

1 **Repeated out-of-Africa expansions of *Helicobacter pylori* driven by replacement of**
2 **deleterious mutations**

3 Harry A. Thorpe^{1&}, Elise Tourrette^{2&}, Koji Yahara^{3&}, Filipa F. Vale⁴, Siqi Liu², Mónica Oleastro⁵,
4 Teresa Alarcon⁶, TsachiTsadok Perets⁷, Saeid Latifi-Navid⁸, Yoshio Yamaoka⁹, Beatriz
5 Martinez-Gonzalez¹⁰, Ioannis Karayiannis¹⁰, Timokratis Karamitros¹⁰, Dionyssios N. Sgouras¹⁰,
6 Wael Elamin^{11,12}, Ben Pascoe¹³, Samuel K. Sheppard¹³, Jukka Ronkainen^{14,15}, Pertti Aro¹⁶, Lars
7 Engstrand¹⁷, Lars Agreus¹⁸, Sebastian Suerbaum^{19, 20, 21§}, Kaisa Thorell^{22, 23§}, Daniel Falush^{2*§}

8

9 1 Institute of Basic Medical Sciences, University of Oslo, Oslo, harry.thorpe@medisin.uio.no

10 2 Centre for Microbes Development and Health, Institute Pasteur Shanghai. sqliu@ips.ac.cn,
11 danielfalush@googlemail.com, elise.tourrette@gmail.com

12 3 Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Toyo,
13 Japan, k-yahara@nih.go.jp

14 4 Pathogen Genome Bioinformatics and Computational Biology, Research Institute for
15 Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
vale.filipa@gmail.com

17 5 National Reference Laboratory for Gastrointestinal Infections, Department of Infectious
18 Diseases, National Institute of Health Dr Ricardo Jorge, Lisboa, Portugal.
Monica.Oleastro@insa.min-saude.pt

20 6 Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación
21 Sanitaria Princesa, Madrid, Spain, talarcon@helicobacterspain.com

22 7 Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel,
tzahipe1@clalit.org.il

24 8 Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Iran,
25 s_latifi@uma.ac.ir

26 9 Department of Environmental and Preventive Medicine, Oita University Faculty of
27 Medicine, Yufu, Oita, Japan yyamaoka@oita-u.ac.jp

28 10 Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Greece,
29 bmartinez@pasteur.gr, y.karayiannis@hotmail.com, tkaram@pasteur.gr,
30 sgouras@pasteur.gr

31 11 G42 Healthcare; Abu Dhabi, wfmelamin@yahoo.com

32 12 Elrazi University; Khartoum; Sudan

33 13 The Milner Centre for Evolution, Department of Biology and Biochemistry, University of
34 Bath, Claverton Down, Bath, UK, bp467@bath.ac.uk, sks70@bath.ac.uk

35 14 Center for Life Course Health Research, University of Oulu;

36 15 Primary Health Care Center, Tornio, Finland jukka.ronkainen@fimnet.fi

37 16 Arokero Oy, Tornio, Finland. pertti.aro@fimnet.fi

38 17 Center for Translational Microbiome Research, Department for Microbiology, Tumor, and
39 Cell Biology, Karolinska Institutet, Stockholm, Sweden, lars.engstrand@ki.se

40 18 Division of Family Medicine, Karolinska Institutet, Stockholm, Sweden, lars.agreus@ki.se

41 19 Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer
42 Institute, Faculty of Medicine, LMU Munich, Munich, Germany, suerbaum@mvp.lmu.de
43 20 Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical
44 School, Hannover, Germany
45 21 DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner
46 Sites, Germany
47 22 Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg,
48 Gothenburg, Sweden. Kaisa.thorell@gu.se
49 23 Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg,
50 Sweden
51 & Contributed equally.
52 § Shared senior authors
53 * Corresponding author: Daniel Falush, danielfalush@googlemail.com

54

55 **Abstract**

56 *Helicobacter pylori* lives in the human stomach and has a population structure which
57 resembles that of its host. However, *H. pylori* from Europe and the Middle East trace a
58 substantially higher fraction of ancestry from modern African populations than the humans
59 that carry them. Here, we used a collection of Afro-Eurasian *H. pylori* genomes to show that
60 this African ancestry is due to at least three distinct admixture events. *H. pylori* from East
61 Asia, which have undergone little admixture, have accumulated many more non-
62 synonymous mutations than African strains. European and Middle Eastern bacteria have
63 elevated African ancestry at the sites of these mutations compared to either non-
64 segregating or synonymous sites, implying selection to remove them. We used simulations
65 to show that demographic bottlenecks can lead to long-term segregation of deleterious
66 mutations, despite high rates of homologous recombination, but that population fitness can
67 be restored by migration of small numbers of bacteria from non-bottlenecked populations,
68 leading to mosaic patterns of ancestry like that seen for *H. pylori*. We conclude that *H. pylori*
69 have been able to spread repeatedly from Africa by outcompeting strains that carried
70 deleterious mutations accumulated during the original out-of-Africa bottleneck.

71

72 **Main text**

73 **Introduction**

74 *Helicobacter pylori* is the dominant bacterial member of the human stomach microbiota in
75 infected individuals and is the aetiological agent in most cases of gastric cancer, gastric
76 mucosa-associated lymphoid tissue (MALT) lymphoma, and gastroduodenal ulcer disease¹.
77 *H. pylori* causes chronic, decades-long infections and is often acquired within the household,
78 limiting the rate of its diffusion through human populations in comparison with more readily
79 transmissible pathogens². Genetic variation in *H. pylori* genome sequences shows a
80 phylogeographic pattern similar to that of its host, consistent with an inference that human
81 and bacterial genes are often spread by the same migrations³⁻⁶. However, the *H. pylori*
82 population found in Europe and other parts of Eurasia is admixed, with many strains having
83 more than half of their DNA attributable to populations closely related to those prevalent in
84 Africa^{3,7-9}. There is evidence for several recent human migrations out of Africa¹⁰, but
85 together they have only contributed a small fraction of the ancestry of non-Africans. This
86 discrepancy in ancestry proportions between the bacteria and their hosts implies that
87 African *H. pylori* has been spread to Eurasia by movements of people that have left weaker
88 signals in human DNA.

89 To understand why African *H. pylori* have contributed extensive ancestry within parts of
90 Eurasia, we have assembled a collection of strains from Europe and the Middle East, from
91 putative source populations in Africa, as well as from less-admixed strains in Asia. We infer a
92 recent demographic history of the European and Middle Eastern strains that includes
93 genetic drift, migration, and admixture from external sources. We show that there have
94 been at least three admixture events from African source populations that have each

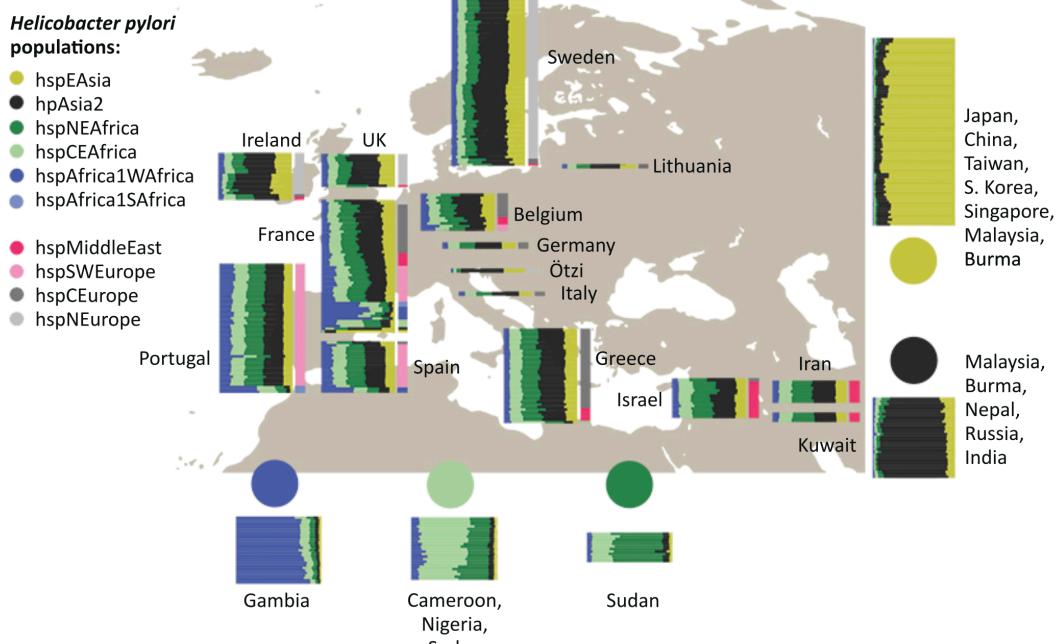
95 contributed substantial ancestry. By examining the distribution of non-synonymous
96 mutations in different populations, we conclude that there was a large and lasting increase
97 in the frequency of segregating deleterious mutations during the out-of-Africa bottleneck
98 associated with the initial spread of modern humans from Africa. When African *H. pylori*
99 strains reached Eurasia due to later contact between humans, they, and the DNA they
100 carried, had a fitness advantage and were able to spread. In the process, they reduced the
101 mutational load in the newly admixed populations.

102

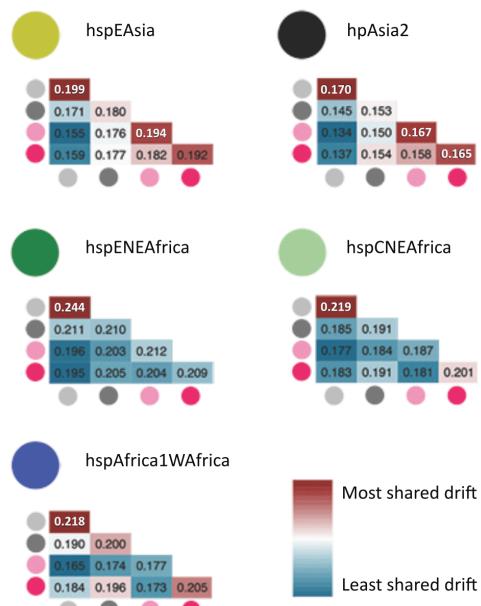
103 **Repeated African Admixture into Europe and the Middle East**

104 Based on fineSTRUCTURE clustering (Figure S1), we grouped European and Middle Eastern
105 strains into four subpopulations named hspEuropeNEurope, hspEuropeCEurope,
106 hspEuropeSWEurope and hspEuropeMiddleEast according to the locations they were most
107 isolated from. The first Europe in the name indicates they are subpopulations of hpEurope
108 but for brevity we omit this part of the name in the rest of the manuscript. We investigated
109 their sources of external ancestry by performing *in silico* chromosome painting (Figure 1A)
110 using donor strains from three African populations (hspENEAfrica, hspCNEAfrica,
111 hspAfrica1WAfrica) and two Asian populations (hpAsia2 and hspEAsia). Representative
112 strains from these populations were selected from a larger collection on the basis that they
113 showed little sign of recent admixture from other continents based on D-statistics (Table
114 S5,S6) and as confirmed in a PCA plot (Figure S2).

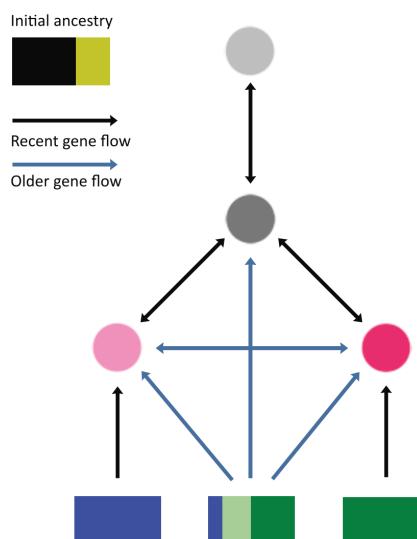
115 The chromosome painting analysis supported previous findings that there is a North-South
116 cline in the overall proportion of African ancestry and that hpAsia2 is a closer relative of the
117 pre-admixture population than hspEAsia^{3,8}. However, all isolates are painted with a
118 substantial and largely consistent fraction of hspEAsia (with the hpAsia2:hspEAsia ratio
119 varying from 1:1.74 for hspNEurope to 1:2.02 for hspMiddleEast), implying that hpAsia2 is
120 not a close surrogate for the pre-admixture population.


121

122 To investigate the demographic history of admixture further, we measured genetic drift
123 profiles separately for each ancestry component (Figure 1B). Specifically, we compared the
124 painting profile of pairs of admixed individuals to identify regions of the genome in which
125 they were painted by the same donor population. For these genomic regions, we recorded if
126 they were painted by the same specific donor strain (Methods). High rates of painting by the
127 same donor strain indicates shared genetic drift within that ancestry component. These
128 values are similar in interpretation to F3 values¹¹, but are specific to individual ancestry
129 components, rather than averaged across the entire genome.


130 Genetic drift profiles for the hpAsia2 and hspEAsia ancestry components showed a similar
131 pattern across the four hpEurope subpopulations, as indicated by near identical pattern of
132 colours for these two ancestry components in Figure 1B. The indistinguishable drift profiles
133 provide evidence that within each hpEurope subpopulation, both components have been
134 affected similarly by genetic drift. The simplest explanation is that these components are
135 both being used to paint a single ancestry source that persisted in western Eurasia since the

136 out-of-Africa bottleneck. Therefore, the data does not provide evidence for either ancient or
137 more modern genetic contributions from the East.
138


A

B

C

139
140

141 **Figure 1** Ancestry and migration history of *hpEurope* isolates. (A) Painting profiles of
142 *hpEurope* isolates and their putative ancestral populations from Africa and Asia showing
143 proportion of each genome (horizontal bar) painted by each of five ancestral donor
144 populations (circles). *hpEurope* isolates are grouped by country of isolation, with bars to the
145 right indicating the *H. pylori* population each strain is assigned to. The representative

146 isolates from each donor population are grouped by population, with countries of isolation
147 listed for each group. (B) Genetic drift profiles for hpEurope subpopulations, shown
148 separately for each ancestry component. (C) Schematic summarizing the migration and
149 admixture history of the hpEurope subpopulations.

150

151 In addition to the North-South cline, there is also an East-West ancestry cline in the source
152 of African admixture (Figure 1A), with distinct drift patterns for each African component in
153 the four hpEurope subpopulations (Figure 1B). Strains from hspSWEurope have the highest
154 fractions of hspAfrica1WAfrica and this ancestry component shows low levels of drift,
155 implying that this subpopulation has undergone recent admixture from strains closely
156 related to those currently found in West Africa. Furthermore, there are strains from Spain,
157 Portugal and France assigned to hspAfrica1 subpopulations and a strain in Portugal with an
158 intermediate ancestry profile suggesting that these isolates have arrived within the last few
159 human generations. Strains from the hspMiddleEast subpopulation have the highest
160 fraction from hspENEAfrica and the lowest levels of drift in this component. These two
161 populations have therefore received genetic material from Africa after the initial gene flow
162 that has introduced ancestry across the continent. These patterns imply that there have
163 been at least three separate admixture events involving distinct populations of African
164 bacteria (Figure 1C). Confirmation of these results is provided by an admixture graph
165 estimated by Treemix ¹² (Figure S3). Treemix estimated nine migration events across the 11
166 populations in this study, three of which were from Africa into the European sub-
167 populations. These three events corresponded closely to the three events found using
168 chromosome painting.

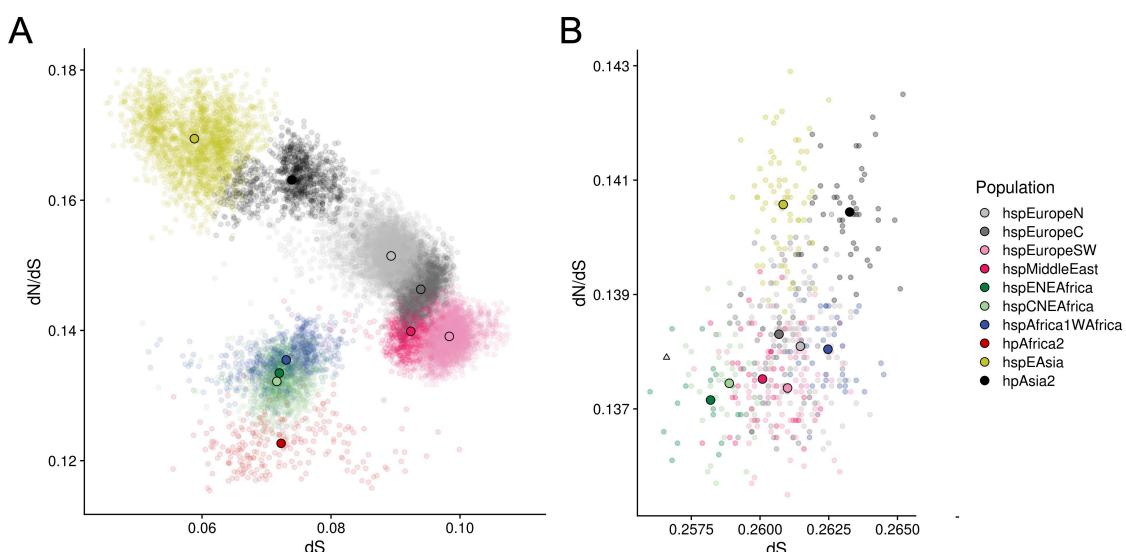
169

170 The drift components also provided evidence about local migration. hspMiddleEast and
171 hspSWEurope have high levels of shared drift in both Asian components, implying that prior
172 to admixture, these two populations were closely related. hspNEurope has high
173 subpopulation-specific drift in all ancestry components, showing that it has undergone
174 recent genetic drift, while hspCEurope has almost none in any component, suggesting that it
175 has been a hub for migration between populations.

176

177 The genome of a strain colonizing the Tyrolean iceman, Ötzi, has been inferred to be a nearly
178 pure representative of the pre-admixture population based on more limited data, which was
179 interpreted as evidence that most of the admixture took place in the 5,300 years since his
180 death ⁸. In our fineSTRUCTURE analysis, the Ötzi genome clusters with hspNEurope isolates
181 from Ireland and Sweden with the lowest African ancestry, one of which has the same non-
182 African ancestry proportion as the Ötzi strain in the chromosome painting. These results
183 show that the Ötzi genome, in fact, falls within modern variation in ancestry proportions in
184 Europe. We interpret this as evidence that substantial African ancestry had already been
185 introduced into Europe when Ötzi lived but that ancestry proportions in particular locations
186 have changed substantially in subsequent millennia.

187
188 Overall, the chromosome painting results show that, in addition to contemporary migrations
189 that have introduced *H. pylori* with atypical profiles into countries such as Ireland, Portugal,
190 France and Spain (Figure 1A), *H. pylori* have spread out of Africa at least three times (Figure
191 1C). Each of these migrations is sufficiently old that the DNA has been absorbed into the
192 local gene pools, leading to a high degree of uniformity in ancestry profiles for most isolates
193 in individual locations (Figure 1A). At least one of the early admixture events was shared
194 between the four subpopulations, spanning Europe and the Middle East, and left traces in
195 Ötzi's *H. pylori* genome, while later ones, labelled as "recent" in Figure 1C, had foci in South
196 Europe and the Middle East, respectively. Gene flow between the regional subpopulations
197 has affected all ancestry components but has not been sufficient to homogenize ancestry
198 proportions across the continent.
199


200 **Evidence for a role of deleterious mutations in the repeated expansion of bacteria
201 from Africa.**

202 The ability of *H. pylori* of African origin to spread effectively in non-African populations on
203 multiple independent occasions is unexpected, since the resident bacteria will have had an
204 opportunity to adapt to local conditions. One potential explanation is that deleterious
205 mutations accumulated in the genomes of strains carried by the early waves of modern
206 humans that spread from Africa. Demographic bottlenecks associated with these migrations
207 have been sufficient to leave an imprint on neutral genetic variation within the human
208 genome, which indicate a reduction in effective population size in the ancestry of non-
209 African humans around 50,000 years ago, followed by more recent expansion¹³. *H. pylori*
210 populations also show evidence of low ancestral population sizes in East-Asian and native
211 American populations, followed by population size recoveries⁶ consistent with strong
212 genetic drift during the out-of-Africa and subsequent bottlenecks.
213

214 Population genetic theory¹⁴ and evidence from experimental systems¹⁵ has shown that
215 demographic bottlenecks can lead to reduction in average fitness through processes such as
216 fixation of deleterious mutations of small effect or the stochastic loss of the fittest genomes
217 (Muller's ratchet^{16,17}). However, although the out-of-Africa bottlenecks have had
218 measurable impact on the pattern of segregating mutations within human populations¹⁸,
219 there is less evidence that individuals from non-African populations have accumulated a
220 larger burden of non-synonymous mutations when measured relative to an outgroup¹⁹. *H. pylori*
221 shows much higher rates of genetic differentiation between geographical regions⁴
222 than its host¹³, which most likely reflects transmission bottlenecks during spread from
223 person to person as well as the expansion of fit clones. Consequently, demographic
224 bottlenecks that have had modest fitness consequences for humans can potentially have
225 more substantial effects on the bacteria they carry.
226

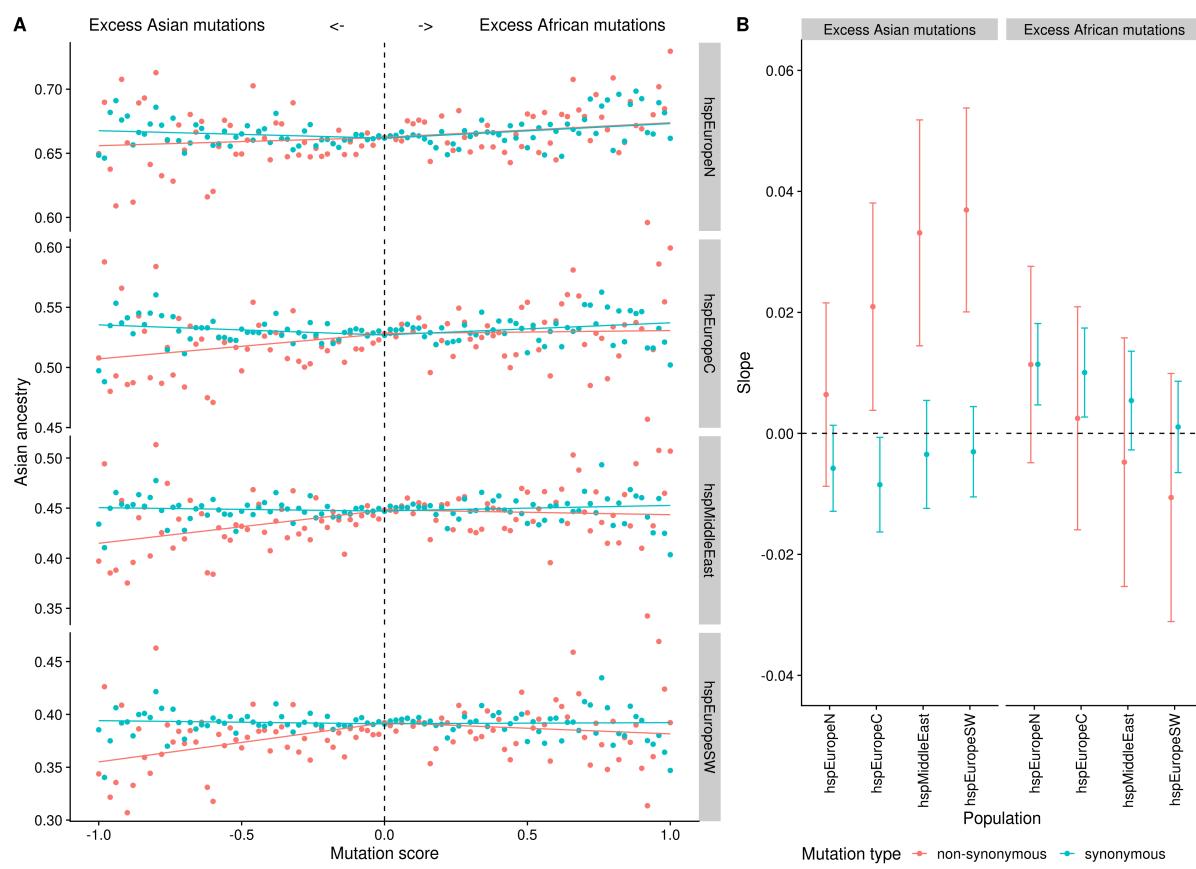
227 Bacteria from the hspEAsia and hpAsia2 populations, which have been through the out-of-
228 Africa bottleneck, had a higher number of deleterious mutations segregating between
229 strains (Figure 2A) and a higher dN/dS to the *H. acinonychis* outgroup (Figure 2B, S4B) than
230 do the three African populations with comparable synonymous divergence levels dS. dN/dS
231 for the three African populations ranged between 0.137 and 0.138, with Asian populations
232 having values of 0.140 and 0.141. This corresponded to an average of 574 extra non-
233 synonymous mutations in the Asian populations or 1 mutation for every 3 genes. dN/dS
234 values within populations varied between 0.123-0.133 for African populations and 0.163-
235 0.169 for the Asian ones. This difference corresponded to an average of 1216 non-
236 synonymous differences between pairs of strains or about 2/3 of a SNP per gene. These
237 results show that the larger number of differences in dN/dS to the outgroup in the Asian
238 populations reflects a larger number of segregating non-synonymous variants and thus
239 cannot simply be attributed to fixation of mutations during the out-of-Africa bottleneck.
240

241 We confirmed the robustness of these results in two ways. Firstly, we used GRAPES ²⁰ to
242 estimate the rate of non-adaptive non-synonymous substitutions based on the pattern of
243 segregating mutations within each population. This approach can be applied with a folded-
244 mutation spectrum, obviating the need for an outgroup. The results were highly concordant
245 with those obtained for dN/dS values (Figure S5). Secondly, when an hpAfrica2 strain was
246 used as an outgroup instead of *H. acinonychis*, similar results were obtained for dN/dS, but
247 the range of dS values between populations was twice as large (Figure S6). This suggested
248 that there have been ancient admixture events involving Africa2-like lineages and other
249 African populations, while confirming the higher mutation load in Asian populations.
250

251
252 **Figure 2** Within- and between-population divergence. (A) Within population dN/dS (y axis)
253 plotted against dS (x axis). Small dots show pairwise distances; larger solid dots indicate
254 population means. (B) dN/dS, calculated to the *H. acinonychis* outgroup, plotted against dS

255 for isolates (semi opaque points) and populations (solid points), excluding *hpAfrica2* isolates.

256 The triangle indicates the genome from Ötzi.


257

258 We also observed a reduction of the mutational load by admixture and selection within
259 *hpEurope* subpopulations. Bacteria from *hpEurope* subpopulations had dN/dS values with
260 the *H. acinonychis* outgroup that were intermediate between African and Asian populations
261 but were lower (0.137-0.138) than would be predicted if they were random mixtures of
262 African and Asian genomes with the proportions estimated by chromosome painting in
263 Figure 1A (0.139-0.140). However, this mutation deficit is not on its own compelling
264 evidence for a direct benefit of admixture, since it might instead reflect differences in dN/dS
265 between the population that existed in Europe prior to admixture and the Asian populations
266 that were used as surrogates for this ancestry in this analysis.

267

268 More specific evidence that admixture has reduced the burden of deleterious non-
269 synonymous mutations was provided by tabulating the effect of mutations that
270 accumulated in African and Asian populations on the ancestry of admixed bacteria in Europe
271 and the Middle East (Figure 3). For each position in the alignment, we calculated a mutation
272 score, which is the difference between African and Asian strains in the proportion of
273 nucleotides that differed from *H. acinonychis* (with equal weight given to each
274 subpopulation, see methods). We then investigated whether there is variation in overall
275 Asian ancestry proportion (*hpAsia2+hspEAsia* in the chromosome painting) associated with
276 this score. Most sites were non-polymorphic and had a mutation score of 0.0, which was
277 therefore used as a baseline and compared independently to positive and negative scoring
278 sites. To allow for correlations between adjacent sites, statistical significance of the
279 regression was assessed using a gene-by-gene jackknife (methods).

280

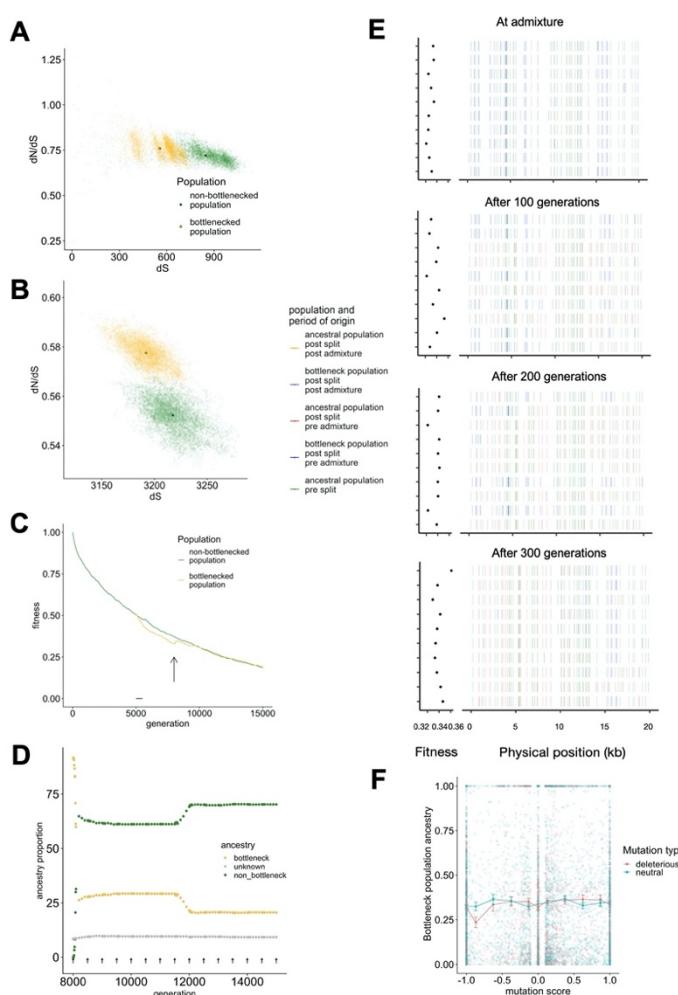
281
282

283 **Figure 3** Genetic ancestry of hpEurope subpopulations as a function of mutation score. (A)
284 Average ancestry in chromosome painting analyses plotted against mutation score
285 (mutation frequency in African populations minus mutation frequency in Asian populations)
286 in bins of 0.02. Regression lines were calculated separately for positive and negative
287 mutation scores. (B) Regression slopes with 95% confidence intervals estimated using a
288 gene-by-gene jackknife for excess Asian and excess African mutations, respectively.
289

290 *H. pylori* shows little evidence for codon usage bias²¹, so most synonymous mutations
291 should be approximately neutral and can therefore be used as a control. A negative
292 mutation score at non-synonymous sites is associated with a deficit in Asian ancestry, either
293 in comparison with non-polymorphic sites or with synonymous sites with the same scores.
294 The strongest regression slopes were estimated for the two Southern populations, and the
295 weakest estimated for hspNEurope (Figure 3A,B). By contrast, excess mutations in African
296 strains did not have a detectable effect on ancestry in any of the four hpEurope
297 subpopulations, with regression slopes statistically indistinguishable from those found for
298 synonymous positions. Thus, admixed bacteria have avoided non-synonymous mutations
299 that accumulated in populations that have been through the out-of-Africa bottleneck, but
300 not those that have not. We inferred that a proportion of these non-synonymous mutations
301 are deleterious and have been selected against in the admixed population. Similar results
302 were obtained, albeit with lower statistical confidence, when an hpAfrica2 strain was used
303 as an outgroup instead of *H. achinonychis* (Figure S7A,B).

304
305 Deleterious mutations occurred throughout the genome and were all subject to genetic
306 drift. A plot of mutation score versus ancestry at a gene-by-gene level showed considerable
307 scatter (Figure S8A, Table S7), with similar results obtained when the analysis was
308 performed for 10kb regions (Figure S8B), suggesting that the signal that we observed for
309 mutation replacement cannot be attributed to a small number of genes. Nevertheless, it is
310 possible that other selective forces, for example related to local adaptation, could explain
311 some of the variation in ancestry proportion between genes.
312
313 We investigated whether specific genes were enriched for African ancestry. There was
314 substantial variation amongst genes in the average African ancestry proportion, with strong
315 correlations between proportions in the four hpEurope subpopulations (Figure S9), which is
316 consistent with much of the ancestry resulting from a single shared admixture event.
317 However, we observed no significant differences between COG categories in average
318 ancestry proportion (Figure S10).
319
320 Genes with extreme values of average ancestry proportion were involved in diverse, often
321 central, cellular processes. For example, low African ancestry (top ten in Table S7, each with
322 <27% average African ancestry) genes included, e.g., those in central energy generation
323 (HP0145, component of the Cbb3-type terminal oxidase), stress tolerance (HP0278, *ppx* exo-
324 polyphosphatase; HP0600, *spaB* multidrug resistance), cell envelope biogenesis (HP0867,
325 lipid A), and translation (HP1147, ribosomal proteins L19). However, the analysis did reveal
326 overlap of low-admixture genes with genes that have highly differentiated SNPs within East
327 Asia ²², specifically HP0284 (*mscS-1*), encoding a mechanosensitive channel related to osmo-
328 tolerance and HP0250 (*oppD*), encoding an oligopeptide permease. Since the same genes
329 are often differentiated in different continents ²², this overlap suggests that these genes
330 may have been resistant to admixture due to local adaptation within Europe and the Middle
331 East.
332
333 High-average African ancestry genes (>69%) likewise included those in central biological pro-
334 cesses and stress tolerance, such as those of the Czc cation efflux system (HP0969-HP0970,
335 metal ion tolerance and nickel homeostasis), purine salvage (HP0267, cytosine/adenine de-
336 aminase), and glycolysis (HP1166, glucose-6-phosphate isomerase & HP0154, enolase).
337 Most were not directly related to host interactions, although some with low average African
338 ancestry might affect urease activity (HP1129, *exbD* & HP0969-HP0970, *czc*). Overall, this in-
339 spection supported that the driving force for admixture within the core genome was in-
340 creased fitness, provided by replacement of stochastic deleterious mutations genome-wide,
341 rather than single pathogenesis-related genes allowing adaptation to new host environ-
342 ments.
343
344 To test the hypothesis that selection on deleterious mutations can explain the observed
345 patterns, we performed simulations of bacterial populations evolving with a constant input
346 of neutral and deleterious mutations and homologous recombination of short tracts (Figure
347 4, Figure S11,S12). These simulations showed that at high recombination rates,

348 demographic bottlenecks could generate long-term increases in the number of deleterious
349 mutations segregating in the population (Figure 4A, Figure S12C,D), and in dN/dS measured
350 relative to an outgroup (Figure 4B, Figure S12E,F). These patterns qualitatively match those
351 seen in the data (Figure 2A,B).


352

353 In our simulations, the average fitness of the bottlenecked population underwent the
354 largest decrease at intermediate recombination rates (Figure 4C, Figure S12A,B) and in this
355 simulation, the bottlenecked population was susceptible to invasion from strains from the
356 non-bottlenecked population. Once an invading strain became established in the non-
357 bottlenecked population, the frequency of migrant DNA increased in an almost stepwise
358 fashion leading to the generation of highly mosaic genomes (Figure 4D,E). As migrant DNA
359 spread through the population, mutations from the bottlenecked population that were
360 deleterious fell faster in frequency than mutations at neutral sites (Figure 4F) reproducing
361 the dependence observed in the data (Figure 3A). This showed that the interplay between
362 recombination and selection can explain the reduced mutational burden of the admixed
363 populations.

364

365 Our simulations are consistent with results obtained for eukaryotic systems, which have
366 shown that population bottlenecks can increase mutational load ²³ and that gene flow from
367 populations with a higher effective population size to those with a smaller one decreases
368 the genetic load of the smaller population ²⁴. This effect is particularly strong in regions of
369 higher recombination, for which introgressed neutral/beneficial mutations will persist due
370 to their uncoupling with the introgressed deleterious mutations. However, our simulations
371 show that for bacterial populations the decrease of the genetic load due to admixture is
372 only valid for intermediate recombination levels. For higher recombination rates, admixture
373 has no effect on the fitness of the smaller population, since selection is already effective in
374 removing deleterious mutations.

375

376
377

378 **Figure 4. Simulations of populations under bottlenecks and admixture.** (A) Within population
379 dN/dS and (B) dN/dS calculated to the ancestor measured at generation 8000. Semi opaque
380 points show pairwise distances; solid points indicate population means. (C) Population aver-
381 age fitness shown during the generations of the simulation, with bottleneck starting at gen-
382 eration 5000 and admixture at generation 8000, with each arrow corresponding to the mi-
383 gration of a single strain. (D) Proportion of bottleneck and non-bottleneck ancestry in the
384 bottleneck population, for the generations after the beginning of admixture. Sites with
385 unknown ancestry are shown in grey. Each arrow corresponds to the migration of one strain.
386 (E) Ancestry painting in a sample of genomes from the bottleneck population, in the genera-
387 tions subsequent to admixture. Only the first 20kb of each genome is shown. (F) Average
388 bottleneck population ancestry, at generation 8300 plotted against mutation score
389 (frequency in the non-bottleneck population minus the frequency in the bottleneck
390 population before the admixture begins).

391
392

Discussion

393 Deleterious mutations provide a compelling explanation for the repeated spread of African
394 *H. pylori* into other continents, as shown by the good qualitative match between our
395 simulation results and the pattern of diversity within contemporary *H. pylori* populations.

396 First, we find elevated dN/dS values in Asian populations, consistent with a higher load of
397 deleterious mutations accumulating during the out-of-Africa bottleneck. Secondly, our
398 simulations show that rare migrants from non-bottlenecked populations can spread and
399 generate highly mosaic genomes, as observed in Europe and the Middle East. Third we show
400 that ancestry from these invading lineages is higher in regions of the genome where non-
401 synonymous mutations are segregating within the bottlenecked populations, implying that
402 selection has acted to purge these mutations during admixture.

403

404 Deleterious mutations have been shown to be important during hybridization in several
405 eukaryotic systems, including swordfish²⁶, trees²⁷ and Neanderthal introgression into
406 modern humans²⁵. In these systems, recombination rate variation has been shown to be
407 crucial in determining the rate of introgression that has taken place in different regions of
408 the genomes. To our knowledge, this is the first demonstration of a load effect in bacteria.
409 *H. pylori* is known to recombine at an extraordinary rate²⁸⁻³⁰ and this may explain why a
410 clear signal is observable in this species.

411

412 Many of the details concerning the spread of African ancestry remain to be elucidated. The
413 initial admixture event(s) left traces in the *H. pylori* genome of the Tyrolean Iceman
414 Ötzi, which has an ancestry profile like that found in modern day samples in Ireland and
415 Sweden but has less African ancestry than in modern genomes from Southern Europe.
416 Therefore, the first admixture event occurred more than 5300 years ago but the average
417 level of African ancestry has increased substantially in the last few millennia.

418

419 *H. pylori* of different origins can mix together and recombine within extended families³¹.
420 Over time, extensive ongoing contacts between populations within Europe would be
421 expected to homogenize *H. pylori* ancestry proportions both within and between locations.
422 However, we lack quantitative information on transmission dynamics that might allow us to
423 estimate mixture dates based on the properties of the ancestry clines we observe.

424

425 An intriguing question is why some populations appear to have been resistant to invasion by
426 DNA from African *H. pylori*. For example, within East Asia, most strains appear to come from
427 the hpEAsia population, with very little evidence of admixture. Lack of contact with Africans
428 does not seem a sufficient explanation, given the large number of documented contacts
429 between East Asians and other Eurasian populations within the last several thousand years.
430 The high burden of *H. pylori* related gastric disease in the region is notorious and hpEAsia
431 bacteria are known for distinctive variants at virulence associated loci including *cagA* and
432 *vacA*³². It is possible that strains from this population have acquired a suite of adaptations
433 that allows them to outcompete invading bacteria despite the large mutation load within
434 their genomes. This raises the possibility that some of the non-synonymous mutations that
435 rose to high frequency during the bottleneck may have allowed rapid adaptation, in other
436 words a form of evolution by shifting balance³³.

437

438 *H. pylori* seems to be an outlier amongst bacteria in many features of its biology³⁰, including
439 its slow rate of spread between human populations and its high mutation²⁸ and
440 recombination rates²⁹. Our results suggest that recombination may save strains from rapid
441 mutational meltdown but that deleterious mutations persist within populations, with the
442 effects of bottlenecks enduring for millennia. The unusual properties of *H. pylori* make it a
443 powerful model system for understanding how deleterious mutations interact with
444 demographic processes and adaptive ones to mould diversity within natural populations.

445

446

447 **Methods**

448 ***Dataset collection***

449 A dataset of 716 *Helicobacter pylori* whole-genome sequences was assembled, consisting of
450 213 newly sequenced isolates from Europe, Asia and Africa (Table S1) and selected publicly
451 available genomes (Table S2).

452

453 ***Genome sequencing***

454 New genomes were sequenced at five different centres: Karolinska Institute, Sweden (KI),
455 Hannover Medical School, Hannover, Germany (MHH), Hellenic Pasteur Institute, Greece
456 (HPI), Oita University, Japan (OiU), and University of Bath, UK (UBa) (Table S1).

457

458 Genomic DNA from strains marked with KI in Table S1 was extracted using DNeasy Mini Kit
459 (Qiagen, Hilden, Germany) following the manufacturer's guidelines for Gram-negative
460 bacteria. Sequencing libraries were prepared using the TruSeq Nano kit (Illumina, San Diego,
461 CA, USA) and sequenced on the MiSeq platform, v3 chemistry, using 300 bp paired end
462 mode.

463

464 Genomic DNA from strains marked MHH was isolated from *H. pylori* strains after 24h culture
465 on *H. pylori* selective agar (in-house recipe) with the Genomic Tip 100/G (Qiagen, Hilden,
466 Germany). Nextera XT libraries were generated and sequenced in three different runs on
467 MiSeq 2x300bp paired (Illumina, San Diego, CA, USA), as recommended by the
468 manufacturer. All quantification steps of gDNA and NGS libraries were done with Qubit
469 dsDNA HS Assay Kit (Invitrogen, ThermoFisher Scientific, Carlsbad, CA, USA).

470

471 For strains marked with HPI, adapter-compatible DNA was prepared using Ion Xpress™ Plus
472 Fragment Library Kit and enzymatically fragmented for 5-12 minutes, resulting in a median
473 fragment size of 350-450 bp and the libraries were prepared using the Ion Plus Fragment
474 Library Kit. The resulting 400 bp insert libraries were used to prepare enriched, template-
475 positive Ion PGM™ Hi-Q™ View Ion Sphere Particles (ISPs) with the Ion OneTouch™ 2
476 System. 850-flows sequencing was performed using the Ion PGM™ Hi-Q™ View Sequencing
477 Kit with the Ion 318™ Chip Kit v2.

478

479 For genomes marked with UBa, genomic DNA was quantified using a NanoDrop
480 spectrophotometer, as well as the Quant-iT DNA Assay Kit (Life Technologies, Paisley, UK)
481 before sequencing. High-throughput genome sequencing was performed using a HiSeq 2500
482 machine (Illumina, San Diego, CA, USA).

483

484 Genomic DNA from strains marked with OiU was extracted using DNeasy Blood & Tissue kit
485 (QIAGEN, Hilden, Germany). DNA concentration was measured using QuantusTM
486 Fluorometer (Promega). High-throughput genome sequencing was performed either on
487 Hiseq 2000 (2 × 100 or 2 × 150 paired-end reads) or Miseq (2 × 300 paired-end reads)
488 sequencer (Illumina, San Diego, CA) following the manufacturer 's instruction.

489

490 ***Primary bioinformatics analysis***

491 For the KI genomes, the raw sequencing reads were quality trimmed and filtered using
492 TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) applying a
493 minimum q-score of 30, and *de novo* assembled using SPAdes ³⁴ with the –careful option.
494 Contigs with very low coverage and that were shorter than 500 bp were discarded prior to
495 annotation.

496

497 For the MHH genomes quality filtering was done with Trimmomatic version 0.36 ³⁵ and the
498 assemblies were performed with SPAdes genome assembler v. 3.9.0 and resulted in number
499 of all contigs from 26 up to 117. Assemblies were quality controlled with QUAST³⁶.

500

501 For the HPI genomes, quality control of raw sequencing reads was performed using FASTQC
502 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Unbiased *de novo* assembly
503 was performed using SPAdes genome assembler v.3.5.0in default mode.

504

505 For the UBa genomes, raw sequencing reads were quality trimmed and filtered using
506 Trimmomatic version 0.33 and the 100 bp short read paired-end data was assembled using
507 the *de novo* assembly algorithm Velvet version 1.2.08³⁷. The VelvetOptimiser script (version
508 2.2.4) was run for all odd k-mer values from 21 to 99. The minimum output contig size was
509 set to 200 bp with default settings, and the scaffolding option was disabled.

510

511 For the OiU genomes, Trimmomatic v0.35 was used to remove adapter sequences and low-
512 quality bases from raw short reads data. Trimmed reads were then *de novo* assembled to
513 produce contigs using SPAdes genome assembler v3.12.0 with the -careful option to reduce
514 mismatches in the assembly. The minimum contig length was set to 200 bp.

515

516 Annotation of both newly sequenced draft genomes and publicly available sequences was
517 performed using the prokka annotation pipeline v 1.12 ³⁸ using the most recent version of
518 the 26695 genome ³⁹ as primary annotation source.

519 Genome size and contig/scaffold number was collected from the prokka annotation output
520 using the MultiQC tool ⁴⁰ and collected into Table S3 . All newly sequenced genomes were
521 submitted to GenBank under BioProject PRJNA479414.

522 All strains, their population designations and their role in the respective analyses are shown
523 in Table S4.

524

525 ***Sequence comparison and alignment:***

526 All isolates were mapped to the 26695 genome (NC000915.1) using the Snippy software
527 version 3.2-dev (<https://github.com/tseemann/snippy>). The resulting core genome, which
528 was collected with the same tool, contained 287 746 core SNPs from 979 771 variant sites.

529

530 ***FineSTRUCTURE***

531 We inferred population structure among the strains based on the genome-wide haplotype
532 data of the reference-based alignment to 26695 described above, using chromosome
533 painting and fineSTRUCTURE ⁴¹ according to a procedure of our preceding study that applied
534 them to *H. pylori* genome⁴². Briefly, we used ChromoPainter (version 0.04) to infer chunks of
535 DNA donated from a donor to a recipient for each recipient haplotype and summarized the
536 results into a “co-ancestry matrix”, which contains the number of recombination-derived
537 chunks from each donor to each recipient individual. We then ran fineSTRUCTURE (version
538 0.02) for 100,000 iterations of both the burn-in and Markov Chain Monte Carlo (MCMC)
539 chain, in order to conduct clustering of individuals based on the co-ancestry matrix.

540

541 ***Choice of donor and recipient strains and chromosome painting***

542 D-statistics were calculated for strains assigned to each of the five ancestral populations
543 hspEAsia, hpAsia2, hspCNEAfrica, hspENEAfrica and hspAfrica1WAfrica. D-statistics were
544 calculated using popstats (<https://github.com/pontussk/popstats>) and specifying individual
545 A as SouthAfrica7 (hpAfrica2), individual B as GAM260Bi (hspAfrica1WAfrica), individual Y as
546 F227 (hspEAsia) and individual X. In this comparison, negative D-statistics imply more
547 African ancestry in the strain designated as individual X than in F227. D-statistics values can
548 be found in Table S5 and Table S6.

549

550 A subset of strains from each of the five ancestral populations were chosen as donors to get
551 groups of similar size and were selected based on the fineSTRUCTURE analysis to get good
552 representativeness over the donor populations. Some hpAsia2 strains showed signs of
553 elevated African admixture based on negative D-statistics values and these strains were not
554 selected as donors.

555

556 We conducted chromosome painting of 646 recipient strains (belonging to hspNEurope,
557 hspCEurope, hspSWEurope, hspMiddleEast, hspENEAfrica, hspEAsia, hspCNEAfrica,
558 hspAfrica1WAfrica, hpAsia2, and hpAfrica2). For this purpose, we used ChromoPainterV2
559 software ⁴¹. For each recipient population, we calculated site-by-site average copying

560 probability from each of the five donor populations. Gene-by-gene averages were also
561 calculated by averaging of the sites in each gene for the 790 genes in the alignment.
562 Regressions between gene-by-gene averages in different hpEurope subpopulation were
563 calculated using the aq.plot() function in R.

564

565 **Shared drift estimation**

566 We used the chromosome painting analysis to investigate shared genetic drift profiles. We
567 calculated a separate drift profile for each pair of hpEurope subpopulations, including a
568 within-population profile. For each profile, we calculated separate drift values for each of
569 the five ancestry components (with the components shown in separate triangles in Figure
570 1B). For example, to calculate the shared drift profile of hspNEurope and hspSWEurope, we
571 took each combination of pairs of strains from the two populations and asked whether they
572 used donors from the same population at each site in the genome. We also tabulated
573 whether they used exactly the same donor strain. The drift value for that pair of populations
574 for that ancestry component is the ratio of shared donor to shared strain, summed over all
575 pairs and sites in the genome.

576

577 **dN/dS calculations**

578 From the fineSTRUCTURE analysis, a sub-dataset was collected consisting of the European
579 strains assigned to the hpEurope populations, together with a representative selection of
580 strains from the ancestral populations hpAfrica2, hspAfrica1WAfrica, hspCNEAfrica,
581 hspENEAfrica, hpAsia2, and hspEAsia. The *H. acinonychis* genome was added to this dataset
582 to provide an outgroup. For a detailed list of which strains that were included in these
583 analyses, see columns in Table S2,S4. dN/dS was estimated pairwise between these strains
584 from core genome alignments using the method of Yang and Nielsen⁴³, as implemented in
585 Paml v4.7.

586

587 To calculate the numbers of excess mutations observed in the Asian populations, the mean
588 number of non-synonymous mutations was calculated for African and Asian populations,
589 and the difference was then multiplied by a correction factor of 1.37 to account for the loss
590 of some coding sites in the core genome alignment (1.11Mb) compared with the reference
591 genome (1.52Mb).

592

593 **Ancestry and mutation score analysis**

594 Using *H. acinonychis* as a reference, non-synonymous and synonymous mutations were
595 called against representative strains from the African and Asian populations. For this
596 analysis the ancestral populations were combined to reduce the ancestry components to
597 either African (hpAfrica) or Asian (hpAsia). For each site, the frequencies of these mutations
598 within each ancestral population were calculated to give a score between 0 and 1. These
599 scores were then combined by subtracting the hpAsia scores from the hpAfrica scores to
600 give a score between -1 and 1, where -1 = fixed in hpAsia and absent in hpAfrica, 0 = equal

601 frequencies in hpAsia and hpAfrica, 1 = absent in hpAsia and fixed in hpAfrica. Thus, these
602 scores represent the mutational load for each site in the ancestral populations. We then
603 combined these site-by-site scores with the site-by-site chromosome painting data for the
604 European populations so that each site had an estimate of ancestry component from both
605 Asia and Africa, and a mutational score representing the mutational load in the ancestral
606 populations.

607

608 We then computed linear regressions of hpAsian ancestry against mutation score for each
609 European population, and we did this for the positive (excess African) and negative (excess
610 Asian) mutation scores separately. To confirm that the regression slopes were not driven by
611 a small number of outlier genes we conducted a gene-by-gene jackknife by repeating the
612 regressions but removing all the sites from a single gene each time. From this distribution of
613 slope values we calculated the pseudovalues as $\text{pseudovalue} = \text{slope} - ((n-1) * (j_slope - \text{slope}))$.
614 We then calculated the mean and confidence limits of these pseudovalues as
615 $\text{mean}(\text{pseudovalues}) \pm \text{quantile}(p=0.05/2, \text{df}=n-1) * \text{se}(\text{pseudovalues})$. All data manipulation
616 and statistical analysis was performed in R 3.6.1. Packages from the 'tidyverse' collection
617 were used extensively, and ggplot2 was used for plotting.

618

619 **PCA**

620 The PCA was realized using the software PLINK v1.90⁴⁴ on biallelic SNPs from the core
621 genome CDS of *H. pylori*. The filtered SNPs were first LD pruned using the same software to
622 get independent SNPs.

623

624 **Rate of non-adaptive non-synonymous substitutions relative to neutral divergence**

625 The rate of non-adaptive non-synonymous amino-acid substitutions relative to neutral
626 divergence was calculated based on the method of Galtier²⁰ and implemented in the
627 software GRAPES²⁰. The software was run with folded SFS obtained from the core CDS as
628 input and no divergence data. The synonymous and non-synonymous folded SFS were
629 obtained using the PopGenome library⁴⁶ in R⁴⁵, and the number of synonymous and non-
630 synonymous sites was estimated based on the reference core genome sequence.

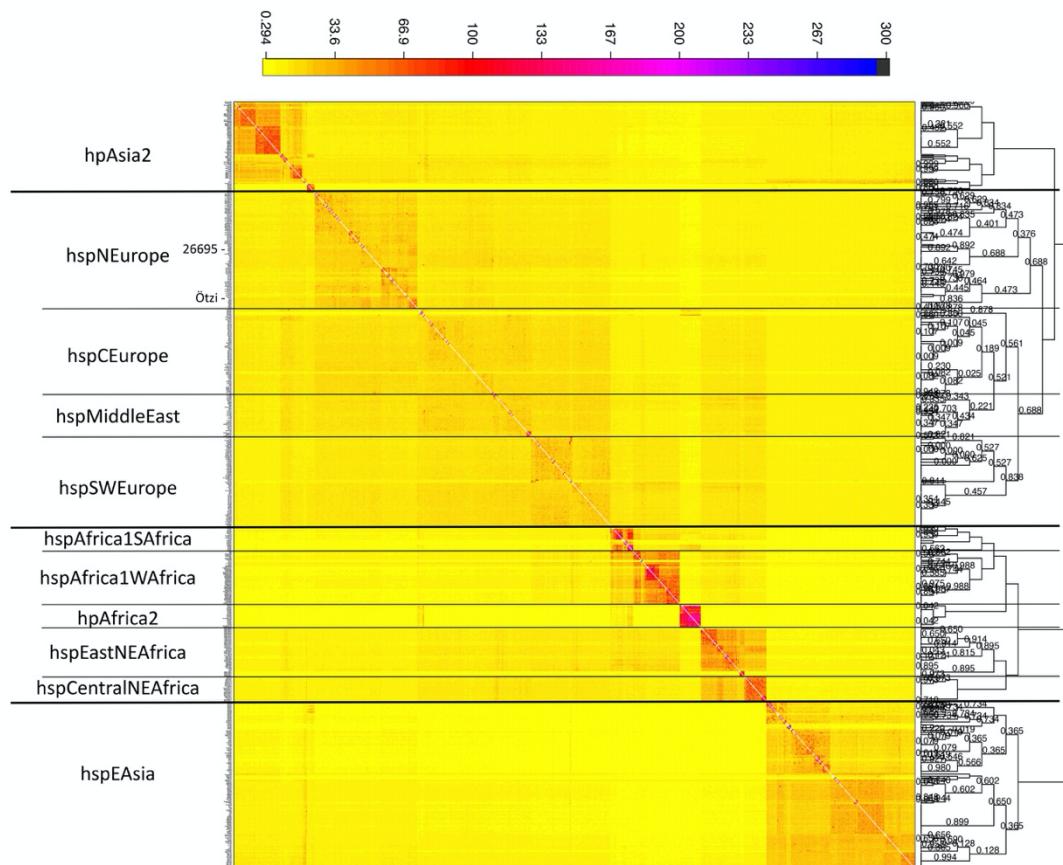
631

632 **Admixture graphs**

633 Admixture graphs between the different populations were obtained using the software
634 Treemix v1.12¹². Treemix was run with a number of migration edges between 0 to 15, with
635 10 replicates for each number of edge and hpAfrica2 was set as the outgroup. The final
636 number of migration edges was chosen as being the smallest number that allowed 99.8% of
637 the variance to be explained, which is the same criterion used by¹².

638

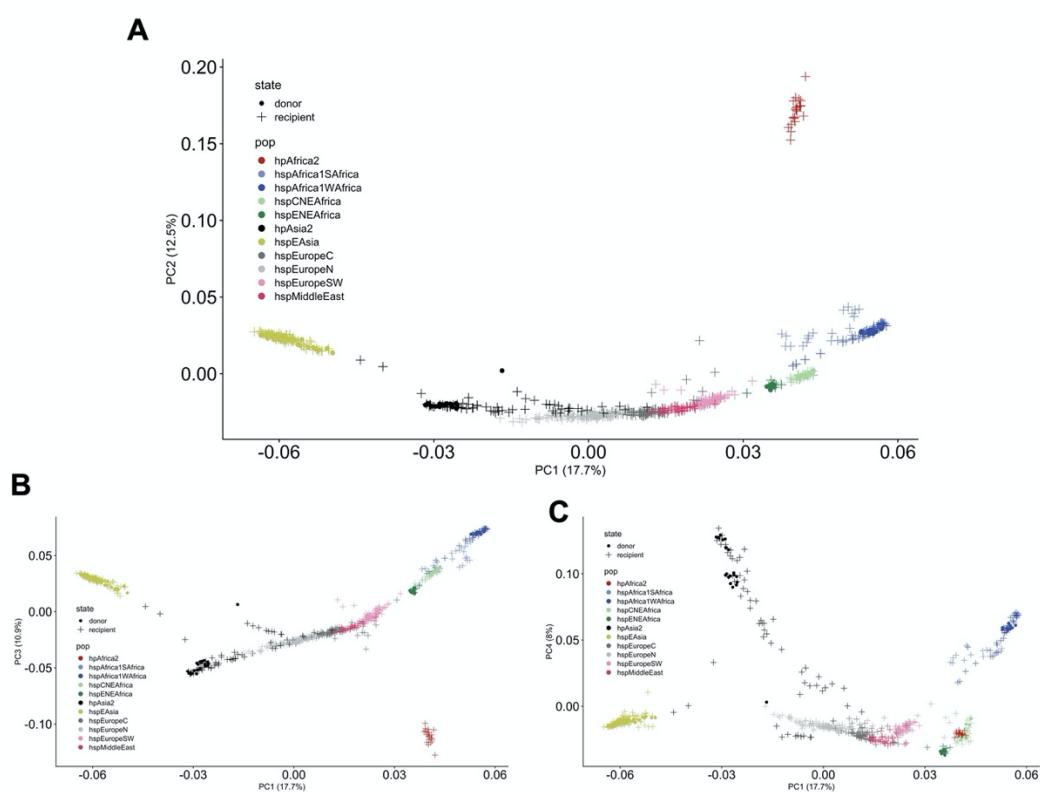
639 **Simulation of bacterial populations evolving under deleterious mutation pressure.**


640 We used SLiM v3⁴⁷ to simulate the accumulation of deleterious mutations in bacterial
641 populations. Each bacterial genome was a single haploid chromosome of length 1.6 Mb,
642 with a mutation rate per site per generation of 5×10^{-7} . This corresponds to about 1/20 of the
643 mutation rate per year estimated from *H. pylori* data^{28 48}. Half of the mutations are neutral,
644 with the other half being deleterious with six different selection coefficients (-5×10^{-3} , $-2 \times 10^{-$

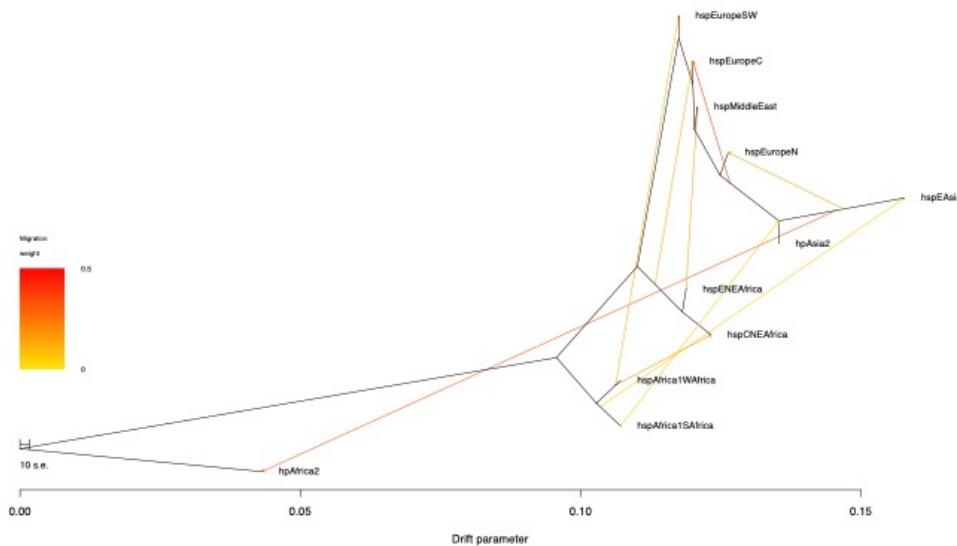
645 $^3, -10^{-3}, -5 \times 10^{-4}, -2 \times 10^{-4}, -10^{-4}$), each accounting for 1/12 of the mutations. There is no back
646 mutation and mutations have a multiplicative effect on the fitness.
647 At the beginning of the simulation, there is no variation in the population. These parameters
648 resulted in an intermediate mutation load for each strain. Higher mutation rates would have
649 led to excessive load in each bacterial generation, while smaller selection coefficients would
650 have led to individual deleterious mutations behaving as if they were neutral.
651
652 In each generation, recombination happens between strains from the same population via
653 the transfer of one segment from a donor strain into a recipient strain, with the length of
654 the block taken from an exponential distribution. We used three different mean values, 0,
655 5,000 and 50,000bp. *H. pylori* has a high rate of import of tracts with mean around 400bp⁴⁹
656 but simulating larger tracts is more computationally efficient than simulating many tracts.
657
658 A single population of size 10,000 evolves for 5,000 generations, by which time the
659 population was in approximate mutation-selection equilibrium. 1,000 of the strains are
660 moved into a second population, which retains this size for 500 generations before
661 expanding to size 10,000. This is substantially below estimated ancestral population sizes of
662 2,000,000 or more for *H. pylori*⁶ but sizes substantially in excess of this are difficult to
663 simulate due to memory and computation time issues. From generation 8,000 onwards,
664 migration from the non-bottleneck to the bottleneck populations happens at a rate of one
665 strain every 500 generations. The simulations are completed after 15,000 total generations.
666 Simulation output was analysed using python and R. For each population, we calculated its
667 average fitness, its fitness variance, its dN/dS to the ancestor and within population dN/dS.
668 Subsequent to admixture, the ancestry proportion from each population was tabulated
669 based on mutations that had arisen during the separate evolution of the populations prior
670 to mixture. For sites without such mutations, their origin was assumed to be the same as
671 the closest mutation of known ancestry, provided that the mutation was within 1kb.
672 Otherwise, its origin was recorded as unknown.
673 The SLiM , python and R scripts can be found at
674 <https://github.com/EliseTourrette/scriptPubli/tree/main/ThorpeEtAl2021>.
675
676 **Acknowledgements:**
677 The authors thank Sabrina Woltemate for technical assistance. This work was supported by
678 Sequencing Grants-in-aid for Scientific Research from the Ministry of Education, Culture,
679 Sports, Science, and Technology (MEXT) of Japan (221S0002 and 18KK0266) to YY. FFV is
680 financed by FCT through Assistant Researcher grant CEECIND/03023/2017. KT and the
681 sequencing of KI isolates was supported by Erik Philip-Sørensen Foundation grant G2016-08,
682 and Swedish Society for Medical research (SSMF). All primary bioinformatics and parts of
683 the comparative genomics were performed on resources provided by Swedish National
684 Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced
685 Computational Science (UPPMAX) under projects snic2018-8-24 and uppstore2017270.

686 Work by SS was supported by the German Research Foundation (DFG, project number 158
687 989 968–SFB 900/A1) and by the Bavarian Ministry of Science and the Arts in the framework
688 of the Bavarian Research Network ‘New Strategies Against Multi-Resistant Pathogens by
689 Means of Digital Networking – bayresq.net. DF was supported by Shanghai Municipal
690 Science and Technology Major Project No. 2019SHZDZX02.

691


692 **Supplementary Figures:**

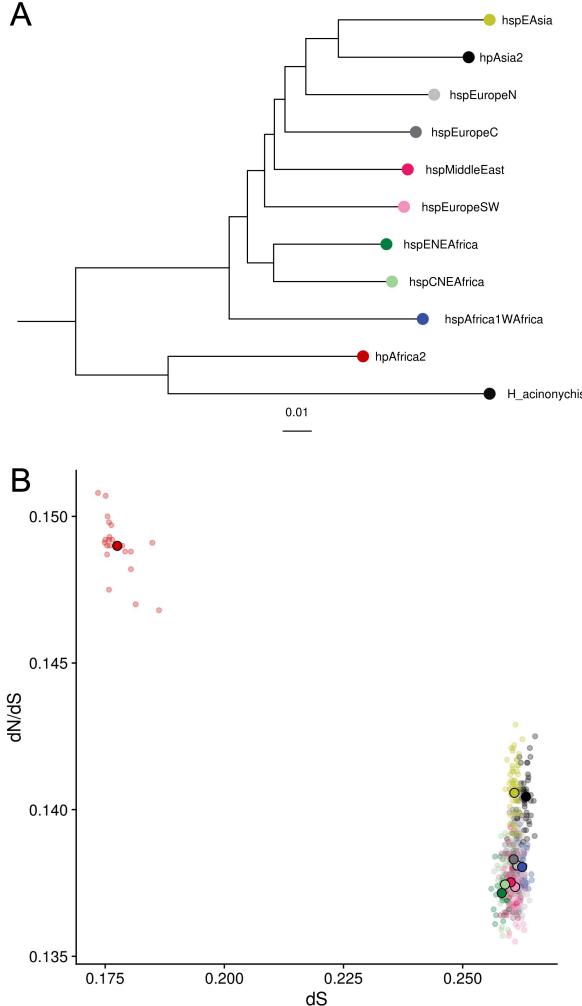
693


694 **Figure S1** heatmap showing populations inferred by fineSTRUCTURE. For each individual, the
695 number of chunks donated by other individuals are shown according to the colour scale at
696 the top. Note the position of Ötzi within hpsNEurope. The tree on the right shows
697 hierarchical clustering of fineSTRUCTURE populations.

698

699
700
701
702
703
704

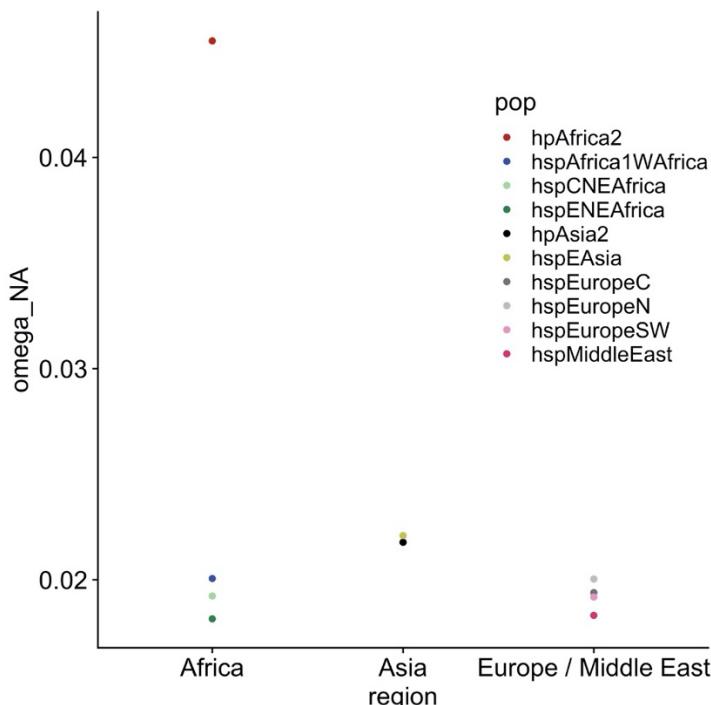
Figure S2: First four components of a PCA showing the different African, Asian and European populations. Strains used as donors in the fineSTRUCTURE analysis are shown as circles while the recipient are shown as crosses. (A) PC2 vs PC1, (B) PC3 vs PC1 and (C) PC4 vs PC1.

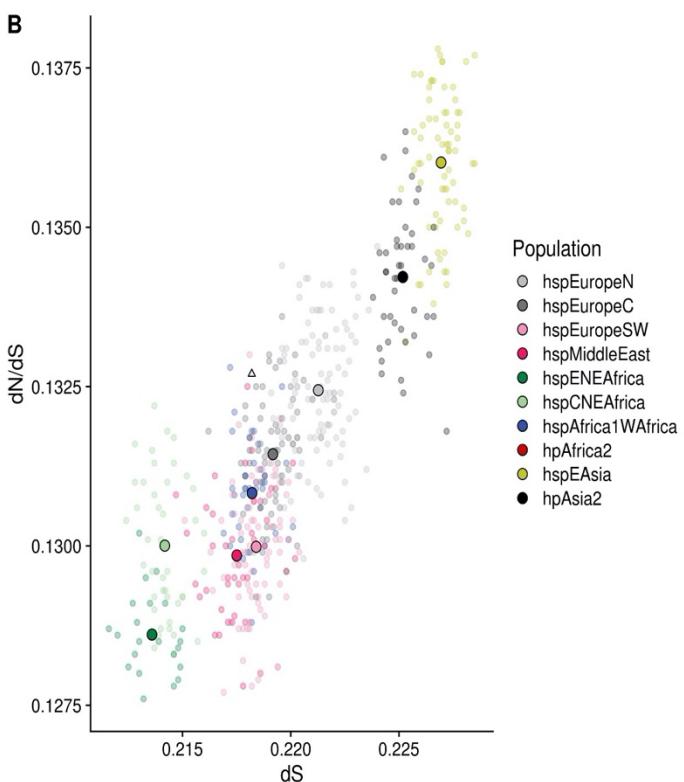


705
706
707
708

Figure S3: Admixture graph for the different populations, with nine migration edges – the optimum number of migration edges. The population hpAfrica2 was set as the outgroup. The

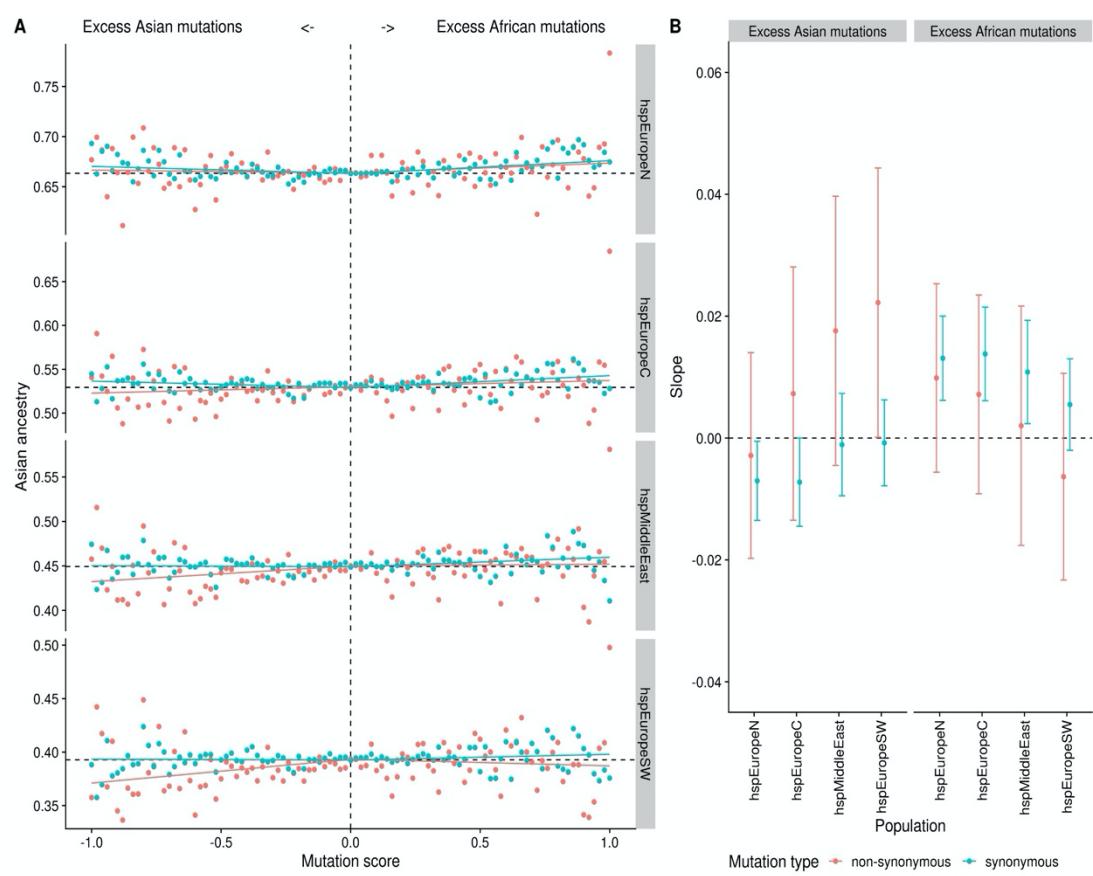
709 arrows represent the gene flows between the different branches, their color indicating the
710 weight of the migration edge.


711


712

713 **Figure S4** Relationships amongst populations. (A) Neighbor joining tree based on genetic
714 distances between populations. (B) dN/dS plotted against dS to *H. acinonychis* outgroups for
715 all populations, including Africa2.

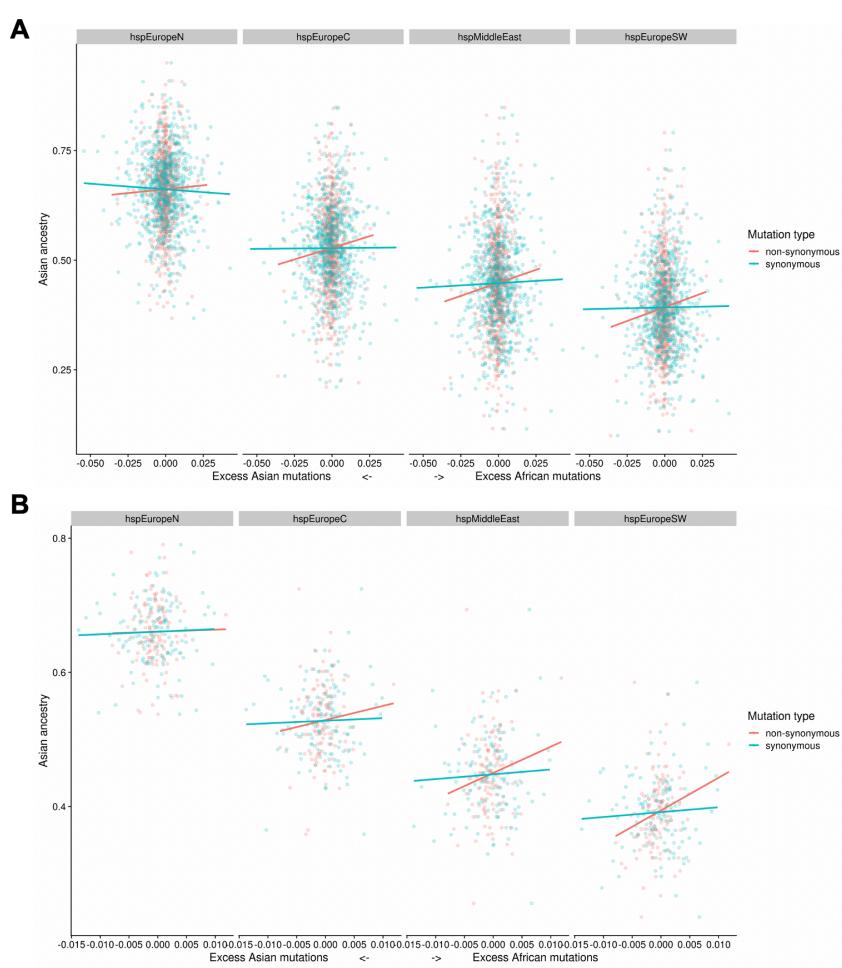
716



717
718
719 **Figure S5:** Rate of non-adaptive non-synonymous amino-acid substitutions relative to
720 neutral divergence for the different populations, separated based on the different
721 geographical regions on the x-axis.
722

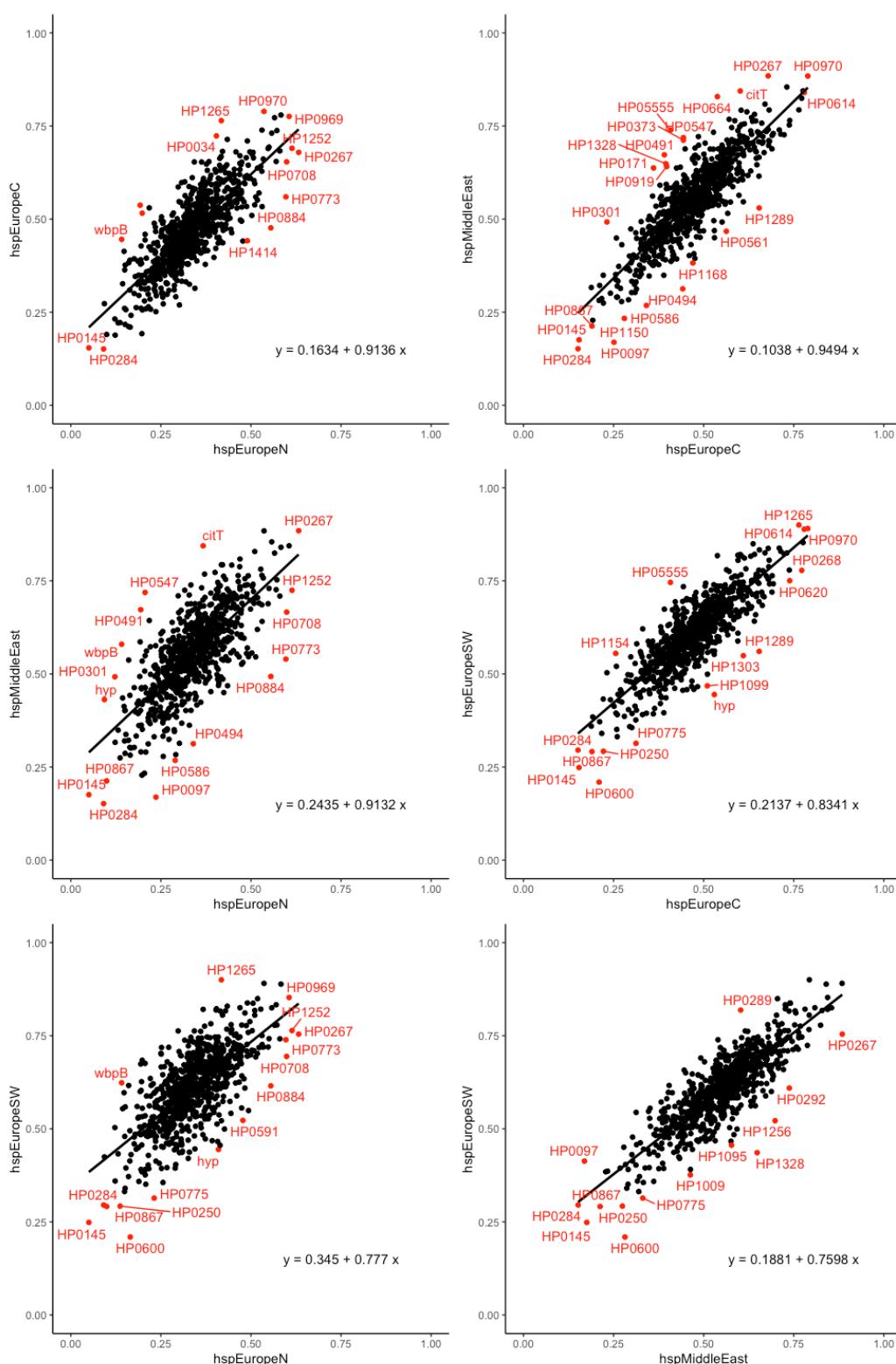
723
724
725 **Figure S6:** Same as Figure 2B but with $hpAfrica2$ set as the outgroup.

726

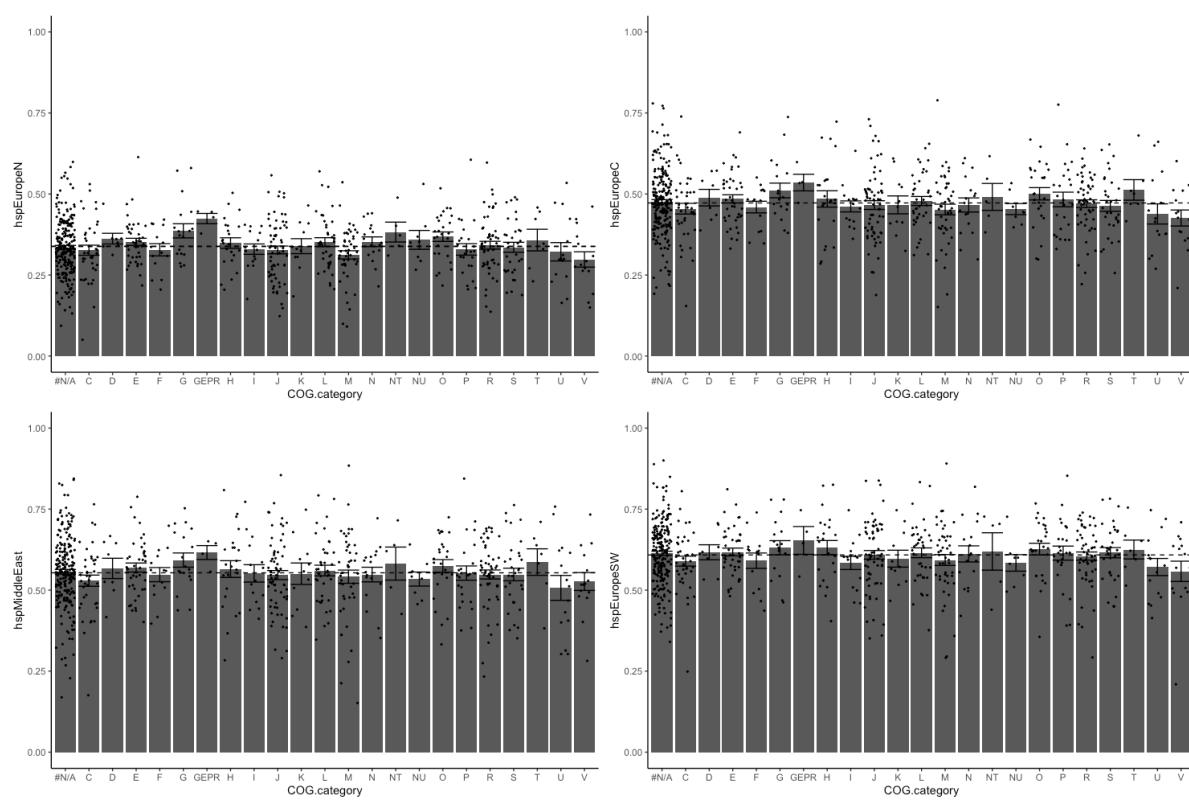


727

728


729 **Figure S7: Same as Figure 3 but with hpAfrica2 set as the outgroup.**

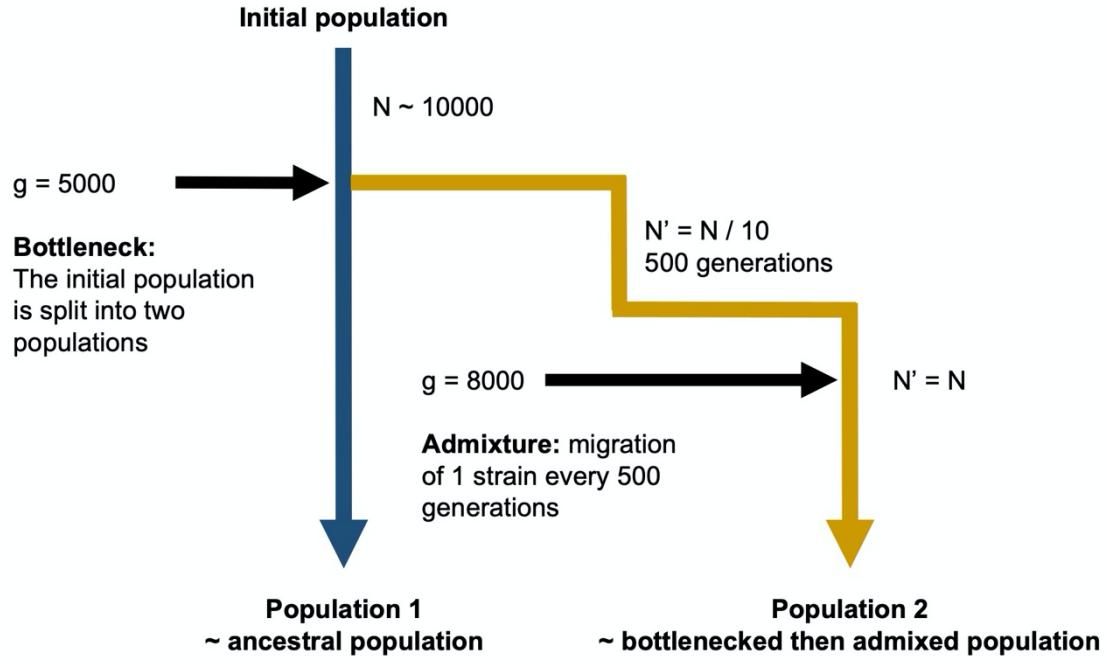
730


731
732

733 **Figure S8: Average ancestry in chromosome painting analyses plotted against mutation**
734 *score (mutation frequency in African population minus mutation frequency in Asian*
735 *population) (A) by genes and (B) by 10 kb bins. In both cases, only the regression in*
736 *hspEuropeSW, for the non-synonymous sites, is significative.*
737 *Regression lines are calculated separately for positive and negative mutation scores*
738

739
740

741 **Figure S9** Average African ancestry proportions of genes.
 742 Each panel shows the relationship between the proportion of ancestry assigned to Africa in
 743 the chromosome painting for each gene, for pairs of *hpEurope* subpopulations. Outliers from
 744 the regression slope are calculated based on robust Mahalanobis distances using the R
 745 function `aq.plot(data, quan = 1, alpha = 0.015)`.

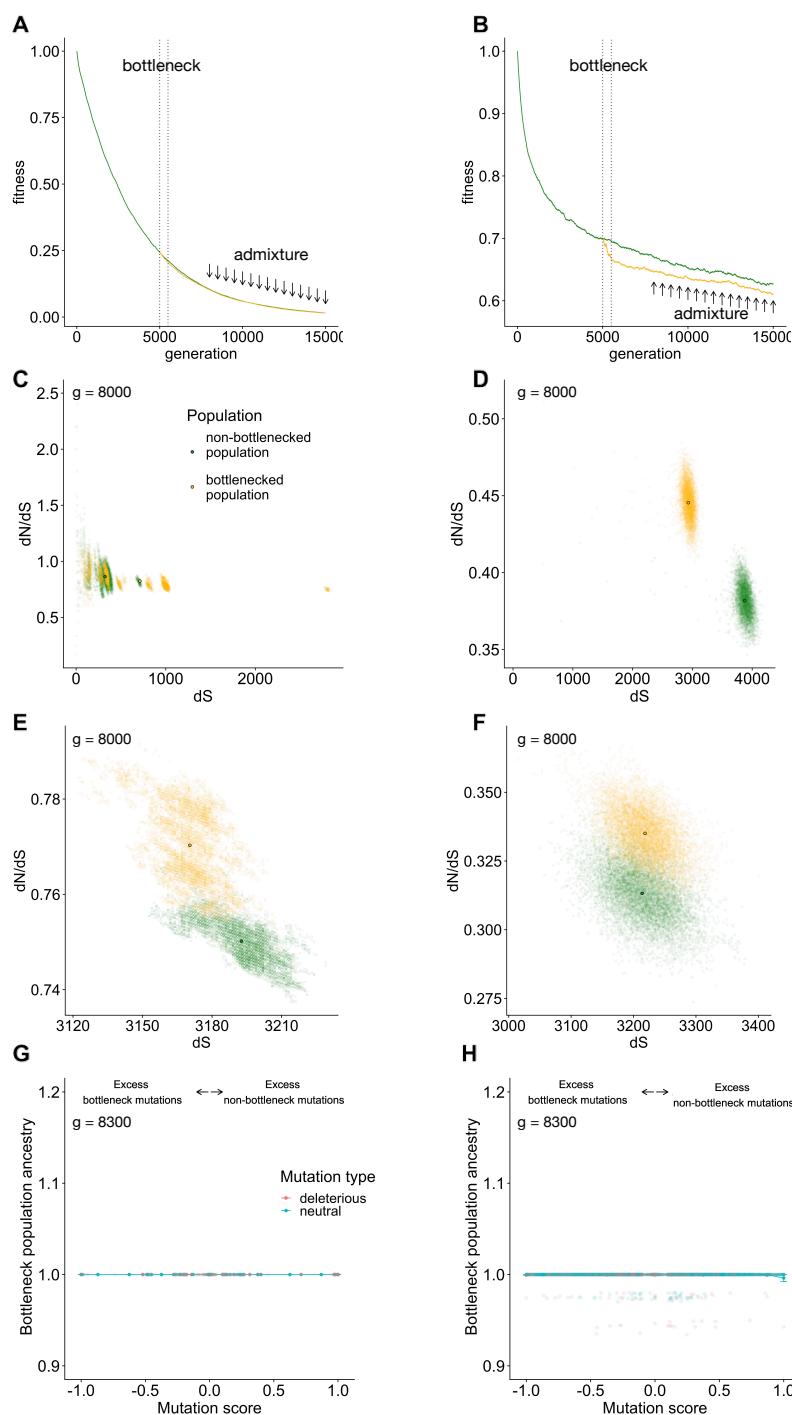

746

747

748 **Figure S10** Average African ancestry proportion of genes in particular COG category.

749 Calculated separately for each hpEurope subpopulation. Whiskers show standard error of
750 the average for each category.

751



752
753
754

755 **Figure S11** The different steps of the simulation process.

756 Parameters values: $N = 10000$; genome length = 1.6 Mbp; mutation rate = 5×10^{-7} per bp per
757 generation; deleterious mutations: $s = (-0.005, -0.002, -0.001, -0.0005, -0.0002, -0.0001)$ and
758 they represent 50% of the mutations (the other 50% are neutral mutations). Look at different
759 recombination levels: clonal reproduction (import size per generation = 0bp), intermediate
760 recombination levels (import size per generation = 500bp and 5000bp on average) and
761 nearly free recombination (import size per generation = 50000bp on average).

762

763
764

765 **Figure S12** The effect of different recombination rates.

766 (A-B) Average fitness over the generations. (C-D) Within population dN/dS (y axis) plotted
767 against dS (x axis). Semi opaque points show pairwise distances; solid points indicate
768 population means. (E-F) dN/dS calculated to the ancestor plotted against dS for isolates
769 (semi opaque points) and populations (solid points). (G-H) Average bottleneck population
770 ancestry, after the first migration event, plotted against mutation score (frequency in the
771 non-bottleneck population minus the frequency in the bottleneck population before the

772 *admixture begins), under no recombination (A,C,E,G) and high recombination (B,D,F,H). The*
773 *segment represents the bottleneck and the arrow signal the migration events.*

774

775 References

776

- 777 1. Suerbaum, S. & Michetti, P. *Helicobacter pylori infection.* *N Engl J Med* **347**, 1175-
778 86 (2002).
- 779 2. Schwarz, S. *et al.* Horizontal versus familial transmission of *Helicobacter pylori.*
780 *PLoS Pathog* **4**, e1000180 (2008).
- 781 3. Falush, D. *et al.* Traces of human migrations in *Helicobacter pylori* populations.
782 *Science* **299**, 1582-5 (2003).
- 783 4. Linz, B. *et al.* An African origin for the intimate association between humans and
784 *Helicobacter pylori.* *Nature* **445**, 915-918 (2007).
- 785 5. Thorell, K. *et al.* Correction: Rapid evolution of distinct *Helicobacter pylori*
786 subpopulations in the Americas. *PLoS Genet* **13**, e1006730 (2017).
- 787 6. Montano, V. *et al.* Worldwide Population Structure, Long-Term Demography, and
788 Local Adaptation of *Helicobacter pylori.* *Genetics* **200**, 947-63 (2015).
- 789 7. Moodley, Y. *et al.* Age of the association between *Helicobacter pylori* and man. *PLoS*
790 *Pathog* **8**, e1002693 (2012).
- 791 8. Maixner, F. *et al.* The 5300-year-old *Helicobacter pylori* genome of the Iceman.
792 *Science* **351**, 162-165 (2016).
- 793 9. Oleastro, M., Rocha, R. & Vale, F.F. Population genetic structure of *Helicobacter*
794 *pylori* strains from Portuguese-speaking countries. *Helicobacter* **22**(2017).
- 795 10. Hellenthal, G. *et al.* A genetic atlas of human admixture history. *Science* **343**, 747-751
796 (2014).
- 797 11. Patterson, N. *et al.* Ancient admixture in human history. *Genetics* **192**, 1065-93
798 (2012).
- 799 12. Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from
800 genome-wide allele frequency data. *PLoS Genet* **8**, e1002967 (2012).
- 801 13. Henn, B.M., Cavalli-Sforza, L.L. & Feldman, M.W. The great human expansion.
802 *Proc Natl Acad Sci U S A* **109**, 17758-64 (2012).
- 803 14. Lynch, M., Conery, J. & Burger, R. Mutational Meltdowns in Sexual Populations.
804 *Evolution* **49**, 1067-1080 (1995).
- 805 15. Silander, O.K., Tenaillon, O. & Chao, L. Understanding the evolutionary fate of finite
806 populations: the dynamics of mutational effects. *PLoS Biol* **5**, e94 (2007).
- 807 16. Muller, H.J. The Relation of Recombination to Mutational Advance. *Mutat Res* **106**,
808 2-9 (1964).
- 809 17. Takeuchi, N., Kaneko, K. & Koonin, E.V. Horizontal gene transfer can rescue
810 prokaryotes from Muller's ratchet: benefit of DNA from dead cells and population
811 subdivision. *G3 (Bethesda)* **4**, 325-39 (2014).
- 812 18. Lohmueller, K.E. *et al.* Proportionally more deleterious genetic variation in European
813 than in African populations. *Nature* **451**, 994-7 (2008).
- 814 19. Simons, Y.B. & Sella, G. The impact of recent population history on the deleterious
815 mutation load in humans and close evolutionary relatives. *Curr Opin Genet Dev* **41**,
816 150-158 (2016).
- 817 20. Galtier, N. Adaptive Protein Evolution in Animals and the Effective Population Size
818 Hypothesis. *PLoS Genet* **12**, e1005774 (2016).

819 21. Lafay, B., Atherton, J.C. & Sharp, P.M. Absence of translationally selected
820 synonymous codon usage bias in *Helicobacter pylori*. *Microbiology (Reading)* **146**
821 (Pt 4), 851-860 (2000).

822 22. You, Y. *et al.* Genomic differentiation within East Asian *Helicobacter pylori*. *Microb
823 Genom* **8**(2022).

824 23. Kimura, M., Maruyama, T. & Crow, J.F. The Mutation Load in Small Populations.
825 *Genetics* **48**, 1303-12 (1963).

826 24. Kim, B.Y., Huber, C.D. & Lohmueller, K.E. Deleterious variation shapes the genomic
827 landscape of introgression. *PLoS Genet* **14**, e1007741 (2018).

828 25. Harris, K. & Nielsen, R. The Genetic Cost of Neanderthal Introgression. *Genetics*
829 **203**, 881-91 (2016).

830 26. Schumer, M. *et al.* Natural selection interacts with recombination to shape the
831 evolution of hybrid genomes. *Science* **360**, 656-660 (2018).

832 27. Liu, S. *et al.* Demographic History and Natural Selection Shape Patterns of
833 Deleterious Mutation Load and Barriers to Introgression across *Populus* Genome. *Mol
834 Biol Evol* **39**(2022).

835 28. Didelot, X. *et al.* Genomic evolution and transmission of *Helicobacter pylori* in two
836 South African families. *Proc Natl Acad Sci U S A* **110**, 13880-5 (2013).

837 29. Suerbaum, S. *et al.* Free recombination within *Helicobacter pylori*. *Proc Natl Acad
838 Sci U S A* **95**, 12619-24 (1998).

839 30. Chao, Y., Cui, Y., Didelot, X., Yang, X. & Falush, D. Why panmictic bacteria are
840 rare. *Bioarxiv* (2018).

841 31. Morelli, G. *et al.* Microevolution of *Helicobacter pylori* during prolonged infection of
842 single hosts and within families. *PLoS Genet* **6**, e1001036 (2010).

843 32. Duncan, S.S. *et al.* Comparative genomic analysis of East Asian and non-Asian
844 *Helicobacter pylori* strains identifies rapidly evolving genes. *PLoS One* **8**, e55120
845 (2013).

846 33. Wright, S. The shifting balance theory and macroevolution. *Annu Rev Genet* **16**, 1-19
847 (1982).

848 34. Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications
849 to single-cell sequencing. *J Comput Biol* **19**, 455-77 (2012).

850 35. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
851 sequence data. *Bioinformatics* **30**, 2114-20 (2014).

852 36. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool
853 for genome assemblies. *Bioinformatics* **29**, 1072-5 (2013).

854 37. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using
855 de Bruijn graphs. *Genome Res* **18**, 821-9 (2008).

856 38. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-9
857 (2014).

858 39. Resende, T., Correia, D.M., Rocha, M. & Rocha, I. Re-annotation of the genome
859 sequence of *Helicobacter pylori* 26695. *J Integr Bioinform* **10**, 233 (2013).

860 40. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis
861 results for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047-8
862 (2016).

863 41. Lawson, D.J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure
864 using dense haplotype data. *PLoS Genet* **8**, e1002453 (2012).

865 42. Yahara, K. *et al.* Chromosome painting in silico in a bacterial species reveals fine
866 population structure. *Mol Biol Evol* **30**, 1454-64 (2013).

867 43. Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution
868 rates under realistic evolutionary models. *Mol Biol Evol* **17**, 32-43 (2000).

869 44. Chang, C.C. *et al.* Second-generation PLINK: rising to the challenge of larger and
870 richer datasets. *Gigascience* **4**, 7 (2015).

871 45. Team, R.C. R: A language and environment for statistical computing. (2021).

872 46. Pfeifer, B., Wittelsburger, U., Ramos-Onsins, S.E. & Lercher, M.J. PopGenome: an
873 efficient Swiss army knife for population genomic analyses in R. *Mol Biol Evol* **31**,
874 1929-36 (2014).

875 47. Haller, B.C. & Messer, P.W. Evolutionary Modeling in SLiM 3 for Beginners. *Mol
876 Biol Evol* **36**, 1101-1109 (2019).

877 48. Falush, D. *et al.* Recombination and mutation during long-term gastric colonization
878 by *Helicobacter pylori*: estimates of clock rates, recombination size, and minimal age.
879 *Proc Natl Acad Sci U S A* **98**, 15056-61 (2001).

880 49. Kennemann, L. *et al.* *Helicobacter pylori* genome evolution during human infection.
881 *Proc Natl Acad Sci U S A* **108**, 5033-8 (2011).

882