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Abstract

Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is
much interest in optimizing its genetics and rearing conditions for growth and feed
efficiency. Marine feed ingredients must be replaced to meet global demand, with
challenges for fish health and sustainability. Metabolic models can address this by
connecting genomes to metabolism, which converts nutrients in the feed to energy and
biomass, but such models are currently not available for major aquaculture species such
as salmon. We present SALARECON, a model focusing on energy, amino acid, and
nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and
growth. It performs well in standardized tests and captures expected metabolic
(in)capabilities. We show that it can explain observed hypoxic growth in terms of
metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed
ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and
the model suggests that marine feed efficiency can be achieved by supplementing a few
amino acids to plant- and insect-based feeds. SALARECON is a high-quality model
that makes it possible to simulate Atlantic salmon metabolism and growth. It can be
used to explain Atlantic salmon physiology and address key challenges in aquaculture
such as development of sustainable feeds.

Author summary

Atlantic salmon aquaculture generates billions of euros annually, but faces challenges of
sustainability. Salmon are carnivores by nature, and fish oil and fish meal have become
scarce resources in fish feed production. Novel, sustainable feedstuffs are being trialed
hand in hand with studies of the genetics of growth and feed efficiency. This calls for a
mathematical-biological framework to integrate data with understanding of the effects
of novel feeds on salmon physiology and its interplay with genetics. We have developed
the SALARECON model of the core salmon metabolic reaction network, linking its

genome to metabolic fluxes and growth. Computational analyses show good agreement

March 15, 2022


https://doi.org/10.1101/2021.06.03.446971
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446971; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

with observed growth, amino acid limitations, and feed efficiencies, illustrating the
potential for in silico studies of potential feed mixtures. In particular, in silico
screening of possible diets will enable more efficient animal experiments with improved
knowledge gain. We have adopted best practices for test-driven development, virtual
experiments to assay metabolic capabilities, revision control, and FAIR data and model
management. This facilitates fast, collaborative, reliable development of the model for
future applications in sustainable production biology.

Introduction

Salmonid aquaculture has grown in volume and economic importance over the past
several decades, and Atlantic salmon (Salmo salar) has become the world’s most
valuable fish commodity [1]. This is largely thanks to selective breeding, which has
improved both growth rate and feed efficiency |2|. The increase in fish farming has also
increased demand for feed, and insufficient marine resources has led to a switch to
plant-based ingredients [3]|. This has reduced production costs and exploitation of fish
stocks, but salmon are not adapted to eating plants and current plant-based feeds have
a negative impact on fish health and the environment [41[5]. Also, plant-based feeds are
complex, the ingredient market is fluctuating, and feeding trials are demanding. Thus,
developing feeds that minimize cost and environmental impact while providing
necessary nutrients to the fish is an important challenge [6].

The metabolic network of a cell or organism converts nutrients that are present in
the environment to the energy and building blocks that are required to live and grow. It
consists of metabolites that are interconverted by metabolic reactions, most of which are
catalyzed by enzymes that are encoded by the genome, and it can be translated to a
metabolic model, which allows mathematical analysis of network functionality through
methods such as flux balance analysis (FBA) |7]. Specifically, metabolic models allow
prediction of growth and metabolic fluxes (steady-state reaction rates) that are linked
to the genome through logical gene-protein-reaction (GPR) associations, making them
promising tools for addressing challenges in aquaculture such as breeding for feed
efficiency and sustainable feed development [8]|. Large databases of metabolic reactions
and models [9-11] and methods for metabolic network reconstruction from annotated
genomes [12}13] have made such models available for organisms ranging from microbes
to animals [14]. However, there are still very few metabolic models of fish
available [1518| and none of Atlantic salmon or other important farmed fish species.

Here, we present SALARECON: a metabolic model built from the Atlantic salmon
genome [19] that predicts growth and metabolic fluxes. It has been manually curated to
ensure flux consistency and focuses on energy, amino acid, and nucleotide metabolism.
SALARECON is a high-quality model according to community-standardized tests, and
it captures expected metabolic (in)capabilities such as amino acid essentiality. Using
oxygen-limited growth under hypoxia as an example, we show that model predictions
can explain salmon physiology in terms of metabolic fluxes that are, in turn, tied to
genes and pathways. Furthermore, we demonstrate an important application for
aquaculture by predicting growth-limiting amino acids and feed efficiencies for
commercial feed ingredients in agreement with data.

Methods

Building the metabolic model

We manually built a draft model focusing on Atlantic salmon energy, amino acid, and
nucleotide metabolism using the genome [19] with annotations from KEGG [11] and the
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software Insilico Discovery (Insilico Biotechnology, Stuttgart, Germany). Pathways were
added or edited one by one with information about reactions obtained from databases
and literature . After adding or editing a pathway, the energy and redox
balances and topological properties of the model, e.g., flux consistency, were checked.
Based on the results from these analyses, the pathway was either kept or modified.
Before final acceptance of a pathway, FBA was performed to ensure that the model was
able to predict growth and metbabolic fluxes. We used WoLF PSORT [20] with default
settings through SAPP |21] to assign metabolites and reactions to six different
compartments (cytosol, mitochondrion, inner mitochondrial membrane, extracellular
environment, peroxisome, and nucleus). Exchange reactions were added to allow
metabolite import (negative flux) and export (positive flux).

After finishing the draft model, we converted the model to the BiGG [10] namespace
and used COBRApy [22] to iteratively curate it. We added and removed metabolites,
reactions, and genes, mapped genes to reactions using AutoKEGGRec [23], and added a
salmon-specific biomass reaction. We also added annotations from MetaNetX [9],
KEGG |11], UniProt |24], and NCBI |25]. To infer gene-protein-reaction (GPR)
associations for reactions, we mapped Atlantic salmon genes to human homologs and
copied GPR associations from the most recent human model [26]. If no GPR association
could be inferred for a reaction, we used an OR relation between genes mapped to that
reaction. To build the biomass reaction, we estimated the fractional composition of
macromolecules in 1 g dry weight biomass (gDW) from Atlantic salmon whole-body
composition |27]. We mapped macromolecules to metabolites and estimated the
fractional composition of amino acids in proteins and nucleoside triphosphates in nucleic
acids from proteome and genome sequences [19], respectively. We finalized the model by
alternating semi-automated annotation and curation with quality evaluation (as
decribed below), iterating until we saw no further opportunities to improve the model
without expanding its scope beyond energy, amino acid, and nucleotide metabolism. The
final model was exported to Systems Biology Markup Language (SBML) format [28].

Evaluating the quality of the metabolic model

First, we compared the reaction contents in SALARECON to other models of
multicellular eukaryotes available in the BiGG [10] namespace (Danio rerio |17, Mus
musculus [29], Cricetulus griseus [30], Homo sapiens |26|, and Phaeodactylum
tricornutum |31]). We excluded boundary reactions and computed the Jaccard distance
J(A, B) between each pair of models A and B by dividing the size of the intersection of
reactions in the two models by the size of the union:

_|ANnB]

J(4,B) = |AU B|

(1)
The Jaccard distances were used for complete-linkage agglomerative hierarchical
clustering of the models.

Second, we tested SALARECON’s consistency and annotation using the community
standard MEMOTE [32] and its metabolic (in)capabilities using tasks defined for
mammalian cells [33]. We adapted tasks to Atlantic salmon by moving metabolites from
compartments not included in SALARECON to the cytoplasm and modifying the
expected outcomes of amino acid synthesis tests to match known essentiality [27,[34].

Third, we used the model to predict growth in the absence of individual amino acids.

We allowed both uptake and secretion of all extracellular metabolites, disabled uptake
of each amino acid separately, and maximized growth rate using FBA. Amino acids
were classified as essential if they were required for growth and non-essential otherwise,
and the predicted essentiality was compared to experimental data [27,[34].
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Finally, we evaluated the ability of SALARECON to capture fish-specific
metabolism by comparing metabolite uptake and secretion to the most recent human
model |26]. Specifically, we enumerated minimal growth-supporting uptake and
secretion sets for both models using scalable metabolic pathway analysis [35]. We
required non-zero growth rate, uptake of oxygen and essential amino acids, and
secretion of carbon dioxide as well as ammonia, urea, or urate. We enumerated minimal
uptake sets first and then allowed uptake of all metabolites found in uptake sets before
enumerating minimal secretion sets.

Analyzing oxygen-limited growth

We used parsimonious FBA (pFBA) [36] to find maximal growth rates and minimal flux
distributions for 1,000 randomized conditions and 50 logarithmically spaced oxygen
uptake rates in the range r € (0, 7max) Where 7 is uptake rate and ryax is the minimal
oxygen uptake rate at maximal growth. For each condition, we uniformly sampled
random ratios (1-100) of nutrients in a minimal feed (essential amino acids and choline)
that were used as coefficients in a boundary reaction representing feed uptake. We
normalized feed uptake to the same total mass (g gDW~! h~1) to ensure that conditions
were comparable, but the absolute value was arbitrary as only relative predictions were
needed. We allowed unlimited uptake of phosphate and disabled all other uptakes as
well as secretion of feed nutrients. We did not allow uptake of any other compounds
than essential amino acids, choline, phosphate, and oxygen under any condition.

To account for uncertainty in relative flux capacities and ensure that no single
reaction was always growth-limiting, we also sampled random bounds for all reactions
for each condition. The flux bound rp,.x of an enzymatic reaction is determined by the
turnover number ke, and total enzyme concentration [E]:

Tmax = kcat [E] . (2)

Approximately lognormal distributions have been observed for both keat [37] and

[E] [38], and the product of two lognormal random variables is also lognormal. We
therefore sampled 7.« from a lognormal distribution with mean 0 and standard
deviation 2 for the natural logarithm of r,,y, allowing upper flux bounds to vary by
approximately six orders of magnitude (S6 Figl). We kept the original reaction

reversibilities and sampled bounds for reversible reactions separately for each direction.

For each oxygen uptake rate, we computed mean growth rate with 95% confidence
band from bootstrapping with 1,000 samples. We fitted the means to experimental
data |39H42| by assuming a simple piecewise linear relationship between water oxygen
saturation (z) and relative oxygen uptake rate:

0 r < xg
T _
r = ﬁ HAS ((EO,.’El) ) (3)
max
1 T > X

where xy and x; are the oxygen saturations at which the relative growth rate is 0 and 1,
respectively. We estimated xg and z; by least-squares fitting of

1% - T
fmax f (rmax) ’ @

where p is growth rate, pmax is maximal growth rate when oxygen is not limiting, and f
is a function that linearly interpolates the metabolic model predictions. We also fitted a
logistic model with asymptotes -1 and 1,

B 2
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where k is the logistic growth rate, and a Monod model,

H T — Zo
= 6
HMmax Ks+x_x07 ()

where K + xg is the saturation at which p = % Hmax-

To identify reaction contributions to oxygen-limited growth, we took the absolute
value of the pFBA fluxes, normalized each flux by its maximum value within each
condition, and used Ward’s minimum variance method to cluster reactions by the
resulting absolute relative fluxes. We mapped reactions from the top eight clusters to
genes and used g:Profiler [43] to identify enriched pathways from KEGG |11]. We used
the genes in the model as background, considered pathways with adjusted p < 0.05 to
be enriched, and discarded pathways outside the model’s scope (xenobiotics and drug
metabolism).

Predicting growth-limiting amino acids in feeds

We obtained ratios of amino acids in three commercial feed ingredients: fish, soybean,
and black soldier fly larvae meal (Table [l| and Fig. [5p). For each feed, these ratios were
used as coefficients for amino acids in a boundary reaction representing feed
consumption. Mass was divided equally between amino acids that were combined in the
feed formulation (Asn/Asp and Gln/Glu). For each feed ingredient, we deactivated
import of amino acids via other boundary reactions, fixed the growth rate to the same
value (arbitrary, as we were interested in generated biomass relative to consumed feed),
and normalized feed uptake to the same total mass (g gDW~! h™!) before minimizing
feed uptake flux. To simulate growth limitations from protein synthesis rather than
energy generation, we also allowed unlimited uptake of glucose. This is supported by
evidence that reducing feed amino acid levels has a negative effect on feed intake
regardless of dietary energy level [44]. We multiplied molecular mass with reduced cost
in the optimal solution for each amino acid exchange reaction and identified the one
with largest negative value as limiting [45]. To supplement the feed with the limiting
amino acid, we set the bounds of its exchange reaction to only allow import, and we
penalized supplementation by adding the exchange reaction to the objective with
coefficient equal to molecular mass . We repeated the steps above until all
limiting amino acids had been found for each feed.

Results

We built a metabolic model of Atlantic salmon (SALARECON) from its genome [19),
metabolic reaction and model databases, and literature (Fig. [1). The model focuses on
energy, amino acid, and nucleotide metabolism and covers 1,133 genes, which amounts
to 2% of the 47,329 annotated genes in the genome and 50% of the 2,281 Atlantic
salmon genes that are associated with metabolic reactions in KEGG [11]. The genes are
mapped through gene-protein-reaction (GPR) associations to a metabolic network of 718
reactions and 530 metabolites (Fig. ) with node degree distributions that are typical
for metabolic and other biological networks [46] (S3 Fig). Reactions and metabolites are
divided between six compartments: cytosol, mitochondrion, inner mitochondrial
membrane, extracellular environment, peroxisome, and nucleus (Fig. ) The
compartments are connected by 175 transport reactions that allow metabolite exchange
through the cytosol, and 86 boundary reactions allow metabolites to move in and out of
the system through the extracellular environment. There are 357 unique metabolites
when those occurring in multiple compartments are counted once. A salmon-specific
biomass reaction based on whole-body composition |27] allows growth rate prediction by
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accounting for production of the proteins, lipids, carbohydrates and nucleic acids that
consitute biomass from metabolites supplied by the metabolic network (Fig. )

Semi-automated

B G

: , "(‘ i f'j;\ annotation and curation
% Draft model
Salmo salar
genome -
@ SIL Iteration until quality
= criteria satisfied
Databases -
Manual metabolic
] reconstruction 0 /
ﬂ Standardized test
Literature andardized tests
Final model and metabolic tasks

Fig 1. Model construction. SALARECON was built from the annotated Atlantic
salmon genome, metabolic reaction and model databases, and literature. The procedure
involved (1) manual metabolic network reconstruction using Insilico Discovery (Insilico
Biotechnology, Stuttgart, Germany), (2) semi-automated annotation and curation using
COBRApy [22]|, and (3) quality evaluation using the standardized metabolic model
testing tool MEMOTE [32] and metabolic tasks [33]. Steps 2 and 3 were iterated until
quality criteria were satisfied. Illustration of metabolic tasks from Richelle et al. [33)].

To investigate whether SALARECON is likely to be an accurate representation of
Atlantic salmon metabolism, we first compared it to the only existing high-quality
metabolic model of a fish as well as all models of multicellular eukaryotes currently
available in the BiGG database [10] (Fig. [3h and [S4 Fig)). Specifically, we hierarchically
clustered the reaction contents of SALARECON and models of zebrafish (Danio
rerio) |17], mouse (Mus musculus) [29], chinese hamster ovary (CHO, Cricetulus
griseus) [30], human (Homo sapiens) |26], and the diatom Phaeodactylum
tricornutum |31] based on Jaccard distance. We used Jaccard distance because it is the
most common metric for measuring the similarity of metabolic models [47]. The models
clustered by phylogeny with fish and mammals forming distinct groups and the diatom
as an outlier, indicating that SALARECON captures fish- and likely salmon-specific
metabolism. SALARECON performed well in community-standardized MEMOTE
tests [32], which evaluate model consistency and annotation (Fig.[3p). It achieved an
overall MEMOTE score of 96% (best possible score is 100%) with subscores of 100% for
Systems Biology Ontology (SBO) annotation, 98% for model consistency, , 94% for
metabolite annotation, 87% for reaction annotation, and 71% for gene annotation. We
also evaluated the ability of SALARECON to perform 210 metabolic tasks grouped into
seven metabolic systems (Fig. k) and 73 metabolic subsystems (S5 Fig). These tasks
were originally defined for mammalian cells [33] but we changed the expected outcomes
of amino acid synthesis tests to match known essentiality in Atlantic salmon [27}34].
SALARECON correctly captured all expected metabolic (in)capabilities for the three
metabolic systems within the scope of the model (energy, amino acid, and nucleotide
metabolism). It also succeeded in 44% of vitamin and cofactor tasks, 43% of
carbohydrate tasks, and 15% of lipid tasks, reflecting the fact that these parts of
metabolism are simplified in the model. The only system completely outside the scope

of SALARECON was glycan metabolism, in which no tasks were successfully performed.
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Fig 2. Model contents. (a) SALARECON contains 1,133 genes (2% of all genes

and

50% of Atlantic salmon genes mapped to reactions in KEGG ), 718 reactions (175
transporting metabolites between compartments and 86 exchanging metabolites with
the extracellular environment), and 530 metabolites (357 when metabolites occuring in

multiple compartments are only counted once). (b) Metabolites and reactions are

divided between five compartments (mitochondrion includes the inner mitochondrial
membrane). Transport reactions are counted multiple times (once for each compartment

of exhanged metabolites). Boundary reactions in cytosol are sink or demand
reactions . The inset shows how many unique metabolites can be transported
between the cytosol and the other compartments (indicated by their initials). (c)
Biomass composition of Atlantic salmon estimated from measured whole-body

composition . The inset summarizes each class of macromolecules. Carbohydrates
and lipids are represented by glycogen and phosphatidylcholine (PC), respectively. ATP
serves both as energy for protein synthesis and as a building block in RNA synthesis.

In total, SALARECON succeeded in 66% of all metabolic tasks, notably all tasks

related to amino acid essentiality (Fig. ) Finally, to test the ability of SALARECON

to capture basic fish physiology, we compared it to the latest human model,

RECON3D |[26], by computing minimal sets of metabolite uptakes and secretions that

allow growth (Fig. ). In addition to oxygen and essential amino acids,

SALARECON required uptake of choline, a lipid precursor, and phosphate, an essential
nutrient for fish that is supplemented in salmon feeds . The only secretions needed
to support growth were carbon dioxide and ammonia. Notably, we found that secretion
of urea was also possible, but not sufficient to support growth without secretion of
ammonia. In line with this, Ammonia is the major nitrogenous waste product in fish

with urea a comparatively minor contributor . RECON3D is much larger than

SALARECON and therefore allowed for a wider range of lipid precursors (27 options).
It also required secretion of a carboxylic acid (11 options) and a lipid byproduct (132
options) in addition to carbon dioxide and a nitrogenous waste product. Urea is the

major nitrogenous waste in mammals, but RECON3D could grow while secreting
ammonia or urate as well.

In our first application of SALARECON, we predicted oxygen-limited growth rates
under hypoxia on a minimal feed containing essential amino acids and choline, using
uniform random sampling to account for uncertainty in feed nutrient ratios and flux
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Fig 3. Model quality evaluation. (a) Clustering of SALARECON and metabolic
models of other multicellular eukaryotes based on Jaccard distance between reaction
contents. Atlantic salmon (Salmo salar) is closer to zebrafish (Danio rerio) than
mouse (Mus musculus) [29], chinese hamster ovary (CHO, Cricetulus griseus) [30],
human (Homo sapiens) |26], and the diatom Phaeodactylum tricornutum [31]. (b)
Model score and subscores from MEMOTE . Subscores evaluate Systems Biology
Ountology (SBO) annotation, model consistency, and database mappings for metabolites,
reactions, and genes. (c) Ability of SALARECON to perform metabolic tasks [33].
Tasks are grouped by metabolic system and classified as successful if model predictions
reflected expected metabolic (in)capabilities. (d) Essential amino acids predicted by
SALARECON match observations [27,[34]. (e) Minimal growth-supporting sets of
metabolite uptakes and secretions for RECON3D and SALARECON. Arrows
indicate uptake and secretion. Metabolites that are only used or produced by human or
salmon are indicated by blue and red, respectively, and metabolites that are used or
produced by both are indicated in purple. Uptake of oxygen and essential amino acids
was required, as well as secretion of carbon dioxide and ammonia, urea, or urate. The
number of alternative metabolites is given in parentheses where applicable.

Carboxylic acid (11)
Lipid byproduct (132) Minimal growth-supporting uptake and secretion sets

capacities (Fig. @a and . Assuming that relative oxygen uptake rate is a linear
function of water oxygen saturation (percent air saturation), we fitted our predictions to
experimental data along with a logistic model and a Monod model (Fig. [4p).
The choice of a linear model for the metabolic fit was motivated by the fact that
diffusive oxygen uptake in fish gills is governed by Fick’s law and therefore proportional
to the oxygen gradient . Also, replacing the linear model by a Michaelis-Menten
model would make the metabolic and Monod fits virtually identical because the Monod
and Michaelis-Menten equations have the same form. We found that the metabolic,
logistic, and Monod models fitted the data about equally well (R? ~ 0.6) but they
differed in their parameter estimates (Fig. [4p). All the models estimated the minimal
oxygen saturation required for growth, but the logistic estimate was low with high
standard error (xg = 0.11 +0.16) and the Monod fit was high with low standard error
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(xo = 0.45 £ 0.04). The metabolic model gave an intermediate estimate and standard
error (xg = 0.31 4 0.10), and it also allowed estimation of the minimal oxygen
saturation required for mazimal growth (1 = 1.37 +0.15). The metabolic fit was closer
than the two other fits to the expected relationship between water oxygen saturation
and growth rate [50], both in terms of the shape of the fitted curve and the estimated
parameter values. The SALARECON estimates were within one and two standard
errors, respectively, of the values zg =~ 0.3 and z; < 1.2 suggested by Thorarensen et
al. [50]. The logistic estimate was within two standard errors of the suggested x¢, but
this confidence interval also included zero. Supporting our claim that SALARECON
captures fish-specific metabolism, we found that the major secretion products across all
oxygen levels and sampled conditions were COs and NHj . Urea had the third
highest secretion flux but this was much smaller than the secretion flux for NHs, and
the secretion fluxes of all other secreted metabolites combined was vanishingly small.

In contrast to the simple growth models, SALARECON is mechanistic and makes it
possible to explain predictions in terms of metabolic fluxes (Fig. ) Assuming that
organisms have generally evolved to grow as efficiently as possible, we used parsimonius
flux balance analysis (pFBA) [36] to minimize overall flux through the metabolic
network while requiring maximal growth rate for each randomly sampled condition and
oxygen level. We identified eight clusters of reactions whose pFBA fluxes made distinct
contributions to oxygen-limited growth (Fig. |de). Connecting clusters to the Atlantic
salmon genome through GPR associations, we also identified enriched metabolic
pathways among the genes associated with each cluster (Fig. )

In one cluster, fluxes were perfectly correlated with relative growth rate, indicating
that they contained reactions that were always necessary for growth. Indeed, this
clusters was enriched in lipid metabolism, which directly produces a biomass precursor,
and pathways related to NAD(P)H metabolism. The fluxes of two other clusters both
increased rapidly at the very lowest oxygen levels before plateauing at higher oxygen
levels, in one case decreasing slightly after the initial increase. These clusters were
enriched in pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, oxidative
phosphorylation, pyruvate, and thiamine metabolism, indicating that energy generation
from glucose was maximized at low oxygen levels while other energy-generating
pathways were activated at higher oxygen levels. Four of the five remaining clusters
increased slightly less than the clusters enriched in energy generation from glucose at low
oxygen levels but kept increasing at higher oxygen levels. These clusters were enriched
in pathways related to metabolism of fatty acids and amino acids, suggesting that these
compounds become important energy sources after saturation of glucose catabolism at
low oxygen levels. Nitrogen metabolism, which includes amino acid biosynthesis and
disposal of nitrogenous waste products, was also overrepresented. The final cluster
consisted of reactions with no or very little flux, even at the highest oxygen levels, and
was enriched in metabolism of pyrimidines, S-alanine, and essential amino acids.

Finally, to demonstrate the potential of SALARECON to address key challenges in
aquaculture, we used it to predict growth-limiting amino acids and feed efficiencies for

three commercial feed ingredients: fish, soybean, and insect meal (Table [l| and Fig. [p).

For each feed ingredient, we iteratively identified and supplemented the most limiting
amino acid until all amino acid limitations had been lifted, computing feed efficiency at
each iteration (S2 Fig). Comparing predicted limiting amino acids in fish meal to
soybean and insect meal, we found that lysine and threonine were more limiting in both
soybean and insect meal, methionine was more limiting in soybean meal, and arginine
was more limiting in insect meal (Fig. , Fig. , and . The feed efficiency
predictions suggest that the baseline feed efficiency of fish meal can be achieved by
supplementing one and three amino acids for soybean and insect meal, respectively
(Fig. ) For soybean meal, major increases in feed efficiency were predicted for lysine,
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Fig 4. Oxygen-limited growth analysis. (a) SALARECON predictions of relative
growth rate under oxygen limitation as a function of relative oxygen uptake rate. Feed
composition and flux capacities were randomized 1,000 times (light blue) and the mean
across conditions is shown with 95% confidence band from bootstrapping with 1,000
samples (dark blue). (b) Metabolic, logistic, and Monod model fits to experimental data
from Berg and Danielsberg (circles), Bergheim et al. (triangles), Hosfeld et

al. (squares), and Hosfeld et al. (diamonds). SALARECON predictions were
fitted by assuming a linear relationship between relative oxygen uptake rate and water
oxygen saturation. (c) Coefficient of determination (R?), minimal oxygen saturation
required for growth (z(), and minimal oxygen saturation required for mazimal growth
(1) from fitted models with same colors as in b. Error bars indicate two standard
errors of the estimates. (d) Minimal flux distributions for metabolic model predictions
shown in a from parsimonious flux balance analysis (pFBA) . Rows are reactions,
columns are flux distributions sorted by relative oxygen uptake rate, and each cell shows
absolute flux normalized by maximum value for each condition. Rows are clustered by
Ward’s minimum variance method and divided into eight clusters indicated by colors.
(e) Mean absolute relative flux with 95% confidence bands from bootstrapping with
1,000 samples for the eight clusters with same colors as in d. Relative growth rate is
indicated by a dashed line. (f) Enrichment of metabolic pathways from KEGG for
the eight clusters with same colors as in d and e and size reflecting the fraction of genes
in each pathway that are found in a cluster (recall).

threonine, and methionine supplementation, while lysine had the largest impact on
insect meal (S8 Fig)). The predictions from SALARECON agree well with expected
baseline feed efficiencies as well as reports that lysine, methionine, threonine,
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and arginine are more limiting in plant-based feeds than in marine feeds [53}[54].

Table 1. Amino acid compositions of feed ingredients. Mass percentage of each amino
acid relative to total mass of amino acids in feed ingredients used in simulations |55].

Amino acid Fish meal Soybean meal Insect meal

Ala 6.82 1.43 7.05
Arg 7.19 7.54 5.34
Asn/Asp 10.02 11.87 10.07
Cys 0.93 1.74 0.62
Gln/Glu 13.98 18.74 11.12
Gly 6.88 4.19 6.67
His 2.62 2.69 3.32
Tle 4.64 4.61 4.86
Leu 7.91 8.02 7.76
Lys 8.31 6.44 6.19
Met 3.07 1.45 2.06
Phe 4.29 5.22 4.31
Pro 4.45 5.08 6.39
Ser 4.29 4.13 4.71
Thr 4.57 3.67 4.29
Trp 1.13 1.58 1.61
Tyr 3.40 3.60 6.85
Val 5.48 5.00 6.79
Discussion

SALARECON is the first metabolic model of a production animal, bridging the gap
between production and systems biology and initiating a framework for adapting
Atlantic salmon breeding and nutrition strategies to modern feeds. By explicitly
representing connections between metabolites, reactions, and genes, it connects the
genome to metabolism and growth in a way that can be tuned to specific genetic and
environmental contexts by integration of domain knowledge and experimental data [§].
Thus, SALARECON forms a transdiciplinary framework for diverse disciplines and data
sets involved in Atlantic salmon research and aquaculture. Tools developed for
constraint-based modeling of microbes and well-studied plants and animals can now be
applied in production biology, providing a sharper lens through which to interpret omics
data by requiring consistency with flux balances and other known constraints. This
enables clearer analysis than classical multivariate statistics, which does not incorporate
such mechanistic knowledge.

Although laborious and time-consuming, our bottom-up manual reconstruction of
the Atlantic salmon metabolic network was necessary to make SALARECON a
high-quality predictive model. Automatically built models work well for microbes but
are still outperformed by models that are built by manual iteration, and reconstruction
of eukaryotes is more challenging due to larger genomes, less knowledge, and
compartmentalization [12}[13]. However, semi-automated annotation and curation
combined with automated MEMOTE tests [32] and metabolic tasks |33] allowed faster
iteration, and future reconstructions of related species |56| can benefit from our efforts
by using SALARECON as a template. MEMOTE and metabolic tasks were
instrumental in the development of SALARECON, and we highly recomend integrating
testing in model development. Tests help catch mistakes that arise when modifying a
model and do triple duty by specifying what it should be capable of, identifying broken
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Fig 5. Growth-limiting amino acids in commercial feed ingredients. (a)
Amino acid composition of SALARECON biomass, fish meal, soybean meal, and insect
meal . (b) Order of amino acid limitations in feed ingredients based on soybean and
fish meal. Amino acids that are closer to the top left and bottom right corners were
more limiting in soybean meal and fish meal, respectively, as indicated by size. (c) Order
of amino acid limitations in feed ingredients based on insect and fish meal. Amino acids
that are closer to the top left and bottom right corners were more limiting in insect
meal and fish meal, respectively, as indicated by size and color. (d) Feed efficiency after
successive supplementation of the most limiting amino acid for fish, soybean, and insect
meal. The baseline feed efficiency of fish meal is indicated by a dashed blue line, and
ranges observed by Kolstad et al. [51] and Dvergedal et al. are highlighted in gray.

functionality, and forming a basis for comparison with other models, e.g. new versions
or models of different tissues or species. Clearly formulated tests also make the model
more accessible to non-modelers, speaking the same language as nutritionists or
physiologists. Such experts can point out missing or ill-formulated tests, which in turn
contribute to improvement

We have strived to make SALARECON an accurate model of Atlantic salmon
metabolism and growth, but it does not aim to capture salmon physiology exhaustively
or perfectly. It covers 2% of the genes in the genome, which amounts to 50% of Atlantic
salmon genes mapped to reactions in KEGG , and its focus is on core metabolism
generating energy and biomass. This covers pathways that connect feed to fillet, which
is a primary focus of research and aquaculture, but obviously excludes many other
interesting processes such as synthesis of long-chain polyunsaturated fatty acids. Still,
SALARECON performs very well according to all of our metrics: it is more similar to
the latest zebrafish model than to any other multicellular eukaryote for which a
model is available in BiGG , achieves a MEMOTE score of 96%, which is
better than all models in BiGG (although many BiGG models could presumably be
annotated and curated to reach a comparable score with reasonable effort), and
performs all metabolic tasks within the scope of the model (amino acid, nucleotide, and

March 15, 2022

1224


https://doi.org/10.1101/2021.06.03.446971
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446971; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

energy metabolism). It also correctly classifies amino acids as essential [27,/34] and
captures basic fish physiology, e.g. aerobic growth with uptake of essential amino acids,
choline, and phosphate, and secretion of carbon dioxide and ammonia.

The extensive annotation of genes, metabolites, and reactions is a key strength of
SALARECON that facilitates use with existing models, tools, and data. In particular,
identifiers from BiGG [10] make it easy to compare and combine SALARECON with
state-of-the-art models [57}[58], e.g. to predict interactions between Atlantic salmon and
its gut microbiota. It also allows direct application of implemented methods such as
evaluation of metabolic tasks [33]. The salmon-specific biomass reaction enables
prediction of growth and related fluxes and is based on organism-specific data |27],
making SALARECON a more realistic representation of salmon metabolism than a
network reconstruction [12]. As demonstrated for Atlantic cod [18], even getting to this
stage is challenging for non-model animals.

Our analysis of growth under oxygen limitation shows that phenotypes predicted by
SALARECON can be fitted to experimental data and produce detailed mechanistic
explanations of Atlantic salmon physiology. Specifically, SALARECON explained
hypoxic metabolism and growth in terms of metabolic fluxes with implications for fish
welfare and productivity in aquaculture. The growth predictions depend on unknown
environmental conditions and flux capacities, but SALARECON can be used to account
for such uncertainty through random sampling. Average growth predictions from
SALARECON fitted the available data [39-42] as well as simple growth models and
gave accurate estimates of critical water oxygen saturations in agreement with
observations [50]. The predicted metabolic fluxes defined clusters of reactions with
distinct pathway enrichments and contributions to hypoxic growth, notably suggesting
that energy generation from glucose becomes saturated at low oxygen levels and that
amino and fatty acids become more important energy sources with increasing oxygen.
Predictions contrasting growth-limiting amino acids in three commercial feed
ingredients also agreed well with data [53},/54] and showed that SALARECON can be
used to evaluate the efficiency of sustainable feeds, a key challenge for modern
aquaculture. Feed efficiencies predicted by SALARECON lie within reported
ranges [51,/52] and suggest that the feed efficiency of fish meal can be achieved by
supplementing one amino acid for insect meal and three for soybean meal. This shows
that SALARECON can be used to evaluate both current and novel feeds, potentially
reducing the need for expensive fish experiments in vitro or in vivo.

In future work, we will expand SALARECON to cover more processes such as lipid
and carbohydrate metabolism in full detail, and we will tailor it to gut, liver, muscle,
and other tissues using omics data and metabolic tasks [33]. We will also leverage
automated metabolic reconstruction tools for microbes to build models of the Atlantic
salmon gut microbiota [57]. By coupling tissue-specific models to each other and to gut

microbiota models, we can make detailed and partially dynamic whole-body models [59].

This would be a major leap from available dynamic models [60] and provide a
mechanistic alternative to state-of-the-art bioenergetics models [61], opening up new
possibilities for understanding fish physiology and rational engineering of feeds,
conditions, and genetics.

Conclusion

SALARECON covers half of the annotated metabolic genes in the Atlantic salmon
genome and can predict metabolic fluxes and growth with a salmon-specific biomass
reaction. It has been extensively annotated, curated, and evaluated, and it can be used
to tackle research questions from fish physiology to aquaculture. In particular,
SALARECON is a promising new tool for predicting breeding strategies and novel feeds
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that optimize for production parameters such as feed efficiency and impact on fish
health and environment. Future work will expand SALARECON and integrate it with

omics data to make tissue-specific and partially dynamic whole-body models.

SALARECON should facilitate systems biology studies of Atlantic salmon and other
salmonids, and we hope that it will be widely used by modelers as well as biologists.

Supporting information

— | Add/edit pathway f¢———
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Decision

S1 Fig. Draft model construction. Flowchart showing the procedure used to add
new pathways to the draft model or edit pathways already in the draft model. Pathways

were added or edited one by one with information about reactions obtained from

databases and literature. After adding or editing a pathway, the energy and redox
balances and topological properties of the model, e.g., flux consistency, were checked.
Based on the results from these analyses, the pathway was either kept or modified.
Before final acceptance of a pathway, FBA was performed to ensure that the model was

able to predict growth and metbabolic fluxes.
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S2 Fig. Adding nutritional supplements to a feed uptake reaction Feed
uptake reactions are similar to biomass reactions, but supply metabolites rather than
consuming them. The ratios between feed components are represented stoichiometrically,
and scaled to sum to 1 g feed per mol uptake, so that one gram of the feed in the figure
is equivalent to 2 mol A, 3 mol B and 1.4 mol C. With a fixed growth rate, the
minimization of feed uptake is used as the objective of FBA. Surplus of metabolites in
the feed uptake reactions are allowed to be exported via exchange reactions to avoid
blocking the feed uptake reaction. Limiting metabolites can be identified from the
reduced costs of the FBA solution. To avoid large molecules being favored, the reduced
cost should be multiplied by the molecular mass (M) of the metabolite. Other factors
such as price, CO5 equivalents, or environmental cost could be taken into account in
this step. The boundaries of the limiting exchange reaction are reversed to allow uptake,
and the reaction is scaled by molecular mass and added to the objective. In this case,
the cost of supplements is assumed to be equivalent to mass, but the cost could also be
set to be higher than the other feed ingredients, which could be more realistic.
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S3 Fig. Model degree distributions. (a) Distribution of number of metabolites a3
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extracellular environment and transport reactions usually exchange an even number of a5
metabolites between compartments. (b) Distribution of number of genes associated with a6
reactions. Transport and boundary reactions lack annotation and are not associated a17
with any genes. Most metabolic reactions (95%) are associated with one or more genes. s
(¢) Cumulative distribution of number of reactions associated with genes and metabolites a0

(number of genes or metabolites associated with k or more reactions for all k). Most 420
genes and metabolites are associated with a few reactions but some metabolites are 421
highly connected hubs. Power law fits are shown for genes and metabolites. 422
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S4 Fig. Reaction contents of models of multicellular eukaryotes. Clustered  s2a
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S6 Fig. Oxygen-limited growth analysis. (a) Feed coefficients of amino acids
and choline in conditions used to predict oxygen-limited growth (1,000 samples). The
coefficients were randomly sampled from a uniform distribution. (b) Pairwise Pearson
correlations between metabolites of feed coefficents shown in a. (c¢) Flux bounds for
conditions used to predict oxygen-limited growth (1,000 samples). Flux bounds were
randomly sampled from a lognormal distribution. (d) Pairwise Pearson correlations
between reactions of flux bounds shown in a. (e) Predicted absolute growth rates as a
function of absolute oxygen uptake rates for the 1,000 randomly sampled conditions.

Flux relative to growth rate

00 02 04 06 08 10
Relative oxygen uptake rate

S7 Fig. Secreted metabolites in oxygen-limited growth analysis. Secretion
flux relative to growth rate from oxygen-limited growth simulations. Fluxes are shown
for CO5, NHgs, urea and all other secreted metabolites combined. Mean relative flux
across 1,000 randomly sampled conditions is shown with 95% confidence bands from
bootstrapping with 1,000 samples.
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S8 Fig. Growth-limiting amino acids in commercial feed ingredients. Feed
efficiency as a function of number of supplemented amino acids, measured in mg feed
ingredient and supplemented amino acids consumed / gDW biomass produced for (a)
fish meal, (b) soybean meal, and (c) black soldier fly larvae meal. Amino acids are
indicated by color and ordered from most limiting (left) to least limiting (right). Each
bar represents the fed amount of amino acid sources, with one amino acid supplemented
per step towards the right. Limiting amino acids were supplemented until all feed
protein had been replaced.
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