

1 **TITLE:**

2 The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion

3 **AUTHORS:**

4 Robin F. Dard¹, Erwan Leprince¹, Julien Denis¹, Shrisha Rao-Balappa², Dmitrii Suchkov¹, Richard
5 Boyce¹, Catherine Lopez¹, Marie Giorgi-Kurz¹, Tom Szwagier^{1,3}, Theo Dumont^{1,3}, Hervé Rouault²,
6 Marat Minlebaev¹, Agnes Baude¹, Rosa Cossart^{1*}, Michel A. Picardo^{1*}

7 ¹Aix Marseille Univ, INSERM, INMED (U1249), Turing Centre for Living systems, Marseille, France

8 ²Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living
9 systems, Marseille, France

10 ³Mines ParisTech, PSL Research University

11 * Correspondence: michel.picardo@inserm.fr and rosa.cossart@inserm.fr

12

13 **ABSTRACT:**

14 Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are
15 initially mostly ignited by bottom-up sensorimotor activity and only later can detach from external
16 inputs. This is a hallmark of most developing brain areas including the hippocampus, which in the adult
17 brain, functions in integrating external inputs onto internal dynamics. Such developmental
18 disengagement from external inputs is likely a fundamental step for the proper development of cognitive
19 internal models. Despite its importance, the developmental timeline and circuit basis for this
20 disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1
21 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-
22 photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an
23 abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from
24 activated to inhibited by self-generated movements at the end of the first postnatal week whereas the
25 majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch
26 occurs within two days and follows the rapid anatomical and functional surge of local somatic
27 GABAergic innervation. The observed change in dynamics is consistent with a two-population model
28 undergoing a strengthening of inhibition. We propose that this abrupt developmental transition
29 inaugurates the emergence of internal cognitive models.

30

31 **INTRODUCTION**

32 The adult hippocampus serves multiple cognitive functions including navigation and memory.
33 These functions rely on the ability of hippocampal circuits to integrate external inputs conveying multi-
34 sensory, proprioceptive, contextual and emotional information onto internally-generated dynamics.
35 Therefore, the capacity to produce internally coordinated neuronal activity detached from
36 environmental inputs is central to the cognitive functions of the hippocampus such as planning and
37 memory (Buzsáki, 2015; Buzsáki and Moser, 2013). In contrast to the adult situation, the developing
38 hippocampus, like many developing cortical structures, is mainly driven by bottom-up external
39 environmental and body-derived signals, including motor twitches generated in the spinal cord and/or
40 the brainstem (Dooley et al., 2020; Inácio et al., 2016; Karlsson et al., 2006; Mohns and Blumberg,
41 2010; Rio-Bermudez et al., 2020; Valeeva et al., 2019a). These produce early sharp waves conveyed
42 by inputs from the entorhinal cortex (Valeeva et al., 2019a). The emergence of self-organized sequences
43 without reliance on external cues in the form of sharp wave ripples (SWRs) is only observed after the
44 end of the second postnatal week and sequential reactivations even a week later (Farooq and Dragoi,
45 2019; Muessig et al., 2019). Therefore, early hippocampal activity as measured with
46 electrophysiological recordings is first externally-driven while the emergence of internal dynamics is
47 protracted. The timing and the circuit mechanisms of the switch between motion-guided and internally
48 produced hippocampal dynamics remain unknown. They have been proposed to rely on the maturation
49 of CA3 and extrinsic hippocampal inputs, however, a possible role of local connectivity, in particular
50 recurrent somatic inhibition cannot be excluded (Cossart and Khazipov, 2021a).

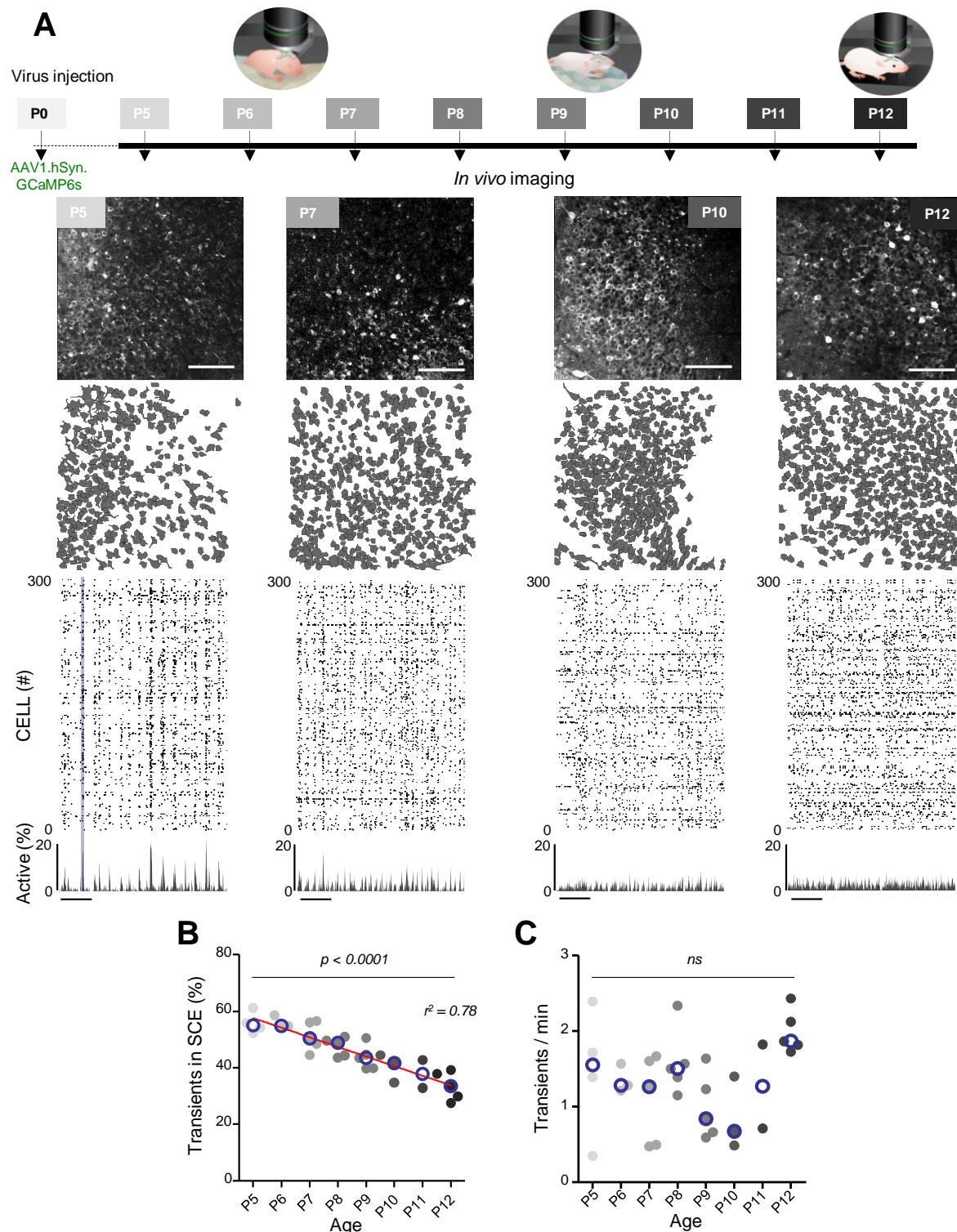
51 Local GABAergic interneurons could be critically involved in this phenomenon for several
52 reasons. First, both theoretical and experimental work suggest that self-organized internal neuronal
53 network dynamics require feedback connections to produce an emergent state of activity independently
54 from the incoming input (Hopfield and Tank, 2005; Hopfield, 1982; Yuste, 2015). Feedback circuits
55 are mainly GABAergic in CA1 (but not necessarily inhibitory), given the scarcity of recurrent
56 glutamatergic connections in that hippocampal sub-region (Bezaire and Soltesz, 2013). Second,
57 GABAergic interneurons, in particular the perisomatic subtypes, are long known to shape the spatial
58 and temporal organization of internal CA1 dynamics (Buzsáki, 2015; Lee et al., 2014; Soltesz and
59 Losonczy, 2018; Valero et al., 2015). However, GABAergic perisomatic cells display a delayed
60 maturation profile both at structural (Jiang et al., 2001; Marty et al., 2002; Morozov and Freund, 2003;
61 Tyzio et al., 1999) and functional levels (Ben-Ari, 2002; Doischer et al., 2008; Jiang et al., 2001;
62 Khazipov et al., 2004; Marty et al., 2002; Morozov and Freund, 2003; Murata and Colonnese, 2020;
63 Tyzio et al., 1999), and the precise developmental timeline for their postnatal development remains
64 unknown, partly due to the difficulty in labeling them (Donato et al., 2017).

65 Here we investigate the evolution of CA1 dynamics during the first and second postnatal weeks of
66 mouse development with an eye on the specific patterning of activity of CA1 GABAergic neurons. To
67 this aim, we adapted two-photon calcium imaging of CA1 dynamics using virally-expressed GCaMP6
68 through a cranial window in non-anesthetized pups. We show that the first postnatal week ends with an
69 abrupt switch in the representation of self-motion in CA1: principal neurons were synchronized by
70 spontaneous movement before P9, whereas self-motion decreased their activity after that time point.
71 Consistent with a two-population neuronal model, this switch was locally paralleled by the rapid
72 anatomical and functional surge of somatic GABAergic interneurons and no significant change in
73 external inputs. Self-generated bottom-up inputs may thus directly contribute to the emergence of
74 somatic GABAergic inhibition and in this way calibrate local circuits to the magnitude of external inputs
75 prior to the opening of experience-dependent plasticity.

76 **RESULTS**

77 **Progressive evolution of CA1 neuronal dynamics**

78 In order to induce stable and early expression of the calcium indicator protein GCaMP6s, pups were
79 injected with the AAV1-hSyn-GCaMP6s.WPRE.SV40 virus in the brain lateral ventricle on the day of
80 birth (P0, **Figure 1A and Figure 1 - figure supplement 1A**). Five to twelve days after injection, the
81 hippocampal CA1 region of non-anesthetized pups was imaged through a window implant placed on
82 the same day (**Figure 1A, see methods**). This acute window implant did not alter hippocampal
83 dynamics as revealed by *in vivo* bilateral silicon probes electrophysiological recordings of early sharp
84 waves (eSW, **Figure 1 - figure supplement 1B**) in P6-8 and P11 pups (N=4 and N=2 respectively)
85 expressing GCaMP6s (with a frequency of 2.6 eSW/min (25 % 1.15 eSW/min and 75 % 4.16 eSW/min)
86 for the ipsilateral side and 3.49 eSW/min (25 % 1.96 eSW/min and 75 % 5.1 eSW/min, *p-value* = 0.39)
87 for the contralateral side (**Figure 1 - figure supplement 1B**). eSW synchronization between
88 hemispheres was also preserved (peak at 0.087 +/- 0.027, **Figure 1 - figure supplement 1B**) which is
89 in agreement with previous data (Graf et al., 2021; Valeeva et al., 2019b). Finally, we checked for the
90 presence of other types of oscillations in both hemispheres and observed a peak in the theta range in the
91 P11 mouse pups in both hemispheres (Ipsi: peak at 4.3 Hz of amplitude $3.6 \times 10^{-3} \pm 1.2 \times 10^{-3}$ mV²/Hz;
92 Contra: peak at 4.1 Hz of amplitude $2 \times 10^{-3} \pm 3 \times 10^{-4}$ mV²/Hz (jackknife std)). Therefore, the presence
93 of the window implant preserved the previously described network activity of the early postnatal period
94 in developing rodents. Thus, we pursued the description of early multineuron CA1 dynamics using
95 calcium imaging (62 imaging sessions, 35 mouse pups aged between 5 and 12 days, yielding a total of
96 33,412 cells, see **Table 1** for details on each session and their inclusion in the figures).


97

Age	SubjectID	SessionID	N_Cells	Main Figures												Supplementary Figures					
				1A	1B	1C	2A	2B	2C	2D	3A	3B	4C	4D	5C	1S1A	2S1A	2S1B	3S2A	3S2B	3S2C
5	190320_190325	190325_a000	633	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	N	N	Y	N	
		190325_a001	919	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	N	N	Y	N	
5	191205_191210_0	191210_a000	316	Y	Y	Y	Y	Y	Y	Y	Y*	N	N	N	Y	Y	N	Y	Y	Y	
		191210_a001	128	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
5	191205_191210_1	191210_a000	512	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	N	Y	Y	Y	
		191210_a001	117	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
5	200306_200311	200311_a000	388	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
		200311_a001	272	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	Y	Y	
6	180201_180207	180207_a001	566	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		180207_a002	405	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
6	190921_190927_1	190927_a000	240	N	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	N	N	Y	Y	
		191211_a000	566	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
6	191205_191211_1	191211_a001	395	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
		180208_a000	515	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
7	180201_180208	180208_a001	846	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		180208_a002	742	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		180208_a003	622	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		190226_190305	190305_a000	410	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y
7	190320_190327	190327_a000	824	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		190327_a001	678	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
7	200103_200110_0	190327_a002	655	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		200110_a000	453	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
7	200206_200213	200110_a001	486	Y	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
		200213_a000	611	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
7	181009_181017	200213_a001	322	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		181017_a000	627	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
8	181016_181024	181017_a001	588	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		181024_a005	565	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
8	190921_190929_1	190929_a000	698	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
		191213_a000	712	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
8	191205_191213	191213_a001	297	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
		191220_a001	537	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
8	191212_191220	191220_a003	620	N	Y	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	Y	Y	
		171211_171220	171220_a001	372	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y	
9	190211_190220_0	190220_a000	378	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
		190220_a001	942	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
		190220_a002	813	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
		190220_a003	797	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
9	190305_190314	190314_a000	443	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
		190314_a001	500	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
9	190313_190322	190322_a000	844	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
		190322_a001	696	N	Y	Y	Y	Y	Y	Y	N	N	N	Y	Y	Y	N	N	Y		
9	190921_190930	190930_a001	1050	N	Y	Y	Y	Y	Y	Y	N	N	N	N	Y	Y	Y	N	N	Y	
		190930_a003	849	N	Y	Y	Y	Y	Y	Y	N	N	N	N	Y	Y	Y	N	N	Y	
9	200108_200117_1	200117_a001	34	N	N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	N	
		210226_210307_1	210307_a000	36	N	N	N	N	N	N	N	N	N	N	Y	Y	N	N	N	N	
10	190211_190221_0	190221_a003	607	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	Y		
		190221_a005	928	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	Y		
10	190226_190308	190308_a000	546	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	Y		
		190308_a001	596	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	Y		
10	190921_191001	191001_a000	486	Y	Y	Y	Y	Y	Y	Y	N	Y	N	N	Y	Y	Y	N	Y	Y	
		210226_210308_1	210308_a000	34	N	N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	
11	190211_190222	190222_a000	606	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	Y		
		190921_191002	191002_a001	567	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	Y	Y	N	Y	Y	
12	171029_171110	171110_a000	404	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	N	N	Y	
		171110_a002	654	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	N	N	N	Y	
12	190828_190909	190909_a000	396	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	N	N	Y	

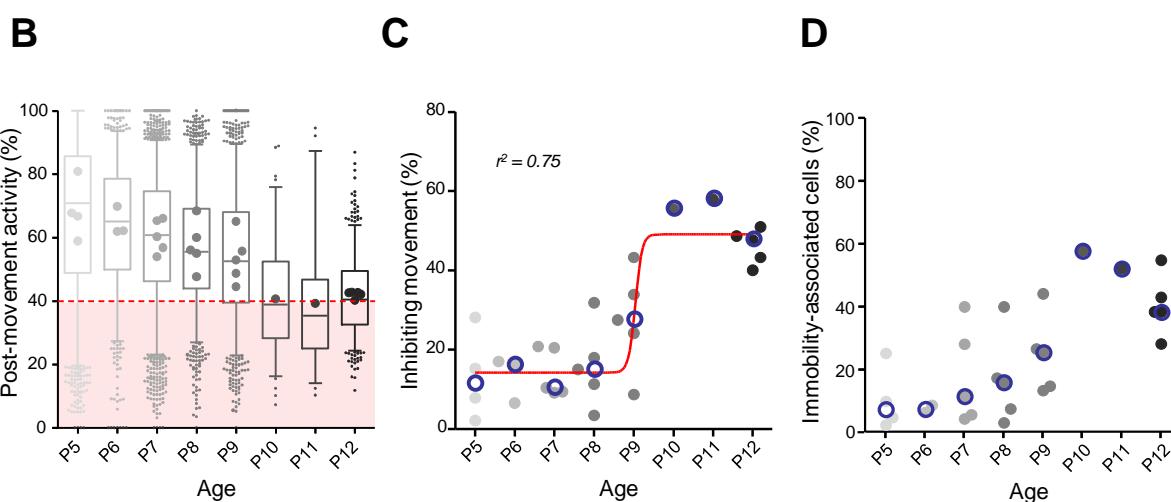
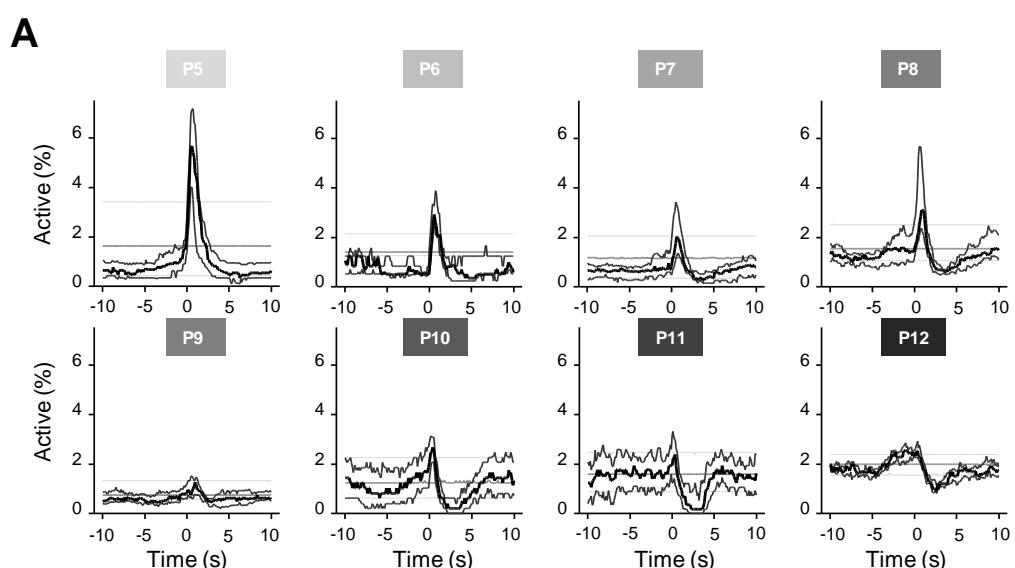
		190909_a001	430	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	N	Y	Y	N	N	Y	N
12	190911_190923	190923_a001	413	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	Y	N	N	Y	N
12	190921_191003	191003_a001	294	N	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	Y	N	N	Y	Y
12	191122_191204	191204_a000	782	N	Y	Y	Y	Y	Y	Y	N	Y*	N	N	N	Y	Y	Y	N	Y	Y	Y
		191204_a001	650	Y	Y	Y	Y	Y	Y	Y	N	Y	N	N	N	Y	Y	Y	N	Y	Y	Y

98 **Table 1:** Details on the 62 imaging sessions from the 35 mouse pups showing the number of cells
99 recorded in each session and how they were used in the figures. In main figure 3A, * shows mouse pups
100 that are used for illustration. Y: included in the panel, N: not included.

101 The contours of the imaged neurons and their calcium fluorescence events were extracted using Suite2P
102 (Pachitariu et al., 2017) and DeepCINAC (Denis et al., 2020), respectively. Representative examples of
103 fields of view, contour maps and activity raster plots from recordings in P5, P7, P10 and P12 mouse
104 pups are shown in Figure 1A. Consistent with previous electrophysiological studies (Leinekugel et al.,
105 2002; Mohns and Blumberg, 2008; Valeeva et al., 2019a), spontaneous neuronal activity in the CA1
106 region of P5-6 pups alternated between recurring population bursts (Synchronous Calcium Events,
107 SCEs), and periods of low activity (**Figure 1A**). In P5-6 mouse pups more than half of the detected
108 calcium transients occurred within SCEs (P5: median value 55 % N=4, n=8; P6: median value 55 %
109 N=3, n=5; N: mice, n: imaging sessions, **Figure 1B**). Activity then became progressively continuous as
110 evidenced by the linear decrease in the proportion of calcium transients occurring during SCEs ($r^2=0.78$,
111 $p<0.0001$) to finally reach 33 % in P12 mouse pups (P12: N=5, n=8, **Figure 1B**). These changes in CA1
112 dynamics cannot be explained by a change in the activation rate of individual neurons as this parameter
113 did not significantly change during the developmental period studied here (**Figure 1C**). Even though
114 there was globally no significant change in the rate of neuronal activation as measured with calcium
115 imaging from P5 to P12, we observed a small, but not significant decrease at P9-10 consistent with the
116 description of a transient period of ‘neural quiescence’ at the beginning of the second postnatal week
117 (Dominguez et al., 2021). We conclude that CA1 dynamics progressively evolve from discontinuous to
118 continuous during the first two postnatal weeks, in agreement with previous electrophysiological studies
119 (Cossart and Khazipov, 2021b; Mohns and Blumberg, 2008; Valeeva et al., 2019a).

Figure 1: Evolution of CA1 dynamics during the first two postnatal weeks

(A). Schematic of the experimental timeline. On postnatal day 0 (P0), 2 μ L of a non-diluted viral solution were injected in the left lateral ventricle of mouse pups. From five to twelve days after injection (P5-P12), acute surgery for window implantation above the corpus callosum was performed and followed by 2-photon calcium imaging recordings. Top panel: Four example recordings are shown to illustrate the imaging fields of view in the stratum pyramidale of the CA1 region of the hippocampus (scale bar: 100 μ m). Middle panel: Contour maps showing the cells detected using Suite2p in the corresponding fields of view. Bottom panel: Raster plots inferred by DeepCINAC activity classifier, showing 300



129 randomly selected cells over the first 5 minutes of recording obtained for these imaging sessions (P5,
130 P7, P10, P12, see full raster plots for these imaging sessions in Figure 1 - figure supplement 1D). In the
131 raster plot from the P5 mouse the blue rectangle illustrates one synchronous calcium event (SCE). Scale
132 bar for time is 1 min. CICADA configuration files to reproduce example rater plots and cell contours
133 are available in Figure 1 - Source Data 1. **(B)**. Evolution of the ratio of calcium transients within SCEs
134 over the total number of transients across age. Each dot represents a mouse pup and is color coded from
135 light gray (P5) to black (P12), the open blue circles represent the median of the age group. The red line
136 represents the linear fit of the data with $r^2=0.78$ and $p<0.0001$. Results to build the distribution as well
137 as CICADA configuration file to reproduce the analysis are available in Figure 1 - Source Data 1. **(C)**.
138 Evolution of the number of transients per minute across the first two postnatal weeks. Each dot
139 represents the mean transient frequency from all cells imaged in one animal and is color coded from
140 light gray (P5) to black (P12). The open blue circles represent the median of the age group. No
141 significant influence of the age was found (Kruskal-Wallis test, 8 groups, KW stat =12.63, p-value =
142 0.0816). Results to build the distribution as well as CICADA configuration file to reproduce the analysis
143 are available in Figure 1 - Source Data 1.

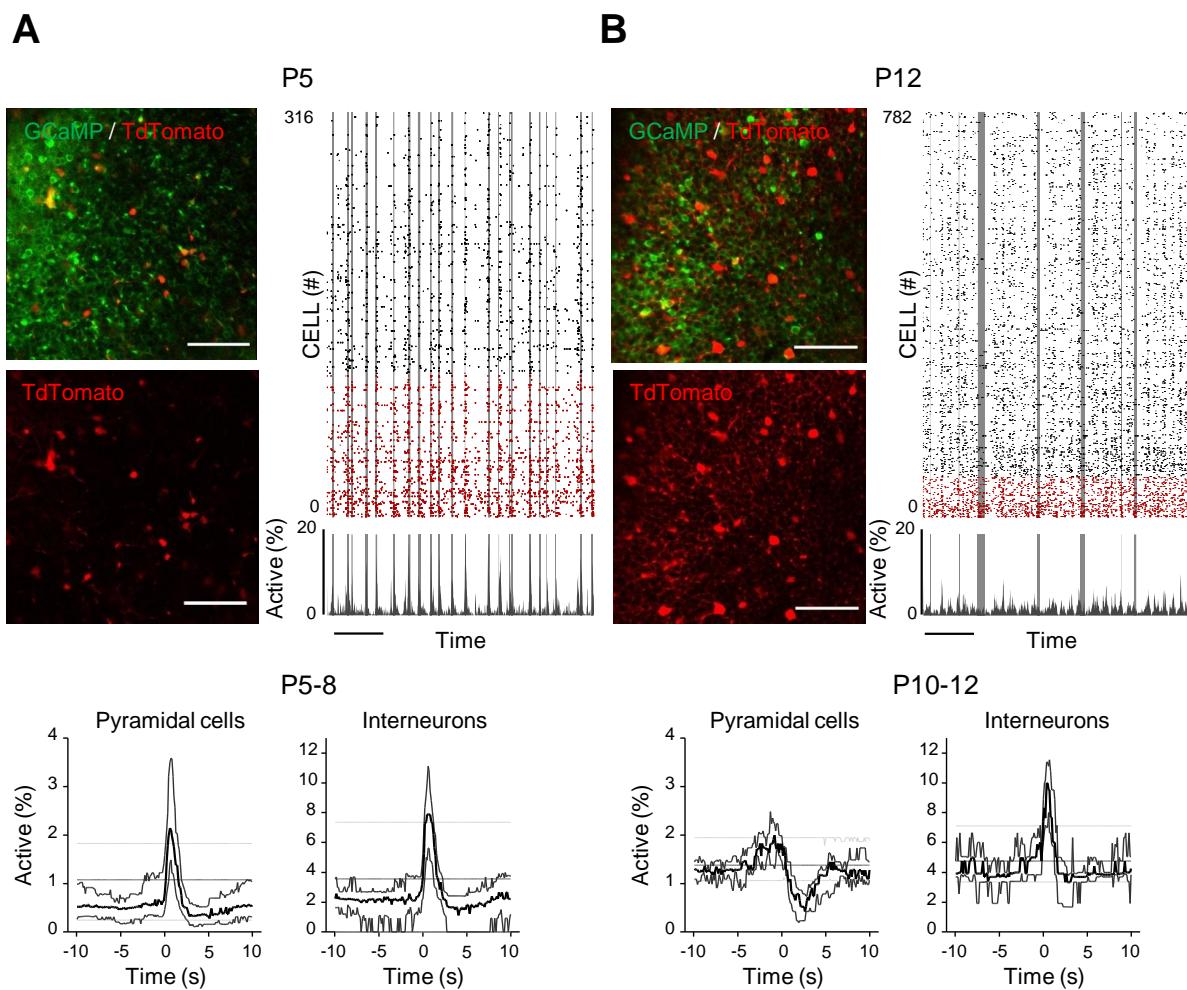
144

145 **Early synchronous calcium events correlate with spontaneous motor activity**

146 Previous extracellular electrophysiological recordings indicated that, in developing rodents, CA1
147 dynamics followed spontaneous motor activity during the first postnatal week (Karlsson et al., 2006;
148 Rio-Bermudez et al., 2020; Valeeva et al., 2019a). Hence, we next examined the relationship between
149 population activity and movement as monitored using either piezo recordings or infrared cameras (see
150 methods). We first computed peri-movement time histograms (PMTMs) plotting the fraction of active
151 neurons centered on the onset of all movements. In mouse pups younger than P9, movements were
152 followed by a significant increase in the percentage of active cells (**Figure 2A**, P5-8 median above
153 chance level, **Supplementary movies 1-3**). In contrast, after P9, movements were followed by a
154 significant decrease of activity (**Figure 2A**, P10-12 median below chance level, **Supplementary**
155 **Movies 4-6**). Short myoclonic movements such as twitches/startles, happening during periods of active
156 sleep (Gramsbergen et al., 1970; Jouvet-Mounier and Astic, 1968; Karlsson et al., 2006) as opposed to
157 longer movements, happening mostly during wakefulness, may induce different activity patterns in the
158 hippocampus (Mohns and Blumberg, 2008). However, we found that both movement types did not
159 significantly differ in their impact on CA1 activity (**Figure 2 - figure supplement 1A**). Furthermore
160 calcium imaging was combined with nuchal EMG recordings in one P5 mouse pup, and an increase in
161 the percentage of active cells was observed following movements occurring both during REM sleep
162 and wakefulness (**Figure 2 - figure supplement 1B**). All movement types were thus combined in
163 further analysis. Post-movement activity was next computed, as defined by the number of active cells
164 in the two seconds following movement onset divided by the number of active cells within a four
165 seconds-long time window centered on movement onset (see methods, **Figure 2B and Figure 2 - figure**
166 **supplement 1C**). The median post-movement activity progressively decreased from P5 to P9 until it
167 suddenly dropped at P10 and stabilized until P12. P9 marked the transition in the relationship between
168 movement and CA1 activity. Indeed, the median post-movement activity exceeded 50 % from P5 to P8

169 (P5: 71 %, P6: 65 %, P7: 60 %, P8: 56 %). This is consistent with the evolution of PMTHs (**Figure**
170 **2A**). After P9, the median post-movement activity was lower than 50 % (P10: 39 %, P11: 35 %, P12:
171 40 %), thus revealing the inhibitory action of movement on activity. We next defined as ‘inhibiting
172 movements’ all the movements with a post-movement activity lower than 40 % and computed their
173 proportion in each mouse (**Figure 2C**). The proportion of ‘inhibiting’ movements was stable before P9
174 (P5: 11 %, P6: 16 %, P7: 10 %, P8: 15 %). Again, P9 marks a transition since we observed that
175 approximately half of the movements were followed by an inhibition of CA1 activity in P10-12 mice
176 (P10: 55 %, P11: 58 %, P12: 48 %). The proportion of ‘inhibiting’ movements varies with age as a
177 sigmoïd function with P9 being the transition time point ($V50=9.015$, $r^2=0.75$). In line with the
178 emergence of movement-induced inhibition, the fraction of neurons significantly associated with
179 immobility also increased with age (**Figure 2D**) suggesting an “internalization” of neuronal activity.
180 Altogether, these results indicate that the end of the first postnatal week marks a transition in the
181 evolution of CA1 dynamics, with both a decorrelation and an internalization of neuronal activity. We
182 next investigated the circuit mechanisms supporting these changes.

183


184 **Figure 2: Linking CA1 dynamics to movement during the first two postnatal weeks.**

185 **(A).** Peri-Movement-Time-Histograms (PMTH) representing the percentage of active cells centered on
186 the onset of the mouse movements. The dark line indicates the median value, the two thick grey lines
187 represent the 25th and 75th percentiles from the distribution made of all median PMTHs from the sessions
188 included in the group. Overall are included: P5: N=4, n=8, P6: N=3, n=5; P7: N=5, n=12; P8: N=5,
189 n=8; P9: N=5, n=11; P10: N=1, n=1; P11: N=1, n=1; P12: N=5, n=7 (N: number of mice, n: number of
190 imaging sessions). In all panels, the thin straight gray lines represent the 5th percentile, the median and
191 the 95th percentile of the distribution made of all median PMTHs resulting from surrogate raster plots
192 from the sessions included in the group. Results to build the PMTH as well as CICADA configuration
193 file to reproduce the analysis are available in Figure 2 - Source Data 1. **(B).** Distribution of post-
194 movement activity across age. Each boxplot is built from all detected movements for the given age
195 group. Whiskers represent the 5th and 95th percentiles with post-movement activity falling above or
196 below represented as small dots. The average post-movement activity observed for each mouse pup is
197 represented by the large dots color coded from light gray (P5) to black (P12). The red area illustrates
198 the movement falling in the category of ‘inhibiting’ movements. Results to build the distributions as
199 well as CICADA configuration file to reproduce the analysis are available in Figure 2 - Source Data 1.
200 **(C).** Distribution of the proportion of ‘inhibiting’ movements across age. Each dot represents a mouse
201 pup and is color coded from light gray (P5) to black (P12). The open blue circles represent the median
202 of the age group. The red line shows a sigmoidal fit with V50=9.015, $r^2=0.75$. Results to build the
203 distribution as well as CICADA configuration file to reproduce the analysis are available in Figure 2 -
204 Source Data 1. **(D).** Distribution of the proportion of significantly immobility-associated cells as a
205 function of age. Each dot represents a mouse and is color coded from light gray (P5) to black (P12).
206 The open blue circles represent the median of the age group. Results to build the distribution as well as
207 CICADA configuration file to reproduce the analysis are available in Figure 2 - Source Data 1.

208 **GABAergic neurons remain activated by spontaneous movement throughout the**
209 **two first postnatal weeks**

210 As a first step to identify the circuit mechanisms for this switch, we focused on local circuits and
211 disentangled the respective contribution of local GABAergic neurons and principal cells to CA1
212 dynamics as well as their relation to movement. To this aim, we identified GABAergic neurons with
213 the expression of a red reporter (tdTomato) in *GAD67Cre* pups virally infected with AAV9-FLEX-
214 CAG-tdTomato and AAV1.hSyn.GCaMP6s (**Figure 3A, B**). In addition, we used these imaging
215 experiments to train a cell classifier inferring interneurons in the absence of any reporter with 91 %
216 reliability (Denis et al., 2020). “Labeled” and “inferred” GABAergic neurons were combined into a
217 single group referred to as “interneurons” in the following (**Figure 3 - figure supplement 2B, C**). As
218 illustrated in a representative raster plot from a P5 mouse, both pyramidal cells (black) and interneurons
219 (red) were activated during movement (vertical grey lines, **Figure 3A**). This was confirmed when
220 computing the PMTH for pups aged less than P9, with the activation of the two neuronal populations
221 after movement exceeding chance level (P5-8: N=17, n=33, pyramidal cells: baseline value = 0.51 %,
222 peak value = 2.1 %, interneurons: baseline value = 2.1 %, peak value 7.9 %, N: number of mice, n:
223 number of imaging sessions, **Figure 3A**). In line with above results (**Figure 2A**), pups older than P9
224 showed a significant reduction in the proportion of active pyramidal cells following movement (**Figure**
225 **3B**, P10-12: N=7, n=9, baseline value = 1.3 %, trough value = 0.4 %). In contrast, interneurons
226 remained significantly activated following movement even past P9 (**Figure 3B**, P10-12: N=7, n=9,

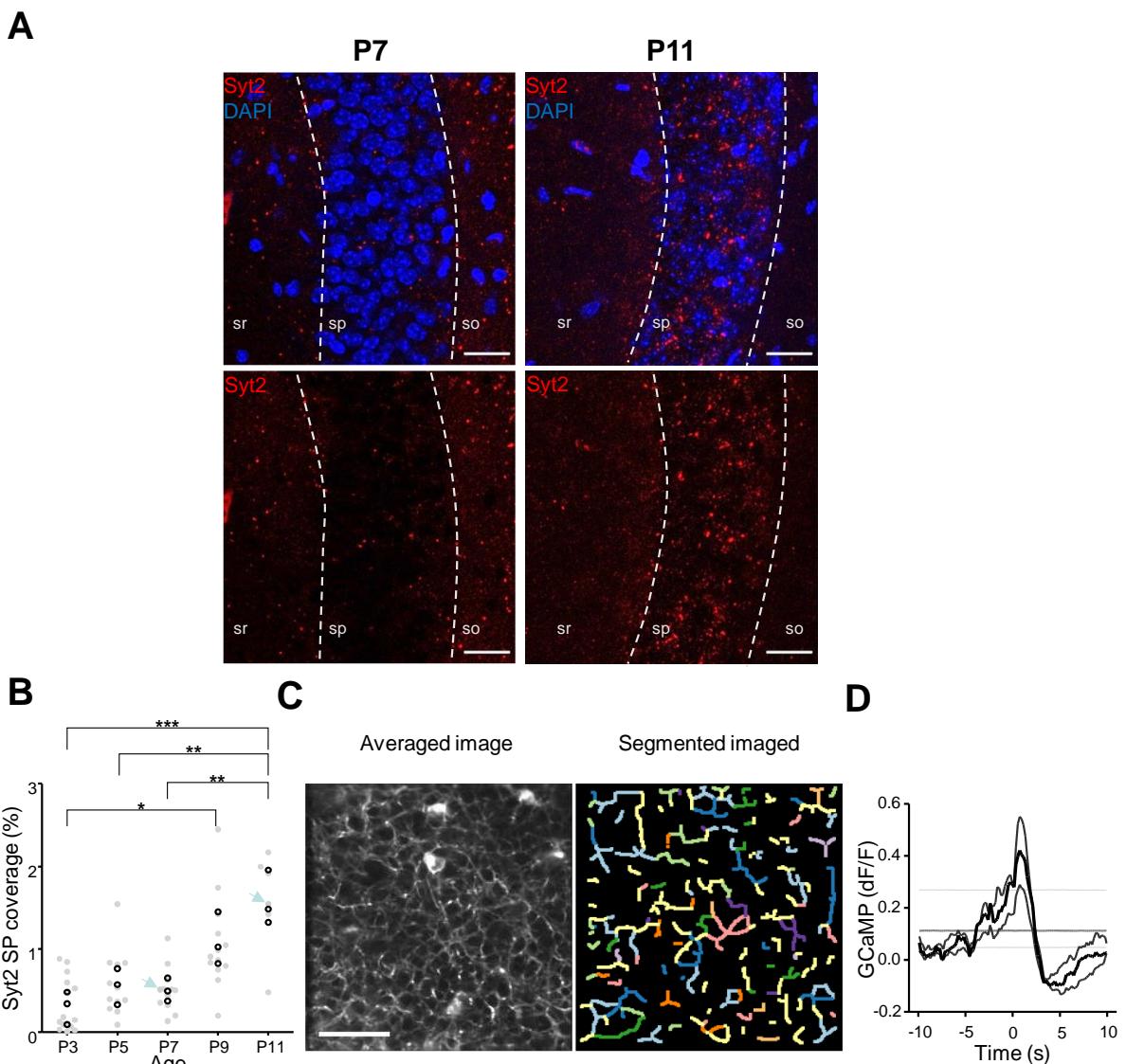
227 baseline value = 3.9 %, peak value = 10 %). We conclude that the link between movement and activity
228 evolves differentially towards the start of the second postnatal week when comparing pyramidal neurons
229 and GABAergic interneurons, the former being inhibited or detached from movements while the latter
230 remaining activated. This suggests that pyramidal neurons could be directly inhibited by local
231 interneurons after the first postnatal week, following a functional maturation of GABAergic outputs
232 onto principal cells. Alternatively, this could result from differential changes in the synaptic inputs
233 driving both cell types. In the following, we have addressed both, non-mutually exclusive, hypotheses.

235 **Figure 3: Differential recruitment of CA1 glutamatergic and GABAergic neurons**

236 **(A).** Top panel: Imaged field of view and associated raster plot from an example imaging session in the
237 *stratum pyramidale* from one P5 *Gad67Cre* mouse pup (scale bar = 100 μ m). Imaged neurons expressed
238 GCaMP6s. Interneurons were identified by the Cre-dependent expression of the red reporter tdTomato.
239 In the raster plot neurons are sorted according to their identification as pyramidal cells (black) or
240 interneurons (red), vertical gray lines indicate movements of the mouse. Scale bar: 60 seconds. Bottom
241 panel: PMTHs for pyramidal cells and interneurons combining all imaging sessions from mice aged
242 between P5 and P8. The dark line indicates the median value and the thick grey lines represent the 25th
243 and 75th percentiles from the distribution made of all median PMTH obtained from the sessions included
244 in the group. Thin gray lines represent the 5th, median and 95th from the distribution made of all median
245 PMTH obtained from surrogate raster plots from the sessions included in the group **(B)**. Same as (A).
246 But illustration is made with one P12 *Gad67Cre* mouse pup and PMTHs are built with all imaging

247 sessions from pups aged between P10 and P12. Note the presence of red labeled processes in the
248 neuropil of the *stratum pyramidale* of P12 in contrast to P5. Results to build the PMTHs as well as
249 CICADA configuration files to reproduce the analysis are available in Figure 3 - Source Data 1.

250


251 We first compared the developmental time course of extra-hippocampal synaptic afferences
252 onto CA1 GABAergic neurons and pyramidal cells using a rabies retrograde tracing method
253 (Wickersham et al., 2007). We focused on changes that may occur around the end of the first postnatal
254 week. To do so, two groups were compared, an *early* (AAV1-hSyn-FLEX-nGToG-WPRE3 -Helper
255 virus- injected at P0, SAD-B19-RVdG-mCherry -pseudotyped defective rabies virus- at P5 and
256 immunohistochemistry (IHC) at P9, **Figure 3 - figure supplement 1A-C**) and a *late* one (AAV1-hSyn-
257 FLEX-nGToG-WPRE3 -Helper virus- injected at P0, SAD-B19-RVdG-mCherry -pseudotyped
258 defective rabies virus- at P9, IHC at P13, **Figure 3 - figure supplement 1D-F**). Injections were
259 performed in either *GAD67Cre* or *Emx1Cre* pups in order to specifically target GABAergic or
260 glutamatergic cells, respectively. Four *GAD67Cre* pups (2 early and 2 late injections) and three
261 *Emx1Cre* pups (1 early and 2 late) were analyzed with injection sites restricted to the hippocampus.
262 Starter and retrogradely labeled cells were found all over the ipsilateral hippocampus. For both
263 *GAD67Cre* and *Emx1Cre* pups, we found no striking difference in the retrogradely labeled extra-
264 hippocampal regions between the *early* and *late* groups. In agreement with previous studies (Supèr and
265 Soriano, 1994), we found that GABAergic and glutamatergic neurons in the dorsal hippocampus
266 received mainly external inputs from the entorhinal cortex, the medial septum and the contralateral CA3
267 area (retrogradely labeled cells in these regions were found in 4 out of 4 *GAD67Cre* pups and 3 out of
268 3 *Emx1Cre* pups, **Figure 3 - figure supplement 1**). Thus, we could not reveal any major switch in the
269 nature of the extra-hippocampal inputs impinging onto local CA1 neurons. Thus, we next explored the
270 maturation of local somatic GABAergic innervation given its significant evolution throughout that
271 period (Jiang et al., 2001; Marty et al., 2002; Morozov and Freund, 2003) as well as our observation of
272 a dense tdTomato signal in the pyramidal layer from *GAD67Cre* mouse pups at P12 (**Figure 3B**), not
273 visible at P5 (**Figure 3A**).

274

275 **Abrupt emergence of a functional somatic GABAergic innervation at the** 276 **beginning of the second postnatal week**

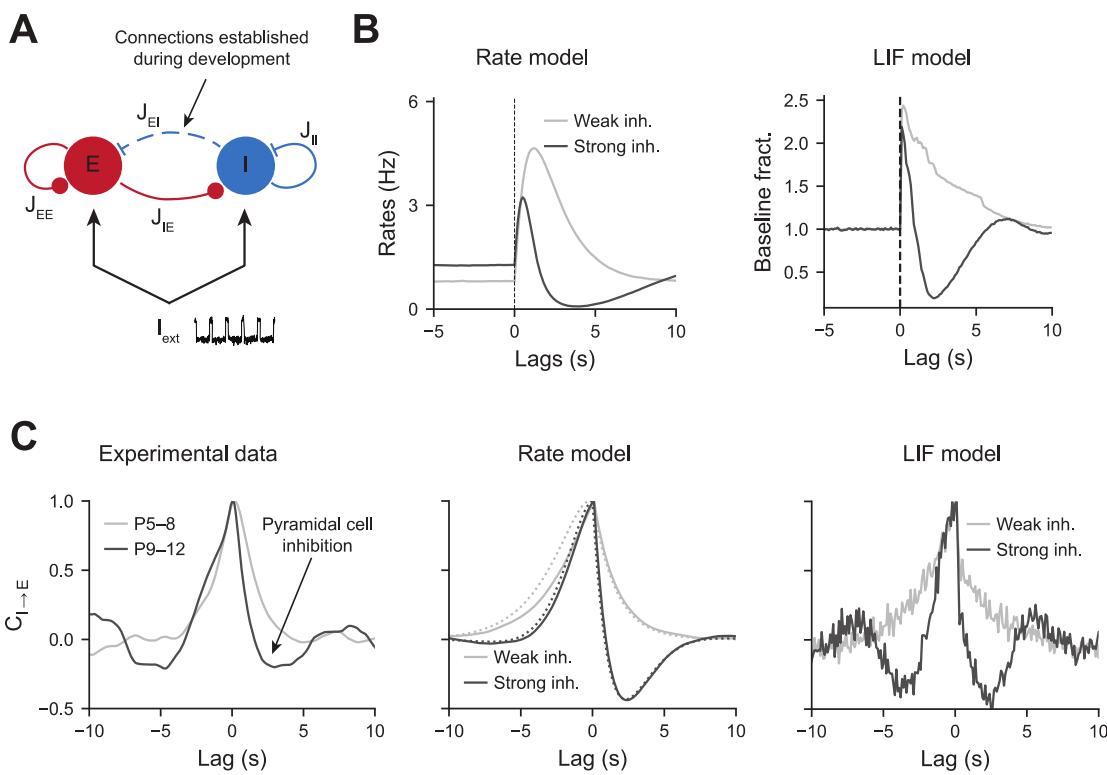
277 We first analyzed the anatomical development of somatic GABAergic innervation within the CA1
278 pyramidal layer from P3 to P11, focusing on the innervation from putative parvalbumin-expressing
279 Basket Cells (PVBCs), its main contributor. To this aim, we performed immunohistochemistry against
280 Synaptotagmin2 (Syt2) which has been described as a reliable marker for parvalbumin positive
281 inhibitory boutons in cortical areas (**Figure 4A**, (Sommeijer and Levelt, 2012)). Using a custom-made

282 Fiji-plugin (Ringo, see methods), we quantified the surface of the pyramidal cell layer covered by
283 Syt2 labeling at different stages and found that between P3 and P7, PV innervation remained stable
284 (median values: P3: 0.34 %, P5: 0.57 %, P7: 0.49 %, 3 mice per group, **Figure 4B**). However, around
285 P9, a sudden increase in the density of positive labelling was observed (P9: 1.03 %, P11: 1.48 %, 3 mice
286 per group, **Figure 4B**). These results are consistent with previous work (Jiang et al., 2001; Marty et al.,
287 2002), as well as with our tdTomato labeling (**Figure 3A-B**). They also match the transition observed
288 in CA1 dynamics (**Figure 3**). We next tested whether GABAergic axons in the pyramidal layer were
289 active during periods of movement. In order to increase success rate for imaging axons in the pyramidal
290 layer, we restricted these experiments to P9-10, i.e., when axons start densely innervating the CA1 layer.
291 To do so, we restrained the expression of the calcium indicator GCaMP6s to the axon (Broussard et al.,
292 2018) of interneurons using *GAD67Cre* mouse pups and specifically imaged axonal arborisation in the
293 pyramidal cell layer (**Figure 4C, left panel**). Fluorescence signals were extracted from axonal branches
294 using PyAmnesia (a method to segment axons, see methods, **Figure 4C, right panel**), and then
295 normalized using z-score (see methods). As expected, (see **Figure 3B**), an increase in the fluorescent
296 signal from GABAergic axonal branches was observed following movement (P9-10: n=3 mice, **Figure**
297 **4D**). As a result, we reasoned that an increase in perisomatic GABAergic inhibition could contribute to
298 the reduction of activity observed after movement during the second postnatal week in pyramidal
299 neurons.

300

301 **Figure 4: Emergence of perisomatic GABAergic innervation**

302 **(A).** Representative example confocal images of the CA1 region in a P7 (left) and a P11 (right) mouse
 303 pup. DAPI staining was used to delineate the *stratum pyramidale* (sp) from the *stratum radiatum* (sr)
 304 and *stratum oriens* (so, top row). Synaptotagmin-2 labeling (Syt2) is shown in the top and bottom rows.
 305 Illustrated examples are indicated by red dots in the associated quantification in (B). Scale bar= 20 μ m.
 306 **(B).** Fraction of the pyramidal cell layer covered by Syt2 positive labeling as a function of age. Each
 307 gray dot represents the average percentage of coverage from two images taken in the CA1 region of a
 308 hippocampal slice. Open black dots are the average values across brain slices from one mouse pup. Blue
 309 arrows indicate the slices used for illustration in (A). A significant effect of age was detected (One-Way
 310 Anova, $F=13.11$, $p=0.0005$). Multiple comparison test shows a significant difference between age
 311 groups (Bonferroni's test, *: $p<0.05$, **: $p<0.01$, ***: $p<0.001$). **(C).** Averaged image of a field of view
 312 in the pyramidal cell layer of a P9 *GAD67Cre* mouse pup injected with a Cre-dependent Axon-
 313 GCaMP6s indicator (left) and the segmented image resulting from PyAmnesia (right). **(D).** PMTH
 314 showing the df/f signal centered on the onsets of animal movement ($N=3$, $n=3$). The dark gray line
 315 indicates the median value, and the light gray lines represent 25th and 75th percentile. Results obtained
 316 from surrogates are represented by light gray lines.


317 **Increasing feedback inhibition in two-population models reproduces the**
318 **developmental transition**

319 To test whether an increase in perisomatic inhibition alone can explain the switch in network dynamics
320 between the first and second postnatal weeks, we simulated a two-population network mimicking the
321 development of perisomatic innervation (**Figure 5A**, see methods). Using a rate model and a Leaky
322 Integrate and Fire (LIF) model, we show that increasing the strength of perisomatic inhibition can
323 account for the experimentally observed decrease of responses to movement-like feedforward inputs
324 (**Figure 5B**). Durations of feed-forward inputs were chosen similar to experimental movement
325 durations (see **Figure 5 - figure supplementary 1A** for a log-normal of the movement durations). When
326 inhibition is weak, the average activity of the pyramidal neurons increases at the onset of a given twitch.
327 Then, it quickly relaxes to the baseline with a timescale that follows the synaptic time constant (**Figure**
328 **5B**, left panel). In the presence of strong inhibition, there is a reduction in response to movement inputs.
329 In addition, due to strong feedback inhibition following the movement responses, network activity
330 relaxes to the baseline with an undershoot (**Figure 5B**, right panel), recapitulating the experimental
331 findings (see **Figure 2A**). Similar PMTHs were obtained for interneurons (see **Figure 5 - figure**
332 **supplementary 1 B**).

333 To further show the importance of perisomatic inhibition on network dynamics, we computed
334 the cross-correlogram between interneurons activity and pyramidal cell activity in the absence of
335 movement (P5-8 light gray curve, P9-12 dark curve, **Figure 5C, left panel**). For P9-12, we observe a
336 rapid drop in the correlation at positive time which means that elevated inhibitory activity is followed
337 by a strong decrease in excitatory activity. Notice that this drop is absent for P5-8, where the cross-
338 correlogram is mostly symmetric around $t=0$. Both the rate and LIF models displayed similar activity
339 correlograms as the experimental data, with an undershoot in the presence of strong inhibitory feedback
340 for positive time. We showed through numerical simulations that similar changes could be observed in
341 a more realistic spiking network model (**Figure 5C, right panel**). Auto-correlograms of the excitatory
342 and inhibitory activity were also measured and compared to our model predictions (see **Figure 5 -**
343 **figure supplementary 1C**).

344 The consistency of our models with the experimental cross-correlograms, which were
345 computed from the activity recorded during periods of immobility, further shows that the observed
346 network dynamics and, in particular, the correlation undershoots most likely result from recurrent
347 perisomatic inhibition rather than a feedforward drive from upstream areas. Therefore, in our model,
348 the maturation of perisomatic inhibition alone was sufficient to support a switch in network dynamics.

349

350

351 **Figure 5: Modeling the effects of perisomatic inhibition on pyramidal cell response**

352 (A). The model consists of two populations, Excitatory (E) and Inhibitory (I) receiving feedforward
 353 input I_{ext} . The interaction strengths, J_{ab} represent the effect of the activity of population b on a. We study
 354 the effects of perisomatic inhibition on the activity of pyramidal cells by varying the parameter J_{EI} . (B).
 355 PMTH, response of excitatory neurons to pulse input in the rate model and LIF network. (C). Cross-
 356 correlations during periods of immobility, in experimental data (left), rate model (middle), and LIF
 357 network (right). In the rate model, dotted lines are the predicted correlation from the analytic
 358 expressions and solid lines are the results from numerical integration.

359

360 **DISCUSSION:**

361 Using for the first time *in vivo* two-photon calcium imaging in the hippocampus of non-anesthetized
 362 mouse pups and a deep-learning based approach to infer the activity of principal cells and interneurons,
 363 we show that the end of the first postnatal week marks a salient step in the anatomical and functional
 364 development of the CA1 region. Indeed, within two days (P8-10), the link between CA1 principal cells
 365 activity and self-triggered movements is inverted and neurons are preferentially active during
 366 immobility periods. This is likely due to the time-locked anatomical and functional rise of somatic
 367 GABAergic activity given that interneurons remain highly active throughout this period, including in
 368 response to spontaneous movements. In this way, CA1 circuits start detaching from external inputs.
 369 Given the importance of internal dynamics for hippocampal function and cortical circuits operation in
 370 general, this is likely to be a critical general step in the proper maturation of cognitive circuits.

371 **Early postnatal calcium activity in CA1 is driven by sensorimotor inputs**

372 We found that, until P7-9, spontaneous movements are followed by a significant peak in calcium events
373 in the CA1 principal cell layer and that most neuronal activity occurs during synchronous calcium
374 events. This early link between sensorimotor inputs and early cortical dynamics has been previously
375 reported using electrophysiological recordings in various areas and species, including humans (Milh et
376 al., 2006). Here we extend that observation to calcium transients, which not only indirectly report
377 action-potential firing as well as other modes of cell activation during development but also critically
378 regulate activity-dependent genetic processes. In addition, we could describe the response to these
379 movements with single-cell resolution. It is possible that other movements, like whisker movements,
380 that we have not detected also contribute to the patterning of CA1 activity. It is also possible that self-
381 generated activity from other sensory organs but independent from movement, like the retina or the
382 olfactory bulb, also contribute to hippocampal dynamics, the same way they are relayed to sensory
383 cortices. Interestingly, in contrast to previous reports (Tiriac et al., 2014), we did not observe any
384 significant difference between twitches (occurring mainly during active sleep) and longer, more
385 complex movements. This may reveal a difference between calcium imaging and electrophysiology,
386 the former sampling from a larger population but at a lower temporal and spike signal resolution. The
387 patterning of CA1 dynamics in the large imaged population did not reveal any obvious spatial
388 distribution for movement-activated cells but we cannot exclude that these would vary along the radial
389 and transverse directions, which are the two main axes of principal cell development (Caviness, 1973),
390 and are differentially targeted by perisomatic PV basket cells (Lee et al., 2014; Valero et al., 2015).

391 Passed the end of the first postnatal week, between P8 and P10, a significant decrease in the
392 fraction of coactive principal cells following movement was observed (while interneurons remained
393 mostly activated by movement). We cannot exclude that some spikes fell below the threshold for
394 detection of calcium events. In this case, rather than full inhibition, it may be that a strong shortening
395 of the time window for neuronal integration occurred (due to feedback inhibition), which would limit
396 the number of spikes produced by principal cells and thus keep them below detection levels. Yet, a
397 novel machine-learning based algorithm (Denis et al., 2020) was used since it was especially designed
398 to infer activity in the dense CA1 pyramidal cell layer. This change in the polarity of principal cells'
399 response to movements is quite abrupt as it happens within less than two days (between P8 and 10).
400 This contrasts with the progressive evolution of single cell firing frequencies but matches the fast
401 redistribution of neuronal firing towards immobility periods. In this way, hippocampal neuronal
402 dynamics “internalize” as they stop being driven by movements and preferentially occur within rest.

403 This “internalization” of hippocampal dynamics is reminiscent of similar phenomena observed
404 in other cortical areas, such as the barrel cortex where whisker stimulation induces a reduction in the
405 size of cell assemblies following P9 while the same stimulation widens cell assembly size a few days

406 before (Mòdol et al., 2019). It is also reminiscent of the recently described transient quiescent period
407 observed in the somatosensory cortex using extracellular electrophysiological recordings (Dominguez
408 et al., 2021). Last, it goes in hand with a sparsification of activity, which is a general developmental
409 process supported by the emergence of inhibition (Golshani et al., 2009; Rochefort et al., 2009; Wolfe
410 et al., 2010).

411 **Circuit basis for the movement-triggered inhibition of CA1 dynamics**

412 Our results demonstrate that the “internalization” of CA1 dynamics occurring at the end of the first
413 postnatal week most likely relies on structural changes in local CA1 circuits rather than rewiring of the
414 long-range extrahippocampal connectivity.

415 The long-range circuits mediating the bottom-up flow of self-triggered or externally generated
416 sensory information to the hippocampus are starting to be elucidated. The two main structures directly
417 transmitting sensorimotor information to the dorsal CA1 are the entorhinal cortex and septum. The
418 former processes multisensory information from all sensory cortices (visual, auditory, olfactory,
419 somatosensory), including movement-related sensory feedback (Rio-Bermudez and Blumberg,
420 2021) and was shown to be activated by spontaneous twitches prior to CA1 (Mohns and Blumberg,
421 2010; Rio-Bermudez et al., 2020; Valeeva et al., 2019a) while the latter is more likely to be involved in
422 transmitting internal information (Fuhrmann et al., 2015; Wang et al., 2015) as well as unexpected
423 environmental stimuli (Zhang et al., 2018). In addition to these two canonical pathways, one cannot
424 exclude the involvement of a direct connection from the brainstem, given their existence in the adult
425 and their role in promoting sleep as well as motor twitches (Liu et al., 2017; Szönyi et al., 2019).
426 However, our retrograde tracing experiments did not reveal any direct connection between the CA1
427 cells and the brainstem at the early ages analyzed here. In addition, we found that both CA1 interneurons
428 and principal cells receive inputs from the septum and entorhinal cortex before the time of the switch
429 (i.e. P9) and that there was no major qualitative change of inputs after, as expected from previous work
430 (Supèr and Soriano, 1994). Still, these experiments do not allow a quantitative assessment of the number
431 of inputs nor the type of inputs (GABAergic, cholinergic, etc.) and we cannot fully exclude that a
432 stronger, or different source of excitatory drive would be impinging onto interneurons after the switch.
433 Therefore, future optogenetic and slice physiology work is needed to characterize the bottom-up
434 information flow onto specific components of the local CA1 circuits. Similarly, one cannot exclude a
435 change in the CA3 to CA1 connectivity. Indeed, Schaffer collaterals are known to reach CA1 roughly
436 around the end of the first postnatal week (Durand et al., 1996). In addition, roughly at the time of the
437 switch, do we see the emergence of SWRs (Buhl and Buzsaki, 2005), a pattern strongly relying on CA3
438 inputs and perisomatic GABAergic transmission. However, we could not restrict the pool of starter cells
439 to the CA1 region in our retrograde viral tracing experiments, which precluded analysis of the
440 development of CA3-CA1 connectivity. Interestingly, among the external inputs onto CA1 described

441 above, the entorhinal cortex and CA3 were both shown to exert a mild influence on the organization of
442 intrinsic CA1 dynamics, possibly pointing at a critical role of local interneurons in this process (Zutshi
443 et al., 2021).

444 As indicated by our computational model, the disengagement from movement of CA1 dynamics
445 can be fully explained by the observed rise in anatomical (Syt2 labeling) and functional (axonal GCaMP
446 imaging) connectivity from perisomatic GABAergic cells onto pyramidal cells at the onset of the second
447 postnatal week. This increased connectivity could not be easily captured with our retrograde viral
448 labeling since the absence of early PV expression precludes the identification of PV basket cells, the
449 most prominent subtype of perisomatic GABAergic cells, among retrogradely labelled cells in *Emx1Cre*
450 pups. Early anatomical studies had already indicated that an increase of somatic GABAergic inhibition,
451 including from CCK-basket cells, occurred in CA1 during the first postnatal week (Danglot et al., 2006;
452 Jiang et al., 2001; Marty et al., 2002; Morozov and Freund, 2003). However, this rise was expected to
453 be more progressive and not as abrupt as observed here, as it happened within two days. If the axonal
454 coverage of the stratum pyramidale by PV-basket cells axons increases, we cannot exclude that this is
455 a general phenomenon, concerning all perisomatic subtypes, including soma-targeting CCK-expressing
456 basket cells which develop anatomically at around the same time (Morozov and Freund, 2003) or
457 chandelier cells. In addition, our computational model indicates that the emergence of feed-back
458 inhibition is sufficient to reproduce the developmental shift observed here, which could also involve
459 other types of CA1 interneurons, including dendrite-targeting ones.

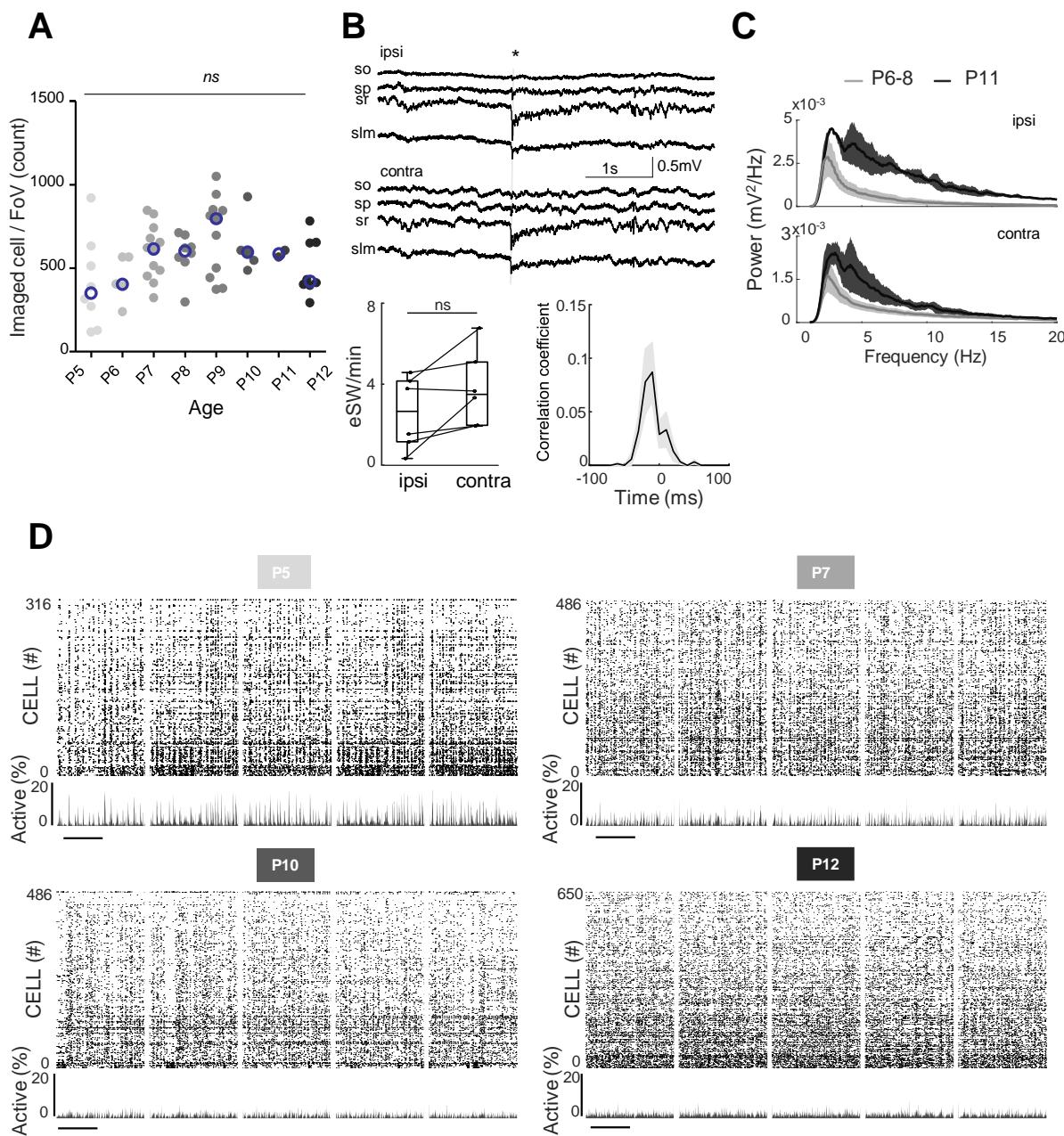
460 Interestingly, a similar rise of somatic GABAergic axonal coverage occurs in the barrel cortex
461 at the same time. Indeed, recent connectomic mapping using 3D-electron microscopy in that region
462 revealed that the preferential targeting of cell bodies by GABAergic synapses increased almost threefold
463 between postnatal days 7 and 9 (Gour et al., 2020), whereas two-photon imaging of putative GABAergic
464 somatic axons in the same region revealed broader domains of co-activation (Mòdol et al., 2019). This
465 time period for the shift may be synchronous within brain regions involved in sensorimotor integration
466 such as the hippocampus and somatosensory cortex. Otherwise, PV expression was shown to develop
467 sequentially in a region-specific manner (Reh et al., 2020) following their intrinsic developmental age
468 (Donato et al., 2017).

469 We found that many principal cells are inhibited by movement while most imaged GABAergic
470 cells remained activated during the second postnatal week. This therefore indirectly suggests a net
471 inhibitory effect of GABAergic transmission after the first postnatal week. This is expected since the
472 shift from excitatory to inhibitory synaptic transmission was reported to occur earlier in the
473 hippocampus *in vivo* (Murata and Colonnese, 2020). On a side note, the lack of somatic GABAergic
474 inputs before P7 indicates that the early excitatory GABAergic drive in CA1 circuits likely originates
475 from non-somatic GABAergic interneurons, which include long-range, dendrite-targeting or

476 interneuron-specific interneurons. The circuit role of excitatory GABAergic transmission should be
477 revisited taking into account this new finding.

478 The movement-associated inhibition can result equally from feedforward (direct activation
479 from movement-transmitting inputs such as the entorhinal cortex) or feedback (from local CA1 cells)
480 inhibition. Our experiments do not allow disentangling both circuits. A progressive strengthening of
481 feedback inhibition circuits through the strengthening of local CA1 principal cells inputs onto
482 perisomatic GABAergic neurons is also possible, as it occurs in the developing somatosensory cortex
483 (Anastasiades and Butt, 2012). The inhibition of activity following movement is likely to be occurring
484 during a transient developmental period. Indeed, in the adult, both interneurons and principal cells
485 usually increase their activity as the animal moves (Fuhrmann et al., 2015). Therefore the switch
486 observed here opens another developmental time-window that probably closes with the emergence of
487 perineuronal nets and cell activation sequences at the end of the third developmental week (Farooq and
488 Dragoi, 2019; Horii-Hayashi et al., 2015; Muessig et al., 2019). We would like to propose this
489 developmental window, to be the critical period for CA1 development, a period during which
490 experience-dependent plasticity can be observed.

491 **Conclusion**


492 Cognitive hippocampal maps rely on two forms of representation, one that is map-based or allocentric
493 and the other that is self-referenced, or egocentric and requires body movement. We would like to
494 propose that the early postnatal period described here, where the hippocampus learns the statistics of
495 the body, and which terminates with the rise of a recurrent inhibitory network is a key step for the
496 emergence of an internal model onto which exploration of the external world can be grafted. An
497 imbalance between internal and environmental hippocampal representations due to a miswiring of local
498 somatic inhibition could have major outcomes. It could be at the basis of several neurodevelopmental
499 disorders, including autism spectrum disorders (ASD) and schizophrenia. Interestingly, both disorders
500 have been associated with an aberrant maturation of PV-expressing interneurons (Gogolla et al., 2014;
501 Jurgensen and Castillo, 2015; Lewis et al., 2005). In addition, the proper development of the peripheral
502 sensory system, which is partly initiating the early CA1 dynamics reported in our study, is also critically
503 involved in ASD (Orefice et al., 2016). The period described here corresponds to the third trimester of
504 gestation and likely extends postnatally given the protracted integration of GABAergic interneurons
505 into functional circuits in the human brain (Murphy et al., 2005; Paredes et al., 2016). Future work
506 should determine when a similar rise in somatic inhibition occurs in human infants and test whether it
507 could constitute a valuable biomarker for cognitive neurodevelopmental disorders.

508

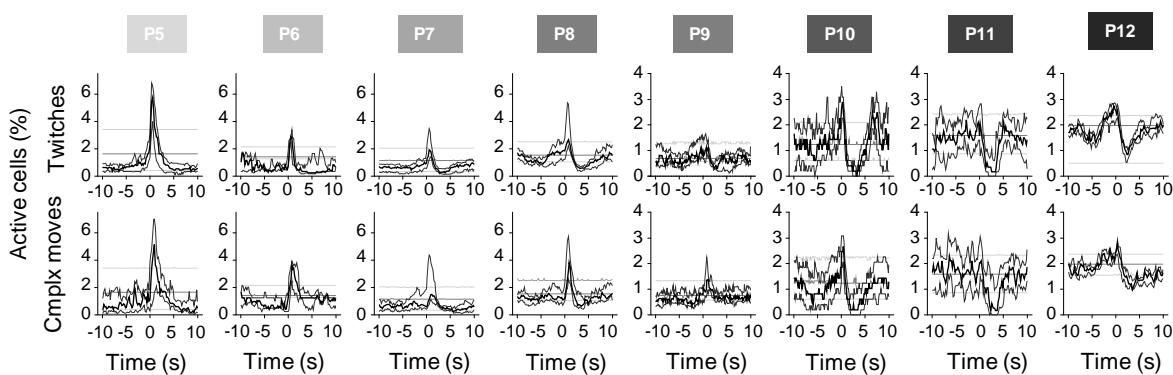
509

510

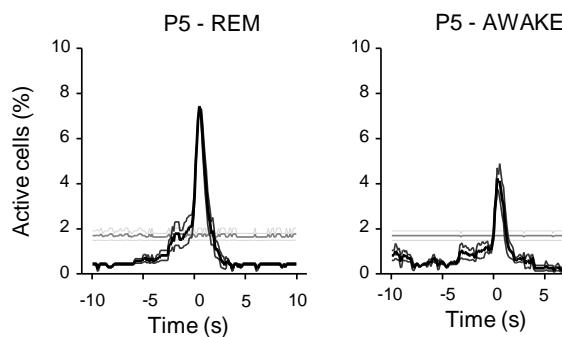
Figure 1 – figure supplement 1

511

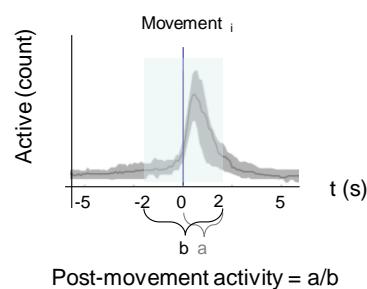
512 Figure 1 - figure supplement 1

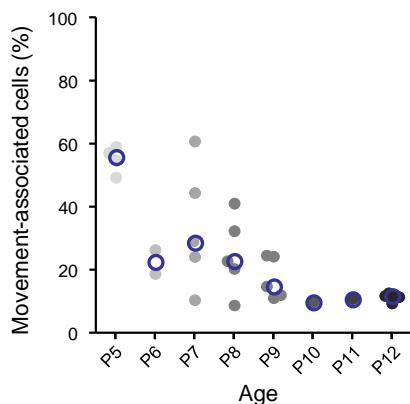

513 (A). Distribution of the number of cells imaged in each field of view as a function of age. Each dot
 514 represents a field view and is color coded from light gray (P5) to black (P12). The open blue circles
 515 represent the median of each group. No effect of age was observed on the number of imaged cells. (B).
 516 Top panels: Example of the electrophysiological recording done in the ipsi (hippocampus with window

517 implant) and contralateral (intact hippocampus) hippocampi. Use of multisite silicon probe allowed
518 simultaneous recordings in different hippocampal layers (strati oriens (so), pyramidale (sp), radiatum
519 (sr) and lacunosum moleculare (slm)). The eSW is marked by an asterisk. Bottom panels: box plot
520 displays the eSW occurrence. Each dot represents the eSW rate per minute in a mouse pup (N=6). Box
521 plots show median, the bottom and top edges of the box indicate the 25th and 75th percentiles, the
522 whiskers extend to the most extreme data points not considered outliers. Bottom right panel:
523 Cooccurrence of eSWs detected in both hippocampi. (C). Developmental changes in power spectral
524 density of the recorded LFP in the ipsi (hippocampus with window implant) and contralateral (intact
525 hippocampus) hippocampi. Gray and black lines are the averages between the animals of P6-8 and P11
526 age ranges, respectively. Shading shows jackknife standard deviation. Note, presence of peak in theta
527 frequency band (4-7 Hz) in P11 animals. (D). Raster plots from the imaging sessions used for illustration
528 in Figure 1A, showing all cells over the full recording, scale bar is 2 minutes.


529

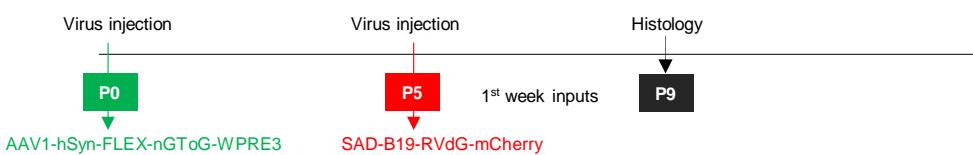
530


A

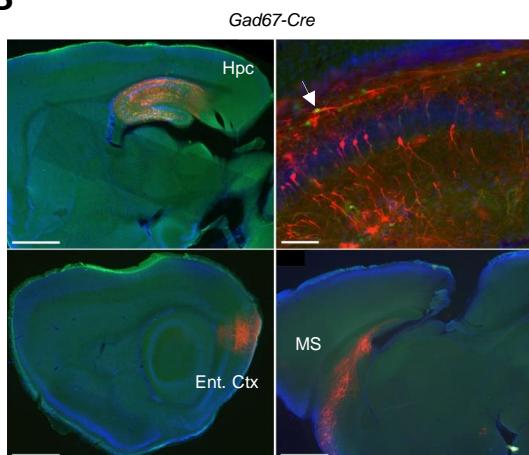

B

C

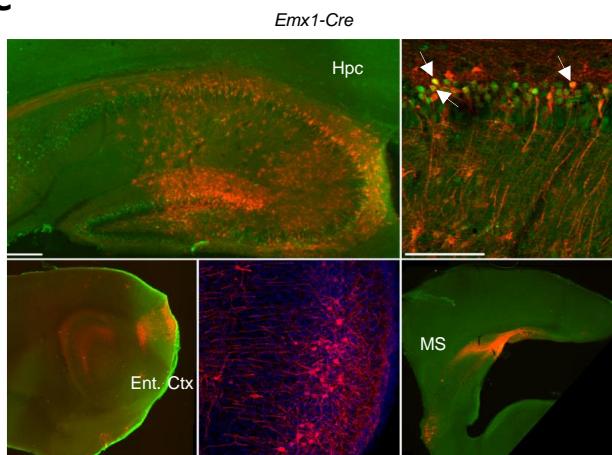
D



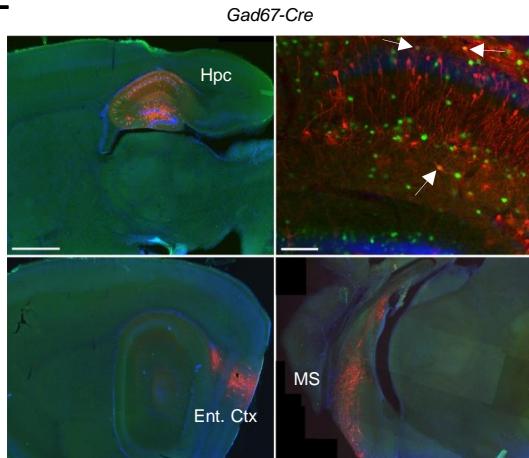
531

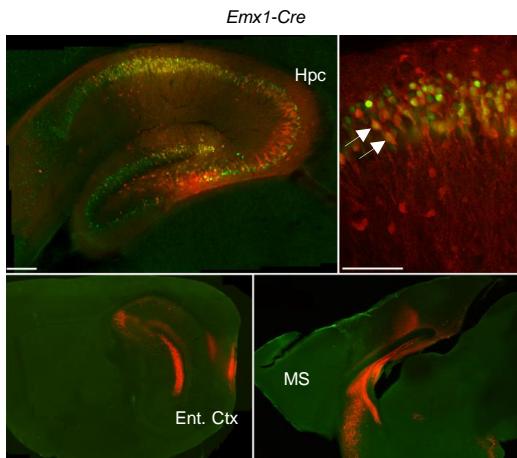

532 **Figure 2 - figure supplement 1**

533 **(A).** PMTHs for each age group built on twitches only (top row) or on complex movements only
 534 (bottom row). Procedure to group sessions is similar to the one described in Figure 2 **(B).** PMTHs from
 535 one P5 mouse pup (including 2 imaging sessions) combining all detected movements during REM sleep
 536 ('P5 -REM') or all detected movement during Wakefulness ('P5 - AWAKE'). **(C).** Definition of the
 537 post-movement activity. **(D).** Distribution of the proportion of cells significantly associated with
 538 movement as a function of age. Each dot represents a mouse pup and is color coded from light gray
 539 (P5) to black (P12). The open blue circles represent the median for each group.


A


B


C


D

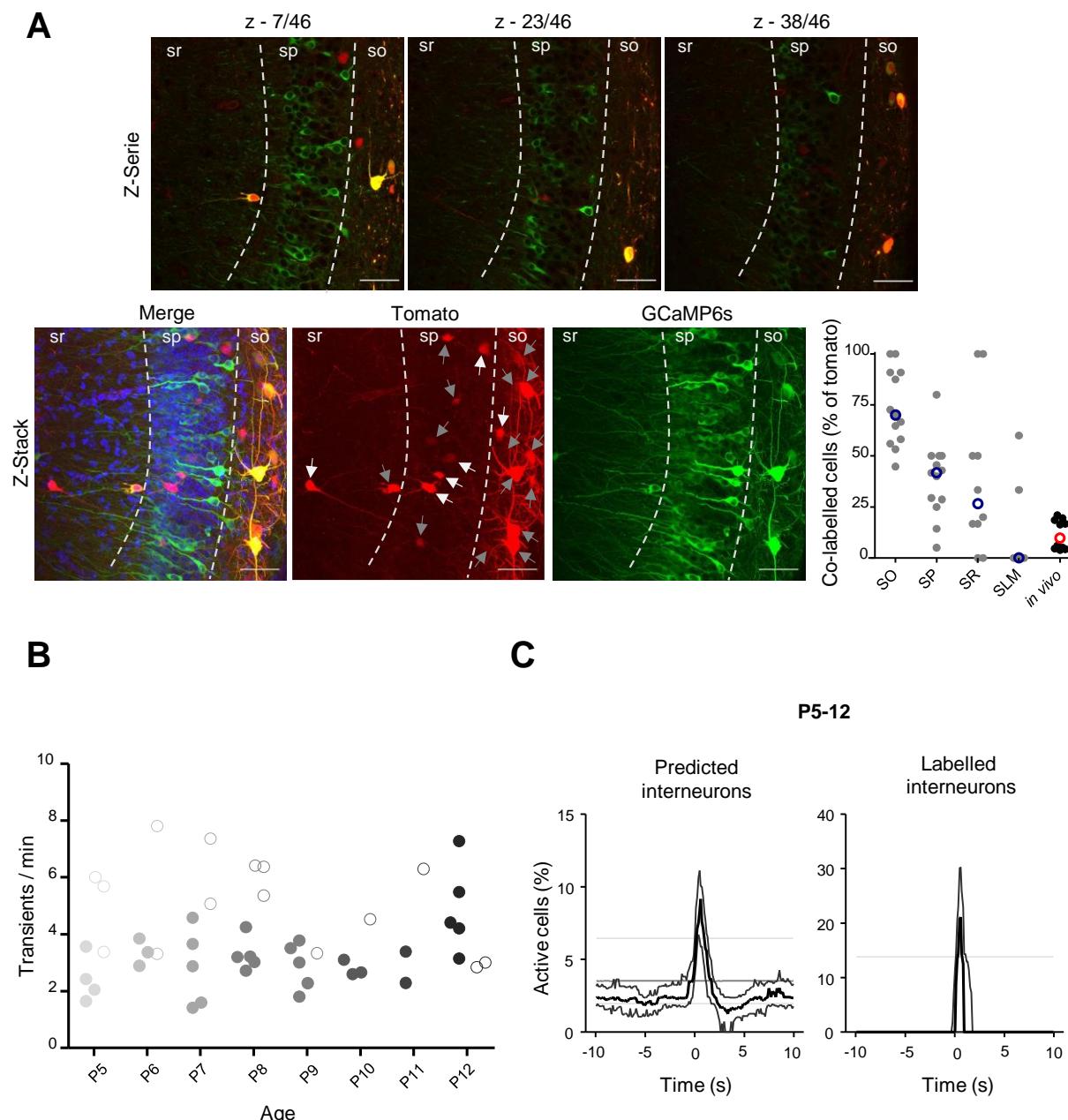
E

F

540

541 **Figure 3 - figure supplement 1**

542 (A). Experimental timeline used to investigate the inputs received by pyramidal cells (*Emx1Cre* mice)
 543 and interneurons (*GAD67Cre* mice) during the first postnatal week (early group). At P0 and P5 we
 544 injected the helper virus AAV1-hSyn-FLEX-nGToG-WPRE3 and the rabies SAD-B19-RVdG-
 545 mCherry into the hippocampus of *GAD67Cre* (Figure 3B) mice and *Emx1Cre* mice (Figure 3C)
 546 respectively. Brains are next collected for histological/anatomical analysis at P9. (B). Confocal images
 547 from early group *GAD67Cre* mice showing the injection sites in the dorsal hippocampus on sagittal
 548 slices at lower magnification (top left, scale bar= 1 mm), and higher magnification (top right, scale


549 bar=100 μ m). Primo infected cells are labelled in green, the starter cell indicated by the arrow shows
550 co-expression of the helper virus (green) and rabies virus (red). Presynaptic cells, labelled only in red,
551 are localized in the entorhinal cortex (bottom left, scale bar= 1 mm) and in the medial septum (bottom
552 right, scale bar= 1 mm). Hpc= Hippocampus; Ent. Ctx= Entorhinal Cortex; MS= Medial Septum (C).
553 same as in (B) but for *Emx1Cre* mice. Scale bars from top left to bottom right: 200 μ m, 100 μ m, 500 μ m,
554 100 μ m and 500 μ m. Middle bottom image is a higher magnification of the bottom left panel. (D). Same
555 as in (A) but for the late group (P9-P13). (E). Same as in (B) but for the late group. Scale bars from top
556 left to bottom right: 1 mm, 100 μ m, 1 mm and 1mm. (F). Same as in (C) but for the late group. Scale
557 bars from top left to bottom right: 200 μ m, 100 μ m, 500 μ m, and 500 μ m.

558

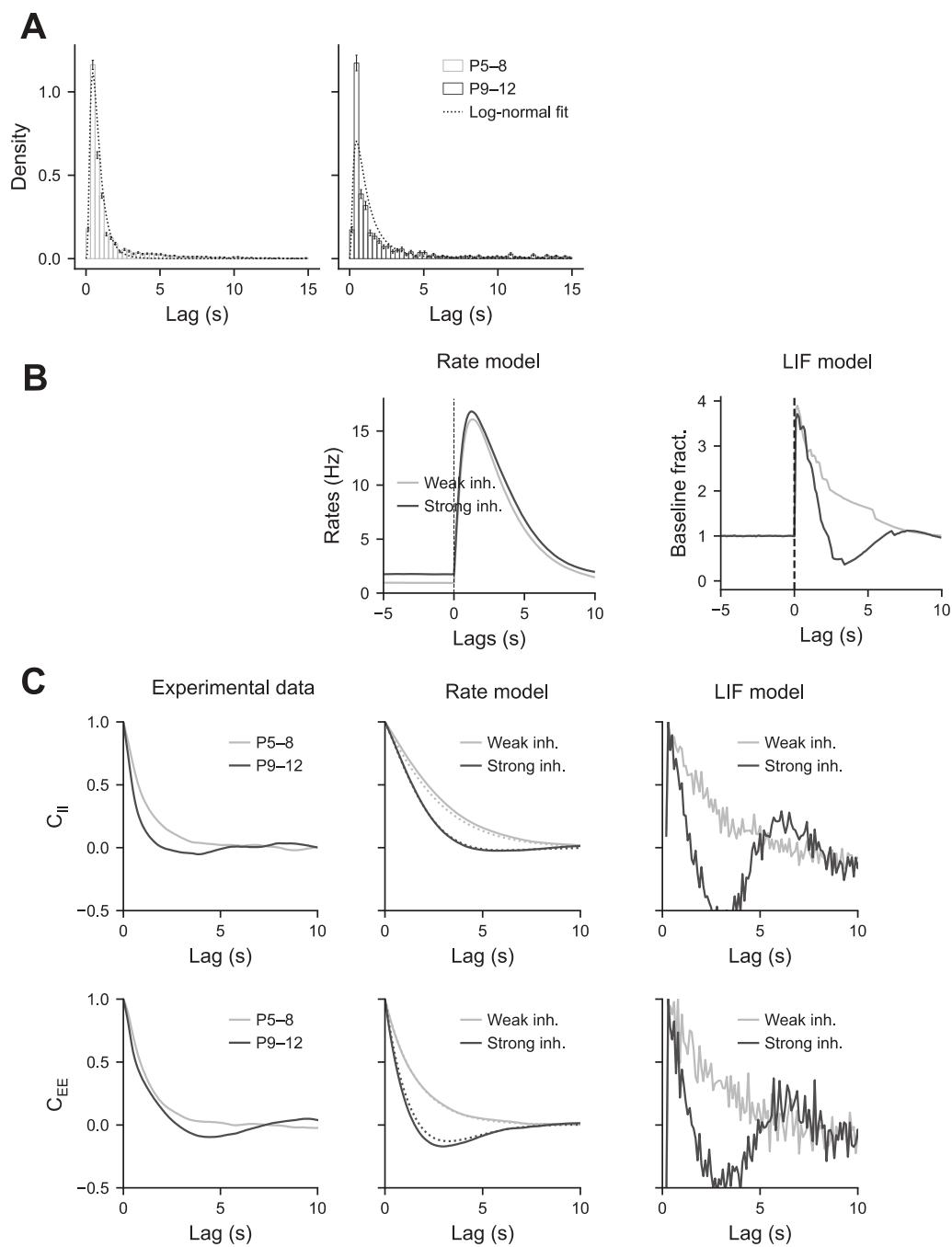
559

560

561

564 (A). Top row: confocal images taken from a 69 μ m z-stack (z-step: 1.5 μ m) of a brain slice from a
 565 *Gad67Cre* mouse pup injected with both AAV9-FLEX-tdTomato and AAV1.hSyn.GCaMP6s showing
 566 the co-infection between tdTomato and GCaMP6s in hippocampal interneurons. Bottom row: maximum
 567 intensity projections of the example z-stack showed in (A). On the maximal intensity projection from
 568 tdTomato signal white arrows indicate interneurons not expressing GCaMP6s, gray arrows indicate
 569 interneurons expressing GCaMP6s. The proportion of tdTomato cells expressing GCaMP6s is shown
 570 on the plot for each layer of the region CA1 of the hippocampus. The proportion of tdTomato cells
 571 expressing GCaMP6s *in vivo* not only take into account the co-expression of the two but represent the
 572 proportion of tdTomato cells having a GCaMP6s signal that was not classified as 'noise' explaining the
 573 relatively low proportion in comparison with the observed co-infection rate. Scale bars= 50 μ m (B).
 574 Evolution of the number of transient per minute observed in 'labelled' interneurons and 'inferred'
 575 interneurons from P5 to P12. Each dot represents the average obtained from one mouse and is color
 576 coded from light gray (P5) to black (P12). Filled dots represent 'inferred' interneurons, open dots

577 represent ‘labelled’ interneurons. (C). PMTHs combined all imaging sessions between P5 and P12
578 showing the activation after movement of both ‘labelled’ and ‘inferred’ interneurons.


579

580

581

582

583

585 **Figure 5 – figure supplement 1**

586 (A). Movement duration histograms. These histograms were fit by log-normal distributions. (B).
587 PMTHs of the interneurons predicted by the rate and LIF models. (C). Auto-correlograms of the activity
588 for the pyramidal cells and interneurons.

589

Parameter	Symbol	Value
Rate model		
Excitatory time constant	τ_E	0.7s
Inhibitory time constant	τ_I	3.0s
Connectivity matrix		
	J_{EE}	0.8
	J_{IE}	0.5
	J_{II}	-0.2
	J_{EI}^{weak}	-0.0
	J_{EI}^{strong}	-0.4
Noise amplitude	η	$0.1s^{-1/2}$
External input		
	H_E	0.5
	H_I	0.1
External drive increase	α	3.0
Twitch amplitude		
	J_E	7.0
	J_I	25.0
LIF model		
Exc. synapse time constant	τ_E	1.0s
Inh. synapse time constant	τ_I	3.0s
Membrane time constant	τ_m	20.0 ms
Threshold potential	V_{thr}	20.0 mV
Reset potential	V_{reset}	0.0mV
Connectivity		
Nb. of excitatory neurons	N_E	512
Nb. of inhibitory neurons	N_I	128
Connections from exc. neurons	K_E	32
Connections from inh. neurons	K_I	16
Connectivity matrix		
	J_{EE}	0.5
	J_{IE}	2.0
	J_{II}	-0.3
	J_{EI}^{weak}	-0.05
	J_{EI}^{strong}	-0.8
Noise amplitude	η	$1.0s^{-1/2}$
External input		
	H_E	1.0
	H_I	0.1
Twitch amplitude		
	J_E	2.0
	J_I	10.0
Twitch duration (lognormal)		
Mean parameter	μ	-0.2
Std parameter	σ	0.8

590

591 **Figure 5 – Supplementary table 1:**

592 Details of the parameters used in the rate and LIF models

593

594

595 **SUPPLEMENTARY MOVIES**

596 ***Supplementary Movies 1-3:*** Three examples of calcium imaging movies from P5 mouse pups centered
597 on the onset of a twitch. The twitch is indicated by T on the upper left corner of the movie. Imaging 2
598 times speed up.

599 ***Supplementary Movies 4-6:*** Three examples of calcium imaging movies from P12 mouse pups centered
600 on the onset of a complex movement. The complex movement is indicated by M on the upper left corner
601 of the movie. Imaging 2 times speed up.

602

603 **SOURCE DATA**

604 ***Figure 1 - Source Data 1.*** Contains 3 folders. **1A:** contains the 4 raw ‘.tiff’ files illustrating the field of
605 views and the CICADA configuration files necessary to plot the contours map and raster plots used for
606 the illustration. **1B:** contain (in an ‘.xlsx’ file) the numerical data used to plot the evolution of the
607 transient in SCE and the CICADA configuration file necessary to reproduce the analysis. **1C:** contain
608 (in an ‘.xlsx’ file) the numerical data used to plot the evolution of the transient per minute and the
609 CICADA configuration file necessary to reproduce the analysis.

610 ***Figure 2 - Source Data 1.*** Contains 4 folders. **2A:** contain (in an ‘.xlsx’ file) the numerical data used to
611 plot all the PMTHs (in Figure 2A) and the CICADA configuration file necessary to reproduce the
612 analysis. **2B:** contain (in an ‘.xlsx’ file) the numerical data used to plot Figure 2B and the CICADA
613 configuration file necessary to reproduce the analysis. **2C:** contain (in an ‘.xlsx’ file) the numerical data
614 used to plot Figure 2C and the CICADA configuration file necessary to reproduce the analysis. **2D:**
615 contain (in an ‘.xlsx’ file) the numerical data used to plot Figure 2D and the CICADA configuration
616 file necessary to reproduce the analysis.

617 ***Figure 3 - Source Data 1.*** Contains 3 folders. ‘**example_FoVs**’: contains the ‘.tiff’ images used for
618 illustration in Figure 3. ‘**example_raster_plots**’: contains the 2 CICADA configuration files necessary
619 to reproduce the raster plots used for illustration in Figure 3. ‘**psths**’: contains (in an ‘.xlsx’ file) the
620 numerical data used to plot Figure 3 PMTHs and the CICADA configuration file necessary to reproduce
621 the analysis.

622 ***Figure 4 - Source Data 1.*** Contains 4 folders. **4A:** contains ‘.tiff’ images used for illustration in Figure
623 4A. **4B:** contains the numerical data of the plot in Figure 4B. **4C:** contains the CICADA configuration
624 file necessary to plot the contour map shown in Figure 4C. **4D:** contains (in an ‘.xlsx’ file) the numerical
625 data used to plot Figure 4C PMTH and the CICADA configuration file necessary to reproduce the
626 analysis.

627 **MATERIALS AND METHODS**

628 **MICE**

629 All experiments were performed under the guidelines of the French National Ethics Committee for
630 Sciences and Health report on "Ethical Principles for Animal Experimentation" in agreement with the
631 European Community Directive 86/609/EEC (Apafis#18-185 and #30-959).

632 **EXPERIMENTAL PROCEDURES AND DATA ACQUISITION**

633 ***Viruses.*** *In vivo* calcium imaging experiments were performed using AAV1-hSyn-
634 GCaMP6s.WPRE.SV40 (pAAV.Syn.GCaMP6s.WPRE.SV40 was a gift from Douglas Kim & GENIE
635 Project (Addgene viral prep #100843-AAV1; <http://n2t.net/addgene:100843>;
636 RRID:Addgene_100843)), AAV9-FLEX-CAG-tdTomato (pAAV-FLEX-tdTomato was a gift from
637 Edward Boyden (Addgene viral prep # 28306-AAV9 ; <http://n2t.net/addgene:28306> ;
638 RRID:Addgene_28306)), AAV9-hSyn-FLEX-axon-GCaMP6s (pAAV-hSynapsin1-FLEX-axon-
639 GCaMP6s was a gift from Lin Tian (Addgene viral prep # 112010-AAV9 ;
640 <http://n2t.net/addgene:112010> ; RRID:Addgene_112010)). Retrograde tracing experiments were
641 performed using AAV1-hSyn-FLEX-nGToG-WPRE3 (Charité #BA-096) and SAD-B19-RVdG-
642 mCherry (Gift from the Conzelmann laboratory).

643 ***Intracerebroventricular injection.*** This injection protocol was adapted from already published methods
644 (Kim et al., 2014). Mouse pups were anesthetized on ice for 3 – 4 min, and 2 μ L of viral solution
645 (titration at least 1×10^{13} vg / mL) were injected in the left lateral ventricle whose coordinates were
646 estimated at the 2/5 of the imaginary line between the lambda and the eye at a depth of 0.4 mm. Correct
647 injection was visualized by the spreading of the viral-dye mixture (1/20 of fast blue). In SWISS mouse
648 pups we injected 2 μ L of AAV2.1-hSyn-GCAMP6s.WPRE.SV40, in *GAD67Cre* mouse pups we
649 injected either a mix of 1.3 μ L of AAV2.1-hSyn-GCAMP6s.WPRE.SV40 with 0.7 μ L of AAV9-FLEX-
650 CAG-tdTomato or 2 μ L of AAV9-hSyn-FLEX-axon-GCaMP6s.

651 ***Intra-hippocampal injection.*** When hippocampal viral injections were performed at P0 (AAV1-hSyn-
652 FLEX-nGToG-WPRE3), mouse pups were anesthetized by inducing hypothermia on ice and
653 maintained on a dry ice-cooled stereotaxic adaptor (Stoelting, # 51615) with a digital display console
654 (Kopf, Model 940). Dorsal hippocampus was targeted by empirically determined coordinates, based on
655 the Atlas of the Developing Mouse Brain (Paxinos et al., 2020), using transverse sinus and superior
656 sagittal sinus as reference: 0.8 mm anterior from the sinus intersection; 1.5 mm lateral from the sagittal
657 sinus; 1.1 mm depth from the skull surface. Under aseptic conditions, an incision was made in the skin,
658 the skull was exposed and gently drilled (Ball Mill, Carbide, #1/4 .019" -0.500 mm diameter-,
659 CircuitMedic). Ten nL of undiluted viral solution were injected using an oil-based pressure injection

660 system (Nanoject III, Drummond Scientific, rate of 5 nL/min). The tip of the pipette was broken to
661 achieve an opening with an internal diameter of 30-40 μm . When hippocampal viral injections were
662 performed at P5 or P9 (SAD-B19-RVdG-mCherry), pups were anesthetized using 3 % isoflurane in a
663 mix of 90 % O_2 -10 % air and maintained during the whole surgery (~0:30 h) between 1 % and 2.5 %
664 isoflurane. Body temperature was monitored and maintained at 36°C. Analgesia was controlled using
665 Buprenorphine (0.05 mg/ kg). Under aseptic conditions, an incision was made in the skin, the skull was
666 exposed, antero-posterior and medio-lateral coordinates of the dorsal hippocampus were estimated by
667 eye looking at the skull sutures. The skull was gently drilled and 10 nL of a viral solution were injected
668 (Nanoject III, Drummond Scientific, rate of 5 nL/min) at a depth of 1.25 mm below the dura.

669 **Window implant surgery.** The surgery to implant a 3-mm-large cranial window above corpus callosum
670 was adapted from previous methods (Villette et al., 2015). Anesthesia was induced using 3 % isoflurane
671 in a mix of 90 % O_2 -10 % air and maintained during the whole surgery (~1:30 h) between 1 % and 2.5 %
672 isoflurane. Body temperature was controlled and maintained at 36°C. Analgesia was controlled using
673 Buprenorphine (0.05 mg/ kg). Coordinates of the window implant were visually estimated. Then a small
674 custom-made headplate was affixed with cyanoacrylate and dental acrylic cement. The skull was
675 removed and the cortex was gently aspirated until the appearance of the external capsule/alveus. At the
676 end of the cortectomy, we sealed a 3 mm glass window diameter circular cover glass (#1 thickness,
677 Warner Instrument) attached to a 3 mm diameter large and 1.2 mm height cannula (Microgroup INC)
678 with Kwik-Sil adhesive (WPI) and fixed the edge of the glass with cyanoacrylate. We let the animal
679 recover on a heated pad for at least one hour before the imaging experiment.

680 **Imaging.** Two-photon calcium imaging experiments were performed on the day of the window implant
681 using a single beam multiphoton pulsed laser scanning system coupled to a microscope (TriM Scope II,
682 LaVision Biotech). The Ti:sapphire excitation laser (Chameleon Ultra II, Coherent) was operated at
683 920 nm. GCaMP fluorescence was isolated using a bandpass filter (510/25). Images were acquired
684 through a GaAsP PMT (H7422-40, Hamamatsu) using a 16X immersion objective (NIKON, NA 0.8).
685 Using Inspector software (LaVision Biotech), the fluorescence activity from a 400 μm x 400 μm field
686 of view was acquired at approximately 9 Hz with a 1.85 μs dwell time per pixel (2 $\mu\text{m}/\text{pixel}$). Imaging
687 fields were selected to sample the dorsal CA1 area and maximize the number of imaged neurons in the
688 *stratum pyramidale*. Piezo signal, camera exposure time, and image triggers were synchronously
689 acquired and digitized using a 1440A Digidata (Axon instrument, 50 kHz sampling) and the Axoscope
690 10 software (Axon instrument). During the imaging session, body temperature is continuously
691 controlled.

692 **Behavioral recordings.** Simultaneously with imaging experiments, mouse motor behavior was
693 monitored. In a first group of animals, motor behavior was monitored using two or three piezos attached
694 to the paws of the animal. The signal from the piezo was acquired and digitized using a 1440A Digidata

695 and the Axoscope 10 software. In a second group of animals, pups were placed and secured on an
696 elevated platform (with the limbs hanging down on each side without touching the ground nor the
697 support, as described here (Blumberg et al., 2015)). Motor behavior was monitored using two infrared
698 cameras (Basler, acA1920-155um) positioned on each side of the animal. For each camera, a square
699 signal corresponding to the exposure time of each frame from the camera was acquired and digitized
700 using a 1440A Digidata and the Axoscope 10 software.

701 **Recording of electromyogram activity in neonatal mice.** The vigilance state of neonatal mice was
702 assessed through analysis of electromyogram (EMG) signals obtained from a single insulated Tungsten
703 wire (A-M Systems 795500) implanted in the nuchal muscle. A stainless-steel wire (A-M Systems
704 786000) wire inserted on the skull surface above the cerebellum and secured in place with dental cement
705 served as the reference electrode. Signals from the electrodes were first passed through a headstage pre-
706 amplifier before being digitized at 16000 Hz (Digital Lynx SX, Neuralynx (the pre-amplifier and
707 digitizer were both from Neuralynx, as was the acquisition software (Cheetah))) and saved to a hard
708 disk. TTL signals from the imaging and camera acquisition systems were simultaneously recorded as
709 well to enable precise synchronization of EMG recordings with the camera and imaging data.

710 **In vivo extracellular electrophysiological recordings.** Multisite probes (16 channels silicon probes with
711 50 um separation distance, NeuroNexus, USA) were used to record electrophysiological activity below
712 the window implant and in the intact hippocampus. To do so, we positioned the mouse pup (that had
713 previously undergone a window implant) on the experimental setup. To head fix the animal the skull
714 surface was covered with a layer of dental acrylic except the area above the intact hippocampus. In the
715 intact (contralateral) hippocampus the electrodes were positioned using the stereotaxic coordinates of
716 approximately 1.5 mm anterior to lambda and 1.5 mm lateral from the midline. Hippocampus under the
717 window was recorded through the hole drilled in the window implant. Both multisite silicon probes
718 were positioned at the depth to record *strata oriens* (SO), *pyramide* (SP), *radiatum* (SR) and
719 *lacunosum moleculare* (SLM). After the positioning of the electrodes, the animal was left in the setup
720 for one hour to recover followed by 2 hours recordings of the neuronal activity in both hippocampi
721 simultaneously.

722 **Histological processing.** Pups were deeply anaesthetized with a mix of Domitor and Zoletil (0.9 and 60
723 mg/kg, respectively), then transcardially perfused with 4 % PFA in 0.1M PBS (PBS tablets, 18912-014,
724 Life technologies). For perisomatic innervation analysis, brains were post-fixed overnight at 4°C in 4
725 % PFA in 0.1M PBS, washed in PBS, cryo-protected in 30 % sucrose in PBS, before liquid nitrogen
726 freezing. Brains were then sectioned using a cryostat (CM 3050S, Leica) into 50 μ m thick slices
727 collected on slides. Sections were stored at -20°C until further usage. For tracing experiments, brains
728 from *GAD67Cre* and *Emx1Cre* pups, were post-fixed overnight at 4 °C in 4 % PFA in 0.1M PBS,
729 washed in PBS and sectioned using a vibratome (VT 1200 s, Leica) into sagittal 70–80 μ m thick slices.

730 Sections were stored in 0.1M PBS containing 0.05 % sodium azide until further usage.
731 Immunocytochemistry was processed as described previously (Bocchio et al., 2020) . Briefly, sections
732 were blocked with PBS-Triton (PBST) 0.3 % and 10 % normal donkey serum (NDS), and incubated
733 with a mix of up to three primary antibodies simultaneously diluted in PBST with 1 % NDS overnight
734 at room temperature with the following primary antibodies: rabbit anti-dsRed (1:1000; Clontech,
735 AB_10013483), chicken anti-GFP (1:1000, Aves Labs, GFP-1020, AB_10000240), mouse anti-
736 synaptotagmin-2 (1:100; Developmental Studies Hybridoma Bank, AB_2315626). After several
737 washes, according to the mixture of primary antibodies, the following secondary antibodies were used:
738 donkey anti-chicken Alexa 488 (1:500, SA1-72000), donkey anti-rabbit Alexa 555 (1:500,
739 ThermoFisher, A31570), donkey anti-mouse Alexa 488 (1:500, ThermoFisher, A21202), donkey anti-
740 mouse Alexa 647 (1:500, ThermoFisher, A31571). After Hoechst counterstaining, slices were mounted
741 in Fluoromount. Epifluorescence images were obtained with a Zeiss AxioImager Z2 microscope
742 coupled to a camera (Zeiss AxioCam MR3) with an HBO lamp associated with 470/40, 525/50, 545/25,
743 and 605/70 filter cubes. Confocal images were acquired with a Zeiss LSM-800 system equipped with a
744 tunable laser providing excitation range from 405 to 670 nm. For quantifying synaptotagmin-2, 11 μ m
745 thick stacks were taken (z=1 μ m, pixel size=0,156 μ m) with the confocal microscope using a plan-
746 Achromat 40x/1,4 Oil DIC objective.

747 **DATA PREPROCESSING**

748 ***Motion correction.*** Image series were motion corrected either by finding the center of mass of the
749 correlations across frames relative to a set of reference frames (Miri et al., 2011) or using the
750 NoRMCorre algorithm available in the CaImAn toolbox (Pnevmatikakis and Giovannucci, 2017) or
751 both.

752 ***Cell segmentation.*** Cell segmentation was achieved using Suite2p (Pachitariu et al., 2017). Neurons
753 with pixel masks including processes (often the case for interneurons located in the stratum oriens) were
754 replaced by soma ROI manually drawn in ImageJ and matched onto Suite2p contours map using
755 CICADA (Calcium Imaging Complete Automated Data Analysis, source code available on Cossart lab
756 GitLab group ID: 5948056). In experiments performed on *GAD67Cre* animals, tdTomato labelled
757 interneurons were manually selected in ImageJ and either matched onto Suite2p contours map or added
758 to the mask list using CICADA.

759 ***Axon segmentation.*** Axon segmentation was performed using pyAMNESIA (a Python pipeline for
760 analysing the Activity and Morphology of NEurons using Skeletonization and other Image Analysis
761 techniques, source code available on Cossart lab GitLab group ID: 5948056). pyAMNESIA proposes a
762 novel image processing method based on 3 consecutive steps: 1) extracting the axonal morphology of
763 the image (skeletonization), 2) discarding the detected morphological entities that are not functional

764 ones (branch validation), and 3) grouping together branches with highly correlated activity (branch
765 clustering). To extract the skeleton, we first perform 3D gaussian smoothing and averaging of the
766 recording, producing an image that summarizes it; on this image are then successively applied a
767 histogram equalization, a gaussian smoothing, an adaptive thresholding, and finally a Lee
768 skeletonization (Suen et al., 1994), allowing for the extraction of the skeleton mask and the
769 morphological branches. To ensure the functional unity of the segmented branches, we only kept those
770 that illuminated uniformly, where uniformity was quantified by the skewness of the pixel distribution
771 of the branch during a calcium transient (branch validation). To cluster the valid branches based on their
772 activity, we first extracted their average trace -- being the average image intensity along the branch for
773 each frame -- and then clustered the branches traces using t-SNE and HDBSCAN algorithms with
774 Spearman correlation metric (branch clustering).

775 **Cell type prediction.** Cell type prediction was done using the DeepCINAC cell type classifier (Denis et
776 al., 2020). Briefly, a neuronal network composed of a convolutional neural network (CNN) and Long
777 Short-Term Memory (LSTM) was trained using labeled interneurons, pyramidal cells and noisy cells
778 to predict the cell type using 100 frames long movie patches centered on the cell of interest. Each cell
779 was classified as interneuron, pyramidal cell or noise. Cells classified as ‘noisy cells’ were removed
780 from further analysis. ‘Labelled interneurons’ were first kept in a separate cell type category and added
781 to the interneurons list.

782 **Activity inference.** Activity inference was done using DeepCINAC classifiers (Denis et al., 2020).
783 Briefly, a classifier composed of CNN and LSTM was trained using manually-labelled movie patches
784 to predict neuronal activation based on movie visual inspection. Depending on the inferred cell type,
785 activity inference was done using either a general classifier or an interneuron-specific classifier.
786 Activity inference resulted in a (cells x frames) matrix giving the probability for a cell to be active at
787 any single frame. We used a 0.5 threshold in this probability matrix to obtain a binary activity matrix
788 considering a neuron as active from the onset to the peak of a calcium transient.

789 **Behavior.** Piezo signals were manually analyzed in a custom-made graphical user interface (Python
790 Tkinter) to label the onset and offset of ‘twitches’, ‘complex movements’ and ‘unclassified movements’.
791 Twitches were defined as brief movements (a few hundred milliseconds-long) occurring within periods
792 of rest and detected as rapid deflections of the piezo signal. ‘Complex movements’ were defined as
793 periods of movement lasting at least 2 seconds; ‘unclassified movements’ were short movements that
794 differed from twitches and complex movements. Analysis of video tracking was done using CICADA
795 and behavior was manually annotated in the BADASS (Behavioral Analysis Data And Some Surprises)
796 GUI.

797 **Neurodata without border (NWB: N) embedding.** For each imaging session, imaging data, behavioral
798 data, cell contours, cell type prediction, calcium traces and neuronal activity inference were combined
799 into a single NWB: N file (following the guidelines provided on <https://www.nwb.org/>). Our NWB: N
800 data set is accessible on DANDI archive (<https://gui.dandiarchive.org/#/>) - ref DANDI:000219.

801 **MODELING**

802 **Network implementation.** We constructed a simple rate model and subsequently a more realistic spiking
803 network in order to test our hypothesis that an increase in perisomatic inhibition could explain the switch
804 in network dynamics between the first and second postnatal week. Both models consisted of one
805 excitatory and one inhibitory population with recurrent interactions (**Figure 5A**, supplementary
806 methods). The development of perisomatic innervation was simulated by increasing the strength from
807 inhibitory to excitatory cells (J_{EI}). The external input to the model was composed of a constant and a
808 white noise term. To estimate the responses to twitch-like inputs, an additional feedforward input
809 composed of short pulses was fed to the network. In the rate model, the rates represented the population
810 averaged activities. The spiking network was constructed with Leaky Integrate and Fire (LIF) neurons.
811 The network connectivity was sparse and each neuron received inputs from randomly selected neurons.
812 Presynaptic spikes resulted in exponentially decaying postsynaptic currents. All codes used for the
813 modelling are available at <https://gitlab.com/rouault-team-public/somatic-inhibition/>

814 **DATA ANALYSIS**

815 **Sample-size estimation.** This study being mainly exploratory in the sense that the evolution of
816 population activity in the CA1 region of the hippocampus using large scale imaging has not been
817 described before, we have not been able to use explicit power calculation based on an expected size
818 effect.

819 **Histological quantifications.** Confocal images of synaptotagmin-2 immunostaining were analyzed
820 using RINGO (RINGs Observation), a custom-made macro in Fiji. We first performed a max-intensity
821 projection of the Z-stack images of the top 6 μm from the slice surface, then images were cropped to
822 restrict the analysis to the pyramidal cells layer. Obtained images were denoised using Fiji “remove
823 background” option and then by subtracting the mean intensity of the pixels within a manually drawn
824 ROI in the background area (typically the cell body of a pyramidal neuron). Denoised images were then
825 binarized using a max-entropy thresholding (Fiji option). Finally, particles with size between 0.4 μm^2
826 and 4 μm^2 were automatically detected using the Fiji “Analyse particle” option. We then computed the
827 proportion of the pyramidal cell layer (i.e., surface of the cropped region) covered by positive
828 synaptotagmin-2 labelling.

829 ***In vivo electrophysiology.*** The neuronal activity recorded from both hippocampi in vivo using a 64-
830 channel amplifier (DIPSI, France) was analyzed post-hoc. Firstly, data was downsampled to 1 kHz to
831 save disc space. The local field potential (LFP) was band-passed (2-100 Hz) using the wavelet filter
832 (Morlet, mother wavelet of order 6) and the common reference was subtracted to exclude the bias
833 produced by volume conducted fluctuations of LFP. Sharp Wave events (SWs) were detected using a
834 threshold approach. Firstly, LFP was bandpassed (2-45 Hz) and the difference between lfp recorded in
835 the strati oriens,pyramidal and radiatum was calculated. Events were considered as SWs if: i) LFP
836 reversion was observed in the stratum pyramidale, ii) their peak amplitude in the resulting trace
837 exceeded the threshold of 4 standard deviations calculated over the entire trace (the threshold
838 corresponds to p values below 0.01). The occurrence rate of SW was calculated over the entire recording
839 and normalized to 1 min. SW co-occurrence was also calculated by cross correlating the SW timestamps
840 from ipsilateral and contralateral hippocampi using a bin size of 10 milliseconds. Spectral analysis was
841 carried out using the Chronux toolbox (Chronux, toolbox, 2010). Spectral power was estimated using
842 direct multi-taper estimators (3 time-bandwidth product and 5 tapers).

843 ***Statistics for in vivo electrophysiology.*** Group comparisons were done using non parametric Wilcoxon
844 rank sum test for equal medians, p-value of 0.05 was considered significant. Variability of the estimates
845 was visualized as shaded bands of standard deviation computed using jackknife.

846 ***Vigilance state determination in neonatal mice.*** All analysis of EMG data was completed using custom
847 scripts in MATLAB. For each experiment, the raw EMG data was first downsampled to 1000 Hz and
848 subsequently high-pass filtered at 300 Hz and rectified. The processed data was then plotted to allow
849 for manual inspection. Consistent with prior reports (Mohns and Blumberg, 2010), the data was
850 primarily composed of alternating periods of high EMG tone (referred to as wakefulness) associated
851 with ‘complex’ movements as well as periods of low EMG tone associated with a general behavioral
852 quiescence and the presence of periodic brief myoclonic twitches (referred to as ‘active sleep’ due to
853 the frequent observation of muscle twitches (Mohns and Blumberg, 2010). For vigilance state
854 determination, we therefore utilized a protocol similar to that described previously (Rio-Bermudez et
855 al., 2015). For both the ‘high’ and ‘low’ EMG tone conditions, 5 periods, each 1 s in duration, were
856 first sampled from locations spread out over the entire recording length. Data from the samples were
857 then pooled for each condition and the average value of the rectified signal was determined. Next, the
858 midpoint between the average rectified signal values calculated for the ‘high’ and ‘low’ EMG tone
859 conditions was determined for subsequent use as a threshold to separate periods of non-wakefulness
860 (below the midpoint threshold value) from periods of wakefulness (above the midpoint threshold value),
861 while the quarter point between these two values was calculated to further separate periods of non-
862 wakefulness into active sleep (below the quarter point threshold value) or a sleep-wake transitory state
863 (above the quarter point threshold value but below the midpoint threshold value). Once these thresholds

864 were determined, the entire length of data was divided into 1 s non-overlapping bins and the average
865 filtered rectified EMG signal was determined for each. A hypnogram was then created by automatically
866 applying the threshold-derived criteria to the binned averaged data. Data bins scored as being active
867 sleep were further analyzed to determine the presence of muscle twitches; this was accomplished by
868 automatically identifying those bins whose filtered rectified average value exceeded 5 x the mean value
869 determined from the low EMG tone representative samples. As a final step, the hypnogram and filtered
870 rectified EMG signal data were plotted and manually inspected to ensure the accuracy of results. The
871 hypnogram was then incorporated in the final NWB: N file to serve in the definition of the epochs of
872 wakefulness and active sleep.

873 **Analysis of calcium imaging data.** Analysis was performed using CICADA, a custom-made python
874 toolbox allowing for the automatic analysis of calcium imaging data in the NWB format (Cossart lab
875 Gitlab, group ID 5948056, Project ID: 14048984). CICADA can be installed following the installation
876 guidelines presented at <https://gitlab.com/cossartlab/cicada>. Each figure panel resulting from an
877 analysis performed in CICADA is associated with a configuration file provided as supplemental data.
878 These configuration files can be loaded in CICADA with the option ‘Load a set of parameters’ allowing
879 for the replication of the analysis.

880 **Calcium transient frequency analysis.** Analysis launched from CICADA ‘Transient’s frequency’
881 analysis. The transient frequency for each cell was computed using the count of calcium transient onsets
882 divided by the duration of the recording and was then averaged across all cells imaged in one given
883 mouse pup across one or more imaging sessions.

884 **Synchronous Calcium Event (SCE) detection.** Analysis launched from CICADA ‘SCE description’
885 analysis. SCEs were defined as the imaging frames within which the number of co-active cells exceeded
886 the chance level as estimated using a reshuffling method. Briefly, an independent circular shift was
887 applied to each cell to obtain 300 surrogate raster plots. We computed the 99th percentile of the
888 distribution of the number of co-active cells from these surrogates and used this value as a threshold to
889 define the minimal number of co-active cells in a SCE. Peak of synchrony above this threshold separated
890 by at least 5 imaging frames (500 ms) were defined as SCE frames. To compute the percentage of
891 transients within SCEs we counted, for each cell, the number of its calcium transients (from onset to
892 peak) crossing SCE frames and divided it by its total number of calcium transients. We averaged the
893 obtained values over all the cells imaged per animal.

894 **Peri-Movement-Time-Histograms (PMTH).** Analysis launched from CICADA ‘Population level
895 PSTH’ analysis. A 20-second-long time-window centered on movement onset was used. For each
896 movement within an imaging session, the number of cells activated or the sum of all cell’s fluorescence
897 was calculated for each time bin in that 20-second-long window. We obtain as many values as

898 movements per time bin; for each individual imaging session the 25th, the median and 75th percentiles
899 of the distributions of these values per time bin are computed and divided by the number of imaged
900 cells. To display the percentage of active cells at a given time bin, these values were multiplied by 100.
901 To combine imaging sessions in an age group (*i.e.*, P5, 6, 7, 8, 9, 10, 11, 12) all the median PMTHs
902 from individual imaging sessions belonging to the given group were stacked and we represented at each
903 time bin the 25th percentile, the median and the 75th percentile value of these median PMTHs. To
904 evaluate chance level around movement onsets, 500 surrogate raster plots per imaging session were
905 computed, and the above procedure was used to obtain chance level in each imaging session and then
906 grouped. PMTH obtained from fluorescence signals were built from DF/F calcium traces.

907 **Movement-related inhibition.** Analysis launched from CICADA ‘Activity ratio around epochs’
908 analysis. A 4 seconds long window centered on the onset of movements was used. The total number of
909 cells activated during this time period was calculated. If less than 40 % of these cells were activated
910 within 2 seconds following movement onset, the movement was classified as an ‘inhibiting’ movement.
911 This procedure was applied to all detected movements to obtain for each mouse pup the proportion of
912 ‘inhibiting’ movements.

913 **Movement- and immobility-associated cells.** Analysis launched from CICADA ‘Epoch associated
914 cells’ analysis. The number of transients per cell occurring during movement or immobility was
915 calculated. These transient onsets were then circularly shifted 100 times and the same calculation was
916 performed on each roll. We used the 99th percentile of this distribution as a threshold above which the
917 cell was considered as associated with movement or immobility. Finally, the proportion of cells
918 associated with rest or immobility was calculated for each imaged mouse.

919 **Statistics.** Statistical tests were performed using GraphPad (Prism).

920

921

922

923

924

925

926

927

Supplementary methods

Perisomatic inhibition onto pyramidal neurons in CA1 is established during early stages of development. Firstly, we investigated the effect of perisomatic inhibition on response to twitch-like inputs in a rate model. It allowed us to analytically characterise and compare the changes in the dynamics of the model under the conditions of weak and strong inhibition. Secondly, we show through numerical simulations that similar changes can be observed in a more realistic spiking network model. We show that increasing the strength of perisomatic inhibition in our models can account for the experimentally observed decrease of responses to twitch like feedforward inputs.

Rate model

The rate model consists two populations (Excitatory and Inhibitory) with interaction strengths J_{ab} , ($a, b \in \{E, I\}$, $J_{ab} > 0$). They receive feedforward input of strengths $J_{a0} > 0$, from an external excitatory population with average firing rate r_0 . The rates (r_E, r_I) represent the population averaged activities. The time scale of their evolution is determined by τ_E and τ_I and follow,

$$\begin{bmatrix} \dot{r}_E \\ \dot{r}_I \end{bmatrix} = \begin{bmatrix} -\frac{r_E}{\tau_E} \\ -\frac{r_I}{\tau_I} \end{bmatrix} + f \left(\begin{bmatrix} J_{EE} & -J_{EI} \\ J_{IE} & -J_{II} \end{bmatrix} \begin{bmatrix} r_E \\ r_I \end{bmatrix} + \begin{bmatrix} J_{E0} \\ J_{I0} \end{bmatrix} r_0 \right)$$

Where, $f(x)$ is the neuronal transfer function. We choose it to be threshold linear. i.e., $f(x) = [x]_+$. For positive x , the dynamics in matrix notation can be written as,

$$\dot{r} = (J - I/\tau)r + r_0 = Mr + r_0$$

The fixed point of this system is given by,

$$r^* = -M^{-1}r_0$$

Where,

$$M^{-1} = \frac{1}{\det(M)} \begin{bmatrix} -J_{II} - \frac{1}{\tau_I} & J_{EI} \\ -J_{IE} & J_{EE} - \frac{1}{\tau_E} \end{bmatrix}$$

$$\det(M) = J_{EI}J_{IE} - J_{EE}J_{II} + \frac{J_{II}}{\tau_E} - \frac{J_{EE}}{\tau_I} + \frac{1}{\tau_E\tau_I}$$

Linear stability

The fixed point r^* is stable to small perturbations if the real part of all the eigenvalues of the Jacobian matrix $M(r^*)$ are negative. The eigenvalues λ_{\pm} can be expressed as,

$$\lambda_{\pm} = \frac{1}{2} \left(\text{Tr}(M) \pm \sqrt{\text{Tr}(M)^2 - 4 \det(M)} \right)$$

where,

$$\text{Tr}(M) = J_{EE} - J_{II} - \frac{1}{\tau_E} - \frac{1}{\tau_I}$$

Equivalently, the system is always stable if $\det(M) > 0$ and $\text{Tr}(M) < 0$.

Requiring, $r_e^* > 0$ and $r_i^* > 0$ gives the conditions,

$$\begin{aligned} (J_{II} + \frac{1}{\tau_I})J_{E0} - J_{EI}J_{I0} > 0 &\Rightarrow \frac{J_{E0}}{J_{I0}} > \frac{J_{EI}}{J_{II} + 1/\tau_I} \\ J_{IE}J_{E0} - (J_{EE} - \frac{1}{\tau_E})J_{I0} > 0 &\Rightarrow \frac{J_{E0}}{J_{I0}} > \frac{J_{EE} - 1/\tau_E}{J_{IE}} \end{aligned}$$

$\det(M) > 0$ gives,

$$-(J_{EE} - \frac{1}{\tau_E})(J_{II} + \frac{1}{\tau_I}) + J_{EI}J_{IE} > 0 \Rightarrow \frac{J_{EI}}{J_{II} + 1/\tau_I} > \frac{J_{EE} - 1/\tau_E}{J_{IE}}$$

Combining the inequalities above gives the constraints for stable non-zero rates,

$$\frac{J_{E0}}{J_{I0}} > \frac{J_{EI}}{J_{II} + 1/\tau_I} > \frac{J_{EE} - 1/\tau_E}{J_{IE}}$$

When the solutions are stable, small perturbations will decay to zero. Twitches can be considered as perturbations around the fixed point. The transient response to such short impulses can be expressed as $r(t) = C_1 \exp(\lambda_+) + C_2 \exp(\lambda_2)$.

For a system with external white noise, $\xi(t)$ as input we have,

$$\dot{r} = Mr + r_0 + \sqrt{\Sigma} \xi(t)$$

$$\langle \xi(t) \rangle_t = 0, \quad \langle \xi(t) \xi(s) \rangle_t = \delta(t - s)$$

we set the off diagonal elements to zero, i.e, $\Sigma_{ij} = 0$ if $i \neq j$.

Let $\delta r(t) = r(t) - r^*$, so the linearized system is,

$$\dot{\delta r} = M\delta r + \sqrt{\Sigma} \xi(t)dt$$

This can be seen as a 2D Ornstein - Ulenbeck process defined as:

$dx(t) = -Ax(t)dt + B dW(t)$, which is well documented (Gardiner, 1985, p 109-111) and we can immediately write down the expression for the covariance matrix $C(\tau)$. With $(A = -M)$ we have,

$$C(\tau) = \langle \delta r(t)\delta r^T(t + \tau) \rangle = \exp[-A\tau] \sigma$$

$$\sigma = \frac{\det \mathbf{A} \Sigma + [\mathbf{A} - \text{Tr}(\mathbf{A})\mathbf{1}] \Sigma [\mathbf{A} - \text{Tr}(\mathbf{A})\mathbf{1}]^T}{2\text{Tr}(\mathbf{A}) \det(\mathbf{A})}$$

Spiking model: LIF network

Excitatory and inhibitory neurons are modelled as Leaky Integrate and Fire (LIF) neurons. The LIF network consists N_E excitatory neurons and N_I inhibitory neurons with exponentially decaying postsynaptic currents. Each neuron receives exactly K_E excitatory and K_I inhibitory inputs from randomly selected neurons in the network. And we assume that the network is sparse i.e. $K \ll N$.

The evolution of sub-threshold membrane voltage V_i^a of neuron i in population $a \in \{E, I\}$, is given by,

$$\frac{dV_i^a}{dt} = -\frac{V_i^a}{\tau_m} + I_{syn} + I_{ext}, \quad I_{syn} = \sum_{b,j} J_{ij}^{ab} S_j^{ab}$$

$$\frac{dS_j^{ab}}{dt} = -\frac{S_j^{ab}}{\tau_{syn}} + \sum_{t_j^b} \delta(t - t_j^b)$$

When the membrane voltage reaches the threshold, $V_{threshold}$, it is reset to V_{reset} . τ_{syn} is the synaptic time constant, t_j^b is the spike time of neuron (i, b) . The coupling strengths are $J_{ij}^{ab} = J_{ab}$, if there is a connection from neuron (j, b) to (i, a) and zero otherwise. The contribution of external inputs is represented by I_{ext} . I_{syn} represents the total synaptic currents due to spikes. Spikes are modelled as delta functions.

If a neuron (j, b) emits a spike at time t_j^b and projects to a post-synaptic neuron (i, a) , this will result in a change of the membrane voltage V_i^a of the post-synaptic neuron by an

amount J_{ab} in a time τ_{syn} . The membrane voltage decays exponentially to its resting potential in a time τ_m .

Simulations and data analysis

The network simulations were conducted using custom code written in Python and C++ and all the analysis was done in Python. We use the forward Euler method to solve the set of coupled ode's with a time step of 0.1ms.

Covariance

Given a stationary stochastic process X_t with mean $\mu_X = E[X_t]$, the autocovariance is given by,

$$C_{XX}(\tau) = E[(X_t - \mu_X)(X_{t-\tau} - \mu_X)]$$

The covariance of X_t with another process Y_t is defined as,

$$C_{XY}(\tau) = E[(X_t - \mu_X)(Y_{t-\tau} - \mu_Y)]$$

Bibliography

Gardiner, C. W. (1985). *Handbook of stochastic methods* (Vol. 3). Berlin: springer.

<https://doi.org/10.1080/713821616>

928 **ACKNOWLEDGMENTS:**

929 This work was supported by the European Research Council under the European Union's, Horizon 2020
930 research and innovation program Grant#646925, the Fondation Bettencourt Schueller, and a NWB seed
931 grant # R20046AA. The project leading to this publication has received funding from the «
932 Investissements d'Avenir » French Government program managed by the French National Research
933 Agency (ANR-16-CONV-0001) and from Excellence Initiative of Aix-Marseille University -
934 A*MIDEX. R.F.D. was funded by the “Ministere de l'Enseignement Supérieur, de la Recherche et de
935 l'Innovation” and by the Fondation pour la Recherche Médicale Grant FDT202106012824. E.L. was
936 funded by the “Ministere de l'Enseignement Supérieur, de la Recherche et de l'Innovation” and by
937 A*Midex foundation and the French National Research Agency funded by the French Government «
938 Investissements d'Avenir » program (NeuroSchool, nEURO*AMU, ANR-17-EURE-0029 grant). J.D.
939 was supported by the Fondation pour la Recherche Médicale Grant FDM20170638339. M.P was
940 supported by the Fondation pour la Recherche Médicale Grant ARF20160936186. T. D and T. S. were
941 funded by « Investissements d'Avenir » French Government program managed by the French National
942 Research Agency (ANR-16-CONV-0001) and from Excellence Initiative of Aix-Marseille University
943 - A*MIDEX. We would like to thank Dr. Pierre-Pascal Lenck-Santini for providing valuable feedback
944 on our research project. We also would like to thank Marion Sicre for her help with *GAD67Cre*
945 experiments. We are grateful to Pr. Hannah Monyer for providing the *GAD67Cre* mouse lines. We
946 thank the Centre de Calcul Intensif d'Aix-Marseille for granting access to its high-performance
947 computing resources. The rabies virus was a gift from Conzelman laboratory.

948 **AUTHORS CONTRIBUTION:**

949 RFD, MAP, and R.C designed research. RFD and EL performed stereotaxic injections in viral
950 injections, RFD performed the surgery for window implant, RFD and MAP performed two photon
951 calcium imaging experiments. CL, MK, AB, RFD and MAP performed histology experiments. MM,
952 DS, RFD and MAP performed electrophysiological recordings, MM and DS analyzed these recordings.
953 RFD and RB performed electromyogram recordings coupled with in vivo imaging and RB analyzed the
954 EMG data. RFD, JD, MAP, and R.C designed the analysis pipeline. RFD and JD, wrote DeepCINAC,
955 CICADA and RINGO algorithms. TS and TD wrote PyAmnesia. SRB and HR designed and simulated
956 the network models. RFD, MAP and RC wrote the paper.

957 **REFERENCE LIST:**

958 Anastasiades PG, Butt SJB. 2012. A Role for Silent Synapses in the Development of the
959 Pathway from Layer 2/3 to 5 Pyramidal Cells in the Neocortex. *Journal of Neuroscience*
960 32:13085–13099. doi:10.1523/jneurosci.1262-12.2012
961 Ben-Ari Y. 2002. Excitatory actions of gaba during development: the nature of the nurture.

962 *Nature Reviews Neuroscience* **3**:728–739. doi:10.1038/nrn920

963 Bezaire MJ, Soltesz I. 2013. Quantitative assessment of CA1 local circuits: Knowledge base
964 for interneuron-pyramidal cell connectivity. *Hippocampus* **23**:751–785.
965 doi:10.1002/hipo.22141

966 Blumberg MS, Sokoloff G, Tiriac A, Rio-Bermudez CD. 2015. A valuable and promising
967 method for recording brain activity in behaving newborn rodents. *Dev Psychobiol* **57**:506–
968 517. doi:10.1002/dev.21305

969 Bocchio M, Gouny C, Angulo-Garcia D, Toulat T, Tressard T, Quiroli E, Baude A, Cossart R.
970 2020. Hippocampal hub neurons maintain distinct connectivity throughout their lifetime.
971 *Nature Communications* **11**:1–19. doi:10.1038/s41467-020-18432-6

972 Buhl DL, Buzsaki G. 2005. Developmental emergence of hippocampal fast-field “ripple”
973 oscillations in the behaving rat pups. *Neuroscience* **134**:1423–1430.
974 doi:10.1016/j.neuroscience.2005.05.030

975 Buzsáki G. 2015. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic
976 memory and planning. *Hippocampus* **25**:1073–1188. doi:10.1002/hipo.22488

977 Buzsáki G, Moser EI. 2013. Memory, navigation and theta rhythm in the hippocampal-
978 entorhinal system. *Nature Neuroscience* **16**:130–138. doi:10.1038/nn.3304

979 Caviness VS. 1973. Time of neuron origin in the hippocampus and dentate gyrus of normal
980 and reeler mutant mice: an autoradiographic analysis. *The Journal of Comparative
981 Neurology* **151**:113–120. doi:10.1002/cne.901510203

982 Cossart R, Khazipov R. 2021a. How development sculpts hippocampal circuits and function.
983 *Physiol Rev.* doi:10.1152/physrev.00044.2020

984 Cossart R, Khazipov R. 2021b. How development sculpts hippocampal circuits and function.
985 *Physiological Reviews (accepted)*.

986 Danglot L, Triller A, Marty S. 2006. The development of hippocampal interneurons in
987 rodents. *Hippocampus* **16**:1032–1060. doi:10.1002/hipo.20225

988 Denis J, Dard RF, Quiroli E, Cossart R, Picardo MA. 2020. DeepCINAC: A Deep-Learning-
989 Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie
990 Visualization. *Eneuro* **7**:ENEURO.0038-20.2020. doi:10.1523/eneuro.0038-20.2020

991 Doischer D, Hosp JA, Yanagawa Y, Obata K, Jonas P, Vida I, Bartos M. 2008. Postnatal
992 Differentiation of Basket Cells from Slow to Fast Signaling Devices. *Journal of Neuroscience*
993 **28**:12956–12968. doi:10.1523/jneurosci.2890-08.2008

994 Dominguez S, Ma L, Yu H, Pouchelon G, Mayer C, Spyropoulos GD, Cea C, Buzsáki G,
995 Fishell G, Khodagholy D, Gelinas JN. 2021. A transient postnatal quiescent period precedes
996 emergence of mature cortical dynamics 1–34. doi:10.1101/2021.02.17.430487

997 Donato F, Jacobsen RI, Moser M-B, Moser EI. 2017. Stellate cells drive maturation of the
998 entorhinal-hippocampal circuit. *Science* eaai8178-17. doi:10.1126/science.aai8178

999 Dooley JC, Glanz RM, Sokoloff G, Blumberg MS. 2020. Self-Generated Whisker Movements
1000 Drive State-Dependent Sensory Input to Developing Barrel Cortex. *Curr Biol* **30**:2404–
1001 2410.e4. doi:10.1016/j.cub.2020.04.045

1002 Durand GM, Kovalchuk Y, Konnerth A. 1996. Long-term potentiation and functional synapse
1003 induction in developing hippocampus. *Nature* **381**:71–75. doi:10.1038/381071a0

1004 Farooq U, Dragoi G. 2019. Emergence of preconfigured and plastic time-compressed
1005 sequences in early postnatal development. *Science* **363**:168–173.
1006 doi:10.1126/science.aav0502

1007 Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz
1008 MK, Fuhrmann M, Remy S. 2015. Locomotion, Theta Oscillations, and the Speed-Correlated
1009 Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit.

1010 Neuron **86**:1253–1264. doi:10.1016/j.neuron.2015.05.001
1011 Gogolla N, Takesian AE, Feng G, Fagiolini M, Hensch TK. 2014. Sensory Integration in
1012 Mouse Insular Cortex Reflects GABA Circuit Maturation. *Neuron* **83**:894–905.
1013 doi:10.1016/j.neuron.2014.06.033
1014 Golshani P, Goncalves JT, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C. 2009.
1015 Internally Mediated Developmental Desynchronization of Neocortical Network Activity.
1016 *Journal of Neuroscience* 29:10890–10899. doi:10.1523/jneurosci.2012-09.2009
1017 Graf J, Zhang C, Marguet SL, Herrmann T, Flossmann T, Hirsch R, Rahmati V, Guenther M,
1018 Frahm C, Urbach A, Neves RM, Witte OW, Kiebel SJ, Isbrandt D, Hübner CA, Holthoff K,
1019 Kirmse K. 2021. A limited role of NKCC1 in telencephalic glutamatergic neurons for
1020 developing hippocampal network dynamics and behavior. *Proc National Acad Sci*
1021 **118**:e2014784118. doi:10.1073/pnas.2014784118
1022 Gramsbergen A, Schwartze P, Prechtl HFR. 1970. The postnatal development of behavioral
1023 states in the rat. *Dev Psychobiol* 3:267–280. doi:10.1002/dev.420030407
1024 Hopfield J, Tank D. 2005. Computing with neural circuits: a model. *Science* **233**:625–633.
1025 doi:10.1126/science.3755256
1026 Hopfield JJ. 1982. Neural networks and physical systems with emergent collective
1027 computational abilities. *Proc National Acad Sci* **79**:2554–2558. doi:10.1073/pnas.79.8.2554
1028 Horii-Hayashi N, Sasagawa T, Matsunaga W, Nishi M. 2015. Development and Structural
1029 Variety of the Chondroitin Sulfate Proteoglycans-Contained Extracellular Matrix in the Mouse
1030 Brain. *Neural Plast* **2015**:1–12. doi:10.1155/2015/256389
1031 Inácio AR, Nasretdinov A, Lebedeva J, Khazipov R. 2016. Sensory feedback synchronizes
1032 motor and sensory neuronal networks in the neonatal rat spinal cord. *Nature*
1033 *Communications* 7:13060. doi:10.1038/ncomms13060
1034 Jiang M, Oliva AA, Lam T, Swann JW. 2001. GABAergic neurons that pioneer hippocampal
1035 area CA1 of the mouse: morphologic features and multiple fates. *The Journal of*
1036 *Comparative Neurology* **439**:176–192. doi:10.1002/cne.1341
1037 Jouvet-Mounier D, Astic L. 1968. [Study of the course of sleep in the young rat during the 1st
1038 postnatal month]. *Comptes Rendus Des Séances De La Société De Biologie Et De Ses Fil*
1039 **162**:119–23.
1040 Jurgensen S, Castillo PE. 2015. Selective Dysregulation of Hippocampal Inhibition in the
1041 Mouse Lacking Autism Candidate Gene CNTNAP2. *J Neurosci* **35**:14681–14687.
1042 doi:10.1523/jneurosci.1666-15.2015
1043 Karlsson KAE, Mohns EJ, Prisco GV di, Blumberg MS. 2006. On the co-occurrence of
1044 startles and hippocampal sharp waves in newborn rats. *Hippocampus* **16**:959–965.
1045 doi:10.1002/hipo.20224
1046 Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL. 2004. Developmental
1047 changes in GABAergic actions and seizure susceptibility in the rat hippocampus. *European*
1048 *Journal of Neuroscience* **19**:590–600. doi:10.1111/j.0953-816x.2003.03152.x
1049 Lee S-H, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A,
1050 Soltesz I. 2014. Parvalbumin-Positive Basket Cells Differentiate among Hippocampal
1051 Pyramidal Cells. *Neuron* **82**:1129–1144. doi:10.1016/j.neuron.2014.03.034
1052 Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G. 2002. Correlated
1053 bursts of activity in the neonatal hippocampus in vivo. *Science* **296**:2049–2052.
1054 doi:10.1126/science.1071111
1055 Lewis DA, Hashimoto T, Volk DW. 2005. Cortical inhibitory neurons and schizophrenia.
1056 *Nature Reviews Neuroscience* **6**:312–324. doi:10.1038/nrn1648
1057 Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim S-A, Kim E, Liu C, Wickersham IR,

1058 Pachinis V, Hattar S, Song J, Brown SP, Blackshaw S. 2017. Lhx6-positive GABA-releasing
1059 neurons of the zona incerta promote sleep. *Nature Publishing Group* **548**:1–24.
1060 doi:10.1038/nature23663

1061 Marty S, Wehrlé R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C. 2002. Postnatal maturation
1062 of Na⁺, K⁺, 2Cl⁻ cotransporter expression and inhibitory synaptogenesis in the rat
1063 hippocampus: an immunocytochemical analysis. *European Journal of Neuroscience* **15**:233–
1064 245. doi:10.1046/j.0953-816x.2001.01854.x

1065 Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R. 2006. Rapid Cortical
1066 Oscillations and Early Motor Activity in Premature Human Neonate. *Cerebral Cortex*
1067 **17**:1582–1594. doi:10.1093/cercor/bhl069

1068 Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW. 2011. Spatial gradients and
1069 multidimensional dynamics in a neural integrator circuit. *Nat Neurosci* **14**:1150–1159.
1070 doi:10.1038/nn.2888

1071 Mòdol L, Bollmann Y, Tressard T, Baude A, Che A, Duan ZRS, Babij R, García NVDM,
1072 Cossart R. 2019. Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel
1073 Cortex. *Neuron* **1**–18. doi:10.1016/j.neuron.2019.10.007

1074 Mohns EJ, Blumberg MS. 2010. Neocortical Activation of the Hippocampus during Sleep in
1075 Infant Rats. *Journal of Neuroscience* **30**:3438–3449. doi:10.1523/jneurosci.4832-09.2010

1076 Mohns EJ, Blumberg MS. 2008. Synchronous Bursts of Neuronal Activity in the Developing
1077 Hippocampus: Modulation by Active Sleep and Association with Emerging Gamma and
1078 Theta Rhythms. *Journal of Neuroscience* **28**:10134–10144. doi:10.1523/jneurosci.1967-
1079 08.2008

1080 Morozov YM, Freund TF. 2003. Postnatal development and migration of cholecystokinin-
1081 immunoreactive interneurons in rat hippocampus. *Neuroscience* **120**:923–939.
1082 doi:10.1016/s0306-4522(03)00409-3

1083 Muessig L, Lasek M, Varsavsky I, Cacucci F, Wills TJ. 2019. Coordinated Emergence of
1084 Hippocampal Replay and Theta Sequences during Post-natal Development. *Current Biology*
1085 **29**:834-840.e4. doi:10.1016/j.cub.2019.01.005

1086 Murata Y, Colonnese MT. 2020. GABAergic interneurons excite neonatal hippocampus in
1087 vivo. *Science advances* **6**:eaba1430. doi:10.1126/sciadv.aba1430

1088 Murphy KM, Beston BR, Boley PM, Jones DG. 2005. Development of human visual cortex: A
1089 balance between excitatory and inhibitory plasticity mechanisms. *Dev Psychobiol* **46**:209–
1090 221. doi:10.1002/dev.20053

1091 Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD. 2016. Peripheral
1092 Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse
1093 Models of ASDs. *Cell* **166**:299–313. doi:10.1016/j.cell.2016.05.033

1094 Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H, Carandini M, Harris
1095 KD. 2017. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. *Biorxiv*
1096 061507. doi:10.1101/061507

1097 Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH, Xu
1098 D, McQuillen PS, Garcia-Verdugo J-M, Huang EJ, Alvarez-Buylla A. 2016. Extensive
1099 migration of young neurons into the infant human frontal lobe. *Science* **354**:aaf7073.
1100 doi:10.1126/science.aaf7073

1101 Paxinos, Halliday, Watson, Kassem. 2020. *Atlas of the Developing Mouse Brain*.

1102 Pnevmatikakis EA, Giovannucci A. 2017. NoRMCorre: An online algorithm for piecewise
1103 rigid motion correction of calcium imaging data. *Journal of Neuroscience Methods* **291**:83–
1104 94. doi:10.1016/j.jneumeth.2017.07.031

1105 Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK. 2020.

1106 Critical period regulation across multiple timescales. *Proc National Acad Sci* **117**:23242–
1107 23251. doi:10.1073/pnas.1820836117

1108 Rio-Bermudez CD, Blumberg MS. 2021. Sleep as a window on the sensorimotor foundations
1109 of the developing hippocampus. *Hippocampus*. doi:10.1002/hipo.23334

1110 Rio-Bermudez CD, Kim J, Sokoloff G, Blumberg MS. 2020. Active Sleep Promotes Coherent
1111 Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats. *Cerebral cortex (New*
1112 *York, NY: 1991)* **30**:2070–2082. doi:10.1093/cercor/bhz223

1113 Rio-Bermudez CD, Sokoloff G, Blumberg MS. 2015. Sensorimotor Processing in the
1114 Newborn Rat Red Nucleus during Active Sleep. *J Neurosci* **35**:8322–8332.
1115 doi:10.1523/jneurosci.0564-15.2015

1116 Rochefort NL, Garaschuk O, Milos R-I, Narushima M, Marandi N, Pichler B, Kovalchuk Y,
1117 Konnerth A. 2009. Sparsification of neuronal activity in the visual cortex at eye-opening.
1118 *Proceedings of the National Academy of Sciences of the United States of America*
1119 **106**:15049–15054. doi:10.1073/pnas.0907660106

1120 Soltesz I, Losonczy A. 2018. CA1 pyramidal cell diversity enabling parallel information
1121 processing in the hippocampus. *Nature Neuroscience* **21**:1–10. doi:10.1038/s41593-018-
1122 0118-0

1123 Sommeijer J-P, Levelt CN. 2012. Synaptotagmin-2 is a reliable marker for parvalbumin
1124 positive inhibitory boutons in the mouse visual cortex. *PLoS ONE* **7**:e35323.
1125 doi:10.1371/journal.pone.0035323

1126 Suen CY, Wang PSP, LEE S-W, LAM L, SUEN CY. 1994. Thinning Methodologies for
1127 Pattern Recognition. *S Mach Perc* **239**–261. doi:10.1142/9789812797858_0012

1128 Supèr H, Soriano E. 1994. The organization of the embryonic and early postnatal murine
1129 hippocampus. II. Development of entorhinal, commissural, and septal connections studied
1130 with the lipophilic tracer Dil. *The Journal of Comparative Neurology* **344**:101–120.
1131 doi:10.1002/cne.903440108

1132 Szőnyi A, Sos KE, Nyilas R, Schlingloff D, Domonkos A, Takács VT, Pósfai B, Hegedüs P,
1133 Priestley JB, Gundlach AL, Gulyás AI, Varga V, Losonczy A, Freund TF, Nyiri G. 2019.
1134 Brainstem nucleus incertus controls contextual memory formation. *Science* **364**:eaaw0445-
1135 15. doi:10.1126/science.aaw0445

1136 Tiriac A, Del Rio-Bermudez C, Blumberg MS. 2014. Self-Generated Movements with
1137 “Unexpected” Sensory Consequences. *Curr Biol* **24**:2136–2141.
1138 doi:10.1016/j.cub.2014.07.053

1139 Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H, Aniksztajn L. 1999. The Establishment
1140 of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and
1141 Correlates with the Development of the Apical Dendrite 1–11.

1142 Valeeva G, Janackova S, Nasretdinov A, Rychkova V, Makarov R, Holmes GL, Khazipov R,
1143 Lenck-Santini P-P. 2019a. Emergence of Coordinated Activity in the Developing Entorhinal-
1144 Hippocampal Network. *Cerebral cortex (New York, NY: 1991)* **29**:906–920.
1145 doi:10.1093/cercor/bhy309

1146 Valeeva G, Nasretdinov A, Rychkova V, Khazipov R. 2019b. Bilateral Synchronization of
1147 Hippocampal Early Sharp Waves in Neonatal Rats. *Frontiers in Cellular Neuroscience* **13**:29.
1148 doi:10.3389/fncel.2019.00029

1149 Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, Gomez-Dominguez
1150 D, Bellistri E, Prida LM de la. 2015. Determinants of different deep and superficial CA1
1151 pyramidal cell dynamics during sharp-wave ripples. *Nature Neuroscience* **18**:1281–1290.
1152 doi:10.1038/nn.4074

1153 Villette V, Malvache A, Tressard T, Dupuy N, Cossart R. 2015. Internally Recurring

1154 Hippocampal Sequences as a Population Template of Spatiotemporal Information. *Neuron*
1155 88:357–366. doi:10.1016/j.neuron.2015.09.052

1156 Wang DV, Yau H-J, Broker CJ, Tsou J-H, Bonci A, Ikemoto S. 2015. Mesopontine median
1157 raphe regulates hippocampal ripple oscillation and memory consolidation. *Nature*
1158 Neuroscience 18:728–735. doi:10.1038/nn.3998

1159 Wickersham IR, Lyon DC, Barnard RJO, Mori T, Finke S, Conzelmann K-K, Young JAT,
1160 Callaway EM. 2007. Monosynaptic Restriction of Transsynaptic Tracing from Single,
1161 Genetically Targeted Neurons. *Neuron* 53:639–647. doi:10.1016/j.neuron.2007.01.033

1162 Wolfe J, Houweling AR, Brecht M. 2010. Sparse and powerful cortical spikes. *Current*
1163 *Opinion in Neurobiology* 20:306–312. doi:10.1016/j.conb.2010.03.006

1164 Yuste R. 2015. From the neuron doctrine to neural networks. *Nat Rev Neurosci* 16:487–497.
1165 doi:10.1038/nrn3962

1166 Zhang G-W, Sun W-J, Zingg B, Shen L, He J, Xiong Y, Tao HW, Zhang LI. 2018. A Non-
1167 canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear
1168 Conditioning. *Neuron* 97:406-417.e4. doi:10.1016/j.neuron.2017.12.010

1169 Zutshi I, Valero M, Fernández-Ruiz A, Buzsáki G. 2021. Extrinsic control and intrinsic
1170 computation in the hippocampal CA1 circuit. *Neuron*. doi:10.1016/j.neuron.2021.11.015