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Abstract10

Sequencing costs currently prohibit the application of single-cell mRNA-seq to many biologi-11

cal and clinical analyses. Targeted single-cell mRNA-sequencing reduces sequencing costs by12

profiling reduced gene sets that capture biological information with a minimal number of genes.13

Here, we introduce an active learning method (ActiveSVM) that identifies minimal but highly-14

informative gene sets that enable the identification of cell-types, physiological states, and genetic15

perturbations in single-cell data using a small number of genes. Our active feature selection proce-16

dure generates minimal gene sets from single-cell data through an iterative cell-type classification17

task where misclassified cells are examined at each round of analysis to identify maximally in-18

formative genes through an ‘active’ support vector machine (ActiveSVM) classifier. By focusing19

computational resources on misclassified cells, ActiveSVM scales to analyze data sets with over20

a million single cells. We demonstrate that ActiveSVM feature selection identifies gene sets that21

enable 90% cell-type classification accuracy across a variety of data sets including cell atlas and22

disease characterization data sets. The method generalizes to reveal genes that respond to genetic23

perturbations and to identify region specific gene expression patterns in spatial transcriptomics24

data. The discovery of small but highly informative gene sets should enable substantial reductions25

in the number of measurements necessary for application of single-cell mRNA-seq to clinical tests,26

therapeutic discovery, and genetic screens.27
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Introduction28

Single-cell mRNA-seq methods have scaled to allow routine transcriptome-scale profiling of thou-29

sands of cells per experimental run. While single cell mRNA-seq approaches provide insights into30

many different biological and biomedical problems, high sequencing costs prohibit the broad ap-31

plication of single-cell mRNA-seq in many exploratory assays such as small molecule and genetic32

screens, and in cost-sensitive clinical assays. The sequencing bottleneck has led to the develop-33

ment of targeted mRNA-seq strategies that reduce sequencing costs, by up to 90%, by focusing34

sequencing resources on highly informative genes for a given biological question or an analysis35

[1, 2, 3, 4, 5, 6]. Commercial gene-targeting kits, for example, reduce sequencing costs through36

selective amplification of specific transcripts using 1000 gene-targeting primers.37

Targeted sequencing approaches require computational methods to identify highly informative38

genes for specific biological questions, systems, or conditions. A range of computational ap-39

proaches including differential gene expression analysis and PCA can be applied to identify highly40

informative genes [1]. However, current methods for defining minimal gene sets are computa-41

tionally expensive to apply to large single-cell mRNA-seq data sets and often require heuristic42

user-defined thresholds for gene selection [7, 8]. As an example, computational approaches based43

upon matrix factorization (PCA[9], NNMF[10]), are typically applied to complete data sets and so44

are computationally intensive when data sets scale into the millions of cells [11, 12]. Further, gene45

set selection after matrix factorization requires heuristic strategies for thresholding coefficients in46

gene vectors extracted by PCA or NNMF, and then asking whether the selected genes retain core47

biological information.48

Here, inspired by active learning[13] approaches, we develop a computational method that selects49

minimal gene sets capable of reliably identifying cell-types and transcriptional states in single-cell50

mRNA-seq. Our method, ActiveSVM, constructs minimal gene sets by performing an iterative51

support vector machine classification task [14, 15]. In ActiveSVM the minimal gene set grows52

from an initial random seed. At each round, ActiveSVM classifies cells into classes that are53

provided by unsupervised clustering of cell-states or by used-supplied experimental labels. The54

ActiveSVM procedure analyzes cells that are misclassified with the current gene set, and, then,55

identifies maximally informative genes that are added to the growing gene set to improve classi-56

fication. Traditional active learning algorithms query an oracle for training examples that meet a57

criteria [16]. Our ActiveSVM procedure actively queries the output of an SVM classifier for cells58

that classify poorly, and then performs detailed analysis of the specific misclassified cells to select59

maximally informative genes which are, then, added to a growing gene set. By focusing on a well-60

defined classification task, we ensure that the gene sets discovered by ActiveSVM retain biological61

information.62

The central contribution of ActiveSVM is that the method can scale to large single-cell data sets63

with more than one million cells. We demonstrate, for example, that ActiveSVM can analyze a64

mouse brain data set with 1.3 million cells and requires only hours of computational time. Ac-65
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Figure 1: Description of ActiveSVM Feature Selection. At the n-th step, an n-D SVM using all already
selected genes is trained to select a certain number of misclassified cells, which is the cell selection step. In
the gene selection step, the least classifiable cells are taken as the training set. Based on this training set,
N -n (n+1)-D SVMs are trained, where n dimensions are the genes already selected and the last dimension
is one of the previously unselected candidate genes. Then we would obtain N -n weights w′ corresponding
to N -n unselected genes as well as N -n margin rotation angle θ between every w′ and the original weight
w of the n-D SVM. The gene with the maximum rotation of margin is selected for the next round.

tiveSVM scales to large data sets because the procedure must only analyze the full-transcriptome66

of cells that classify poorly with the current gene set. As the procedure focuses computational67

resources on poorly classified cells, the method can be applied to large data sets to discover small68

sets of genes that can distinguish between cell-types at high accuracy. In addition to scaling, the69

classification paradigm generalizes to a range of single-cell data analysis tasks including the iden-70

tification of disease markers, genes that respond to Cas9 perturbation , and the identification of71

region specific genes in spatial transcriptomitcs .72

To demonstrate the performance of ActiveSVM, we apply the method to a series of single-cell73

genomics data sets and analysis tasks. We identify minimal gene sets for cell-state classification in74

human peripheral blood mononuclear cells (PBMCs) [17], the megacell mouse brain data set [18],75

and the Tabula Muris mouse tissue survey[19]. We demonstrate application of ActiveSVM to iden-76

tify disease markers by analyzing a data set of healthy and multiple myeloma patient PBMCs [20].77

To highlight the generality of the method, we apply ActiveSVM to identify genes impacted by Cas978

based gene-knock down in perturb-seq [21]. Further, we show that ActiveSVM can identify gene79

sets that mark specific spatial locations of a tissue through analysis of spatial transcriptomics data80

[22]. To benchmark the method, we compare the performance of the method to six conventional81

feature selection methods, showing that our method outperforms these methods in classification82

accuracy. Gene sets constructed by ActiveSVM are both small and highly efficient, for example,83

classifying human immune cell types within PMBCs using as few as 15 genes and classifying84

55 cell-states in Tabula Muris with < 150 genes. The gene sets we discover include both classi-85

cal markers and genes not previously established as canonical cell-state markers. Conceptually,86

ActiveSVM demonstrates how active sampling strategies can be applied to enable the scaling of87

algorithms to the large data sets generated single-cell genomics.88
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Method89

We developed a computational method based on support vector machine (SVM) classifier to iden-90

tify compact gene sets that distinguish cell-states in single-cell data. In the conventional Sequential91

Feature Selection (SFS) [14], features are selected one-by-one in a greedy strategy to optimize an92

objective function. Here, we develop an active SVM (ActiveSVM) feature selection method, where93

we only analyze the subset of incorrectly classified cells at the current step and then select the new94

gene features based upon those cells. This active learning strategy enables the efficient computa-95

tion of small gene sets across large data sets by minimizing the total number of cells and genes that96

are analyzed.97

ActiveSVM proceeds through rounds of classification and gene selection based on a set of cell la-98

bels. Cell labels can be derived from unsupservised analysis, experimental meta-data, or biological99

knowledge of cell-type marker genes. A common work-flow in single-cell mRNA-seq experiments100

defines a series of cell-states or cell-types using unsupervised clustering of cells [23, 24]. There-101

fore, we developed our method to accept as input the cell-state labels that are typically derived102

from unsupervised clustering. We, then, utilize the cell-state labels to identify a minimal set of103

marker genes that can retain the separation between cell-states with a minimal set of gene features.104

We note that our method can also accept user supplied cell-type labels as input if a user seeks to105

identify new genes that separate cell-states based upon biologically curated markers.106

Our ActiveSVM procedure starts with an empty gene set, an empty cell set and a list of candidate107

genes and cells. The algorithm iteratively selects genes and classifies cells using identified genes108

by training a SVM model to classify the cell-types according to labels. The algorithm identifies109

cells in the data set that classify poorly given the current gene set, and uses misclassified cells110

to select additional genes to improve classification accuracy on the entire data set. We supply111

‘min-complexity’ and ‘min-cell versions’ of ActiveSVM algorithm. The min-complexity algo-112

rithm samples a fixed number of misclassified cells and directly uses them as the cell set to select113

the next gene. The min-cell algorithm re-uses the misclassified cells selected in previous iterations114

to reduce the total number of required cells. The procedure are shown in Figure 1.115

In the first iteration, the procedure initially constructs single-gene classifiers and adds the gene that116

provides highest initial classification accuracy to the gene set. The algorithm, then, samples c cells117

misclassified by the initial single-gene classifier out of the total set of N cells and adds them to the118

cell set. The parameter c is determined by the user according to the nature of dataset and available119

computational resources. The algorithm trains an SVM on the cell set using the current gene set,120

which defines an SVM margin w that optimally separates cells into classes that are consistent with121

labels on the cell set. Using the SVM classification, the algorithm identifies cells that have been122

misclassified with the initial gene set. The algorithm, then, identifies genes that can be added to123

the gene set to improve performance on the misclassified examples.124

To identify maximally informative genes, we developed a gene selection strategy, Max Margin125

Rotation (MMR), that evaluates all candidate genes and selects the gene that induces maximum126
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rotation of the margin w. The ActiveSVM algorithm continues iteration until a max gene number,127

k, is reached. The max gene number k can be set as any integer smaller than M and can be set to128

small values during exploratory analysis and to larger values for more exhaustive exploration of a129

data set. The integrated algorithm is shown in Algorithm 1.130

The most important feature of our ActiveSVM procedure is that the algorithm must never load an131

entire data set into memory. At each step, the procedure performs classification of cells using a132

minimal gene set, and then performs detailed (all genes) analysis of only a subset of misclassified133

cells. Due to the design of the procedure, ActiveSVM can analyze large data sets that do not easily134

fit in memory. In conventional SVM based feature selection, the user would first train an SVM135

classifier on the complete data set and then select features according to the absolute values of the136

components of weight w.[25]. We note that conventional feature selection procedures typically137

apply classification accuracy for feature selection. Conventional SFS often selects features based138

upon improvement in classification accuracy. We found empirically that MMR provides improved139

classification results and so selected MMR as our gene selection strategy.140

Based on the above outline of ActiveSVM, we can formalize the specific gene and cell selection141

strategies into two defined rules. For notation, in single-cell gene expression data, we use x(j)
i ∈ R142

to denote the measurement of the j-th gene of the i-th cell. We assume the classification labels143

are given and consider a data-set {xi, yi}i∈{1,...,N} contains N cells with total M genes, where144

xi = [x
(j)
i ]j∈{1,...,M} and yi ∈ ZN are labels. The labels could be binary or multi-class and can be145

derived from clustering. We also denote the gene expression vector of i-th cell with part of genes146

as x(D)
i = [x

(j)
i ]j∈D, where D ⊂ {1, . . . ,M}. And we use J and I to refer to the set of selected147

genes and cell set.148

We assume the SVM classifier notation of one observation is hw,b(x
(D)
i ) = g(wTx

(D)
i + b) for any149

i ∈ {1, 2, . . . , N} and D ⊂ {1, 2, . . . ,M} with respect to observation x ∈ R|D|, where w ∈ R|D|
150

and b ∈ R are parameters (the margin and bias respectively). Here, g(z) = 1 if z ≥ 0, and151

g(z) = −1 otherwise. And the loss function is Hinge Loss[26] lossi = max{0, 1−yi(w
Tx

(D)
i +b)},152

where yi ∈ R is the ground truth label of observation xi.153

Cell selection: identification of maximally informative cells154

For the cell selection strategy, we simply choose cells with largest SVM classification loss. The155

purpose of cell selection is to use the most maximally informative cells as a smaller training set to156

select the next gene. In SVM classifier, samples separable in n-D are also separable in (n+1)-D as157

they are at least separated by the same boundary with zero at the (n+ 1)-th dimension. Therefore,158

to improve the accuracy with a new gene, we must only consider the misclassified cells. We159

identify such cells through analysis of the dual form of the classical SVM classification problem.160

After solving the primal optimization problem of soft margin SVM, we have the dual optimization161

problem with a non-negative Lagrange multiplier αi ∈ R for each inequality constraint.[27]162
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max
α

N∑
i=1

αi −
1

2

N∑
i1,i2=1

yi1yi2αi1αi2 < x
(J)
i1

, x
(J)
i2

>

s.t. 0 ≤ αi ≤ C

N∑
i=1

αiyi = 0

(1)

Here x
(J)
i refers to the measurement of the i-th cell with all selected genes, and C ∈ R is a hyper-163

parameter we set to control the trade-offs between size of margin and margin violations when164

samples are non-separable.165

We solve the optimal solution α∗ and apply the Karush-Kuhn-Tucker(KKT) dual-complementarity166

conditions[28] to obtain the following results where w ∈ R|J | and the intercept term b ∈ R are167

optimal.168

α∗
i = 0 ⇒ yi(w

Tx
(J)
i + b) > 1

α∗
i = C ⇒ yi(w

Tx
(J)
i + b) < 1

0 < α∗
i < C ⇒ yi(w

Tx
(J)
i + b) = 1.

(2)

Therefore, for each cell, the Lagrange multiplier αi indicates whether the cell falls within the SVM169

margin defined by the vector w. αi > 0 means yi(w
Txi + b) ≤ 1, i.e. cells are on or inside the170

SVM margin. Hence, we can directly select cells with αi > 0. In practice, we normally only select171

cells with αi = C, which indicates incorrectly classified cells.172

Discussion of min-cell and min-complexity cell sampling strategies173

Using this mathematical formulation, we develop two different versions of the ActiveSVM pro-174

cedure, the min-complexity strategy and min-cell strategy, for distinct goals. The min-complexity175

strategy minimizes the time and memory consumption when computational resources are restricted176

or where a user desires to reduce run-time. In the min-complexity strategy, a certain fixed number177

of cells is sampled among all misclassified cells and used as the cell set for gene selection in each178

iteration. Therefore, a small number of cells can be analyzed at each round and typically only few179

cells might be selected repeatedly.180

In the min-cell strategy, to reduce the number of unique cells required, the misclassified cells181

already used in previous steps are given the highest priority to select again. Therefore, the min-cell182

strategy attempts to re-use cells across rounds of iteration and aims to minimize the total number183

of unique cells we acquire during the entire procedure. The min-cell strategy can be applied to184
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limit the number of cells required to perform the analysis in settings where cell acquisition might185

be limiting including in the analysis of rare cell populations or in clinical data sets.186

For the min-cell strategy, assume we select c cells for each iteration and there are a+b misclassified187

cells at the current iteration, where a cells have been used at least once in previous iterations while188

b cells are new cells. If a ≥ c, we do not need to add any new cells to current cell set. If a < c, we189

sample c − a cells among the b new cells. Then the algorithm uses the whole cell set for the next190

gene selection step. When using the min-cell strategy, cells tend to be re-used many times and the191

curve of number of unique cells we acquire converges to a fixed value along with the number of192

genes we select. In experiments, the number of cells selected for each step, c, is a hyper-parameter193

set by the user. Typically, the parameter can be set to a small number using the min-complexity194

strategy, as a sufficient number of new cells is considered in the procedure. Selecting a small195

number of cells each round reduces computational complexity. In the min-cell strategy it can be196

advantageous to select a larger number of total cells to guarantee diversity of training cells while197

still bounding the total number of cells used.198

Balancing cell-sampling across cell-classes199

In addition to the min-cell and min-complexity options, we also include two version of cell sam-200

pling strategies. The first one is uniform, random sampling. Another option is cell ‘balanced’201

sampling that can be applied to balance sampling across a series of cell classes. In the ‘balanced’202

strategy, we sample a fixed number of cells from each cell class, and for classes with insufficient203

cells we sample all the cells in the class. Mathematically, assume there are Z classes and S is the204

set of all misclassified cells this step. We should sample c′ cells from a candidate cell set, S ′, for205

the current iteration. In min-complexity strategy, c′ = c and the candidate cell set, S ′, should be206

S itself. For the min-cell strategy, c′ = c −min{c, |I ∩ S|}, where I is the cell set before current207

iteration, and the candidate cell set S ′ = S \ I . Assume S ′ = ∪Z
z=1S

′
z, where S ′

z are the set of208

cells in class z, and |S ′
z| ≤ |S ′

(z+1)| for any z ∈ {1, 2, ..., Z − 1}. We sample cells in order from209

class 1 to class Z and denote Pz as the union set of all selected cells from all classes after class z.210

Then, for class z, if |S ′
z| ≤ (|S ′| − |Pz−1|)/(Z − z + 1), we select all cells in S ′

z. Otherwise, if211

|S ′
z| > (|S ′| − |Pz−1|)/(Z − z + 1), we randomly sample (|S ′| − |Pz−1|)/(Z − z + 1) cells in S ′

z.212

The procedure repeats for all classes and then we have PZ as the cells we select at this iteration.213

Gene selection by maximizing margin rotation214

To select maximally informative genes at each round, we analyze misclassified cells and identify215

genes that will induce the largest rotation of the classification margin. Our procedure is inspired216

by the active learning method, Expected Model Change[16]. We quantify rotation of the margin217

by calculating the twist angle induced in w when we add a new dimension (gene) to the classifier.218

Assume J is the set of genes we have selected so far. Once we add a gene into the |J |-dimensional219
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data space, the parameter w will have one more dimension. The rotation of margin measures how220

much w twists after adding the new dimension compared with weight in the previous iteration.221

Specifically, assume J is the set of genes we have selected so far. We derive the corresponding w222

from the optimal solution α∗.[27] After solving the dual optimization problem (1), we have:223

w =
∑
i∈I

α∗
i yix

(J)
i . (3)

Then we pad w with zero to get a |J + 1|-dimensional weight wpadded, whose first |J | dimensions224

is w and the |J + 1|-th dimension is zero.225

For each candidate gene j, we train a new |J + 1|-dimensional SVM model and have weight226

wj ,where j ∈ {1, . . . ,M} \ J . That is to say, for candidate gene j, we solve the dual optimization227

problem (4) and find a new optimal multiplier α∗(j). Note that we only use the selected cells here,228

i1, i2 ∈ I .229

max
α

∑
i∈I

α
(j)
i − 1

2

∑
i1,i2∈I

yi1yi2α
(j)
i1
α
(j)
i2
⟨x(J∪{j})

i1
, x

(J∪{j})
i2

⟩

s.t. 0 ≤ α
(j)
i ≤ C∑

i∈I

α
(j)
i yi = 0

(4)

Then we have wj as shown in equation (5):230

wj =
∑
i∈I

α
∗(j)
i yix

(J∪{j})
i (5)

The angle θj between wj and wpadded is the expected angle the margin rotates, corresponding to231

the j-th candidate gene. Then the j-th gene with largest angle θj will be selected. We measure the232

angle between two vectors using cosine similarity[29]:233

ϑj = arccos cosϑj = arccos
⟨wj, wpadded⟩

∥ wj ∥∥ wpadded ∥
(6)

Therefore, a new gene, which maximizes ϑj , is selected to maximize the expected model change.234

For multi-class classification, the SVM is handled according to a one-vs-rest scheme[30], where a235

separate classifier is fit for each class, against all other classes. Margin rotation is represented as236
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the sum of weight components in each class dimension. Hence with Z classes, we get Z weight237

components corresponding to Z one-vs-the-rest classification decision boundaries. Assume the238

weight component for class z of the previous |J |-dimensional SVM model is w(z). Denote the239

|J + 1|-dimensional weight after zero-padding of w(z) as w(z)
padded and the new |J + 1|-dimensional240

weight component of class z with j-th gene as w(z)
j , where z ∈ 1, . . . , Z. Then we have:241

ϑ
(z)
j = arccos cosϑ

(z)
j = arccos

⟨w(z)
j , w

(z)
padded⟩

∥ w
(z)
j ∥∥ w

(z)
padded ∥

(7)

ϑj =
Z∑

z=1

ϑ
(z)
j (8)

Algorithm 1: Active Linear SVM Gene Selection
Input: c, k ∈ N, J = ∅
Output: J
Randomly or ‘balanced’ select c cells I ⊂ {1, . . . , N}, |I| = c

Train a 1-D SVM model on training set I for each candidate gene: {h(j)
w,b}j∈{1,...,M}

lossj =
∑

i∈I max{0, 1− yih
(j)
w,b(x

(j)
i )}

Select one gene j0 ∈ {1, . . . ,M} with lowest lossj
J = J ∪ {j0}
repeat

Optimize (1) and get optimal solution {α∗
i }Ni=1

Get the the set of misclassified cells S ⊂ {1, . . . , N} with α∗
i = C

if min-complexity then
Randomly or ‘balanced’ select c cells I ⊂ S, where |I| = c;

else
if min-cell then

c′ = min{c, |I ∩ S|};
Randomly or ‘balanced’ select c− c′ cells I ′ ⊂ S \ I , where |I ′| = c− c′;
I = I ∪ I ′

end
end
w =

∑
i⊂I α

∗
i yix

(J)
i

wpadded = [w, 0]

For each j ∈ {1, . . . ,M} \ J , optimize (4) and get optimal solution {α∗(j)
i }i∈I

wj =
∑

i∈I α
∗(j)
i yix

(J∪{j})
i

ϑj = arccos cosϑj = arccos
<wj ,wpadded>

∥wj∥∥wpadded∥
Select one gene j∗ ∈ {1, . . . ,M} \ J with largest ϑj

J = J ∪ {j∗}
until |J | ≥ k

242
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Memory complexity243

One of the key contribution of ActiveSVM is that it significantly saves memory usage because244

only a small part of data is used at each iteration. The entire dataset can be stored in disk and245

the algorithm only loads two small matrices into memory, a N × |J | matrix of all cells with the246

currently selected genes and a |I|×M matrix of the cell set with all genes. The memory complexity247

is O(M + N) while the memory complexity of algorithms using the entire dataset should be at248

least O(MN). The min-cell strategy minimizes the total number of unique cells acquired to reduce249

the cost of data measurement, acquisition and storage.250

Time complexity251

The time complexity of the complete procedure depends primarily on the training of SVM. The252

standard time complexity of SVM training is usually O(MN2) [31, 32]. Assume that we plan to253

select k ∈ N genes in total and use the cell set Ii of poorly classified cells at i-th iteration, where254

k, k2 ≪ M and |Ii|, |Ii|2 ≪ N are constants. Then the computational complexity of ActiveSVM255

is:256

O(
k∑

i=1

(i ·N2 + (M − i) · (i+ 1) · |Ii|2)) ∼ O(N2 +M).

The key reduction in total complexity occurs because each step is performed using N cells with257

of order k, k2 ≪ M genes or using order M genes with |Ii| cells. Therefore, the polynomial258

O(MN2) is reduced to two separate steps that are individually O(N2) and O(M).259

And in practice, we implement ActiveSVM using the linear SVM library LIBLINEAR[33], whose260

time complexity is O(MN). Therefore,261

O(
k∑

i=1

(i ·N + (M − i) · (i+ 1) · |Ii|)) ∼ O(N +M),

and the corresponding time complexity of ActiveSVM with LIBLINEAR is O(M +N).262

In the gene selection part, the margin rotation angles of all candidate genes can be computed in263

parallel, which also accelerates the algorithm. The complexity provides a significant improvement264

in marker gene selection methods especially for large-scale datasets.265
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ActiveSVM can incorporate cell labels derived from unsupervised analysis,266

experimental conditions, or biological knowledge267

The goal of ActiveSVM is to discover minimal gene sets for extracting biological information268

from single-cell data sets. To define minimal gene sets, we apply a classification task in which269

we find genes that enable a SVM classifier to distinguish single-cells with different labels (yi).270

In practice, explicit cell-type labels are often not known for a data set. An extremely common271

work-flow in single-cell genomics applies Louvain clustering algorithms to identify cell classes272

and visualizes these cell classes in UMAP or tSNE plots ([24, 23]. The cell clusters output by273

clustering work-flows in commonly used single-cell analysis frameworks provide a natural set of274

labels for down-stream analysis. In fact, ActiveSVM can, then, identify specific marker genes for275

interpreting the identified cell-clusters and determining their biological identify. More broadly,276

cell-class labels can be quite general including the identity of a genetic perturbation (Figure 6), the277

spatial location of a cell (Figure 7). We can imagine the application of ActiveSVM to a broad set278

of additional labels including membership to a differentiation trajectory or lineage tree [34].279

Results280

We test our ActiveSVM feature-selection method on four single-cell mRNA-seq datasets: a dataset281

of peripheral blood mononuclear cells (PBMCs)[17], the megacell 1.3 million cell mouse brain282

data set [18], the Tabula Muris mouse tissue survery dataset[19], and a multiple myeloma human283

disease dataset [20]. Later, we demonstrate generalization of the strategy to additional types of284

single-cell data analysis, including a perturb-seq dataset where genes impacted by Cas9 based285

genetic perturbation, and a spatial transcriptomics dataset by seqFish+.286

For each analysis, we show the classification accuracy of the test set along with the number of genes287

we select. We also compare the classification performance to several widely-used feature selection288

methods, including conventional SVM, correlation coefficient[35], mutual information[36], Chi-289

square[37], feature importance by decision tree[38], and randomly sample genes, showing that290

ActiveSVM obtains the highest accuracy. All of the comparison methods select genes one by one291

and select a new gene with the largest score in terms of the corresponding evaluation functions292

while using the same number of cells as our method. However, all methods randomly sample293

cells at each iteration without an active learning approache. For perturb-seq and seqFish+ datasets,294

we also show the accuracy performance of comparison methods, where the entire dataset is used.295

Specifically, conventional SVM based feature selection also called naive SVM selects the gene296

with largest weight component, which is the most popular SVM feature selection method. In our297

application of ActiveSVM, we tested both the min-cell strategy and min-complexity strategies as298

well as randomly sampling and ’balanced’ sampling.299

In each experiment, the data set was first pre-processed and normalized using standard single-300
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cell genomics strategies (See Data Pre-processing). The entire dataset was, then, randomly split301

into training set with the size of 80% and test set with the size of 20%. For conventional and302

ActiveSVM, we found the approximately optimal parameter by grid-search [39] across lists of303

candidate values for some key parameters in the framework of 3-fold cross validation [40]. The304

optimal parameters were fixed during all iterations. For the comparison methods, we use 3-fold305

cross validation grid-search to obtain the optimal parameters at each single iteration. We also im-306

plemented the algorithms called min complexity cv and min acquisition cv that apply307

grid-search and cross validation for each single SVM trained in each iteration (see Code Availabil-308

ity). The parameter setting details are shown in Parameters section.309

In our evaluation, besides accuracy curves with proportion confidence interval[41], we also show310

the distribution of gene markers we selected and the relation with classification target. The sub-311

plots include the gene expression values on t-SNE projection, the mean of each class, histogram312

distribution, violin plot, the correlation coefficient heatmap, etc.313

To indicate the efficiency, we also recorded the run time, peak memory usage, and the total num-314

ber of unique cells we used of ActiveSVM on these datasets. We used r5n.24xlarge[42], a type of315

EC2 [43] virtual server instance on AWS[44], with 96 virtual central processing units (vCPU) and316

768 GiB memory on Linux[45] system. For example, we selected 50 genes on the largest dataset,317

mouse brain ‘megacell’ dataset, which contains 1306127 cells and 27998 genes, using ActiveSVM318

and some other popular feature selected methods, including mutual information, feature impor-319

tance by decision tree, and conventional SVM. The peak memory usage of ActiveSVM is 2111320

MB while other methods all consume more than 78600 MB. The run time of the min-complexity321

method is about 69 minutes and of the min-cell method is about 243 minutes. Each comparison322

method takes more than 4 days on the same server machine. The run time and peak memory usage323

of ActiveSVM on all six datasets are shown in Table 1. The ActiveSVM package used for the brain324

megacell dataset only loads the selected genes and cells into memory at each iteration while other325

two experiments called the package loading the entire dataset. Both packages are provided in Code326

Availability Section.327

Table 1: Run Time and Peak Memory Usage of ActiveSVM.

matrix size min-complexity min-cell run memory unique cells
(cells, genes) run time (s/gene) time (s/gene) (MB) (min-cell)

mouse megacell (1306127, 27998) 4142/50 14580/50 2111 712
PBMC (10194, 6915) 121/50 176/20 1325 298

Tabula Muris (55656, 8661) 737/150 7701/100 1093 779
MM (35159, 32527) 127/40 449/40 1616 445

seqFish (913, 10000) 33/30 728/30 887 428
perturb-seq (10895, 15976) 3424/50 9493 3827
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Active feature selection on human PBMC data328

To test the performance of ActiveSVM, we used the method to extract classifying gene subsets329

for human PBMCs. We analyzed a single-cell transcriptional profiling data set for 10194 cells330

[17] with 6915 genes. We used Louvain clustering [46] to identify T-cells, activated T/NK cells,331

B-cells, and Monocytes (Figure 2(c)).332

The min-cell strategy classified the 5 major cell-types at greater than 85% accuracy with as few as333

15 total genes (Figure 2(a)) and the test accuracy of min-cell, with both randomly sampling and334

’balanced’ sampling, also reached much higher accuracy than the comparison methods.335

A key benefit of the active learning strategy is that a relatively small fraction of the data set is336

analyzed, so that the procedure can generate the gene sets while only analyzing 298 cells (Figure337

2(d)). At each iteration, a specific number of misclassified cells (c = 100) are selected but the338

total number of cells used does not increase in increments of 100, since some cells are repeatedly339

misclassified and are thus repeatedly used for each iteration.340

In addition to enabling cell-type classification of the data set, the ActiveSVM gene sets provide a341

low-dimensional space in which to analyze the data. When we reduced our analysis to consider342

only the top 100 genes selected by the ActiveSVM algorithm, we were able to generate a low-343

dimensional representations of the cell population (t-SNE) that preserved critical structural features344

of the data, including the distinct cell-type clusters (Figure 2(c)).345

The procedure generates gene sets that contain known and novel markers, each plotted individu-346

ally in a t-SNE grid (Figure 2(e)(f)). For instance, MS4A1 and CD79 are well-established B-cell347

markers, and IL7R and CD3G are well-established T-cell markers. However, we also find genes348

which are not commonly used as markers, but whose expression is cell-type specific. For instance,349

we find highly monocyte-specific expression of FPR1, which encodes N-formylpeptide receptor,350

which was recently discovered to be the receptor for plague effector proteins [47]. We also find351

T-cell/NK-cell specific expression of a long noncoding RNA, LINC00861, whose function is un-352

known but has been correlated with better patient outcome in lung adenocarcinoma [48]. The353

marker genes are generally highly specific for individual cell types, but some mark multiple cell354

types (i.e. MARCH1, which marks monocytes and B-cells).355

Scaling of ActiveSVM feature selection to million cell dataset356

To demonstrate the scaling of the ActiveSVM feature selection method to large single cell mRNA-357

seq data sets, we applied the method to extract compact gene sets from the 10x genomics the358

‘megacell’ demonstration data set [18]. The megacell dataset was collected by 10x genomics359

as a scaling demonstration of their droplet scRNA-seq technology. The data set contains full360

transcriptome mRNA-seq data for 1.3 million cells from the developing mouse brain profiled at361

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.06.15.448478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448478
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Gene selection and cell-type classification for PBMC dataset. (a) The test accuracy for min-
cell strategy and a series of comparison classification strategies. The min-cell strategy selects k = 20 genes
and select c = 100 cells each iteration with confidence interval estimates; (b) The test accuracy of min-
complexity strategy that selects k = 50 genes using c = 20 cells each iteration; (c) The t-SNE plots of the
entire filtered dataset; (d) The total number of unique cells used vs gene set size with the min-cell strategy;
(e) plots showing the expression of several genes markers, including mean on classes, gene expression value
on t-SNE projection, and violin plots; (f) expression level of additional selected genes overlaid on t-SNE
plot.
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Figure 3: Scaling of ActiveSVM feature selection to 1.3 million cell mouse brain data set (a) The test
accuracy of min-complexity strategy that selects 50 genes using 20 cells each iteration; (b) The test accuracy
of min-cell strategy that selects 50 genes using 100 cells each iteration; (c) The total number of unique cells
used vs gene set size with both the min-complexity and the min-cell strategy; (d) The t-SNE plots of the
entire filtered dataset with 10 classes by k-means clustering; (e) expression level of the gene markers from
previously published analysis overlaid on t-SNE plot; (f) expression level of the gene markers selected by
ActiveSVM overlaid on t-SNE plot, where the first row are the genes that have similar distribution with gene
markers from previously analysis and other genes are new markers correlated with the classification target.
(g) Correlation matrix of literature markers (y-axis) from [12] versus ActiveSVM selected genes (x-axis).
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embryonic day 18 (E18) [18]. The data set is one of the largest single cell mRNA-seq data sets362

currently available. The size of the data set has been a challenge for data analysis, and a previous363

analysis paper was published that developed sub-sampling methods that extract marker genes and364

cell-types by extracting sub-sets of of the data set containing ∼ 100, 000 cells [12]. We applied our365

ActiveSVM method to extract minimal genes sets for classifying the 10 classes of cells that were366

extracted through k-means[49] clustering in the internal analysis of the data (Figure 3(a)(b)). The367

min-complexity algorithm used 20 cells at each iteration and the min-cell algorithm selected 100368

cells each loop. The min-cell algorithm acquired fewer unique cells, as cells are selected repeatedly369

(Figure 3(c)). On this dataset, both algorithms use ’balanced’ sampling for both min-complexity370

and min-cell strategies. As the dataset is too large to produce t-SNE, we randomly sampled 30, 000371

cells and find the tSNE projection, which is shown with the input cell clusters in Figure 3(d).372

While the size of the data set has presented challenges for conventional sampling methods, the373

ActiveSVM algorithm must only acquire from memory a small number of genes or cells at each374

round of analysis, and therefore, the method avoids computing across the entire 1.3 million cells375

and ∼ 30, 000 gene data set. We found that it was possible to run ActiveSVM on a conventional376

lap-top. For decreasing compute time, we analyzed the megacell data set on an AWS instance377

r5n.24xlarge. On this instance, ActiveSVM ran in 69 minutes for the min-complexity strategy and378

243 minutes for the min cell strategy. As a comparison, naive SVM required greater than four days379

of computation to run on all 1.3 million cells on the same AWS instance (Table 1).380

To provide a bench-marking for ActiveSVM, we instead compared the accuracy of ActiveSVM to381

a data set where we allow ActiveSVM to run on the data set;we extract the number of analyzed382

cells, and then provide this same number of cells to the other methods shown in figure 3(a)(b).383

Applying the other methods to sub-sampled data, allowed us to extract the classification accuracy384

as a bench-marking for ActiveSVM.385

In addition to performing the classification task, the ActiveSVM procedure discovers gene sets that386

achieve ∼ 90% classification accuracy with only 50 genes. The procedure discovered a series of387

cluster specific marker genes that extend prior analysis. For example, the analysis in [12] identified388

marker genes through sub-sampling and prior biological literature. A set of genes identified previ-389

ously is shown in Figure 3(e). The ActiveSVM analysis discovered several of the same markers as390

the previous work (Reln, Vim, Igfbp7) (Figure 3(f)).391

Further, ActiveSVM extended previous analysis by identifying additional markers that correlate392

with the previously analysis as well as marker genes of additional cell states. The development393

of radial glial cells, in particular, has been of intense recent interest because radial glial cells394

are the stem cells of the neocortex in mouse and human [50]. Careful molecular analysis has395

defined markers of radial glial cells including Vim. ActiveSVM identified a group of genes whose396

expression correlates with Vim across the E18 mouse brain. Our analysis identified an additional397

set of genes expressed in the same cell population as Vim including, Dbi (Diazepam Binding398

Inhibitor, Acyl-CoA Binding Protein), Hmgb2, and Ptn. A correlation matrix (Figure 3g) showing399

the correlation of ActiveSVM identified genes (x-axis) with literature markers (y-axis) discussed400
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in [12] reveals the existence of Vim correlated genes. The Vim genes were of interest because they401

include additional transcription factors Hmgb2 [50] and also a core group of genes, Ptn and Fabp7402

(also Brain Lipid Binding Protein), two components of a radial glia signaling network [51, 52, 50]403

that has been identified as a core regulatory module supporting the proliferation and stem cell state404

in the radial glial cell population.405

The neural progenitor transcription factor Neurod6 marked a separate cell population that we iden-406

tified to contain genes including Neurod2 (a transcription factor) and Sox11 (a transcription factor)407

as well as glial transcription factors Nfib and Nfix and the receptor Gria2 (Glutamate Ionotropic408

Receptor AMPA Type Subunit 2). The marker genes observed in Neurod6 expressing cells were409

anti-correlated with the Vim correlated markers suggesting that ActiveSVM identified two distinct410

regulatory modules. Structurally, the tubulin proteins Tuba1b and Tuba1a were expressed in Vim411

and Neurod6 populations respectively. In addition to genes correlated or anti-correlated with exist-412

ing markers, ActiveSVM identified markers of additional cell populations including Meg3, a long413

non-coding RNA expressed in cluster 2.414

Broadly, the analysis of the ‘megacell’ mouse brain data set demonstrates that ActiveSVM scales415

to analyze a large data set with > 1 million cells. The analysis of such large data sets has been chal-416

lenging with conventional approaches that attempt to store the entire set in memory for analysis.417

Previous analysis of the 10x megacell dataset found that sub-samples with greater than 100, 000418

cells would yield an out of memory error on a server node with 64 cores, a 2.6 GHz processor,419

and 512 GB of RAM [12]. ActiveSVM iterates through analysis of cells and genes while focus-420

ing computational resources on poorly classified cells, and so ActiveSVM does not load the entire421

dataset into memory but can read cells and genes from disk as needed. Further, through itera-422

tive analysis, ActiveSVM identifies known marker and regulatory genes, genes that correlate with423

known markers as well as marker genes of additional cell populations that could provide a starting424

point for future experimental investigations.425

Identifying gene sets for cell-type classification in the Tabula Muris tissue426

survey427

In addition to analyzing a data set with a large number of total cells, we sought to benchmark428

performance of ActiveSVM feature selection on a data set with a large number of distinct cell429

types. We applied ActiveSVM to the Tabula Muris mouse tissue survey, a droplet-based scRNA-430

sequencing data-set, that contains 55,656 single cells across 58 annotated cell types, and 12 major431

tissues [19]. For each cell, 8,661 genes are measured. In our analysis, we used the supplied432

cell-type labels, agnostic of tissue type. Thus, cells labeled ‘macrophage’ from the spleen are433

considered to belong to the same class as cells labeled ‘macrophage’ from the mammary gland.434

Even with a large number of cell types, ActiveSVM can construct gene sets that achieve high435

accuracy (> 90%), compared to other methods (Figure 4(a)(f)). To construct a gene set of size436
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Figure 4: Minimal gene sets for cell-type classification in the Tabula Muris mouse tissue survey (A)
Classification results of 150 genes selected using the min-complexity strategy with 20 cells each iteration.
(B) 500 genes selected using the min-cell strategy with 200 cells per iteration. Results for standard and
balanced strategy shown with comparison methods and confidence intervals. The subplots contain: classifi-
cation accuracy vs gene set size using the min-complexity strategy (a) and min-cell strategy (f); the t-SNE
plots of the entire filtered dataset (b)(h); the t-SNE plots of the gene set selected using min-complexity
strategy with randomly sampling (c) and ’balanced’ sampling (d), and gene set selected using the min-cell
strategy (i); the expression level overlaid on t-SNE projection for genes selected by min-complexity (e) and
by min-cell (j); and the total number of unique cells used vs gene set size with the min-cell strategy (g).
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500, ActiveSVM feature selection used fewer than 800 unique cells (Figure 4(g)) or an average437

of 14 cells per cell type. We were able to recreate the clustering patterns from the original data438

(Figure 4(b)(h) when analyzing the cells within the low dimensional t-SNE space spanned by the439

selected 150 genes (Figure 4(c)(d)) or 500 genes (Figure 4(i)).440

Our approach allowed us to construct a set of marker genes able to identify mouse cell types across441

disparate tissues. Even when analyzing a large number of cell types, we were able to identify highly442

cell-type specific genes, such as CD3D, a well-established T-cell marker, or TRF (transferrin),443

which is selectively secreted by hepatocytes[53], or LGALS7 (galectin-7), which is specific for444

basal and differentiated cells of stratified epithelium [54]. However, given the functional overlap445

between different cell types, the genes within our set include many that mark multiple cell types.446

For instance, H2-EB1[55], a protein important in antigen presentation, is expressed in B-cells and447

Macrophages, both of which are professional antigen presenting cells (APCs). Our analysis also448

identified cell type-specific expression for a number of poorly studied genes, such as granulocyte-449

and hepatocyte- specific expression of 1100001G20RIK (also known as Wdnm-like adipokine),450

which has previously only been associated with adipocytes [56].451

Extraction of gene sets for classification of disease state in peripheral blood452

cells from multiple myeloma patient samples453

To analyze ActiveSVM as a tool for the discovery of disease-specific markers, we used single-cell454

data from peripheral blood immune cells collected from two healthy donors and four patients who455

have been diagnosed with multiple myeloma (MM)[20]. MM is an incurable cancer of plasma456

cells, known as myeloma cells, that over-proliferate in the bone marrow. Although myeloma cells457

are typically the target of analysis because they are the causative agent of disease, peripherally458

circulating immune cells also contain signatures of disease, including a depleted B-cell population459

[57, 58], an increased myeloid-derived suppressor cell count [59], and T-cell immunosenescence460

[60, 58].461

We sought to further define transcriptional markers that distinguish healthy peripheral immune462

cells from the cells of MM patients. We performed feature selection using heterogeneous popula-463

tions of cells labeled only by disease state. The data set contains 35159 with 32527 genes (Table464

1).465

We compared the classification accuracy for ActiveSVM vs the other methods (Figure 5(a)(f)),466

and found that ActiveSVM achieved high accuracy in a limited number of steps and consistently467

outperformed the other methods. We tested ActiveSVM with two different cell sampling strategies,468

randomly sampling, and ’balanced’ sampling, in which equal numbers of cells from each cell type469

are sampled to correct for artifacts due to different cell-type proportions between samples. We470

noted that although the balanced approach gave higher classification accuracy at early iterations,471

these differences are no longer apparent after selecting 20 genes (Figure 5(a)).472
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Figure 5: Gene set selection for healthy vs disease classification in multiple myeloma dataset. (A)
classification results of 40 genes selected by min-complexity strategy using 20 cells each iteration. (B)
40 genes selected using Min-cell strategy with 100 cells per iteration. Results for standard and balanced
strategy shown with comparison methods and confidence intervals. As in Figure 4, each sub-figure, sub-
panels show the number of acquired cells per iteration, tSNE visualizations of using the complete data set,
visualizations using only the ActiveSVM extracted data set, and marker genes identified by ActiveSVM.
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Non-overlapping cell-type clusters were identified for healthy and MM cells in the original dataset473

in t-SNE projections (Figure 5(b)(h)). The non-overlapping clusters are replicated in t-SNEs con-474

structed from 40 genes selected using both the min-complexity strategy (Figure 5(c)(d)) and the475

min-cell strategy (Figure 5(i)).476

Analysis of the function of the genes identified by ActiveSVM revealed most regulate house-477

keeping functions, suggesting that global shifts in translation and motility are disrupted in multiple478

myeloma patients. Translation-associated markers include Eukaryotic Translation Initiation Factor479

1 (EIF1), Eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1), and prefoldin subunit 5480

(PFDN5). Motility associated genes include ACTB, putative anti-adhesion molecule CD52, and481

actin-sequestering protein TMSB4X.482

We also found both known and novel markers of MM within the peripheral blood immune cells.483

Our analysis identified TPT1, previously associated with MM [61], and RACK1 (also known as484

GNB2L1), a scaffolding protein that coordinates critical functions including cell motility, survival485

and death, which is broadly upregulated in peripheral immune cells from MM patients. Although486

this gene has been previously associated with myeloma cells [62], its regulation had not been re-487

ported in peripherally circulating immune cells. Our ability to discover MM-specific genes within488

peripheral immune cells suggests a broader use for discovering disease-specific genes across many489

different types of pathologies.490

Interestingly, the procedure also identifies multiple members of the S100 Calcium Binding Protein491

Family (S100A8,S100A9 and S100A6, and S10084) [63, 64, 65] as members of the genes sets that492

separate MM vs healthy samples. The S100 protein family defines a module of genes that are asso-493

ciated with the induction of stress response pathways. The expression of S100 genes is prognostic494

for a number of diseases. Specifically, a recent study found that S100A4 expression correlates with495

poor patient survival in mulitple myeloma and that S100A8, and S100A9 are markers that correlate496

with poor response of multiple myeloma patients to treatment with proteasome inhibitors and the497

and histone deacetylase inhibitor panobinostat [64]. The result demonstrates that ActiveSVM can498

automatically define groups of genes that have clinical association with disease progression and499

treatment outcome. The minimal gene sets generated by ActiveSVM could provide useful targeted500

sequencing panels for a variety of clinical tasks.501

ActiveSVM identifies genes impacted by Cas9 based genetic perturbation502

The previous analyses above have demonstrated that ActiveSVM identifies minimal gene sets for503

cell-state identification across a range of single-cell mRNA-seq data sets. We, next, demonstrate504

that ActiveSVM provides a more general analysis tool with potential applications to a range of505

single-cell genomics analysis tasks. To demonstrate generalization of ActiveSVM based gene set506

selection across single-cell genomics tasks, we applied the method to identify marker genes in two507

additional applications: perturb-seq and spatial transcriptomics.508
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Figure 6: Application of ActiveSVM to identify genes expression changes following Cebp knock-down
with perturb-seq The results of classification on perturb-seq data [21] where cells are labeled and classified
as Cebp sgRNA transduced or not-transduced with a guide RNA. (a-b) accuracy of entire dataset with min-
complexity strategy, where comparison methods use the same number of cells as ActiveSVM in (a) and use
the entire dataset in (b). (c) correlation matrix showing pair-wise correlation coefficients for genes in Cebp
perturbed cells. Correlation matrix identifies two gene modules. (d) Distributions of gene expression in
Cebp sgRNA transduced (orange) or not transduced (blue) cells. Selected genes from modules in (c) shown
and organized so that genes whose expression increases with Cebp perturbation are on top and repressed
genes are on the bottom of the figure.
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Perturb-seq is an experimental method for performing Cas9-based genetic screens with single-cell509

mRNA-seq read-outs. In perturb-seq, cells are induced with libraries of guide RNA’s that target the510

Cas9 protein to cut and silence specific genes [21, 3]. Perturb-seq is performed in a pooled fashion511

so that a pooled set of sgRNA molecules is delivered to a cell population. Individual cells stochas-512

tically take-up specific guide RNAs, and the guide RNAs target Cas9 cuts and silences genes in the513

genome. Following the perturbaation experiment, single-cell mRNA-seq is applied to read both514

the transcriptome of each cell and the identify of the delivered sgRNA through sequencing. The515

advantage of the perturb-seq method is that many knock-out experiments can be performed simul-516

taneously. However, a challenge is that noise impacts the measurement of guide RNA identify,517

and, further, the cutting of the genome by the Cas9 molecule is not complete. Due to measurement518

and experimental noise, identifying the impact of genetic perturbation on a cell population can be519

challenging, and various methods have been developed to boost signal [3]. We applied ActiveSVM520

to identify a minimal gene set as well as down-stream effects of gene knock-down in perturb-seq521

data.522

We specifically applied ActiveSVM to analyze public data collected from mouse dendritic cells523

with transcription factor knock-downs [21]. The experiment analyzed cells in which transcription524

factors has been knocked-down using perturb-seq in mouse dendritic cells stimulated for 3 hours525

with LPS, a signal that mimics bacterial infection.526

To apply ActiveSVM to the data, we focused our analysis on knock-down of Cebp an pioneer527

transcription factor. We pre-processed the data to identify cells induced with sgRNA against Cebp528

and non-induced cells, and used transduced and non-transduced as our cell-labels. We applied Ac-529

tiveSVM to select a minimal gene set that could classify transduced versus non-transduced cells.530

ActiveSVM identified minimal gene sets (50 genes) that achieved 80% classification accuracy on531

the Cebp sgRNA cell label. As we applied the class-balanced model to obtain the classification532

accuracy and there are only about 20 transduced cells in test set, we show the accuracy on entire533

dataset instead of test set. On this noisy dataset, ActiveSVM worked better than comparison meth-534

ods with the condition that ActiveSVM only used a small subset of data while comparison methods535

performed on the entire dataset (Figure 6(b)).536

We found that the discovered gene set could be decomposed into two modules of correlated genes537

(Figure 6c). Figure 6(c) shows a clustered correlation matrix for the 50 identified genes. Gene538

expression distributions for cells in transduced vs non-transduced cells demonstrated that the mod-539

ules represented two groups of genes. One group (including Pf4, Ccl4, Ccl6, Lyz2) was repressed540

by Cebp knock-down, and the second gene group was activated by Cebp knock-down including541

(Ccl17, Cd74, H2-Ab1) (Figure 6d).542

In both cases, the identified gene sets contained known targets of Cebp, the perturbed transcription543

factor. For example, Fth1 (ferritin, heavy polypeptide 1), Cst3, Tmsb4x, Lgals3, Ccl4, and Cd74544

are all previously identified as direct binding targets of Cebp as determined by Chip-seq [66]. Since545

Cebp knock-down leads to both up-regulation and down-regulation of genes, the results suggest546

that the factor can play both activating and repressive roles consistent with prior literature [67].547
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Our analysis of the perturb-seq data set, therefore, demonstrates that ActiveSVM can be applied as548

a useful tool for the identification of genes modulated by perturb-seq experiments. ActiveSVM can549

return minimal genes sets that contain functional information. Moreover, perturb-seq has been a550

main application of gene targeting approaches [3]. Therefore, ActiveSVM could provide a method551

for identifying minimal gene sets that can be applied to increase the scale of perturb-seq data552

collection.553

ActiveSVM defines region specific markers in spatial transcriptomics data554

Finally, to further demonstrate the generality of the ActiveSVM approach, we applied the pro-555

cedure to identify minimal gene sets for classification of cells by spatial location in spatial tran-556

scriptomics data. Spatial transcriptomics is an emerging method for measuring mRNA expression557

within single cells while retaining spatial information and cellular proximity within a tissue. As an558

example, in SeqFish+, an imaging based spatial transcriptomics method, cells are imaged in their559

tissue environment, and mRNA transcripts are counted using single-molecule imaging of mRNA560

spots [22]. In all spatial transcriptomics applications, a common goal is the identification of genes561

that mark specific spatial locations within a tissue sample. Additionally, spatial imaging methods562

are commonly limited by imaging time. While Seqfish+ can profile 10, 000 mRNA molecules per563

cell, the identification of reduced gene sets would reduce imaging time and throughput.564

We applied ActiveSVM to identify genes associated with specific spatial locations in the mouse565

brain. We used a seqFISH+ data set in which the authors profile 10, 000 mRNA molecules in 7566

fields of view (FOV) in the mouse brain [22]. Fields of view correspond to spatially distinct regions567

of the mouse cortex as well as the sub-ventricular zone and chordid plexus. We used the spatial568

location labels provided by [[22]] to identify seven different brain locations (Fields of view 1-5569

corresponding to Cortex Layers 2/3 through Layer 6; FOV 6 is sub-ventricular zone, and FOV 7570

is chordid plexus). Applying the spatial location labels as class labels, we applied ActiveSVM to571

identify genes that could allow classification of single-cells by their location in one of the seven572

classes and to define marker genes that correspond to specific spatial locations.573

We identified gene sets of < 30 genes that enabled location classification with greater than 85% ac-574

curacy with min-complexity strategy (Figure 7(a)). ActiveSVM used only 10 cell at each iteration575

but worked better than comparison methods who performed on the entire dataset (Figure 7(b)).576

In the spatial application, the result means that the ∼ 30 genes are sufficient to classify single-cells577

as belonging to one of the 7 spatial classes. In Figure 7, we show the mean expression of identified578

genes across cortical fields of view corresponding to a sweep through cortical layers 2/3 through 6579

as well as SVZ and CP. Our analysis identifies markers Prex1 that are specific to the upper cortical580

layers of the brain. Efhd2, a calcium binding protein linked to Alzheimer’s disease and dementia,581

was similarly expressed in lower cortical layers [68, 69]. Finally, Pltp, a Phospholipid transfer582

protein, was localized to the chordid plexus. In Figure 7e, we show the spatial distribution of583
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Figure 7: Application of ActiveSVM to identify region specific marker genes in the mouse brain with
spatial transcriptomic data The results of classification where cells are labeled according to fields of view
(FOV) in [22]. (a-b) test accuracy with min-complexity strategy, where comparison methods use the same
number of cells as ActiveSVM in (a) and use the entire dataset in (b). Fields of view 1-5 correspond
to 5 regions of the mouse cortex, additional fields of view are labeled SVZ (sub-ventricular zone) and
ChP (chordid plexus). (c) tSNE of cell transcriptomes for all cells (d) number of cells used per iteration
(e) Sample of identified genes where each sub-panel shows mean expression across FOV/brain regions for
selected gene, a tSNE plot colored by expression of selected gene, a violin plot of single cell gene expression
values for selected gene in FOV/brain region, and spatial plots of each field of view where dots represents
cells in 2D imaging slice, cells are colored by intensity of selected gene and units are in millimeters.
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these genes including their mean expression across regions, violin plots documenting expression584

distribution, and renderings of the single-cells within the field of view and the relative expression585

of each gene.586

The spatial analysis demonstrates that a broad range of different experimental variables can be587

applied as labels. In each case ActiveSVM discovers genes that allow classification of cells ac-588

cording to labels and identifies interesting genes. Regional gene marker identification is a major589

task in seqFish data analysis and ActiveSVM is able to identify genes enriched in different brain590

regions automatically. Such spatial information could provide interesting new insights into disease591

processes mediated by genes like Efhd2.592

Discussion593

In this paper, we introduce ActiveSVM as a feature selection procedure for discovering minimal594

gene sets in large single-cell mRNA-seq datasets. ActiveSVM extracts minimal gene sets through595

an iterative cell-state classification strategy. At each round the algorithm applies the current gene596

set to identify cells that classify poorly. Through analysis of misclassified cells, the algorithm597

identifies maximally informative genes to incorporate into the target gene set. The iterative,active598

strategy reduces memory and computational costs by focusing resources on a highly informative599

subset of cells within a larger data set. By focusing computational resources on misclassified cells,600

the method can run on large data sets with more than one million cells. We demonstrate that601

ActiveSVM is able to identify compact gene sets with tens to hundreds of genes that still enable602

highly accurate cell-type classification. We demonstrate that the method can be applied to a variety603

of different types of data set and single-cell analysis tasks including perturb-seq data analysis and604

spatial transcriptomic marker gene analysis.605

Conceptually, we refer to our strategy ‘active’ because it actively selects data examples (here cells)606

at each iteration for detailed analysis . Our algorithm specifically selects cells that within the607

margin of the SVM classifier, and uses these poorly classified cells to search for maximally infor-608

mative genes (features). In traditional active learning strategies, an algorithm is typically called609

active when it can directly query an oracle for data examples that meet a criteria [16, 70]. In the610

tradition of active learning, our ActiveSVM procedure queries the SVM classifier for cells that611

have been misclassified, and then expends computational resources to analyze all genes within that612

limited subset of cells to discover informative genes. Thus, while our algorithm cannot query the613

biological system directly for cells that meet a specific criteria, the algorithm queries the data set614

itself for informative examples, and therefore we refer to it as ‘active’. Our current work focuses615

on a single classification method, the support vector machine, as the computational engine. Active616

learning methods can be applied more broadly to additional classification strategies like neural617

network based classification as well as to additional types of analysis like data clustering and gene618

regulatory network inference.619
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Our method also has some conceptual similarity to boosting methods [71, 72]. Boosting algorithms620

(e.g AdaBoost) train a series of ’weak’ learners for a classification tasks, and then combine these621

weak classifiers to generate a strong classifier. In boosting a single weak learner may initially622

obtain moderate performance on a task. The performance of weak learners is improved through623

iterative training of additional learners and focusing their training on difficult data examples, for624

example, misclassified examples. The boosting algorithm constructs a final, strong classifier by625

combining the results of the ensemble of weak classifiers through a weighted majority vote. Our626

method is distinct from conventional boosting, because we search for a minimal set of features627

in our data that allows a single SVM classifier to achieve high-accuracy classification. However,628

ActiveSVM feature selection shares conceptual ideas with boosting in that both methods focus629

analysis on challenging examples and combine information to achieve strong classification from630

initially weak classifiers.631

ActiveSVM provides an iterative strategy for extracting a compact set of highly informative genes632

from large single cell data sets. Biologically, recent work highlights the presence of low-dimensional633

structure within the transcriptome [1]. Low-dimensional structure emerges in gene expression data634

because cells modulate their physiological state through gene expression programs or modules that635

contain large groups of genes. Since genes within transcriptional modules have highly correlated636

expression, measurements performed on a small number of highly informative signature genes can637

be sufficient to infer the state of a cell [73]. Low-dimensional structure can be exploited to decrease638

measurement and analysis costs since a small fraction of the transcriptome must be measured to in-639

fer cellular state. We developed ActiveSVM as a scalable strategy for extracting high information640

content genes within a sharply defined task, cell-state classification.641

In ActiveSVM we apply an active learning strategy to reduce the computational and memory re-642

quirements for analyzing single-cell data sets by focusing computational resources on ’difficult to643

classify’ cells. In the future, active learning strategies could be applied directly at the point of644

measurement. In genomics measurement resources often limit the scale of data acquisition. In645

future work we aim to develop strategies that can improve the on-line acquisition of single-cell646

data. Active strategies could be implemented at the point of measurement by only sequencing or647

imaging the content of cells that meet a criteria. Even more broadly, it might be possible to in-648

duce a biological system to generate highly informative examples through designed experimental649

perturbation [74].650

Data Availability651

All data used in the paper has been previously published. The PBMC Single-cell RNA-seq data652

have been deposited in the Short Read Archive under accession number SRP073767 by the authors653

of [17]. Data are also available at http://support.10xgenomics.com/single-cell/datasets.654

The original Tabula Muris dataset is available at https://figshare.com/projects/Tabula Muris Trans655
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criptomic characterization of 20 organs and tissues from Mus musculus at single cell resolutio656

n/27733.657

The original multiple myeloma PBMC data, containing 2 healthy donors and 4 multiple myeloma658

donors, is available at https://figshare.com/articles/dataset/PopAlign Data/11837097/3.659

The 10x genomics Megacell data set is available at http://support.10xgenomics.com/single-cell/da660

tasets.661

The perturb-seq data set [21] is availble at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc662

=GSM2396856663

The spatial transcriptomics data [22] is available https://github.com/CaiGroup/seqFISH-PLUS.664

Code Availability665

Our method is integrated as a install-able Python package called activeSVC. The installation in-666

structions and user guidance are shown at https://pypi.org/project/activeSVC. The source codes of667

activeSVC and some demo examples are publicly available on GitHub at https://github.com/xqc668

hen/activeSVC.669

The Python package provides six callable functions: (1) min complexity; (2) min acquisition,670

the min-cell strategy; (3) min complexity cv, which use cross validation[40] and grid-search[39]671

to train the best SVM estimator at each iteration; (4) min acquisition cv, the min-cell strategy672

with cross validation and grid-search; (5) min complexity h5py, for large h5py[75] data files, it673

only loads the part of data, the rows and columns of selected genes and cells, instead of loading the674

entire dataset into memory; (4) min acquisition h5py, is similar with min complexity h5py but675

uses min-cell strategy. All include the algorithm for both randomly and ’balanced’ sampling. We676

implement the SVM classifier with the LinearSVC package from scikit-learn[76] library, which677

is implemented in term of LIBLINEAR[33]. And we use parfor[77] package to parallelize for-678

loops to accelerate algorithm for large datasets. There are three hyper-parameters to set: balance679

(boolean), num features (int),and num samples (int), to identify the sampling strategy, the number680

of genes to select, and the number of cells each iteration.681

In the GitHub project, we use the PBMC dataset[17] and Tabula Muris dataset[19] as examples682

to show the procedure and its performance of min complexity and min acquisition. We also683

have the test examples of min complexity cv and min acquisition cv on PBMC dataset and the684

demo projects of min complexity h5py and min acquisition h5py on 1.3 millions mouse brain685

‘megacell’ dataset[18]. The notebooks contain downloading dataset, preprocessing, and selecting686

genes with our method. Besides, we created Google Colaboratory project for these two examples687

that PBMC demo is at https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-n688

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.06.15.448478doi: bioRxiv preprint 

https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/articles/dataset/PopAlign_Data/11837097/3
 http://support.10xgenomics.com/single-cell/datasets
 http://support.10xgenomics.com/single-cell/datasets
 http://support.10xgenomics.com/single-cell/datasets
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2396856
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2396856
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2396856
https://github.com/CaiGroup/seqFISH-PLUS.
https://pypi.org/project/activeSVC
https://github.com/xqchen/activeSVC
https://github.com/xqchen/activeSVC
https://github.com/xqchen/activeSVC
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://colab.research.google.com/drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing
https://doi.org/10.1101/2021.06.15.448478
http://creativecommons.org/licenses/by-nc-nd/4.0/


N5oopyM?usp=sharing, Tabula Muris demo is at https://colab.research.google.com/drive/1SLehI689

KIQqpjK6BzEKc9m0y3uJ LBqRzA?usp=sharing, and PBMC cross-validation demo is at https:690

//colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?usp=sharing.691

Experiments692

Data Pre-processing693

We found that ActiveSVM was able to achieve high-performance across pre-processing strategies.694

For single-cell mRNA-seq column normalization (l2) was important for removing artifacts due695

to cell to cell variability in mRNA capture. However, additional algorithm was not sensitive to696

additional pre-processing steps.697

PBMC, Tabula Muris, Multiple-Myeloma698

These three data sets were pre-processed for a prior publication [20] via column normalizaiton.699

In each experiment, we removed the columns and rows where all values are zero. Then, gene700

expression matrices were first columns normalized and log transformed. For a cell j, each gene701

xij (gene i in cell j) is first normalized as g̃ij =
gij∑n
i=1 gij

where n is the number of genes in the702

transcriptome.703

Mega-cell data set, perturb-seq, spatial transcritomics704

For these data sets, we removed the columns and rows where all values are zero. Then we did705

l2-normalization along each cell to scale input cell vectors individually to unit squared-norm.706

Parameters707

Here we provide the algorithm parameters we used for ActiveSVM in Table 2,3,4. Besides the708

training set and test set, there are 15 user-defined hyper-parameters in ActiveSVM, five of which709

are about the feature selection procedure and the other ten are commonly-used parameters for710

linear SVM classifier. The detailed description about all parameters of ActiveSVM are detailed711

described in the integrated package page https://pypi.org/project/activeSVC/.712

As for comparison methods, correlation coefficient, mutual information, and chi-squared methods713
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don’t have specific parameters to set. We implemented them with scikit-learn[76] package ’Selec-714

tKBest’. For feature importance scores from decision tree and naive SVM, we did grid-search on715

key parameters based on 3-fold cross validation at each step. The parameters of decision tree are716

criterion and min samples leaf and of naive SVM are tol and C.717

Table 2: Parameters of ActiveSVM (PBMC and mouse megacell datasets).

PBMC PBMC mouse megacell mouse megacell
(min-complexity) (min-cell) (min-complexity) (min-cell)

num features 50 20 50 50
num samples 20 100 20 100
init features 1 1 1 1
init samples 20 200 20 100

balance True/False True True True
penalty ’l2’ ’l2’ ’l2’ ’l2’
loss squared hinge squared hinge squared hinge squared hinge
dual True True True True
tol 1e-4 1e-4 1e-4 1e-4
C 1.0 1.0 1.0 1.0

fit intercept True True True True
intercept scaling 1 1 1 1
class weight None None ’balanced’ ’balanced’
random state None None None None

max iter 1000 1000 1000 1000

Confidence Intervals718

Confidence intervals were estimated using a proportion confidence interval[41] as interval =719

z
√

ϵ∗(1−ϵ)
n

) where z = 1.96 for 95% confidence and n is the number of cells and ϵ the observed720

error.721
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