (Fig. 1). scanMiR efficiently scans for canonical and noncanonical

miRNA binding sites on any custom sequence (incl. circular RNAs), estimates dissociation constants

and predicts aggregated transcript repression. We further include a flexible 3’-supplementary

alignment, allowing the systematic prediction of putative TDMD sites as well as sites leading to RNA

slicing. Moreover, scanMiR provides several novel visualization functions in order to facilitate

miRNA-target candidate selection. scanMiR-predicted mRNA repression correlates significantly better

with measured mRNA fold-changes than TargetScan scores. Finally, transcript-level predictions for

human, mouse and rat transcriptomes, as well as the visualization and scanning functions of

scanMiR, are available to a broader public through a user-friendly webtool.

Figure 1: Overview of the scanMiR suite.
The scanMiR package offers classes and
functions to generate and work with miRNA
12-mer affinity models (i.e. 8nt opposite the
extended seed region plus flanking
dinucleotides). It enables efficient and
flexible site scanning, as well as different
methods to visualize alignments. The
scanMiRData package contains predicted
affinity models for all human, mouse and rat
miRbase miRNAs. Finally, the scanMiRApp
package provides an easily deployable web
interface to most scanMiR functionalities,
as well as convenient wrappers to facilitate
data handling and integration with
annotation packages.
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RESULTS

Efficient encoding of miRNA dissociation constants

McGeary, Lin and colleagues (2019) developed a convolutional neural network (CNN) predicting the

dissociation constants (KD) of given miRNAs on partially-matching 12-nucleotides sequences (that is,

the 8nt opposite the extended miRNA seed sequence as well as two flanking di-nucleotides on each

site, see the scheme in Fig. 1 and Methods for further infos). Given that there are about half a million

possible 12-mers and corresponding KDs for each miRNA, it is impractical to store and use the

information across all possible miRNAs. We therefore developed an efficient compression and

encoding of the KD predictions (see Methods), enabling its rapid application for scanning candidate

target transcripts. As Figure 2A-B shows, the correlation of the reconstituted KD-values to the original

ones is high, and above the accuracy of the CNN predictions (McGeary et al., 2019). With this

approach, we could for instance store the affinity models for ~2000 miRNAs in approximately 10 MB

(instead of over 8 GB for the storage of 12mer-KD pairs) and then apply them very efficiently for the

identification and characterization of putative sites (Fig. 3D).

The KdModel and KdModelList classes defined in scanMiR provide an interface for handling these

objects. We generated KdModel objects for all human, mouse and rat putative miRNAs from miRbase

(Griffiths-Jones et al., 2006), which are made available in the accompanying scanMiRData package.

In an attempt to draw further biological conclusions from seed properties stored in KdModels, we set

out to separate human miRNAs based on patterns of binding specificity (Fig. 2C). Specifically, we

examined the relationship between the dissociation constants of the top non-canonical seed and the

median of canonical 6mers (generally accounting for 7mer-A1 and 6mer sites). miRNAs did not

cluster into distinct classes but roughly formed a multivariate normal distribution. Nevertheless, we

could recognize different paradigmatic examples, such as the highly-specific binding of miR-499a-5p

(Fig. 2D) and the known strong non-canonical binding of miR-124-3p (Chi et al., 2012; Wang et al.,

2021) (Fig. 2E). Based on its proximity to miR-124-3p in the distribution, we likewise propose the
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occurrence of previously uncharacterized high-affinity non-canonical binding sites for miR-199a-5p

(Fig. 2F).

An important experimental aspect of miRNA research is the mutation of predicted binding sites to

investigate their putative function. Although it is known that nucleotide substitutions opposite miRNA

positions 2-5 within the seed region most efficiently affect binding (Becker et al., 2019), the

importance of single nucleotides within the seed region of different miRNAs has not yet been

elucidated. By generating positional weight matrices of miRNAs based on the KD-predictions of 12mer

sequences, scanMiR allows the user to directly plot the nucleotide information content of individual

miRNAs. Such affinity based nucleotide information content plots suggest for example a uniform

importance of nt 2-5 in the seed of miR-499a-5p, whereas for miR-129-5p, nt 3-4 seem to be most

relevant for a stable interaction with its targets (Suppl. Fig. 1A). Researchers can easily resort to this

information to get a first impression on which nucleotides in the seeds of miRNAs are most required

for a stable interaction with their targets, and hence should be primarily mutated to prevent miRNA

binding.
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Figure 2: Efficient encoding of miRNA dissociation rates. A: Correlation between log(KD) values
before and after compression for two example miRNAs (a known high-specificity miRNA, miR-122, as
well as the miRNA closest to the mean correlation (see panel B). The residuals (reconstituted-original)
are shown below. B: Distribution of correlations across all human mirBase putative miRNAs. The
dashed lines represent the two miRNAs selected in panel A. The miRNAs with a poor correlation tend
to be those with weak dissociation rates, hence spanning a smaller dynamic range, indicating that this
is less an effect of the compression than of the poor predicted specificity of the miRNA. C:
Relationship between the dissociation constants of the 6-mers sites and that of the top non-canonical
sites, highlighting miRNAs with radically different binding behaviors. miRNAs are colored according to
the Gini coefficient across the KD of their top 15 k-mers. D-F: Example affinity plots showing the top
ten miRNA seed complements ranked by the average dissociation constant for the miRNA of interest.
MiR-499a-5p displays a very specific canonical binding (D), whereas miR-124-3p and miR-199a-5p
include highly ranked non-canonical seeds (E-F).
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Biochemically-based prediction of miRNA target repression

To assess the accuracy of compressed KdModels for miRNA repression prediction, we scanned HeLa

mRNAs for putative binding sites of five miRNAs that McGeary and colleagues (2019) had initially

used for their RBNS experiments and determined site affinity based on the compressed models (see

Methods). Aggregating these values using the biochemical model and correlating them to mRNA

fold-changes observed in Hela cells following miRNA-mimic transfections revealed similar results as

with uncompressed dissociation constants (Fig. 3A-B, Suppl. Fig. 2C). This holds likewise true for 12

further transfection experiments that were conducted in another cell type (HEK293) with miRNAs that

were not used in the direct RBNS-measurements (Fig. 3C). Importantly, for most of these miRNAs,

the correlation values are considerably higher than those obtained with TargetScan7 repression

scores (Fig. 3C). This also holds true in comparison to the occupancy scores recently made available

in TargetScan8, which are likewise based on the biochemical model of McGeary et al. (2019), but are

only provided for a subset of miRNAs on a set of pre-curated transcripts (Suppl. Fig. 2).

One of the constraints of the biochemical model is the necessity to fit the relative concentration of

unbound AGO-miRNA complexes (a-value) for each miRNA and experiment individually (see

Methods, (McGeary et al., 2019)). Bolstered by the observation that even a 100-fold deviation of the

optimal a-value still leads to a repression prediction outperforming TargetScan7 (Suppl. Fig. 3B)

(McGeary et al., 2019), we went on to generate a globally optimized a-value using the 12 HEK-cell

transfection datasets. Repression predictions using this global value are slightly lower than those with

a optimized separately for each dataset, but still outperform TargetScan substantially (Fig. 3C, Suppl.

Fig. 2). To further assess the general validity of our approach, we tested predicted miRNA repression

on published mouse miRNA knockout datasets. scanMiR similarly outperforms TargetScan in this

experimental setup, although the overall signal-to-noise ratio and resulting explanatory power were

lower (Fig. Suppl. 4). In conclusion, scanMiR repression predictions exceed the performance of the

latest TargetScan7&8 scores across several experimental settings, and the repression predictions are

roughly generalizable even without fitting the biochemical parameters to individual experimental

settings.
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A further key finding of McGeary et al. (2019) was the identification of high-affinity non-canonical

miRNA binding sites. By harnessing the whole set of available 12mer sequences and corresponding

KD-values to identify and rank miRNA binding sites, scanMiR readily detects these presumably

efficient non-canonical sites. However, including also the vast number of non-canonical sites with low

predicted target affinities significantly exacerbates the scanning and storage of miRNA binding sites.

We therefore studied the relation between KD-values of different binding sites and their explanatory

power. For 23 out of 24 miRNA-transfection experiments in HEK- and HeLA-cells with an explanatory

power larger than 10%, a lenient log(KD)-cutoff value of -0.3 retained 97.5% of this power while at the

same time allowing a reduction in the number of stored sites by over 40%, and a more stringent -0.5

cutoff also incurred very little additional loss in power (Suppl. Fig. 5A-B).

As an additional scanMiR feature, we implemented the possibility to flag g-bulged as well as wobbled

(G:U) miRNA binding sites in the scanning results as well as in affinity plots (Fig. 2E, Suppl. Fig

1B-C). G-bulged non-canonical binding sites comprise a bulged out “G” opposing Nt6 of the miRNA to

allow further seed pairing, and the efficient binding of, for example, miR-124-3p to such sites has

been shown by high-throughput techniques and the functional repression of candidate targets

validated with luciferase experiments (Chi et al., 2012; Wang et al., 2021).

Moreover, scanMiR enables the user to specify a minimum distance between binding sites. It has

been shown previously that binding sites located closer than 7nt to each other exert a repelling effect

onto each other (Grimson et al., 2007; Sætrom et al., 2007). By default, scanMiR therefore removes

binding sites within the specified minimal distance of a higher-affinity site (Suppl. Fig. 6, see

Methods).

Of note, despite evaluating a considerably larger number of sites (i.e. including all non-canonical

sites) than TargetScan, scanMiR nevertheless runs significantly faster. It likewise runs faster than the

scripts from McGeary et al. (2019) (Fig. 3D), which were even slower when including the default

transcript folding (Suppl. Fig. 5D).
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Figure 3: Efficient prediction of repression. A: Correlation between predicted and observed
repression in an example miRNA (hsa-miR-1-3p) transfection experiment from McGeary et al. (2019),
showing comparable correlations between the original algorithm and log(KD) values and our
compressed version. Each point corresponds to a transcript, and is colored according to the number
of canonical sites in its UTR. B: Correlation (Pearson r2) between predicted and observed repression
across the 5 miRNAs from McGeary et al. (2019) with experimental affinity measurements. C:
Correlation (Pearson r2) between predicted and observed repression across 12 further miRNAs in
HEK cells (McGeary et al., 2019). The authors had chosen those particular 12 miRNAs because of
their very low endogenous expression in HEK cells. Correlations obtained with a globally optimized
a-value are shown in light green, correlations based on TargetScan7 predictions in grey. D: Running
times of the different methods scanning for binding sites of 12 miRNAs across growing sets of
sequences (the sites indicated are from scanMiR before filtering, including all canonical and
non-canonical sites).
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Flexible 3’ supplementary alignment flags special miRNA binding sites

Upon finding a partial seed match, scanMiR performs a local alignment of the 3’ region of the miRNA

onto the upstream region of the transcript, thereby enabling a flexible and customizable

miRNA-mRNA bulge size (Suppl. Fig. 7A). Including a 3’-supplementary pairing score based on this

alignment had minimal impact on scanMiR repression predictions (Suppl. Fig. 7B-C); though more

importantly, it enables the prediction of unconventional binding sites determined by this

supplementary pairing. It has been shown previously that some miRNA binding sites with near

full-length complementarity can lead to endonucleolytic cleavage (“slicing”) of the target sequence

(Carthew & Sontheimer, 2009). Experimentally validated examples comprise the slicing of HOXB8

upon binding of miR-196a-5p (Yekta et al., 2004) or the slicing of the CDR1as by miR-671-5p

(Hansen et al., 2011; Kleaveland et al., 2018). scanMiR correctly identifies and represents these sites

(Fig. 4A-C).

Moreover, sufficient target complementary at the 3' end of the miRNA in combination with specific

mRNA-miRNA bulges can lead to target-directed miRNA degradation (TDMD) (Ameres et al., 2010;

de la Mata et al., 2015). Specifically, the Ago-miRNA complex undergoes a structural change at

TDMD sites, which enables a ubiquitin ligase (ZSWIM8) to bind and poly-ubiquitinate the complex,

thereby ultimately leading to the degradation of the miRNA (Han et al., 2020; Sheu-Gruttadauria et al.,

2019; Shi et al., 2020). By taking these determinants into account (see Methods), scanMiR flags

possible TDMD sites, as shown for the experimentally validated examples of miR-7-5p binding to the

lncRNA Cyrano (Fig. 4D-E) (Kleaveland et al., 2018) and the miR-29b-3p site on the mRNA of NREP

(Fig. 4F) (Bitetti et al., 2018).
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Figure 4: 3’ supplementary alignment enables the prediction of special miRNA sites. A:
MiR-7-5p and miR-671-5p binding sites on the CDR1as circular RNA, revealing especially a very
large concentration of miR-7-5p sites. Binding of miR-671-5p to the circular RNA CDR1as leads to
endonucleolytic cleavage of this circRNA. The binding site is flagged by scanMiR as “Slicing?” B: The
full alignment of the validated miR-671-5p slicing site on CDR1as. C: Binding of miR-196a-5p to
HOXB8 likewise leads to slicing of the target mRNA. scanMiR also flags this site as “Slicing?”, despite
the low affinity of the seed of miR-196a-5p to HOXB8 (log(KD) = -1.27), which can be explained by the
G:U wobble binding at position five. Shown is the full miRNA-mRNA alignment at this site. D-E:
Validated miR-7-5p TDMD site on the Cyrano RNA and its alignment up to the last 3’ nucleotides of
the miRNA. F: Full alignment of the likewise experimentally validated miR-29b-3p TDMD site on the
NREP mRNA. All examples use human transcript and miRNA annotations.

Based on these results and the recent finding that TDMD-induced miRNA turnover might be more

prevalent in different cell types than previously anticipated (Han et al., 2020; Shi et al., 2020), we

decided to analyse the occurrence of potential TDMD sites more systematically. We focussed on

miRNAs that were significantly upregulated in induced mouse neurons upon ZSWIM8 knockout,

suggesting that they undergo TDMD in this cell type (Shi et al., 2020). To get an idea of which binding

sites might trigger the degradation of these miRNAs, we obtained the expression values of transcripts
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with predicted TDMD sites from induced mouse neurons at the same day of differentiation (Whipple et

al., 2020). This analysis revealed again the well expressed known TDMD sites for miR-7a-5p on

Cyrano and miR-29b-3p on Nrep, but also several other interesting candidates, for example, another

potential TDMD site for miR-7a-5p on the highly expressed Dpysl3, as well as potential TDMD sites

for miR-495-3p on two isoforms of the heat-shock protein Hsp90aa1 (Fig. 5A). In addition, we

specifically screened sequences obtained from a recent full-length profiling of circRNA isoforms

expressed in the mouse brain for the presence of TDMD sites of the aforementioned miRNAs (Zhang

et al., 2021). This analysis suggests potential TDMD sites, for example, on the abundant circRNAs

Mef2a and Akt3 for miR-297c-5p or miR-376b-3p, respectively (Fig. 5B). In conclusion, our analyses

suggest several candidate mRNAs, lncRNAs and circRNAs that might be involved in the regulation of

miRNA abundance (Supplementary Tables 1-2).

Prediction of circRNA sponges/transporters in the brain

Due to their stability, it has been hypothesized that circular RNAs (circRNAs) with multiple miRNA

binding sites could act as sponges or transporters (Kristensen et al., 2019). The prevalence of such

mechanisms however remains unknown. To predict circRNAs that might exert these roles in the

mammalian brain, we identified circRNAs that are significantly enriched for canonical binding sites of

specific miRNAs using a binomial model conditioned on the total number of binding sites for the given

miRNA on each circRNA and the number of all other miRNA binding sites on the given circRNA as

background (see methods). Reasoning once more that lowly-expressed circRNAs are unlikely to have

significant biological impact, we plotted this enrichment against the abundance of the circRNAs

(Suppl. Fig. 8A). MiR-7a-5p binding sites on the (by far) most abundant circRNA Cdr1as were most

significantly enriched, in line with the previously characterized exceptional effectiveness of Cdr1as in

binding this miRNA (Kristensen et al., 2019). Nevertheless, our data shows that several additional

highly-expressed circRNAs contain significantly more putative miRNA binding sites than expected by

chance, suggesting a potential functional role (see also Supplementary Table 3).
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Figure 5: Prediction of potential TDMD sites in neurons. Potential TDMD sites of miRNAs
significantly upregulated in induced mouse neurons upon ZSWIM8 knockout (Shi et al., 2020). A:
scanMiR predicted TDMD sites on expressed linear transcripts as obtained from an RNA sequencing
by Whipple et al., (2020). The normalized miRNA expression in wt-neurons from Shi et al. (2020) is
plotted on the y-axis. B: scanMiR predicted TDMD sites on circular RNAs expressed in the mouse
brain (Zhang et al., 2021). miRNA expression values (plotted on the y-axis) are taken from Chiang et
al. (Chiang et al., 2010).
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Finally, it has been proposed that miRNA-mediated cleavage might enhance circRNA turnover rates

and result in the release of bound miRNAs as well as RNA-binding proteins (Kristensen et al., 2019).

To investigate this hypothesis, we conducted an additional screen for slicing sites on circRNAs. This

analysis retrieved only a few candidates (Suppl. Fig. 8B, Supplementary Table 4), among them the

known Cdr1as, suggesting that miRNA-dependent slicing plays a minor role in the context of circRNA

biology.

A web interface to scanMiR

To make scanMiR accessible to a broader public, we developed a web interface to its main

functionalities, available at https://ethz-ins.org/scanMiR/. The interface allows the visualization of

mouse, human and rat KdModels, the interrogation of top targets for all miRbase miRNAs, the easy

and flexible scanning of any transcript sequence for miRNA binding sites, and the visualization of

binding sites including their supplementary 3’ alignment (Suppl. Fig. 9). The application can

additionally be easily deployed by anybody through the scanMiRApp package, for instance enabling

groups working on other species to compile their custom annotation, launch the app locally, or set up

their own portals. scanMiRApp includes a number of wrappers (notably connecting with

AnnotationHub to easily include updated transcript annotations), as well as features to enable rapid

out-of-memory random access to large scans (see Methods).

DISCUSSION and CONCLUSION

The scanMiR suite provides a fast and flexible way to scan for miRNA binding sites (including

potential TDMD and slicing sites), predict transcript repression, and visualize alignments. In addition,

we have attempted to make the package user-friendly: scanMiR accepts a variety of inputs (e.g. full

miRNA sequences, seeds, KdModels, etc.) and produces as output standard and well-optimized

bioconductor classes, allowing interoperability with other packages. Furthermore, the web interface

enables its use by biologists without bioinformatic skills. To our knowledge, this is the first user-friendly

tool offering i) transcript-level (rather than gene-level) repression predictions, ii) the prediction of

putative TDMD and slicing sites, iii) the ability to scan any custom sequence for high-affinity sites
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through a web interface, and iv) the possibility to easily extend its functions for any specific species. In

addition, scanMiR enables the easy and flexible application of McGeary et al. (2019)’s biochemical

model of miRNA-mediated repression, significantly outperforming the repression predictions of

TargetScan.

An important limitation of the dissociation constant predictions is that they are based on the CNN from

McGeary et al. (2019), which was trained on experimental data from only a handful of miRNAs. As a

result, predictions for miRNAs whose 12-mer affinity patterns strongly diverge from any of those can

be expected to be less accurate. Indeed, whereas the accuracy of scanMiR repression predictions for

most CNN-predicted microRNAs is significantly higher than the accuracy obtained with TargetScan

score predictions (for some as miR-138 even more than twice as high), for others, it is in fact

comparable (miR-217) or even lower (miR-190a) (Fig. 3C). For those miRNAs with a low correlation of

predicted and observed repression, limiting the analysis to canonical sites can substantially improve

scanMiR repression predictions (see miR-190a, Suppl. Fig. 2). This observation is further supported

by the fact that imposing very stringent log(KD)-cutoffs for these particular miRNAs does not reduce

the variance explained, and in one case even improves the correlation (Pearson r2, Suppl. Fig. 5).

Finally, with time and the accumulation of more experimental data for training, which the scanMiR

framework is ready to include, we expect those performances to further improve.

Computational predictions of miRNA-mediated repression primarily focusing on the effectiveness of

binding sites can only explain actual mRNA changes in cells to a certain degree. In fact, predictions

based on the biochemical model can be expected to account for around 50% of the changes in

expression attributable to direct miRNA targeting (McGeary et al., 2019). Therefore other critical

aspects, such as the accuracy of transcript as well as 3’UTR annotations are likely to improve miRNA

target prediction in the future. Studies have suggested that alternative poly-adenylation can have

important implications on predicting miRNA-mediated repression in different species and cell types

(Nam et al., 2014). Indeed, in the HeLa/HEK cell lines, we observed much lower correlations when

using the latest reference human transcriptome instead of the re-assembled line-specific

transcriptome (see Methods & Suppl. Fig. 2). Moreover, it has been shown that cis-acting factors,

such as RNA-binding proteins (RBPs), can significantly change the binding of miRNAs to certain
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transcripts (Kedde et al., 2007, 2010; Mubaid et al., 2019). We hence hypothesize that future

advances in computational miRNA target prediction may rather be accomplished by the integration of

different high-throughput datasets (e.g. RBP-CLIP data or tissue specific smallRNA and mRNA

expression data), than by the improvement of affinity predictions of miRNAs to single binding sites.

Finally, an important feature of scanMiR is its capability to identify effective non-canonical as well as

putative TDMD and slicing sites. To our knowledge, we provide the first systematic screen for potential

TDMD sites on linear and circular transcripts highly expressed in neural systems (see also

Supplementary Tables 1-2), highlighting several uninvestigated candidates that could play important

roles in regulating miRNA abundance. In particular, the scan for enriched circRNA-miRNA pairs in the

brain confirmed the exceptional potency of Cdr1as as a highly-expressed miRNA interacting RNA

(Guo et al., 2014). In agreement with previous reports of other circRNAs potentially acting as miRNA

sponges (Kristensen et al., 2019), a few promising candidates emerged from our analysis which

warrant further investigation. We hope that the resources provided here will empower the community

to investigate these, and more generally facilitate miRNA research.

16

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2021.06.16.448293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448293
http://creativecommons.org/licenses/by-nd/4.0/


MATERIAL AND METHODS

For detailed information on the individual methods and algorithms, please consult the Bioconductor

packages as well as the additional Git repository containing all scripts used in this paper :

https://github.com/ETHZ-INS/scanMiR_paper. For a description of the aggregation, external datasets

used, their pre-processing and and comparisons, see the Supplementary Methods.

Encoding of miRNA dissociation constants in KdModels

Dissociation constants as obtained from the CNN by McGeary et al. (2019) are stored as a

deliberately overfitted linear model, with base KD coefficients for each 1024 partially-matching 8-mers

(containing at least four nucleotides (nt) complementary to miRNA positions 1-8, see McGeary et al.

(2019)). Subsequently, 8-mer-specific coefficients that are multiplied with a flanking score generated

by the flanking di-nucleotides are added to these base 8-mer coefficients. The flanking score is

calculated based on the di-nucleotide effects experimentally measured by McGeary et al. (2019). As a

result, affinity information for one miRNA can effectively be stored as 2048 integers plus the mature

miRNA sequence.

Sequence scanning

Scanning is performed independently for different miRNAs. When including non-canonical sites,

sequence scanning is handled by searching for and extending around four-nucleotide seeds.

Coordinates are stored as GRanges (Lawrence et al., 2013), and sequences are extracted using

Biostrings. Match type, predicted KD, and 3’ local alignment are then estimated for each match. For

matches within a given distance from each other, the lowest-affinity match is iteratively excluded until

no overlap remains.

Another recent model on Ago-binding affinities fitted on measured miRNA association kinetics of full

lengths sequences for miR-21-5p and let-7a-5p suggests (partial) tolerance for G:U wobble binding in

the 3’ supplementary region of miRNAs (position 12-17, see also Suppl. Fig. 9). ScanMiR therefore

includes an option to allow G:U pairing in the 3’ local alignment (Becker et al., 2019). Values for the

maximal loop size between the seed and 3’ alignment are by default set to 7 (microRNA) and 9
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(target) nucleotides based on recent observations of potential extended effective 3’-supplementary

binding of microRNAs (Becker et al., 2019; Sheu‐Gruttadauria et al., 2019).

To classify miRNA sites as potentially inducing target-directed miRNA degradation (TDMD) sites, we

implemented the following rules adapted from the empirical and theoretical observations of de la Mata

et al. (2015), Sheu-Gruttadauria et al. (2019), and Grimson et al. (2007): i) 7mer or 8mer seed-pairing,

ii) a 3’-supplementary binding score of at least 6 (to induce the required structural change in the

Ago-miRNA complex allowing the ubiquitin ligase Zswim8 to bind (Han et al., 2020; Shi et al., 2020)

and releasing the 3’-end of the miRNA (Sheu-Gruttadauria et al., 2019)), iii) a miRNA bulge of at least

2 to avoid central pairing, iv) complementary local alignment of the 3’-end part of the miRNA allowing

a maximum of 1 mismatch, v) a maximal target-miRNA bulge difference of 4, and vi) a maximal

miRNA bulge of 7.

Efficient miRNA-induced endonucleolytic cleavage (“slicing”) requires central pairing of the miRNA to

a target RNA at position 9-11 and is generally thought to be bolstered by complementary pairing of

positions 2-15, with single mismatches at specific positions being possibly tolerated (Ameres et al.,

2007; Becker et al., 2019). Since a conclusive understanding of miRNA induced target “slicing”

remains to be elucidated, we implemented a conservative two-step “slicing” classification that

requires: i) complementary binding from positions 2-15 (G:U wobble bindings are allowed outside

positions 9-11, though require additional Watson-Crick pairing for each G:U ) (denoted “slicing?”), and

ii) additional binding from position 16 towards the 3’ end of the miRNA with a maximum of 1 mismatch

as well as restricting wobble bindings to miRNA positions beyond the seed (“slicing”).

Beside the scans on the HeLa/HEK transcriptomes, which were performed on the transcriptome

reconstructions available in GEO series GSE140217 and GSE140218, the human scans were

performed on the GRCh38 ensembl 103 transcriptome (and in addition on the GRCh37 ensembl 75

transcriptome as well as the custom human 3’UTR annotations provided by TargetScan for Suppl. Fig.

2). Unless specified otherwise, the mouse scans were performed on the GRCm38 ensembl 102

transcriptome.
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Web app and indexed random access to large scans

The web interface is a R shiny application which can be deployed through the scanMiRApp package.

To provide more rapid results, it can optionally use pre-compiled scan and aggregation data. Since the

binding site data for all miRNAs and transcripts can amount to a very large size, we implemented the

IndexedFst S4 class which adds indices to an fst file (Klik et al., 2020) to provide very fast

out-of-memory access to specific transcripts/miRNAs. The IndexedFst class is not limited to storing

binding sites and can be used for any data frame or GenomicRanges object.

Software availability

scanMiR and its companion packages are available on Bioconductor (see especially

https://bioconductor.org/packages/release/bioc/html/scanMiR.html), as well as in the following

repositories:

https://github.com/ETHZ-INS/scanMiR

https://github.com/ETHZ-INS/scanMiRData

https://github.com/ETHZ-INS/scanMiRApp

The scanMIR web application is available at https://ethz-ins.org/scanMiR/, and can additionally be

deployed anywhere using the scanMiRApp package.

All processed data and code underlying the figures is available in the paper’s repository, at

https://github.com/ETHZ-INS/scanMiR_paper

SUPPLEMENTARY DATA

Supplementary Methods

Supplementary Figures 1-9

Supplementary Tables 1-4
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