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» Abstract

11 Sequencing costs currently prohibit the application of single-cell mRNA-seq to many biologi-
12 cal and clinical analyses. Targeted single-cell mRNA-sequencing reduces sequencing costs by
13 profiling reduced gene sets that capture biological information with a minimal number of genes.
12 Here, we introduce an active learning method (ActiveSVM) that identifies minimal but highly-
15 informative gene sets that enable the identification of cell-types, physiological states, and genetic
16 perturbations in single-cell data using a small number of genes. Our active feature selection proce-
17 dure generates minimal gene sets from single-cell data through an iterative cell-type classification
18 task where misclassified cells are examined at each round of analysis to identify maximally in-
19 formative genes through an ‘active’ support vector machine (ActiveSVM) classifier. By focusing
20 computational resources on misclassified cells, ActiveSVM scales to analyze data sets with over
21 a million single cells. We demonstrate that ActiveSVM feature selection identifies gene sets that
22 enable 90% cell-type classification accuracy across a variety of data sets including cell atlas and
23 disease characterization data sets. The method generalizes to reveal genes that respond to genetic
2« perturbations and to identify region specific gene expression patterns in spatial transcriptomics
25 data. The discovery of small but highly informative gene sets should enable substantial reductions
26 in the number of measurements necessary for application of single-cell mRNA-seq to clinical tests,
27 therapeutic discovery, and genetic screens.
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» Introduction

29 Single-cell mRNA-seq methods have scaled to allow routine transcriptome-scale profiling of thou-
s sands of cells per experimental run. While single cell mRNA-seq approaches provide insights into
s many different biological and biomedical problems, high sequencing costs prohibit the broad ap-
22 plication of single-cell mRNA-seq in many exploratory assays such as small molecule and genetic
a3 screens, and in cost-sensitive clinical assays. The sequencing bottleneck has led to the develop-
s« ment of targeted mRNA-seq strategies that reduce sequencing costs, by up to 90%, by focusing
35 sequencing resources on highly informative genes for a given biological question or an analysis
s [1,2,3,4,5,6]. Commercial gene-targeting kits, for example, reduce sequencing costs through
a7 selective amplification of specific transcripts using 1000 gene-targeting primers.

ss Targeted sequencing approaches require computational methods to identify highly informative
s genes for specific biological questions, systems, or conditions. A range of computational ap-
s proaches including differential gene expression analysis and PCA can be applied to identify highly
41 informative genes [!]. However, current methods for defining minimal gene sets are computa-
42 tionally expensive to apply to large single-cell mRNA-seq data sets and often require heuristic
43 user-defined thresholds for gene selection [7, 8]. As an example, computational approaches based
44 upon matrix factorization (PCA[9], NNMF[10]), are typically applied to complete data sets and so
45 are computationally intensive when data sets scale into the millions of cells [1 |, 12]. Further, gene
s set selection after matrix factorization requires heuristic strategies for thresholding coefficients in
47 gene vectors extracted by PCA or NNMF, and then asking whether the selected genes retain core
45 biological information.

49 Here, inspired by active learning[ 3] approaches, we develop a computational method that selects
so minimal gene sets capable of reliably identifying cell-types and transcriptional states in single-cell
st mMRNA-seq. Our method, ActiveSVM, constructs minimal gene sets by performing an iterative
s2 support vector machine classification task [14, 15]. In ActiveSVM the minimal gene set grows
s3 from an initial random seed. At each round, ActiveSVM classifies cells into classes that are
s« provided by unsupervised clustering of cell-states or by used-supplied experimental labels. The
s5s ActiveSVM procedure analyzes cells that are misclassified with the current gene set, and, then,
ss 1dentifies maximally informative genes that are added to the growing gene set to improve classi-
s7 fication. Traditional active learning algorithms query an oracle for training examples that meet a
ss criteria [16]. Our ActiveSVM procedure actively queries the output of an SVM classifier for cells
so that classify poorly, and then performs detailed analysis of the specific misclassified cells to select
so maximally informative genes which are, then, added to a growing gene set. By focusing on a well-
st defined classification task, we ensure that the gene sets discovered by ActiveSVM retain biological
2 information.

ss The central contribution of ActiveSVM is that the method can scale to large single-cell data sets
s« with more than one million cells. We demonstrate, for example, that ActiveSVM can analyze a
es mouse brain data set with 1.3 million cells and requires only hours of computational time. Ac-
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Figure 1: Description of ActiveSVM Feature Selection. At the n-th step, an n-D SVM using all already
selected genes is trained to select a certain number of misclassified cells, which is the cell selection step. In
the gene selection step, the least classifiable cells are taken as the training set. Based on this training set,
N-n (n+1)-D SVMs are trained, where n dimensions are the genes already selected and the last dimension
is one of the previously unselected candidate genes. Then we would obtain N-n weights w’ corresponding
to N-n unselected genes as well as N-n margin rotation angle 6 between every w’ and the original weight
w of the n-D SVM. The gene with the maximum rotation of margin is selected for the next round.

es tiveSVM scales to large data sets because the procedure must only analyze the full-transcriptome
e7 of cells that classify poorly with the current gene set. As the procedure focuses computational
es resources on poorly classified cells, the method can be applied to large data sets to discover small
so sets of genes that can distinguish between cell-types at high accuracy. In addition to scaling, the
70 classification paradigm generalizes to a range of single-cell data analysis tasks including the iden-
71 tification of disease markers, genes that respond to Cas9 perturbation , and the identification of
72 region specific genes in spatial transcriptomitcs .

73 To demonstrate the performance of ActiveSVM, we apply the method to a series of single-cell
7+ genomics data sets and analysis tasks. We identify minimal gene sets for cell-state classification in
75 human peripheral blood mononuclear cells (PBMCs) [17], the megacell mouse brain data set [ 18],
76 and the Tabula Muris mouse tissue survey[ | 9]. We demonstrate application of ActiveSVM to iden-
77 tify disease markers by analyzing a data set of healthy and multiple myeloma patient PBMCs [20].
78 To highlight the generality of the method, we apply ActiveSVM to identify genes impacted by Cas9
7o based gene-knock down in perturb-seq [21]. Further, we show that ActiveSVM can identify gene
so sets that mark specific spatial locations of a tissue through analysis of spatial transcriptomics data
st [22]. To benchmark the method, we compare the performance of the method to six conventional
g2 feature selection methods, showing that our method outperforms these methods in classification
ss accuracy. Gene sets constructed by ActiveSVM are both small and highly efficient, for example,
s« classifying human immune cell types within PMBCs using as few as 15 genes and classifying
ss 55 cell-states in Tabula Muris with < 150 genes. The gene sets we discover include both classi-
ss cal markers and genes not previously established as canonical cell-state markers. Conceptually,
&7 ActiveSVM demonstrates how active sampling strategies can be applied to enable the scaling of
ss algorithms to the large data sets generated single-cell genomics.
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» Vlethod

o0 We developed a computational method based on support vector machine (SVM) classifier to iden-
o1 tify compact gene sets that distinguish cell-states in single-cell data. In the conventional Sequential
o2 Feature Selection (SFS) [14], features are selected one-by-one in a greedy strategy to optimize an
ss  objective function. Here, we develop an active SVM (ActiveSVM) feature selection method, where
s« we only analyze the subset of incorrectly classified cells at the current step and then select the new
os gene features based upon those cells. This active learning strategy enables the efficient computa-
96 tion of small gene sets across large data sets by minimizing the total number of cells and genes that
o7 are analyzed.

s ActiveSVM proceeds through rounds of classification and gene selection based on a set of cell la-
s bels. Cell labels can be derived from unsupservised analysis, experimental meta-data, or biological
100 knowledge of cell-type marker genes. A common work-flow in single-cell mRNA-seq experiments
101 defines a series of cell-states or cell-types using unsupervised clustering of cells [23, 24]. There-
102 fore, we developed our method to accept as input the cell-state labels that are typically derived
103 from unsupervised clustering. We, then, utilize the cell-state labels to identify a minimal set of
104 marker genes that can retain the separation between cell-states with a minimal set of gene features.
105 We note that our method can also accept user supplied cell-type labels as input if a user seeks to
106 1dentify new genes that separate cell-states based upon biologically curated markers.

107 Our ActiveSVM procedure starts with an empty gene set, an empty cell set and a list of candidate
s genes and cells. The algorithm iteratively selects genes and classifies cells using identified genes
109 by training a SVM model to classify the cell-types according to labels. The algorithm identifies
1o cells in the data set that classify poorly given the current gene set, and uses misclassified cells
11 to select additional genes to improve classification accuracy on the entire data set. We supply
112 ‘min-complexity’ and ‘min-cell versions’ of ActiveSVM algorithm. The min-complexity algo-
113 rithm samples a fixed number of misclassified cells and directly uses them as the cell set to select
114 the next gene. The min-cell algorithm re-uses the misclassified cells selected in previous iterations
15 to reduce the total number of required cells. The procedure are shown in Figure 1.

ne In the first iteration, the procedure initially constructs single-gene classifiers and adds the gene that
17 provides highest initial classification accuracy to the gene set. The algorithm, then, samples c cells
1s misclassified by the initial single-gene classifier out of the total set of NV cells and adds them to the
19 cell set. The parameter c is determined by the user according to the nature of dataset and available
120 computational resources. The algorithm trains an SVM on the cell set using the current gene set,
121 which defines an SVM margin w that optimally separates cells into classes that are consistent with
122 labels on the cell set. Using the SVM classification, the algorithm identifies cells that have been
12a misclassified with the initial gene set. The algorithm, then, identifies genes that can be added to
12+ the gene set to improve performance on the misclassified examples.

125 To identify maximally informative genes, we developed a gene selection strategy, Max Margin
126 Rotation (MMR), that evaluates all candidate genes and selects the gene that induces maximum
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127 rotation of the margin w. The ActiveSVM algorithm continues iteration until a max gene number,
128k, is reached. The max gene number £ can be set as any integer smaller than M and can be set to
120 small values during exploratory analysis and to larger values for more exhaustive exploration of a
130 data set. The integrated algorithm is shown in Algorithm 1.

131 The most important feature of our ActiveSVM procedure is that the algorithm must never load an
132 entire data set into memory. At each step, the procedure performs classification of cells using a
133 minimal gene set, and then performs detailed (all genes) analysis of only a subset of misclassified
13« cells. Due to the design of the procedure, ActiveSVM can analyze large data sets that do not easily
135 fit in memory. In conventional SVM based feature selection, the user would first train an SVM
136 classifier on the complete data set and then select features according to the absolute values of the
137 components of weight w.[25]. We note that conventional feature selection procedures typically
138 apply classification accuracy for feature selection. Conventional SFS often selects features based
139 upon improvement in classification accuracy. We found empirically that MMR provides improved
120 classification results and so selected MMR as our gene selection strategy.

121 Based on the above outline of ActiveSVM, we can formalize the specific gene and cell selection
142 strategies into two defined rules. For notation, in single-cell gene expression data, we use xgj JeR
113 to denote the measurement of the j-th gene of the i-th cell. We assume the classification labels
14 are given and consider a data-set {z;, yi}ie{lv__” ~y contains NV cells with total M genes, where
145 X; = [xgj )] jeqi,..,my and y; € ZN are labels. The labels could be binary or multi-class and can be
146 derived from clustering. We also denote the gene expression vector of i-th cell with part of genes
17 as a:ED) = [x(j)]jep, where D C {1,...,M}. And we use J and I to refer to the set of selected

(2
128 genes and cell set.

149 We assume the SVM classifier notation of one observation is hwvb(xED)) = g(waED) + b) for any
wo i€ {1,2,...,N}and D C {1,2,..., M} with respect to observation 2 € RI!”!, where w € RI”!
51 and b € R are parameters (the margin and bias respectively). Here, g(z) = 1if z > 0, and
152 g(z) = —1 otherwise. And the loss function is Hinge Loss[26] loss; = max{0, 1—yi(wa§D)+b)},

15 where y; € R is the ground truth label of observation z;.

s« Cell selection: identification of maximally informative cells

155 For the cell selection strategy, we simply choose cells with largest SVM classification loss. The
156 purpose of cell selection is to use the most maximally informative cells as a smaller training set to
157 select the next gene. In SVM classifier, samples separable in n-D are also separable in (n+1)-D as
158 they are at least separated by the same boundary with zero at the (n + 1)-th dimension. Therefore,
159 to improve the accuracy with a new gene, we must only consider the misclassified cells. We
10 identify such cells through analysis of the dual form of the classical SVM classification problem.
st After solving the primal optimization problem of soft margin SVM, we have the dual optimization
12 problem with a non-negative Lagrange multiplier o; € R for each inequality constraint.[27]
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1ea  Here xz(]) refers to the measurement of the i-th cell with all selected genes, and C' € R is a hyper-

164 parameter we set to control the trade-offs between size of margin and margin violations when
165 samples are non-separable.

186 We solve the optimal solution o* and apply the Karush-Kuhn-Tucker(KKT) dual-complementarity
17 conditions[28] to obtain the following results where w € R!’I and the intercept term b € R are
s Ooptimal.

ar=C = ywa” +p) <1 (2)

1eo Therefore, for each cell, the Lagrange multiplier «; indicates whether the cell falls within the SVM
170 margin defined by the vector w. «; > 0 means yz-(me,» +b) < 1, i.e. cells are on or inside the
171 SVM margin. Hence, we can directly select cells with «; > 0. In practice, we normally only select
1722 cells with ay; = C', which indicates incorrectly classified cells.

173 Discussion of min-cell and min-complexity cell sampling strategies

172 Using this mathematical formulation, we develop two different versions of the ActiveSVM pro-
175 cedure, the min-complexity strategy and min-cell strategy, for distinct goals. The min-complexity
176 strategy minimizes the time and memory consumption when computational resources are restricted
177 or where a user desires to reduce run-time. In the min-complexity strategy, a certain fixed number
178 of cells is sampled among all misclassified cells and used as the cell set for gene selection in each
179 iteration. Therefore, a small number of cells can be analyzed at each round and typically only few
180 cells might be selected repeatedly.

181 In the min-cell strategy, to reduce the number of unique cells required, the misclassified cells
1.2 already used in previous steps are given the highest priority to select again. Therefore, the min-cell
183 strategy attempts to re-use cells across rounds of iteration and aims to minimize the total number
18a of unique cells we acquire during the entire procedure. The min-cell strategy can be applied to
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1s5  limit the number of cells required to perform the analysis in settings where cell acquisition might
18s  be limiting including in the analysis of rare cell populations or in clinical data sets.

1e7 For the min-cell strategy, assume we select c cells for each iteration and there are a+b misclassified
188 cells at the current iteration, where a cells have been used at least once in previous iterations while
189 b cells are new cells. If @ > ¢, we do not need to add any new cells to current cell set. If a < ¢, we
190 sample ¢ — a cells among the b new cells. Then the algorithm uses the whole cell set for the next
191 gene selection step. When using the min-cell strategy, cells tend to be re-used many times and the
192 curve of number of unique cells we acquire converges to a fixed value along with the number of
1.3 genes we select. In experiments, the number of cells selected for each step, c, is a hyper-parameter
194 set by the user. Typically, the parameter can be set to a small number using the min-complexity
195 strategy, as a sufficient number of new cells is considered in the procedure. Selecting a small
196 number of cells each round reduces computational complexity. In the min-cell strategy it can be
197 advantageous to select a larger number of total cells to guarantee diversity of training cells while
1e  still bounding the total number of cells used.

199 Balancing cell-sampling across cell-classes

200 In addition to the min-cell and min-complexity options, we also include two version of cell sam-
201 pling strategies. The first one is uniform, random sampling. Another option is cell ‘balanced’
202 sampling that can be applied to balance sampling across a series of cell classes. In the ‘balanced’
203 strategy, we sample a fixed number of cells from each cell class, and for classes with insufficient
204 cells we sample all the cells in the class. Mathematically, assume there are Z classes and .S is the
205 set of all misclassified cells this step. We should sample ¢’ cells from a candidate cell set, S’, for
206 the current iteration. In min-complexity strategy, ¢ = ¢ and the candidate cell set, S, should be
207 S itself. For the min-cell strategy, ¢ = ¢ — min{c, |/ N S|}, where [ is the cell set before current
208 iteration, and the candidate cell set S’ = S\ I. Assume S’ = UZ_,S’, where S’ are the set of
200 cells in class 2, and [SI| < |57, | forany 2 € {1,2,...,Z — 1}. We sample cells in order from
210 class 1 to class Z and denote P, as the union set of all selected cells from all classes after class z.
211 Then, for class z, if [S.| < (|9'| — |P.-1])/(Z — z + 1), we select all cells in S.. Otherwise, if
22 |SL] > (|| — | P.o1|)/(Z — z + 1), we randomly sample (|S’| — |P,—1])/(Z — z + 1) cells in S_.
213 The procedure repeats for all classes and then we have P as the cells we select at this iteration.

.« (Gene selection by maximizing margin rotation

215 To select maximally informative genes at each round, we analyze misclassified cells and identify
216 genes that will induce the largest rotation of the classification margin. Our procedure is inspired
217 by the active learning method, Expected Model Change[|6]. We quantify rotation of the margin
218 by calculating the twist angle induced in w when we add a new dimension (gene) to the classifier.
219 Assume J is the set of genes we have selected so far. Once we add a gene into the |.J|-dimensional
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220 data space, the parameter w will have one more dimension. The rotation of margin measures how
221 much w twists after adding the new dimension compared with weight in the previous iteration.

222 Specifically, assume J is the set of genes we have selected so far. We derive the corresponding w
223 from the optimal solution a*.[27] After solving the dual optimization problem (1), we have:

w = Z afyi:vg‘]). (3)

iel

22« Then we pad w with zero to get a |/ + 1|-dimensional weight w,444eq, Whose first |J| dimensions
225 is w and the |.J + 1|-th dimension is zero.

226 For each candidate gene j, we train a new |J + 1|-dimensional SVM model and have weight
227 wj,where j € {1,...,M}\ J. Thatis to say, for candidate gene j, we solve the dual optimization
22s problem (4) and find a new optimal multiplier *(?). Note that we only use the selected cells here,
220 11,09 € 1.

. 1 . . JULi JUl
max ZO‘E]) 3 Z ?Jilyigozl(f)ozg)(x,gl U{]}),xl(é UM))

il i1,i2€l
st. 0<a® <C o)
Z O‘Ej)yz' =0
iel

250 Then we have w; as shown in equation (5):

wy = Y0y ®

el

231 The angle 0; between w; and wp,qqeq 1S the expected angle the margin rotates, corresponding to
22 the j-th candidate gene. Then the j-th gene with largest angle 6; will be selected. We measure the
233 angle between two vectors using cosine similarity[29]:

(wj, wpadded>
| wj Il Wpadded

¥ = arccos cosJ; = arccos

(6)

2.4« Therefore, a new gene, which maximizes v, is selected to maximize the expected model change.

235 For multi-class classification, the SVM is handled according to a one-vs-rest scheme[30], where a
236 separate classifier is fit for each class, against all other classes. Margin rotation is represented as
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the sum of weight components in each class dimension. Hence with Z classes, we get Z weight
components corresponding to Z one-vs-the-rest classification decision boundaries. Assume the
weight component for class z of the previous |.J|-dimensional SVM model is w*). Denote the

|J + 1|-dimensional weight after zero-padding of w(*) as w;fl)d Jeq a0d the new |J + 1|-dimensional
(2)

weight component of class z with j-th gene as w;™, where z € 1,..., Z. Then we have:

wi? w0
1w I 0 |

0= 0 (8)

z=1

(7

195;) = arccos cos ﬁg-z) = arccos

Algorithm 1: Active Linear SVM Gene Selection
Input: c,k €N, J =0
Output: J
Randomly or ‘balanced’ select c cells I C {1,..., N}, |I| =¢
Train a 1-D SVM model on training set / for each candidate gene: {hg?b} je{1,., M}
lossj =3 ;c;ymax{0,1 — yihg,)b(xz(j))}
Select one gene jo € {1,..., M} with lowest [0ss;
J=JU{jo}
repeat
Optimize (1) and get optimal solution {a }
Get the the set of misclassified cells S C {1,..., N} with of = C
if min-complexity then
| Randomly or ‘balanced’ select c cells I C S, where || = ¢;
else
if min-cell then
¢ =min{c, |I N S|}
Randomly or ‘balanced’ select ¢ — ¢’ cells I’ C S'\ I, where |I'| = ¢ —¢/;
I=1ur
end
end

w= Y apyiry”

Wpadded = [U), 0] '

Foreach j € {1,..., M} \ J, optimize (4) and get optimal solution {a:(] Nier

w; = . Uy UL

¥; = arccos cos¥; = arccos %
wj|||[|Wpadded

Select one gene j* € {1,..., M} \ J with largest ¥,
J=JU{j"}
until |J| > &
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2s  Memory complexity

224 One of the key contribution of ActiveSVM is that it significantly saves memory usage because
245 only a small part of data is used at each iteration. The entire dataset can be stored in disk and
26 the algorithm only loads two small matrices into memory, a N x |.J| matrix of all cells with the
207 currently selected genes and a | /| x M matrix of the cell set with all genes. The memory complexity
28 is O(M + N) while the memory complexity of algorithms using the entire dataset should be at
249 least O(M N). The min-cell strategy minimizes the total number of unique cells acquired to reduce
250 the cost of data measurement, acquisition and storage.

s+ Time complexity

252 The time complexity of the complete procedure depends primarily on the training of SVM. The
253 standard time complexity of SVM training is usually O(M N?) [31, 32]. Assume that we plan to
s+ select k € N genes in total and use the cell set /; of poorly classified cells at i-th iteration, where
255k, k* < M and |[;|,|I;|* < N are constants. Then the computational complexity of ActiveSVM

256 1S:

k
O (- N>+ (M —i)- (i+1)- L) ~ O(N* + M).

=1

257 The key reduction in total complexity occurs because each step is performed using N cells with
253 of order k,k* < M genes or using order M genes with |I;| cells. Therefore, the polynomial
259 O(MN?) is reduced to two separate steps that are individually O(N?) and O(M).

260 And in practice, we implement ActiveSVM using the linear SVM library LIBLINEAR[33], whose
261 time complexity is O(M N). Therefore,

O (i N+ (M—i)-(i+1)-|L]) ~ ON + M),

=1
22 and the corresponding time complexity of ActiveSVM with LIBLINEAR is O(M + N).

263 In the gene selection part, the margin rotation angles of all candidate genes can be computed in
264 parallel, which also accelerates the algorithm. The complexity provides a significant improvement
265 in marker gene selection methods especially for large-scale datasets.

10
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s ActiveSVM can incorporate cell labels derived from unsupervised analysis,
7 experimental conditions, or biological knowledge

2|

(o2}

26s The goal of ActiveSVM is to discover minimal gene sets for extracting biological information
269 from single-cell data sets. To define minimal gene sets, we apply a classification task in which
270 we find genes that enable a SVM classifier to distinguish single-cells with different labels (y;).
21 In practice, explicit cell-type labels are often not known for a data set. An extremely common
272 work-flow in single-cell genomics applies Louvain clustering algorithms to identify cell classes
273 and visualizes these cell classes in UMAP or tSNE plots ([24, 23]. The cell clusters output by
274 clustering work-flows in commonly used single-cell analysis frameworks provide a natural set of
275 labels for down-stream analysis. In fact, ActiveSVM can, then, identify specific marker genes for
276 interpreting the identified cell-clusters and determining their biological identify. More broadly,
277 cell-class labels can be quite general including the identity of a genetic perturbation (Figure 6), the
278 spatial location of a cell (Figure 7). We can imagine the application of ActiveSVM to a broad set
279 of additional labels including membership to a differentiation trajectory or lineage tree [34].

» Results

281 We test our ActiveSVM feature-selection method on four single-cell mRNA-seq datasets: a dataset
282 of peripheral blood mononuclear cells (PBMCs)[ 7], the megacell 1.3 million cell mouse brain
253 data set [ 18], the Tabula Muris mouse tissue survery dataset[ 9], and a multiple myeloma human
284 disease dataset [20]. Later, we demonstrate generalization of the strategy to additional types of
255 single-cell data analysis, including a perturb-seq dataset where genes impacted by Cas9 based
286 genetic perturbation, and a spatial transcriptomics dataset by seqFish+.

257 For each analysis, we show the classification accuracy of the test set along with the number of genes
288 we select. We also compare the classification performance to several widely-used feature selection
289 methods, including conventional SVM, correlation coefficient[35], mutual information[36], Chi-
200 square[37], feature importance by decision tree[38], and randomly sample genes, showing that
201 ActiveSVM obtains the highest accuracy. All of the comparison methods select genes one by one
202 and select a new gene with the largest score in terms of the corresponding evaluation functions
203 while using the same number of cells as our method. However, all methods randomly sample
204 cells at each iteration without an active learning approache. For perturb-seq and seqFish+ datasets,
205 we also show the accuracy performance of comparison methods, where the entire dataset is used.
206 Specifically, conventional SVM based feature selection also called naive SVM selects the gene
207 with largest weight component, which is the most popular SVM feature selection method. In our
208 application of ActiveSVM, we tested both the min-cell strategy and min-complexity strategies as
209 well as randomly sampling and ’balanced’ sampling.

a0 In each experiment, the data set was first pre-processed and normalized using standard single-
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a1 cell genomics strategies (See Data Pre-processing). The entire dataset was, then, randomly split
%2 into training set with the size of 80% and test set with the size of 20%. For conventional and
a3 ActiveSVM, we found the approximately optimal parameter by grid-search [39] across lists of
s« candidate values for some key parameters in the framework of 3-fold cross validation [40]. The
s0s optimal parameters were fixed during all iterations. For the comparison methods, we use 3-fold
sos cross validation grid-search to obtain the optimal parameters at each single iteration. We also im-
307 plemented the algorithms called min_complexity_cvandmin_acquisition_cv that apply
aos  grid-search and cross validation for each single SVM trained in each iteration (see Code Availabil-
a9 ity). The parameter setting details are shown in Parameters section.

a0 In our evaluation, besides accuracy curves with proportion confidence interval[4 1], we also show
a1 the distribution of gene markers we selected and the relation with classification target. The sub-
sz plots include the gene expression values on t-SNE projection, the mean of each class, histogram
a3 distribution, violin plot, the correlation coefficient heatmap, etc.

a4 To indicate the efficiency, we also recorded the run time, peak memory usage, and the total num-
a5 ber of unique cells we used of ActiveSVM on these datasets. We used r5n.24xlarge[42], a type of
asie  EC2 [43] virtual server instance on AWS[44], with 96 virtual central processing units (vCPU) and
a7 768 GiB memory on Linux[45] system. For example, we selected 50 genes on the largest dataset,
sis mouse brain ‘megacell’ dataset, which contains 1306127 cells and 27998 genes, using ActiveSVM
a9 and some other popular feature selected methods, including mutual information, feature impor-
s20 tance by decision tree, and conventional SVM. The peak memory usage of ActiveSVM is 2111
221 MB while other methods all consume more than 78600 MB. The run time of the min-complexity
;22 method is about 69 minutes and of the min-cell method is about 243 minutes. Each comparison
323 method takes more than 4 days on the same server machine. The run time and peak memory usage
a4 of ActiveSVM on all six datasets are shown in Table 1. The ActiveSVM package used for the brain
a5 megacell dataset only loads the selected genes and cells into memory at each iteration while other
a6 two experiments called the package loading the entire dataset. Both packages are provided in Code
327 Availability Section.

Table 1: Run Time and Peak Memory Usage of ActiveSVM.

matrix size min-complexity min-cell run memory unique cells

(cells, genes) run time (s/gene) time (s/gene) (MB) (min-cell)
mouse megacell (1306127, 27998) 4142/50 14580/50 2111 712
PBMC (10194, 6915) 121/50 176/20 1325 298
Tabula Muris (55656, 8661) 737/150 7701/100 1093 779
MM (35159, 32527) 127/40 449/40 1616 445
seqFish (913, 10000) 33/30 728/30 887 428
perturb-seq (10895, 15976) 3424/50 9493 3827
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»s Active feature selection on human PBMC data

a9 To test the performance of ActiveSVM, we used the method to extract classifying gene subsets
a0 for human PBMCs. We analyzed a single-cell transcriptional profiling data set for 10194 cells
ss1 [17] with 6915 genes. We used Louvain clustering [46] to identify T-cells, activated T/NK cells,
a2 B-cells, and Monocytes (Figure 2(c)).

ss The min-cell strategy classified the 5 major cell-types at greater than 85% accuracy with as few as
s« 15 total genes (Figure 2(a)) and the test accuracy of min-cell, with both randomly sampling and
a5 balanced’ sampling, also reached much higher accuracy than the comparison methods.

ass A key benefit of the active learning strategy is that a relatively small fraction of the data set is
a7 analyzed, so that the procedure can generate the gene sets while only analyzing 298 cells (Figure
sss  2(d)). At each iteration, a specific number of misclassified cells (¢ = 100) are selected but the
ase  total number of cells used does not increase in increments of 100, since some cells are repeatedly
a0 misclassified and are thus repeatedly used for each iteration.

a1 In addition to enabling cell-type classification of the data set, the ActiveSVM gene sets provide a
a2 low-dimensional space in which to analyze the data. When we reduced our analysis to consider
sz only the top 100 genes selected by the ActiveSVM algorithm, we were able to generate a low-
a4 dimensional representations of the cell population (t-SNE) that preserved critical structural features
a5 of the data, including the distinct cell-type clusters (Figure 2(c)).

as  The procedure generates gene sets that contain known and novel markers, each plotted individu-
a7 ally in a t-SNE grid (Figure 2(e)(f)). For instance, MS4A1 and CD79 are well-established B-cell
as  markers, and IL7R and CD3G are well-established T-cell markers. However, we also find genes
a9 which are not commonly used as markers, but whose expression is cell-type specific. For instance,
a0 we find highly monocyte-specific expression of FPR1, which encodes N-formylpeptide receptor,
351 which was recently discovered to be the receptor for plague effector proteins [47]. We also find
sz T-cell/NK-cell specific expression of a long noncoding RNA, LINC00861, whose function is un-
353 known but has been correlated with better patient outcome in lung adenocarcinoma [48]. The
s« marker genes are generally highly specific for individual cell types, but some mark multiple cell
a5 types (i.e. MARCHI, which marks monocytes and B-cells).

= Scaling of ActiveSVM feature selection to million cell dataset

357 To demonstrate the scaling of the ActiveSVM feature selection method to large single cell mRNA-
a8 seq data sets, we applied the method to extract compact gene sets from the 10x genomics the
359 ‘megacell’ demonstration data set [18]. The megacell dataset was collected by 10x genomics
s0 as a scaling demonstration of their droplet scRNA-seq technology. The data set contains full
st transcriptome mRNA-seq data for 1.3 million cells from the developing mouse brain profiled at
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Figure 2: Gene selection and cell-type classification for PBMC dataset. (a) The test accuracy for min-
cell strategy and a series of comparison classification strategies. The min-cell strategy selects k = 20 genes
and select ¢ = 100 cells each iteration with confidence interval estimates; (b) The test accuracy of min-
complexity strategy that selects k& = 50 genes using ¢ = 20 cells each iteration; (c) The t-SNE plots of the
entire filtered dataset; (d) The total number of unique cells used vs gene set size with the min-cell strategy;
(e) plots showing the expression of several genes markers, including mean on classes, gene expression value
on t-SNE projection, and violin plots; (f) expression level of additional selected genes overlaid on t-SNE
plot.
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Figure 3: Scaling of ActiveSVM feature selection to 1.3 million cell mouse brain data set (a) The test
accuracy of min-complexity strategy that selects 50 genes using 20 cells each iteration; (b) The test accuracy
of min-cell strategy that selects 50 genes using 100 cells each iteration; (c) The total number of unique cells
used vs gene set size with both the min-complexity and the min-cell strategy; (d) The t-SNE plots of the
entire filtered dataset with 10 classes by k-means clustering; (e) expression level of the gene markers from
previously published analysis overlaid on t-SNE plot; (f) expression level of the gene markers selected by
ActiveSVM overlaid on t-SNE plot, where the first row are the genes that have similar distribution with gene
markers from previously analysis and other genes are new markers correlated with the classification target.
(g) Correlation matrix of literature markers (y-axis) from [12] versus ActiveSVM selected genes (x-axis).
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s2 embryonic day 18 (E18) [18]. The data set is one of the largest single cell mRNA-seq data sets
sss currently available. The size of the data set has been a challenge for data analysis, and a previous
s« analysis paper was published that developed sub-sampling methods that extract marker genes and
a5 cell-types by extracting sub-sets of of the data set containing ~ 100, 000 cells [12]. We applied our
ss  ActiveSVM method to extract minimal genes sets for classifying the 10 classes of cells that were
s7 extracted through k-means[49] clustering in the internal analysis of the data (Figure 3(a)(b)). The
ss min-complexity algorithm used 20 cells at each iteration and the min-cell algorithm selected 100
a9 cells each loop. The min-cell algorithm acquired fewer unique cells, as cells are selected repeatedly
a0 (Figure 3(c)). On this dataset, both algorithms use ’balanced’ sampling for both min-complexity
snn - and min-cell strategies. As the dataset is too large to produce t-SNE, we randomly sampled 30, 000
a2 cells and find the tSNE projection, which is shown with the input cell clusters in Figure 3(d).

sz While the size of the data set has presented challenges for conventional sampling methods, the
ara  ActiveSVM algorithm must only acquire from memory a small number of genes or cells at each
a5 round of analysis, and therefore, the method avoids computing across the entire 1.3 million cells
are and ~ 30,000 gene data set. We found that it was possible to run ActiveSVM on a conventional
a77 lap-top. For decreasing compute time, we analyzed the megacell data set on an AWS instance
ars  rdn.24xlarge. On this instance, ActiveSVM ran in 69 minutes for the min-complexity strategy and
are 243 minutes for the min cell strategy. As a comparison, naive SVM required greater than four days
ss0 of computation to run on all 1.3 million cells on the same AWS instance (Table 1).

sst To provide a bench-marking for ActiveSVM, we instead compared the accuracy of ActiveSVM to
a2 a data set where we allow ActiveSVM to run on the data set;we extract the number of analyzed
asss  cells, and then provide this same number of cells to the other methods shown in figure 3(a)(b).
s« Applying the other methods to sub-sampled data, allowed us to extract the classification accuracy
sss  as a bench-marking for ActiveSVM.

sss In addition to performing the classification task, the ActiveSVM procedure discovers gene sets that
a7 achieve ~ 90% classification accuracy with only 50 genes. The procedure discovered a series of
ass  cluster specific marker genes that extend prior analysis. For example, the analysis in [ 1 2] identified
sss marker genes through sub-sampling and prior biological literature. A set of genes identified previ-
a0 ously is shown in Figure 3(e). The ActiveSVM analysis discovered several of the same markers as
301 the previous work (Reln, Vim, Igtbp7) (Figure 3(f)).

se2 Further, ActiveSVM extended previous analysis by identifying additional markers that correlate
ses  with the previously analysis as well as marker genes of additional cell states. The development
s« of radial glial cells, in particular, has been of intense recent interest because radial glial cells
a5 are the stem cells of the neocortex in mouse and human [50]. Careful molecular analysis has
ass defined markers of radial glial cells including Vim. ActiveSVM identified a group of genes whose
a7  expression correlates with Vim across the E18 mouse brain. Our analysis identified an additional
ss  set of genes expressed in the same cell population as Vim including, Dbi (Diazepam Binding
aee Inhibitor, Acyl-CoA Binding Protein), Hmgb2, and Ptn. A correlation matrix (Figure 3g) showing
a0 the correlation of ActiveSVM identified genes (x-axis) with literature markers (y-axis) discussed
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st 1n [12] reveals the existence of Vim correlated genes. The Vim genes were of interest because they
s02 1nclude additional transcription factors Hmgb?2 [50] and also a core group of genes, Ptn and Fabp7
a3 (also Brain Lipid Binding Protein), two components of a radial glia signaling network [51, 52, 50]
s04 that has been identified as a core regulatory module supporting the proliferation and stem cell state
s05 1n the radial glial cell population.

a6 The neural progenitor transcription factor Neurod6 marked a separate cell population that we iden-
s07  tified to contain genes including Neurod?2 (a transcription factor) and Sox11 (a transcription factor)
a8 as well as glial transcription factors Nfib and Nfix and the receptor Gria2 (Glutamate Ionotropic
a9 Receptor AMPA Type Subunit 2). The marker genes observed in Neurod6 expressing cells were
a0 anti-correlated with the Vim correlated markers suggesting that ActiveSVM identified two distinct
a1 regulatory modules. Structurally, the tubulin proteins Tubalb and Tubala were expressed in Vim
sz and Neurod6 populations respectively. In addition to genes correlated or anti-correlated with exist-
w3 ing markers, ActiveSVM identified markers of additional cell populations including Meg3, a long
a4 non-coding RNA expressed in cluster 2.

s15 Broadly, the analysis of the ‘megacell’ mouse brain data set demonstrates that ActiveSVM scales
a6 to analyze a large data set with > 1 million cells. The analysis of such large data sets has been chal-
a7 lenging with conventional approaches that attempt to store the entire set in memory for analysis.
ss  Previous analysis of the 10x megacell dataset found that sub-samples with greater than 100, 000
a9 cells would yield an out of memory error on a server node with 64 cores, a 2.6 GHz processor,
20 and 512 GB of RAM [12]. ActiveSVM iterates through analysis of cells and genes while focus-
21 1ng computational resources on poorly classified cells, and so ActiveSVM does not load the entire
222 dataset into memory but can read cells and genes from disk as needed. Further, through itera-
223 tive analysis, ActiveSVM identifies known marker and regulatory genes, genes that correlate with
24 known markers as well as marker genes of additional cell populations that could provide a starting
425 point for future experimental investigations.

»s ldentifying gene sets for cell-type classification in the Tabula Muris tissue
27 SUrVEy

«2s In addition to analyzing a data set with a large number of total cells, we sought to benchmark
229 performance of ActiveSVM feature selection on a data set with a large number of distinct cell
a0 types. We applied ActiveSVM to the Tabula Muris mouse tissue survey, a droplet-based scRNA-
s31 - sequencing data-set, that contains 55,656 single cells across 58 annotated cell types, and 12 major
a2 tissues [19]. For each cell, 8,661 genes are measured. In our analysis, we used the supplied
a3 cell-type labels, agnostic of tissue type. Thus, cells labeled ‘macrophage’ from the spleen are
s34 considered to belong to the same class as cells labeled ‘macrophage’ from the mammary gland.

s5 Even with a large number of cell types, ActiveSVM can construct gene sets that achieve high
ss accuracy (> 90%), compared to other methods (Figure 4(a)(f)). To construct a gene set of size
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Figure 4: Minimal gene sets for cell-type classification in the Tabula Muris mouse tissue survey (A)
Classification results of 150 genes selected using the min-complexity strategy with 20 cells each iteration.
(B) 500 genes selected using the min-cell strategy with 200 cells per iteration. Results for standard and
balanced strategy shown with comparison methods and confidence intervals. The subplots contain: classifi-
cation accuracy vs gene set size using the min-complexity strategy (a) and min-cell strategy (f); the t-SNE
plots of the entire filtered dataset (b)(h); the t-SNE plots of the gene set selected using min-complexity
strategy with randomly sampling (c) and ’balanced’ sampling (d), and gene set selected using the min-cell
strategy (i); the expression level overlaid on t-SNE projection for genes selected by min-complexity (e) and
by min-cell (j); and the total number of unique cells used vs gene set size with the min-cell strategy (g).

18


https://doi.org/10.1101/2021.06.15.448478
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448478; this version posted February 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a7 500, ActiveSVM feature selection used fewer than 800 unique cells (Figure 4(g)) or an average
sss of 14 cells per cell type. We were able to recreate the clustering patterns from the original data
s39  (Figure 4(b)(h) when analyzing the cells within the low dimensional t-SNE space spanned by the
a0 selected 150 genes (Figure 4(c)(d)) or 500 genes (Figure 4(i)).

a1 Our approach allowed us to construct a set of marker genes able to identify mouse cell types across
a2 disparate tissues. Even when analyzing a large number of cell types, we were able to identify highly
a3 cell-type specific genes, such as CD3D, a well-established T-cell marker, or TRF (transferrin),
sa - Which is selectively secreted by hepatocytes[53], or LGALS7 (galectin-7), which is specific for
a5 basal and differentiated cells of stratified epithelium [54]. However, given the functional overlap
us  between different cell types, the genes within our set include many that mark multiple cell types.
a7 For instance, H2-EB1[55], a protein important in antigen presentation, is expressed in B-cells and
ss  Macrophages, both of which are professional antigen presenting cells (APCs). Our analysis also
w9 1dentified cell type-specific expression for a number of poorly studied genes, such as granulocyte-
ss0 and hepatocyte- specific expression of 1100001G20RIK (also known as Wdnm-like adipokine),
ss1 - which has previously only been associated with adipocytes [56].

« Extraction of gene sets for classification of disease state in peripheral blood
s cells from multiple myeloma patient samples

s« To analyze ActiveSVM as a tool for the discovery of disease-specific markers, we used single-cell
ss5  data from peripheral blood immune cells collected from two healthy donors and four patients who
ss6  have been diagnosed with multiple myeloma (MM)[20]. MM is an incurable cancer of plasma
s57  cells, known as myeloma cells, that over-proliferate in the bone marrow. Although myeloma cells
sss  are typically the target of analysis because they are the causative agent of disease, peripherally
ss9  circulating immune cells also contain signatures of disease, including a depleted B-cell population
w0 [57, 58], an increased myeloid-derived suppressor cell count [59], and T-cell immunosenescence

a1 [60, 58].

s2 We sought to further define transcriptional markers that distinguish healthy peripheral immune
a3 cells from the cells of MM patients. We performed feature selection using heterogeneous popula-
se4 tions of cells labeled only by disease state. The data set contains 35159 with 32527 genes (Table
a5 1).

w6 We compared the classification accuracy for ActiveSVM vs the other methods (Figure 5(a)(f)),
s67 and found that ActiveSVM achieved high accuracy in a limited number of steps and consistently
ses  outperformed the other methods. We tested ActiveSVM with two different cell sampling strategies,
w9 randomly sampling, and *balanced’ sampling, in which equal numbers of cells from each cell type
a0 are sampled to correct for artifacts due to different cell-type proportions between samples. We
s noted that although the balanced approach gave higher classification accuracy at early iterations,
a2 these differences are no longer apparent after selecting 20 genes (Figure 5(a)).
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Figure 5: Gene set selection for healthy vs disease classification in multiple myeloma dataset. (A)
classification results of 40 genes selected by min-complexity strategy using 20 cells each iteration. (B)
40 genes selected using Min-cell strategy with 100 cells per iteration. Results for standard and balanced
strategy shown with comparison methods and confidence intervals. As in Figure 4, each sub-figure, sub-
panels show the number of acquired cells per iteration, tSNE visualizations of using the complete data set,
visualizations using only the ActiveSVM extracted data set, and marker genes identified by ActiveSVM.
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a3 Non-overlapping cell-type clusters were identified for healthy and MM cells in the original dataset
a74  1n t-SNE projections (Figure 5(b)(h)). The non-overlapping clusters are replicated in t-SNEs con-
a75  structed from 40 genes selected using both the min-complexity strategy (Figure 5(c)(d)) and the
a7 min-cell strategy (Figure 5(i)).

a7 Analysis of the function of the genes identified by ActiveSVM revealed most regulate house-
a8 keeping functions, suggesting that global shifts in translation and motility are disrupted in multiple
a9 myeloma patients. Translation-associated markers include Eukaryotic Translation Initiation Factor
s0 1 (EIF1), Eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1), and prefoldin subunit 5
ss1 (PFDNS5). Motility associated genes include ACTB, putative anti-adhesion molecule CD52, and
a2 actin-sequestering protein TMSB4X.

ss3 We also found both known and novel markers of MM within the peripheral blood immune cells.
s8¢ Our analysis identified TPT1, previously associated with MM [61], and RACK1 (also known as
sss GNB2L1), a scaffolding protein that coordinates critical functions including cell motility, survival
sss and death, which is broadly upregulated in peripheral immune cells from MM patients. Although
a7 this gene has been previously associated with myeloma cells [67], its regulation had not been re-
ses ported in peripherally circulating immune cells. Our ability to discover MM-specific genes within
g9 peripheral immune cells suggests a broader use for discovering disease-specific genes across many
a0 different types of pathologies.

a9t Interestingly, the procedure also identifies multiple members of the S100 Calcium Binding Protein
a2 Family (S100A8,S100A9 and S100A6, and S10084) [63, 64, 65] as members of the genes sets that
a3 separate MM vs healthy samples. The S100 protein family defines a module of genes that are asso-
s94 ciated with the induction of stress response pathways. The expression of S100 genes is prognostic
s9s for a number of diseases. Specifically, a recent study found that ST00A4 expression correlates with
s96 poor patient survival in mulitple myeloma and that SIO0AS8, and SI00A9 are markers that correlate
a7 with poor response of multiple myeloma patients to treatment with proteasome inhibitors and the
a8 and histone deacetylase inhibitor panobinostat [64]. The result demonstrates that ActiveSVM can
s99 automatically define groups of genes that have clinical association with disease progression and
s0 treatment outcome. The minimal gene sets generated by ActiveSVM could provide useful targeted
s sequencing panels for a variety of clinical tasks.

s ActiveSVM identifies genes impacted by Cas9 based genetic perturbation

s3 The previous analyses above have demonstrated that ActiveSVM identifies minimal gene sets for
so4 cell-state identification across a range of single-cell mRNA-seq data sets. We, next, demonstrate
sos that ActiveSVM provides a more general analysis tool with potential applications to a range of
s single-cell genomics analysis tasks. To demonstrate generalization of ActiveSVM based gene set
so7  selection across single-cell genomics tasks, we applied the method to identify marker genes in two
sos additional applications: perturb-seq and spatial transcriptomics.
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Figure 6: Application of ActiveSVM to identify genes expression changes following Cebp knock-down
with perturb-seq The results of classification on perturb-seq data [2 1] where cells are labeled and classified
as Cebp sgRNA transduced or not-transduced with a guide RNA. (a-b) accuracy of entire dataset with min-
complexity strategy, where comparison methods use the same number of cells as ActiveSVM in (a) and use
the entire dataset in (b). (c) correlation matrix showing pair-wise correlation coefficients for genes in Cebp
perturbed cells. Correlation matrix identifies two gene modules. (d) Distributions of gene expression in
Cebp sgRNA transduced (orange) or not transduced (blue) cells. Selected genes from modules in (c) shown
and organized so that genes whose expression increases with Cebp perturbation are on top and repressed
genes are on the bottom of the figure.
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so0o Perturb-seq is an experimental method for performing Cas9-based genetic screens with single-cell
sto  MRNA-seq read-outs. In perturb-seq, cells are induced with libraries of guide RNA’s that target the
st Cas9 protein to cut and silence specific genes [2 1, 3]. Perturb-seq is performed in a pooled fashion
sz so that a pooled set of sgRNA molecules is delivered to a cell population. Individual cells stochas-
si3  tically take-up specific guide RNAs, and the guide RNAs target Cas9 cuts and silences genes in the
s« genome. Following the perturbaation experiment, single-cell mRNA-seq is applied to read both
s15  the transcriptome of each cell and the identify of the delivered sgRNA through sequencing. The
sie advantage of the perturb-seq method is that many knock-out experiments can be performed simul-
517 taneously. However, a challenge is that noise impacts the measurement of guide RNA identify,
st and, further, the cutting of the genome by the Cas9 molecule is not complete. Due to measurement
st9 - and experimental noise, identifying the impact of genetic perturbation on a cell population can be
s20 challenging, and various methods have been developed to boost signal [3]. We applied ActiveSVM
s21 to identify a minimal gene set as well as down-stream effects of gene knock-down in perturb-seq
522 data.

s2s We specifically applied ActiveSVM to analyze public data collected from mouse dendritic cells
s2¢ with transcription factor knock-downs [21]. The experiment analyzed cells in which transcription
s2s  factors has been knocked-down using perturb-seq in mouse dendritic cells stimulated for 3 hours
s with LPS, a signal that mimics bacterial infection.

s27 To apply ActiveSVM to the data, we focused our analysis on knock-down of Cebp an pioneer
s2s transcription factor. We pre-processed the data to identify cells induced with sgRNA against Cebp
s29 and non-induced cells, and used transduced and non-transduced as our cell-labels. We applied Ac-
s tiveSVM to select a minimal gene set that could classify transduced versus non-transduced cells.
s31 ActiveSVM identified minimal gene sets (50 genes) that achieved 80% classification accuracy on
s2 the Cebp sgRNA cell label. As we applied the class-balanced model to obtain the classification
ss3  accuracy and there are only about 20 transduced cells in test set, we show the accuracy on entire
s3¢  dataset instead of test set. On this noisy dataset, ActiveSVM worked better than comparison meth-
s35  0ods with the condition that ActiveSVM only used a small subset of data while comparison methods
s3e  performed on the entire dataset (Figure 6(b)).

ss7 - We found that the discovered gene set could be decomposed into two modules of correlated genes
sss  (Figure 6¢). Figure 6(c) shows a clustered correlation matrix for the 50 identified genes. Gene
ss9  expression distributions for cells in transduced vs non-transduced cells demonstrated that the mod-
s¢0 ules represented two groups of genes. One group (including Pf4, Ccl4, Ccl6, Lyz2) was repressed
s¢t - by Cebp knock-down, and the second gene group was activated by Cebp knock-down including
s (Ccll7, Cd74, H2-Abl) (Figure 6d).

s In both cases, the identified gene sets contained known targets of Cebp, the perturbed transcription
s« factor. For example, Fthl (ferritin, heavy polypeptide 1), Cst3, Tmsb4x, Lgals3, Ccl4, and Cd74
se5 are all previously identified as direct binding targets of Cebp as determined by Chip-seq [66]. Since
ss6  Cebp knock-down leads to both up-regulation and down-regulation of genes, the results suggest
s¢7 that the factor can play both activating and repressive roles consistent with prior literature [67].
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sss  Our analysis of the perturb-seq data set, therefore, demonstrates that ActiveSVM can be applied as
ss0  a useful tool for the identification of genes modulated by perturb-seq experiments. ActiveSVM can
ss0 return minimal genes sets that contain functional information. Moreover, perturb-seq has been a
ss1 - main application of gene targeting approaches [3]. Therefore, ActiveSVM could provide a method
ss2 for identifying minimal gene sets that can be applied to increase the scale of perturb-seq data
ss3  collection.

s« ActiveSVM defines region specific markers in spatial transcriptomics data

ss5  Finally, to further demonstrate the generality of the ActiveSVM approach, we applied the pro-
sss  cedure to identify minimal gene sets for classification of cells by spatial location in spatial tran-
ss7  scriptomics data. Spatial transcriptomics is an emerging method for measuring mRNA expression
sss within single cells while retaining spatial information and cellular proximity within a tissue. As an
ss9  example, in SeqFish+, an imaging based spatial transcriptomics method, cells are imaged in their
se0 tissue environment, and mRNA transcripts are counted using single-molecule imaging of mRNA
sst spots [22]. In all spatial transcriptomics applications, a common goal is the identification of genes
se2 that mark specific spatial locations within a tissue sample. Additionally, spatial imaging methods
ses are commonly limited by imaging time. While Seqfish+ can profile 10,000 mRNA molecules per
se¢ cell, the identification of reduced gene sets would reduce imaging time and throughput.

ses  We applied ActiveSVM to identify genes associated with specific spatial locations in the mouse
ses  brain. We used a seqFISH+ data set in which the authors profile 10, 000 mRNA molecules in 7
se7  fields of view (FOV) in the mouse brain [22]. Fields of view correspond to spatially distinct regions
ses Of the mouse cortex as well as the sub-ventricular zone and chordid plexus. We used the spatial
se9 location labels provided by [[22]] to identify seven different brain locations (Fields of view 1-5
so - corresponding to Cortex Layers 2/3 through Layer 6; FOV 6 is sub-ventricular zone, and FOV 7
s 1s chordid plexus). Applying the spatial location labels as class labels, we applied ActiveSVM to
sz 1dentify genes that could allow classification of single-cells by their location in one of the seven
s73 classes and to define marker genes that correspond to specific spatial locations.

s74 We identified gene sets of < 30 genes that enabled location classification with greater than 85% ac-
s75 curacy with min-complexity strategy (Figure 7(a)). ActiveSVM used only 10 cell at each iteration
s7e  but worked better than comparison methods who performed on the entire dataset (Figure 7(b)).

s77 In the spatial application, the result means that the ~ 30 genes are sufficient to classify single-cells
s7s  as belonging to one of the 7 spatial classes. In Figure 7, we show the mean expression of identified
s79  genes across cortical fields of view corresponding to a sweep through cortical layers 2/3 through 6
ss0 as well as SVZ and CP. Our analysis identifies markers Prex1 that are specific to the upper cortical
ss1 layers of the brain. Efhd2, a calcium binding protein linked to Alzheimer’s disease and dementia,
ss2 was similarly expressed in lower cortical layers [68, 69]. Finally, Pltp, a Phospholipid transfer
ss3 protein, was localized to the chordid plexus. In Figure 7e, we show the spatial distribution of
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Figure 7: Application of ActiveSVM to identify region specific marker genes in the mouse brain with
spatial transcriptomic data The results of classification where cells are labeled according to fields of view
(FOV) in [22]. (a-b) test accuracy with min-complexity strategy, where comparison methods use the same
number of cells as ActiveSVM in (a) and use the entire dataset in (b). Fields of view 1-5 correspond
to 5 regions of the mouse cortex, additional fields of view are labeled SVZ (sub-ventricular zone) and
ChP (chordid plexus). (c) tSNE of cell transcriptomes for all cells (d) number of cells used per iteration
(e) Sample of identified genes where each sub-panel shows mean expression across FOV/brain regions for
selected gene, a tSNE plot colored by expression of selected gene, a violin plot of single cell gene expression
values for selected gene in FOV/brain region, and spatial plots of each field of view where dots represents
cells in 2D imaging slice, cells are colored by intensity of selected gene and units are in millimeters.
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ss4 these genes including their mean expression across regions, violin plots documenting expression
ses  distribution, and renderings of the single-cells within the field of view and the relative expression
sss  Of each gene.

ss7 The spatial analysis demonstrates that a broad range of different experimental variables can be
sss  applied as labels. In each case ActiveSVM discovers genes that allow classification of cells ac-
ss9 cording to labels and identifies interesting genes. Regional gene marker identification is a major
se0 task in seqFish data analysis and ActiveSVM is able to identify genes enriched in different brain
so1  regions automatically. Such spatial information could provide interesting new insights into disease
se2  processes mediated by genes like Efhd2.

s DIscussion

se¢ In this paper, we introduce ActiveSVM as a feature selection procedure for discovering minimal
se5  gene sets in large single-cell mRNA-seq datasets. ActiveSVM extracts minimal gene sets through
se6  an iterative cell-state classification strategy. At each round the algorithm applies the current gene
so7  set to identify cells that classify poorly. Through analysis of misclassified cells, the algorithm
ses 1dentifies maximally informative genes to incorporate into the target gene set. The iterative,active
se9  strategy reduces memory and computational costs by focusing resources on a highly informative
s0 subset of cells within a larger data set. By focusing computational resources on misclassified cells,
st the method can run on large data sets with more than one million cells. We demonstrate that
s2 ActiveSVM is able to identify compact gene sets with tens to hundreds of genes that still enable
e0s highly accurate cell-type classification. We demonstrate that the method can be applied to a variety
s« Of different types of data set and single-cell analysis tasks including perturb-seq data analysis and
e0s spatial transcriptomic marker gene analysis.

s Conceptually, we refer to our strategy ‘active’ because it actively selects data examples (here cells)
07 at each iteration for detailed analysis . Our algorithm specifically selects cells that within the
sos margin of the SVM classifier, and uses these poorly classified cells to search for maximally infor-
s mMmative genes (features). In traditional active learning strategies, an algorithm is typically called
st0 active when it can directly query an oracle for data examples that meet a criteria [16, 70]. In the
11 tradition of active learning, our ActiveSVM procedure queries the SVM classifier for cells that
stz have been misclassified, and then expends computational resources to analyze all genes within that
s13 limited subset of cells to discover informative genes. Thus, while our algorithm cannot query the
s14 biological system directly for cells that meet a specific criteria, the algorithm queries the data set
e15 itself for informative examples, and therefore we refer to it as ‘active’. Our current work focuses
s16 on a single classification method, the support vector machine, as the computational engine. Active
si7 learning methods can be applied more broadly to additional classification strategies like neural
s network based classification as well as to additional types of analysis like data clustering and gene
st9 regulatory network inference.
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e20 Our method also has some conceptual similarity to boosting methods [71, 72]. Boosting algorithms
et (e.g AdaBoost) train a series of *weak’ learners for a classification tasks, and then combine these
s22 weak classifiers to generate a strong classifier. In boosting a single weak learner may initially
s23 obtain moderate performance on a task. The performance of weak learners is improved through
s24 1terative training of additional learners and focusing their training on difficult data examples, for
e2s example, misclassified examples. The boosting algorithm constructs a final, strong classifier by
26 combining the results of the ensemble of weak classifiers through a weighted majority vote. Our
ez method is distinct from conventional boosting, because we search for a minimal set of features
e2s in our data that allows a single SVM classifier to achieve high-accuracy classification. However,
e29  ActiveSVM feature selection shares conceptual ideas with boosting in that both methods focus
s30 analysis on challenging examples and combine information to achieve strong classification from
est 1nitially weak classifiers.

s2  ActiveSVM provides an iterative strategy for extracting a compact set of highly informative genes
sss from large single cell data sets. Biologically, recent work highlights the presence of low-dimensional
e3¢ structure within the transcriptome [ |]. Low-dimensional structure emerges in gene expression data
e3s because cells modulate their physiological state through gene expression programs or modules that
esss contain large groups of genes. Since genes within transcriptional modules have highly correlated
37 expression, measurements performed on a small number of highly informative signature genes can
sss  be sufficient to infer the state of a cell [73]. Low-dimensional structure can be exploited to decrease
s39 Mmeasurement and analysis costs since a small fraction of the transcriptome must be measured to in-
ss0 fer cellular state. We developed ActiveSVM as a scalable strategy for extracting high information
st content genes within a sharply defined task, cell-state classification.

s2 In ActiveSVM we apply an active learning strategy to reduce the computational and memory re-
sss quirements for analyzing single-cell data sets by focusing computational resources on ’difficult to
ess classify’ cells. In the future, active learning strategies could be applied directly at the point of
ess measurement. In genomics measurement resources often limit the scale of data acquisition. In
ss6 future work we aim to develop strategies that can improve the on-line acquisition of single-cell
s7 data. Active strategies could be implemented at the point of measurement by only sequencing or
sss 1maging the content of cells that meet a criteria. Even more broadly, it might be possible to in-
ss9 duce a biological system to generate highly informative examples through designed experimental
es0 perturbation [74].

= Data Availability

es2  All data used in the paper has been previously published. The PBMC Single-cell RNA-seq data
ess have been deposited in the Short Read Archive under accession number SRP073767 by the authors
es« of [17]. Data are also available at http://support.10xgenomics.com/single-cell/datasets.

ess Lhe original Tabula Muris dataset is available at https://figshare.com/projects/Tabula_Muris_Trans
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es6 criptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell resolutio
es7 n/27733.

ess The original multiple myeloma PBMC data, containing 2 healthy donors and 4 multiple myeloma
es9 donors, is available at https://figshare.com/articles/dataset/PopAlign_Data/11837097/3.

ss0 The 10x genomics Megacell data set is available at http://support.10xgenomics.com/single-cell/da
661 tasets.

es2 The perturb-seq data set [21] is availble at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
sss =GSM2396856

es¢ The spatial transcriptomics data [22] is available https://github.com/CaiGroup/seqFISH-PLUS.

o Code Availability

ess Our method is integrated as a install-able Python package called activeSVC. The installation in-
es7 structions and user guidance are shown at https://pypi.org/project/activeSVC. The source codes of
ess  activeSVC and some demo examples are publicly available on GitHub at https://github.com/xqc
eso hen/activeSVC.

s70 The Python package provides six callable functions: (1) min_complexity; (2) min_acquisition,
e71 the min-cell strategy; (3) min_complexity_cv, which use cross validation[40] and grid-search[39]
e72 to train the best SVM estimator at each iteration; (4) min_acquisition_cv, the min-cell strategy
e7s  with cross validation and grid-search; (5) min_complexity_hbpy, for large hSpy[75] data files, it
e74 only loads the part of data, the rows and columns of selected genes and cells, instead of loading the
e75 entire dataset into memory; (4) min_acquisition_hbpy, is similar with min_complexity_h5py but
e76 uses min-cell strategy. All include the algorithm for both randomly and "balanced’ sampling. We
e77 implement the SVM classifier with the LinearSVC package from scikit-learn[76] library, which
e7s 1s implemented in term of LIBLINEAR[33]. And we use parfor[77] package to parallelize for-
679 loops to accelerate algorithm for large datasets. There are three hyper-parameters to set: balance
es0 (boolean), num_features (int),and num_samples (int), to identify the sampling strategy, the number
st Of genes to select, and the number of cells each iteration.

ss2 In the GitHub project, we use the PBMC dataset[|7] and Tabula Muris dataset[19] as examples
es3 to show the procedure and its performance of min_complexity and min_acquisition. We also
es¢ have the test examples of min_complexity_cv and min_acquisition_cv on PBMC dataset and the
ess demo projects of min_complexity_hbpy and min_acquisition_h5py on 1.3 millions mouse brain
sss megacell’ dataset[]8]. The notebooks contain downloading dataset, preprocessing, and selecting
es7 genes with our method. Besides, we created Google Colaboratory project for these two examples
sss that PBMC demo is at https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-n
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sss  INSoopyM?usp=sharing, Tabula Muris demo is at https://colab.research.google.com/drive/1SLehl
s0  KIQqpjK6BzEKc9mOy3uJ _LBqRzA?usp=sharing, and PBMC cross-validation demo is at https:
eo1 //colab.research.google.com/drive/1fThQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing.

= EXperiments

s Data Pre-processing

s« We found that ActiveSVM was able to achieve high-performance across pre-processing strategies.
sos For single-cell mRNA-seq column normalization (12) was important for removing artifacts due
e9s to cell to cell variability in mRNA capture. However, additional algorithm was not sensitive to
eo7 additional pre-processing steps.

ss  PBMC, Tabula Muris, Multiple-Myeloma

s99 These three data sets were pre-processed for a prior publication [20] via column normalizaiton.
70 In each experiment, we removed the columns and rows where all values are zero. Then, gene
701 expression matrices were first columns normalized and log transformed. For a cell j, each gene
702 x;; (gene ¢ in cell j) is first normalized as g;; = Z?gjf 0 where n is the number of genes in the
703 transcriptome.

70¢  Mega-cell data set, perturb-seq, spatial transcritomics

705 For these data sets, we removed the columns and rows where all values are zero. Then we did
76 [2-normalization along each cell to scale input cell vectors individually to unit squared-norm.

7 Parameters

708 Here we provide the algorithm parameters we used for ActiveSVM in Table 2,3,4. Besides the
700 training set and test set, there are 15 user-defined hyper-parameters in ActiveSVM, five of which
710 are about the feature selection procedure and the other ten are commonly-used parameters for
711 linear SVM classifier. The detailed description about all parameters of ActiveSVM are detailed
712 described in the integrated package page https://pypi.org/project/activeSVC/.

713 As for comparison methods, correlation coefficient, mutual information, and chi-squared methods
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714 don’t have specific parameters to set. We implemented them with scikit-learn[76] package *Selec-
715 tKBest’. For feature importance scores from decision tree and naive SVM, we did grid-search on
716 key parameters based on 3-fold cross validation at each step. The parameters of decision tree are
717 criterion and min_samples_lea f and of naive SVM are tol and C.

Table 2: Parameters of ActiveSVM (PBMC and mouse megacell datasets).

PBMC PBMC mouse megacell mouse megacell
(min-complexity) (min-cell) (min-complexity) (min-cell)
num_features 50 20 50 50
num_samples 20 100 20 100
init_features 1 1 1 1
mat_samples 20 200 20 100
balance True/False True True True
penalty 12 12 12 12
loss squared_hinge = squared_hinge  squared_hinge squared_hinge
dual True True True True
tol le-4 le-4 le-4 le-4
C 1.0 1.0 1.0 1.0
fit_antercept True True True True
intercept_scaling 1 1 1 1
class_weight None None "balanced’ ’balanced’
random_state None None None None
max_iter 1000 1000 1000 1000

7e Confidence Intervals

719 Confidence intervals were estimated using a proportion confidence interval[41] as interval =

720 % #) where z = 1.96 for 95% confidence and 7 is the number of cells and ¢ the observed

721 €ITOT.
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Table 3: Parameters of ActiveSVM (Tabula Muris and MM datasets).

Tabula Muris Tabula Muris MM MM
(min-complexity) (min-cell) (min-complexity) (min-cell)
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dual True True True True
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Table 4: Parameters of ActiveSVM (perturb-seq and seqFish datasets).

perturb-seq seqFish
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num_samples
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it_samples
balance
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C
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class_weight
random_state
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12 12
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