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Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of avail-
able atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the
hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate
how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the
brain’s function from its underlying structure. We show how network topology, structure-function correlation
(SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas
choice and atlas features. Through the lens of our disease system, we propose a general framework and algo-
rithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity
of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the

various atlases published over the last century.

Brain Atlas | Networks | Epilepsy | Structure-function

Introduction

How we define anatomical brain structures and relate those
structures to the brain’s function can either constrain or en-
hance our understanding of behavior and neurological dis-
eases'™. Discoveries by scientists like Carl Wernicke and
Pierre Paul Broca, who mapped specific brain regions to speech
function, in addition to case studies from Phineas Gage and
H.M., who lost specific brain regions with resultant changes
in brain function and behavior, exemplify how brain structure
and function are fundamentally linked® 7. Properly labeling
brain structures is paramount for enabling scientists to ef-
fectively communicate about the variability between healthy
individuals and about the regions involved in neurological
disorders®. Yet, no consensus has been reached on the most
appropriate ways to label and delineate these regions, as ev-
ident by the wide variety of brain maps, or atlases, defining
neuroanatomical structures®.

In common usage, an atlas refers to a “collection of maps” °

that typically defines geo-political boundaries and may include
coarse borders (continental), fine borders (city), and anything
in between (country; Fig. 1a, left). Borders!! are usually con-
sistent across atlases of the world. In contrast, atlases of the
brain are not consistent. Four separate atlases (Fig. 1a, right)
may define the superior temporal gyrus differently. For ex-
ample, approximately ninety percent of the anterior superior
temporal gyrus in the Harvard-Oxford atlas'® overlaps with
the posterior superior temporal gyrus in the Hammersmith

atlas'”. Atlases may also differ in other ways, including parcel-
lation size, neuroanatomical coverage, and complexity of brain
region shapes. For instance, the Yeo atlas'® contains 7 or 17
parcels while the Schaefer atlases'® may have between 100
and 1,000 parcels. Complicating matters further, atlases can
differ in their intended use. The MMP atlas?® was intended
for surface-based analyses?!, yet a volumetric version (without
subcortical structures) was independently created and used in
connectivity studies®?. The plethora of available atlases poses
a problem for reproducibility in studying healthy and diseased
populations and for metanalyses describing the involvement
of different regions of the brain in various diseases. This has
been termed the Atlas Concordance Problem®.

In the present study, we perform an extensive evaluation of
the available atlases in the neuroscience literature (Table 1) by
examining the effect of varying features such as parcellation
size, coverage, and shape (Fig. 1b) on structural connectivity
(Fig. 1c). We also examine how atlas choice changes structural
network topology by measuring structure-function correlation
(SFC) using an atlas-independent measure of functional connec-
tivity (Fig. 1d). We utilize a total of 55 brain atlases, including
many routinely used in common neuroimaging software. Note
the important distinction between the terms atlas, template,
and stereotactic space’ (see Fig. S1). We found that different
atlases may alter the power to test a hypothesis about epilepsy
pathophysiology that seizures propagate through the underly-
ing structural connections of the brain. This hypothesis has
been previously supported in prior research 3142324,
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a The Atlas Concordance Problem

Al Superior Temporal ~ Superior Temporal Pole Anterior  Posterior Temporal Pole  Anterior
as Superior Temporal  Superior Temporal Gyrus Superior Temporal Gyrus
b Atlas Features C  Atlas choice alters connectivity; what is true connectivity?
Coarse to fine Surface Large or few parcels Small or many parcels  Cortically-bounded parcels
parcellations (e.9. DKT)

(e.g. Schaefer)

axon &/ “% &
connections =¥ /

Discontinuous Subcortical Resulting connectivity matrices
(e.g. Yeo) (e.g. Harvard-Oxford) { J{j ﬁ f l
LI e |
d How does atlas choice affect study results?
(specifically in quantifying structure-function correlation)

Structure

Fig. 1. Many brain atlases are available in the neuroscience literature. | a, In common usage, an atlas refers to
a “collection of maps”'® that defines geo-political borders at different scales. Although borders!! are usually consistent
across atlases of the world, they are typically not consistent across atlases of the brain. Four separate atlases (left-to-right:
CerebrA, AAL, Hammersmith, Harvard-Oxford) may define the superior temporal gyrus differently. The lack of consistency
across these labels poses a problem for reproducibility in cognitive, systems, developmental, and clinical studies, as well as
metanalyses describing the involvement of different regions of the brain in various diseases*. This challenge has been previously
referred to as the Atlas Concordance Problem. b, Atlases can have varying features (see also Table 1). ¢, Thus, all current
connectivity studies in neuroscience may not accurately reflect some fundamentally “true” architecture. For example, atlases
with either large or small parcels may affect the structural connectivity matrices that are used to define the "true" network
architecture of the brain, and subsequently that are used to test hypotheses or make predictions about the brain. d, When
combined with white matter tracts reconstructed from diffusion MRI, atlases can be used to measure how different regions of
the brain are structurally connected (i). Similarly, intracranial EEG (iIEEG) implants can record neural activity to measure
how different regions of the brain are functionally connected (ii). Technologies such as fMRI, MEG, and many others can also
measure functional connectivity. The statistical similarity between structural and functional connectivity measurements can be
calculated (e.g., structure-function correlation; SFC). Such estimates have been used to better understand the pathophysiology
of disease. In this study, we evaluate how the varying atlases may alter the power to test a specific hypothesis about the brain’s
structure-function relationship in epilepsy.

In the context of our experimental design, we propose a  derived from historical foundations for assessing the validity
new framework outlining how to appropriately choose an atlas  and effectiveness of animal models?®, network models?®, and
when designing a neuroscience experiment. This framework is  psychometric tests®”, which try to maximize the (1) descrip-
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Atlas [regions] Sources 3D Render Description Variations
AAL 1-7 S - | Structural atlas. Manual identification using a defined labeling protocol | AAL: AAL1, AAL2, AAL3, AAL600, AAL-JHU . 5=
. . g on single subject template (Collin-27). Three versions. Version 2: updat- L
[1 1 6’ 1 20’ 1 66] SPM ed boundaries. Version 3: further parcellations. Successor to Talairach. !
AICHA 8 F Functional atlas based on rsfMRI; 281 subjects. Each ROI has (1) homo-
[3 8 4] geneity in its functional activity (2) a homotopic contralateral counterpart
with which it has maximal connectivity.
Brainnetome 9-10 S) Connectivity-based parcellation. Based on idea that clustered regions of
. a brain region should share similar connectivity profiles; 40 subjects from
[246] DSlstudio HCP dataset. 210 cortical: 36 subcortical.
Brodmann 11-13 S Developed by independent group at Washington University in St. Louis.
[ 4 8] MRIcron Published with MRIcron software. Warned by developer to be used with Removed Smaller Added AAL-JHU
caution - not validated, nor based on multiple individuals. (dark blue)  (light blue) (red-yellow) (JHU labels blue)
CerebrA 14 S Structural atlas. Non-linear registration of cortical and subcortical label- Craddock: N parcellations
[1 02] ling from Mindboggle-101 dataset (see DKT below) to the symmetric
MNI-ICBM2009¢ template, followed by manual editing.
Craddock 15-17 F Functional atlas; rsfMRI; 41 subjects. ROIs are spatially clustered into |
[N] regions of h functional ivity. May be N regions. |
200/400 regions publicly available. 4x4x4 mm? resolution fMRI. Resliced. X
t -
DKT 18-23 S DKT is a labelling protocol. DK is old protocol. Used on Mindboggle-101 | DKT: Surface (probabilistic labefing DK surface DK surface DKT volumetric
dataset (101 brains). Probabilistic atlas using joint fusion algorithm. of individual with surface-based pe y }J'/
[1 09] FreeSurfer Surface version in FreeSurfer (40 brains). Volumetric version, 20 brain ! registration), Volumetric (labeling 4 (» Kﬁ/)
subset. Non-cortical: Neuromorphometrics BrainCOLOR atlas (aseg). ! yith volumetric-registration) *%Z/
Destrieux 24-25 S Probabilistic atlas of surface anatomy created from: (1) Manual labeling, | Harvard-Oxford: Corti rtical only, combined. tri ic
[1 89] FreeSurfer (2) surface geometry, (3) spatial relationship of neighboring structures. I p ’\
Avaliable in FreeSurfer with subcortical structures added. \ ) 4 P | ) ™
Gordon-Petersen 26-27 F Identification of abrupt transitions in resting-state functional connectivity
[333] to identify parcellations. Based on rsFMRI. 108 subjects. Intended for
surface-based analyses. {,
Hammersmith 28-30 S Manually identified 83 structures using defined labelling protocol; 30 sub- Symmet;‘c Nonsymmelric P
[83] jects. Maximum probability map. First version in 2003 with 49 structures. 7
Named after London hospital, Hammersmith. Hammers is author.
Harvard-Oxford 31-32 S Manual segmentation using defined labelling protocol; 37 subjects. Corti- |
[ 48 + 21] FSL cal and subcortical atlases provided separately. Left and right structures | Subcortical Combined
have same labels (symmetry). Must preprocess. Cortical + Subcortical
JHU 33-35 S White matter atlas. Two versions. (1) Labels: Hand segmentation aver- ; JHU: Labels, tracts
. age of diffusion MRI; 81 subjects. (2) Tracts: probabilistic identification
[48’ 20] FSL from deterministic tractography; 28 subjects. !
Julich 36-37 E Cytoarchitecture atlas. Successor to Brodmann. Average of 10-subject
[1 21] FSL pqst-mortem cyto- and myelo-architectonic segrpe_ntations. Update to the Labels
Eickhoff SPM Anatomy Toolbox v1.5. Whole brain is not covered.
MMP 38-40 Multi-modal parcellation: (1) Architecture - T1w/T2w myelin maps + cor- Random: N parcellations, cortical, whole-brain, subparcellated
[3 80] DSlstudio tical thickness, (2) function - task-fMRI, (3) connectivity, (4) topography. g N=100 N=1,000 N=10,000
210 subjects. Cortical ONLY. Originally intended for surface analysis. N=30 . N
Volumetric version independently created and used.
Random 41-42 Brain is randomly parcellated into N regions. Variations used in studies 4
[N] include cortical and whole-brain. Other atlases (e.g. AAL) and their N=10
regions may be further randomly divided, or subparcellated.
MNI Structural 43 9 regions, including lobar and some subcortical regions. Hand Schaefer: 100 to 1,000 parcellations (by 100), named to Yeo 7 and 17
[9] FSL segmented 50 subjects. Transformed into MNI152 space, averaged, N=100 N=500 N=1,000
probability maps produced. 25% max probability is shown. = f
Schaefer 44-45 Based on rsfMRI. Clusters found with gradient-weighted Markov
. Random Field model. 1489 subjects. Cortical only. Spatial resolutions
[1 00-1 000] GitHub , provided: 100 - 1000 parcellations (by 100). Well documented.
Talairach 46-50 S Conversion of original Talairach labeling. Digitized version of the original | Yeo: 7/17 parcellations; Cortically bounded or liberal al
[1 1 05] FSL (coarsely sliced) Talairach atlas and registration to MNI 152 space. Atlas S ‘
provided in FSL. {S‘Q!’Q 4 a £
Lz N
o " § N 3 g 4¢. B N
Yeo 51-52 F 1000 subjects; rsfMRI. Clustered cortical regions by pattern of functional ‘y J * &‘ Py )
[7_ 1 7] FreeSurfer ¢ connectivity. Results in non-spatially continuous clusters. 7 and 17 | %? N v'é’/
’ % clusters based on stability of clustering algorithm. Cortically bounded liberal discontinuous
Region-specific 53-56 Atlases created for specific regions, usually high quality + high degree Thalamus, /‘/ ( i r* p—
FSL of accuracy (e.g. post-mortem histological verification). Examples: Hippocampus, » &) < i Pe & )
Thalamus nuclei, hippocampus, and other specific structures. Cerebellum Cerebellum U € (L ®¥ s
Population-specific 57-58 Atlases created from a specific population (e.g. elderly, pediatric, Pediatric, 4 v‘d 5 Neonatal
non-human). Disease-specific defines regions specific for disease (e.g. Elderly, 7 vy 20
MS lesion probabilistic locations). Disease specific S 8§’ MCRB
- ™ (Melbourne)

Table 1. Atlases. | Atlas sources are detailed in Table S1 and abbreviations are in the glossary. S: Structurally defined atlas; F:
Functionally defined atlas; M: Multi-modally defined atlas; V: A variably defined atlas that may be structurally, functionally,

or multi-modally defined; ROI: region of interest; HCP: Human connectome project dataset'?; MS: multiple sclerosis.

tive, (2) explanatory, and (3) predictive validity ?® of a model.
Atlases are a tool for investigators to test for causality and
to make predictions about the brain. Thus, this framework
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incorporates a short discussion on explanatory modeling and
predictive modeling, each with different goals ("To Explain or
to Predict?"'®). A one-size-fits-all approach may not exist for
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Atlas Morphology: Sizes and Shapes

a Volume Distribution of Parcellations b Sphericity Distribution of Parcellations
5 Crad&)ckm\ 10 Craddock 200

. a Craddock 200 a Schaefer 1000 AALG0D

z 3 AALED0 .

g 2 o AAL3 Craddock 400
1 Schaefer 1000 AAL3 2
o | I | | I o I I 1 | | | |

1 2 3 < 5 02 03 04 05 06 07 038
Volume (log, ,mm?) Sphericity

Volume vs Sphericity

C b A

08 \ Standard Atlases 08 Random Atlases
| small & Spherical : -
06 06
%E 04 04
o 10
& | ) 4 A8
AALS 7 100
A AALGOD Y %
02 - v Craddock 200 02 4%
% Craddock 400 <) 500
0 DKT31 OASIS # 1,000
7| % Yeo 17 liberal 1 < 2,000
& Schaefer 100 + 5,000
00 | + Schaefer 1,000 \\ oo | @ 10000
| | | | I | I | | I
1 2 3 4 5 1 5

2 3 4
Volume (log,,mm?) Volume (log,,mm’)

Fig. 2. Atlas morphology: sizes and shapes. | a, Volume distribution of atlas parcellations demonstrating the diversity of
parcellation sizes. b, Parcellation sphericity distributions illustrating how the shapes of different parcellations may not be
uniform. ¢, Volumes versus sphericity showing how some atlas parcellations may be small and spherical, while others may be
large and non-spherical. This illustrates the non-uniformity in atlas parcellations. d, Volumes and sphericity of random atlases
showing the uniformity of sphericity with changing volumes. Random atlases allow us to study (1) the effect of parcellation
scale without the confound of shape effects and (2) the need for accurate anatomical boundaries to test a hypothesis about the
structure-function relationship in the brain at seizure onset. Numbers in legend represent the number of parcellations for each
random atlas. Remaining atlases are in Fig. S2.

£ 28,

selecting an atlas, nor should it “®; while there is one Planet (HARDI), composed of thirteen controls (mean age 35 + 13;

Earth with a single atlas for a particular use (e.g., an atlas
of the geo-political borders for a given point in time), there
are many brains, with anatomical and functional variability
across populations and species?®. We hope our framework
provides empirical guidance to neuroscience research utilizing
the various atlases published over the last century.

Results

Clinical Data. Forty-one individuals (mean age 34 + 11; 16
female) underwent High Angular Resolution Diffusion Imaging

This Manuscript was compiled on March 12, 2022

6 female) and twenty-eight drug-resistant epilepsy patients
(mean age 34 &+ 11; 12 female) evaluated for surgical treatment.
Of the twenty-eight patients, twenty-four were implanted with
stereoelectroencephalography (SEEG) and four with electro-
corticography (ECoG). Ten SEEG patients (mean age 34 + 8;
4 female) had clinical seizure annotations, and the first seizure
from each patient (mean duration 81s) without artifacts was
selected for SFC analyses. Patient and control demographics
are included in Table S2.

5 Revell and Silva et al.
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N = 41 (13 controls, 28 patients)
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Fig. 3. Structural network differences between atlases.

| a, Density, mean degree, mean clustering coefficient, charac-

teristic path length, and small worldness were calculated for structural connectivity networks. A subset of atlases is shown.
Remaining atlases studied are shown in Fig. S3. The average parcellation volume was calculated for each atlas and the
corresponding network measure was graphed as the mean of all subjects (N=41; 13 controls, 28 patients). b, Controls and

patients were not significantly different in density for the AAL2

atlas (Mann-Whitney U test), illustrating that global structural

network measures are similar between cohorts. However, specific edge-level connections between cohorts may be different, and
characterizing these differences is out of the scope of this manuscript. Controls and patients were separated and shown in
Fig. S4. Network measures using different threshold are shown in Fig. S5.

Atlas Morphology: Sizes and Shapes. We hypothesized that
atlas morphological properties, including size and shape
(Fig 2), affect SFC. To test this hypothesis, we first quanti-
fied the distributions of parcellation sizes (Fig 2a) and shapes
(Fig 2b) in various atlases. These results exemplify the diver-
sity of atlas parcellation morphology. Fig 2c shows a compari-
son of individual parcellation volumes and sphericities. The
remaining atlases are shown in Fig. S2. In contrast to standard
atlases, random atlases have constant sphericity with respect
to volume size. Note that the distribution of parcellation
shapes (i.e. sphericity) is similar across parcellation sizes in
random atlases and their parcellations may not represent true
anatomical or functional boundaries. Thus, random atlases al-
low us to study how parcellation scale affects network structure
and SFC while keeping the effect of shape constant. Crucially,
random atlases also allow us to explore if accurate and pre-
cise anatomical boundaries are essential in some experimental

designs?°.

Varying atlases affect structural network topology. Although
the morphology of atlas parcellations is diverse, we aimed to
investigate how these morphological characteristics (partic-
ularly parcellation scale) affect structural network topology
(Fig. 3). Networks are the basis upon which we compute SFC,

This Manuscript was compiled on March 12, 2022 6

and not necessarily morphological characteristics, therefore,
we measured how network density, mean degree, characteristic
path length, mean clustering coefficient, and small worldness
change as a function of parcellation scale (Fig. 3a). We found
that the change in these network measures are congruent be-
tween standard and random atlases and previous studies>C.
We also show that mean density, a global network measure,
is similar between our control (N=13) and patient (N=28)
cohorts (Fig. 3b).

Varying atlases affect SFC: single subject. Fig. 4 illustrates
an overview of how SFC is calculated. Structure is measured
with high angular resolution diffusion imaging (HARDI) and
function is measured with SEEG electrode contacts. Structural
connectivity matrices are generated based on the atlas chosen
(Fig. 4a) and functional connectivity matrices are generated
based on broadband (1 — 127 Hz) cross-correlation of neural
activity between the electrode contacts in widows of time
(Fig. 4b, see Methods section on "Functional Connectivity
Network Generation"). Thus, the structural network is static
while the functional network is computed across time. The
connectivity matrices shown are example data from a single
patient, sub-patient07. Functional connectivity matrices are
shown for 6 hours before seizure onset, 90 seconds before

Revell and Silva et al.
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Structure-Function
Correlation

" Spearman
: ank.
= Correlation

c

'g Hammersmith
o

[0

‘g Craddock400
O AAL2

acc CerebrA

g 0.4 |

c

0.2 | 10,000
] 1,000

© 4 100

g oo 30
U) ]

~6 hours before -90 0 90 180
Time relative to seizure onset (seconds)

Fig. 4. Structure-Function correlation in a single patient using different atlases. | a, Example atlases and structural
connectivity matrices. b, Functional connectivity matrices are computed from SEEG recordings during the interictal, preictal,
ictal, and postictal periods. During each period, the SEEG data is binned into non-overlapping windows (the vertically stacked
matrices) to create time varying representations of functional connectivity. Broadband cross correlation matrices are shown
for sub-patient07 at 6 hours before seizure onset, 90 seconds before seizure onset, 40 seconds after seizure onset (t = 40), 88
seconds after seizure onset (seizure duration = 89 seconds), and 180 seconds after seizure onset (or 91 seconds after seizure
termination). ¢, Each functional connectivity matrix is correlated to a structural connectivity matrix of a given atlas. Spearman
Rank Correlation is measured between all time points and all atlases for each patient. Lines of best fit are for visualization
purposes only. d, SFC is graphed at each time point for four example standard atlases (Hammersmith, Craddock400, AAL2,
and CerebrA), and four example random atlases (30, 100, 1k, and 10k parcellations). SFC increases during seizure state
for some standard atlases (Craddock 400, AAL2, and CerebrA atlases). This result follows previous SFC publications with
ECoG "', However, SFC does not increase for the Hammersmith atlas. These findings highlight that the power to detect a
change in the structure-function correlation at seizure onset, and thus the ability to probe the hypothesis that seizure activity is
correlated to brain structure, may be reduced using some atlases. The use of different atlases may contradict previous studies.

seizure onset (t = -90), 40 seconds after seizure onset (t = time window was correlated to each structural connectivity
40), 88 seconds after seizure onset (seizure duration = 89  matrix, yielding a SFC at each time window (Fig. 4¢). Each
seconds), and 180 seconds after seizure onset (91 seconds after  point represents the structural edge weight between two brain
seizure termination). Each functional connectivity matrix regions and their corresponding functional connectivity edge
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Fig. 5. Structure-Function Correlation in multiple patients using different atlases. | SFC for ten standard atlases
and five random atlases using SEEG broadband cross-correlation matrices averaged across all patients with clinically annotated
seizures (N = 10). Resting state SFC (rsSFC) is the SFC during the interictal period. The change from preictal to ictal SFC
is ASFC. SFC was similarly calculated for random atlases and shows that rsSFC and ASFC may change with parcellation
scale. These findings may be concerning given that the inherent structure-function relationship in the brain is not necessarily
changing at resting state, but its measurement is greatly affected by atlas choice alone.

weight in broadband cross-correlation. A line of best fit is
shown for visualization, and r values represent Spearman rank
correlation for that time point. SFC was graphed for all
time points during the interictal, preictal, ictal, and postictal
periods for this patient in Fig. 4d.

Four example standard and random atlases are graphed.
‘We show that SFC increases during the ictal state for many
atlases (CerebrA, AAL2, Craddock 400), but not all atlases
(Hammersmith). The increase in SFC during seizures follows
previous SFC studies using ECoG'*'*. Similarly, SFC in-
creases for a subset of random whole-brain atlases. While
parcellation scale may affect SFC, it is not the only feature
affecting SFC — the Hammersmith and AAL2 atlases have
similar parcellation scales yet diverging neuroanatomical prop-
erties and SFC dynamics. These findings highlight inference
from one type of atlas may suggest that seizure activity is not
correlated to brain structure, contradicting previous studies'3.

Varying atlases affect SFC: multiple subjects. Fig. 5 shows
SFC for ten standard atlases and five random atlases using

This Manuscript was compiled on March 12, 2022 8

SEEG broadband cross-correlation metrics averaged across
all patients with clinically annotated seizures (N = 10). The
AAL?2 atlas shows a statistically significant increase in SFC
from preictal to ictal periods (p < 0.05 by Wilcoxon signed
rank test after Bonferroni correction for 55 tests). This change
from preictal to ictal SFC is denoted ASFC. Using the AAL2
atlas, this finding supports the hypothesis that seizure activity
propagates and spreads via axon tracts making up the underly-
ing structural connectivity of the brain'®1*. SFC was similarly
calculated for random whole-brain atlases. A notable finding
is that during the interictal period, resting state SFC (rsSFC)
increases at larger number of parcellations (i.e. smaller parcel-
lation volumes). We show that rsSFC is observably affected by
parcellation scale when plotting the random atlases in Fig. 5
(bottom row). These findings may be concerning given that
the inherent structure-function relationship in the brain is not
necessarily changing at resting state, but its measurement is
greatly affected by atlas choice alone.
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Effect sizes depict the effect of atlas choice and atlas features on quantifying
the structure-function relationship of the brain in this study design

Fig. 6. The power to test a hypothesis about epilepsy pathophysiology changes depending on atlas choice | a,
Resting state SFC (rsSFC) decreases with larger parcellation volumes (moving left to right). Random atlases are shown in
blue, and select standard atlases are shown in red. Points represent the average across all patients, and bands represent 95%
confidence intervals. b, ASFC increases with larger parcellation volume (moving left to right). Broadly, |DeltaSFC may be
interpreted as the change in SFC with respect to disease (e.g. a seizure) and non-disease states, and this change has been used
to characterize and make inferences on many neurological diseases. These results exemplify that parcellations that are either
too coarse (large volumes) or too fine (small volumes) may not adequately capture the underlying SFC of the brain or its
dynamics with relation to a neurological disease. ¢, A subset of atlases show a difference in preictal and ictal SFC. d, The
effect size between preictal and ictal SFC is calculated for all 55 atlases used in this study. Many atlases commonly used in the
neuroscience literature have comparable effect sizes to random atlases. The standard atlases with the greatest effect size (and
thus power) are the Harvard-Oxford and AAL3 atlases. These atlases outperform many random atlases (where anatomical
boundaries are not followed) and may indicate that their parcellation scheme captures the structure-function relationship in

the brain at seizure onset with DTI and iEEG.

Varying atlases affect resting state SFC and ASFC. Resting
state SFC (rsSFC) and the change in SFC (ASFC) from
preictal to ictal periods are affected by parcellation scale
(Fig. 6). Fig. 6a shows how rsSFC decreases with larger average
parcellation volumes (moving left to right). A large average
parcellation volume for a given atlas generally means there is
a fewer number of total parcellations (e.g. the MNI structural
atlas has a large average parcellation volume given only nine
parcellations). In contrast, Fig. 6b shows ASFC increases with
larger parcellation volumes (moving left to right). Broadly,
ASFC may be interpreted as the change in SFC with respect to
a disease (e.g. a seizure) and non-disease states. This change
metric has been used to characterize and make inferences in
many neurological disorders®*2. Only a subset of atlases
show a change in SFC at seizure onset (Fig. 6¢). These results
exemplify that either overly coarse or fine parcellations may
not adequately capture the underlying SFC of the brain or its
dynamics with relation to a neurological disease.

Atlas choice affects the power to test a hypothesis. The effect
size between preictal and ictal SFC is calculated for all 55
atlases used in this study (Fig. 6d). Cohen’s d and the dif-
ference between the mean ictal and mean preictal SFC are
shown. Atlases are ordered by Cohen’s d.

We found that different atlases may alter the power to test
the hypothesis about epilepsy pathophysiology that seizures
propagate through the underlying structural tracts of the
brain, measured with diffusion MRI. This hypothesis has been

This Manuscript was compiled on March 12, 2022 9

previously supported in prior studies®1%23:24

Many atlases commonly used in the neuroscience literature
have comparable effect sizes to random atlases (where anatom-
ical boundaries are not followed). The standard atlases with
the greatest effect size (and thus power, given equal signifi-
cance levels and sample sizes) are the Harvard-Oxford and
AAL3 atlases. These atlases outperform many random atlases
and may indicate that their parcellations may adequately cap-
ture the structure-function relationship in the brain. These
atlases may capture the "true" structural network architecture
(see Fig. 1¢) because these network architectures better differ-
entiate and are more correlated to functional changes seen at
seizure onset.

Despite the effect sizes of the Harvard-Oxford and AAL3
atlases, however, there may not be a "true gold standard" atlas
or parcellation scheme given that resolution is more critical
than the exact border location of parcels?®, there may be
no single functional atlas for an individual across all brain
states?®, and many standard atlases yield similar effect sizes
to randomly generated atlases (this study).

Discussion

In this study, we performed an extensive evaluation of the
available structural, functional, random, and multi-modal at-
lases in the neuroscience literature (Table 1). We detailed
morphological (Fig. 2) and network (Fig. 3) differences be-
tween these atlases. We showed the effect of atlas choice on
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a Which atlas should be selected? » Will the atlas be used as a tool...
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fMRI (macro) eep n
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Microscopy (micro) Subcortical (Harvard-Oxford) Hypothesis testing Predict new or future observations
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Molecular/Genetic (many/small)  (few/large)
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— @%‘% Labelling ~ Probabilistic
oft/blurre Protocol Single  Localization
‘ ‘ "'W \w” Hard (Overlapped) Indlvi%ual

Liberal vs Conservative
C Questions to consider

Do | need specific anatomical regions

(e.g. hippocampus)? Am | testing hypotheses

or making predictions about specific regions?
|

Are there any consequences from leaving

out brain regions (white matter,

cerebellum, subcortical structures)?

What are the computational costs, resources, time,

Can another atlas be used instead (and may have similar power to test hypotheses)?

d

Algorithm a priori and post hoc

A priori: Selecting one or a few atlases
to preserve power.

2 Apriori: Selecting a standard set of atlases.

3 Post hoc: Conflicting results between atlases
(conflict not due to arbitrary p-value cutoffs).

Hard vs Soft Boundaries Derived atlases Random

Do | need accurate parcellations (how does Can | use random atlases instead and permute

accuracy affect the power of my study)? W the results over many generated random atlases?
|
Am | studying small structures where precise |
localization is needed, even in the setting of Am | making claims about specific brain regions
variability across subjects? and are there other atlases with similar
parcellations to check the robustness of results?
Should | use a subject-specific atlas where ]

labels are created from a trained classifier?

! V4

and personnel training needed?

Should | use volumetric or surface-based
registration?

What use was an atlases intended for?
How was it developed? See bottom right of C.

Development

If | use a (custom) atlas, how will that affect
replicability and meta-analyses studying results
across neuroscience?

|
Should | use a study-specific atlas tailored to the
participants in the study? How would this atlas
affect replicability and translation?

How would parcellation scale affect my results?

Do | need a structurally-, functionally-,
multimodally-, or randomly-defined atlas?

Standard Set of Atlases
i _— structure both function e
Use framework A-C. Balance time, availability volumetric surface !
of tools, and atlas features logical for your study. e ¥ g
Publish results or make data available R;&,‘;!& ) ‘

on a standard set of atlases.

AAL BNA Destrieux

Predictions: reverses direction.
Hypotheses: regions found to be involved are
dramatically different (e.g., in different lobes).

Need a better understanding of
the biases introduced because
of atlas parcellations (See C).

MMP Derived

Schaefer Random

Example: How does parcellation scale affect results? Use
Schaefer 100-1000, random atlas, or parcellate another atlas
further (randomly or use another alogirthm akin to AAL 600).

Fig. 7. A Framework for brain atlases. | a, Which atlas should be chosen for a study? We propose a framework that
helps select an atlas in the context of its descriptive, explanatory, and predictive validity. Descriptive validity means the
features of an atlas appropriately resembles the experimental system. An atlas is also a tool to solve a variety of problems in
neuroscience. It may be used as part of a methodology to explain causality (explanatory validity), or it may be used to make
predictions (predictive validity). These two goals are distinct, and the differences between explanation and prediction "must
be understood for progressing scientific knowledge" '°. These aspects (to explain or to predict) should be considered when
selecting an atlas. b, Non-mutually exclusive atlas features related to descriptive validity. ¢, A list of questions to consider
when choosing an atlas. Gray lines connect related questions. d, An algorithm for atlases selection a priori and post hoc.
Please see the main text for further details.
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the measurement of structure-function correlation (SFC) in
epilepsy patients (Fig. 4 and Fig. 5). We also showed how
various atlases may affect the power to test a hypothesis about
seizure propagation (Fig. 6). This work has implications for
investigators because the ability to test hypotheses and make
predictions about the brain’s function may depend on atlas
choice. In light of our study using an extensive list of avail-
able brain atlases, we propose a general framework below for
evaluating and selecting an atlas (Fig. 7).

A Framework for Brain Atlases. Various publications have
highlighted the Atlas Concordance Problem®™?, curated sev-
eral atlases in freely accessible databases®*3?, and made argu-
ments for why specific atlas features (Fig. 7b) may be superior
in certain situations?'?%35739 There have been great efforts
to publish accurate and precise parcellations as seen with
an exponential rise in atlas-related publications over the last
three decades (Fig. S8). However, none have found a general
solution to the underlying problem: Does atlas choice matter?

We provide a framework that allows us to determine if
the choice of an atlas is appropriate in the context of its (1)
descriptive, (2) explanatory, and (3) predictive validity ?°. This
framework is borrowed from the logic for assessing network
models?®, animal models,?>%°, and psychometric tests?™*!,
where assessment of these models with standard statistical
model-selection methods is particularly challenging. Thus,
theoretical constructs already formulated in other fields may
provide guidance.

Descriptive validity of an atlas refers to an atlas that
appropriately resembles the system in which we work. In other
words, it has “face value”?°. An atlas should include features
(Fig. 7b) relevant to the study (e.g., parcellations containing
subcortical structures relevant to epilepsy). Importantly, the
descriptive validity of an atlas also relates to the modality scale
we use to measure the brain — for example, DWI and fMRI
at the macroscale?, iEEG and tracers at the meso scale*?,
and microscopy at the microscale*. It is important to select
a parcellation scale that resembles the measurement modality
resolution (Fig. 6a). When correlating DWI with iEEG in
our study at larger parcellation sizes, we lose our ability to
discern precise anatomical locations that are structurally and
functionally related (Fig. 6b). Similarly at smaller parcella-
tion sizes (tending to voxel resolution), we may not capture
the "true" structural network architecture (Fig. 1c), and thus
we lose our ability to capture structure-function relationship
changes at seizure onset.

An atlas is a tool to tackle a wide variety of problems in neu-
roscience. It may be part of a methodology to explain causality
(explanatory validity) or it may be part of a methodology to
make predictions (predictive validity). These two goals are
distinct, and the differences between explanation and predic-
tion "must be understood for progressing scientific knowledge"
as described in "To Explain or Predict?" by Shmueli, 20105,
In the context of building scientific models, a model with a
high explanatory ability may not have a high predictive ability.

Similar to models, atlases are also part of a scientific method-
ology to (1) explain how the brain functions or (2) predict new
observations (i.e., they are one part of the overall method-
ological pipeline to test hypotheses or make predictions about
the brain - for studies using atlases). Thus, atlases are tools.
An atlas may be suitable for hypothesis testing, for example,

This Manuscript was compiled on March 12, 2022

because it includes subcortical structures like the hippocampus
(also high descriptive validity) to support a hypothesis about
seizure propagation through subcortical structures. Intuitively,
without subcortical structures, it would be impossible to test
hypotheses about subcortical structures. Less intuitively, ex-
planatory validity of an atlas may also relate to the power to
test hypotheses, which we show in our study. Some atlases
may not be suitable for scientific inquiry because they provide
little statistical power to detect differences in disease states, for
example, to detect changes in SFC at seizure onset (Fig. 6b).
It may be impossible to accurately predict power using an
atlas before conducting a study, however, other studies asking
similar questions using similar atlases may provide reasonable
estimates of effect sizes (our study has similar effect sizes to a
previous study *®). Power may also depend on the accuracy of
anatomical boundaries, or in our study, other atlas features
such as parcellation scale and configuration (Fig. 6d). For
example, the Harvard-Oxford and AAL3 atlases have similar
parcellation configurations and similar power.

Some atlases may or may not be not be suitable for mak-
ing predictions about new or future observations about the
brain. For example, many network properties change with
atlas choice (Fig. 3), and thus it is reasonable to suspect model
prediction outputs may change with respect to the atlas used
to build and train such models. Importantly, the exclusion
of some anatomical structures, like white matter or the cere-
bellum in some atlases, may affect the training data used to
build predictive models. In our study, a translational goal
is to predict functional seizure activity from structural data.
SEEG records activity from both gray matter and white mat-
ter; however, recent studies have shown that white matter
functional recordings may provide different information than
gray matter *°~*®. Thus, excluding some anatomical labels may
affect model predictions. Another example is the use of net-
work models to predict spread, such as a-synuclein across the
brain connectome*®. Without the incorporation of all brain
structures related to a-synuclein spread, models to predict
and monitor spread may be inaccurate.

Are accurate anatomical or functional parcellations needed?
During the course of conducting this study, and while undergo-
ing peer review, other atlases with more accurate or relevant
parcellations to the study’s population were published in dif-
ferent areas of neuroscience®® ®®. Here, we cautiously propose
a question: Are efforts to publish more atlases created with
different algorithms or slightly modified parcellations from
existing atlases providing any advantages over already exist-
ing atlases? Naturally, accurate and precise parcellations are
needed when probing specific hypotheses about exact struc-
tures that depend on accurate segmentation of such structures
(particularly at the sub-field or cellular level); however, few
studies compare an atlas to a null atlas (one with randomly
generated parcellations). Studies that do are Gordon et al.
2016°%and Lewis et al. 2021°%.

In this study, we show that random atlases provide similar
power to detect differences in SFC between preictal and ictal
states (Fig. 6d). Indeed, it is difficult or nearly impossible to
evaluate a newly proposed atlas, given that the performance
metrics to evaluate an atlas may be infinite (given infinite
experimental designs). Only one such metric, SFC, was used
in this study. But given new deep learning methods and other
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computationally expensive methods using trained classifiers for
segmentation, existing atlases may be adequate for labs with
limited funding resources, trained personnel, and access to
GPUs. These labs may still be capable of answering important
questions in neuroscience.

Which atlas should be used for my study? One of the most
difficult challenges as scientific investigators is to make optimal
methodological decisions to discover useful findings for the
scientific community. Selecting an atlas is one such decision we
may make in some of our studies. We realize the framework
provided above may be abstract to some readers; we also
provide a concrete list of questions to consider when choosing
an atlas (Fig. 7c) for a neuroimaging study. However, in
conducting this study, we also found that researchers may face
three problems when choosing an atlas (Fig. 7d) and these
problems are worth further discussion. The first two problems
are in selecting an atlas a priori, or before conducting a study.
They deal with selecting one or a few atlases to preserve power,
or in selecting a standard set of atlas to publish public data
for other researchers to use. The third problem is the issue of
conflicting results between two atlases and what to do after a
study is conducted (post hoc). We provide a further discussion
on these problems below.

Considerations in selecting one or a few atlases. Selecting
one atlas may preserve power and avoid a multiple comparisons
problem by testing every atlas. Selecting an additional atlas
may also be chosen to confirm the robustness of results. In
these cases, a balance of time, availability of tools, and atlas
features logical for your study as outlined in Fig. 7a-c need to
be considered. For example, if a custom atlas is used, how will
that affect replicability and meta analysis in the long-run for
the field? What are the atlas features needed (such as scale
and coverage of regions)? What are the computational costs
and personnel training needed to use particular atlases? (See
questions in Fig. 7c).

Considerations in selecting a standard set of atlases. When
publishing results and /or making data publicly available for
other investigators to use, another approach is to select a set
of atlases based on the perceived needs of other investigators,
atlas features covered, prevalence of atlases used in the litera-
ture (Fig. S9a), and the prevalence of "turn-key" neuroimaging
software that incorporate these atlases (Fig. S9b). Studies are
emerging with data publicly available for use based on one or a
few select atlases%%%!. Many turn-key neuroimaging software
also inevitably have to make the decision to employ a set of
atlases to meet the needs of many researchers. A problem may
arise, however, when other researchers need the published data
at other atlas resolutions or with other structures. And unfor-
tunately, the value of the data may be lessened and the effort
put in by the publishing researchers may be in waste if this
happens. What may help with the atlas concordance problem
is perhaps a “standard set” of atlases — a set to benchmark
studies across the neuroimaging field. Furthermore, turn-key
tools like FreeSurfer, QSIprep, DSI-studio, FSL, and many
others may benefit from a standard set of incorporated atlases
that captures enough features useful to the majority of the
neuroscience community, even if not every available atlas is
included. Based on our exhaustive search of atlases in the
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neuroimaging literature, the ability to collect them for use
in a single study, the prevalence of certain atlases already
in-use (Fig. S9a), and the prevalence of neuroimaging software
(Fig. S9b) we propose an initial set of atlases (Fig. 7d).

The AAL atlas is one of the most commonly used volu-
metric atlases (Fig. S9a), and along with the Harvard-Oxford
atlas, may provide complimentary results when published
together. The Brainnetome atlas® is another structural at-
las at a finer resolution, having gained popularity since its
introduction in 2016. The Destrieux and DKT atlases are
also structural atlases, and already incorporated into one of
the most commonly used neuroimaging software, FreeSurfer
(https://surfer.nmr.mgh.harvard.edu). FreeSurfer provides
surface-based registration, which may more accurately label
cortical structures than volumetric registration (Fig. S6). Ac-
curate segmentation of sub-cortical structures may also be
acquired from FSL%® (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).
In addition, the MMP, or "Glasser" atlas was created from
multi-modal imaging data. A commonly used atlas provided
at different scales is Schaefer atlases provide, however, it does
not include subcortical structures.

Random atlases may also provide robust conclusions by
allowing researchers to manipulate the resolution, size, and
shape of parcellations and iterate over many atlases. Although
random parcellations may forgo accuracy because they do
not follow true anatomical boundaries, these atlases may still
provide similar conclusions to other standard atlases with the
added benefit of permuting results over many atlases (Fig. 6).
An alternative to random atlases is to divide or combine the
parcellations of another standard atlas (a "derived" atlas in
Fig. 7d. For example, the AAL 600 is derived from the AAL
atlas in which its parcellations are further sub-divided using
a specified algorithm. Parcellations may also be sub-divided
randomly.

Considerations in conflicting results between atlases. When
more than one atlas is used, results may conflict. We define
conflicting results as two different atlases giving alternating
predictions (e.g., good vs poor outcomes, increase in SFC
rather than decrease in SFC) or support alternating working
hypotheses (e.g., the temporal lobe is involved in one atlas,
but another atlas highlights the involvement of the frontal
lobe in the pathophysiology of a disease). We do not mean
that conflicting results arise due to lack of statistical power
(e.g., one atlas gives a p-value of 0.06 and another atlas 0.04).

One way to understand if the observed effect is not an
artifact of the atlas choice is to select a few atlases with
varying features and figure out what is causing the conflict.
Unfortunately, there may be no other way given that every
study will have different parameters and measurements to know
what gives rise to conflicting results. In the matter where
conflicting results arise due to atlas selection, then it may
troubleshooting may be needed to understand what gives rise
to the conflict (surface vs volumetric registration, parcellation
scale, missing relevant structures, etc.). Fortunately, however,
most atlases in this study affect power rather than conflicting
results (Fig. 6d. We hope this discussion, our study, and our
figures provide insight to others.

Limitations. Our study is not without limitations. A major
limitation is that we did not evaluate atlases in a diverse set
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of experimental systems, but rather limited our analysis to a
contemporary topic in epilepsy using SEEG implantations and
to a study of the structure-function of the brain, potentially
appealing to a wider audience. The question we were trying to
answer ("Which atlas should we use?") is a difficult problem to
solve, given that it would be impossible to evaluate all atlases
in all experimental designs. We attempted to generalize a
framework given our findings after an extensive search for, and
curation of, available neuroimaging atlases.

We also did not perform a feature selection analysis post-
hoc to maximize ASFC at seizure onset; rather, we performed
a comprehensive evaluation of many atlases to set a general
framework and describe the nuances between the different
atlases and their features. Ideally in our study, we required
a whole-brain, volumetric atlas that covered the implanted
SEEG electrode contacts. No such atlas existed. We opted for
combining different atlases or developing randomly parcellated
atlases used in previous publications3%%*. However, no general
framework existed to determine which atlas should be used
or clearly outlined the feature space of these atlases. We had
no formal basis for how changing an atlas could change our
results and eventual goal for translating network models to
better treat epilepsy patients.

Another limitation, we assume a change in SFC supports
the hypothesis that seizures harness the underlying structural
connectome of the brain (along with support from prior lit-
erature®!%+%%). We may be biasing our results to select an
atlas that maximizes ASFC. However, we wish to select a
methodology that allows us to measure any change in brain
state that accompanies seizure onset (explanatory validity),
permitting us to probe epilepsy biology and understand the
processes that govern seizure spread.

An additional limitation concerns the effect of parcellation
volume on SFC. In probing this effect across our random at-
lases and atlases used in the literature, we did not perform
controlled experiments to separate the effects of parcellation
size from parcellation N (number of parcellations). A future
experiment could fix the number of parcellations while chang-
ing parcellation volume (or vice versa). This would allow us
to test whether parcellation volume or N drives changes in
SFC. However, this was outside the scope of our study.

Our goal was to highlight the importance of selecting an
appropriate atlas from an array of possibilities, using a data-
driven, validated experimental paradigm '*. We acknowledge
new studies that show that streamline counts may not com-
pletely reflect the underlying diffusion data®®; however, com-
paring such techniques were outside the scope and goal of our
focused study. We also note that few patients had lesions
on imaging. Misalignment due to non-linear distortion may
add noise to our data; however, few patients had lesions. Our
study was not conducted to necessarily make the claim that
SFC changes exist in the brain at seizure onset, but rather to
show how varying atlases may change SFC.

Finally, our analysis relies on the assumption that an atlas
approach must be used to quantify SFC and does not consider
an atlas-agnostic approach nor if such an approach is appro-
priate. To study SFC using networks, both structural and
functional networks must have nodes representing the same
entity — neuroanatomical structures. The atlases defining
anatomical structures (whether they are functionally, histolog-
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ically, genetically, procedurally, multi-modally, or randomly
defined) are the link between structural connectivity and func-
tional connectivity measurements of the brain. To study SFC,
we must rely on the neuroanatomical structures defined by
an atlas, then localize electrodes to these regions and corre-
late the structural measurements (e.g., streamlines, fractional
anisotropy, mean diffusivity) with functional measurements
(e.g., cross-correlation, coherence, mutual information). Fun-
damentally, we are defining the nodes of the brain in advance,
which can alter our results; a more comprehensive discussion
on defining the nodes of the brain are in Fornito et al., 2016
and Bijsterbosh et al., 20174367,

Conclusion. The publication of atlases and their distribution
across neuroimaging software platforms has risen exponen-
tially over the last three decades. Our study illustrates the
critical need to evaluate the reproducibility of neuroscience
research using atlases published alongside tools and analysis
pipelines already established in the neuroscience community
(e.g., FreeSurfer, DSI studio, FSL, SPM, QSIprep, fMRIprep,
MRIcron, ANTs, and others).
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Materials and Methods

Human Dataset MRI data was collected from forty-one individuals,
including thirteen healthy controls and twenty-eight drug-resistant
epilepsy patients at the Hospital of the University of Pennsylva-

nia.

Twenty-four patients underwent stereoelectroencephalogra-

phy (SEEG) implantation and four underwent electrocorticography
(ECoG) implantation. Ten of the SEEG patients had clinically an-
notated seizures and were used for SFC analyses. Inclusion criteria
consisted of all individuals who agreed to participate in our research
scanning protocol, and (if they had implantations) allowed their
de-identified intracranial EEG (iEEG) data to be publicly available
for research purposes on the International Epilepsy Electrophysi-
ology Portal (https://www.ieeg.org) 98:69. Seizure evaluation was
determined via comprehensive clinical assessment, which included
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multimodal imaging, scalp and intracranial video-EEG monitoring,
and neuropsychological testing. This study was approved by the
Institutional Review Board of the University of Pennsylvania, and
all subjects provided written informed consent prior to participating.
See Table S2 for subject demographics.

Structure Methods and pipelines for structural connectivity genera-
tion and analysis are described in the following sections. Specific
GitHub files and code are included where applicable.

Imaging Protocol Prior to electrode implantation, MRI data were
collected on a 3T Siemens Magnetom Trio scanner using a 32-
channel phased-array head coil. High-resolution anatomical images
were acquired using a magnetization prepared rapid gradient echo
(MPRAGE) T1-weighted sequence (repetition time = 1810 ms, echo
time = 3.51m, flip angle = 9, field of view = 240mm, resolution =
0.94x0.94x1.0 mm3). High Angular Resolution Diffusion Imaging
(HARDI) was acquired with a single-shot EPI multi-shell diffusion-
weighted imaging (DWI) sequence (116 diffusion sampling directions,
b-values of 0, 300, 700, and 2000s/mm?2, resolution = 2.5x2.5x2.5
mm3, field of view = 240mm). Following electrode implantation,
spiral CT images (Siemens) were obtained clinically for the pur-
poses of electrode localization. Both bone and tissue windows were
obtained (120kV, 300mA, axial slice thickness = 1.0mm)

Diffusion Weighted Imaging (DWI) Preprocessing HARDI images
were subject to the preprocessing pipeline, QSIPrep, to ensure
reproducibility and implementation of the best practices for pro-
cessing of diffusion images 0. Briefly, QSIPrep performs advanced
reconstruction and tractography methods in curated workflows us-
ing tools from leading software packages, including FSL, ANTs, and
DSI Studio with input data specified in the Brain Imaging Data
Structure (BIDS) layout.

Structural Network Generation DSI-Studio (http://dsi-
studio.labsolver.org, version: December 2020) was used to
reconstruct the orientation density functions within each voxel
using generalized g-sample imaging with a diffusion sampling
length ratio of 1.257'. Deterministic whole-brain fiber tracking
was performed using an angular threshold of 35 degrees, step size
of Imm, and quantitative anisotropy threshold based on Otsu’s
threshold 2. Tracks with length shorter than 10mm or longer than
800mm were discarded, and a total of 1,000,000 tracts were gener-
ated per brain. Deterministic tractography was chosen based upon
prior work indicating that deterministic tractography generates
fewer false positive connections than probabilistic approaches, and
that network-based estimations are substantially less accurate
when false positives are introduced into the network compared
with false negatives3?. To calculate structural connectivity,
atlases listed in Table 1 were used. Structural networks were
generated by computing the number of streamlines passing through
each pair of structural regions in each specific atlas. Streamline
counts were log-transformed and normalized to the maximum
streamline count, as is common in prior studies?*73-75. GitHub:
packages/imaging/tractography /tractography.py

Atlases Atlas descriptions and sources used in this study are found
in Table S1. The 55 atlases used are listed explicitly in the reporting
of effect sizes in Fig. 7d. All atlases were sourced in MNI space
and if not already, resliced to dimensions 182x218x182. Atlases
were linear and non-linear registered to T1w subject space using
the ICBM 2009¢ Nonlinear Asymmetric template "¢ and FSL flirt
and fnirt77.

We also included three atlases registered using surface-based
approaches. These atlases (the DKT, DK, and Destrieux atlases) are
output from FreeSurfer’s recon-all pipeline”®. Many neuroimaging
studies and software use volumetric approaches for registration 2!,
yet surface-based approaches may yield more accurate labeling of
the cortical surface (Fig. S6). The DKT40 atlas referred in this
study is the surface version, while the DKT31 OASIS is the publicly
available volumetric version (see Table S1).

In addition to published standard atlases above, we used whole-
brain random atlases. A limitation of standard atlases is that they
may not have anatomical definitions for all regions of the brain, and
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therefore, implanted electrodes may not be assigned properly to a
region. This limitation was the impetus of our study (i.e., selecting
an appropriate atlas for SEEG electrode localization and quantifying
SFC). Whole-brain random atlases, in contrast, provide coverage to
all implanted electrodes. They allow for the ability to change some
morphological properties (i.e. parcellation size), while keeping other
morphologies the same (e.g., parcellation shape; Fig. 2d). However,
a limitation of random atlases is that their regions may not represent
true anatomical or functional boundaries. Random atlases were
built in the ICBM 2009c Nonlinear Asymmetric template space
and covered all voxels, excluding those labeled as CSF or outside
the brain. To fill these points, a pseudo grassfire algorithm was
applied30. Briefly, N points representing the number of parcels of
the atlas were randomly chosen as seed points. These seed points
were iteratively expanded in all six Cartesian directions until all
points were covered by one of the initial N seeds. After each iterative
step, the smallest volume region expanded first. Random atlases
created were of N equal to 10, 30, 50, 75, 100, 200, 300, 400, 500,
750, 1000, 2000, 5000, and 10000 parcels. Five permutations for
each N were created. GitHub code to generate random atlases:
packages/imaging/randomAtlas/randomAtlasGeneration.py

Atlas Morphology: Volume and Sphericity Atlas morphological mea-
surements included parcellation size (volume) and shape (sphericity)
(Fig. 2). Parcellation volume was calculated as the number of voxels
in an parcel and loglO transformed. Parcellation sphericity was
calculated as the ratio of the surface area of a sphere with an equal
volume of the parcellation to the actual surface area of the atlas
parcellation. Under this definition, sphericity is bounded from 0 to
1 where 1 is a perfect sphere. For reference, a perfect cube and a
hemi-sphere have a sphericity of 0.8 and 0.7 respectively. GitHub:
packages/imaging/regionMorphology /regionMorphology.py

Structural Network Measures We characterized the structural net-
work topology of 52 atlases (Fig. 3 and Fig. S3). The three surface-
based atlases (DKT40, DK, and Destrieux atlases output from
the FreeSurfer recon-all pipeline 78) were excluded from analyses of
Fig. 2 and Fig. 3 because they were individually registered to each
subjects’ T1w image. To quantify network topology, we examined
density, mean degree, mean clustering coefficient, characteristic
path length, and small worldness. Connectivity matrices were
first binarized, using a threshold of 0, and a distance matrix was
computed. The same binarization process and threshold was used
across all atlases. The distance of any nodes that were discon-
nected from the main graph was set to the maximum distance
between any pair of nodes in the main graph. Density, mean de-
gree, clustering coefficient, and characteristic path length were then
calculated on the binary, undirected graphs. Small worldness was
calculated as the o-ratio where o = v/\ and is the ratio of the
average, normalized clustering coefficient, C, to the normalized
characteristic path length, I. y = CG/CR and A = 1G/IR where G
is the graph of interest and R represents a ‘random’ graph that is
equivalent to G. To approximate the equivalent random graph R
due to intractable computational costs ™, a well-known analytical
equivalent CR = d/N and IR = log N/log d were used, where d
denotes average nodal degree. All network measures were calculated
using the Brain Connectivity Toolbox for Python. GitHub: pa-
pers/brainAtlas/Script_ 05_structure_02_network measures.py

Function Methods and pipelines for functional connectivity genera-
tion and analysis are described in the following sections. Specific
GitHub files and code are included where applicable.

Intracranial EEG Acquisition Stereotactic Depth Electrodes were im-
planted in patients based on clinical necessity. Continuous SEEG
signals were obtained for the duration of each patient’s stay in
the epilepsy monitoring unit. Intracranial data was recorded at
either 512 or 1024 Hz for each patient. Seizure onset times were
defined by the unequivocal onset 30, All annotations were verified
and consistent with detailed clinical documentation. If a patient
had more than one seizure annotated, the first seizure longer than
30 seconds without artifacts was used.
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Electrode Localization In-house software®! was used to assist in

localizing electrodes after registration of pre-implant and post-
implant neuroimaging data. All electrode coordinates and labels
were saved and matched with the electrode names on IEEG.org.
All electrode localizations were verified by a board-certified neu-
roradiologist (J.S.). Electrode contact assignment to atlas region
assignment was performed by rounding electrode coordinates (x,y,z)
to the nearest voxel and indexing the given atlas at that voxel in
the same space as the patient’s T1lw image. Electrodes that fell
outside the atlas of interest were excluded from subsequent analysis.
Please see Fig. S10 for visualization. We also show the percent-
age of contacts assigned a region given an atlas (Fig. S7) GitHub:
packages/atlasLocalization/atlasLocalization.py

Functional Connectivity Network Generation Functional connectivity
networks were generated from four periods: interictal, preictal, ictal,
and postictal. (1) The interictal period consisted of the time ap-
proximately 6 hours before the ictal period. (2) The preictal period
consisted of the time immediately before the ictal period. (3) The
ictal period consisted of the time between the seizure unequivocal
onset and seizure termination. (4) The postictal period consisted of
the time immediately after the ictal period. Interictal, preictal, and
postictal periods were 180 seconds in duration. Following removal
of artifact-ridden electrodes, SEEG signals inside either GM or WM
for each period were common-average referenced to reduce potential
sources of correlated noise®2. Next, each period was divided into
2s time windows with 1s overlap®386. To generate a functional
network representing broadband functional interactions between
SEEG signals (Fig. 4b), we carried out a method described in detail
previously 13:85. Namely, signals were notch-filtered at 60 Hz to
remove power line noise, low-pass and high-pass filtered at 127 Hz
and 1Hz to account for noise and drift, and pre-whitened using a
first-order autoregressive model to account for slow dynamics. Func-
tional networks were then generated by applying a normalized cross
correlation function p between the signals of each pair of electrodes
within each time window, using the formula:

T —_ —
pay = max {% Z [zx(t) — kazfzzit +7) = Gl

t=1

where x and y are signals from two electrodes, k is the 2s time
window, t is one of the T samples during the time window, and
7 is the time lag between signals, with a maximum lag of 0.5
s. Here, o represents the standard deviation of the signal. Note
that functional connectivity measurements were also calculated for
coherence and zero time-lag Pearson and Spearman rank correlations
with associated p-values in defined frequency bands reviewed in
Newson and Thiagarajan 201987, but were not analyzed or used in
hypothesis testing in the study. For data, available data, please see
"Data availability and Reproducibility" section below. Networks are
represented as fully-weighted connectivity matrices. GitHub Code:
GitHub: code/tools/echobase.py

Structure-Function Correlation To quantify the relationship between
structure and function in the epileptic brain, we computed the Spear-
man rank correlation coefficient between the edges of the structural
connectivity network and the edges of the functional connectivity
networks (Fig. 4¢). To avoid redundancy given the symmetric nature
of the matrices, only the upper triangle was analyzed. In brief, the
structural connectivity network, representing normalized streamline
counts between each atlas region, was first down sampled to only
include regions that contained at least one SEEG contact Fig. S10.
This gave one static representation of structural connectivity. In
the case where multiple electrodes fell in the same atlas region, a
random electrode was selected to represent the functional activity of
that neuroanatomically defined region. Next, for every time-window
of the functional network, the functional network edges were corre-
lated with the down sampled, static structural network edges. This
resulted in a structure-function correlation time series. Note that
atlases with very small region volumes included more electrodes for
SFC calculation. Electrodes that did not localize to an atlas were
excluded from analysis. To average the SFC for all patients and
each atlas (Fig. 5), SFC time-series was resampled to 100 seconds
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for each period and each sample was averaged together. GitHub
code: packages/eeg/echobase/echobase.py

rsSFC and ASFC Resting-state SFC (rsSFC) was defined as the SFC
during the interictal period, approximately 6 hours before the ictal
period. The mean SFC of that period was computed. ASFC was
defined as the change in the mean SFC from the preictal to the ictal
period (Fig. 5 top left panel). rsSFC and ASFC was calculated for
each atlas (Fig. 6).

Statistics Preictal and ictal SFC for each atlas were compared using
effect sizes across the 55 atlases shown in Fig. 6d. Cohen’s d and
the difference between preictal and ictal SFC was calculated.

Data availability and Reproducibility All code
files used in  this manuscript are available at
https://github.com/andyrevell /revellLab. All  de-identified

raw and processed data (except for patient MRI imaging) are
available for download by following the links on the GitHub.
Raw imaging data is available upon reasonable request from
Principal Investigator K.A.D. iEEG snippets used specifically in
this manuscript are also available, while full iEEG recordings
are publicly available at https://www.ieeg.org. The Python
environment for the exact packages and versions used in this study
in contained in the environment directory within the GitHub. The
QSIPrep docker container was used for DWI preprocessing.
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Supplementary Material

Please see supplemental figures and tables contained below.

o Figures

— Fig. S1: Atlas, Template, and Coordinate (Stereotactic)
Space

— Fig. S2: Atlas Morphology: Sizes and Shapes (All atlases)

— Fig. S3: Network measures for remaining atlases
— Fig. S4: Network measures for controls and patients
separated
— Fig. S5: Network measures for different thresholds
— Fig. S6: Effects of Registration: Volumetric- and Surface-
based approaches
— Fig. S7: Coverage of electrode contacts
— Fig. S8: "Brain Atlas" Search in PubMed
— Fig. S9: Prevalence of select brain atlases and neuroimag-
ing software
— Fig. S10: Electrode localization and region selection
Tables
— Table. S1: Atlas Sources and References (3 pages).
— Table. S2: Patient and Control Demographics
Other materials
— Glossary

Glossary
1. Atlas abbreviations and definitions. For further details,

see Table. S1.

(a) AAL. Automated anatomical labeling atlas.

(b) AAL1, AAL2, AAL3. AAL atlas versions 1, 2, and 3,
respectively.

(¢) AAL-JHU. The AAL atlas and the JHU labels atlas
combined. For overlapping regions, the JHU atlas takes
precedence.

(d) AAL600. AAL atlas with 600 parcels.

(e) AICHA. Atlas of Intrinsic Connectivity of Homotopic
Areas.

(f) BNA. Brainnetome atlas.

(g) Craddock 200-400. Craddock atlases with a specified
number of parcels (e.g. Craddock 200 will have 200
parcels). There are two atlas sizes publicly available -
the Craddock 200 and Craddock 400 atlases.

(h) DKT31 OASIS. The DKT atlas from the OASIS
dataset. See Table. S1 sources for more details. It is
the volumetric version.

(i) DKT40. The DKT atlas used as part of FreeSurfer.
See Table. S1 sources for more details. It is the surface
version.

(j) DK. The Desikan-Killiany atlas.
FreeSurfer.

(k) HO. Harvard-Oxford atlas.

(1) HO cortical-only. HO atlas with only cortical regions.
The symmetrical regions (the same region name on the
contralateral hemisphere) are labeled with different iden-
tifications. Thus, this atlas has non-symmetrical labels
(e.g. both temporal pole regions are labeled with a differ-
ent identification number). Left and right structures were
re-labeled with different identification numbers using the
sagittal mid-line (in MNI space, x coordinate at zero) as
a separator.

Surface atlas from

(m) HO cort-only. Same as the HO cortical-only atlas.
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(n) HO sym. cortical only. HO atlas with only cortical
regions. The symmetrical regions (the same region name
on the contralateral hemisphere) are labeled with the
same identification. Thus, this atlas is has symmetrical
labels (e.g. both temporal pole regions are labeled with
the same identification number). The default atlases
given by FSL are symmetrical atlases.

(o) HO subcortical-only. HO atlas with only subcortical
regions.

(p) HO subcort-only. Same as the HO subcortical-only
atlas.

(q) HO combined. HO atlas with both cortical and sub-
cortical regions. This atlas has non-symmetrical labeling
(e.g. both temporal pole regions are labeled with a differ-
ent identification number).

(r) HO cortical 4 subcortical. Same as the HO combined
atlas.

(s) JHU. The Johns Hopkins University atlases. There are
two white matter atlases: thee JHU labels and JHU
tracts atlases.

(t) MMP. Multi-modal parcellation atlas. Sometimes re-
ferred to as the "Glasser Atlas" after the first author of
the original publication.

(u) Random atlas 10-10,000. Atlases created with ran-
dom parcels with a specified number of parcels (e.g. Ran-
dom atlas 1,000 will have 1,000 parcels). These atlases
were built in the ICBM 2009c¢ Nonlinear Asymmetric
template. Thus, these atlases are whole-brain atlases
(includes cortical gray matter, subcortical gray matter,
and white matter). See the ’Atlases’ Methods section for
more details.

(v) Schaefer 100-1,000. The Schaefer atlases with a speci-
fied number of parcels (e.g. Schaefer 100 will have 100
parcels). There are ten atlases of 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1,000 parcels.

(w) Yeo liberal. The Yeo atlases where the boundaries of
each parcel is extended slightly into the white matter,
past the cortical boundary.

(x) Yeo conservative. The Yeo atlases where the bound-
aries of each parcel is extended slightly into the white
matter, past the cortical boundary.

A SFC. The change in SFC between ictal and preictal stats
(SFCjctai — SFCpreictar)- This indicates whether or not the
change in functional connectivity is congruent with the under-
lying structural connectivity.

. Contact. A single sensor on an electrode that records LFP.

Not to be confused with an electrode. See Fig. S7, bottom.

4. ECoG: Electrocorticography.
5. Electrode. Not to be confused with contact. See Fig. S7,

17

bottom.

. Derived atlas: An atlas which was derived from another

atlas. For example, the AAL 600 is derived from the AAL
atlas in which its parcellations are further sub-divided using a
specified algorithm. Derived atlases may also be sub-divided
randomly so that it is both considered a random and derived
atlas (a quasi-random atlas). The BNA is also a derived atlas
in which it initially used the parcellations of the DK atlas.

. Functional connectivity (FC). The statistical relationship

between two signals (two contacts in this study).

. grayordinate. Atlas that includes gray matter structures,

including cortical and subcortical gray matter regions.

. ROI. Region of interest
10.

ROI, parcel, parcellation, region. These terms may be
used interchangeably in the literature. They refer to discrete
areas of a brain. These regions are labeled with a categorical
identification (rather than a continuous variable seen in tem-
plates - see Fig. S1), and all voxels or surface vertices with the
same identification are part of thee same region.
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11. SEEG: Stereoelectroeenccephalography.

12. Structural connectivity (SC). The physical relationship
between two brain regions. We use streamline counts in this
manuscript from High Angular Resolution Diffusion Imaging.

13. T1lw. T1l-weighted MRI image.
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Clarifying Terminologies

a ‘ﬂ% b L
¢ '

Template

Fig. S1. Atlas, Template, and Coordinate (Stereotactic) Space. | These three terms are commonly confused in
the neuroscience literature because they all relate to the "map" of the brain. "Atlas" and "template" are sometimes used
interchangeably®, however, they are distinct. Here, we define them more formally. a, A brain atlas refers to a neurological map
that defines brain region labels. We use this definition throughout the main text. b, An atlas is distinct from a brain template,
which refers to a brain pattern. Similar in common usage, a template is a mold, gauge, or starting point representation of the
brain. Usually it is composed of multiple individuals’ brain representing an average of a population. Many templates exist
and are reviewed in various publications®?, The templates illustrated here are the MNI152 Nonlinear asymmetric 2009¢ T1w
template (http://www.bic.mni.mcgill.ca), the OASIS brain template https://www.oasis-brains.org/ created and used by ANTs
(http://stnava.github.io/ANTs/ with templates linked here), a gray matter probability map, a PET template, and a b0 DTI
template. ¢, The coordinate system, or the stereotactic space, of the brain describes the physical positioning of the brain,
similar to the geographical coordinate system of longitude and latitude of the Earth. Historically, a common stereotactic space
was the Talairach space, and more recently, the MNI spaces. The analogy between the geographical terms of the Earth and the
geographical terms of the brain is not exact. The analogy falls apart in that while there in one world, there are many brains.
There is variability across populations and a spectrum of differences between species, therefore, it is challenging to represent
one brain for use in every scientific study appropriately. MINI, Montreal Neurological Institute; OASIS, Open Access Series of
Imaging Studies; GM, Gray Matter probability map; PET, Positron Emission Tomography; DTI, Diffusion Tensor Imaging.
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Atlas Source  Note Reference(s)
AAL 1 AAL1. The successor to the Talairach atlas. The goal was to (1) Tzourio-Mazoyer, N. et al. Automated Anatomical Labeling of Activations in SPM
reduce confusion in relating stereotaxic space (a set of brain Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.

T < coordinates) and anatomical labels. It is based on a single indi- ~ Neurolmage 15, 273-289 (2002).

vidual (the Collin-27 template) and it is not a probabilistic map.  (2) Collin-27 template: Holmes, C. J. et al. Enhancement of MR Images Using

The Collin-27 template was intended for segmentation, and not  Registration for Signal Averaging: Journal of Computer Assisted Tomography 22,
stereotaxy; it did not capture anatomical variability. However, 324-333 (1998).

the high resolution in 1998 proved attractive to research groups.  (3) Website about Collin-27: https://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27

2 AAL2: new parcellation of orbitofrontal cortex. AAL1 orbitofron- (1) Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new
tal cortex was parcellated according to a French publication parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas.
by Jules Déjerine in 1895. Chiavaras and Petrides (2000) Neurolmage 122, 1-5 (2015).
proposed another parcellation of the orbital surface allowing (2) Chiavaras, M. M. & Petrides, M. Orbitofrontal sulci of the human and macaque
for the comparison of human frontal lobe anatomy with that of monkey brain. The Journal of Comparative Neurology 422, 35-54
macaques. (3) Dejerine, J. Anatomie des centres nerveux. (Rueff Paris, 1895).

3] AAL3: new parcellations - anterior cingulate, thalamus, nucleus  Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical
accumbens, substantia nigra, ventral tegmental area, red labelling atlas 3. Neurolmage 206, 116189 (2020).

nucleus, locus coeruleus, and raphe nuclei. 2019.
AAL3v1: changes of thalamus in line with FreeSurfer 7. 2020.

4 Website for download - group that made AAL toolbox and user  https://www.gin.cnrs fr/en/tools/aal/
guides.

5 SPM - software compatible with AAL toolbox. Generally, (1) Statistical parametric mapping: the analysis of functional brain images. (Elsevier/
designed for the analysis of brain imaging data sequences. Academic Press, 2007).
Extensions include AAL toolbox. (2) Website: https://www fil.ion.ucl.ac.uk/spm/ext/

6 AAL 600 - Subparcellations of the AAL atlas into 600 subre- Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Con-
gions. Upsampling algorithm described. Part of larger frame- served and variable architecture of human white matter connectivity. Neurolmage
work for evaluating the effect of parcellation scale. 54, 1262-1279 (2011)

7 Use cases of AAL600. Both Ashourvan et al. (2017) and (1) Ashourvan, A., Telesford, Q. K., Verstynen, T, Vettel, J. M. & Bassett, D. S. Multi-
Hermundstad et al. (2014) use AAL600 for generating both scale detection of hierarchical community architecture in structural and functional
structural and functional connectivity networks. brain networks. (2017)

(2) Hermundstad, A. M. et al. Structurally-Constrained Relationships between Cog-
nitive States in the Human Brain. PLoS Comput Biol 10, e1003591 (2014).

AICHA 8 AICHA tries to account for homotopy: the concept that each Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. Journal
|y region in one hemisphere has a homologue in the other. of Neuroscience Methods 254, 46-59 (2015)
Brainnetome 9 Connectivity-based atlas. Further subdivision of structural Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connec-
parcellations using the DK (Desikan-Killiany) protocol, with tional Architecture. Cerebral cortex (New York, N.Y. : 1991) 26, 3508-26 (2016).

adjustments. Website: http:/atlas.brainnetome.org

10 DS studio created by Fang-Cheng (Frank) Yeh. Many recon- (1) Website: http://dsi-studio labsolver.org/
struction and tracking algorithms are published and incorporat-  (2) Example of reconstruction method: Fang-Cheng Yeh, Wedeen, V. J. & Tseng,
ed into DSI Studio. See citations page on website. Many atlases  W.-Y. |. Generalized q-Sampling Imaging. IEEE Trans. Med. Imaging 29, 1626-1635

available, including Brainnetome. Can use custom atlas. (2010).
Brodmann 1 Perspective, description, and historical significance of Korbinian ~ Zilles, K. & Amunts, K. Centenary of Brodmann’s map — conception and fate. Nat
Brodman’s map. Rev Neurosci 11, 139-145 (2010
12 References to the original German and English translation (1) Original German: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
provided. Prinzipien dargestellt auf Grund des Zellenbaues. (1909)

(2) English translation: Brodmann, K. & Gary, L. J. Brodmann’s localisation in the
cerebral cortex: the principles of comparative localisation in the cerebral cortex
based on cytoarchitectonics. (Springer, 2006

13 The atlas is available through MRIcro, a legacy tool developed

(1) Chris Rorden legacy tools webpage: https://people.cas.sc.edu/rorden/
by Chris Rorden (University of South Carolina). The atlas is (

(

(

)

) Updated webpage: https://crnl.readthedocs.io/
based on work from the Van Essen lab (Washington University )
in St. Louis) with corresponding Talairach coordinates, and )
transformed by Krish Singh (Cardiff University) to MNI space.

About Brodmann atlas: https:/people.cas.sc.edu/rorden/mricro/lesion.html

1
2
3
4) BALSA: https://balsa.wustl.edu/Wz8r

14 Introduction to the CerebrA and MNI-ICBM2009c average brain ~ Manera, A. L., Dadar, M., Fonov, V. & Collins, D. L. CerebrA, registration and
template. manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template. Sci
Data 7, 237 (2020).
Website: https://doi.gin.g-node.org/10.12751/g-node be5e62

15 Original publication about functional parcellations. Craddock, R. C., James, G. A, Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S.A
whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum.
Brain Mapp. 33, 1914-1928 (2012).

16 GitHub with source code to make atlas with N clusters. GitHub: http://ccraddock.github.io/cluster_roi/atlases.html

17 Publicly available pre-made atlases at N=200 and N=400 from  ABIDE: http://preprocessed-connectomes-project.org/abide/Pipelines html
ABIDE (Autism Brain Imaging Data Exchange), co-founded by
Cameron Craddock. 4x4x4mm resolution.

Table S1. Atlas sources and references. | This table provides a short note and references to the source material of common
atlases in the neuroscience literature. See also Table 1.
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Atlas Source  Note Reference(s)
DKT : 18 Original DK protocol and atlas. A protocol for an atlas is a set Desikan, R. S. et al. An automated labeling system for subdividing the human
F of instructions for how the brain should be labeled. See AAL, cerebral cortex on MRI scans into gyral based regions of interest. Neurolmage 31,
E Hammersmith, Harvard-Oxford, and JHU atlases. 968-980 (2006).
N —— 19 DKT protocol, Mindboggle-101 dataset, and atlas creation. Klein, A. & Tourville, J. 101 Labeled Brain Images and a Consistent Human Cortical
. Labeling Protocol. Front. Neurosci. 6, (2012).
Ve b
&l \(:i/) 20 Summary of Mindboggle project, history, atlas development, Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput Biol 13,
W/" applications, and current problems. €1005350 (2017)
O
Volumetric version 21 Websites for downloading data including the labeled brains and ~ Open Science Framework: https://osf.io/nhtur/
atlases. Harvard Dataverse: https:/dataverse.harvard.edu/dataverse/mindboggle
Labels: https://mindboggle readthedocs.io/en/latest/labels.html
GitHub: https://github.com/nipy/mindboggle
22 Subcortical regions. http://www.neuromorphometrics.com/
DK atlas - surface
(CHIRIDRER ) 23 FreeSurfer. https://surfer.nmr.mgh.harvard.edu/
Destrieux 24 Original article describes automatic labeling algorithm from (1) Destrieux, C., et al., E. Automatic parcellation of human cortical gyri and sulci
probabilistic information using a manually labeled training set. using standard anatomical nomenclature. Neurolmage 53, 1-15 (2010).
74 parcellations per hemisphere (excluding subcortical struc- (2) Fischl, B. Automatically Parcellating the Human Cerebral Cortex. Cerebral
tures). Available in FreeSurfer with subcortical structures output. ~ Cortex 14, 11-22 (2004).
25 FreeSurfer information on atlases available. (1) https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
(2) https://surfer.nmr.mgh.harvard.edu/fswiki/DestrieuxAtlasChanges
Gordon-Petersen 26 Original article. Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcellation from
Resting-State Correlations. Cereb. Cortex 26, 288-303 (2016).
27 Resource to download atlas. https://sites.wustl.edu/petersenschlaggarlab/resources/
Hammersmith 28 Original article (for regions 1-49), including their Hammersmith ~ Hammers, A. et al. Three-dimensional maximum probability atlas of the human
protocol (or “algorithm”). brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19, 224-247
(2003).
29 Updated regions (for regions 50-83). Gousias, |. S. et al. Automatic segmentation of brain MRIs of 2-year-olds into 83
regions of interest. Neurolmage 40, 672-684 (2008).
30 Download atlas with 83 regions. http://brain-development.org/brain-atl fadult-brain-atl /adult-brain-maximum-
probability-map-hammers-mith-atlas-n30r83-in-mni-space/
Kl Atlas developed at the Center for Morphometric Analysis (CMA)  https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
at Massachusetts General Hospital and distributed with FSL.
32 Individual segmentations were segmented by CMA using in- FreeSurfer description about CMA: http://freesurfer.net/fswiki/CMA
house software. Probability maps were then created. Freesurfer  Link to website archive: https://web.archive.org/web/20180413052010/http://www.
link (right) has archived CMA's website and contains the cma.mgh.harvard.edu/
Harvard-Oxford labeling protocols
R JHU labels: Protocol to reconstruct eleven white matter tracts Wakana, S. et al. Reproducibility of quantitative tractography methods applied to
and their segmentation into ROl labels. Included in FSL. cerebral white matter. Neurolmage 36, 630-644 (2007).
34 JHU Tracts: white matter parcellation atlas based on DTl prob-  Hua, K. et al. Tract probability maps in stereotaxic spaces: Analyses of white matter
abilistic tractography of 11 major white matter tracts d. Protocol ~ anatomy and tract-specific quantification. Neurolmage 39, 336-347 (2008).
defining manually identified ROls from which the tracts were
formed are described in Wakana et al. (2005). Included in FSL.
35 Textbook with more information about these atlases. MRl atlas of human white matter. (Elsevier, Acad. Press, 2011).
36 Cytoarchitecture map. Successor to both the Brodmann and (1) Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic
Eickhoff-Zilles atlases. The Eichoff-Zilles is an SPM toolbox atlas of the human brain’s cytoarchitecture. 6 (2020).
(see note is source 5 about the AAL atlas) for probabilistic (2) Eickhoff, S. B. et al. Anew SPM toolbox for combining probabilistic cytoarchitec-
cytoarchitecture. tonic maps and functional imaging data. Neurolmage 25, 1325-1335 (2005)
37 Website for the Julich Atlas and SPM toolbox. https://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox/
SPMAnatomyToolbox_node.html
MMP 38 Original article on multi-modal approach. Glasser, M. F. et al. Amulti-modal parcellation of human cerebral cortex. Nature
536, 171-178 (2016).
39 Information on surface vs volume based methodologies for Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroim-
localization of neuroanatomy. aging methods on the spatial localization of cortical areas. Proc Natl Acad Sci USA
115, E6356-E6365 (2018).
40 Website to download data. Volumetric version also included in https://balsa.wustl.edu/

Table S1. (cont.) Atlas sources and references. | This table provides a short note and references to the source material of

DSl-studio. Note the volume note above.

common atlases in the neuroscience literature. See also Table 1.
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Atlas Source  Note Reference(s)
Random 41 Random atlas algorithm (pseudo-grassfire algorithm). Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes
matter? Neuroimage 50, 970-83 (2010).
42 Use case of random atlas. Goni et al. (2014) study the struc- (1) Goni, J. et al. Resting-brain functional connectivity predicted by analytic mea-
ture-function relationship in the brain with tractography and sures of network communication. Proceedings of the National Academy of Sciences
fMRI. They used random cortical atlases of 1170 equally sized 111, 833-838 (2014).
regions. Misic et al. (2015) used random cortical atlases of 1015 (2) Misi¢, B. et al. Cooperative and Competitive Spreading Dynamics on the Human
equally sized regions. Connectome. Neuron 86, 1518-29 (2015).
43 Included with FSL. See website for further details. Included (1) Website: http://www talairach.org/about html
structures are (1) Caudate, (2) Putamen, (3) Thalamus, (4) (2) http://lwww.talairach.org/about. html
Insula, (5) Frontal lobe, (6) Temporal lobe, (7) Parietal lobe, (8)  (3) Mazziotta, J. et al. A probabilistic atlas and reference system for the human
Occipital lobe, and (9) Cerebellum. brain: International Consortium for Brain Mapping (ICBM). Phil. Trans. R. Soc. Lond.
B 356, 1293-1322 (2001).
44 Original publication about functional parcellations. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from
Intrinsic Functional Connectivity MRI. Cerebral Cortex 28, 3095-3114 (2018).
45 GitHub and detailed documentation of atlases. https://github.com/ThomasYeol ab/CBIG/tree/master/stable_projects/brain_parcella-
tion/Schaefer2018_LocalGlobal
Talairach 46 Download: Included with FSL. Also available through website. Website: http://www.talairach.org/
47 The anatomical region labels were electronically derived from (1) Lancaster, J. L., Evans, A. C. & Toga, A. W. Automated Labeling of the Human
axial sectional images in the 1988 Talairach Atlas. The atlas was ~ Brain: A Preliminary Report on the Development and Evaluation of a Forward-Trans-
digitized and manually traced into a volume-occupant hierarchy  form Method. 238-242 (1997).
of anatomical regions detailed these publications (i.e. the pages  (2) Lancaster, J. L. et al. Automated Talairach Atlas Labels For Functional Brain
of the 1988 textbook with drawings were photocopied and Mapping. 120-131 (2000).
transformed into the computerized coordinate system).
48 (1) First atlas in 1957 focusing on the subcortical deep gray (1) Talairach, J., David, M., Tournoux, P., Corredor, H. & Kvasina, T. Atlas d’Anato-
nucelli, (2) second atlas in 1967 focusing on the telencepha- mie Stéréotaxique. Repérage Radiologique Indirect des Noyaux Gris Centraux des
lon, (3) third atlas in 1988 focusing on the whole brain. Most Régions Mésencephalosousoptique et Hypothalamique de 'Homme. (1957).
researchers preferred the use of the Talairach atlas to report (2) Talairach, J. & Szikla, G. Atlas of Stereotaxic Anatomy of the Telencephalon.
the localization of the activations detected in functional imaging ~ (Masson, 1967)
studies because it offers a detailed anatomical brain description  (3) Talairach, J. & Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-di-
", ‘i within the stereotaxic space, including Brodmann'’s areas. mensional proportional system: an approach to cerebral imaging. (Georg Thieme,
1988).
49 Historical publication about Jean Talairach. Harary, M. & Cosgrove, G. R. Jean Talairach: a cerebral cartographer. Neurosurgi-
cal Focus 47, E12 (2019).
50 Comparison between MNI and Talairach Coordinates. Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using
the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194-1205 (2007).
Yeo 51 Original publication about functional parcellations. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by
f%‘;’ \ intrinsic functional connectivity. Journal of Neurophysiology 106, 11256-1165 (2011)
) B\
7z
& 52 Website from FreeSurfer. https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
Region-specific o) Thalamus - based on ex vivo analysis. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex
vivo MRI and histology. Neurolmage 183, 314-326 (2018).
54 Hippocampus - based on ex vivo analysis lglesias, J. E. et al. A computational atlas of the hippocampal formation using ex
vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.
Neurolmage 115, 117-137 (2015).
55 Structural atlas of Cerebellum. Included with FSL Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilis-
tic MR atlas of the human cerebellum. Neurolmage 46, 39-46 (2009).
56 Functional atlas of Cerebellum (1) Xue, A. et al. The Detailed Organization of the Human Cerebellum Estimated by
Intrinsic Functional Connectivity Within the Individual. 69.
(2) Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The
organization of the human cerebellum estimated by intrinsic functional connectivity.
Journal of Neurophysiology 106, 23222345 (2011).
(2) GitHub: https://github.com/ThomasYeolLab/CBIG/tree/master/stable_projects/
brain_parcellation/Xue2021_IndCerebellum
Population-specific 57 Pediatric/Neonatal. Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Mel-
ATER bourne Children’s Regional Infant Brain (M-CRIB) atlas. Neurolmage 147, 841-851
(2017).
58 Disease-specific: example of a multiple sclerosis lesional atlas. ~ Sahraian, M. A. & Radue, E.-W. MRl atlas of MS lesions. (Springer, 2008).

Table S1. (cont.) Atlas sources and references. | This table provides a short note and references to the source material of

common atlases in the neuroscience literature. See also Table 1.
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Atlas Morphology: Sizes and Shapes

:: ] AALT AALZ AAL3 AALBOO AAL-JHU AICHA
a8 - L7 { . ]
¥ ¥ ¥ . vk &4 ;
0s - »
E I % ~ _ - R
a3 ' « " 2 el :
02
ol (4.11, 0.48) (4.09, 0.46) (3.95, 0.48) (333, 0.59) (3.98, 0.45) (348, 0.45)
:: - BN Brodmann Cradaock200 Gordon Hammersmih |
08 . ’
ot ’ \ F P
04 - , .
03 - 2
03 —
o (3.68, 0.45) (4.52,032) (377,08 (348, 0.69) (3.14, 0.44) (4.3, 0.46)
:: ] HO_combined HO_corlical_symmelric HO_cortical HO_subcortical JHU JHU_ tracts
:: 7] Ty . ‘e v,
a4 *“. - *‘. . e
03 4 § ’ . ’ A
02 d
. o (4.02, 0.46) (4.34,0.38) (4.04, 0.46) (385, 0.49) (3.5, 0.44) (3.7, 0.24)
a8 Javch P CerebrA TN Jobar DRTIT_OASIS | Schaeler_i17_100
a7 -
0s .
o5 | ; ‘ou? o
AL~ } s
04 v o, &,
03 | %.' & ‘.s ° o .
a2 - g 4 * "’
o ] (3.76, 0.38) (324,032) (4.04,0.33) (521,037) 397,03) (4.02,041)
98 T Schweler_17_200 Schaeter_17_300 Schaeler_17_400 Schaeter_17_500 Schaeler_17_600 Schaeter_17_700
2 as ) .
Q o0s -
N . . v ® L
03
02 -
o1 ] (3.72,043) (355, 0.44) (3.25, 0.46) (318, 0.46)
Eg I Schaeler_17_500 Schacter_17_900 Veo_7_tberal Yeo_7
08 -
SEI L
04
03 -
02 .
pol (3.12, 0.46) (307, 0.46) (5.18,0.2) (4.88,0.1)
:: 1 Yeo_ 17_Kberal Yeo_17 Random Allas 50 | Random Alles 78|
08 o
a5 . 2
bl _‘ &y ¥ *
03
oz « »
o (4.79,0.22) (449,013 (5.28,0.51) (4.78, 0.49) (4.56, 0.49) (4.39, 0.5)
::: Random Alias 100 Random Allas 200 Random Allas 300 Random Alies 400 Random Allas 500 Random Allas 750
08 -
sl # ! 4 ' | N ’
04 .
03 B
u B
o (4.26,0.5) (3.96,0.5) (3.78, 0.51) (366, 0.51) (3.56, 0.51) (339, 0.51)
:: | Random Atias 1000 Random Allas 2000 Random Allas 5000 Randomn Allas 10000
08 ~
@ ¢
04
03
02
o ] (3.28, 0.51) (296, 0.51) (256, 0.51) (226,051)
L] T T Ll L T L Ll L] T T Ll LLJ T T L L] T T 1 L T T 1 L]
01 2 3 45 601 2 3 45 60 1 2 3 45 601 2 3 456
volume (log;o mm?)

Fig. S2. Atlas Morphology: Sizes and Shapes. | All standard atlases and one permutation for each of the standard atlases
are shown here. Volume means and sphericity means are in parentheses at the bottom of each graph. See Table S1 for atlas
abbreviations, descriptions, and sources.
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Remaining atlases (Repeat of Fig. 3)
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Fig. S3. Structure-Function Correlation (SFC) for All Atlases. | We show network measures the remaining atlases
illustrated in Table 2. See Table S1 for atlas descriptions. HO, Harvard-Oxford; Sub, subcortical; Cort, cortical
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Controls and patients separated (Repeat of Fig. 3)
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Fig. S4. Network Measures: Controls vs Patients. | We replicate Fig. 2 (N=41) in the manuscript by separating out
controls (N=13) and patients (N=28). All global network measures above are similar between patients and controls, with
patients having slightly lower (but not significant, Fig. 2 bottom right panel) measurements for the different network properties.
Specific connectivity differences between controls and patients were not explored (e.g. to explore if connections from the
hippocampus to the anterior cingulate are changed in temporal lobe epilepsy) and out of the scope of this manuscript. See
Table S1 for atlas descriptions.
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Re-calculating network measures at different thresholds (Repeat of Fig. 3)

N = 41 (13 controls, 28 patients)

N = 41 (13 controls, 28 patients)
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Fig. S5. Network Measures: different thresholds. | We replicate Fig. 2 (N=41) in the manuscript by calculating network
measures using different thresholds. The main text figure includes all weights with no threshold (threshold = 0). We set
thresholds at 01., 0.2, 0.3, and 0.4. This was done to show how various network measures may also change when eliminating
low-level connections at different thresholds.
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Fig. S6. Effects of Registration: Volumetric- and Surface-based approaches | Volumetric-based analyses, as opposed
to surface-based analyses, have been more prevalent in human neuroimaging studies for the last few decades?!. Volumetric-based
approaches to map the neocortex have been shown to be inaccurate in some cases. For example, the top row shows a single
subject’s T1w image and the resulting labels of three atlases registered using a surface-based approach and two atlases using a
volumetric-based approach. The DKT atlas using a surface-based approach follows the cortical folds of the T1w image closely,
but the DKT atlas registered using a volumetric-based approach may have many mis-aligned areas. These images show the
improved accuracy in mapping and labeling brain structures using surface-based analyses, but the adoption of surface-based
analyses has been slow and attributed to five main reasons discussed in Coalson et. al 2018%'. Briefly, it is due to (1) the
need to compare results with existing volumetric-based studies, (2) the prevalence of volumetric-based tools compared to
surface-based tools, (3) the learning curve of surface-based approaches; (4) an unawareness of the problems and benefits of each
approach; (5) and uncertainty or skepticism as to how much of a difference these methodological choices make. In some cases,
it may make a difference, however, it does not make a difference in this study. Here, we used a surface-based approach to
register three different atlases to each patient. The atlases were outputs of FreeSurfer’s recon-all pipelinee "® - the DKT40,
Desikan-Killiany (DK), and Destrieux atlases. The DKT atlas has a modified parcellations of the DK atlas, and the Destrieux
atlas is an alternative atlas offered by the FreeSurfer piepline. The Destrieux atlas has a finer parcellation scheme (i.e., more
number of regions). We repeat analyses of Fig. 5 and Fig. 6 of the main text, along with results from two volumetric-based
atlases for side-by-side comparison. The volumetric-based atlases include the DKT (DKT31 OASIS) and AAL3 atlases. While
the volumetric DKT atlas does not properly align and label the entire cortical gray matter regions, the AAL atlas extends
deeply into the white matter and does label much of these gray matter regions. For the experimental design of this study in
localizing electrode contacts and measuring structural connectivity, the AAL3 atlas provides the most power out of all these
atlases in detecting a change in SFC. In the original AAL manuscript®®, the authors “chose to extend the internal limit of the
regions beyond the gray matter layer [to account for] anatomical variability”. This extension past the internal gray matter
boundary may be optimal in our case for measuring SFC because the parcellations may capture streamlines that otherwise
would have ended prematurely before reaching gray matter.
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Fig. S7. Coverage of electrode contacts. | Top: We show the percentage of contacts assigned a region given an atlas. If a
contact fell outside an atlas, it would not be assigned a location and would not be used in SFC analysis. We also show the
Harvard-Oxford atlas regions (cortical and subcortical combined) that contain electrode contacts (middle and bottom figures).
The middle figure shows the number of patients with at least one contact in an atlas region (at least one of the regions on both
hemispheres). The bottom figure shows the total number of contacts in each listed region. Note that 1792 out of 2474 contacts
(72%) contained within the brain parenchyma (gray matter or white matter) is higher than the mean percent coverage listed in
the top figure (65% for the HO combined) because some patients with fewer contacts may have lower coverage by the atlas,
thus bringing the mean percent down. Also note the larger number of contacts in the frontal pole because this region in the
Harvard-Oxford atlas is large. We chose to show the Harvard-Oxford atlas because it has the largest effect size in Fig. 6.
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Results for “Brain Atlas” per 100,000 citations in PubMed
proportion for each search by year, 1945 to 2020

60
(@)

O 50

OI\

S . BOLD
—

_— fMRI
o

g 20

>

7))

D 10

nd

0
1945 1949 1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017

Year

Fig. S8. The increase in publications related to brain atlases. | We searched for any publications since 1945 using the
term “Brain Atlas” on PubMed. We note that since the introduction of BOLD fMRI in 1990, the need for neuroanatomical
maps of the brain has increased, especially in the neuroimaging community. Many atlases have been published over the last 30
years, and many publications across the neuroscience literature have used these atlases. However, no comprehensive study
exists evaluating, in any regard, to the suitability and nuances related to these atlases. We hope our work provides a valuable
resource to others in our field, launches a larger discussion to critically evaluating the neuroanatomy of the brain, and direct
future reproducible research for other scientists and clinician investigators.
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Fig. S9. Prevalence of select brain atlases and neuroimaging software | a, We searched on PubMed for any publications
since 1945 using the verbatim terms shown in each line graph legend. The tool used is from https://esperr.github.io/pubmed-
by-year/®°. This search was done to gain a better understanding how often the field is using different tools, and thus to make
some recommendations as to which atlases to use and facilitating the comparison of results. Note that due to the prevalence of
the term "AAL" which may not relate to the AAL atlas, we opted for the term "AAL atlas". Another example is the use of
"Multimodal Parcellation" rather than "MMP". The search for "AAL" is shown at the bottom right, where articles appear
before the original AAL manuscript in 20025, most likely not relating to the AAL atlas. However, the prevalence of "AAL"
increases substantially after 2002, more than other atlases. These search terms serves as a rough estimate of the prevalence of
atlases, and may not reflect the true prevalence of each term. b, We show to prevalence of select neuroimaging software. Again,
due to the ambiguity of search terms such as "ANTs", we opted for the full name of the software, despite some manuscripts
only having used the abbreviated terms. "Advanced normalization tools" searched in quotes is shown at the bottom right,
having first appeared formally in the literature in 2009 °.
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Fig. S10. Electrode localization and region selection | Assignment of each electrode contact to an atlas regions was
performed by rounding electrode coordinates (x,y,z) to the nearest voxel and indexing the given atlas at that voxel. Electrodes
that fell outside the atlas of interest were excluded from subsequent analysis. The structural connectivity network, representing
normalized streamline counts between each atlas region, was also down sampled to only include regions that contained at least
one SEEG contact. This gave one static representation of structural connectivity. In the case where multiple electrodes fell in
the same atlas ROI, a random electrode was selected to represent the functional activity of that neuroanatomically defined
region.
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Patient Age Sex Localization: suspected seizure onset zone Control Age Sex
sub-patient0l 58 M Poorly localized. R temporal interictal activity. sub-control0l 24 M
sub-patient02 28 L anterior temporal lobe sub-control02 40 F
sub-patient03 27 L hippocampus and amygdala sub-control03 31 M
sub-patiento4 20 L basal ganglia infarct sub-control04 29 M
sub-patient05** 36 M  Rfrontal arteriovenous malformation sub-control05 40 M
sub-patient06 57 F Poorly localized. Possibly bitemporal onset sub-control06 48 F
sub-patient07** 37 M L temporal lobe/hippocampus/amygdala sub-control07 22 M
sub-patient08** 34 M  Rfrontal, anterior cingulate gyrus sub-control08 35 F
sub-patient09** 47 L hippocampus sub-control09 27 F
sub-patient10 42 R temporal lobe/L temporal lobe sub-controll0 67 F
sub-patientll 27 M L hippocampus, then amygdala sub-controlll 33 F
sub-patient12 35 M  Poorly localized. Possibly multifocal epilepsy sub-control12 27 M
sub-patient13** 36 L temporal sub-control13 ~ NR NR
sub-patient14** 29 L superior Frontal Sulcus

sub-patientl5 33 L mesial temporal lobe

sub-patientl6 29 M  Poorly localized. Possibly multifocal epilepsy

sub-patientl7 31 L mesial temporal lobe

sub-patient18** 26 L heterotopia, left hippocampus

sub-patient19** 23 M L temporal/posterior lateral neocortical

sub-patient20 30 M L temporal encephalomalacia

sub-patient2l 24 M  Ranterior temporal lobe

sub-patient22 59 F R frontal-parietal lobe

sub-patient23 28 F L or R superior temporal gyrus

sub-patient24** 47 F R anterior temporal

sub-patient25 40 F L temporal lobe near Heschl’s gyrus

sub-patient26 37 15 L amygdala/anterior temporal pole

sub-patient27 30 M L amygdala/hippocampus

sub-patient28** 28 M L mesial temporal lobe

Table S2. Patient and control demographics.| Patient IDs with asterisk have clinically annotated seizures for structure-
function calculation. Localization of the seizure onset zone was pulled from patient charts, either from the clinically hypothesized
brain regions if the patient did not undergo surgery, or if the patient underwent surgery, the targeted location for resection or
ablation. One control did not have age or sex information. M, Male; F: Female; L, left; R, Right; NR, Not reported
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Atlas [regions] Sources 3D Render Description Variations
AAL 1-7 S Structural atlas. Manual identification using a defined labeling protocol | AAL: AAL1, AAL2, AAL3, AALB00, AAL-JHU
. . on single subject template (Collin-27). Three versions. Version 2: updat-
[1 1 6’ 1 20’ 1 66] SPM ed boundaries. Version 3: further parcellations. Successor to Talairach. !
AICHA 8 F Functional atlas based on rsfMRI; 281 subjects. Each ROI has (1) homo-
[38 4] geneity in its functional activity (2) a homotopic contralateral counterpart
with which it has maximal connectivity.
Brainnetome 9-10 S C%nnectivity-bazedlzarr(]:ellation.lBased onidea tha; Iclusj‘eored tr)egionfs of
. a brain region should share similar connectivity profiles; 40 subjects from
[246] DSlstudio HCP dataset. 210 cortical; 36 subcortical.
Brodmann 11-13 S Developed by independent group at Washington University in St. Louis.
[ 48] MRIcron Published with MRIcron software. Warned by developer to be used with Removed Smaller Added AAL-JHU
caution - not validated, nor based on multiple individuals. (dark blue) ~(lightblue)  (red-yellow) (JHU labels blue)
CerebrA 14 S Structural atlas. Non-linear registration of cortical and subcortical label- Craddock: N parcellations
[102] ling from Mindboggle-101 dataset (see DKT below) to the symmetric 17cm  1.0cm
MNI-ICBM2009c template, followed by manual editing.
Craddock 15-17 F Functional atlas; rsfMRI; 41 subjects. ROls are spatially clustered into ' - §
[N] regions of homogeneous functional connectivity. May be N regions. | pea
200/400 regions publicly available. 4x4x4 mm? resolution fMRI. Resliced. X
T -
DKT 18-23 S DKT is a labelling protocol. DK is old protocol. Used on Mindboggle-101 | DKT: Surface (probabilistic labeling DK surface DK surface DKT volumetric
[109] FreeSurfer dataset (101 brains). Probabilistic atlas using joint fusion algorithm. | of individual with surface-based
Surface version in FreeSurfer (40 brains). Volumetric version, 20 brain registration), Volumetric (labeling
subset. Non-cortical: Neuromorphometrics BrainCOLOR atlas (aseg). ! with volumetric- registration)
Destrieux 24-25 S Probabilistic atlas of surface anatomy created from: (1) Manual labeling, | Harvard-Oxford: Cortical/subcortical only, combined, symmetric, nonsymmeric
(2) surface geometry, (3) spatial relationship of neighboring structures. . Y
[189] FreeSurfer Avaliable in FreeSurfer with subcortical structures added. i ) \
Gordon-Petersen 26-27 F Identification of abrupt transitions in resting-state functional connectivity
[333] to identify parcellations. Based on rsFMRI. 108 subjects. Intended for
surface-based analyses.
Hammersmith 28-30 S A/l Manually identified 83 structures using defined labelling protocol; 30 sub- Symmel?ric
[83] 'my jects. Maximum probability map. First version in 2003 with 49 structures. 74
Named after London hospital, Hammersmith. Hammers is author.
Harvard-Oxford 31-32 S ) J ] Manual segmentation using defined labelling protocol; 37 subjects. Corti- |
48 + 21] FSL cal and subcortical atlases provided separately. Left and right structures | Subcortical Combined
have same labels (symmetry). Must preprocess. X Cortical + Subcortical
JHU 33-35 S White matter atlas. Two versions. (1) Labels: Hand segmentation aver- | JHU: Labels, tracts
. age of diffusion MRI; 81 subjects. (2) Tracts: probabilistic identification
[48’ 20] FSL from deterministic tractography; 28 subjects. !
Julich 36-37 S Cytoarchitecture atlas. Successor to Brodmann. Average of 10-subject
[1 2 1] FSL post-mortem cyto- and myelo-architectonic segmentations. Update to the
Eickhoff SPM Anatomy Toolbox v1.5. Whole brain is not covered.
MMP 38-40 M Multi-modal parcellation: (1) Architecture - T1w/T2w myelin maps + cor- | Random: N parcellations, cortical, whole-brain, subparcellated
. tical thickness, (2) function - task-fMRI, (3) connectivity, (4) topography. N=100 N 1,000 N=10,000
[380] DSlstudio 210 subjects. Cortical ONLY. Originally intended for surface analysis. N=30
Volumetric version independently created and used.
Random 41-42 Vv Brain is randomly parcellated into N regions. Variations used in studies | ) :
[N] include cortical and whole-brain. Other atlases (e.g. AAL) and their | N=10 &
regions may be further randomly divided, or subparcellated. "L lemonScem ‘e @ grape2em e speafcm
MNI Structural 43 S 9 regions, including lobar and some subcortical regions. Hand Schaefer: 100 to 1,000 parcellations (by 100), named to Yeo 7 and 17
[9] FSL segmented 50 subjects. Transformed into MNI152 space, averaged, N=100 N=500 N=1,000
probability maps produced. 25% max probability is shown. P
Schaefer 44-45 Based on rsfMRI. Clusters found with gradient-weighted Markov
_ : Random Field model. 1489 subjects. Cortical only. Spatial resolutions
[1 00 1000] GitHub provided: 100 - 1000 parcellations (by 100). Well documented.
Talairach 46-50 E:onverfionI of g)rigirlmal TaLairalch Iak:jeling. Digitized \’/\msliﬁn 2of the oriﬁiTaI Yeo: 7/17 parcellations; Cortically bounded or liberal
coarsely sliced) Talairach atlas and registration to 52 space. Atlas
[1105] FSL provided in FSL. {Q"ém 4 b /
& .
Yeo 51-52 1000 subjects; rsfMRI. Clustered cortical regions by patter of functional | \ "' * M
[7_ 17] FreeSurfer connectivity. Results in non-spatially continuous clusters. 7 and 17 | v Vﬁ? \l) .J
’ clusters based on stability of clustering algorithm. Cortically bounded liberal discontinuous
Region-specific 53-56 Atlases created for specific regions, usually high quality + high degree Thalamus, ( k . -
FSL of accuracy (e.g. post-mortem histological verification). Examples: Hippocampus, ,3 .Y )
Thalamus nuclei, hippocampus, and other specific structures. Cerebellum Cerebellum X ( k A "
Population-specific 57-58 Atlases created from a specific population (e.g. elderly, pediatric, Pediatric, » Neonatal
non-human). Disease-specific defines regions specific for disease (e.g. Elderly, 0
MS lesion probabilistic locations). Disease specific ./ M-CRIB

(Melbourne)



https://doi.org/10.1101/2021.06.11.448063
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448063; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Atlas Source  Note Reference(s)

AAL 1 AAL1. The successor to the Talairach atlas. The goal was to (1) Tzourio-Mazoyer, N. et al. Automated Anatomical Labeling of Activations in SPM
reduce confusion in relating stereotaxic space (a set of brain Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.

= coordinates) and anatomical labels. It is based on a single indi- ~ Neurolmage 15, 273-289 (2002).
vidual (the Collin-27 template) and it is not a probabilistic map. ~ (2) Collin-27 template: Holmes, C. J. et al. Enhancement of MR Images Using
The Collin-27 template was intended for segmentation, and not  Registration for Signal Averaging: Journal of Computer Assisted Tomography 22,
stereotaxy; it did not capture anatomical variability. However, 324-333 (1998).
the high resolution in 1998 proved attractive to research groups.  (3) Website about Collin-27: https://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
2 AAL2: new parcellation of orbitofrontal cortex. AAL1 orbitofron- (1) Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new
tal cortex was parcellated according to a French publication parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas.
by Jules Déjerine in 1895. Chiavaras and Petrides (2000) Neurolmage 122, 1-5 (2015).
proposed another parcellation of the orbital surface allowing (2) Chiavaras, M. M. & Petrides, M. Orbitofrontal sulci of the human and macaque
for the comparison of human frontal lobe anatomy with that of monkey brain. The Journal of Comparative Neurology 422, 35-54
macagques. (3) Dejerine, J. Anatomie des centres nerveux. (Rueff Paris, 1895).
3 AAL3: new parcellations - anterior cingulate, thalamus, nucleus  Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical
accumbens, substantia nigra, ventral tegmental area, red labelling atlas 3. Neurolmage 206, 116189 (2020).
nucleus, locus coeruleus, and raphe nuclei. 2019.
AAL3v1: changes of thalamus in line with FreeSurfer 7. 2020.
4 Website for download - group that made AAL toolbox and user  https://www.gin.cnrs.fr/en/tools/aal/
guides.
5 SPM - software compatible with AAL toolbox. Generally, (1) Statistical parametric mapping: the analysis of functional brain images. (Elsevier/
designed for the analysis of brain imaging data sequences. Academic Press, 2007).
Extensions include AAL toolbox. (2) Website: https://www.fil.ion.ucl.ac.uk/spm/ext/
6 AAL 600 - Subparcellations of the AAL atlas into 600 subre- Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Con-
gions. Upsampling algorithm described. Part of larger frame- served and variable architecture of human white matter connectivity. Neurolmage
work for evaluating the effect of parcellation scale. 54, 1262-1279 (2011)
7 Use cases of AAL600. Both Ashourvan et al. (2017) and (1) Ashourvan, A., Telesford, Q. K., Verstynen, T., Vettel, J. M. & Bassett, D. S. Multi-
Hermundstad et al. (2014) use AAL600 for generating both scale detection of hierarchical community architecture in structural and functional
structural and functional connectivity networks. brain networks. (2017)
(2) Hermundstad, A. M. et al. Structurally-Constrained Relationships between Cog-
nitive States in the Human Brain. PLoS Comput Biol 10, 1003591 (2014).
AICHA | 8 AICHA tries to account for homotopy: the concept that each Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. Journal
\&\_, region in one hemisphere has a homologue in the other. of Neuroscience Methods 254, 46-59 (2015)

Brainnetome 9 Connectivity-based atlas. Further subdivision of structural Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connec-
parcellations using the DK (Desikan-Killiany) protocol, with tional Architecture. Cerebral cortex (New York, N.Y. : 1991) 26, 350826 (2016).
adjustments. Website: http://atlas.brainnetome.org

10 DSl studio created by Fang-Cheng (Frank) Yeh. Many recon- (1) Website: http://dsi-studio.labsolver.org/
struction and tracking algorithms are published and incorporat-  (2) Example of reconstruction method: Fang-Cheng Yeh, Wedeen, V. J. & Tseng,
ed into DSI Studio. See citations page on website. Many atlases ~ W.-Y. |. Generalized g-Sampling Imaging. IEEE Trans. Med. Imaging 29, 1626-1635
available, including Brainnetome. Can use custom atlas. (2010).

Brodmann " Perspective, description, and historical significance of Korbinian  Zilles, K. & Amunts, K. Centenary of Brodmann’s map — conception and fate. Nat

Brodman’s map. Rev Neurosci 11, 139-145 (2010
12 References to the original German and English translation (1) Original German: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
provided. Prinzipien dargestellt auf Grund des Zellenbaues. (1909)
(2) English translation: Brodmann, K. & Gary, L. J. Brodmann’s localisation in the
cerebral cortex: the principles of comparative localisation in the cerebral cortex
based on cytoarchitectonics. (Springer, 2006
13 The atlas is available through MRicro, a legacy tool developed (1) Chris Rorden legacy tools webpage: https:/people.cas.sc.edu/rorden/
by Chris Rorden (University of South Carolina). The atlas is (2) Updated webpage: https://crnl.readthedocs.io/
based on work from the Van Essen lab (Washington University ~ (3) About Brodmann atlas: https://people.cas.sc.edu/rorden/mricro/lesion.html
in St. Louis) with corresponding Talairach coordinates, and (4) BALSA: https://balsa.wustl.edu/Wz8r
transformed by Krish Singh (Cardiff University) to MNI space.
14 Introduction to the CerebrA and MNI-ICBM2009¢c average brain ~ Manera, A. L., Dadar, M., Fonov, V. & Collins, D. L. CerebrA, registration and
template. manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template. Sci
Data 7, 237 (2020).
Website: https://doi.gin.g-node.org/10.12751/g-node.be5e62
15 Original publication about functional parcellations. Craddock, R. C., James, G. A, Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A
whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum.
Brain Mapp. 33, 1914-1928 (2012).
16 GitHub with source code to make atlas with N clusters. GitHub: http://ccraddock.github.io/cluster_roi/atlases.html
17 Publicly available pre-made atlases at N=200 and N=400 from  ABIDE: http://preprocessed-connectomes-project.org/abide/Pipelines.html

ABIDE (Autism Brain Imaging Data Exchange), co-founded by
Cameron Craddock. 4x4x4mm resolution.


https://doi.org/10.1101/2021.06.11.448063
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448063; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Atlas Source  Note Reference(s)
DKT 18 Original DK protocol and atlas. A protocol for an atlas is a set Desikan, R. S. et al. An automated labeling system for subdividing the human
of instructions for how the brain should be labeled. See AAL, cerebral cortex on MRI scans into gyral based regions of interest. Neurolmage 31,
Hammersmith, Harvard-Oxford, and JHU atlases. 968-980 (2006).
Surface version 19 DKT protocol, Mindboggle-101 dataset, and atlas creation. Klein, A. & Tourville, J. 101 Labeled Brain Images and a Consistent Human Cortical
7 Labeling Protocol. Front. Neurosci. 6, (2012).
SN
{(, ‘{'j)/)} 20 Summary of Mindboggle project, history, atlas development, Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput Biol 13,
% applications, and current problems. €1005350 (2017)
Volumetric version 21 Websites for downloading data including the labeled brains and ~ Open Science Framework: https://osf.io/nhtur/
atlases. Harvard Dataverse: https://dataverse.harvard.edu/dataverse/mindboggle
Labels: https://mindboggle.readthedocs.io/en/latest/labels.html
GitHub: https://github.com/nipy/mindboggle
22 Subcortical regions. http://www.neuromorphometrics.com/
DK atlas - surface
(original DK protocal) 23 FreeSurfer. https://surfer.nmr.mgh.harvard.edu/
Destrieux 24 Original article describes automatic labeling algorithm from (1) Destrieux, C., et al., E. Automatic parcellation of human cortical gyri and sulci
probabilistic information using a manually labeled training set. using standard anatomical nomenclature. Neurolmage 53, 1-15 (2010).
74 parcellations per hemisphere (excluding subcortical struc- (2) Fischl, B. Automatically Parcellating the Human Cerebral Cortex. Cerebral
tures). Available in FreeSurfer with subcortical structures output. ~ Cortex 14, 11-22 (2004).
25 FreeSurfer information on atlases available. (1) https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
(2) https://surfer.nmr.mgh.harvard.edu/fswiki/DestrieuxAtlasChanges
Gordon-Petersen 26 Original article. Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcellation from
£ 4 Resting-State Correlations. Cereb. Cortex 26, 288-303 (2016).
S M
3’ ’ 27 Resource to download atlas. https://sites.wustl.edu/petersenschlaggarlab/resources/
Hammersmith 28 Original article (for regions 1-49), including their Hammersmith ~ Hammers, A. et al. Three-dimensional maximum probability atlas of the human
protocol (or “algorithm”). brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19, 224-247
(2003).
29 Updated regions (for regions 50-83). Gousias, |. S. et al. Automatic segmentation of brain MRIs of 2-year-olds into 83
regions of interest. Neurolmage 40, 672-684 (2008).
30 Download atlas with 83 regions. http://brain-development.org/brain-atlases/adult-brain-atlases/adult-brain-maximum-
probability-map-hammers-mith-atlas-n30r83-in-mni-space/
31 Atlas developed at the Center for Morphometric Analysis (CMA)  https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
at Massachusetts General Hospital and distributed with FSL.
32 Individual segmentations were segmented by CMA using in- FreeSurfer description about CMA: http://freesurfer.net/fswiki/CMA
house software. Probability maps were then created. Freesurfer  Link to website archive: https://web.archive.org/web/20180413052010/http://www.
link (right) has archived CMA's website and contains the cma.mgh.harvard.edu/
Harvard-Oxford labeling protocols.
33 JHU labels: Protocol to reconstruct eleven white matter tracts Wakana, S. et al. Reproducibility of quantitative tractography methods applied to
and their segmentation into ROl labels. Included in FSL. cerebral white matter. Neurolmage 36, 630-644 (2007).
34 JHU Tracts: white matter parcellation atlas based on DTl prob-  Hua, K. et al. Tract probability maps in stereotaxic spaces: Analyses of white matter
abilistic tractography of 11 major white matter tracts d. Protocol ~ anatomy and tract-specific quantification. Neurolmage 39, 336-347 (2008).
defining manually identified ROls from which the tracts were
formed are described in Wakana et al. (2005). Included in FSL.
35 Textbook with more information about these atlases. MRI atlas of human white matter. (Elsevier, Acad. Press, 2011).
36 Cytoarchitecture map. Successor to both the Brodmann and (1) Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic
Eickhoff-Zilles atlases. The Eichoff-Zilles is an SPM toolbox atlas of the human brain’s cytoarchitecture. 6 (2020).
(see note is source 5 about the AAL atlas) for probabilistic (2) Eickhoff, S. B. et al. Anew SPM toolbox for combining probabilistic cytoarchitec-
cytoarchitecture. tonic maps and functional imaging data. Neurolmage 25, 1325-1335 (2005)
37 Website for the Julich Atlas and SPM toolbox. https://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox/
SPMAnatomyToolbox_node.html
MMP 38 Original article on multi-modal approach. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature
536, 171-178 (2016).
39 Information on surface vs volume based methodologies for Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroim-
localization of neuroanatomy. aging methods on the spatial localization of cortical areas. Proc Natl Acad Sci USA
115, E6356-E6365 (2018).
40 Website to download data. Volumetric version also included in https://balsa.wustl.edu/

DSl-studio. Note the volume note above.
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Atlas Source  Note Reference(s)
Random 41 Random atlas algorithm (pseudo-grassfire algorithm). Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes
matter? Neuroimage 50, 970-83 (2010).
42 Use case of random atlas. Goni et al. (2014) study the struc- (1) Goni, J. et al. Resting-brain functional connectivity predicted by analytic mea-
ture-function relationship in the brain with tractography and sures of network communication. Proceedings of the National Academy of Sciences
fMRI. They used random cortical atlases of 1170 equally sized 111, 833-838 (2014).
regions. Misic et al. (2015) used random cortical atlases of 1015 (2) Misi¢, B. et al. Cooperative and Competitive Spreading Dynamics on the Human
equally sized regions. Connectome. Neuron 86, 1518-29 (2015).
43 Included with FSL. See website for further details. Included (1) Website: http://www.talairach.org/about.html
structures are (1) Caudate, (2) Putamen, (3) Thalamus, (4) (2) http:/lwww.talairach.org/about.html
Insula, (5) Frontal lobe, (6) Temporal lobe, (7) Parietal lobe, (8)  (3) Mazziotta, J. et al. A probabilistic atlas and reference system for the human
Occipital lobe, and (9) Cerebellum. brain: International Consortium for Brain Mapping (ICBM). Phil. Trans. R. Soc. Lond.
B 356, 1293-1322 (2001).
44 Original publication about functional parcellations. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from
Intrinsic Functional Connectivity MRI. Cerebral Cortex 28, 3095-3114 (2018).
45 GitHub and detailed documentation of atlases. https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcella-
tion/Schaefer2018_LocalGlobal
Talairach 46 Download: Included with FSL. Also available through website. Website: http://www.talairach.org/
47 The anatomical region labels were electronically derived from (1) Lancaster, J. L., Evans, A. C. & Toga, A. W. Automated Labeling of the Human
axial sectional images in the 1988 Talairach Atlas. The atlas was  Brain: A Preliminary Report on the Development and Evaluation of a Forward-Trans-
digitized and manually traced into a volume-occupant hierarchy  form Method. 238-242 (1997).
of anatomical regions detailed these publications (i.e. the pages  (2) Lancaster, J. L. et al. Automated Talairach Atlas Labels For Functional Brain
of the 1988 textbook with drawings were photocopied and Mapping. 120-131 (2000).
transformed into the computerized coordinate system).
48 (1) First atlas in 1957 focusing on the subcortical deep gray (1) Talairach, J., David, M., Tournoux, P., Corredor, H. & Kvasina, T. Atlas d’Anato-
nucelli, (2) second atlas in 1967 focusing on the telencepha- mie Stéréotaxique. Repérage Radiologique Indirect des Noyaux Gris Centraux des
lon, (3) third atlas in 1988 focusing on the whole brain. Most Régions Mésencephalosousoptique et Hypothalamique de 'Homme. (1957).
researchers preferred the use of the Talairach atlas to report (2) Talairach, J. & Szikla, G. Atlas of Stereotaxic Anatomy of the Telencephalon.
the localization of the activations detected in functional imaging ~ (Masson, 1967)
studies because it offers a detailed anatomical brain description  (3) Talairach, J. & Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-di-
within the stereotaxic space, including Brodmann’s areas. mensional proportional system: an approach to cerebral imaging. (Georg Thieme,
1988).
49 Historical publication about Jean Talairach. Harary, M. & Cosgrove, G. R. Jean Talairach: a cerebral cartographer. Neurosurgi-
cal Focus 47, E12 (2019).
50 Comparison between MNI and Talairach Coordinates. Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using
the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194-1205 (2007).
Yeo 51 Original publication about functional parcellations. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by
fﬂ:/ \ intrinsic functional connectivity. Journal of Neurophysiology 106, 1125-1165 (2011)
“ | y \
< 52 Website from FreeSurfer. https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Ye02011
Region-specific 53 Thalamus - based on ex vivo analysis. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex
vivo MRI and histology. Neurolmage 183, 314-326 (2018).
54 Hippocampus - based on ex vivo analysis. Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex
vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.
Neurolmage 115, 117-137 (2015).
55 Structural atlas of Cerebellum. Included with FSL. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilis-
tic MR atlas of the human cerebellum. Neurolmage 46, 39-46 (2009).
56 Functional atlas of Cerebellum. (1) Xue, A. et al. The Detailed Organization of the Human Cerebellum Estimated by
Intrinsic Functional Connectivity Within the Individual. 69.
(2) Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The
organization of the human cerebellum estimated by intrinsic functional connectivity.
Journal of Neurophysiology 106, 2322-2345 (2011).
(2) GitHub: https://github.com/ThomasYeolLab/CBIG/tree/master/stable_projects/
brain_parcellation/Xue2021_IndCerebellum
Population-specific 57 Pediatric/Neonatal. Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Mel-
GTY bourne Children’s Regional Infant Brain (M-CRIB) atlas. Neurolmage 147, 841-851
(2017).
58 Disease-specific: example of a multiple sclerosis lesional atlas. ~ Sahraian, M. A. & Radue, E.-W. MR atlas of MS lesions. (Springer, 2008).
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