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Abstract

Increased microbial activity in high-latitude soils due to climate change might lead to higher
greenhouse gas (GHG) emissions. However, mechanisms of microbial GHG production and
consumption in tundra soils are not thoroughly understood. We analyzed 116 soil metatranscriptomes
from 73 sites in the Finnish sub-Arctic to investigate how the diversity and functional potential of
bacterial and archaeal communities vary across vegetation types and soil layers. Soils differed in
physicochemical conditions, with meadow soils being characterized by higher pH and low soil
organic matter (SOM) and carbon/nitrogen ratio whereas dwarf shrub-dominated ecosystems with
high SOM and low pH. Actinobacteria, Acidobacteria, Alphaproteobacteria, and Planctomycetes
predominated all communities but there were significant differences on genus level between
vegetation types, as plant polymer degrading groups were more active in shrub-dominated soils
compared to meadows. Given that climate change scenarios predict expansion in dwarf shrubs at high
latitudes, our results indicate that the rate of carbon turnover in tundra soils may increase in the future.
Additionally, transcripts of methanotrophs were detected in the mineral layer of all soils, potentially
moderating methane fluxes from deeper layers. In all, this study provides new insights into possible

shifts in tundra microbial diversity and activity with climate change.

Introduction

The Arctic is one of the regions experiencing the most rapid and severe effects of climate change
(IPCC, 2021). Major ecological disturbances have already been observed in Arctic ecosystems and
are expected to become more frequent over the coming decades even if anthropogenic greenhouse
gas (GHQG) emissions are curbed (Post et al., 2019). For example, a systematic greening of the Arctic
tundra has been observed over the last decades, accompanied by increased plant productivity and the
northward and upslope expansion of tall shrubs and trees into this otherwise treeless biome (Frost &
Epstein, 2014; Heijmans et al., 2022). In addition to regional disturbances, the effects of Arctic
climate change might have wider global consequences due to the vast amounts of carbon (C) and
nitrogen (N) stored in frozen tundra soils (Mackelprang et al., 2011; Johnston et al., 2019). Given
that warmer temperatures lead to increased rates of soil decomposition and GHG release, Arctic
organic matter stocks can contribute to a positive warming feedback loop (Bond-Lamberty et al.,
2018; Jansson & Hofmockel, 2020).

Microorganisms are important drivers of nutrient cycling in the tundra, and thus the investigation

of how microbial communities respond to local environmental variation in tundra soils is essential to
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predict the impacts of climate change on the GHG budget of this biome (Buckeridge et al., 2013;
Virkkala et al., 2018; Mod et al., 2021). Tundra microbial communities are shaped by extreme
environmental stressors such as fluctuating temperatures, long periods of sub-zero temperatures,
frequent freeze-thaw events, intensive UV radiation, and drought. However, microbial community
composition is stable and diverse across seasons in the sub-Arctic tundra, with Acidobacteria being
the predominant phylum in acidic soils (Ménnisté et al., 2007, 2013; Pessi et al., 2021a). Soil
microbes participate in organic matter decomposition, methanogenesis, and methanotrophy in the
high-Arctic and permafrost soil ecosystems (e.g., Hultman et al., 2015; Schostag et al., 2015; Tveit
et al., 2015), including in peatlands experiencing permafrost thaw (McCalley et al., 2014; Singleton
et al., 2018; Woodcroft et al., 2018). However, their functional potential has not been explored in
detail due to technical limitations and their vast diversity. This, in turn, hinders a comprehensive
understanding of the contribution of tundra microorganisms to and their feedback with climate
change. A better understanding of tundra microbial communities and their functions is the key to
acquiring process-level knowledge on biogeochemistry and developing accurate models of GHG
cycling.

At large geographic scales, the composition of Arctic tundra vegetation is primarily shaped by
climate (e.g., mean summer temperature) (Walker er al., 2005). However, tundra vegetation is
typically heterogeneous at the local level, as growing conditions (microclimate, soil moisture, soil
nutrients) vary greatly at small spatial scales (le Roux et al., 2013; Kemppinen et al., 2021a). Different
vegetation types affect soil biotic and abiotic factors which, in turn, influence the local soil microbial
community. For example, tundra soils have relatively low pH (4-6) (Hobbie & Gough, 2002;
Mainnistd et al., 2007), which is generally one of the most important drivers of microbial community
composition and activity (Chu et al., 2010). In addition, the quantity and quality of soil organic matter
(SOM), N availability, and C/N ratio affect microbial processes and primary production in tundra
soils (Koyama et al., 2014, Zhang et al., 2014). Despite a great local heterogeneity, only fragmentary
knowledge exists regarding microbial community composition and activity across different
vegetation types in the drier upland tundra, which is a noteworthy ecosystem that covers ca. 90% of
the Arctic (Walker et al., 2005). This knowledge gap is relevant as most of the Arctic is greening and
the typically low-growing Arctic vegetation is being gradually replaced by taller woody plants, a
development known as shrubification (Mod & Luoto 2016, Myers-Smith et al., 2020; Heijmans et
al., 2022). Shifts in vegetation and, in particular, shrub expansion across the Arctic tundra are some
of the most important ecosystem responses to climate change. These shifts in vegetation potentially
alter ecosystem carbon balances by affecting a complex set of soil-plant—atmosphere interactions

(Mekonnen et al., 2021). In general, decomposition in the Arctic tundra has been slower than plant


https://doi.org/10.1101/2021.06.12.448001
http://creativecommons.org/licenses/by-nc-nd/4.0/

81
82
&3
84
85
86
87
88
&9
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448001; this version posted April 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

growth, causing a build-up of detritus in tundra soils. Climate warming may result in carbon loss by
accelerating the decomposition of SOM. Future C storage in the Arctic tundra will depend on the
balance of C losses from SOM and C storage in plant pools due to higher productivity and changes
in plant community assemblages (Weintraub et al., 2005).

The warming trend in the Arctic region is alarming but the response of Arctic ecosystems to
climate change is only poorly understood. The effects of climate change are particularly complex in
tundra ecosystems given their high biotic and abiotic heterogeneity. Thus, elucidating the taxonomic
and functional composition of microbial communities across tundra soils is essential to a better
understanding of the effects of climate change on the Arctic and potential feedbacks with the global
climate system. Here we used metatranscriptomics to investigate the activity of microbial
communities during the active growing season across 73 sites in a mountain tundra ecosystem in the
Finnish sub-Arctic covering different vegetation types and a wide range of microclimatic and soil
nutrient conditions. We aimed at investigating the effect of different vegetation types and soil nutrient
conditions on microbial diversity and activity in tundra soils to obtain insights on potential future
changes on microbial communities and functions associated with the increased greening of Arctic

ecosystems.

Materials and methods

Study setting and sampling

The study area is located in Kilpisjarvi, north-western Finland, and extends to the Scandinavian
Mountains (Figure 1). The 3 km? area covers parts of two mountains, Mount Saana (69°02'N,
20°51'E) and Mount Korkea-Jehkas (69°04'N, 20°79'E) and the valley in between. The elevation
range in the study area is 320 m, with the highest point on Mount Saana at 903 m a.s.l. The study area
is topographically heterogeneous and part of the sub-Arctic alpine tundra biome. Consequently, the
area comprises relatively broad environmental gradients of soil microclimate, moisture, and pH,
among others (Kemppinen et al., 2021a). The vegetation type is mainly mountain heath dominated
by dwarf shrubs such as Empetrum nigrum and Betula nana and to a lesser extent by Juniperus
communis, Vaccinium vitis-idaea, V. uliginosum, and V. myrtillus (Kemppinen et al., 2019).
However, due to fine-scale environmental variation and broad gradients, the landscape forms a
mosaic of different vegetation types, as both vegetation cover and plant species composition can vary
over very short distances (le Roux et al., 2013). The soils in the area are mostly poorly developed
leptosols with shallow organic layers and occasional podzolization; however, the meadows have soils

with thicker organic layers. Permafrost is absent from these soils but can be found in the bedrock

4


https://doi.org/10.1101/2021.06.12.448001
http://creativecommons.org/licenses/by-nc-nd/4.0/

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128

129
130
131
132
133
134
135
136
137
138
139

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448001; this version posted April 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

above 800 m a.s.l. (King and Seppéld 1987). The average air temperature and precipitation in July
for the period 1981-2010 measured at the Kilpisjirvi meteorological station (69°05'N 20°79'E, 480 m
a.s.l.) were 11.2°C and 73 mm, respectively (Pirinen et al. 2012).

Samples were collected in July 2017 from 73 sites (Figure 1a, Supplementary Table 1).
Sampling sites encompassed four vegetation types, namely barren soil, deciduous shrub, evergreen
shrub, and meadow (Figure 1b-e), which were classified according to the Circumpolar Arctic
Vegetation Map (Walker et al. 2005). All sampling equipment was disinfected with 70% ethanol
before and between samples to avoid contamination. The soil was bored with a 50-mm diameter
stainless-steel soil corer with a plastic inner casing. When available, both organic and mineral layer
sub-samples were collected. Sampling was targeted below the plant roots, with a 5-cm target depth
for the organic layer sample, whereas the mineral layer sample was taken from the lowest part of the
core from 10-15 cm. The samples were placed in a Whirl-Pak sampling bag (Nasco, Fort Atkinson,
WI, USA) with a metal spoon and immediately frozen on dry ice and kept frozen at —80°C until
nucleic acid extraction. Samples were collected from 73 sites, from which 116 metatranscriptomes

were sequenced.
Soil physicochemical data

For the analysis of soil physicochemical properties, approximately 0.2 dm? of soil was collected with
a steel cylinder and stored at 4 °C. The soils were lyophilized according to the Finnish standard
SFS300 and pH was analysed according to international standard ISO10390. SOM content was
determined by loss on ignition analysis according to the Finnish standard SFS3008. CNS analysis
(carbon, nitrogen, and sulphur) was performed with a Vario Micro Cube analyser (Elementar,
Langenselbold, Germany). For this, mineral samples were sieved through a 2-mm plastic sieve and
the organic samples were homogenized by hammering the material into smaller pieces. Differences
in soil physicochemical properties between vegetation types were assessed using the Kruskal-Wallis
test followed by the pairwise Wilcoxon test with Bonferroni correction (functions kruskal.test and

pairwise.wilcox.test, R-core package).
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Figure 1. a) Map of the sampling sites in Kilpisjarvi, north-western Finland. The inset shows the
location of Kilpisjarvi in Fennoscandia. b—e) Pictures of the four types of soil vegetation studied (b:
meadow; c: evergreen shrub; d: deciduous shrub, e: barren). The number of samples analysed from
each vegetation type is indicated. f) Soil physicochemical properties across the four vegetation types.
Categories with the same letter are not statistically different (one-way ANOVA, p > 0.05). One outlier
was removed from the mineral C/N plot.
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Nucleic acid extraction

Three replicate nucleic acid extractions were performed for each sample. Samples were kept on ice
during weighing and extraction and all steps were performed promptly with nuclease-free labware to
avoid RNA degradation. Solutions and water were treated with 0.1% diethylpyrocarbonate. Nucleic
acids were extracted using a modified hexadecyltrimethylammonium bromide (CTAB), phenol-
chloroform, and bead-beating protocol (Griffiths et al., 2000; DeAngelis et al., 2009). On dry ice,
approximately 0.5 g of frozen soil was transferred to a 2-mL Lysing Matrix E tube (MP Biomedicals,
Heidelberg, Germany) and 0.5 mL of CTAB buffer (consisting of equal amounts of 10% CTAB in 1
M sodium chloride and 0.5 M phosphate buffer in 1 M NaCl), 50 pl 0.1 M ammonium aluminium
sulfate (NH4(SO4)2 -12 H>0), and 0.5 mL phenol:chloroform:isoamyl alcohol (25:24:1) was added.
After bead-beating with FastPrep (MP Biomedicals, Heidelberg, Germany) at 5.5 m s~! for 30 s, 0.5
mL chloroform was added. Nucleic acids were precipitated with polyethylene glycol 6000 (PEG6000,
30% in 1.6 M NaCl) and washed with ethanol. Nucleic acids were extracted again from the leftover
soil pellet to maximize yields. Nucleic acids were resuspended in 25 pl of Buffer EB and 250 pl
Buffer RLT with -mercaptoethanol added. Buffers EB and RLT were from an AllPrep DNA/RNA
Mini Kit (Qiagen, Hilden, Germany). All centrifugations were performed at 4°C. Finally, RNA and
DNA were purified with AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany), where RNA was
treated with DNAse I. The amount and integrity of RNA were assessed on a Bioanalyzer RNA 2100
Nano/Pico Chip with Total RNA Assay (Agilent, Santa Clara, CA, USA). To ensure that RNA was
DNA-free, a check-up PCR with universal primers and gel electrophoresis was performed. Triplicates
were pooled by combining equal amounts of RNA from each triplicate. Ribosomal RNA was not

depleted and thus the total RNA approach was used (Urich ef al., 2008).
Sequencing

Complementary DNA (cDNA) libraries were constructed with the Ultra Il RNA Library Prep Kit for
[llumina (New England Biolabs, Ipswich, MA, USA). cDNA concentrations were measured using a
Qubit fluorometer with a dsSDNA BR/HS kit (Invitrogen, Carlsbad, CA, USA). Before sequencing,
the libraries were analysed with Fragment analyzer (Advanced Analytical, Ames, [A, USA) and small
cDNA fragments were removed to avoid primer binding to the flow cell and to reduce cluster density.
Single-end sequencing was performed on an Illumina NextSeq 500 (Illumina, San Diego, CA, USA)
with 150 cycles at the Institute of Biotechnology, University of Helsinki, Finland.

Metatranscriptomic data processing and analysis
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One sample (site 11202, organic layer) yielded a much higher than average amount of reads (80.4

million) and was randomly reduced to 4 million reads with seqtk v. 1.3 (https://github.com/lh3/seqtk).

The  quality of the sequences was  assessed with  FastQC v. 0.11.5

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC v. 1.3 (Ewels et al,

2016). Trimming and quality filtering was performed with Cutadapt v. 1.10 (Martin, 2011) applying
a quality cut-off of 25 and a minimum adapter overlap of 10 bp. Metaxa2 v. 2.1.3 (Bengtsson-Palme
et al., 2015) was used to identify reads mapping to the small subunit (SSU) rRNA. These were then
classified against the SILVA database release 132 (Quast et al., 2013) using the mothur v. 1.40.5
classify.seqs command with a confidence cut-off of 60% (Schloss et al., 2009). The taxonomy of
abundant taxa was manually updated according to the Genome Taxonomy database (Parks et al.,
2018, 2020). For the analysis of protein-coding genes, reads were mapped to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Prokaryote database release 86 (Kanehisa & Goto, 2000) using
DIAMOND blastx v. 2.1.3 (Buchfink ez al., 2015) with an E-value cut-off of 0.001. The KEGG
orthology (KO) identifier of the best hit was assigned to each read and mapped to the KEGG module
hierarchy, and spurious pathways were removed using MinPath v. 1.4 (Ye & Doak, 2009). Since
genes for methane and ammonia oxidation (pmo and amo, respectively) are not distinguished in
KEGG we used blastx (Altschul et al., 1990) to compare putative pmoA-amoA genes against a
manually curated database of five PmoA and nine AmoA sequences from both bacteria and archaea
(Supplementary Figure 1).

Statistical analyses and visualization were performed with R v. 3.6.2 (R Core Team 2020). For
multivariate analyses, taxonomic (genera abundances) and functional (KO abundances) matrices
were transformed into Bray-Curtis distance matrices (function vegdist, R-package vegan v. 2.5-6;

https://github.com/vegandevs/vegan). Community-wide differences between vegetation types and

soil layers were tested with permutational analysis of variance (PERMANOVA) (function adonis, R-
package vegan v. 2.5-6) followed by pairwise PERMANOVA (function pairwise.perm.manova, R-
package RVAideMemoire v.0.9-78; https://cran.r-project.org/web/packages/RVAideMemoire).

Differences in community structure were visualized using principal coordinates analysis (PCoA)
(function ordinate, R-package Phyloseq v. 1.30.0; McMurdie & Holmes, 2013). The relationship
between community structure and soil physicochemical properties was assessed using distance-based
redundancy analysis (db-RDA) with forward selection (functions capscale and ordistep, R-package
vegan v. 2.5-6). Soil physicochemical data was log-transformed prior to the analysis. Differences in
the abundance of individual bacterial and archaeal genera and functional genes between vegetation
types were tested with one-way analysis of variance (ANOVA) (functions /m and aov, R-core

package) followed by pairwise t-test (function pairwise.t.test, R-core package).
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Data availability

Sequences have been deposited in the European Nucleotide Archive under accession number

PRJEB45463.

Results

Soil properties across vegetation types

We observed a high variability in soil properties between samples from the organic and mineral layers
and across vegetation types. SOM content varied from 2% to 92%, gravimetric soil water
concentration from 9% to 432%, and pH from 3.9 to 5.8 (Figure 1f). pH was generally higher in the
mineral layer whereas SOM, N, C/N ratio, and gravimetric water content were higher in the organic
layer. Soil properties also differed between vegetation types (Kruskal-Wallis test; P < 0.01). In the
organic layer, meadow sites were less acidic and contained less SOM than deciduous or evergreen
shrubs. Meadows also had a lower C/N ratio than shrubs or barren soils. The physicochemical
properties of the mineral layer did not differ significantly between vegetation types. Varying degrees

of collinearity between the physicochemical variables was observed (Supplementary Figure 2).
Microbial community composition along the tundra landscape

We obtained 281.1 million sequence reads using a total RNA metatranscriptomic approach (Urich et
al., 2008). First, we analyzed reads corresponding to the small subunit ribosomal RNA (SSU rRNA).
SSU rRNA represented 35 + 2% (mean + standard deviation) of the reads. Over 80% of the SSU
rRNA sequences were bacterial, 0.1 % archaeal (mostly Thaumarchaea), and 19% were of eukaryotic
origin, with fungal SSU rRNA representing 12% of the sequences (Ascomycota, 8%; Basidiomycota,
3%). Furthermore, 0.2% of the sequences were recognized as SSU rRNA but could not be assigned
unambiguously to a specific domain.

The predominant bacterial groups were assigned to the phylum Actinobacteria (27 + 9% of the
sequences; orders Acidothermales and Solirubrobacterales), phylum Acidobacteria (17 &+ 3%; orders
Acidobacteriales and Solibacterales), class Alphaproteobacteria (16 + 3%; orders Rhizobiales and
Acetobacterales), and phylum Planctomycetes (14 + 3%; order Gemmatales) (Figure 2). Classes
Deltaproteobacteria and Gammaproteobacteria, as well as phyla Chloroflexi and Verrucomicrobia,
were also abundant. The most abundant genera were Acidothermus (phylum Actinobacteria; 13 +

5.7%) and Ca. Solibacter (phylum Acidobacteria; 3.11 £ 0.83%), followed by Bryobacter (phylum
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241  Acidobacteria; 2.06 + 0.38%), Pajaroellobacter (class Deltaproteobacteria; 1.64 £ 0.55%), and
242 Roseiarcus (class Alphaproteobacteria; 1.48 + 1.07%) (Figure 3, Supplementary Table 2).
243

Barren Deciduous Evergreen Meadow
shrub shrub Taxonomy (Phylum | Class | Order)

[ Actinobacteria | Acidimicrobiia | IMCC26256

[] Actinobacteria | Actinobacteria | Acidothermales

[ Actinobacteria | Actinobacteria | Corynebacteriales
[] Actinobacteria | Actinobacteria | Mycobacteriales

[ Actinobacteria | Thermoleophilia | Gaiellales

[ Actinobacteria | Thermoleophilia / Solirubrobacterales
[ Acidobacteria | Acidobacteriia | Acidobacteriales

[l Acidobacteria | Acidobacteriia | Solibacterales

[ Acidobacteria | Acidobacteriia | Subgroup 2

[ Acidobacteria | Subgroup 6

[ Planctomycetes | Phycisphaerae | Tepidisphaerales
[ Planctomycetes | Planctomycetacia | Gemmatales
[_] Planctomycetes | Planctomycetacia | Isosphaerales
[l Proteobacteria | Alphaproteobacteria | Acetobacterales
[ Proteobacteria | Alphaproteobacteria | Caulobacterales
[ Proteobacteria | Alphaproteobacteria | Elsterales

[ Proteobacteria | Alphaproteobacteria / Rhizobiales
[ Proteobacteria | Alphaproteobacteria / Rickettsiales
[ Proteobacteria | Deltaproteobacteria | Myxococcales
[ Proteobacteria | Deltaproteobacteria | RCP2-54

] Proteobacteria | Gammaproteobacteria | Betaproteobacteriales
[ Proteobacteria | Gammaproteobacteria | WD260

[ Dormibacterota | Dormibacteria

[l Chloroflexi | KD4-96

[ Chloroflexi | Ktedonobacteria | Ktedonobacterales
[ Chlorofiexi | TK10

[l Verrucomicrobia | Verrucomicrobiae / Chthoniobacterales
[ Verrucomicrobia | Verrucomicrobiae / Pedosphaerales
[ Bacteroidetes | Bacteroidia | Chitinophagales
[[__]Bacteroidetes | Bacteroidia | Sphingobacteriales

[l Gemmatimonadetes | Gemmatimonadetes | Gemmatimonadales
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245 Figure 2. Relative abundances of bacterial orders in metatranscriptomes (RNA) and
246  metagenomes (DNA) of samples from the a) organic and b) mineral layer. Samples from the same

247  vegetation type were pooled and unclassified taxa were removed.
248

249 When comparing SSU rRNA sequences from metatranscriptomes (i.e. RNA, representing active
250  microbes) to sequences from metagenomes (i.e. DNA, representing the whole microbial community)
251  (Pessi et al., 2021a), the most abundant microbial groups were largely the same but with notable
252  differences (Figure 2, Supplementary Figure 3a). Orders with greater relative abundance in the
253  metatranscriptomes included Gemmatales (Planctomycetes), Acidothermales (Actinobacteria),
254  Solibacterales (Acidobacteria), and Myxococcales (Deltaproteobacteria), whereas Subgroup 2
255  (Acidobacteria),  Rickettsiales  (Alphaproteobacteria), = Dormibacterota,  Chitinophagales
256  (Verrucomicrobia), and Gemmatimonadales (Gemmatimonadetes) were more abundant in the
257  metagenomes. In the metatranscriptomes, the orders with more than 1% relative abundance accounted
258  together for 78% of the communities compared to 64% in the metagenomes. Additionally, more than
259 1500 bacterial and archaeal genera were identified from the metatranscriptomes and less than 500

260  bacterial and archaeal genera from the metagenomes.
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Figure 3. Relative abundances of the 80 most abundant bacterial genera across the samples.
Abundances were square root-transformed to improve visualization.

Shifts in microbial community composition across the different vegetation types

Genus-level community structure was significantly different in the organic and mineral layers
(PERMANOVA; R?=0.07; P<0.001) (Supplementary Figure 3b). Interestingly, communities also
differed significantly across the four different vegetation types both in the organic (R’ = 0.16; P <
0.001) and mineral layers (R’ = 0.13; P < 0.01). Pairwise analyses revealed that the communities in
the organic layer of meadow sites were significantly different from all other vegetation types, whereas
communities from the mineral layer differed only between the meadow and evergreen shrub sites
(Supplementary Table 3).

Genus-level comparisons were conducted for the metatranscriptomes across vegetation types and
soil layers. For this, we considered only abundant genera (i.e. genera with a mean abundance at least

twice the mean of all genera). In the organic layer, the alphaproteobacterial genera Bradyrhizobium,
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Nitrobacter, Rhodoplanes, and Rhodomicrobium were significantly more abundant in samples from
the meadow sites than sites with other vegetation types (ANOVA; P < 0.01) (Figure 4a). The same
was observed for other taxa, namely Gaiella (Actinobacteria), Ca. Nostocoida (Planctomycetes),
“HSB_OF53-F07” (Chloroflexi), Anaeromyxobacter (Deltaproteobacteria), Gemmatimonas
(Gemmatimonadetes), “R4B1” (Acidobacteria), Ca. Udaeobacter and “ADurb.Bin063-1"
(Verrucomicrobia). On the other hand, Acidothermus (Actinobacteria) was less abundant in the
meadow than the shrub sites, whereas Roseiarcus (Alphaproteobacteria), the acidobacterial genera
Acidipila, Granulicella, and Edaphobacter, as well as Gemmata (Planctomycetes) were less abundant
in the meadow sites compared to all other vegetation types. In the mineral layer, “HSB_OF53-F07”
(Chloroflexi), Anaeromyxobacter (Deltaproteobacteria), "Adurb.Bin063-1" (Verrucomicrobia), and
“R4B1” (Acidobacteria) were more abundant in the meadows compared to all other vegetation types,

whereas Bauldia (Alphaproteobacteria) was more abundant in the meadows only in relation to the

shrub sites (Figure 4b).
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Figure 4. Boxplots showing abundant genera (mean abundance larger than the twofold mean of all
genera) that were differentially active across vegetation types in a) organic layer and b) mineral layer
(one-way ANOVA, P <0.01).
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We used db-RDA with forward selection to investigate which factors underly the observed
differences in microbial community structure. In the mineral layer, the best model included
vegetation, pH, and gravimetric water content (R’ = 0.25; P < 0.05), whereas in the organic layer the
best model included vegetation, pH, and C/N ratio (R’ = 0.28; P < 0.05). However, it is important to
note that there are varying degrees of collinearity between the variables selected by the forward
selection procedure and other variables (Supplementary Figure 2). For example, gravimetric water
content in the mineral layer and pH and C/N ratio in the organic layer were correlated with SOM, C,
and N content (0.5 < r > 0.5). Thus, in these cases, the variables selected by the model should be

considered, to some extent, as a proxy of the intercorrelated variables.
Microbial community functions across vegetation types

Differences in protein-coding gene composition between samples from the organic and mineral layers
were small (PERMANOVA; R’ = 0.03; P < 0.001). Community structure based on protein-coding
genes was also significantly different between vegetation types in the organic layer (R’ = 0.10; P <
0.001), with communities from the meadow sites differing from shrub and barren sites and evergreen
shrub communities differing from barren sites. No significant differences were observed between
vegetation types in the mineral layer.

Genes with a KEGG classification represented only a small fraction (1.39 & 0.27%) of the protein-
encoding genes. While genes with no KEGG classification were not analysed in this study, they
corresponded mostly to genes encoding proteins with unknown function (Supplementary Figure 4).
The most abundantly transcribed genes that were mapped to KEGG pathways are involved in genetic
information processing, including i) folding, sorting, and degradation, ii) transcription, and iii)
metabolism (Supplementary Figure 5). ABC transporter genes were widely transcribed, including
genes encoding transport system substrate-binding proteins for ribose (rbsB), D-xylose (xy/F), and
sorbitol/mannitol (smoE, mtlE), and multiple sugar transport system ATP-binding proteins (msm.X,
msmK, malK, sugC, ggtA, msiK), indicating the decomposition of plant polymers. Other widely
transcribed ABC transporters included genes for branched-chain amino acid transport system proteins
(livKGFHM) and urea transport system substrate-binding proteins (u7tA4). In addition to transporters,
the chaperone genes groel and dnaK and the cold shock protein gene cspA involved in survival in
cold temperatures were among the most transcribed genes across all samples. The gene coxL/cutL
encoding the large subunit of the aerobic carbon-monoxide dehydrogenase enzyme was also widely
expressed, as well as two genes involved in nitrogen uptake, namely glutamine synthetase (g/nA4) and

ammonium transporter (amt).
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Figure 5. Relative abundances of genes involved in methane oxidation and the serine pathway of
formaldehyde assimilation. Abundances were square root-transformed to improve visualization.

Given the high abundance of genes involved in the transport of carbohydrates, we expanded our
analysis to other genes related to C cycling and metabolism (Supplementary Figure 6). Interestingly,
the pmoABC-amoABC genes involved in methane/ammonia oxidation were significantly more
transcribed in the mineral layer than in the organic layer (ANOVA, pmoA: R’ = 0.13, pmoB: R’ =
0.09, pmoC: R’ = 0.12; P < 0.001) (Figure 5). To further distinguish between the closely related
amoA and pmoA genes, we performed a blastx analysis against a manually curated database of PmoA
and AmoA sequences from different organisms. This indicated that 96% of the sequences identified
as pmoA-amoA using the KEGG database correspond to the pmoA gene, indicating methane oxidation
by the particulate methane monooxygenase (pMMO). However, the soluble methane monooxygenase
(sMMO) genes mmoXYZBCD, as well as the genes mxaF or xoxF which encode methanol
dehydrogenases for methanol oxidation to formaldehyde, were in general not transcribed (Figure 5).
Genes for formaldehyde assimilation using the serine pathway, including gly4 encoding the enzyme
glycine hydroxymethyltransferase, were transcribed. This indicates the utilisation of the serine cycle
instead of the ribulose monophosphate (RuMP) cycle for formaldehyde assimilation in these

microbial communities.
Discussion

We analysed over 100 soil metatranscriptomes across a sub-Arctic tundra landscape to investigate
how microbial community composition and their functions vary across soil layers and vegetation
types. Soil physicochemical composition varied according to vegetation type in the organic layer, but
not in the mineral layer. This is likely related to vegetation being the primary source of material for
the organic layer, whereas the mineral layer properties are more affected by bedrock and soil texture,
among other factors (Jenny 1941; Haichar et al., 2008). Thus, environmental conditions are more

homogeneous in the mineral layer, leading to more uniform microbial communities irrespective of
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vegetation cover as observed in the present study. Differences in soil properties between vegetation
types were more pronounced in the organic layer, with the meadows differing significantly from the
other vegetation types by higher pH and lower SOM and C/N ratio. As revealed by our multivariate
analyses, these factors were significantly associated with differences in community structure
observed between vegetation types, which can be presumably linked to differences in SOM quality.
Evergreen shrubs such as Empetrum nigrum, which is the dominant plant species in the study area,
produce recalcitrant, acidic, and slowly decomposing litter. On the other hand, meadows are
dominated by forbs, grasses, and sedges, which produce litter that decomposes faster and has higher
nutrient concentrations with lower C/N ratio (Hobbie ef al., 2000; Eskelinen et al., 2009).
Actinobacteria, Acidobacteria, Alphaproteobacteria, and Planctomycetes were the most active
phyla in all vegetation types which is consistent with previous studies from Arctic regions (Méannisto
et al., 2007; Hultman et al., 2015; Tas et al., 2018; Tripathi et al., 2019, Ivanova et al., 2018). These
phyla, excluding Planctomycetes, were also among the most abundant in the metagenomics dataset
from these samples (Pessi et al., 2021a). Archaea, which represented only 0.1% of the transcripts,
consisted mostly of Thaumarchaea in the mineral layer as previously observed (Lu et al., 2017; Shao
et al., 2019; Pessi et al., 2021b). Communities in both the organic and mineral layers and across all
vegetation types were dominated by aerobic acidophilic genera that play a role in the degradation of
plant organic matter, including Acidothermus, Ca. Solibacter, and Bryobacter (Mohagheghi et al.,
1986, Ward et al., 2009, Kulichevskaya et al., 2010). Acidothermus was the most abundant active
genus overall and was significantly more abundant in the shrub sites. Acidothermus cellulolyticus,
the only described species in this genus, is a thermophilic, acidophilic, and cellulolytic species first
isolated from an acidic hot spring (Mohagheghi et al., 1986). Furthermore, these microorganisms
tolerate temperature and moisture fluctuation and low-nutrient conditions, which are characteristic of
tundra soils (Ward et al., 2009; Rawat ef al., 2012). Interestingly, genome analysis of Ca. Solibacter
revealed not only the ability to utilise complex plant cell-wall polysaccharides and simple sugars but
also carbon monoxide (CO), a toxic gas, as a complementary energy source in a mixotrophic lifestyle
(Ward et al., 2009). Indeed, the coxL/cutl gene encoding the carbon monoxide dehydrogenase
enzyme responsible for the oxidation of CO was widely expressed in the present study. In addition,
Ca. Solibacter and Bryobacter are facultative anaerobes that play a role in the nitrogen cycle as they
harbour candidate nitrite and nitric oxide reductases (Pessi et al., 2021a). In general, our results show
that the dominant active microorganisms in the tundra soils studied here are versatile degraders of
plant polymers with the ability to thrive in fluctuating conditions and have potential roles in the C

and N cycle.
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Our results evidenced a link between soil microbial community composition/activity and
vegetation via physicochemical factors such as pH and SOM content. Meadow soils, which were
characterized by higher pH and lower SOM content and C/N ratio harboured distinct microbial
communities compared to the other vegetation types. Most of the genera that were abundant in the
meadows are poorly known, and more research is required to understand their roles in this ecosystem.
Interestingly, members of Gaiella, Bradyrhizobium, Ca. Udaeobacter, and Gemmatimonas have been
implicated in the cycling of the atmospheric gases H, CO2, and N>O (Lepo et al., 1980; Park et al.,
2017; Severino et al., 2019, Willms et al., 2020). Shrub soils, characterized by lower pH and higher
SOM content, had a higher abundance of the Acidobacteria genera Acidipila, Granulicella, and
Edaphobacter. These genera most likely have a role in degrading plant-derived organic matter in
these shrub soils, as seen in other acidic upland soils (Pankratov & Dedysh, 2010; Minnisto et al.;
2013, Ivanova et al., 2020, 2021). Altogether, our results indicate that shrub soils have a higher
abundance of chemoorganotrophs that degrade complex plant polymers, whereas meadows harbour

also microbial groups that are not solely dependent on plant-derived organic matter.
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Figure 6. A conceptual figure on the implications of the study. The arrows denote the change in the
measured environmental variables and the microbial phyla active in the sites are marked to each
vegetation type and soil layer.

Interestingly, our results evidenced a potential for methane oxidation in the mineral layer, as the pmo
gene and genes for the serine pathway were transcribed together with the activity of methanotrophic
bacteria such as Methylocapsa. Of the known Methylocapsa species, M. gorgona grows only on
methane, whereas M. acidiphila and M. palsarum grow also on low methanol concentrations and M.
aurea on methanol and acetate (Dedysh et al., 2002, 2015; Dunfield ef al., 2010; Tveit et al., 2019).
A recent in situ *CHs-DNA-SIP enrichment study showed that Methylocapsa were the dominant

active methane oxidizers in high Arctic soil (Altshuler et al., 2022). Based on the results shown here
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and by others (e.g., Belova et al., 2020), Methylocapsa could have a significant role as methane
oxidizers in sub-Arctic tundra soils. Moreover, our results showed similar activity levels of methane
oxidizers in the mineral layer across all vegetation types, which suggests that methane oxidation is
not dependent on vegetation cover in deeper soil layers. Future studies employing e.g. stable isotope
probing (SIP) could shed light on the regulation of methane oxidation in tundra soils.

In this study, we investigated the microbial activity across different vegetation types (barren,
deciduous shrub, evergreen shrub, and meadow) in tundra soils to understand how future changes in
vegetation cover such as shrubification may affect the microbial community diversity and activity.
In the dwarf shrub-dominated tundra, shrubs influence microclimate and soil moisture, which can
lead to cooling and drying of the soils in the growing season (Kemppinen et al., 2021b). Our findings
indicate that plant polymer-degrading microorganisms would be active in these conditions. However,
the overall greening of the Arctic is more complex, as graminoids instead of shrubs are increasing in
colder parts of the region (Elmendorf et al., 2012). In addition, with increasing temperatures, high
latitudes will receive more precipitation as rainfall across the Arctic (Bintanja & Andry 2017), which
will likely affect microbial communities which are strongly reliant on soil moisture resources (Evans
et al., 2022). Therefore, the consequences of macroclimatic changes on soil moisture are not
straightforward. Yet, it is evident that, in addition to the direct effects on microbial communities,
future moisture conditions will have a strong effect also in shrubification (Ackerman et al., 2016),
plant diversity, and assemblages (le Roux et al., 2013), and overall ecosystem functions (Bjorkman
et al.,2018) in the tundra, including microbial mediated processes. In all, despite the overall similarity
in bacterial community composition in this study, shrubs had a more abundant and active community
of potential degraders of plant-derived organic matter. Therefore, we hypothesize that if shrub soils
become more prevalent, heterotrophic microbial activity may increase and lead to increased CO>

fluxes.
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S1 Supplementary Table

organic, m: mineral).
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PmoA | Methylocystis sp. (AAC45295.2)]
PmoA | Methylocapsa palsarum (AJM13622.1)
PmoA | Uncultured archaeon (KU133544.1)
PmoA | Uncultured bacterium (KF511709.1)
PmoA | Uncultured archaeon (KJ934639.1)
AmoA | Uncultured Nitrosospira (MH302275.1)
e AmoA | Uncultured Nitrosospira (MH302296.1)
AmoA | Uncultured bacterium (KU254833.1)
AmoA | Uncultured bacterium (JQ478637.1)
AmoA | Uncultured archaeon (LK056114.1)

w0 AmoA | Candidatus Nitrosocosmicus arcticus (QED55353.1)
rloss AmoA | Uncultured archaeon (MG913856.1)
— 5 AmoA | Candidatus Nitrososphaera evergladensis (WP_148699883.1)
0.25 | AmoA | Uncultured archaeon (FJ853220.1)

S2 Supplementary Figure 1. Maximum-likelihood tree of reference amino acid sequences used to
discriminate between amoA and pmoA transcripts. Branch supports based on 1000 bootstraps are

indicated.
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S3 Supplementary Figure 2. Pairwise correlation between soil physicochemical variables.
Comparisons with Pearson correlation values () = 0.5 or < —0.5 are highlighted in red. SOM: soil

organic matter; C: carbon; N: nitrogen.
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S4 Supplementary Table 2. Relative abundances at the genus level in each vegetation type and soil

layer.
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S5 Supplementary Figure 3. Principal coordinates analysis (PCoA) showing differences in genus-

level taxonomic composition between a) metatranscriptomes (this study) and metagenomes (Pessi et

al., 2021a) and b) soil layers in the metatranscriptomes. Ellipses in panel b represent 1.5 standard

deviations from the group centroid.
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S6 Supplementary Table 3. Differences in the active microbial communities between organic and
mineral layers and the four different vegetation types based on pairwise PERMANOVA analysis.

NS: not significant.
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S7 Supplementary Figure 4. Heatmap showing the most abundant genes across all samples that did
not match to any sequence present in the KEGG database. Abundances were square root-transformed

to improve visualization.
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689 S8 Supplementary Figure 5. Heatmap showing the 100 most abundant genes that were mapped to
690 KEGG pathways. Abundances were square root-transformed to improve visualization.
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S9 Supplementary Figure 6. Heatmap showing the genes belonging to metabolism pathways in
KEGG. Abundances were square root-transformed to improve visualization.
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