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Abstract

Background. Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in
human and mouse. A systematic analysis of how this variation impacts epigenetic states and

expression of the rDNA has thus far not been performed.

Results. Using a combination of long- and short-read sequencing, we establish that 45S rDNA units
in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state
and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are
dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the
in utero environment, but refractory to post-weaning influences, whereas other haplotypes
entropically gain DNA methylation during ageing only. On the other hand, individual rDNA units in
human show limited evidence of genetic haplotypes, and hence little discernible correlation between
genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic
profiles, and the overall epigenetic state at rDNA is strongly positively correlated with total rDNA
copy number. Analysis of different mouse inbred strains reveals that in some strains, such as
129S1/SvimlJ, rtDNA copy number is only approximately 150 copies per diploid genome and DNA

methylation levels are <5%.

Conclusions. Our work demonstrates that rDNA-associated genetic variation has a considerable
influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it
will be important to consider the impact of inter-individual rDNA (epi)genetic variation on

mammalian phenotypes and diseases.

Background

The ribosome is one of the fundamental macromolecular complexes in all living cells, enabling
translation to occur in the cytoplasm. The mature mammalian 80S ribosome consists of small (40S)
and large (60S) subunits, both comprised of a different complement of proteins and RNA. Despite
the essential and highly conserved role played by the ribosome, it is now clear that it can be
compositionally diverse even within a given individual organism!. It has been shown that the protein
composition of the ribosome can vary developmentally', and that the ribosomal RNA (rRNA)
components display inter- and intra-individual genetic variation®3. Such variation is thought to

ultimately influence preferential translation of some mRNA, i.e., the “ribosome filter hypothesis™.

With respect to rRNA variation in mammals, several studies have reported genetic variation within

the 45S rDNA in human and mouse (Fig. 1A). The 45S rDNA codes for the 18S rRNA that is
2
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incorporated into the 40S subunit, and the 5.8S and 28S rRNAs that are incorporated into the 60S
subunit (which additionally contains the 5S rRNA that is coded by the 5S rDNA present at an unlinked
genomic location). Because of the multi-copy and multi-allelic nature of 45S rDNA, functional
genomic analyses of this source of mammalian genetic variation have been difficult. Indeed, rDNA
clusters are typically excluded from genome assemblies, and none of the large-scale genomic analyses
of recent years have yielded any insights into rDNA genetic variation. Nonetheless, several smaller
studies have noted inter-individual variation at the single nucleotide level and copy number in mouse
and human rDNA, and also epigenetic variation in the context of whole organism stress responses>>-2,
Furthermore, our previous work showed that mammalian rDNA sequence variation can influence
epigenetic states, thereby impacting transcriptional outputs in different biological contexts. However,
a systematic analysis of how human and/or mouse rDNA-associated genetic variation influences
associated epigenetic states, and rDNA transcriptional output, has thus far not been performed. We
therefore had three main aims in this study, specifically to combine long- and short-read sequencing
to establish: (i) how single nucleotide genetic variation at the individual rDNA unit level influences
epigenetic states and transcriptional outputs; (ii) whether rDNA copy number influences epigenetic

states; (iii) if such genetic variation is relevant in examples of mammalian phenotypes.

Results

Mouse rDNA exists as distinct genetic haplotypes. Using the C57BL/6J mouse strain, we focussed
on a ~15kb region of the rDNA termed the ‘coding unit’ (Fig. 1A; the intergenic sequence, IGS,
contains high repeat sequence density and was not analysed in detail). Short-read whole genome
sequencing (WGS) analysis of four different C57BL/6J mice identified 88 different coding unit intra-
and inter-individual single nucleotide variants (SNVs) (Additional file 1; Additional file 2: table
S1; inclusion of indels did not affect SNV allele frequencies and were not explicitly considered
further). To achieve a deeper understanding of rDNA genomic architecture, we sequenced a
C57BL/6J mouse embryonic fibroblast (MEF) line using ultra-long read whole genome Nanopore
technology®, obtaining 932,683 reads (N50 ~72 kb), of which 1,760 contained one or more rDNA
coding units within a single read (Additional file 1; Additional file 2: table S2). We confirmed
87/88 short-read rDNA coding unit SNVs in these reads (Additional file 2: table S1). Previously,
we reported a SNV at position -104 (relative to TSS; Fig. 1A) in the C57BL/6J rDNA that is
associated with differential promoter methylation: ‘A’ variants at -104 are associated with 30-80%
methylation, whereas ‘C’ variants display <25% methylation at the promoter®’. Using -104 as a
starting point to explore the possibility of larger haplotypes within the rDNA, analysis of the SNVs
throughout the coding unit revealed 4 different rDNA haplotypes, that we term ‘ATA’, ‘ATG’,
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‘CCA’, ‘CTA’, in approximately equal proportions (Fig. 1B). ATA and ATG are more genetically
similar to each other compared to either CCA or CTA (Fig. 1B; Additional file 1). Independent
support for these haplotypes was obtained by pairwise correlation analysis of the relevant haplotype-
associated SNVs in the four different short-read kidney WGS datasets (Additional file 3: fig. S1;
Additional file 2: table S3). Analysis of reads containing two or more complete rDNA units revealed
that adjacent units tend to correspond to the same rDNA haplotype (Fig. 1C). Although further
refinement of C57BL/6J rDNA haplotypes may be possible, the analyses below demonstrate that the

rDNA haplotypes underlie bona fide molecular differences.

The impact of rDNA haplotypes on functional genomic outcomes. Nanopore sequencing permits
direct assessment of DNA methylation in unamplified DNA. Strikingly, we found that the ATA
haplotype displays significant DNA methylation (260%) across the length of the coding unit, CCA
shows low methylation levels (£20%), and the other two haplotypes are largely unmethylated (Fig.
2A). Analysis of individual reads revealed that individual coding units are either almost completely
methylated or unmethylated (Additional file 3: fig. S2), and haplotype-specific methylation
differences do not extend into the adjoining IGS regions, which are generally hypermethylated
(Additional file 3: fig. S2). To provide further support for rDNA haplotype-specific methylation
using an orthologous method, we analysed 4 different kidney whole-genome bisulfite sequencing
(WGBS) and 7 different sperm reduced representation bisulfite sequencing (RRBS) C57BL/6J
datasets (11 different mice) (Additional file 2: table S3). Short-read methods cannot directly define
long-range (epi)genetic patterns, and in our case the major ATA-defining SNV is an ‘A’ at position
6832. However, if the proposed (epi)genomic architecture of the haplotypes is correct, then if we
combine the ATA and ATG haplotypes into a single ‘A’ haplogroup, that can be distinguished from
the CCA and CTA haplotypes at multiple positions, then in short-read data the allele frequency and
DNA methylation state at these positions should be predictable based on the combined individual
allele frequencies and DNA methylation levels of ATA and ATG at position 6832. This is indeed
what we observe (Fig. 2B; Additional file 3: fig. S3). The WGBS and RRBS datasets also
demonstrate that whilst relative allele frequencies and DNA methylation show inter-individual
variation — in particular, the CCA haplotype is occasionally associated with methylation levels up to

~20% —, it is only the ATA rDNA haplotype that consistently shows substantial methylation in vivo.

DNA methylation at the mouse rDNA promoter has a strong effect on rRNA expression'®. If
methylation is restricted largely to ATA haplotypes, then methylation observed at the rDNA promoter
of ‘A’ haplogroup should derive from ATA haplotypes only, and correlate with the relative frequency
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of ATA in the rRNA. We performed ‘rRNA-seq’, which omits the rRNA depletion step in the
standard mRNA-seq protocol (Additional file 1). Also, because of the sheer abundance of cellular
rRNA, even internal transcribed spacer (ITS) RNA is readily detected (ITS2 contains the ATA-
defining SNV at 6832). We observed a strong negative correlation between ‘A’ haplogroup promoter
methylation levels and the relative frequency of A’s at position 6832 in muscle rRNA-seq (Fig. 2C;
Additional file 2: table S4). In fact, since DNA methylation levels within any given coding unit are
similar along the length of the unit, methylation even in the vicinity (+/- 200bp centred on the variant)
of position 6832, in the rDNA should be correlated with the variant ratios observed at position 6832
in rRNA-seq, which is what we observe using 4 different kidney WGBS datasets (Fig. 2C). Next, we
performed Cleavage Under Targets & Tagmentation (CUT&Tag — a recently developed method to
profile histone modifications and chromatin proteins with improved signal to noise ratio!'!) analysis
on kidney samples, finding that only ATA haplotypes display combined H3K9me3
enrichment/H3K27me3 depletion, consistent with previous reports of the relationship between DNA
methylation and these histone modifications in other genomic regions'? (Fig. 2D; Additional file 3:
fig. S4; Additional file 2: table S5). Finally, it is known that the Upstream Binding Transcriptional
factor (UBTF) binding to unmethylated rDNA is required for rRNA expression'®. Re-analysis of a
previously published dataset of UBTF binding in B-cells of C57BL/6J mice!*, showed that ATA is
depleted for UBTF relative to the non-ATA haplotypes (Fig. 2E). Collectively, these analyses
demonstrate key functional genomic features of ATA vs non-ATA rDNA haplotypes in a variety of

tissue types.

DNA methylation dynamics at rDNA are dichotomous and life-stage specific. Epigenetic
silencing of rDNA is an integral component of the stress response in all eukaryotic cells. Recent
studies using the C57BL/6J strain showed that pre-weaning exposure to nutritional stress, e.g.,
maternal protein restriction, obesogenic or high-fat diet, induces DNA hypermethylation of rDNA
that persists into adulthood®”-!>. We re-analysed our previous RRBS data from C57BL/6J individuals
exposed to maternal protein restriction in prior to weaning®, and found that the hypermethylation
occurs specifically at the ATA variants (Fig. 3A; Additional file 3: fig. S5). In the GEO database,
RRBS data is available for one other pure C57BL/6] mouse model of nutritional stress in which the
offspring were exposed to a high fat diet during gestationtlactation, or during
gestation+lactation+post-weaning'®. In both experimental groups, relative to controls, rDNA
hypermethylation is observed at ATA variants only (Fig. 3A). The early life nutritional stress models
demonstrate that certain stimuli induce methylation and silencing of ATA rDNA units. But, can ATA
units also lose methylation and re-activate? We re-analysed Dahlet et al.’s RRBS data of C57BL/6J

CRISPR-based Dnmt1 knockout (Dnmtl KO) 8.5dpc embryos!” and found that Dnmtl KO embryos
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show virtually no methylation at any of the rDNA haplotypes (Fig. 3B, left panel; Additional file 3:
fig. S6). In standard mRNA-seq protocols, rRNA is specifically removed. However, this depletion is
never completely efficient and we find millions of rRNA reads in the Dahlet e a/. mRNA-seq data
(Additional file 1). Our own analysis of 22 matched C57BL/6J muscle mRNA-seq and rRNA-seq
revealed an excellent correlation of rRNA variant frequencies (R > 0.98 in all cases; Additional file
3: fig. S7). We then examined rRNA expression in Dahlet ef al.’s mRNA-Seq data and found that
ATA variants are expressed at considerably higher relative levels in the Dnmt1 KOs, proving that

methylated ATA variants are not irreversibly silenced (Fig. 3B).

Interestingly, previous studies show that a low protein diet in C57BL/6J mice post-weaning does not
induce rtDNA hypermethylation’-'®. The study by Cannon et al. also includes a fourth group in which
the mice were exposed to a high-fat diet post-weaning only, and in this group evidence for diet-
induced epigenetic differences at rDNA is weaker'® (Additional file 3: fig. S5). To further explore
the idea that the epigenetic state of ATA rDNA shows only limited dynamics in adulthood, we
leveraged the RRBS dataset of Petkovich et al., 2016, representing 193 different C57BL/6J mice
spanning an age range from 3-35 months'®. Ageing-associated DNA methylation dynamics are
observed genome-wide in a large range of mammalian species?*-??, including at rDNA in humans and
rodents?*2°, In the Petkovich et al. dataset, ATA showed no directional change with age (Fig. 3C;
Additional file 3: fig. S8, S9). However, methylation at non-ATA haplotypes, and in particular CCA
and CTA, display a positive correlation with ageing (Fig. 3C). By leveraging single-molecule level
data, we found that this was primarily driven by an increase in DNA methylation entropy within
individual DNA molecules at non-ATA haplotypes (Fig. 3D; Additional file 3: fig. S10, S11)?7->°,
Therefore, epigenetic dynamics at rDNA haplotypes are life-stage specific and dichotomous: the
ATA haplotype displays environmentally-induced epigenetic dynamics during early development,
but is less susceptible to further perturbations in later life. On the other hand, non-ATA haplotypes

entropically accumulate methylation during ageing.

rDNA epialleles are present in other mouse strains and human. We then studied 5 additional
inbred mouse strains (Fig. 4A). For each strain, we generated kidney WGS, WGBS, rRNA-seq, and
droplet digital PCR (ddPCR) data from each of 6 different adult males (117 different datasets, as 3
were discarded post-QC) (Additional file 2: table S3). We confirmed that for any given sample,
>82% of the rDNA coding unit SNVs called in the WGS data are also found in the WGBS data
(Additional file 2: table S6-10; Additional file 3: fig. S12). We then asked which of these SNVs are
associated with allelic methylation differences, i.e., are ‘epivariants’ (Wilcoxon rank sum test, FDR

< 0.01), strain-specific and/or common across multiple strains (Fig. 4A; Additional file 3: fig. S13;
6
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Additional file 2: table S11). Analysis of matched rRNA-seq data showed that epivariant-associated
methylation differences throughout the coding unit impact variant frequencies in the rRNA, with the
exceptions being 129S1/SvimJ and C3H/HelJ (Fig. 4B; Additional file 3: fig. S14;
p-value=3.464x10°, paired Wilcoxon rank sum test on difference of correlation coefficients). We
noted that these two strains also showed the lowest levels of rDNA methylation (Fig. 4A). Given the
known positive correlation between increasing total rDNA copy number (CN) and epigenetic
silencing in lower organisms*’, we considered the possibility of that CN might account for strain-
specific differences in total rTDNA methylation levels. Therefore, we calculated CN from three
independent datasets — WGS, WGBS and ddPCR — for each individual mouse, as CN measurements
in mammals are known to be technically challenging?! (see Additional file 1 for CN calculations;
Additional file 3: fig. S15). Indeed, we found a significant positive correlation between total rDNA
CN and DNA methylation across the 6 different inbred strains (Fig. 4C; Additional file 3: fig. S15).

To ask if human rDNA displays similar genetic-epigenetic relationships, we generated WGBS and
rRNA-seq data for 48 different human lymphoblastoid cell lines (LCLs) derived from ‘Gambian in
Western Division — Mandinka’ adult individuals that were sequenced in the 1000 genomes project’?
(Additional file 2: table S12). We first confirmed that for any given sample, >95% of the rDNA
coding region SNVs called in the published WGS data were also called in our WGBS data
(Additional file 3: table S12). Even in this relatively small number of samples for an outbred
population, we identified two epivariants at FDR<0.01 (Fig. SA). DNA methylation in the vicinity of
these sites (-413 located in the promoter and 7980 located in the 28S) was positively associated with
total IDNA CN (Fig. 5B). We then analysed the 7980 variant in rRNA-seq datasets for these samples
and found DNA methylation in the vicinity of 28S negatively associated with variant representation
in rRNA (Fig. 5C). Finally, we re-analysed published ultra-long read Nanopore data from a GWD
sample (Additional file 1). Interestingly, in contrast to the mouse rDNA, we did not find extensive
evidence for genetic haplotypic structure within a unit. However, comparison of adjacent units
revealed strong epigenetic relatedness like in the mouse, and also some evidence that at least the 7980

position shows genetic similarity between neighbouring units (Fig. 5D).

Discussion

Here we have shown that the genetic identity of a rDNA unit has a strong probabilistic influence on
the homeostatic epigenetic state. The CN data suggests that the emergence of rDNA epialleles could
be linked to the need of the genome to silence extra copies of rDNA. However, the silencing is not
absolute, reminiscent of the epigenetic metastability associated with some mammalian

retroelements****. Could the loss/gain of specific rDNA variants underlie the CN differences? It has
7
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been shown that the number of different chromosomes harbouring rDNA clusters can vary from 3-5
amongst different inbred mouse strains*>. The C57BL/6J genome contains rDNA clusters on 4
separate chromosomes™, leading to the possibility that each chromosome harbours a different variant
given that we find 4 different rDNA haplotypes in the C57BL/6J strain. Interestingly, the C3H strain
has only 3 rDNA clusters®, and shows very few DNA methylation-based rDNA epialleles.

But could non-rDNA methylation based epialleles exist in the mouse? We performed CUT&Tag
analysis for H3K9me3 and H3K27me3 in the 129S1/SvimlJ strain which has very few DNA
methylation-based epivariants in rDNA, and even these are of very small effect size. However, we
did not find any patterns/clusters of the histone modifications (unlike what is observed for C57BL/6J),
suggesting that there are no preferentially epigenetically silenced genetic variants in the absence of
DNA methylation, at least in 129S1/SvIimJ mice (Additional file 3: fig. S16). Our 129S1/SvimJ data
also suggests that in some mouse strains, DNA methylation plays little, if any, role in silencing of

rDNA copies.

For human rDNA, we found limited evidence of genetic haplotypes within a unit, or genetic similarity
of adjacent units, consistent with a recent study?°. It is previously been noted that inter-chromosomal
rDNA recombination is greater in human than in the mouse?®’, which would be consistent with our
findings. However, there was clear evidence for epiallelic effects within a unit, albeit not as marked
as for the mouse, and also epigenetic states of neighbouring human rDNA units are similar. This
raises the intriguing possibility that the entire cluster of rDNA units on any given chromosome share
a similar epigenetic identity, and this property is conserved amongst mammalian genomes. In the
future, it will be interesting to analyse other mammalian genomes to elucidate what determines higher

order genetic and/or epigenetic patterns of mammalian rDNAs.

With regards to the molecular consequences of rDNA (epi)genetic variation in models of nutritional
stress and ageing, a tantalizing possibility is the production of variant ribosomes that have subtle but
measurable effects on translational output, in line with the ribosome filter hypothesis'*. It has been
shown that endogenous rRNA sequence variation regulates stress response gene expression in
bacteria’®>°. Previous studies have shown that human and mouse coding subunit rDNA genetic
variation is located in TRNA regions with known roles in translation!. An initial Polysome-seq
analysis shows that the ratio of 28S rRNA variants incorporated into ribosomes is dependent on the
ratio at which they are expressed (Additional file 3: fig. S17). In eukaryotes, there are examples of

variation in either ribosomal proteins or rRNA modifications influencing preferential translation of
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some mRNAs!, yet the contribution of rRNA sequence variation has remained largely unexplored

and will require large-scale translatome analyses in the future.

Conclusions

Here we have shown that genetic variation at mouse and human ribosomal DNA influences epigenetic
states and associated transcriptional outcomes. Currently, this source of genetic variation is largely
overlooked in large scale studies and thus it is possible that rDNA-associated genetic variation
underlies some apparently ‘epigenetic’ phenomena*® and/or contributes, in trans, to the ‘missing

heritability’ in some human phenotypes and diseases.

Methods

Mouse embryonic fibroblasts were made from a 13.5 dpc male C57BL/6J embryo following the
protocol  of the Jacks Lab  (available online at  http://web.mit.edu/jacks-
lab/protocols/Making MEFs_tables.html). Immortalisation was done using the PA317 (AsAS58U19-
neo) (G418 0.75mg/ml) viral vector.

Ultra-long Nanopore sequencing was performed using the protocol of Jain et al.’.

Short read sequencing libraries were generated using the following kits and according to the
manufacturers protocols: (i) Whole genome sequencing (WGS) - NEBNext® Ultra™ II DNA Library
Prep Kit for Illumina- NEB, USA; (ii) Whole genome bisulfite sequencing (WGBS) - Accel-NGS®
Methyl-Seq DNA Library Kit, Swift BioSciences, USA; RNA-seq - NEBNext® Ultra™ II Directional
RNA Library Prep Kit for [llumina, NEB, USA. rRNA-seq libraries were made like the RNA-seq but
without any depletion. All sequencing was performed on an Illumina Novosaq6000 by Novogene,
Cambridge, UK. For WGS and WGBS, we generated data in the range of ~15-25X genome-wide
coverage on average, corresponding to ~350-1350X at the rDNA. We have previously shown that
this level of sequence coverage at IDNA results in data that is extremely well correlated with targeted
PCR based approaches (in which the coverage is not limited)®’. The methylation values for muscle
in Fig. 2C were derived from multiplex bisulfite PCR data generated in Reference 7. Bisulfite PCR
Sequencing (Bis-PCR-seq) was performed on DNA from muscle, as in Reference 7. DNA was
bisulfite converted using the EZ-96 DNA Methylation™ Kit (Zymo, Cat. D5003). Targeted
amplification was performed using the FastStart High Fidelity PCR System, dNTPack (Sigma-
Aldrich, cat. 4738284001) in the 48.48 layout on the Fluidigm C1 system (Fluidigm, USA), a

microfluidics platform. Library preparation was performed using the same kit including 4 ul of
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Access Array BArcode Library Primer and 1 ul of PCR product diluted 1:100. Libraries were
sequenced with Illumina NextSeq (75 bp, single-end).

Droplet digital PCR was used to measure total rDNA copy number across different strains using
mouse kidney tissue. Probes and primers were designed against the genomic mouse 18S rDNA
sequence (GenBank: BK000964.3, positions 4008-5877). The 18S targeting probe was attached to
the 5” fluorescent dye, FAM, and a 3’ nonfluorescent quencher, NFQ. The mouse transferrin receptor,
Tfrc, was used as a single copy reference, and was targeted by a pre-designed assay with a HEX
fluorescent dye and an Iowa Black quencher (BioRad, Assay ID: dMmuCNS420644255). The
restriction enzyme, Alul (NEB, Cat. RO137S) was used to separate each rDNA gene copy to
minimise the number of copies per droplet. Alul was diluted with 1X CutSmart Buffer to give a
concentration of 1U/ul. 50ng of DNA was used for every Alul digestion. 20 units of Alul for every
lug of DNA was used and the reaction was incubated at 37 °C for 1 hour. 1ng of digested DNA was
then added to each sample well. The ddPCR reactions were prepared in duplicate in a ddPCR™ 96-
well plate (Bio-Rad, Cat. 12001925). The components of the reaction mix per reaction were 11ul
iTaq Universal Probe Supermix (BioRad, Cat. 1725130), 0.275ul FAM, 1.926ul HEX and an 8.8ul
solution of water and DNA. The automated procedure of ddPCR was carried out using the QX200™
AutoDG™ ddPCR system from Bio-Rad. The automated system involved a droplet generator
machine (Bio-Rad, Cat. 1864101) DG32™ Automated Droplet Generator Cartridges (Bio-Rad, Cat.
1864108), Automated Droplet Generation Oil for Probes (Bio-Rad, Cat. 1864110) and Pipet Tips for
the AutoDG™ System (Bio-Rad, Cat. 1864120). The new plate with droplets was sealed with a
pierceable PCR foil at 180 °C for 5 seconds using PX1 PCR Plate Sealer (Bio-Rad, Cat. 1814000).
The PCR reaction was then carried out using the C1000 Touch™ Thermal Cycler (Bio-Rad, Cat.
1851197). PCR settings were: 10 minutes 95°C for initial denaturation, cycle of 40 repetitions, 94 °C
for 30 seconds, annealing temperature: 57 °C and lid temperature: 105 °C. After PCR, the plate was

processed in a plate reader and the data was generated with Quantasoft Software.

CUT&Tag-seq was performed according to the protocol of Kaya-Okur ef al.!' with modifications to
tissue processing as described below. Experiments were performed in duplicate from two independent
mouse kidney tissues in parallel to minimize technical variation. To adapt CUT&Tag for mouse tissue
sections, flash frozen mouse liver tissues (approximately 3-4mm size) were manually homogenised
with tight homogenisers in wash buffer (20mM HEPES pH7.5, 150 mM NacCl, 0.1% BSA, 0.5mM
Spermidine and cOmplete EDTA free protease inhibitor tablet) into a homogenous suspension of
intact cells. Cells were transferred to 1.5 ml low DNA binding tubes (Eppendorf), and solutions were

exchanged on a magnetic stand (DynaMag-2, ThermoFisher scientific). Cells were pelleted by
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centrifugation for 3 min 600 x g at room temperature and resuspended in 500ul of ice-cold NE1 bufter
(20 mM HEPES-KOH pH 7.9, 10 mM KCl, 0.5 mM spermidine, 1% Triton X-100, and 20 % glycerol
and cOmplete EDTA free protease inhibitor tablet) and let it sit for 10 min on ice. Nuclei were pelleted
by centrifugation for 4 min 1300 x g at 4°C and resuspended in 500ul of wash buffer and remove the
wash buffer by placing the tubes on a magnet stand to clear and withdraw the liquid. Resuspended in
1.0 mL wash buffer and held on ice until beads are ready. 10 ul of BioMag Plus Concanavalin-A-
conjugated magnetic beads (ConA beads, Polysciences, Inc) in binding buffer (20 mM HEPES-KOH
pH 7.9, 10 mM KCl, ImM CaCl, and ImM MnCl,) was added to each tube containing cells and
rotated on an end-to-end rotator for 10 minutes. After a quick spin to remove liquid from the cap,
tubes were placed on a magnet stand to clear and withdraw the liquid, and 800ul of antibody buffer
containing lul of primary antibodies (normal rabbit IgG, Santa Cruz Cat no sc-2027, H3K27me3
(Millipore, Catalogue number 07-449, Lot DAM1703508 and H3K9me3 (Diagenode, Catalogue
number C15410193, Lot A.0219P) was added and incubated at 4°C overnight in a nutator. Secondary
antibodies (guinea pig o-rabbit antibody, Antibodies online cat. no. ABIN101961) was added 1:100
in Dig-wash buffer (5% digitonin in wash buffer) and squirt in 100 pL per sample while gently
vortexing to allow the solution to dislodge the beads from the sides and incubated for 60 min on a
nutator. Washed unbound antibodies in 1 ml of Dig-wash buffer for a total of three times. 100 ul of
(1:250 diluted) protein-A-Tn5 loaded with adapters (kind gift from Steven Henikoff lab) in dig-300
buffer (20 mM HEPES pH 7.5, 300 mM NacCl, 0.5 mM spermidine with Roche cOmplete EDTA free
protease inhibitor) placed on nutator for 1 hour. Washed three times in 1 ml of Dig-300 buffer to
remove unbound pA-TnS. 300 uL Tagmentation buffer (Dig-300 buffer + 5 mM MgCl,) was added
while gently vortexing and incubated at 37°C for 1hr on an incubator. Tagmentation was stopped by
adding 10 uL 0.5M EDTA, 3 pL 10% SDS and 2.5 pL 20 mg/mL Proteinase K to each sample. Mixed
by full speed vortexing for ~2 seconds and incubate 1 hr 55°C to digest. DNA was purified by
phenol:chloroform extraction using phase lock tubes followed by ethanol precipitation. Libraries
were prepared using NEBNext HiFi 2x PCR Master mix (Cat number M0541S) with 72°C gap filling
step followed by 13 cycles of PCR with 10 second combined annealing and extension for enrichment

of short DNA fragments.

Preparation of RNAs from polysome fractions. Mouse liver tissue extracts were prepared as
previously reported*!, using polysome extraction buffer (20 mM Hepes-NaOH (pH 7.4), 130 mM
NaCl, 10 mM MgCI2, 1% CHAPS, 0.2 mg/ml heparin, 5% glycerol, 2.5 mM DTT, 50 pg/ml
cycloheximide, 20 U SUPERase In RNase inhibitor, cOmplete EDTA-free Protease inhibitor). Ribo
Mega-SEC run was carried as previously reported*?, by the flow rate of 0.4 ml/min, and polysome
fraction (1.2 ml) was collected from 16.5 min to 19.5 min. RNAs in the polysome fraction were
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extracted by TRIzol LS reagent (SIGMA) and precipitated with isopropanol containing glycogen.
Precipitated RNAs were purified further by LiCl precipitation.

Mouse strains used in this study were ordered from Charles River, UK. All mice were 6 weeks of
age when delivered, were allowed to acclimatize for 2 weeks, after which they were killed by Carbon
dioxide. The mice used in Fig. 2C, and Additional file 3: fig. S7 and S17 are from Reference 7. DNA
and RNA from tissues was extracted using Qiagen kits and following the manufacturers protocols.
Aside from the C57BL/6J mouse strain, the other mouse inbred strains were selected to span a range
of genetic and copy number variation in the rDNA. Strain-specific copy number estimates from Parks
et al.?, and WGS sequencing data from the Mouse Genomes Project were obtained for 11 different
strains: 129S1/SvimlJ, A/J, BALB/cJ, C3H/HeJ, C57BL/10J, C57BL/6N, CAST/Ei]J, CBA/J,
DBA/2J, FVB/NJ and MOLF/EiJ*. Sequencing reads were processed as indicated below to obtain
rDNA SNVs for each strain (see “Short read data processing” in Additional file 1). Allele frequencies
at all such SNV positions were then used to cluster strains with R’s Ward hierarchical clustering
method (Additional file 3: fig. S18). Alongside copy number estimates, these clusters served as the
main support for selecting 129S1/SvimlJ, A/J, C3H/HelJ, C57BL/6N, and CAST/EiJ as additional

strains to consider in the current study.

Human lymphoblastoid cell lines (LCLs) of the Gambian in Western Division — Mandinka (GWD)
population obtained from the Coriell Institute (New Jersey, United States), were used for all human
experiments. Cell lines were seeded at a density of ~200,000 cells/ml in RPMI 1640 + GlutaMAX
(Gibco; 61870-010) supplemented with 15% fetal bovine serum (Gibco; 10270-106) and a 1%
penicillin and streptomycin mix (Gibco; 15140-122). All cell cultures were kept in 37°C incubators
under 5% carbon dioxide conditions. For all down-stream experimental analyses, cell lines were
pelleted, washed twice through with phosphate buffered saline (Sigma; P4417) and stored at -80C.
Whole genome sequencing data from the 1000 genomes project was obtained for the 119 adult
samples from the Gambian Mandinka population (GWD) with cell lines available from the Coriell
Institute for Medical Research (all except HG02756). Sequencing reads were processed as indicated
below to estimate both rDNA variation and copy number (see “Short-read data processing” and “Total
rDNA copy number analysis” in Additional file 1). 24 male and 24 female samples were then selected
to maximise the range of rDNA variation and copy number in further analyses (Additional file 2:

table S12).

Data Analysis. Unless explicitly stated, all analyses were conducted using in-house scripts

implemented in R version 4. 0. 2. An extended description of the data analysis methods in this study
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can be found in the Additional file 1, including detailed explanations of the rDNA reference

sequences, command line parameters, and mathematical formulae employed.

Short-read sequencing data were first analysed using fastqgc version 0.11. 9 to identify potential
issues, and successful libraries were then trimmed for both base quality and adaptor removal using
trimgalore version 0.6.5. Alignments to the reference sequences were performed using
bowtie2 version 2.4 .1 for non-bisulfite-converted DNA data (WGS, ChIP-Seq, and CUT&Tag),
bismark for bisulfite-converted data (version 0.7.12 for Bis-PCR-seq and version 0.22.1 for
WGBS, RRBS) with underlying bowtie2, and STAR version 2.7.0f for RNA data. Alignment
output files were then sorted, indexed and filtered to retain only reads aligned to the appropriate IDNA
unit reference using samtools version 1.10. SNVs were called on all non-bisulfite-converted
datasets using 1lofreqgversion 2. 1. 5. For WGBS and RRBS data, CpG methylation estimates were
obtained from the bismark alignments and then fed to blink, an in-house python tool for
estimating allele-specific methylation and SNV frequencies, described more in detail in Additional
file 1 (see “blink: Allele-specific methylation and frequency from bisulfite-converted data”).
blink was employed to obtain allele-specific methylation values from both mouse kidney and
human LCL data (see “Analysis of mouse strains kidney data” and “Analysis of human LCL data”,

respectively, in Additional file 1).

Total rDNA copy number estimates from ddPCR were obtained using the Quantasoft software in
default mode. Estimates from short-read sequencing data (WGS and WGBS), on the other hand, were
obtained following the procedure Gibbons et a/**

in Additional file 1).

suggest (see “Total rDNA copy number analysis”

Ultra-long read Nanopore libraries sequenced from MEFs were initially basecalled using albacore
version 2 . 4 . 0 and aligned to the 18S and 28S regions from the BK000964.3 mouse rDNA reference
using the minimap2 python interface mappy. The raw signal fast5 files for reads mapping to
such regions were later re-basecalled using guppy version 4. 2. 2 and mapped to a whole-genome
plus IDNA mouse reference using minimap?2 version 2 . 1 7. Genetic variation and CpG methylation
were estimated from the rDNA reads using megalodon, whose output files were further processed
as described in Additional file 1 (see “MEF ultra-long read Nanopore data processing and analysis”)
to obtain putative rDNA haplotypes and their corresponding methylation levels. Haplotype-specific
alleles indentified from the MEFs were then employed to assign short Illumina reads to haplotypes
(see “Haplotype-specific analysis of C57BL/6J kidney and muscle data” and “Processing and analysis
of C57BL/6]J publicly-available datasets” in Additional file 1).
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Publicly available MinION ultra-long read Nanopore data for human sample HG02723 was obtained

from Circulomics (https://www.circulomics.com/datasets). Raw fast5 files were basecalled using

guppy version 4 . 2 . 2 and aligned to the human whole-genome plus rDNA reference sequence with
minimap?2. Reads mapping to the rDNA were considered for further analysis with megalodon
version 2.2 . 9, using a reference sequence artificially expanded to include 20 back-to-back rDNA
units. Short-read SNVs were obtained by first reconstructing with samtools fastqg the raw
sequencing reads from the CRAM file available from the 1000 genomes project, and then trimming,
aligning and variant calling as previously described. These SNVs were then used as input in
megalodon to obtain per-read variant and CpG methylation call, which were subsequently
processed as described in Additional file 1 (see “Human ultra-long read Nanopore data processing

and analysis”) to establish potentially haplotypic structures.
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Figure Legends

Figure 1. Long range haplotype characterization of rDNA in the C57BL/6J strain.
(A) Schematic of rDNA in the C57BL/6J mouse strain. Adapted from Refs 2 and 35 (B) rDNA coding
unit haplotypes in a C57BL/6J MEF line defined using ultra-long read Nanopore sequencing. The top
track shows representative read depth from C57BL/6J kidney short-read whole genome sequencing
data, and locations of SNVs cross-validated with Nanopore data. The bottom track shows only SNVs
that distinguish rDNA haplotypes. Bold contour denotes variants unique to that specific haplotype.
Bars with non-muted colours and no contour indicate positions associated with the A/C haplogroups
defined by the variant at position -104. Bolded positions in the x-axis (9005, 12376) are variants
within the 28S rRNA and present in mature ribosomes. Haplotypes are denoted by three letters, for
the variant nucleotides at positions -104, 8063, and 12736, respectively. 12736 distinguishes the 2
haplotypes with “A” at -104, 8063 distinguishes the 2 haplotypes with “C” at -104 (see Additional
file 3: fig. S2). Although these three positions combined robustly identify the haplotypes, each
individual position is not strictly haplotype-specific. (C) Co-localization analysis of rDNA
haplotypes in MEF. For Nanopore reads spanning multiple rDNA units, each cell shows the average
proportion of units assigned to the corresponding column haplotype in a read, given that the read

includes at least one unit of the haplotype indicated in its row.

Figure 2. The functional genomic outcomes of C57BL/6J rDNA haplotypes. (A) Direct CpG
methylation profiles of rDNA haplotypes from ultra-long read Nanopore MEF data, from -1000 bp
upstream of the TSS up to the end of the 3° ETS. (B) Example of rDNA haplotype-specific
methylation analysis on C57BL/6J kidney whole genome bisulfite sequencing (WGBS) data (left
panel) showing positional information for the CpG sites associated with each haplotype in a single
mouse, and aggregate sperm Reduced Representation Bisulfite Sequencing (RRBS) data for seven
mice (right panel). Note short-read technologies limit the range of positions that can be considered
for each haplotype to the close neighbourhood of their uniquely-identifying SNVs. See also
Additional file 3: fig. S4. (C) Relationship between A-haplogroup (“A” at -104) promoter
methylation in C57BL/6J muscle (squares, n=22, p-value = 7.6x107%, bis-PCR) and average coding +
promoter methylation from kidney (circles, n=4, ATA-only WGBS) correlated with ATA-haplotype
expression using rRNA-seq. (D) The ATA haplotype is enriched for H3K9me3 but depleted for
H3K27me3 on CUT&Tag C57BL/6J kidney data (biological replicate — Additional file 3: fig S5).
(E) The ATA haplotype is depleted for UBTF relative to other haplotypes in ChIP-Seq data from
wild-type C57BL/6J B cells from Diesch et al., 20194,
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Figure 3. Epigenetic dynamics at CS7BL/6J rDNA haplotypes are life stage specific.
(A) Hypermethylation of the ATA haplotype (blue) is observed in different models of in utero stress
paradigms; the other three haplotypes (grey) are combined into a single category since they show
similar effects. Methylation levels for ATA and non-ATA haplotypes for all panels are obtained on
the CpG sites associated with the SNVs at 6007 and 6832. PR, LF, and HF stand for Protein-restricted,
Low-fat and High-fat diet, respectively. All animals from Holland et al.® were fed control diet post-
weaning. The labels for Cannon et al.'® denote the pre-weaning, post-weaning diet combinations.
(B) In Dnmtl KO 8.5dpc embryos from Dahlet ef al.!”, the ATA haplotypes lose methylation in
RRBS data (left panel) and display de-repression of ATA-haplotype rRNA expression (right panel).
Both ATA and ATG expression are obtained from ITS2 variants to avoid differential rRNA depletion
effects. (C) In RRBS data from Petkovich et al.', ageing-associated DNA hypermethylation is
observed only at non-ATA haplotypes. The red line indicates the expected correlation coefficient for
ATA haplotypes if they lost methylation at the same rate as the non-ATA haplotypes gain
methylation. In this study, in the 3-month old mice the average methylation at ATA was ~75% and
at non-ATA haplotypes was ~25%. (D) Only non-ATA haplotypes display increasingly disordered
DNA methylation profiles with age (right panel) in RRBS data from Petkovich et al.'’. Disorder is
estimated as the average of per-read Shannon entropy (left panel - example from two hypothetical

mice).

Figure 4. The epiallelic nature of rDNA is a feature of other mouse inbred strains. (A) Allele-
specific methylation levels at selected rDNA epivariants from kidney of 5 inbred strains besides
CS57BL/6J (‘BL6J’): 129S1/SvimJ (°129S°), C3H/HeJ (‘C3H’), C57BL/6N (‘BL6N”), CAST/Ei]J
(‘CAST’) and A/J (‘AJ’) (see Additional file 3: fig. S13 for a comprehensive display of all identified
epivariants). The top panel shows positions associated with C57BL/6J haplotypes. Notably, the
methylation differences at these positions are not always directionally consistent across different
strains where the variants are conserved. The bottom panel depicts strain-specific variants; note 7427
is variable in 2 strains, but with different alternative nucleotides (T in 129S1/SvimJ and G in
CAST/Ei]). (B) Comparison of alternative allele frequencies (AAF) at the epivariant positions
between rDNA (WGS) and rRNA for one representative mouse of each strain (see Additional file 3:
fig S14). If only unmethylated units are expressed, then adjusting the AAF ratios in the WGS by
ignoring methylated copies in the ratio calculations should improve the correlation between variant
frequencies (i.e. unmethylated correlated with expressed). This is observed in 4/6 strains. (C) Total
rDNA copy number from ddPCR correlated with methylation level from WGBS across the different
mouse strains. Correlation coefficients displayed use all mice as data points (black) or a single

average point per strain (grey). The analysis was repeated using the highly conserved 18S subunit
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only to exclude any possibility that the results are due to strain-specific differences in mapping

efficiency (see Additional file 3: fig. S15).

Figure 5. Human Mandinka samples display rDNA epivariation. (A) Analysis of human
Mandinka LCL WGBS samples shows allele-specific methylation levels (FDR < 0.01) at positions -
413 and 7980 of the KY962518.1 rDNA reference. (B) Average methylation levels around -413 and
7980 are correlated with rDNA copy number estimated from WGS. (C) Allele-specific methylation
affects rRNA expression. Methylation levels around position 7980 are inversely correlated with
allele-specific frequency in rRNA-seq (left panel), and correlation between DNA (WGS) and rRNA
allele frequencies improves when accounting for methylation at position 7980 (right panel).
(D) Analysis of ultra-long read Nanopore data from human sample HG02723 suggests that both
allele at position 7980 (shape) and average methylation level across the rDNA coding unit (fill colour)
tend to be consistent along single molecules, with some exceptions. Each row represents an individual

read; gaps separate units that were reported on split alignments.
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