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Abstract
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is
much interest in optimizing its genetics and rearing conditions for growth and feed
efficiency. Marine feed ingredients must be replaced to meet global demand, with
challenges for fish health and sustainability. Metabolic models can address this by
connecting genomes to metabolism, which converts nutrients in the feed to energy and
biomass, but such models are currently not available for major aquaculture species such
as salmon. We present SALARECON, a model focusing on energy, amino acid, and
nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and
growth. It performs well in standardized tests and captures expected metabolic
(in)capabilities. We show that it can explain observed hypoxic growth in terms of
metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed
ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and
the model suggests that marine feed efficiency can be achieved by supplementing a few
amino acids to plant- and insect-based feeds. SALARECON is a high-quality model
that makes it possible to simulate Atlantic salmon metabolism and growth. It can be
used to explain Atlantic salmon physiology and address key challenges in aquaculture
such as development of sustainable feeds.

Author summary
Atlantic salmon aquaculture generates billions of euros annually, but faces challenges of
sustainability. Salmon are carnivores by nature, and fish oil and fish meal have become
scarce resources in fish feed production. Novel, sustainable feedstuffs are being trialed
hand in hand with studies of the genetics of growth and feed efficiency. This calls for a
mathematical-biological framework to integrate data with understanding of the effects
of novel feeds on salmon physiology and its interplay with genetics. We have developed
the SALARECON model of the core salmon metabolic reaction network, linking its
genome to metabolic fluxes and growth. Computational analyses show good agreement
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with observed growth, amino acid limitations, and feed efficiencies, illustrating the
potential for in silico studies of potential feed mixtures. In particular, in silico
screening of possible diets will enable more efficient animal experiments with improved
knowledge gain. We have adopted best practices for test-driven development, virtual
experiments to assay metabolic capabilities, revision control, and FAIR data and model
management. This facilitates fast, collaborative, reliable development of the model for
future applications in sustainable production biology.

Introduction 1

Salmonid aquaculture has grown in volume and economic importance over the past 2

several decades, and Atlantic salmon (Salmo salar) has become the world’s most 3

valuable fish commodity [1]. This is largely thanks to selective breeding, which has 4

improved both growth rate and feed efficiency [2]. The increase in fish farming has also 5

increased demand for feed, and insufficient marine resources has led to a switch to 6

plant-based ingredients [3]. This has reduced production costs and exploitation of fish 7

stocks, but salmon are not adapted to eating plants and current plant-based feeds have 8

a negative impact on fish health and the environment [4, 5]. Also, plant-based feeds are 9

complex, the ingredient market is fluctuating, and feeding trials are demanding. Thus, 10

developing feeds that minimize cost and environmental impact while providing 11

necessary nutrients to the fish is an important challenge [6]. 12

The metabolic network of a cell or organism converts nutrients that are present in 13

the environment to the energy and building blocks that are required to live and grow. It 14

consists of metabolites that are interconverted by metabolic reactions, most of which are 15

catalyzed by enzymes that are encoded by the genome, and it can be translated to a 16

metabolic model, which allows mathematical analysis of network functionality through 17

methods such as flux balance analysis (FBA) [7]. Specifically, metabolic models allow 18

prediction of growth and metabolic fluxes (steady-state reaction rates) that are linked 19

to the genome through logical gene-protein-reaction (GPR) associations, making them 20

promising tools for addressing challenges in aquaculture such as breeding for feed 21

efficiency and sustainable feed development [8]. Large databases of metabolic reactions 22

and models [9–11] and methods for metabolic network reconstruction from annotated 23

genomes [12,13] have made such models available for organisms ranging from microbes 24

to animals [14]. However, there are still very few metabolic models of fish 25

available [15–18] and none of Atlantic salmon or other important farmed fish species. 26

Here, we present SALARECON: a metabolic model built from the Atlantic salmon 27

genome [19] that predicts growth and metabolic fluxes. It has been manually curated to 28

ensure flux consistency and focuses on energy, amino acid, and nucleotide metabolism. 29

SALARECON is a high-quality model according to community-standardized tests, and 30

it captures expected metabolic (in)capabilities such as amino acid essentiality. Using 31

oxygen-limited growth under hypoxia as an example, we show that model predictions 32

can explain salmon physiology in terms of metabolic fluxes that are, in turn, tied to 33

genes and pathways. Furthermore, we demonstrate an important application for 34

aquaculture by predicting growth-limiting amino acids and feed efficiencies for 35

commercial feed ingredients in agreement with data. 36

Methods 37

Building the metabolic model 38

We manually built a draft model focusing on Atlantic salmon energy, amino acid, and 39

nucleotide metabolism using the genome [19] with annotations from KEGG [11] and the 40
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software Insilico Discovery (Insilico Biotechnology, Stuttgart, Germany). Pathways were 41

added or edited one by one with information about reactions obtained from databases 42

and literature (S1 Fig). After adding or editing a pathway, the energy and redox 43

balances and topological properties of the model, e.g., flux consistency, were checked. 44

Based on the results from these analyses, the pathway was either kept or modified. 45

Before final acceptance of a pathway, FBA was performed to ensure that the model was 46

able to predict growth and metbabolic fluxes. We used WoLF PSORT [20] with default 47

settings through SAPP [21] to assign metabolites and reactions to six different 48

compartments (cytosol, mitochondrion, inner mitochondrial membrane, extracellular 49

environment, peroxisome, and nucleus). Exchange reactions were added to allow 50

metabolite import (negative flux) and export (positive flux). 51

After finishing the draft model, we converted the model to the BiGG [10] namespace 52

and used COBRApy [22] to iteratively curate it. We added and removed metabolites, 53

reactions, and genes, mapped genes to reactions using AutoKEGGRec [23], and added a 54

salmon-specific biomass reaction. We also added annotations from MetaNetX [9], 55

KEGG [11], UniProt [24], and NCBI [25]. To infer gene-protein-reaction (GPR) 56

associations for reactions, we mapped Atlantic salmon genes to human homologs and 57

copied GPR associations from the most recent human model [26]. If no GPR association 58

could be inferred for a reaction, we used an OR relation between genes mapped to that 59

reaction. To build the biomass reaction, we estimated the fractional composition of 60

macromolecules in 1 g dry weight biomass (gDW) from Atlantic salmon whole-body 61

composition [27]. We mapped macromolecules to metabolites and estimated the 62

fractional composition of amino acids in proteins and nucleoside triphosphates in nucleic 63

acids from proteome and genome sequences [19], respectively. We finalized the model by 64

alternating semi-automated annotation and curation with quality evaluation (as 65

decribed below), iterating until we saw no further opportunities to improve the model 66

without expanding its scope beyond energy, amino acid, and nucleotide metabolism. The 67

final model was exported to Systems Biology Markup Language (SBML) format [28]. 68

Evaluating the quality of the metabolic model 69

First, we compared the reaction contents in SALARECON to other models of 70

multicellular eukaryotes available in the BiGG [10] namespace (Danio rerio [17], Mus 71

musculus [29], Cricetulus griseus [30], Homo sapiens [26], and Phaeodactylum 72

tricornutum [31]). We excluded boundary reactions and computed the Jaccard distance 73

J(A,B) between each pair of models A and B by dividing the size of the intersection of 74

reactions in the two models by the size of the union: 75

J(A,B) =
|A ∩B|
|A ∪B|

(1)

The Jaccard distances were used for complete-linkage agglomerative hierarchical 76

clustering of the models. 77

Second, we tested SALARECON’s consistency and annotation using the community 78

standard MEMOTE [32] and its metabolic (in)capabilities using tasks defined for 79

mammalian cells [33]. We adapted tasks to Atlantic salmon by moving metabolites from 80

compartments not included in SALARECON to the cytoplasm and modifying the 81

expected outcomes of amino acid synthesis tests to match known essentiality [27,34]. 82

Third, we used the model to predict growth in the absence of individual amino acids. 83

We allowed both uptake and secretion of all extracellular metabolites, disabled uptake 84

of each amino acid separately, and maximized growth rate using FBA. Amino acids 85

were classified as essential if they were required for growth and non-essential otherwise, 86

and the predicted essentiality was compared to experimental data [27,34]. 87
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Finally, we evaluated the ability of SALARECON to capture fish-specific 88

metabolism by comparing metabolite uptake and secretion to the most recent human 89

model [26]. Specifically, we enumerated minimal growth-supporting uptake and 90

secretion sets for both models using scalable metabolic pathway analysis [35]. We 91

required non-zero growth rate, uptake of oxygen and essential amino acids, and 92

secretion of carbon dioxide as well as ammonia, urea, or urate. We enumerated minimal 93

uptake sets first and then allowed uptake of all metabolites found in uptake sets before 94

enumerating minimal secretion sets. 95

Analyzing oxygen-limited growth 96

We used parsimonious FBA (pFBA) [36] to find maximal growth rates and minimal flux 97

distributions for 1,000 randomized conditions and 50 logarithmically spaced oxygen 98

uptake rates in the range r ∈ (0, rmax) where r is uptake rate and rmax is the minimal 99

oxygen uptake rate at maximal growth. For each condition, we uniformly sampled 100

random ratios (1–100) of nutrients in a minimal feed (essential amino acids and choline) 101

that were used as coefficients in a boundary reaction representing feed uptake. We 102

normalized feed uptake to the same total mass (g gDW−1 h−1) to ensure that conditions 103

were comparable, but the absolute value was arbitrary as only relative predictions were 104

needed. We allowed unlimited uptake of phosphate and disabled all other uptakes as 105

well as secretion of feed nutrients. We did not allow uptake of any other compounds 106

than essential amino acids, choline, phosphate, and oxygen under any condition. 107

To account for uncertainty in relative flux capacities and ensure that no single 108

reaction was always growth-limiting, we also sampled random bounds for all reactions 109

for each condition. The flux bound rmax of an enzymatic reaction is determined by the 110

turnover number kcat and total enzyme concentration [E]: 111

rmax = kcat[E]. (2)

Approximately lognormal distributions have been observed for both kcat [37] and 112

[E] [38], and the product of two lognormal random variables is also lognormal. We 113

therefore sampled rmax from a lognormal distribution with mean 0 and standard 114

deviation 2 for the natural logarithm of rmax, allowing upper flux bounds to vary by 115

approximately six orders of magnitude (S6 Fig). We kept the original reaction 116

reversibilities and sampled bounds for reversible reactions separately for each direction. 117

For each oxygen uptake rate, we computed mean growth rate with 95% confidence 118

band from bootstrapping with 1,000 samples. We fitted the means to experimental 119

data [39–42] by assuming a simple piecewise linear relationship between water oxygen 120

saturation (x) and relative oxygen uptake rate: 121

r

rmax
=


0 x ≤ x0
x−x0

x1−x0
x ∈ (x0, x1)

1 x ≥ x1
, (3)

where x0 and x1 are the oxygen saturations at which the relative growth rate is 0 and 1, 122

respectively. We estimated x0 and x1 by least-squares fitting of 123

µ

µmax
= f

(
r

rmax

)
, (4)

where µ is growth rate, µmax is maximal growth rate when oxygen is not limiting, and f 124

is a function that linearly interpolates the metabolic model predictions. We also fitted a 125

logistic model with asymptotes -1 and 1, 126

µ

µmax
=

2

1 + ek(x0−x)
− 1, (5)
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where k is the logistic growth rate, and a Monod model, 127

µ

µmax
=

x− x0
Ks + x− x0

, (6)

where Ks + x0 is the saturation at which µ = 1
2µmax. 128

To identify reaction contributions to oxygen-limited growth, we took the absolute 129

value of the pFBA fluxes, normalized each flux by its maximum value within each 130

condition, and used Ward’s minimum variance method to cluster reactions by the 131

resulting absolute relative fluxes. We mapped reactions from the top eight clusters to 132

genes and used g:Profiler [43] to identify enriched pathways from KEGG [11]. We used 133

the genes in the model as background, considered pathways with adjusted p ≤ 0.05 to 134

be enriched, and discarded pathways outside the model’s scope (xenobiotics and drug 135

metabolism). 136

Predicting growth-limiting amino acids in feeds 137

We obtained ratios of amino acids in three commercial feed ingredients: fish, soybean, 138

and black soldier fly larvae meal (Table 1 and Fig. 5a). For each feed, these ratios were 139

used as coefficients for amino acids in a boundary reaction representing feed 140

consumption. Mass was divided equally between amino acids that were combined in the 141

feed formulation (Asn/Asp and Gln/Glu). For each feed ingredient, we deactivated 142

import of amino acids via other boundary reactions, fixed the growth rate to the same 143

value (arbitrary, as we were interested in generated biomass relative to consumed feed), 144

and normalized feed uptake to the same total mass (g gDW−1 h−1) before minimizing 145

feed uptake flux. To simulate growth limitations from protein synthesis rather than 146

energy generation, we also allowed unlimited uptake of glucose. This is supported by 147

evidence that reducing feed amino acid levels has a negative effect on feed intake 148

regardless of dietary energy level [44]. We multiplied molecular mass with reduced cost 149

in the optimal solution for each amino acid exchange reaction and identified the one 150

with largest negative value as limiting [45]. To supplement the feed with the limiting 151

amino acid, we set the bounds of its exchange reaction to only allow import, and we 152

penalized supplementation by adding the exchange reaction to the objective with 153

coefficient equal to molecular mass (S2 Fig). We repeated the steps above until all 154

limiting amino acids had been found for each feed. 155

Results 156

We built a metabolic model of Atlantic salmon (SALARECON) from its genome [19], 157

metabolic reaction and model databases, and literature (Fig. 1). The model focuses on 158

energy, amino acid, and nucleotide metabolism and covers 1,133 genes, which amounts 159

to 2% of the 47,329 annotated genes in the genome and 50% of the 2,281 Atlantic 160

salmon genes that are associated with metabolic reactions in KEGG [11]. The genes are 161

mapped through gene-protein-reaction (GPR) associations to a metabolic network of 718 162

reactions and 530 metabolites (Fig. 2a) with node degree distributions that are typical 163

for metabolic and other biological networks [46] (S3 Fig). Reactions and metabolites are 164

divided between six compartments: cytosol, mitochondrion, inner mitochondrial 165

membrane, extracellular environment, peroxisome, and nucleus (Fig. 2b). The 166

compartments are connected by 175 transport reactions that allow metabolite exchange 167

through the cytosol, and 86 boundary reactions allow metabolites to move in and out of 168

the system through the extracellular environment. There are 357 unique metabolites 169

when those occurring in multiple compartments are counted once. A salmon-specific 170

biomass reaction based on whole-body composition [27] allows growth rate prediction by 171
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accounting for production of the proteins, lipids, carbohydrates and nucleic acids that 172

consitute biomass from metabolites supplied by the metabolic network (Fig. 2c). 173

Draft model

Final model

SALARECON

 Semi-automated 
annotation and curation

Manual metabolic
reconstruction

Iteration until quality
criteria satisfied

Memote

Standardized tests
and metabolic tasks

1

2

3

Salmo salar
genome

Databases

Literature

Fig 1. Model construction. SALARECON was built from the annotated Atlantic
salmon genome, metabolic reaction and model databases, and literature. The procedure
involved (1) manual metabolic network reconstruction using Insilico Discovery (Insilico
Biotechnology, Stuttgart, Germany), (2) semi-automated annotation and curation using
COBRApy [22], and (3) quality evaluation using the standardized metabolic model
testing tool MEMOTE [32] and metabolic tasks [33]. Steps 2 and 3 were iterated until
quality criteria were satisfied. Illustration of metabolic tasks from Richelle et al. [33].

To investigate whether SALARECON is likely to be an accurate representation of 174

Atlantic salmon metabolism, we first compared it to the only existing high-quality 175

metabolic model of a fish as well as all models of multicellular eukaryotes currently 176

available in the BiGG database [10] (Fig. 3a and S4 Fig). Specifically, we hierarchically 177

clustered the reaction contents of SALARECON and models of zebrafish (Danio 178

rerio) [17], mouse (Mus musculus) [29], chinese hamster ovary (CHO, Cricetulus 179

griseus) [30], human (Homo sapiens) [26], and the diatom Phaeodactylum 180

tricornutum [31] based on Jaccard distance. We used Jaccard distance because it is the 181

most common metric for measuring the similarity of metabolic models [47]. The models 182

clustered by phylogeny with fish and mammals forming distinct groups and the diatom 183

as an outlier, indicating that SALARECON captures fish- and likely salmon-specific 184

metabolism. SALARECON performed well in community-standardized MEMOTE 185

tests [32], which evaluate model consistency and annotation (Fig. 3b). It achieved an 186

overall MEMOTE score of 96% (best possible score is 100%) with subscores of 100% for 187

Systems Biology Ontology (SBO) annotation, 98% for model consistency, , 94% for 188

metabolite annotation, 87% for reaction annotation, and 71% for gene annotation. We 189

also evaluated the ability of SALARECON to perform 210 metabolic tasks grouped into 190

seven metabolic systems (Fig. 3c) and 73 metabolic subsystems (S5 Fig). These tasks 191

were originally defined for mammalian cells [33] but we changed the expected outcomes 192

of amino acid synthesis tests to match known essentiality in Atlantic salmon [27,34]. 193

SALARECON correctly captured all expected metabolic (in)capabilities for the three 194

metabolic systems within the scope of the model (energy, amino acid, and nucleotide 195

metabolism). It also succeeded in 44% of vitamin and cofactor tasks, 43% of 196

carbohydrate tasks, and 15% of lipid tasks, reflecting the fact that these parts of 197

metabolism are simplified in the model. The only system completely outside the scope 198

of SALARECON was glycan metabolism, in which no tasks were successfully performed. 199
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a

b

Genes in genome
(47,329)

Genes in model (2%)

Metabolic genes

(5%)

c

Fig 2. Model contents. (a) SALARECON contains 1,133 genes (2% of all genes and
50% of Atlantic salmon genes mapped to reactions in KEGG [11]), 718 reactions (175
transporting metabolites between compartments and 86 exchanging metabolites with
the extracellular environment), and 530 metabolites (357 when metabolites occuring in
multiple compartments are only counted once). (b) Metabolites and reactions are
divided between five compartments (mitochondrion includes the inner mitochondrial
membrane). Transport reactions are counted multiple times (once for each compartment
of exhanged metabolites). Boundary reactions in cytosol are sink or demand
reactions [12]. The inset shows how many unique metabolites can be transported
between the cytosol and the other compartments (indicated by their initials). (c)
Biomass composition of Atlantic salmon estimated from measured whole-body
composition [27]. The inset summarizes each class of macromolecules. Carbohydrates
and lipids are represented by glycogen and phosphatidylcholine (PC), respectively. ATP
serves both as energy for protein synthesis and as a building block in RNA synthesis.

In total, SALARECON succeeded in 66% of all metabolic tasks, notably all tasks 200

related to amino acid essentiality (Fig. 3d). Finally, to test the ability of SALARECON 201

to capture basic fish physiology, we compared it to the latest human model, 202

RECON3D [26], by computing minimal sets of metabolite uptakes and secretions that 203

allow growth [35] (Fig. 3e). In addition to oxygen and essential amino acids, 204

SALARECON required uptake of choline, a lipid precursor, and phosphate, an essential 205

nutrient for fish that is supplemented in salmon feeds [48]. The only secretions needed 206

to support growth were carbon dioxide and ammonia. Notably, we found that secretion 207

of urea was also possible, but not sufficient to support growth without secretion of 208

ammonia. In line with this, Ammonia is the major nitrogenous waste product in fish 209

with urea a comparatively minor contributor [49]. RECON3D is much larger than 210

SALARECON and therefore allowed for a wider range of lipid precursors (27 options). 211

It also required secretion of a carboxylic acid (11 options) and a lipid byproduct (132 212

options) in addition to carbon dioxide and a nitrogenous waste product. Urea is the 213

major nitrogenous waste in mammals, but RECON3D could grow while secreting 214

ammonia or urate as well. 215

In our first application of SALARECON, we predicted oxygen-limited growth rates 216

under hypoxia on a minimal feed containing essential amino acids and choline, using 217

uniform random sampling to account for uncertainty in feed nutrient ratios and flux 218
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d
Non-essentialEssential

Predicted Observed

a

e

His

Lys

Thr

Ile

Met

Trp

Leu

Phe

Val

O2Lipid precursor (27) Arg Choline Phosphate

Shared Salmo salarHomo sapiens

SALARECONRECON3D

NH3 / Urea / Urate

Lipid byproduct (132)

CO2 NH3

Minimal growth-supporting uptake and secretion sets
Carboxylic acid (11)

b c
Memote score: 96%

Fig 3. Model quality evaluation. (a) Clustering of SALARECON and metabolic
models of other multicellular eukaryotes based on Jaccard distance between reaction
contents. Atlantic salmon (Salmo salar) is closer to zebrafish (Danio rerio) [17] than
mouse (Mus musculus) [29], chinese hamster ovary (CHO, Cricetulus griseus) [30],
human (Homo sapiens) [26], and the diatom Phaeodactylum tricornutum [31]. (b)
Model score and subscores from MEMOTE [32]. Subscores evaluate Systems Biology
Ontology (SBO) annotation, model consistency, and database mappings for metabolites,
reactions, and genes. (c) Ability of SALARECON to perform metabolic tasks [33].
Tasks are grouped by metabolic system and classified as successful if model predictions
reflected expected metabolic (in)capabilities. (d) Essential amino acids predicted by
SALARECON match observations [27,34]. (e) Minimal growth-supporting sets of
metabolite uptakes and secretions for RECON3D [26] and SALARECON. Arrows
indicate uptake and secretion. Metabolites that are only used or produced by human or
salmon are indicated by blue and red, respectively, and metabolites that are used or
produced by both are indicated in purple. Uptake of oxygen and essential amino acids
was required, as well as secretion of carbon dioxide and ammonia, urea, or urate. The
number of alternative metabolites is given in parentheses where applicable.

capacities (Fig. 4a and S6 Fig). Assuming that relative oxygen uptake rate is a linear 219

function of water oxygen saturation (percent air saturation), we fitted our predictions to 220

experimental data [39–42] along with a logistic model and a Monod model (Fig. 4b). 221

The choice of a linear model for the metabolic fit was motivated by the fact that 222

diffusive oxygen uptake in fish gills is governed by Fick’s law and therefore proportional 223

to the oxygen gradient [50]. Also, replacing the linear model by a Michaelis-Menten 224

model would make the metabolic and Monod fits virtually identical because the Monod 225

and Michaelis-Menten equations have the same form. We found that the metabolic, 226

logistic, and Monod models fitted the data about equally well (R2 ≈ 0.6) but they 227

differed in their parameter estimates (Fig. 4b). All the models estimated the minimal 228

oxygen saturation required for growth, but the logistic estimate was low with high 229

standard error (x0 = 0.11± 0.16) and the Monod fit was high with low standard error 230
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(x0 = 0.45± 0.04). The metabolic model gave an intermediate estimate and standard 231

error (x0 = 0.31± 0.10), and it also allowed estimation of the minimal oxygen 232

saturation required for maximal growth (x1 = 1.37± 0.15). The metabolic fit was closer 233

than the two other fits to the expected relationship between water oxygen saturation 234

and growth rate [50], both in terms of the shape of the fitted curve and the estimated 235

parameter values. The SALARECON estimates were within one and two standard 236

errors, respectively, of the values x0 ≈ 0.3 and x1 ≤ 1.2 suggested by Thorarensen et 237

al. [50]. The logistic estimate was within two standard errors of the suggested x0, but 238

this confidence interval also included zero. Supporting our claim that SALARECON 239

captures fish-specific metabolism, we found that the major secretion products across all 240

oxygen levels and sampled conditions were CO2 and NH3 (S7 Fig). Urea had the third 241

highest secretion flux but this was much smaller than the secretion flux for NH3, and 242

the secretion fluxes of all other secreted metabolites combined was vanishingly small. 243

In contrast to the simple growth models, SALARECON is mechanistic and makes it 244

possible to explain predictions in terms of metabolic fluxes (Fig. 4d). Assuming that 245

organisms have generally evolved to grow as efficiently as possible, we used parsimonius 246

flux balance analysis (pFBA) [36] to minimize overall flux through the metabolic 247

network while requiring maximal growth rate for each randomly sampled condition and 248

oxygen level. We identified eight clusters of reactions whose pFBA fluxes made distinct 249

contributions to oxygen-limited growth (Fig. 4e). Connecting clusters to the Atlantic 250

salmon genome through GPR associations, we also identified enriched metabolic 251

pathways among the genes associated with each cluster (Fig. 4f). 252

In one cluster, fluxes were perfectly correlated with relative growth rate, indicating 253

that they contained reactions that were always necessary for growth. Indeed, this 254

clusters was enriched in lipid metabolism, which directly produces a biomass precursor, 255

and pathways related to NAD(P)H metabolism. The fluxes of two other clusters both 256

increased rapidly at the very lowest oxygen levels before plateauing at higher oxygen 257

levels, in one case decreasing slightly after the initial increase. These clusters were 258

enriched in pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, oxidative 259

phosphorylation, pyruvate, and thiamine metabolism, indicating that energy generation 260

from glucose was maximized at low oxygen levels while other energy-generating 261

pathways were activated at higher oxygen levels. Four of the five remaining clusters 262

increased slightly less than the clusters enriched in energy generation from glucose at low 263

oxygen levels but kept increasing at higher oxygen levels. These clusters were enriched 264

in pathways related to metabolism of fatty acids and amino acids, suggesting that these 265

compounds become important energy sources after saturation of glucose catabolism at 266

low oxygen levels. Nitrogen metabolism, which includes amino acid biosynthesis and 267

disposal of nitrogenous waste products, was also overrepresented. The final cluster 268

consisted of reactions with no or very little flux, even at the highest oxygen levels, and 269

was enriched in metabolism of pyrimidines, β-alanine, and essential amino acids. 270

Finally, to demonstrate the potential of SALARECON to address key challenges in 271

aquaculture, we used it to predict growth-limiting amino acids and feed efficiencies for 272

three commercial feed ingredients: fish, soybean, and insect meal (Table 1 and Fig. 5a). 273

For each feed ingredient, we iteratively identified and supplemented the most limiting 274

amino acid until all amino acid limitations had been lifted, computing feed efficiency at 275

each iteration (S2 Fig). Comparing predicted limiting amino acids in fish meal to 276

soybean and insect meal, we found that lysine and threonine were more limiting in both 277

soybean and insect meal, methionine was more limiting in soybean meal, and arginine 278

was more limiting in insect meal (Fig. 5b, Fig. 5c, and S8 Fig). The feed efficiency 279

predictions suggest that the baseline feed efficiency of fish meal can be achieved by 280

supplementing one and three amino acids for soybean and insect meal, respectively 281

(Fig. 5d). For soybean meal, major increases in feed efficiency were predicted for lysine, 282
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Fig 4. Oxygen-limited growth analysis. (a) SALARECON predictions of relative
growth rate under oxygen limitation as a function of relative oxygen uptake rate. Feed
composition and flux capacities were randomized 1,000 times (light blue) and the mean
across conditions is shown with 95% confidence band from bootstrapping with 1,000
samples (dark blue). (b) Metabolic, logistic, and Monod model fits to experimental data
from Berg and Danielsberg [39] (circles), Bergheim et al. [40] (triangles), Hosfeld et
al. [41] (squares), and Hosfeld et al. [42] (diamonds). SALARECON predictions were
fitted by assuming a linear relationship between relative oxygen uptake rate and water
oxygen saturation. (c) Coefficient of determination (R2), minimal oxygen saturation
required for growth (x0), and minimal oxygen saturation required for maximal growth
(x1) from fitted models with same colors as in b. Error bars indicate two standard
errors of the estimates. (d) Minimal flux distributions for metabolic model predictions
shown in a from parsimonious flux balance analysis (pFBA) [36]. Rows are reactions,
columns are flux distributions sorted by relative oxygen uptake rate, and each cell shows
absolute flux normalized by maximum value for each condition. Rows are clustered by
Ward’s minimum variance method and divided into eight clusters indicated by colors.
(e) Mean absolute relative flux with 95% confidence bands from bootstrapping with
1,000 samples for the eight clusters with same colors as in d. Relative growth rate is
indicated by a dashed line. (f) Enrichment of metabolic pathways from KEGG [11] for
the eight clusters with same colors as in d and e and size reflecting the fraction of genes
in each pathway that are found in a cluster (recall).

threonine, and methionine supplementation, while lysine had the largest impact on 283

insect meal (S8 Fig). The predictions from SALARECON agree well with expected 284

baseline feed efficiencies [51,52] as well as reports that lysine, methionine, threonine, 285
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and arginine are more limiting in plant-based feeds than in marine feeds [53,54]. 286

Table 1. Amino acid compositions of feed ingredients. Mass percentage of each amino
acid relative to total mass of amino acids in feed ingredients used in simulations [55].

Amino acid Fish meal Soybean meal Insect meal
Ala 6.82 4.43 7.05
Arg 7.19 7.54 5.34
Asn/Asp 10.02 11.87 10.07
Cys 0.93 1.74 0.62
Gln/Glu 13.98 18.74 11.12
Gly 6.88 4.19 6.67
His 2.62 2.69 3.32
Ile 4.64 4.61 4.86
Leu 7.91 8.02 7.76
Lys 8.31 6.44 6.19
Met 3.07 1.45 2.06
Phe 4.29 5.22 4.31
Pro 4.45 5.08 6.39
Ser 4.29 4.13 4.71
Thr 4.57 3.67 4.29
Trp 1.13 1.58 1.61
Tyr 3.40 3.60 6.85
Val 5.48 5.00 6.79

Discussion 287

SALARECON is the first metabolic model of a production animal, bridging the gap 288

between production and systems biology and initiating a framework for adapting 289

Atlantic salmon breeding and nutrition strategies to modern feeds. By explicitly 290

representing connections between metabolites, reactions, and genes, it connects the 291

genome to metabolism and growth in a way that can be tuned to specific genetic and 292

environmental contexts by integration of domain knowledge and experimental data [8]. 293

Thus, SALARECON forms a transdiciplinary framework for diverse disciplines and data 294

sets involved in Atlantic salmon research and aquaculture. Tools developed for 295

constraint-based modeling of microbes and well-studied plants and animals can now be 296

applied in production biology, providing a sharper lens through which to interpret omics 297

data by requiring consistency with flux balances and other known constraints. This 298

enables clearer analysis than classical multivariate statistics, which does not incorporate 299

such mechanistic knowledge. 300

Although laborious and time-consuming, our bottom-up manual reconstruction of 301

the Atlantic salmon metabolic network was necessary to make SALARECON a 302

high-quality predictive model. Automatically built models work well for microbes but 303

are still outperformed by models that are built by manual iteration, and reconstruction 304

of eukaryotes is more challenging due to larger genomes, less knowledge, and 305

compartmentalization [12,13]. However, semi-automated annotation and curation 306

combined with automated MEMOTE tests [32] and metabolic tasks [33] allowed faster 307

iteration, and future reconstructions of related species [56] can benefit from our efforts 308

by using SALARECON as a template. MEMOTE and metabolic tasks were 309

instrumental in the development of SALARECON, and we highly recomend integrating 310

testing in model development. Tests help catch mistakes that arise when modifying a 311

model and do triple duty by specifying what it should be capable of, identifying broken 312
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Fig 5. Growth-limiting amino acids in commercial feed ingredients. (a)
Amino acid composition of SALARECON biomass, fish meal, soybean meal, and insect
meal [55]. (b) Order of amino acid limitations in feed ingredients based on soybean and
fish meal. Amino acids that are closer to the top left and bottom right corners were
more limiting in soybean meal and fish meal, respectively, as indicated by size. (c) Order
of amino acid limitations in feed ingredients based on insect and fish meal. Amino acids
that are closer to the top left and bottom right corners were more limiting in insect
meal and fish meal, respectively, as indicated by size and color. (d) Feed efficiency after
successive supplementation of the most limiting amino acid for fish, soybean, and insect
meal. The baseline feed efficiency of fish meal is indicated by a dashed blue line, and
ranges observed by Kolstad et al. [51] and Dvergedal et al. [52] are highlighted in gray.

functionality, and forming a basis for comparison with other models, e.g. new versions 313

or models of different tissues or species. Clearly formulated tests also make the model 314

more accessible to non-modelers, speaking the same language as nutritionists or 315

physiologists. Such experts can point out missing or ill-formulated tests, which in turn 316

contribute to improvement 317

We have strived to make SALARECON an accurate model of Atlantic salmon 318

metabolism and growth, but it does not aim to capture salmon physiology exhaustively 319

or perfectly. It covers 2% of the genes in the genome, which amounts to 50% of Atlantic 320

salmon genes mapped to reactions in KEGG [11], and its focus is on core metabolism 321

generating energy and biomass. This covers pathways that connect feed to fillet, which 322

is a primary focus of research and aquaculture, but obviously excludes many other 323

interesting processes such as synthesis of long-chain polyunsaturated fatty acids. Still, 324

SALARECON performs very well according to all of our metrics: it is more similar to 325

the latest zebrafish model [17] than to any other multicellular eukaryote for which a 326

model is available in BiGG [26,29–31], achieves a MEMOTE score of 96%, which is 327

better than all models in BiGG [10] (although many BiGG models could presumably be 328

annotated and curated to reach a comparable score with reasonable effort), and 329

performs all metabolic tasks within the scope of the model (amino acid, nucleotide, and 330
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energy metabolism). It also correctly classifies amino acids as essential [27, 34] and 331

captures basic fish physiology, e.g. aerobic growth with uptake of essential amino acids, 332

choline, and phosphate, and secretion of carbon dioxide and ammonia. 333

The extensive annotation of genes, metabolites, and reactions is a key strength of 334

SALARECON that facilitates use with existing models, tools, and data. In particular, 335

identifiers from BiGG [10] make it easy to compare and combine SALARECON with 336

state-of-the-art models [57, 58], e.g. to predict interactions between Atlantic salmon and 337

its gut microbiota. It also allows direct application of implemented methods such as 338

evaluation of metabolic tasks [33]. The salmon-specific biomass reaction enables 339

prediction of growth and related fluxes and is based on organism-specific data [27], 340

making SALARECON a more realistic representation of salmon metabolism than a 341

network reconstruction [12]. As demonstrated for Atlantic cod [18], even getting to this 342

stage is challenging for non-model animals. 343

Our analysis of growth under oxygen limitation shows that phenotypes predicted by 344

SALARECON can be fitted to experimental data and produce detailed mechanistic 345

explanations of Atlantic salmon physiology. Specifically, SALARECON explained 346

hypoxic metabolism and growth in terms of metabolic fluxes with implications for fish 347

welfare and productivity in aquaculture. The growth predictions depend on unknown 348

environmental conditions and flux capacities, but SALARECON can be used to account 349

for such uncertainty through random sampling. Average growth predictions from 350

SALARECON fitted the available data [39–42] as well as simple growth models and 351

gave accurate estimates of critical water oxygen saturations in agreement with 352

observations [50]. The predicted metabolic fluxes defined clusters of reactions with 353

distinct pathway enrichments and contributions to hypoxic growth, notably suggesting 354

that energy generation from glucose becomes saturated at low oxygen levels and that 355

amino and fatty acids become more important energy sources with increasing oxygen. 356

Predictions contrasting growth-limiting amino acids in three commercial feed 357

ingredients also agreed well with data [53,54] and showed that SALARECON can be 358

used to evaluate the efficiency of sustainable feeds, a key challenge for modern 359

aquaculture. Feed efficiencies predicted by SALARECON lie within reported 360

ranges [51,52] and suggest that the feed efficiency of fish meal can be achieved by 361

supplementing one amino acid for insect meal and three for soybean meal. This shows 362

that SALARECON can be used to evaluate both current and novel feeds, potentially 363

reducing the need for expensive fish experiments in vitro or in vivo. 364

In future work, we will expand SALARECON to cover more processes such as lipid 365

and carbohydrate metabolism in full detail, and we will tailor it to gut, liver, muscle, 366

and other tissues using omics data and metabolic tasks [33]. We will also leverage 367

automated metabolic reconstruction tools for microbes to build models of the Atlantic 368

salmon gut microbiota [57]. By coupling tissue-specific models to each other and to gut 369

microbiota models, we can make detailed and partially dynamic whole-body models [59]. 370

This would be a major leap from available dynamic models [60] and provide a 371

mechanistic alternative to state-of-the-art bioenergetics models [61], opening up new 372

possibilities for understanding fish physiology and rational engineering of feeds, 373

conditions, and genetics. 374

Conclusion 375

SALARECON covers half of the annotated metabolic genes in the Atlantic salmon 376

genome and can predict metabolic fluxes and growth with a salmon-specific biomass 377

reaction. It has been extensively annotated, curated, and evaluated, and it can be used 378

to tackle research questions from fish physiology to aquaculture. In particular, 379

SALARECON is a promising new tool for predicting breeding strategies and novel feeds 380
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that optimize for production parameters such as feed efficiency and impact on fish 381

health and environment. Future work will expand SALARECON and integrate it with 382

omics data to make tissue-specific and partially dynamic whole-body models. 383

SALARECON should facilitate systems biology studies of Atlantic salmon and other 384

salmonids, and we hope that it will be widely used by modelers as well as biologists. 385

Supporting information 386

387

S1 Fig. Draft model construction. Flowchart showing the procedure used to add 388

new pathways to the draft model or edit pathways already in the draft model. Pathways 389

were added or edited one by one with information about reactions obtained from 390

databases and literature. After adding or editing a pathway, the energy and redox 391

balances and topological properties of the model, e.g., flux consistency, were checked. 392

Based on the results from these analyses, the pathway was either kept or modified. 393

Before final acceptance of a pathway, FBA was performed to ensure that the model was 394

able to predict growth and metbabolic fluxes. 395
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396

S2 Fig. Adding nutritional supplements to a feed uptake reaction Feed 397

uptake reactions are similar to biomass reactions, but supply metabolites rather than 398

consuming them. The ratios between feed components are represented stoichiometrically, 399

and scaled to sum to 1 g feed per mol uptake, so that one gram of the feed in the figure 400

is equivalent to 2 mol A, 3 mol B and 1.4 mol C. With a fixed growth rate, the 401

minimization of feed uptake is used as the objective of FBA. Surplus of metabolites in 402

the feed uptake reactions are allowed to be exported via exchange reactions to avoid 403

blocking the feed uptake reaction. Limiting metabolites can be identified from the 404

reduced costs of the FBA solution. To avoid large molecules being favored, the reduced 405

cost should be multiplied by the molecular mass (M) of the metabolite. Other factors 406

such as price, CO2 equivalents, or environmental cost could be taken into account in 407

this step. The boundaries of the limiting exchange reaction are reversed to allow uptake, 408

and the reaction is scaled by molecular mass and added to the objective. In this case, 409

the cost of supplements is assumed to be equivalent to mass, but the cost could also be 410

set to be higher than the other feed ingredients, which could be more realistic. 411
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S3 Fig. Model degree distributions. (a) Distribution of number of metabolites 413

converted by reactions. Boundary reactions exchange one metabolite with the 414

extracellular environment and transport reactions usually exchange an even number of 415

metabolites between compartments. (b) Distribution of number of genes associated with 416

reactions. Transport and boundary reactions lack annotation and are not associated 417

with any genes. Most metabolic reactions (95%) are associated with one or more genes. 418

(c) Cumulative distribution of number of reactions associated with genes and metabolites 419

(number of genes or metabolites associated with k or more reactions for all k). Most 420

genes and metabolites are associated with a few reactions but some metabolites are 421

highly connected hubs. Power law fits are shown for genes and metabolites. 422

Reactions in models (8528)

P. tricornutum (3535)

H. sapiens (3554)

C. griseus (2559)

M. musculus (1386)

S. salar (456)

D. rerio (1412)

423

S4 Fig. Reaction contents of models of multicellular eukaryotes. Clustered 424

heatmap of reaction contents of metabolic models of multicellular eukaryotes. Each row 425

is an organism, each column is a reaction, and a dark cell indicates a reaction that is 426

found in the model of that organism. Rows are clustered by Jaccard distance with 427

number of non-boundary reactions given. 428
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429

S5 Fig. Metabolic task results by subsystem. Ability of SALARECON to 430

perform metabolic tasks [33]. Tasks are grouped by metabolic subsystem and classified 431

as successful if model predictions reflected expected metabolic (in)capabilities. 432
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433

S6 Fig. Oxygen-limited growth analysis. (a) Feed coefficients of amino acids 434

and choline in conditions used to predict oxygen-limited growth (1,000 samples). The 435

coefficients were randomly sampled from a uniform distribution. (b) Pairwise Pearson 436

correlations between metabolites of feed coefficents shown in a. (c) Flux bounds for 437

conditions used to predict oxygen-limited growth (1,000 samples). Flux bounds were 438

randomly sampled from a lognormal distribution. (d) Pairwise Pearson correlations 439

between reactions of flux bounds shown in a. (e) Predicted absolute growth rates as a 440

function of absolute oxygen uptake rates for the 1,000 randomly sampled conditions. 441

442

S7 Fig. Secreted metabolites in oxygen-limited growth analysis. Secretion 443

flux relative to growth rate from oxygen-limited growth simulations. Fluxes are shown 444

for CO2, NH3, urea and all other secreted metabolites combined. Mean relative flux 445

across 1,000 randomly sampled conditions is shown with 95% confidence bands from 446

bootstrapping with 1,000 samples. 447
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448

S8 Fig. Growth-limiting amino acids in commercial feed ingredients. Feed 449

efficiency as a function of number of supplemented amino acids, measured in mg feed 450

ingredient and supplemented amino acids consumed / gDW biomass produced for (a) 451

fish meal, (b) soybean meal, and (c) black soldier fly larvae meal. Amino acids are 452

indicated by color and ordered from most limiting (left) to least limiting (right). Each 453

bar represents the fed amount of amino acid sources, with one amino acid supplemented 454

per step towards the right. Limiting amino acids were supplemented until all feed 455

protein had been replaced. 456
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