

1 **The human language system, including its inferior frontal component in ‘Broca’s area’,**
2 **does not support music perception**

3

4 **Authors**

5 Xuanyi Chen*^{1,2,3}, Josef Affourtit^{2,3}, Rachel Ryskin^{2,3,4}, Tamar I. Regev^{2,3}, Samuel
6 Norman-Haignere⁵, Olessia Jouravlev^{2,3,6}, Saima Malik-Moraleda^{2,3,7}, Hope Kean^{2,3},
7 Rosemary Varley†⁸, and Evelina Fedorenko*†^{2,3,7}

8

9 † Co-senior authors

10 * Corresponding Authors

11 jchenxy17@gmail.com and evelina9@mit.edu; 43 Vassar Street, Room 46-
12 3037, Cambridge, MA, 02139

13

14 **Affiliations**

15 ¹Department of Cognitive Sciences, Rice University, TX 77005, USA

16 ²Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA

17 ³McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA

18 ⁴Department of Cognitive & Information Sciences, University of California, Merced,
19 Merced, CA 95343, USA

20 ⁵Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY
21 10027, USA

22 ⁶Department of Cognitive Science, Carleton University, Ottawa, Ontario, Canada

23 ⁷The Program in Speech and Hearing Bioscience and Technology, Harvard University,

24 Cambridge, MA 02138, USA

25 ⁸Psychology & Language Sciences, UCL, London, WC1N 1PF, UK

26 **Abstract**

27

28 Language and music are two human-unique capacities whose relationship remains debated.
29 Some have argued for overlap in processing mechanisms, especially for structure processing.
30 Such claims often concern the inferior frontal component of the language system located within
31 'Broca's area'. However, others have failed to find overlap. Using a robust individual-subject
32 fMRI approach, we examined the responses of language brain regions to music stimuli, and
33 probed the musical abilities of individuals with severe aphasia. Across four experiments, we
34 obtained a clear answer: music perception does not engage the language system, and judgments
35 about music structure are possible even in the presence of severe damage to the language
36 network. In particular, the language regions' responses to music are generally low, often below
37 the fixation baseline, and never exceed responses elicited by non-music auditory conditions, like
38 animal sounds. Further, the language regions are not sensitive to music structure: they show low
39 responses to intact and structure-scrambled music, and to melodies with vs. without structural
40 violations. Finally, in line with past patient investigations, individuals with aphasia who cannot
41 judge sentence grammaticality perform well on melody well-formedness judgments. Thus the
42 mechanisms that process structure in language do not appear to process music, including music
43 syntax.

44

45 **Keywords:** language, music, syntactic processing, fMRI, domain specificity

46 **Introduction**

47

48 To interpret language or appreciate music, we must understand how different elements—words
49 in language, notes and chords in music—relate to each other. Parallels between the structural
50 properties of language and music have been drawn for over a century (e.g., Riemann 1877, as
51 cited in Swain 1995; Lindblom and Sundberg 1969; Fay 1971; Boiles 1973; Cooper 1973;
52 Bernstein 1976; Sundberg and Lindblom 1976; Lerdahl and Jackendoff 1977, 1983; Roads and
53 Wieneke 1979; Krumhansl and Keil 1982; Baroni et al. 1983; Swain 1995; cf. Jackendoff 2009;
54 Temperley 2022). However, the question of whether music processing relies on the same
55 mechanisms as those that support language processing continues to spark debate.

56

57 The empirical landscape is complex. A large number of studies have argued for overlap in
58 structural processing based on behavioral (e.g., Fedorenko et al. 2009; Slevc et al. 2009; Hoch et
59 al. 2011; Van de Cavey and Hartsuiker 2016; Kunert et al. 2016), ERP (e.g., Janata 1995; Patel
60 et al. 1998; Koelsch et al. 2000), MEG (e.g., Maess et al. 2001), fMRI (e.g., Koelsch et al. 2002;
61 Levitin and Menon 2003; Tillmann et al. 2003; Koelsch 2006; Kunert et al. 2015; Musso et al.
62 2015), and ECoG (e.g., Sammler et al. 2009, 2013; Rietmolen et al. 2022) evidence (see Tillman
63 2012; Kunert and Slevc 2015; LaCroix et al. 2016, for reviews). However, we would argue that
64 no prior study has compellingly established reliance on shared syntactic processing mechanisms
65 in language and music.

66

67 *First*, evidence from behavioral, ERP, and, to a large extent, MEG studies is indirect because
68 they do not allow to unambiguously determine where neural responses originate (in ERP and
69 MEG, this is due to the ‘inverse problem’; Tarantola 2004; Baillet et al. 2014).

70

71 *Second*, the bulk of the evidence comes from structure-violation paradigms. In such paradigms,
72 responses to the critical condition—which contains an element that violates the rules of tonal
73 music—are contrasted with responses to the control condition, where stimuli obey the rules of
74 tonal music. (For language, syntactic violations, like violations of number agreement, are often
75 used.) Because structural violations (across domains) constitute unexpected events, a brain
76 region that responds more strongly to the structure-violation condition than the control (no
77 violation) condition *may* support structure processing in music, but it may also reflect domain-
78 general processes, like attention or error detection/correction (e.g., Bigand et al. 2001; Poulin-
79 Charronat et al. 2005; Tillmann et al. 2006; Hoch et al. 2011; Perruchet and Poulin-Charronnat
80 2013) or low-level sensory effects (e.g., Bigand et al. 2014; Collins et al. 2014; cf. Koelsch et al.
81 2007). In order to argue that a brain region that shows a *structure-violation > no violation* effect
82 supports structure processing in music, one would need to establish that this brain region i) is
83 selective for structural violations and does not respond to unexpected non-structural (but
84 similarly salient) events in music or other domains, and ii) responds to music stimuli even when
85 no violation is present. This latter point is (surprisingly) not often discussed but is deeply
86 important: if a brain region supports the processing of music structure, it should be engaged
87 whenever music is processed (similar to how language areas respond robustly to well-formed
88 sentences, in addition to showing sensitivity to violated linguistic expectations; e.g., Fedorenko
89 et al. 2020). After all, in order to detect a structural violation, a brain region needs to process the

90 structure of the preceding context, which implies that it should be working whenever a music
91 stimulus is present. No previous study has established both of the properties above—selectivity
92 for structural relative to non-structural violations and robust responses to music stimuli with no
93 violations—for the brain regions that have been argued to support structure processing in music
94 (and to overlap with regions that support structure processing in language). In fact, some studies
95 that have compared unexpected structural and non-structural events in music (e.g., a timbre
96 change) have reported similar neural responses in fMRI (e.g., Koelsch et al. 2002; cf. some
97 differences in EEG effects – e.g., Koelsch et al. 2001). Relatedly, and in support of the idea that
98 effects of music structure violations largely reflect domain-general attentional effects, meta-
99 analyses of neural responses to unexpected events across domains (e.g., Corbetta and Shulman
100 2002; Fouragnan et al. 2018; Corlett et al. 2021) have identified regions that grossly resemble
101 those reported in studies of music structure violations (see Fedorenko and Varley 2016 for
102 discussion).

103

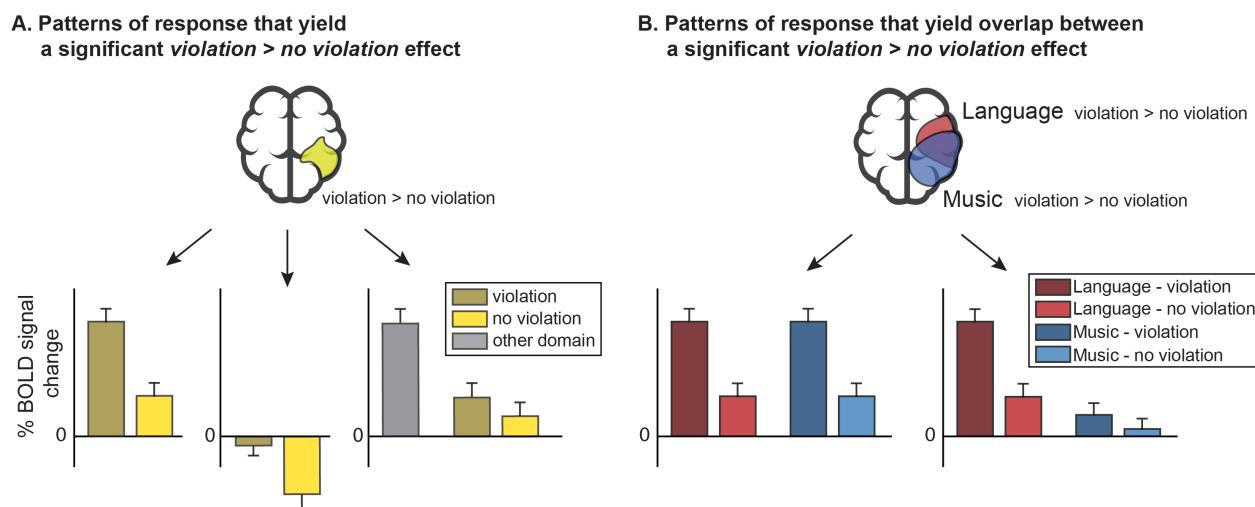
104 *Third*, most prior fMRI (and MEG) investigations have relied on comparisons of group-level
105 activation maps. Such analyses suffer from low functional resolution (e.g., Nieto-Castañón and
106 Fedorenko 2012; Fedorenko 2021), especially in cases where the precise locations of functional
107 regions vary across individuals, as in the association cortex (Fischl et al. 2008; Frost and Goebel
108 2012; Tahmasebi et al. 2012; Vazquez-Rodriguez et al. 2019). Thus, observing activation
109 overlap at the group level does not unequivocally support shared mechanisms. Indeed, studies
110 that have used individual-subject-level analyses have reported a low or no response to music in
111 the language-responsive regions (Fedorenko et al. 2011; Rogalsky et al. 2011; Deen et al. 2015).

112

113 *Fourth*, the interpretation of some of the observed effects has relied on the so-called ‘reverse
114 inference’ (Poldrack 2006, 2011; Fedorenko 2021), where function is inferred from a coarse
115 anatomical location: for example, some music-structure-related effects observed in or around
116 ‘Broca’s area’ have been interpreted as reflecting the engagement of linguistic-structure-
117 processing mechanisms (e.g., Maess et al. 2001; Koelsch et al. 2002) given the long-standing
118 association between ‘Broca’s area’ and language, including syntactic processing specifically
119 (e.g., Caramazza and Zurif 1976; Friederici et al. 2006). However, this reasoning is not valid:
120 Broca’s area is a heterogeneous region, which houses components of at least two functionally
121 distinct brain networks (Fedorenko et al. 2012; Fedorenko and Blank 2020): the language-
122 selective network, which responds during language processing, visual or auditory, but does not
123 respond to diverse non-linguistic stimuli (Fedorenko et al. 2011; Monti et al. 2009, 2012; see
124 Fedorenko and Varley 2016 for a review) and the domain-general executive control or ‘multiple
125 demand (MD)’ network, which responds to any demanding cognitive task and is robustly
126 modulated by task difficulty (Duncan 2010, 2013; Fedorenko et al. 2013; Assem et al. 2020). As
127 a result, here and more generally, functional interpretation based on coarse anatomical
128 localization is not justified.

129

130 *Fifth*, many prior fMRI investigations have not reported the magnitudes of response to the
131 relevant conditions and only examined statistical significance maps for the contrast of interest
132 (e.g., a whole brain map showing voxels that respond reliably more strongly to melodies with vs.
133 without a structural violation, and to sentences with vs. without a structural violation). Response
134 magnitudes of experimental conditions relative to a low-level baseline and to each other are
135 critical for interpreting a functional profile of a brain region (see e.g., Chen et al. 2017, for


136 discussion). For example, a reliable *violation > no violation* effect in music (similar arguments
137 apply to language) could be observed when both conditions elicit above-baseline responses, and
138 the violation condition elicits a stronger response (**Figure 1A** left bar graph)—a reasonable
139 profile for a brain region that supports music processing and is sensitive to the target structural
140 manipulation. However, a reliable *violation > no violation* effect could also be observed when
141 both conditions elicit below-baseline responses, and the violation condition elicits a less negative
142 response (**Figure 1A** middle bar graph), or when both conditions elicit low responses—in the
143 presence of a strong response to stimuli in other domains—and the between-condition difference
144 is small (**Figure 1A** right bar graph; note that with sufficient power even very small effects can
145 be highly reliable, but this does not make them theoretically meaningful; e.g., Cumming 2012;
146 Sullivan and Feinn, 2012). The two latter profiles, where a brain region is more active during
147 silence than when listening to music, or when the response is overall low and the effect of
148 interest is minuscule, would be harder to reconcile with a role of this brain region in music
149 processing (see also the second point above).

150

151 Similarly, with respect to the music-language overlap question, a reliable *violation > no*
152 *violation* effect for both language and music could be observed in a brain region where sentences
153 and melodies with violations elicit similarly strong responses, and those without violations elicit
154 lower responses (**Figure 1B** left bar graph); but it could also arise in a brain region where
155 sentences with violations elicit a strong response, sentences without violations elicit a lower
156 response, but melodies elicit an overall low response, with the violation condition eliciting a
157 higher response than the no-violation condition (**Figure 1B** right bar graph). Whereas in the first
158 case, it may be reasonable to argue that the brain region in question supports some computation

159 that is necessary to process structure violations in both domains, such interpretation would not be
160 straightforward in the second case. In particular, given the large main effect of language > music,
161 any account of possible computations supported by such a brain region would need to explain
162 this difference instead of simply focusing on the presence of a reliable effect of violation in both
163 domains. In summary, without examining the magnitudes of response, it is not possible to
164 distinguish among many, potentially very different, functional profiles, without which
165 formulating hypotheses about a brain region's computations is precarious.

166

168 **Figure 1:** Illustration of the importance of examining the magnitudes of neural response to the
169 experimental conditions rather than only the statistical significance maps for the contrast(s) of interest. A
170 significant *violation > no violation* effect (A) and overlap between a significant *violation > no violation*
171 effect in language vs. in music (B) are each compatible with multiple distinct functional profiles, only one
172 of which (on the left in each case) supports the typically proposed interpretation (a region that processes
173 structure in some domain of interest in A, and a region that processes structure across domains, in both
174 language and music, in B).

175

176 Aside from the limitations above, to the best of our knowledge, all prior brain imaging studies
177 have used a single manipulation in one set of materials and one set of participants. To
178 compellingly argue that a brain region supports (some aspects of) structural processing in both
179 language and music, it is important to establish both the *robustness* of the key effect by
180 replicating it with a new set of experimental materials and/or in a new group of participants, and
181 its *generalizability* to other contrasts between conditions that engage the hypothesized
182 computation and ones that do not. For example, to argue that a brain region houses a core
183 syntactic mechanism needed to process hierarchical relations and/or recursion in both language
184 and music (e.g., Patel 2003; Fadiga et al. 2009; Roberts 2012; Koelsch et al. 2013; Fitch and
185 Martins 2014), one would need to demonstrate that this region i) responds robustly to diverse
186 structured linguistic and musical stimuli (which all invoke the hypothesized shared computation),
187 ii) shows replicable responses across materials and participants, and iii) is sensitive to more than
188 a single manipulation targeting the hypothesized computations specifically, as needed to rule out
189 paradigm-/task-specific accounts (e.g., structured vs. unstructured stimuli, stimuli with vs.
190 without structural violations, stimuli that are more vs. less structurally complex—e.g., with long-
191 distance vs. local dependencies, adaptation to structure vs. some other aspect of the stimulus,
192 etc.).

193
194 Finally, the neuropsychological patient evidence is at odds with the idea of shared mechanisms
195 for processing language and music. If language and music relied on the same syntactic
196 processing mechanism, individuals impaired in their processing of linguistic syntax should also
197 exhibit impairments in musical syntax. Although some prior studies report subtle musical deficits
198 in patients with aphasia (Patel et al. 2008a; Sammler et al. 2011), the evidence is equivocal, and

199 many aphasic patients appear to have little or no difficulties with music, including the processing
200 of music structure (Luria et al. 1965; Brust 1980; Marin 1982; Basso and Capitani 1985; Polk
201 and Kertesz 1993; Slevc et al. 2016; Faroqi-Shah et al. 2020; Chiapetta et al. 2022; cf. Omigie
202 and Samson 2014 and Sihvonen et al. 2017 for discussions of evidence that musical training may
203 lead to better outcomes following brain damage/resection). Similarly, children with Specific
204 Language Impairment (now called Developmental Language Disorder)—a developmental
205 disorder that affects several aspects of linguistic and cognitive processing, including syntactic
206 processing (e.g., Bortolini et al. 1998; Bishop and Norbury 2002)—show no impairments in
207 musical processing (Fancourt 2013; cf. Jentschke et al. 2008). In an attempt to reconcile the
208 evidence from acquired and developmental disorders with claims about structure-processing
209 overlap based on behavioral and neural evidence from neurotypical participants, Patel (2003,
210 2008, 2012; see Slevc and Okada 2015, Patel and Morgan 2017, and Asano et al. 2021 for
211 related proposals) put forward a hypothesis whereby the representations that mediate language
212 and music are stored in distinct brain areas, but the mechanisms that perform online
213 computations on those representations are partially overlapping. We return to this idea in the
214 Discussion.

215
216 To bring clarity to this ongoing debate, we conducted three fMRI experiments with neurotypical
217 adults, and a behavioral study with individuals with severe aphasia. For the fMRI experiments,
218 we took an approach where we focused on the ‘language network’—a well-characterized set of
219 left frontal and temporal brain areas that selectively support linguistic processing (e.g.,
220 Fedorenko et al. 2011) and asked whether any parts of this network show responses to music and
221 sensitivity to music structure. In each experiment, we used an extensively validated language

222 ‘localizer’ task based on the reading of sentences and nonword sequences (Fedorenko et al.
223 2010; see Scott et al. 2017 and Malik-Moraleda, Ayyash et al. 2022 for evidence that this
224 localizer is modality-independent) to identify language-responsive areas in each participant
225 individually. Importantly, these areas have been shown, across dozens of brain imaging studies,
226 to be robustly sensitive to linguistic syntactic processing demands in diverse manipulations (e.g.,
227 Keller et al. 2001; Röder et al. 2002; Friederici 2011; Pallier et al. 2011; Bautista and Wilson
228 2016, among many others)—including when defined with the same localizer as the one used here
229 (e.g., Fedorenko et al. 2010, 2012a, 2020; Blank et al. 2016; Mollica et al. 2020; Shain, Blank et
230 al. 2020; Shain et al. 2022)—and their damage leads to linguistic, including syntactic, deficits
231 (e.g., Caplan et al. 1996; Dick et al. 2001; Wilson and Saygin 2004; Tyler et al. 2011; Wilson et
232 al. 2012; Mesulam et al. 2014; Ding et al. 2020; Matchin and Hickok 2020, among many others).
233 To address the critical research question, we examined the responses of these language areas to
234 music, and their necessity for processing music structure. In Experiment 1, we included several
235 types of music stimuli including orchestral music, single-instrument music, synthetic drum
236 music, and synthetic melodies, a minimal comparison between songs and spoken lyrics, and a set
237 of non-music auditory control conditions. We additionally examined sensitivity to structure in
238 music across two structure-scrambling manipulations. In Experiment 2, we further probed
239 sensitivity to structure in music using the most common manipulation, contrasting responses to
240 well-formed melodies vs. melodies containing a note that does not obey the constraints of
241 Western tonal music. And in Experiment 3, we examined the ability to discriminate between
242 well-formed melodies and melodies containing a structural violation in three profoundly aphasic
243 individuals across two tasks. Finally, in Experiment 4, we examined the responses of the
244 language regions to yet another set of music stimuli in a new set of participants. Further, the

245 participants were all native speakers of Mandarin, a tonal language, which allowed us to evaluate
246 the hypothesis that language regions may play a greater role in music processing in individuals
247 with higher sensitivity to linguistic pitch (e.g., Deutsch et al. 2006, 2009; Bidelman et al. 2011;
248 Creel et al. 2018; Ngo et al. 2016; Liu et al. 2021).

249

250 **Materials and methods**

251

252 ***Participants***

253

254 Experiments 1, 2, and 4 (fMRI):

255

256 48 individuals (age 18-51, mean 24.3; 28 female, 20 male) from the Cambridge/Boston, MA
257 community participated for payment across three fMRI experiments (n=18 in Experiment 1;
258 n=20 in Experiment 2; n=18 in Experiment 4; 8 participants overlapped between Experiments 1
259 and 2). 33 participants were right-handed and four left-handed, as determined by the Edinburgh
260 handedness inventory (Oldfield 1971), or self-report (see Willems et al. 2014, for arguments for
261 including left-handers in cognitive neuroscience research); the handedness data for the remaining
262 11 participants (one in Experiment 2 and 10 in Experiment 4) were not collected. All but one
263 participant (with no handedness information) in Experiment 4 showed typical left-lateralized
264 language activations in the language localizer task described below (as assessed by numbers of
265 voxels falling within the language parcels in the left vs. right hemisphere (LH vs. RH), using the
266 following formula: (LH-RH)/(LH+RH); e.g., Jouravlev et al. 2020; individuals with values of
267 0.25 or greater were considered to have a left-lateralized language system). For the participant

268 with right-lateralized language activations (with a lateralization value at or below -0.25), we used
269 right-hemisphere language regions for the analyses (see **SI-3** for analyses where the LH language
270 regions were used for this participant and when this participant is excluded; the critical results
271 were not affected). Participants in Experiments 1 and 2 were native English speakers;
272 participants in Experiment 4 were native Mandarin speakers and proficient speakers of English
273 (none had any knowledge of Russian, which was used in the unfamiliar foreign-language
274 condition in Experiment 4). Detailed information on the participants' music background was,
275 unfortunately, not collected, except for ensuring that the participants were not professional
276 musicians. All participants gave informed written consent in accordance with the requirements of
277 MIT's Committee on the Use of Humans as Experimental Subjects (COUHES).

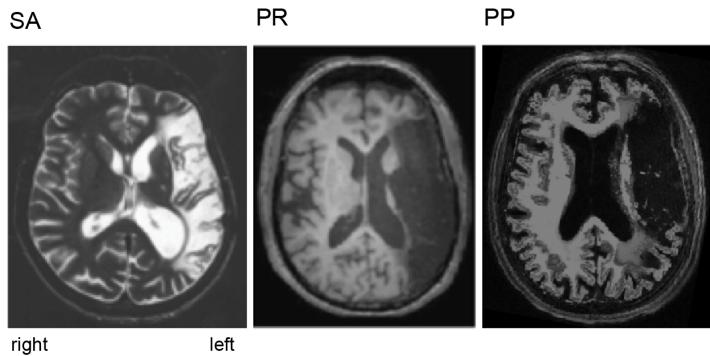
278

279 Experiment 3 (behavioral):

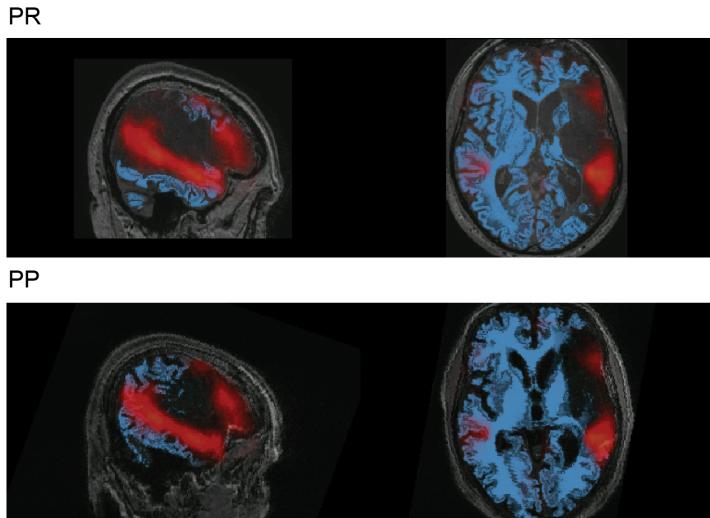
280

281 *Individuals with aphasia.* Three participants with severe and chronic aphasia were recruited to
282 the study (SA, PR, and PP). All participants gave informed consent in accordance with the
283 requirements of UCL's Institutional Review Board. Background information on each participant
284 is presented in **Table 1**. Anatomical scans are shown in **Figure 2A** and extensive perisylvian
285 damage in the left hemisphere, encompassing areas where language activity is observed in
286 neurotypical individuals, is illustrated in **Figure 2B**.

287

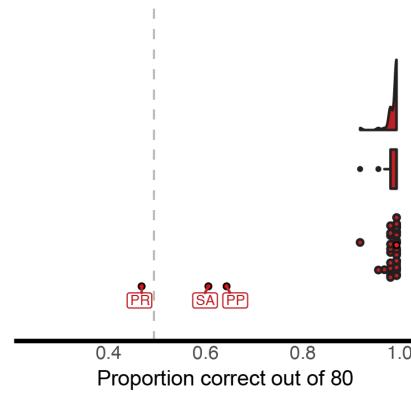

Patient	Sex	Age (years)	Time post- onset	Handedness	Etiology	Premorbid musical experience	Premorbid employment

		at testing	(years) at testing				
SA	M	67	21	R	Subdural empyema	Sang in choir; basic sight- reading ability. No formal training.	Police sergeant
PR	M	68	14	L	Left hemisphere stroke	Drummer in band; basic sight- reading ability. No formal training.	Retail manager
PP	M	77	10	R	Left hemisphere stroke	Childhood musical training (5 years). No adult experience.	Minerals trader

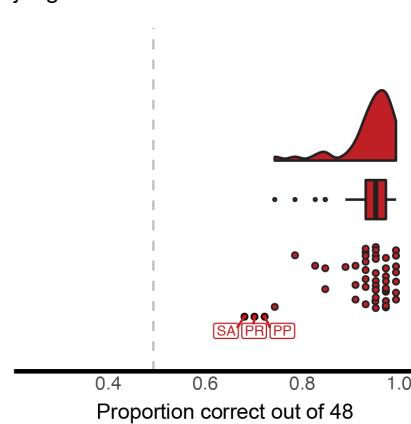

288 **Table 1.** Background information on the participants with aphasia.

289

A. Anatomical scans



B. Language network overlay



C. Language tasks

Comprehension of spoken reversible sentences

Spoken grammaticality judgement

290

291 **Figure 2: A.** Anatomical scans (T2-weighted for SA, T1-weighted for PR and PP) of the aphasic
292 participants (all scans were performed during the chronic phase, as can be seen from the ventricular
293 enlargement). Note that the right side of the image represents the left side of the brain. **B.** P.R.'s
294 (top) and P.P.'s (bottom) anatomical scans (blue-tinted) shown with the probabilistic activation
295 map for the fronto-temporal language network overlaid (SA's raw anatomical data were
296 not available). The map was created by overlaying thresholded individual activation maps (red-
297 tinted) for the *sentences* > *nonwords* contrast (Fedorenko et al. 2010) in 220 neurotypical

298 participants (none of whom were participants in any experiments in the current study). As the
299 images show, the language network falls largely within the lesioned tissue in the left hemisphere.
300 **C. Performance of the control participants and participants with aphasia on two measures of**
301 **linguistic syntax processing (see Design, materials, and procedure – Experiment 3): the**
302 **comprehension of spoken reversible sentences (top), and the spoken grammaticality judgments**
303 **(bottom). The densities show the distribution of proportion correct scores in the control**
304 **participants and the boxplot shows the quartiles of the control population (the whiskers show 1.5x**
305 **interquartile range and points represent outliers). The dots show individual participants (for the**
306 **individuals with aphasia, the initials indicate the specific participant). Dashed grey lines indicate**
307 **chance performance.**

308
309 *Control participants.* We used Amazon.com's Mechanical Turk platform to recruit normative
310 samples for the music tasks and a subset of the language tasks that are most critical to linguistic
311 syntactic comprehension. Ample evidence now shows that online experiments yield data that
312 closely mirror the data patterns in experiments conducted in a lab setting (e.g., Crump et al.
313 2013). Data from participants with IP addresses in the US who self-reported being native English
314 speakers were included in the analyses. 50 participants performed the critical music task, and the
315 Scale task from the MBEA (Peretz et al. 2003), as detailed below. Data from participants who
316 responded incorrectly to the catch trial in the MBEA Scale task (n=5) were excluded from the
317 analyses, for a final sample of 45 control participants for the music tasks. A separate sample of
318 50 participants performed the *Comprehension of spoken reversible sentences* task. Data from one
319 participant who completed fewer than 75% of the questions and another participant who did not
320 report being a native English speaker were excluded for a final sample of 48 control participants.

321 Finally, a third sample of 50 participants performed the *Spoken grammaticality judgment* task.
322 Data from one participant who did not report being a native English speaker were excluded for a
323 final sample of 49 control participants.

324

325 ***Design, materials, and procedure***

326

327 **Experiments 1, 2, and 4 (fMRI):**

328

329 Each participant completed a language localizer task (Fedorenko et al. 2010) and one or more of
330 the critical music perception experiments, along with one or more tasks for unrelated studies.
331 The scanning sessions lasted approximately two hours.

332

333 *Language localizer.* This task is described in detail in Fedorenko et al. (2010) and subsequent
334 studies from the Fedorenko lab (e.g., Fedorenko et al. 2011; Blank et al. 2014; Blank et al. 2016;
335 Pritchett et al. 2018; Paunov et al. 2019; Fedorenko et al. 2020; Shain, Blank et al. 2020, among
336 others) and is available for download from <https://evlab.mit.edu/funcloc/>). Briefly, participants
337 read sentences and lists of unconnected, pronounceable nonwords in a blocked design. Stimuli
338 were presented one word/nonword at a time at the rate of 450ms per word/nonword. Participants
339 read the materials passively and performed a simple button-press task at the end of each trial
340 (included in order to help participants remain alert). Each participant completed two ~6-minute
341 runs. This localizer task has been extensively validated and shown to be robust to changes in the
342 materials, modality of presentation (visual vs. auditory), and task (e.g., Fedorenko et al. 2010;
343 Fedorenko 2014; Scott et al. 2017; Diacheck, Blank, Siegelman et al. 2020; Malik-Moraleda,

344 Ayyash et al. 2022; Lipkin et al. 2022; see the results of Experiments 1 and 4 for additional
345 replications of modality robustness). Further, a network that corresponds closely to the localizer
346 contrast (*sentences > nonwords*) emerges robustly from whole-brain task-free data—voxel
347 fluctuations during rest (e.g., Braga et al. 2020; see Braga 2021 for a general discussion of how
348 well-validated localizers tend to show tight correspondence with intrinsic networks recovered in
349 a data-driven way). The fact that different regions of the language network show strong
350 correlations in their activity during naturalistic cognition (see also Blank et al. 2014; Paunov et
351 al. 2019; Malik-Moraleda, Ayyash et al. 2022) provides support for the idea that this network
352 constitutes a ‘natural kind’ in the brain (a subset of the brain that is strongly internally integrated
353 and robustly dissociable from the rest of the brain) and thus a meaningful unit of analysis.
354 However, we also examine individual regions of this network, to paint a more complete picture,
355 given that many past claims about language-music overlap have concerned the inferior frontal
356 component of the language network.

357
358 *Experiment 1.* Participants passively listened to diverse stimuli across 18 conditions in a long-
359 event-related design. The materials for this and all other experiments are available at OSF:
360 <https://osf.io/68y7c/>. All stimuli were 9 s in length. The conditions were selected to probe
361 responses to music, to examine sensitivity to structure scrambling in music, to compare
362 responses to songs vs. spoken lyrics, and to compare responses to music stimuli vs. other
363 auditory stimuli.

364
365 The four non-vocal music conditions (all Western tonal music) included orchestral music, single-
366 instrument music, synthetic drum music, and synthetic melodies (see **SI-5** for a summary of the

367 acoustic properties of these and other conditions, as quantified with the MIR toolbox; Lartillot
368 and Toivainen 2007; Lartillot and Grandjean 2019). The orchestral music condition consisted of
369 12 stimuli (**SI-Table 4a**) selected from classical orchestras or jazz bands. The single-instrument
370 music condition consisted of 12 stimuli (**SI-Table 4b**) that were played on one of the following
371 instruments: cello (n=1), flute (n=1), guitar (n=4), piano (n=4), sax (n=1), or violin (n=1). The
372 synthetic drum music condition consisted of 12 stimuli synthesized using percussion patches
373 from MIDI files taken from freely available online collections. The stimuli were synthesized
374 using the MIDI toolbox for MATLAB (writemidi). The synthetic melodies condition consisted
375 of 12 stimuli transcribed from folk tunes obtained from freely available online collections. Each
376 melody was defined by a sequence of notes with corresponding pitches and durations. Each note
377 was composed of harmonics 1 through 10 of the fundamental presented in equal amplitude, with
378 no gap in-between notes. Phase discontinuities between notes were avoided by ensuring that the
379 starting phase of the next note was equal to the ending phase of the previous note.

380
381 The synthetic drum music and the synthetic melodies conditions had scrambled counterparts to
382 probe sensitivity to music structure. This intact > scrambled contrast has been used in some past
383 studies of structure processing in music (e.g., Levitin and Menon 2003) and is parallel to the
384 sentences > word-list contrast in language, which has been often used to probe sensitivity for
385 combinatorial processing (e.g., Fedorenko et al. 2010). The scrambled drum music condition was
386 created by jittering the inter-note-interval (INI). The amount of jitter was sampled from a
387 uniform distribution (from -0.5 to 0.5 beats). The scrambled INIs were truncated to be no smaller
388 than 5% of the distribution of INIs from the intact drum track. The total distribution of INIs was
389 then scaled up or down to ensure that the total duration remained unchanged. The scrambled

390 melodies condition was created by scrambling both pitch and rhythm information. Pitch
391 information was scrambled by randomly re-ordering the sequence of pitches and then adding
392 jitter to disrupt the key. The amount of jitter for each note was sampled from a uniform
393 distribution centered on the note's pitch after shuffling (from -3 to +3 semitones). The duration of
394 each note was also jittered (from -0.2 to 0.2 beats). To ensure the total duration was unaffected
395 by jitter, $N/2$ positive jitter values were sampled, where N is the number of notes, and then a
396 negative jitter was added with the same magnitude for each of the positive samples, such that the
397 sum of all jitters equaled 0. To ensure the duration of each note remained positive, the smallest
398 jitters were added to the notes with the smallest durations. Specifically, the note durations and
399 sampled jitters were sorted by their magnitude, summed, and then the jittered durations were
400 randomly re-ordered.

401
402 To allow for a direct comparison between music and linguistic conditions within the same
403 experiment, we included auditory sentences and auditory nonword sequences. The sentence
404 condition consisted of 24 lab-constructed stimuli (half recorded by a male, and half by a female).
405 Each stimulus consisted of a short story (each three sentences long) describing common,
406 everyday events. Any given participant heard 12 of the stimuli (6 male, 6 female). The nonword
407 sequence condition consisted of 12 stimuli (recorded by a male).

408
409 We also included two other linguistic conditions: songs and spoken lyrics. These conditions were
410 included to test whether the addition of a melodic contour to speech (in songs) would increase
411 the responses of the language regions. Such a pattern might be expected of a brain region that
412 responds to both linguistic content and music structure. The songs and the lyrics conditions each

413 consisted of 24 stimuli. We selected songs with a tune that was easy to sing without
414 accompaniment. These materials were recorded by four male singers: each recorded between 2
415 and 11 song-lyrics pairs. The singers were actively performing musicians (e.g., in *a cappella*
416 groups) but were not professionals. Any given participant heard either the song or the lyrics
417 version of an item for 12 stimuli in each condition.

418

419 Finally, to assess the specificity of potential responses to music, we included three non-music
420 conditions: animal sounds and two kinds of environmental sounds (pitched and unpitched),
421 which all share some low-level acoustic properties with music (see SI-5). The animal sounds
422 condition and the environmental sounds conditions each consisted of 12 stimuli taken from in-
423 lab collections. If individual recordings were shorter than 9 s, then several recordings of the same
424 type of sound were concatenated together (100 ms gap in between). We included the pitch
425 manipulation in order to test for general responsiveness to pitch—a key component of music—in
426 the language regions.

427

428 (The remaining five conditions were not directly relevant to the current study or redundant with
429 other conditions for our research questions and therefore not included in the analyses. These
430 included three distorted speech conditions—lowpass-filtered speech, speech with a flattened
431 pitch contour, and lowpass-filtered speech with a flattened pitch contour—and two additional
432 low-level controls for the synthetic melody stimuli. The speech conditions were included to
433 probe sensitivity to linguistic prosody for an unrelated study. The additional synthetic music
434 control conditions were included to allow for a more rigorous interpretation of the intact >
435 scrambled synthetic melodies effect had we observed such an effect. For completeness, on the

436 OSF page, <https://osf.io/68y7c/>, we provide a data table that includes responses to these five
437 conditions.)

438

439 For each participant, stimuli were randomly divided into six sets (corresponding to runs) with
440 each set containing two stimuli from each condition. The order of the conditions for each run
441 was selected from four predefined palindromic orders, which were constructed so that conditions
442 targeting similar mental processes (e.g., orchestral music and single-instrument music) were
443 separated by other conditions (e.g., speech or animal sounds). Each run contained three 10 s
444 fixation periods: at the beginning, in the middle, and at the end. Otherwise, the stimuli were
445 separated by 3 s fixation periods, for a total run duration of 456 s (7 min 36 s). All but two of the
446 18 participants completed all six runs (and thus got a total of 12 experimental events per
447 condition); the remaining two completed four runs (and thus got 8 events per condition).

448

449 Because, as noted above, we have previously established that the language localizer is robust to
450 presentation modality, we used the visual localizer to define the language regions. However, in SI-
451 2 we show that the critical results are similar when auditory contrasts (*sentences > nonwords* in
452 Experiment 1, or *Mandarin sentences > foreign* in Experiment 4) are instead used to define the
453 language regions.

454

455 *Experiment 2.* Participants listened to well-formed melodies (adapted and expanded from
456 Fedorenko et al. 2009) and melodies with a structural violation in a long-event-related design and
457 judged the well-formedness of the melodies. As discussed in the Introduction, this type of
458 manipulation is commonly used to probe sensitivity to music structure, including in studies

459 examining language-music overlap (e.g., Patel et al. 1998; Koelsch et al. 2000, 2002; Maess et al.
460 2001; Tillmann et al. 2003; Fedorenko et al. 2009; Slevc et al. 2009; Kunert et al. 2015; Musso et
461 al. 2015). The melodies were between 11 and 14 notes. The well-formed condition consisted of 90
462 melodies, which were tonal and ended in a tonic note with an authentic cadence in the implied
463 harmony. All melodies were isochronous, consisting of quarter notes except for the final half note.
464 The first five notes established a strong sense of key. Each melody was then altered to create a
465 version with a “sour” note: the pitch of one note (from among the last four notes in a melody) was
466 altered up or down by one or two semitones, so as to result in a non-diatonic note while keeping
467 the melodic contour (the up-down pattern) the same. The structural position of the note that
468 underwent this change varied among the tonic, the fifth, and the major third. The full set of 180
469 melodies was distributed across two lists following a Latin Square design. Any given participant
470 heard stimuli from one list.

471
472 For each participant, stimuli were randomly divided into two sets (corresponding to runs) with
473 each set containing 45 melodies (22 or 23 per condition). The order of the conditions, and the
474 distribution of inter-trial fixation periods, was determined by the optseq2 algorithm (Dale et al.
475 1999). The order was selected from among four predefined orders, with no more than four trials
476 of the same condition in a row. In each trial, participants were presented with a melody for three
477 seconds followed by a question, presented visually on the screen, about the well-formedness of the
478 melody (“Is the melody well-formed?”). To respond, participants had to press one of two buttons
479 on a button box within two seconds. When participants answered, the question was replaced by a
480 blank screen for the remainder of the two-second window; if no response was made within the
481 two-second window, the experiment advanced to the next trial. Responses received within one

482 second after the end of the previous trial were still recorded to account for the possible slow
483 responses. The screen was blank during the presentation of the melodies. Each run contained 151
484 s of fixation interleaved among the trials, for a total run duration of 376 s (6 min 16 s). Fourteen
485 of the 20 participants completed both runs, four participants completed one run, and the two
486 remaining participants completed two runs but we only included their first run because, due to
487 experimenter error, the second run came from a different experimental list and thus included some
488 of the melodies from the first run in the other condition (the data pattern was qualitatively and
489 quantitatively the same if both runs were included for these participants). Finally, due to a script
490 error, participants only heard the first 12 notes of each melody during the three seconds of stimulus
491 presentation. Therefore, we only analyzed the 80 of the 90 pairs (160 of the 180 total melodies)
492 where the contrastive note appeared within the first 12 notes.

493

494 *Experiment 4.* Participants passively listened to single-instrument music, environmental sounds,
495 sentences in their native language (Mandarin), and sentences in an unfamiliar foreign language
496 (Russian) in a blocked design. All stimuli were 5-5.95s in length. The conditions were selected to
497 probe responses to music, and to compare responses to music stimuli vs. other auditory stimuli.
498 The critical music condition consisted of 60 stimuli selected from classical pieces by J.S. Bach
499 played on cello, flute, or violin (n=15 each) and jazz music played on saxophone (n=15). The
500 environmental sounds condition consisted of 60 stimuli selected from in-lab collections and
501 included both pitched and unpitched stimuli. The foreign language condition consisted of 60
502 stimuli selected from Russian audiobooks (short stories by Paustovsky and “Fathers and Sons” by
503 Turgenev). The foreign language condition was included because creating a ‘nonwords’ condition
504 (the baseline condition we typically use for defining the language regions; Fedorenko et al. 2010)

505 is challenging in Mandarin given that most words are monosyllabic, thus most syllables carry some
506 meaning. As a result, sequences of syllables are more akin to lists of words. Therefore, we included
507 the unfamiliar foreign language condition, which also works well as a baseline for language
508 processing (Malik-Moraleda, Ayyash et al. 2022). The Mandarin sentence condition consisted of
509 120 lab-constructed sentences, each recorded by a male and a female native speaker. (The
510 experiment also included five conditions that were not relevant to the current study and therefore
511 not included in the analyses. These included three conditions probing responses to the participants'
512 second language (English) and two control conditions for Mandarin sentences. For completeness,
513 on the OSF page, <https://osf.io/68y7c/>, we provide a data table that includes responses to these five
514 conditions.)

515

516 Stimuli were grouped into blocks with each block consisting of three stimuli and lasting 18s
517 (stimuli were padded with silence to make each trial exactly six seconds long). For each participant,
518 blocks were divided into 10 sets (corresponding to runs), with each set containing two blocks from
519 each condition. The order of the conditions for each run was selected from eight predefined
520 palindromic orders. Each run contained three 14 s fixation periods: at the beginning, in the middle,
521 and at the end, for a total run duration of 366 s (6 min 6 s). Five participants completed eight of
522 the 10 runs (and thus got 16 blocks per condition; the remaining thirteen completed six runs (and
523 thus got 12 blocks per condition). (We had created enough materials for 10 runs, but based on
524 observing robust effects for several key contrasts in the first few participants who completed six
525 to eight runs, we administered 6-8 runs to the remaining participants.)

526

527 Because we have previously found that an English localizer works well in native speakers of
528 diverse languages, including Mandarin, as long as they are proficient in English (Malik-Moraleda,
529 Ayyash et al. 2022), we used the same localizer in Experiment 4 as the one used in Experiments 1
530 and 2, for consistency. However, in SI-2 (**SI-Figure 2c**, **SI-Table 2c**) we show that the critical
531 results are similar when the *Mandarin sentences > foreign* contrast is instead used to define the
532 language regions.

533

534 Experiment 3 (behavioral):

535

536 *Language assessments.* Participants with aphasia were assessed for the integrity of lexical
537 processing using word-to-picture matching tasks in both spoken and written modalities (ADA
538 Spoken and Written Word-Picture Matching; Franklin et al. 1992). Productive vocabulary was
539 assessed through picture naming. In the spoken modality, the Boston Naming Test was employed
540 (Kaplan et al. 2001), and in writing, the PALPA Written Picture Naming subtest (Kay et al.
541 1992). Sentence processing was evaluated in both spoken and written modalities through
542 comprehension (sentence-to-picture matching) of reversible sentences in active and passive
543 voice. In a reversible sentence, the heads of both noun phrases are plausible agents, and
544 therefore, word order, function words, and functional morphology are the only cues to who is
545 doing what to whom. Participants also completed spoken and written grammaticality judgment
546 tasks, where they made a yes/no decision as to the grammaticality of a word string. The task
547 employed a subset of sentences from Linebarger et al. (1983).

548

549 All three participants exhibited severe language impairments that disrupted both comprehension
550 and production (**Table 2**). For lexical-semantic tasks, all three participants displayed residual
551 comprehension ability for high imageability/picturable vocabulary, although more difficulty was
552 evident on the synonym matching test, which included abstract words. They were all severely
553 anomia in speech and writing. Sentence production was severely impaired with output limited to
554 single words, social speech (expressions, like “How are you?”), and other formulaic expressions
555 (e.g., “and so forth”). Critically, all three performed at or close to chance level on spoken and
556 written comprehension of reversible sentences and grammaticality judgments; each patient’s
557 scores were lower than all of the healthy controls (**Table 2** and **Figure 2C**).

558

Participant	SA	PR	PP	Controls
Lexical-semantic assessments				
ADA Spoken Word-Picture Matching (chance = 16.5)	60/66	61/66	64/66	N/A
ADA Written Word-Picture Matching (chance = 16.5)	62/66	66/66	58/66	N/A
ADA spoken synonym matching (chance = 80)	123/160	121/160	135/160	N/A
ADA written synonym matching (chance = 80)	121/160	145/160	143/160	N/A
Boston Naming Test (NB: accepting both spoken and written responses)	4/60	4/60	11/60	N/A

PALPA 54 Written Picture Naming	24/60	2/60	1/60	N/A
Syntactic assessments				
Comprehension of spoken reversible sentences (chance = 40)	49/80	38/80	52/80	Mean = 79.5/80 SD = 1.03 Min = 74/80 Max = 80/80 N=48
Comprehension of written reversible sentences (chance = 40)	42/80	49/80	51/80	N/A
Spoken grammaticality judgments (chance = 24)	33/48	34/48	35/48	Mean = 45.5/48 SD = 2.52 Min = 36/48 Max = 48/48 N=49
Written grammaticality judgments (chance = 24)	29/48	24/48	29/48	N/A

559 **Table 2.** Results of language assessments for participants with aphasia and healthy controls. For
 560 each test, we show number of correctly answered questions out of the total number of questions.
 561
 562 *Critical music task.* Participants judged the well-formedness of the melodies from Experiment 2.
 563 Judgments were intended to reflect the detection of the key violation in the sour versions of the

564 melodies. The full set of 180 melodies was distributed across two lists following a Latin Square
565 design. All participants heard all 180 melodies. The control participants heard the melodies from
566 one list, followed by the melodies from the other list, with the order of lists counter-balanced
567 across participants. For the participants with aphasia, each list was further divided in half, and
568 each participant was tested across four sessions, with 45 melodies per session, to minimize
569 fatigue.

570

571 *Montreal Battery for the Evaluation of Amusia.* To obtain another measure of music
572 competence/sensitivity to music structure, we administered the Montreal Battery for the
573 Evaluation of Amusia (MBEA) (Peretz et al. 2003). The battery consists of six tasks that assess
574 musical processing components described by Peretz and Coltheart (2003): three target melodic
575 processing, two target rhythmic processing, and one assesses memory for melodies. Each task
576 consists of 30 experimental trials (and uses the same set of 30 base melodies) and is preceded by
577 practice examples. Some of the tasks additionally include a catch trial, as described below. For
578 the purposes of the current investigation, the critical task is the “Scale” task. Participants are
579 presented with pairs of melodies that they have to judge as identical or not. On half of the trials,
580 one of the melodies is altered by modifying the pitch of one of the tones to be out of scale. Like
581 our critical music task, this task aims to test participants’ ability to represent and use tonal
582 structure in Western music, except that instead of making judgments on each individual melody,
583 participants compare two melodies on each trial. This task thus serves as a conceptual replication
584 (Schmidt 2009). One trial contains stimuli designed to be easy, intended as a catch trial to ensure
585 that participants are paying attention. In this trial, the comparison melody has all its pitches set at
586 random. This trial is excluded when computing the scores.

587

588 Control participants performed just the Scale task. Participants with aphasia performed all six
589 tasks, distributed across three testing sessions to minimize fatigue.

590

591 ***fMRI data acquisition, preprocessing, and first-level modeling (for Experiments 1, 2, and 4)***

592

593 *Data acquisition.* Whole-brain structural and functional data were collected on a whole-body 3
594 Tesla Siemens Trio scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging
595 Center at the McGovern Institute for Brain Research at MIT. T1-weighted structural images were
596 collected in 176 axial slices with 1 mm isotropic voxels (repetition time (TR) = 2,530 ms; echo
597 time (TE) = 3.48 ms). Functional, blood oxygenation level-dependent (BOLD) data were
598 acquired using an EPI sequence with a 90° flip angle and using GRAPPA with an acceleration
599 factor of 2; the following parameters were used: thirty-one 4.4 mm thick near-axial slices
600 acquired in an interleaved order (with 10% distance factor), with an in-plane resolution of 2.1
601 mm × 2.1 mm, FoV in the phase encoding (A >> P) direction 200 mm and matrix size 96 × 96
602 voxels, TR = 2000 ms and TE = 30 ms. The first 10 s of each run were excluded to allow for
603 steady state magnetization (see OSF <https://osf.io/68y7c/> for the pdf of the scanning protocols).
604 (Note that we opted to use a regular, continuous, scanning sequence in spite of investigating
605 responses to auditory conditions. However, effects of scanner noise are unlikely to be
606 detrimental given that all the stimuli are clearly perceptible, as also confirmed by examining
607 responses in the auditory areas.)

608

609 *Preprocessing.* fMRI data were analyzed using SPM12 (release 7487), CONN EvLab module
610 (release 19b), and other custom MATLAB scripts. Each participant's functional and structural
611 data were converted from DICOM to NIFTI format. All functional scans were coregistered and
612 resampled using B-spline interpolation to the first scan of the first session (Friston et al. 1995).
613 Potential outlier scans were identified from the resulting subject-motion estimates as well as
614 from BOLD signal indicators using default thresholds in CONN preprocessing pipeline (5
615 standard deviations above the mean in global BOLD signal change, or framewise displacement
616 values above 0.9 mm; Nieto-Castañón 2020). Functional and structural data were independently
617 normalized into a common space (the Montreal Neurological Institute [MNI] template;
618 IXI549Space) using SPM12 unified segmentation and normalization procedure (Ashburner and
619 Friston 2005) with a reference functional image computed as the mean functional data after
620 realignment across all timepoints omitting outlier scans. The output data were resampled to a
621 common bounding box between MNI-space coordinates (-90, -126, -72) and (90, 90, 108), using
622 2mm isotropic voxels and 4th order spline interpolation for the functional data, and 1mm
623 isotropic voxels and trilinear interpolation for the structural data. Last, the functional data were
624 smoothed spatially using spatial convolution with a 4 mm FWHM Gaussian kernel.

625

626 *First-level modeling.* For both the language localizer task and the critical experiments, effects
627 were estimated using a General Linear Model (GLM) in which each experimental condition was
628 modeled with a boxcar function convolved with the canonical hemodynamic response function
629 (HRF) (fixation was modeled implicitly, such that all timepoints that did not correspond to one
630 of the conditions were assumed to correspond to a fixation period). Temporal autocorrelations in
631 the BOLD signal timeseries were accounted for by a combination of high-pass filtering with a

632 128 seconds cutoff, and whitening using an AR(0.2) model (first-order autoregressive model
633 linearized around the coefficient $a=0.2$) to approximate the observed covariance of the functional
634 data in the context of Restricted Maximum Likelihood estimation (ReML). In addition to
635 experimental condition effects, the GLM design included first-order temporal derivatives for
636 each condition (included to model variability in the HRF delays), as well as nuisance regressors
637 to control for the effect of slow linear drifts, subject-motion parameters, and potential outlier
638 scans on the BOLD signal.

639

640 ***Definition of the language functional regions of interest (fROIs) (for Experiments 1, 2, and 4)***

641

642 For each critical experiment, we defined a set of language functional regions of interest (fROIs)
643 using group-constrained, subject-specific localization (Fedorenko et al. 2010). In particular, each
644 individual map for the *sentences > nonwords* contrast from the language localizer was
645 intersected with a set of five binary masks. These masks (**Figure 3**; available at OSF:
646 <https://osf.io/68y7c/>) were derived from a probabilistic activation overlap map for the same
647 contrast in a large independent set of participants ($n=220$) using watershed parcellation, as
648 described in Fedorenko et al. (2010) for a smaller set of participants. These masks covered the
649 fronto-temporal language network in the left hemisphere. Within each mask, a participant-
650 specific language fROI was defined as the top 10% of voxels with the highest t -values for the
651 localizer contrast.

652

653 ***Validation of the language fROIs***

654

655 To ensure that the language fROIs behave as expected (i.e., show a reliably greater response to
656 the sentences condition compared to the nonwords condition), we used an across-runs cross-
657 validation procedure (e.g., Nieto-Castañón and Fedorenko 2012). In this analysis, the first run of
658 the localizer was used to define the fROIs, and the second run to estimate the responses (in
659 percent BOLD signal change, PSC) to the localizer conditions, ensuring independence (e.g.,
660 Kriegeskorte et al. 2009); then the second run was used to define the fROIs, and the first run to
661 estimate the responses; finally, the extracted magnitudes were averaged across the two runs to
662 derive a single response magnitude for each of the localizer conditions. Statistical analyses were
663 performed on these extracted PSC values. Consistent with much previous work (e.g., Fedorenko
664 et al. 2010; Mahowald and Fedorenko 2016; Diacheck, Blank, Siegelman et al. 2020), each of the
665 language fROIs showed a robust *sentences > nonwords* effect (all $p < 0.001$).
666

667 **Statistical analyses for the fMRI experiments**

668
669 All analyses were performed with linear mixed-effects models using the “lme4” package in R
670 with p -value approximation performed by the “lmerTest” package (Bates et al. 2015; Kuznetsova
671 et al. 2017). Effect size (Cohen’s d) was calculated using the method from Westfall et al. (2014)
672 and Brysbaert and Stevens (2018).
673

674 ***Sanity check analyses and results***

675
676 To estimate the responses in the language fROIs to the conditions of the critical experiments here
677 and in the critical analyses, the data from all the runs of the language localizer were used to

678 define the fROIs, and the responses to each condition were then estimated in these regions.
679 Statistical analyses were then performed on these extracted PSC values. (For Experiments 1 and
680 4, we repeated the analyses using alternative language localizer contrasts to define the language
681 fROIs (auditory *sentences* > *nonwords* in Experiment 1, and *Mandarin sentences* > *foreign* in
682 Experiment 4), which yielded quantitatively and qualitatively similar responses (see **SI-2**.)

683
684 We conducted two sets of sanity check analyses. First, to ensure that auditory conditions that
685 contain meaningful linguistic content elicit strong responses in the language regions relative to
686 perceptually similar conditions with no discernible linguistic content, we compared the auditory
687 sentences condition with the auditory nonwords condition (Experiment 1) or with the foreign
688 language condition (Experiment 4). Indeed, as expected, the auditory sentence condition elicited
689 a stronger response than the auditory nonwords condition (Experiment 1) or the foreign language
690 condition (Experiment 4). These effects were robust at the network level ($ps < 0.001$; **SI-Table**
691 **1a**). Further, the *sentences* > *nonwords* effect was significant in all but one language fROI in
692 Experiment 1, and the *sentences* > *foreign* effect was significant in all language fROIs in
693 Experiment 4 ($ps < 0.05$; **SI-Table 1a**).

694
695 And second, to ensure that the music conditions elicit strong responses in auditory cortex, we
696 extracted the responses from a bilateral anatomically defined auditory cortical region (area Te1.2
697 from the Morosan et al. 2001 cytoarchitectonic probabilistic atlas) to the six critical music
698 conditions: orchestral music, single instrument music, synthetic drum music, and synthetic
699 melodies in Experiment 1; well-formed melodies in Experiment 2; and the music condition in
700 Experiment 4. Statistical analyses, comparing each condition to the fixation baseline, were

701 performed on these extracted PSC values. As expected, all music conditions elicited strong
702 responses in a primary auditory area bilaterally (all $p \leq 0.001$; **SI-Table 1b**; **SI-Figure 1**).

703

704 ***Critical analyses***

705

706 To characterize the responses in the language network to music perception, we asked three
707 questions. First, we asked whether music conditions elicit strong responses in the language
708 regions. Second, we investigated whether the language network is sensitive to structure in music,
709 as would be evidenced by stronger responses to intact than scrambled music, and stronger
710 responses to melodies with structural violations compared to the no-violation control condition.
711 And third, we asked whether music conditions elicit strong responses in the language regions of
712 individuals with high sensitivity to linguistic pitch—native speakers of a tonal language
713 (Mandarin).

714

715 For each contrast (the contrasts relevant to the three research questions are detailed below), we
716 used two types of linear mixed-effect regression models:
717 i) the language network model, which examined the language network as a whole; and
718 ii) the individual language fROI models, which examined each language fROI separately.

719

720 As alluded to in the Introduction, treating the language network as an integrated system is
721 reasonable given that the regions of this network a) show similar functional profiles, both with
722 respect to selectivity for language over non-linguistic processes (e.g., Fedorenko et al. 2011;
723 Pritchett et al. 2018; Jouravlev et al. 2019; Ivanova et al. 2020, 2021) and with respect to their

724 role in lexico-semantic and syntactic processing (e.g., Fedorenko et al. 2012b; Blank et al. 2016;
725 Fedorenko et al. 2020); and b) exhibit strong inter-region correlations in both their activity
726 during naturalistic cognition paradigms (e.g., Blank et al. 2014; Braga et al. 2020; Paunov et al.
727 2019; Malik-Moraleda, Ayyash et al. 2022) and key functional markers, like the strength or
728 extent of activation in response to language stimuli (e.g., Mahowald and Fedorenko 2016;
729 Mineroff, Blank et al. 2018). However, to allow for the possibility that language regions differ in
730 their response to music and to examine the region on which most claims about language-music
731 overlap have focused (the region that falls within ‘Broca’s area’), we supplement the network-
732 wise analyses with the analyses of the five language fROIs separately.

733

734 For each network-wise analysis, we fit a linear mixed-effect regression model predicting the
735 level of BOLD response in the language fROIs in the contrasted conditions. The model included
736 a fixed effect for condition (the relevant contrasts are detailed below for each analysis) and
737 random intercepts for fROIs and participants. Here and elsewhere, the *p*-value was estimated by
738 applying the Satterthwaite’s method-of-moment approximation to obtain the degrees of freedom
739 (Giesbrecht and Burns 1985; Fai and Cornelius 1996; as described in Kuznetsova et al. 2017).
740 For the comparison against the fixation baseline, the random intercept for participants was
741 removed because it is no longer applicable.

742

743 $Effect\ size \sim condition + (1 | fROI) + (1 | Participant)$

744

745 For each fROI-wise analysis, we fit a linear mixed-effect regression model predicting the level of
746 BOLD response in each of the five language fROIs in the contrasted conditions. The model

747 included a fixed effect for condition and random intercepts for participants. For each analysis,
748 the results were FDR-corrected for the five fROIs. For the comparison against the fixation
749 baseline, the random intercept for participants was removed because it is no longer applicable.

750

751 $Effect\ size \sim condition + (I \mid Participant)$

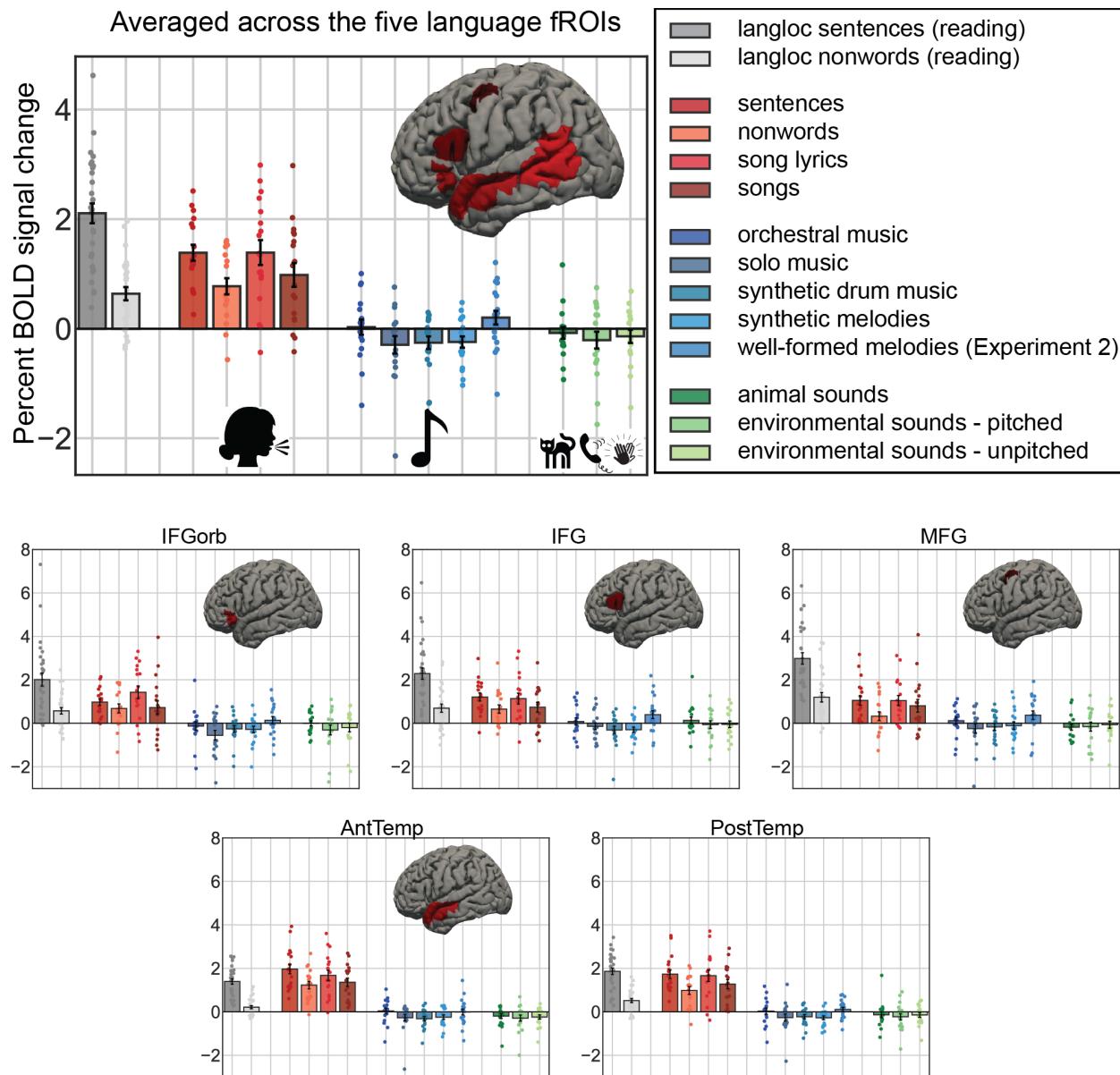
752

753 **Results**

754

755 ***Does music elicit a response in the language network?***

756


757 As discussed in the Introduction, a brain region that supports (some aspect of) music processing,
758 including structure processing, should show a strong response to music stimuli. To test whether
759 language regions respond to music, we used four contrasts using data from Experiments 1 and 2.
760 First, we compared the responses to each of the music conditions (orchestral music, single
761 instrument music, synthetic drum music, and synthetic melodies in Experiment 1; well-formed
762 melodies in Experiment 2) against the fixation baseline—the most liberal baseline. Second, we
763 compared the responses to the music conditions against the response to the nonword strings
764 condition—an unstructured and meaningless linguistic stimulus (in Experiment 1, we used the
765 auditory nonwords condition, and in Experiment 2, we used the visual nonwords condition from
766 the language localizer). Third, in Experiment 1, we additionally compared the responses to the
767 music conditions against the response to non-linguistic, non-music stimuli (animal and
768 environmental sounds). A brain region that supports music processing should elicit a strong
769 positive response relative to the fixation baseline and the nonwords condition (our baseline for

770 the language regions); further, if the response is selective, it should be stronger than the response
771 elicited by non-music auditory stimuli. Finally, in Experiment 1, we also directly compared the
772 responses to songs vs. lyrics. A brain region that responds to music should respond more
773 strongly to songs given that they contain a melodic contour in addition to the linguistic content.

774

775 None of the music conditions elicited a strong response in the language network (**Figure 3**;
776 **Table 3**). The responses to music (i) fell at or below the fixation baseline (except for the well-
777 formed melodies condition in Experiment 2, which elicited a small positive response in some
778 regions), (ii) were lower than the response elicited by auditory nonwords (except for the LMFG
779 language fROI, where the responses to music and nonwords were similarly low), and (iii) did not
780 significantly differ from the responses elicited by non-linguistic, non-music conditions. Finally,
781 the response to songs, which contain both linguistic content and a melodic contour, was not
782 significantly higher than the response elicited by the linguistic content alone (lyrics); in fact, at
783 the network level, the response to songs was reliably lower than to lyrics.

784

786 **Figure 3.** Responses of the language fROIs (pooling across the network – top, and for each fROI
787 individually – bottom) to the language localizer conditions (in grey), to the four auditory conditions
788 containing speech in Experiment 1 (red shades), to the five music conditions in Experiments 1 and 2 (blue
789 shades), and to the three non-linguistic/non-music auditory conditions (green shades) in Experiment 1.
790 Here and elsewhere, the error bars represent standard errors of the mean by participants. For the language
791 localizer results, we include here all participants in Experiments 1 and 2. The responses to the music

792 conditions cluster around the fixation baseline, are much lower than the responses to sentences, and are
 793 not higher than the responses to non-music sounds.

794

Contrast	Language network	LIFGorb	LIFG	LMFG	LAnt Temp	LPost Temp
<i>music > fixation</i>						
orchestral music >fixation	$\beta=0.028$ $se=0.135$ $df=17.383$ $d=0.042$ $t=0.209$ $p=0.837$	$\beta=-0.129$ $se=0.193$ $df=nan$ $d=nan$ $t=-0.667$ $p=1.000$	$\beta=0.082$ $se=0.162$ $df=nan$ $d=nan$ $t=0.506$ $p=1.000$	$\beta=0.117$ $se=0.165$ $df=nan$ $d=nan$ $t=0.711$ $p=1.000$	$\beta=0.040$ $se=0.130$ $df=nan$ $d=nan$ $t=0.310$ $p=1.000$	$\beta=0.030$ $se=0.143$ $df=nan$ $d=nan$ $t=0.210$ $p=1.000$
single-instrument music >fixation	$\beta=-0.294$ $se=0.163$ $df=18.616$ $d=-0.378$ $t=-1.809$ $p=0.087$	$\beta=-0.552$ $se=0.223$ $df=nan$ $d=nan$ $t=-2.471$ $p=0.120$	$\beta=-0.141$ $se=0.155$ $df=nan$ $d=nan$ $t=-0.906$ $p=1.000$	$\beta=-0.243$ $se=0.217$ $df=nan$ $d=nan$ $t=-1.122$ $p=1.000$	$\beta=-0.272$ $se=0.152$ $df=nan$ $d=nan$ $t=-1.794$ $p=0.455$	$\beta=-0.264$ $se=0.164$ $df=nan$ $d=nan$ $t=-1.611$ $p=0.630$
synthetic drum music >fixation	$\beta=-0.255$ $se=0.112$ $df=18.000$ $d=-0.432$ $t=-2.281$ $p=0.035^*$	$\beta=-0.258$ $se=0.155$ $df=nan$ $d=nan$ $t=-1.667$ $p=0.570$	$\beta=-0.306$ $se=0.172$ $df=nan$ $d=nan$ $t=-1.780$ $p=0.465$	$\beta=-0.168$ $se=0.162$ $df=nan$ $d=nan$ $t=-1.040$ $p=1.000$	$\beta=-0.319$ $se=0.106$ $df=nan$ $d=nan$ $t=-3.020$ $p=0.040^*$	$\beta=-0.226$ $se=0.103$ $df=nan$ $d=nan$ $t=-2.189$ $p=0.215$
synthetic melodies	$\beta=-0.243$ $se=0.100$	$\beta=-0.286$ $se=0.154$	$\beta=-0.299$ $se=0.120$	$\beta=-0.108$ $se=0.177$	$\beta=-0.247$ $se=0.103$ $df=nan$	$\beta=-0.276$ $se=0.089$ $df=nan$

>fixation	df=18.000 d=-0.441 t=-2.423 p=0.026*	df=nan d=nan t=-1.856 p=0.405	df=nan d=nan t=-2.485 p=0.120	df=nan d=nan t=-0.611 p=1.000	d=nan t=-2.395 p=0.140	d=nan t=-3.093 p=0.035*
well-formed melodies (Expt 2)	$\beta=0.201$ se=0.135 df=17.483 d=0.281 t=1.488 p=0.155	$\beta=0.139$ se=0.166 df=nan d=nan t=0.836 p=1.000	$\beta=0.396$ se=0.181 df=nan d=nan t=2.182 p=0.210	$\beta=0.371$ se=0.197 df=nan d=nan t=1.885 p=0.375	$\beta=-0.008$ se=0.136 df=nan d=nan t=-0.056 p=1.000	$\beta=0.107$ se=0.096 df=nan d=nan t=1.109 p=1.000
>fixation						
<i>music > nonwords</i>						
orchestral music >nonwords	$\beta=-0.746$ se=0.092 df=157.707 d=-0.978 t=-8.097 p<0.001***	$\beta=-0.811$ se=0.276 df=36.000 d=-0.981 t=-2.945 p=0.030*	$\beta=-0.569$ se=0.142 df=18.000 d=-0.779 t=-4.015 p=0.005*	$\beta=-0.210$ se=0.221 df=18.000 d=-0.276 t=-0.954 p=1.000	$\beta=-1.187$ se=0.147 df=18.000 d=-1.884 t=-8.101 p<0.001***	$\beta=-0.950$ se=0.205 df=18.000 d=-1.427 t=-4.646 p<0.001***
single-instrument music >nonwords	$\beta=-1.068$ se=0.100 df=157.689 d=-1.314 t=-10.714 p<0.001***	$\beta=-1.234$ se=0.296 df=36.000 d=-1.388 t=-4.167 p<0.001***	$\beta=-0.791$ se=0.222 df=18.000 d=-1.101 t=-3.567 p=0.010*	$\beta=-0.571$ se=0.235 df=18.000 d=-0.661 t=-2.431 p=0.130	$\beta=-1.500$ se=0.196 df=18.000 d=-2.236 t=-7.648 p<0.001***	$\beta=-1.244$ se=0.234 df=17.998 d=-1.765 t=-5.315 p<0.001***
synthetic drum music >nonwords	$\beta=-1.029$ se=0.087 df=157.720 d=-1.408	$\beta=-0.940$ se=0.212 df=18.000 d=-1.246	$\beta=-0.956$ se=0.182 df=18.000 d=-1.275	$\beta=-0.496$ se=0.245 df=18.000 d=-0.658	$\beta=-1.546$ se=0.187 df=18.000 d=-2.621	$\beta=-1.207$ se=0.177 df=18.000 d=-2.012

	t=-11.839 p<0.001***	t=-4.430 p<0.001***	t=-5.252 p<0.001***	t=-2.026 p=0.290	t=-8.262 p<0.001***	t=-6.817 p<0.001***
synthetic melodies -nonwords	$\beta=-1.017$ se=0.087 df=157.683 d=-1.421 t=-11.623 p<0.001***	$\beta=-0.969$ se=0.209 df=18.000 d=-1.286 t=-4.642 p<0.001***	$\beta=-0.949$ se=0.153 df=18.000 d=-1.441 t=-6.223 p<0.001***	$\beta=-0.435$ se=0.252 df=18.000 d=-0.556 t=-1.727 p=0.505	$\beta=-1.474$ se=0.195 df=36.000 d=-2.513 t=-7.541 p<0.001***	$\beta=-1.256$ se=0.176 df=18.000 d=-2.164 t=-7.136 p<0.001***
well-formed melodies (Expt 2) >nonwords (visual)	$\beta=-0.449$ se=0.090 df=179.063 d=-0.562 t=-4.998 p<0.001***	$\beta=-0.490$ se=0.226 df=20.989 d=-0.611 t=-2.164 p=0.210	$\beta=-0.403$ se=0.208 df=20.056 d=-0.444 t=-1.938 p=0.335	$\beta=-0.686$ se=0.250 df=20.173 d=-0.705 t=-2.748 p=0.060	$\beta=-0.242$ se=0.134 df=20.737 d=-0.470 t=-1.812 p=0.420	$\beta=-0.375$ se=0.123 df=20.455 d=-0.792 t=-3.056 p=0.030*
<i>music > non-linguistic, non-music auditory conditions</i>						
music (combined) >animal sounds	$\beta=-0.114$ se=0.060 df=427.876 d=-0.177 t=-1.915 p=0.056	$\beta=-0.306$ se=0.148 df=72.000 d=-0.422 t=-2.069 p=0.210	$\beta=-0.295$ se=0.146 df=72.000 d=-0.451 t=-2.021 p=0.235	$\beta=0.080$ se=0.151 df=72.000 d=0.111 t=0.528 p=1.000	$\beta=-0.002$ se=0.090 df=72.000 d=-0.004 t=-0.023 p=1.000	$\beta=-0.048$ se=0.094 df=72.000 d=-0.088 t=-0.513 p=1.000
music (combined) >environmental (pitched)	$\beta=0.019$ se=0.060 df=427.902 d=0.028 t=0.307 p=0.759	$\beta=0.005$ se=0.144 df=72.000 d=0.006 t=0.033 p=1.000	$\beta=-0.104$ se=0.133 df=72.000 d=-0.156 t=-0.781 p=1.000	$\beta=0.055$ se=0.159 df=72.000 d=0.071 t=0.347 p=1.000	$\beta=0.092$ se=0.094 df=72.000 d=0.171 t=0.975 p=1.000	$\beta=0.045$ se=0.094 df=72.000 d=0.081 t=0.475 p=1.000

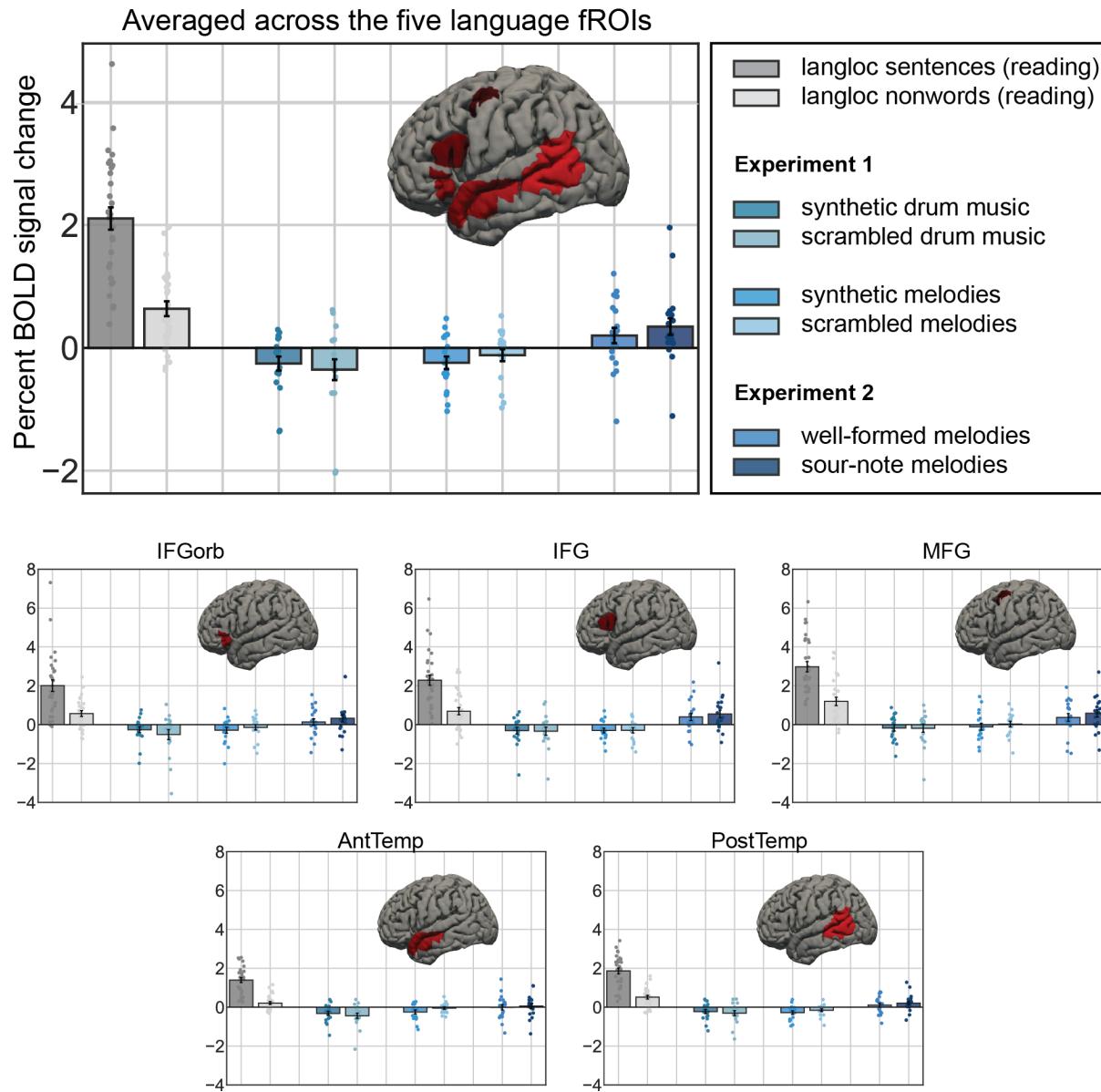
music	$\beta=-0.052$ se=0.063 df=427.856 d=-0.079 t=-0.823 p=0.411	$\beta=-0.109$ se=0.163 df=72.000 d=-0.140 t=-0.666 p=1.000	$\beta=-0.118$ se=0.152 df=72.000 d=-0.182 t=-0.778 p=1.000	$\beta=-0.030$ se=0.151 df=72.000 d=-0.040 t=-0.198 p=1.000	$\beta=0.042$ se=0.097 df=72.000 d=0.083 t=0.429 p=1.000	$\beta=-0.043$ se=0.100 df=72.000 d=-0.082 t=-0.426 p=1.000
(melodic contour + linguistic content) > linguistic content						
songs	$\beta=-0.408$ se=0.102 df=157.896 d=-0.377 t=-4.014 p<0.001***	$\beta=-0.705$ se=0.287 df=18.000 d=-0.569 t=-2.454 p=0.125	$\beta=-0.394$ se=0.195 df=18.000 d=-0.400 t=-2.025 p=0.290	$\beta=-0.243$ se=0.219 df=18.000 d=-0.226 t=-1.107 p=1.000	$\beta=-0.313$ se=0.163 df=18.000 d=-0.356 t=-1.925 p=0.350	$\beta=-0.384$ se=0.171 df=18.000 d=-0.392 t=-2.246 p=0.185

795 **Table 3.** Statistical results (two-sided) for the contrasts between music conditions and three kinds of
 796 baselines (fixation, nonwords, and non-linguistic non-music auditory conditions—animal sounds and
 797 environmental sounds) in Experiments 1 and 2, and for the contrast between songs and lyrics in
 798 Experiment 1. Abbreviations: β =the beta estimate for the effect; se=standard error of the mean by
 799 participants; df=degrees of freedom; d=Cohen's d (Westfall et al. 2014; Brysbaert and Stevens 2018);
 800 t=the t statistic; p=the significance value (for the individual fROIs, these values have been FDR-corrected
 801 for the number of fROIs (n=5)). In light grey, we highlight the results that are **not consistent** with the role
 802 of the language regions in music perception: of the 84 tests performed, 1 showed an effect predicted by
 803 language-music overlap accounts: a small and statistically weak (only emerging at the network level but
 804 not in any individual fROI) positive response, relative to the weakest baseline (fixation), to one of the five
 805 music conditions examined; and this response was still ~4 times lower than the response to an
 806 unstructured linguistic condition (nonwords).

807

808 ***Is the language network sensitive to structure in music?***

809


810 Experiments 1 and 2 (fMRI): Because most prior claims about the overlap between language and
811 music concern the processing of *structure*—given the parallels that can be drawn between the
812 syntactic structure of language and the tonal and rhythmic structure in music (e.g., Lerdahl and
813 Jackendoff 1977, 1983; cf. Jackendoff 2009)—we used three contrasts to test whether language
814 regions are sensitive to music structure. First and second, in Experiment 1, we compared the
815 responses to synthetic melodies vs. their scrambled counterparts, and to synthetic drum music vs.
816 the scrambled drum music condition. The former targets both tonal and rhythmic structure, and
817 the latter selectively targets rhythmic structure. The reason to examine rhythmic structure is that
818 some patient studies have argued that pitch contour processing relies on the right hemisphere,
819 and rhythm processing draws on the left hemisphere (e.g., Zatorre 1984; Peretz 1990; Alcock et
820 al. 2000; cf. Boebinger 2021 for fMRI evidence of bilateral responses in high-level auditory
821 areas to both tonal and rhythmic structure processing and for lack of spatial segregation between
822 the two), so although most prior work examining the language-music relationship has focused on
823 tonal structure, rhythmic structure may *a priori* be more likely to overlap with linguistic
824 syntactic structure given their alleged co-lateralization based on the patient literature. And third,
825 in Experiment 2, we compared the responses to well-formed melodies vs. melodies with a sour
826 note. A brain region that responds to structure in music should respond more strongly to intact
827 than scrambled music (similar to how language regions respond more strongly to sentences than
828 lists of words; e.g., Fedorenko et al. 2010; Diachek, Blank, Siegelman et al. 2020), and also
829 exhibit sensitivity to structure violations (similar to how language regions respond more strongly
830 to sentences that contain grammatical errors: e.g., Embick et al. 2000; Newman et al. 2001;

831 Kuperberg et al. 2003; Cooke et al. 2006; Friederici et al. 2010; Herrmann et al. 2012; Fedorenko
832 et al. 2020). Note that given the lack of a strong and consistent response to music in the language
833 regions (**Figure 3** and **Table 3**), the answer to this narrower question is somewhat of a foregone
834 conclusion: even if one or more of the language regions showed a reliable effect in these music-
835 structure-probing contrasts, such effects would be difficult to interpret as reflecting music
836 structure processing given that structured music stimuli elicit a response approximately at the
837 level of the fixation baseline in the language areas. Nevertheless, we report the results for these
838 three contrasts for completeness, and because most prior studies have focused on such contrasts.

839

840 The language regions did not show consistent sensitivity to structural manipulations in music
841 (**Figure 4**; **Table 4**). In Experiment 1, the responses to synthetic melodies did not significantly
842 differ from (or were weaker than) the responses to the scrambled counterparts, and the responses
843 to synthetic drum music did not significantly differ from the responses to scrambled drum music.
844 In Experiment 2, at the network level, we observed a small and weakly significant ($p < 0.05$)
845 effect of *sour-note > well-formed melodies*. This effect was not significant in any of the five
846 individual fROIs (even prior to the FDR correction).

847

849 **Figure 4.** Responses of the language fROIs (pooling across the network – top, and for each fROI
850 individually – bottom) to the language localizer conditions (in grey), and to the three sets of conditions
851 that target structure in music (in blue). The error bars represent standard error of the mean by participants.
852 For the language localizer results, we include here participants in Experiments 1 and 2. The responses to
853 the music conditions cluster around the fixation baseline, and are much lower than the response to
854 sentences. One of the three critical contrasts (*sour-note > well-formed* melodies) elicits a small and
855 weakly reliable effect at the network level, but it is not individually significant in any of the five fROIs.

856

Contrast	Language network	LIFGorb	LIFG	LMFG	LAnt Temp	LPost Temp
synthetic drum music >scrambled drum music	$\beta=0.099$	$\beta=0.252$	$\beta=0.027$	$\beta=0.014$	$\beta=0.124$	$\beta=0.079$
	se=0.073	se=0.191	se=0.176	se=0.186	se=0.103	se=0.110
	df=157.823	df=18.000	df=18.000	df=18.000	df=18.000	df=18.000
	d=0.140	d=0.288	d=0.034	d=0.018	d=0.247	d=0.165
	t=1.358	t=1.322	t=0.156	t=0.073	t=1.210	t=0.718
	p=0.176	p=1.000	p=1.000	p=1.000	p=1.000	p=1.000
synthetic melodies >scrambled synthetic melodies	$\beta=-0.124$	$\beta=-0.147$	$\beta=-0.009$	$\beta=-0.143$	$\beta=-0.199$	$\beta=-0.121$
	se=0.061	se=0.130	se=0.153	se=0.202	se=0.101	se=0.106
	df=157.720	df=18.000	df=18.000	df=18.000	df=18.000	df=18.000
	d=-0.238	d=-0.245	d=-0.017	d=-0.216	d=-0.572	d=-0.365
	t=-2.015	t=-1.133	t=-0.057	t=-0.708	t=-1.971	t=-1.142
	p=0.046*	p=1.000	p=1.000	p=1.000	p=0.320	p=1.000
sour-note melodies >well-formed melodies	$\beta=0.145$	$\beta=0.195$	$\beta=0.150$	$\beta=0.212$	$\beta=0.065$	$\beta=0.104$
	se=0.069	se=0.098	se=0.105	se=0.090	se=0.051	se=0.056
	df=175.884	df=20.000	df=20.000	df=20.000	df=20.000	df=20.000
	d=0.196	d=0.245	d=0.180	d=0.252	d=0.114	d=0.248
	t=2.102	t=1.985	t=1.431	t=2.363	t=1.280	t=1.856
	p=0.037*	p=0.305	p=0.840	p=0.140	p=1.000	p=0.390

857 **Table 4.** Statistical results (two-sided) for the contrasts between the synthetic drum music and scrambled
 858 drum music, synthetic melodies and scrambled synthetic melodies, and sour-note and well-formed
 859 melodies contrasts in Experiments 1 and 2. Abbreviations: b=the beta estimate for the effect; se=standard
 860 error of the mean by participants; df=degrees of freedom; d=Cohen's d (Westfall et al. 2014; Brysbaert
 861 and Stevens 2018); t=the t statistic; p=the significance value (for the individual fROIs, these values have
 862 been FDR-corrected for the number of fROIs (n=5)). In light grey, we highlight the results that are **not**

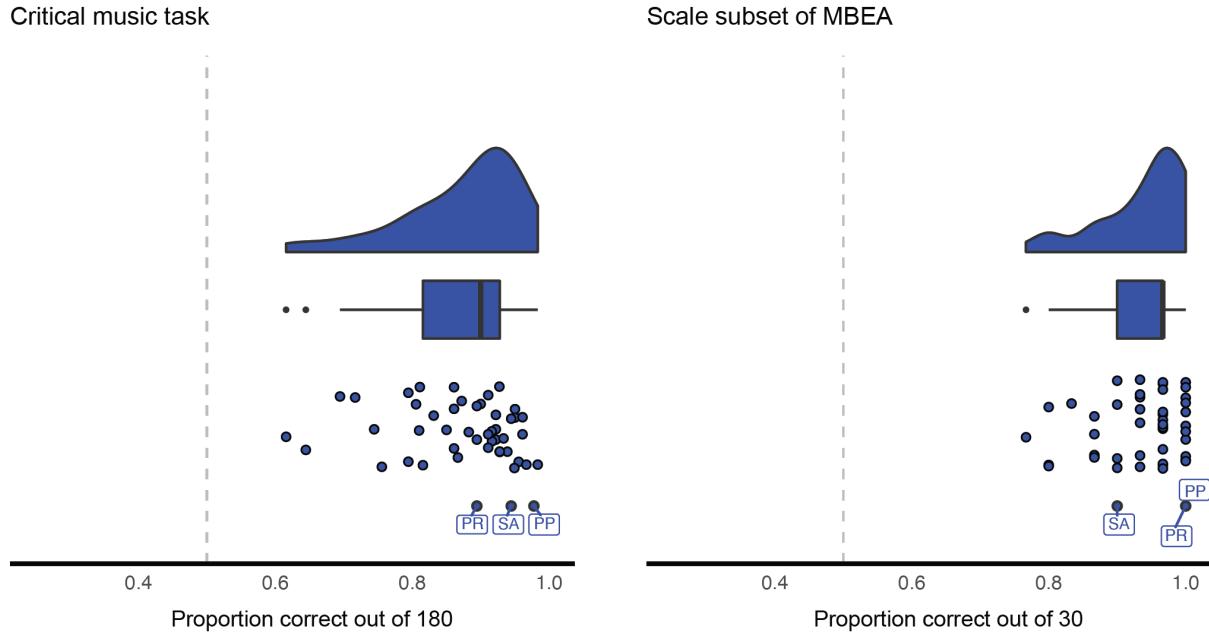
863 **consistent** with the role of the language regions in the processing of music structure: of the 18 tests
864 performed, 1 showed an effect predicted by language-music overlap accounts: a small and statistically
865 weak response to one of the three structure-targeting contrasts (in the presence of an overall very weak
866 response to music relative to fixation; see Figure 3 and Table 3).

867

868

869 Experiment 3 (behavioral): In Experiment 3, we further asked whether individuals with severe
870 deficits in processing linguistic syntax also exhibit difficulties in processing music structure. To
871 do so, we assessed participants' ability to discriminate well-formed ("good") melodies from
872 melodies with a sour note ("bad"), while controlling for their response bias (how likely they are
873 overall to say that something is well-formed) by computing d' for each participant (Green and
874 Swets 1966), in addition to proportion correct. We then compared the d' values of each
875 individual with aphasia to the distribution of d' values of healthy control participants using a
876 Bayesian test for single case assessment (Crawford and Garthwaite 2007) as implemented in the
877 *psycho* package in R (Makowski 2018). (Note that for the linguistic syntax tasks, it was not
878 necessary to conduct statistical tests comparing the performance of each individual with aphasia
879 to the control distribution because the performance of each individual with aphasia was lower
880 than 100% of the control participants' performances.) We similarly compared the proportion
881 correct on the MBEA scale task of each individual with aphasia to the distribution of accuracies
882 of healthy controls. If linguistic and music syntax draw on the same resources, then individuals
883 with linguistic syntactic impairments should also exhibit deficits on tasks requiring the
884 processing of music syntax.

885


886 In the critical music task, where participants were asked to judge the well-formedness of musical
887 structure, neurotypical control participants responded correctly, on average, on 87.1% of trials,
888 suggesting that the task was sufficiently difficult to preclude ceiling effects. Patients with severe
889 aphasia showed intact sensitivity to music structure. The three patients had accuracies of 89.4%
890 (PR), 94.4% (SA), and 97.8% (PP), falling on the higher end of the controls' performance range
891 (**Figure 5; Table 5**). Crucially, none of the three aphasic participants' d' scores were lower than
892 the average control participants' d' scores ($M = 2.75$, $SD = 0.75$). In fact, the patients' d' scores
893 were high: SA's d' was 3.51, higher than 83.91% (95% Credible Interval (CI) [75.20, 92.03]) of
894 the control population, PR's d' was 3.09, higher than 67.26% (95% CI [56.60, 78.03]) of the
895 control population, and PP's d' was 3.99, higher than 94.55% (95% CI [89.40, 98.57]) of the
896 control population. None of the three aphasic participants' bias/criterion c scores (Green and
897 Swets 1966) differed reliably from the control participants' c scores ($M = -0.40$, $SD = 0.40$).
898 SA's c was -0.53, lower than 62.34% (95% CI [50.40, 71.67]) of the control population, PR's c
899 was -0.74, lower than 79.48% (95% CI [69.58, 88.44]) of the control population, and PP's c was
900 -0.29, higher than 60.88% (95% CI [50.08, 70.04]) of the control population. In the Scale task
901 from the Montreal Battery for the Evaluation of Aphasia, the control participants' performance
902 showed a similar distribution to that reported in Peretz et al. (2003). All participants with aphasia
903 performed within the normal range, with two participants making no errors. PR and PP's score
904 was higher than 85.24% (95% CI [76.94, 93.06]) of the control population, providing a
905 conceptual replication of the results from the well-formed/sour-note melody discrimination task.
906 SA's score was higher than 30.57% (95% CI [20.00, 41.50]) of the control population.
907

Participant	SA	PR	PP	Controls
-------------	----	----	----	----------

Critical Music Task	170/180	161/180	176/180	M = 156.5/180 SD = 15.8 Min = 109/180 Max = 177/180 N=45
Montreal Battery for the Evaluation of Amusia				
(Critical for this study) Task 1 (Scale)	27/30	30/30	30/30	M = 28/30 SD = 1.89 Min = 23/30 Max = 30/30 N = 45
Task 2 (Interval; “Same Contour” on MBEA CD)	26/30	22/30	18/30	
Task 3 (Contour; “Different Contour” on MBEA CD)	22/30	23/30	18/30	
Task 4 (Rhythm; “Rhythmic Contour” on MBEA CD)	25/30	25/30	22/30	
Task 5 (Meter; “Metric” on MBEA CD)	28/30	22/30	24/30	
Task 6 (Incidental Memory)	28/30	28/30	22/30	

908 **Table 5.** Results for participants with aphasia and control participants on the critical music task and the
909 Scale task of the MBEA (Peretz et al., 2003). For participants with aphasia, we report the results from all
910 six MBEA tasks, for completeness.

911

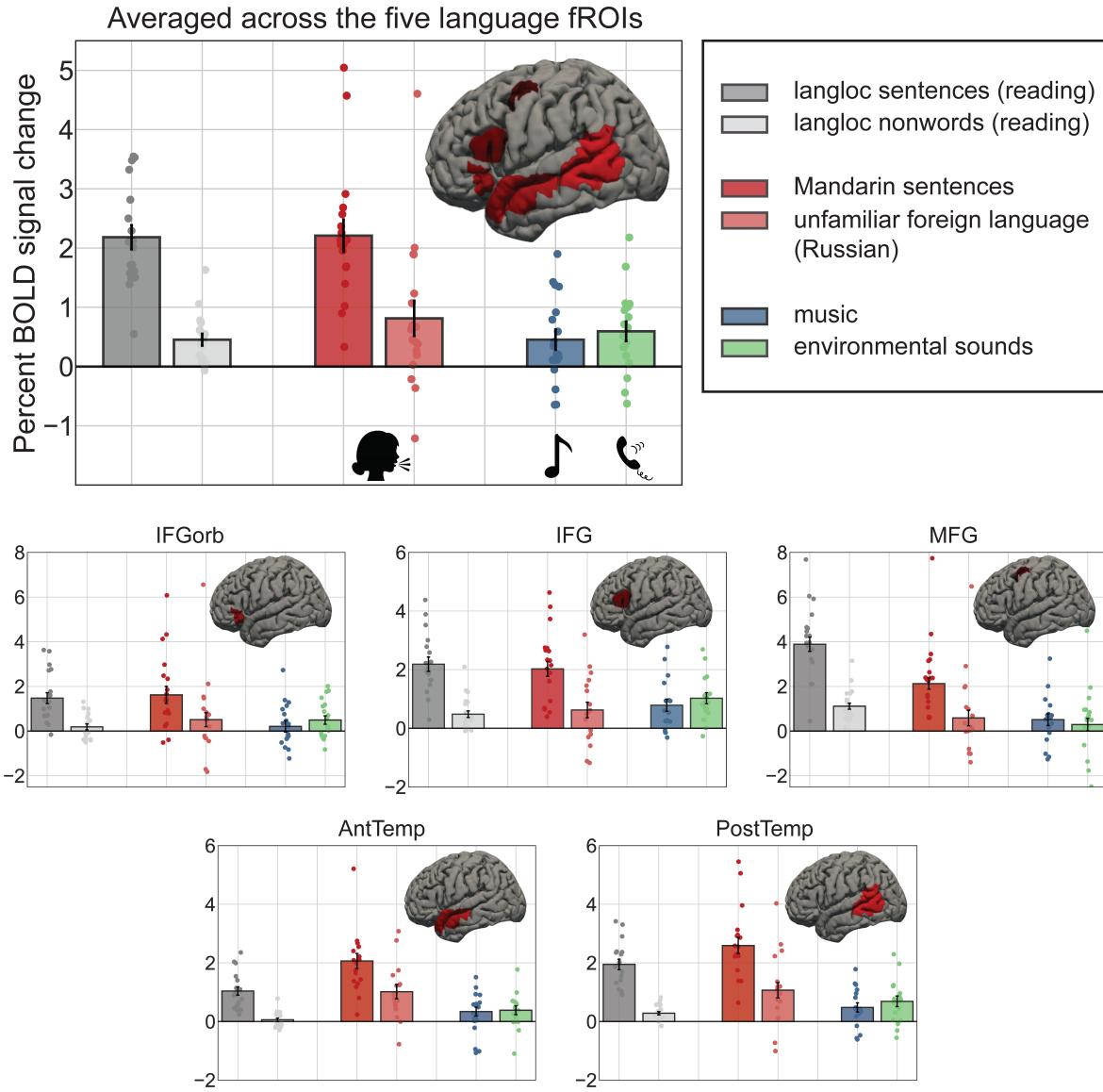
912

913 **Figure 5.** Performance of the control and aphasic participants on two measures of music syntax processing:
914 the critical music task (left), the Scale task of the MBEA (right). The densities show the distribution of
915 proportion correct scores in the control participants and the boxplot shows the quartiles of the control
916 population (the whiskers show 1.5x interquartile range and points represent outliers). The dots show
917 individual participants (for the aphasic individuals, the initials indicate the specific participant). Dashed
918 grey lines indicate chance performance.

919

920 ***Does music elicit a response in the language network of native speakers of a tonal language?***

921


922 The above analyses focus on the language network's responses to music stimuli and its
923 sensitivity to music structure in English native speakers. However, some have argued that
924 responses to music may differ in speakers of languages that use pitch to make lexical or
925 grammatical distinctions (e.g., Deutsch et al. 2006, 2009; Bidelman et al. 2011; Creel et al. 2018;
926 Ngo et al. 2016, Liu et al. 2021). In Experiment 4, we therefore tested whether language regions

927 of Mandarin native speakers respond to music. Similar to Experiment 1, we compared the
928 response to the music condition against a) the fixation baseline, b) the foreign language
929 condition, and c) a non-linguistic, non-music condition (environmental sounds). A brain region
930 that supports music processing should respond more strongly to music than the fixation baseline
931 and the foreign condition; if the response is further selective, it should be stronger than the
932 response elicited by environmental sounds.

933

934 Results from Mandarin native speakers replicated the results from Experiment 1: the music
935 condition did not elicit a strong response in the language network (**Figure 6; Table 6**). Although
936 the response to music was above the fixation baseline at the network level and in some fROIs,
937 the response did not differ from (or was lower than) the responses elicited by an unfamiliar
938 foreign language (Russian) and environmental sounds.

939

941 **Figure 6.** Responses of the language fROIs (pooling across the network – top, and for each fROI
942 individually – bottom) to the language localizer conditions (in grey), to the two auditory conditions
943 containing speech (red shades), to the music condition (blue), and to the non-linguistic/non-music
944 auditory condition (green) in Experiment 4. The error bars represent standard error of the mean by
945 participants. The response to the music condition is much lower than the response to sentences, and is not
946 higher than the response to foreign language and environmental sounds.

947

Contrast	Language network	LIFGorb	LIFG	LMFG	LAnt Temp	LPost Temp
music >fixation	$\beta=0.454$	$\beta=0.299$	$\beta=0.761$	$\beta=0.480$	$\beta=0.268$	$\beta=0.462$
	$se=0.177$	$se=0.228$	$se=0.207$	$se=0.260$	$se=0.171$	$se=0.156$
	$df=17.646$	$df=nan$	$df=nan$	$df=nan$	$df=nan$	$df=nan$
	$d=0.517$	$d=nan$	$d=nan$	$d=nan$	$d=nan$	$d=nan$
	$t=2.565$	$t=1.308$	$t=3.683$	$t=1.848$	$t=1.568$	$t=2.962$
	$p=0.020^*$	$p=1.000$	$p=0.010^*$	$p=0.410$	$p=0.675$	$p=0.045^*$
music >foreign	$\beta=-0.359$	$\beta=-0.360$	$\beta=0.123$	$\beta=-0.219$	$\beta=-0.703$	$\beta=-0.638$
	$se=0.141$	$se=0.416$	$se=0.309$	$se=0.473$	$se=0.240$	$se=0.254$
	$df=162.000$	$df=18.000$	$df=18.000$	$df=18.000$	$df=18.000$	$df=18.000$
	$d=-0.308$	$d=-0.258$	$d=0.124$	$d=-0.149$	0.870	$d=-0.686$
	$t=-2.547$	$t=-0.865$	$t=0.398$	$t=-0.463$	$t=-2.926$	$t=-2.511$
	$p=0.012^*$	$p=1.000$	$p=1.000$	$p=1.000$	$p=0.045^*$	$p=0.110$
music >environmental sounds	$\beta=-0.141$	$\beta=-0.249$	$\beta=-0.240$	$\beta=0.038$	$\beta=-0.042$	$\beta=-0.210$
	$se=0.108$	$se=0.187$	$se=0.193$	$se=0.304$	$se=0.147$	$se=0.179$
	$df=157.749$	$df=18.000$	$df=18.000$	$df=18.000$	$df=18.000$	$df=18.000$
	$d=-0.154$	$t=-1.299$	$t=-0.280$	$t=-0.302$	$d=0.030$	$d=-0.310$
					0.065	$t=-1.171$
	$p=0.196$	$p=1.000$	$p=1.000$	$p=1.000$	$p=1.000$	$p=1.000$

948 **Table 6.** Statistical results (two-sided) for the contrasts between the music condition and fixation, foreign
949 language, and environmental sounds in Experiment 4. Abbreviations: b=the beta estimate for the effect;
950 se =standard error of the mean by participants; df =degrees of freedom; d =Cohen's d (Westfall et al. 2014;
951 Brysbaert and Stevens 2018); t =the t statistic; p =the significance value (for the individual fROIs, these
952 values have been FDR-corrected for the number of fROIs ($n=5$)). In light grey, we highlight the results
953 that are **not consistent** with the role of the language regions in music perception: of the 18 tests
954 performed, 3 showed an effect predicted by language-music overlap accounts: a small positive response

955 to the music condition relative to the weakest baseline (fixation) at the network level and in two fROIs
956 individually; this response was still ~2 lower than the unfamiliar foreign language condition and was
957 numerically lower than the environmental sounds condition.

958

959

960 **Discussion**

961

962 We here tackled a much investigated but still debated question: do the brain regions of the
963 language network support the processing of music, especially music structure? Across three
964 fMRI experiments, we obtained a clear answer: the brain regions of the language network, which
965 support the processing of linguistic syntax (e.g., Fedorenko et al. 2010, 2020; Pallier et al. 2011;
966 Bautista and Wilson 2016; Blank et al. 2016), do not support music processing (see **Table 7** for a
967 summary of the results). We found overall low responses to music (including orchestral pieces,
968 solo pieces played on different instruments, synthetic music, and vocal music) in the language
969 brain regions (**Figure 3**; see Sueoka et al. 2022, for complementary evidence from the inter-
970 subject correlation approach applied to a rich naturalistic music stimulus), including in speakers
971 of a tonal language (**Figure 6**), and no consistent sensitivity to manipulations of music structure
972 (**Figure 4**). We further found that the ability to make well-formedness judgments about the tonal
973 structure of music was preserved in patients with severe aphasia who cannot make
974 grammaticality judgments for sentences (**Figure 5**), although we acknowledge the possibility
975 that general ability to detect unexpected events may have contributed to performance on the
976 critical music-structure tasks (e.g., Bigand et al. 2014; Collins et al. 2014) and that additional
977 controls would be needed to conclusively determine whether these patients have preserved

978 music-structure processing abilities. Nevertheless, given the brain imaging results (summarized
979 in **Table 7**), a critical role of the language system in music structure processing is unlikely.

980
981 Our findings align with a) prior neuropsychological patient evidence of language/music
982 dissociations (e.g., Luria et al. 1965; Brust 1980; Marin 1982; Basso and Capitani 1985; Polk
983 and Kertesz 1993; Peretz et al. 1994, 1997; Piccirilli et al. 2000; Peretz and Coltheart 2003;
984 Slevc et al. 2016; Faroqi-Shah et al. 2020; Chiapetta et al. 2022) and with b) prior evidence that
985 music is processed by music-selective areas in the auditory cortex (Norman-Haignere et al.
986 (2015; see also Boebinger et al. 2021; see Peretz et al. 2015, for review and discussion). The
987 latter, music-selective areas are strongly sensitive to the scrambling of music structure in stimuli
988 like those used here in Experiment 1 (see also Fedorenko et al. 2012c, Boebinger 2021; see Mehr
989 et al. 2019 for *a priori* reasons to expect the effects of tonal structure manipulations in music-
990 selective brain regions). (We provide the responses of music-responsive areas to the conditions
991 of Experiments 1 and 2 at: <https://osf.io/68y7c/>.) In contrast, our findings stand in sharp contrast
992 to numerous reports arguing for shared structure processing mechanisms in the two domains,
993 including specifically in the inferior frontal cortex, within ‘Broca’s area’ (e.g., Patel et al. 1998;
994 Koelsch et al. 2000; Maess et al. 2001; Koelsch et al. 2002; Levitin and Menon 2003; see Kunert
995 and Slevc 2015; LaCroix et al. 2016; Vuust et al. 2022 for reviews).

996

	Contrast	Experiment 1	Experiment 2	Experiment 4
Basic sensitivity to music stimuli	Music > fixation (6 different music conditions tested:	No	No (except for the network level)	Yes

	4 in Expt1, 1 in Expt2, and 1 in Expt4)			
	Music > nonwords/unfamiliar foreign language	No		No
	Music > non-linguistic, non-music auditory conditions	No		No
	Songs (melodic contour + linguistic content) > Lyrics (linguistic content)	No		
Sensitivity to manipulations of music structure	Intact music > scrambled music (synthetic melodies)	No		
	Intact music > scrambled music (synthetic drums)	No		
	Sour-note melodies > well-formed melodies		No (except for the network level)	

997 **Table 7.** A summary of the results for the tests of the language network's sensitivity to music in general
998 and to music structure specifically. This pattern of results constitutes strong evidence against the role of
999 the language system—or any of its components—in music perception, including the processing of music
1000 structure. With respect to sensitivity to music stimuli: 4 of the 6 conditions failed to elicit a response
1001 above the low-level (fixation) baseline anywhere in the language network; 1 condition (in Experiment 2)
1002 elicited a small and weakly significant above-fixation response at the network level only (not in any
1003 individual fROIs); and 1 condition (in Experiment 4) elicited a small above-fixation response (including

1004 in two individual fROIs) but this response was not higher than that elicited by other auditory conditions
1005 like environmental sounds. With respect to sensitivity to music structure: 2 of the 3 manipulations failed
1006 to elicit a response anywhere in the language network, and the remaining manipulation elicited a small
1007 and weakly significant effect at the network level, which was not reliable in any individual ROI.

1008

1009

1010 Below, we discuss several issues that are relevant for interpreting the current results and/or that
1011 these results inform, and outline some limitations of scope of our study.

1012

1013 ***1. Theoretical considerations about the language-music relationship.***

1014

1015 Why might we *a priori* think that the language network, or some of its components, may be
1016 important for processing music in general, or for processing music structure specifically?

1017 Similarities between language and music have long been noted and discussed. For example, as
1018 summarized in Jackendoff (2009; see also Patel 2008), both capacities are human-specific,
1019 involve the production of sound (though this is not always the case for language: cf. sign
1020 languages, or written language in literate societies), and have multiple culture-specific variants.

1021 Furthermore, language and music are intertwined in songs, which appear to be a cultural
1022 universal (e.g., Brown 1991; Nettl 2015; see Mehr et al. 2019 for empirical support; see Norman-
1023 Haignere et al. 2021 for evidence of neural selectivity for songs in the auditory cortex).

1024 However, Jackendoff (2009) notes that i) most cognitive capacities / mechanisms that have been
1025 argued to be common to language and music are not *uniquely* shared by language and music, and
1026 ii) language and music differ in several critical ways, and these differences are important to

1027 consider alongside potential similarities when theorizing about possible shared representations
1028 and computations.

1029
1030 To elaborate on the first point: the cognitive capacity that has perhaps received the most attention
1031 in discussions of cognitive and neural mechanisms that may be shared by language and music is
1032 the combinatorial capacity of the two domains (e.g., Riemann 1877, as cited in Swain 1995;
1033 Lindblom and Sundberg 1969; Fay 1971; Sundberg and Lindblom 1976; Lerdahl and Jackendoff
1034 1977, 1983; Roads 1979; Krumhansl and Keil 1982). In particular, in language, words can be
1035 combined into complex hierarchical structures to form novel phrases and sentences, and in
1036 music, notes and chords can similarly be combined to form novel melodies. Further, in both
1037 domains, the combinatorial process is constrained by a set of conventions. However, this
1038 capacity can be observed, in some form, in many other domains, from visual processing, to math,
1039 to social cognition, to motor planning, to general reasoning. Similarly, other cognitive capacities
1040 that are necessary to process language and music—including a large long-term memory store for
1041 previously encountered elements and patterns, a working memory capacity needed to integrate
1042 information as it comes in, an ability to form expectations about upcoming elements, and an
1043 ability to engage in joint action—are important for information processing in other domains. An
1044 observation that some mental capacity is necessary for multiple domains is compatible with at
1045 least two architectures: one where the relevant capacity is implemented (perhaps in a similar
1046 way) in each relevant set of domain-specific circuits, and another where the relevant capacity is
1047 implemented in a centralized mechanism that all domains draw on (e.g., Fedorenko and Shain
1048 2021). Those arguing for overlap between language and music processing advocate a version of
1049 the latter. Critically, any shared mechanism that language and music would draw on should also

1050 support information processing in other domains that require the relevant computation (see
1051 Section 3 below for arguments against this kind of architecture). (A possible exception,
1052 according to Jackendoff (2009), may be the fine-scale vocal motor control that is needed for
1053 speech and vocal music production (cf. sign language or instrumental music), but not any other
1054 behaviors, but this kind of ability is implemented outside of the core high-level language system,
1055 in the network of brain areas that support articulation (e.g., Basilakos et al. 2015; Guenter
1056 2016).)

1057

1058 More importantly, aside from the similarities that have been noted between language and music,
1059 numerous differences characterize the two domains. Most notable are their different functions.
1060 Language enables humans to express propositional meanings, and thus to share thoughts with
1061 one another. The function of music has long been debated (e.g., Darwin 1871; Pinker 1994; see
1062 e.g., McDermott 2008 and Mehr et al. 2020, for a summary of key ideas), but most proposed
1063 functions have to do with emotional or affective processing, often with a social component¹
1064 (Jackendoff 2009; Savage et al. 2020). If function drives the organization of the brain (and
1065 biological systems more generally; e.g., Rueffler et al. 2012) by imposing particular
1066 computational demands on each domain (e.g., Mehr et al. 2020), these fundamentally different
1067 functions of language and music provide a theoretical reason to expect cognitive and neural
1068 separation between them. Besides, even the components of language and music that appear
1069 similar on the surface (e.g., combinatorial processing) differ in deep and important ways (e.g.,
1070 Patel 2008; Jackendoff 2009; Slevc 2009; Temperley 2022).

¹ Although some have discussed the notions of 'meaning' in music (e.g., Meyer 1961; Raffman 1993; Cross and Tolbert 2009; Koelsch 2001), it is uncontroversial that music cannot be used to express propositional thought (for discussion, see Patel 2008; Jackendoff 2009; Slevc 2009).

1071

1072 **2. Functional selectivity of the language network.**

1073

1074 The current results add to the growing body of evidence that the left-lateralized fronto-temporal
1075 brain network that supports language processing is highly selective for linguistic input (e.g.,
1076 Fedorenko et al. 2011; Monti et al. 2009, 2012; Deen et al. 2015; Pritchett et al. 2018; Jouravlev
1077 et al. 2019; Ivanova et al. 2020, 2021; Benn, Ivanova et al. 2021; Liu et al. 2020; Deen and
1078 Freiwald 2021; Paunov et al. 2022; Sueoka et al. 2022; see Fedorenko and Blank 2020 for a
1079 review) and not critically needed for many forms of complex cognition (e.g., Lecours and
1080 Joanette 1980; Varley and Siegal 2000; Varley et al. 2005; Apperly et al. 2006; Woolgar et al.
1081 2018; Ivanova et al. 2021; see Fedorenko and Varley 2016 for a review). Importantly, this
1082 selectivity holds across all components of the language network, including the parts that fall
1083 within ‘Broca’s area’ in the left inferior frontal gyrus. As discussed in the introduction, many
1084 claims about shared structure processing in language and music have focused specifically on
1085 Broca’s area (e.g., Patel 2003; Fadiga et al. 2009; Fitch and Martins 2014). The evidence
1086 presented here shows that the language-responsive parts of Broca’s area, which are robustly
1087 sensitive to linguistic syntactic manipulations (e.g., Just et al. 1996; Stromswold et al. 1996;
1088 Ben-Shachar et al. 2003; Caplan et al. 2008; Peelle et al. 2010; Blank et al. 2016; see e.g.,
1089 Friederici 2011 and Hagoort and Indefrey 2014 for meta-analyses), do not respond when we
1090 listen to music and are not sensitive to structure in music. These results rule out the hypothesis
1091 that language and music processing rely on the same mechanism housed in Broca’s area.

1092

1093 It is also worth noting that the very *premise* of the latter hypothesis—of a special relationship
1094 between Broca's area and the processing of linguistic syntax (e.g., Caramazza and Zurif 1976;
1095 Friederici 2018)—has been questioned and overturned. *First*, syntactic processing does not
1096 appear to be carried out focally, but is instead distributed across the entire language network,
1097 with all of its regions showing sensitivity to syntactic manipulations (e.g., Fedorenko et al. 2010,
1098 2020; Pallier et al. 2011; Blank et al. 2016; Shain, Blank et al. 2020; Shain et al. 2022), and with
1099 damage to different components leading to similar syntactic comprehension deficits (e.g., Caplan
1100 et al. 1996; Dick et al. 2001; Wilson and Saygin 2004; Mesulam et al. 2014; Mesulam et al.
1101 2015). And *second*, the language-responsive part of Broca's area, like other parts of the language
1102 network, is sensitive to both syntactic processing and word meanings, and even sub-lexical
1103 structure (Fedorenko et al. 2010, 2012b, 2020; Regev et al. 2021; Shain et al. 2021). The lack of
1104 segregation between syntactic and lexico-semantic processing is in line with the idea of
1105 'lexicalized syntax' where the conventions for how words can combine with one another are
1106 highly dependent on the particular lexical items (e.g., Goldberg 2002; Jackendoff 2002, 2007;
1107 Sag et al. 2003; Levin and Rappaport-Hovav 2005; Bybee 2010; Jackendoff and Audring 2020),
1108 and is contra the idea of combinatorial rules that are blind to the content/meaning of the to-be-
1109 combined elements (e.g., Chomsky 1965, 1995; Fodor 1983; Pinker and Prince 1988; Pinker
1110 1991, 1999; Pallier et al. 2011).

1111

1112 **3. Overlap in structure processing in language and music outside of the core language**
1113 **network?**

1114

1115 We have here focused on the core fronto-temporal language network. Could structure processing
1116 in language and music draw on shared resources elsewhere in the brain? The prime candidate is
1117 the domain-general executive control, or Multiple Demand (MD), network (e.g., Duncan and
1118 Owen 2000; Duncan 2001, 2010; Assem et al. 2020), which supports functions like working
1119 memory and inhibitory control. Indeed, according to Patel's Shared Structural Integration
1120 Resource Hypothesis (SSIRH; 2003, 2008, 2012), language and music draw on separate
1121 representations, stored in distinct cortical areas, but rely on the same working memory store to
1122 integrate incoming elements into evolving structures. Relatedly, Slevc et al. (2013; see Asano et
1123 al. 2021 for a related proposal) have argued that another executive resource—inhibitory
1124 control—may be required for structure processing in both language and music. Although it is
1125 certainly possible that some aspects of linguistic and/or musical processing would require
1126 domain-general executive resources, based on the available evidence from the domain of
1127 language, we would argue that any such engagement does not reflect the engagement of
1128 computations like syntactic structure building. In particular, Blank and Fedorenko (2017) found
1129 that activity in the brain regions of the domain-general MD network does not closely 'track'
1130 linguistic stimuli, as evidenced by low inter-subject correlations during the processing of
1131 linguistic input (see Paunov et al. 2021 and Sueoka et al. 2022 for replications). Further,
1132 Diachek, Blank, Siegelman et al. (2020) showed in a large-scale fMRI investigation that the MD
1133 network is not engaged during language processing in the absence of secondary task demands
1134 (cf. the core language network, which is relatively insensitive to task demands and responds
1135 robustly even during passive listening/reading). And Shain, Blank et al. (2020; also, Shain et al.
1136 2022) have shown that the language network, but not the MD network, is sensitive to linguistic
1137 surprisal and working-memory integration costs (see also Wehbe et al. 2021 for evidence that

1138 activity in the language, but not the MD, network reflects general incremental processing
1139 difficulty).

1140

1141 In tandem, this evidence argues against the role of executive resources in core linguistic
1142 computations like those related to lexical access and combinatorial processing, including
1143 syntactic parsing and semantic composition (see also Hasson et al. 2015 and Dasgupta and
1144 Gershman 2021 for general arguments against the separation between memory and computation
1145 in the brain). Thus, although the contribution of executive resources to music processing
1146 deserves further investigation (cf. <https://osf.io/68y7c/> for evidence of low responses of the MD
1147 network to the music conditions in the current study), any overlap within the executive system
1148 between linguistic and music processing cannot reflect core linguistic computations, as those
1149 seem to be carried out by the language network (see Fedorenko and Shain 2021, for a review).
1150 Functionally identifying the MD network in individual participants (e.g., Fedorenko et al. 2013;
1151 Shashidhara et al. 2019) is a powerful way to help interpret the observed effects of music
1152 manipulations as reflecting general executive demands (see Saxe et al. 2006, Blank et al. 2017
1153 and Fedorenko 2021, for general discussions of greater interpretability of fMRI results obtained
1154 from the functional localization approach). Importantly, given the ubiquitous sensitivity of the
1155 MD network to cognitive demands, it is / will be important to rule out task demands, rather than
1156 stimulus processing, as the source of overlap between music and language processing in
1157 interpreting past studies and designing future ones.

1158

1159 **4. Overlap between music processing and other aspects of speech / language.**

1160

1161 The current study investigated the role of the language network—which supports ‘high-level’
1162 comprehension and production—in music processing. As a result, the claims we make are
1163 restricted to those aspects of language that are supported by this network. These include the
1164 processing of word meanings and combinatorial (syntactic and semantic) processing, but exclude
1165 speech perception, prosodic processing, higher-level discourse structure building, and at least
1166 some aspects of pragmatic reasoning. Some of these components of language (e.g., pragmatic
1167 reasoning) seem *a priori* unlikely to share resources with music. Others (e.g., speech perception)
1168 have been shown to robustly dissociate from music (Norman-Haignere et al. 2015; Overath et al.
1169 2015; Kell et al. 2018; Boebinger et al. 2021). However, some components of speech and
1170 language may, and some do, draw on the same resources as aspects of music. For example,
1171 aspects of pitch perception have been argued to overlap between speech and music based on
1172 behavioral and neuropsychological evidence (e.g., Wong and Perrachione 2007; Perrachione et
1173 al. 2013; Patel et al. 2008b). Indeed, brain regions that selectively respond to different kinds of
1174 pitched sounds have been previously reported (Patterson et al. 2002; Penagos et al. 2004;
1175 Norman-Haignere et al. 2013, 2015). Some studies have also suggested that music training may
1176 improve general rapid auditory processing and pitch encoding that are important for speech
1177 perception and language comprehension (e.g., Overy 2003; Tallal and Gaab 2006; Wong et al.
1178 2007), although at least some of these effects likely originate in the brainstem and subcortical
1179 auditory regions (e.g., Wong et al. 2007). Other aspects of high-level auditory perception,
1180 including aspects of rhythm, may turn out to overlap as well, and deserve further investigation
1181 (see Patel 2008, for a review).

1182

1183 We also have focused on Western tonal instrumental music here. In the future, it would be useful
1184 to extend these findings to more diverse kinds of music. That said, given that individuals are
1185 most sensitive to structure in music with which they have experience (e.g., Cuddy et al. 1981;
1186 Cohen 1982; Curtis and Barucha 2009), it seems unlikely that music from less familiar traditions
1187 would elicit a strong response in the language areas (see Boebinger 2021, for evidence that
1188 music-selective areas of the auditory cortex respond to culturally diverse music styles). Further,
1189 given that evolutionarily early forms of music were likely vocal (e.g., Trebusz 2003; Mehr 2017),
1190 it would be useful to examine the responses of the language regions to vocal music without
1191 linguistic content, like humming or whistling. Based on preliminary unpublished data from our
1192 lab (available upon request), responses to such stimuli in the language areas appear low.

1193
1194 In conclusion, we have here provided extensive evidence against the role of the language
1195 network in music perception, including the processing of music structure. Although the
1196 relationship between music and aspects of speech and language will likely continue to generate
1197 interest in the research community, and aspects of speech and language other than those
1198 implemented in the core fronto-temporal language-selective network (Fedorenko et al. 2011;
1199 Fedorenko and Thompson-Schill 2014) may indeed share some processing resources with
1200 (aspects of) music, we hope that the current study helps bring clarity to the debate about structure
1201 processing in language and music.

1202
1203
1204
1205

1206 **Data availability**

1207

1208 The datasets generated during and/or analyzed during the current study are available in the OSF
1209 repository: <https://osf.io/68y7c/>.

1210

1211

1212 **Code availability**

1213

1214 Scripts for statistical analysis are available at: <https://osf.io/68y7c/>.

1215

1216

1217 **Acknowledgements**

1218

1219 We would like to acknowledge the Athinoula A. Martinos Imaging Center at the McGovern
1220 Institute for Brain Research at MIT, and its support team (Steve Shannon and Atsushi
1221 Takahashi). We thank former and current EvLab members for their help with fMRI data
1222 collection (especially Meilin Zhan for help with Experiment 4). We thank Josh McDermott for
1223 input on many aspects of this work, Jason Rosenberg for composing the melodies used in
1224 Experiments 2 and 3, and Zuzanna Balewski for help with creating the final materials used in
1225 Experiments 2 and 3. For Experiment 3, we thank Vitor Zimmerer for help with creating the
1226 grammaticality judgment task, Ted Gibson for help with collecting the control data, and Anya
1227 Ivanova for help with Figure 2. For Experiment 4, we thank Anne Cutler, Peter Graff, Morris
1228 Alper, Xiaoming Wang, Taibo Li, Terri Scott, Jeanne Gallée, and Lauren Clemens for help with
1229 constructing and/or recording and/or editing the language materials, and Fatemeh Khalilifar,

1230 Caitlyn Hoeflin, and Walid Bendris for help with selecting the music materials and with the
1231 experimental script. Finally, we thank the audience at the Society for Neuroscience conference
1232 (2014), the Neurobiology of Language conference (virtual edition, 2020), Ray Jackendoff, Dana
1233 Boebinger, and members of the Fedorenko and Gibson labs for helpful comments and
1234 discussions. RR was supported by NIH award F32-DC-015163. SNH was supported by a
1235 graduate NSF award, as well as postdoctoral awards from the HHMI / Life Sciences research
1236 foundation and a K99/R00 award from the NIH (1K99DC018051-01A1). SMM was supported
1237 by a La Caixa fellowship LCF/BQ/AA17/11610043. RV was supported by Alzheimer's Society
1238 and The Stroke Association. EF was supported by the R00 award HD057522, R01 awards
1239 DC016607, DC016950, and NS121471, by the Paul and Lilah Newton Brain Science Award, and
1240 funds from the Brain and Cognitive Sciences department, the McGovern Institute for Brain
1241 Research, and the Simons Center for the Social Brain.

1242

1243 **Author contributions:**

1244

	XC	JA	RR	TR	SNH	OJ	SMM	HK	RV†	EF†
Conceptualization									<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Methodology	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Software	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>								
Investigation	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>				
Investigation: fMRI data collection	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				<input checked="" type="checkbox"/>				<input checked="" type="checkbox"/>

Investigation: fMRI data preprocessing and analysis	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
Investigation: Behavioral data collection	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>						<input checked="" type="checkbox"/>	
Investigation: Behavioral data analysis			<input checked="" type="checkbox"/>						<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Formal statistical analysis	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>							<input checked="" type="checkbox"/>
Validation	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>							
Visualization	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>						
Writing: Original draft	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>						<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Writing: Editing + comments		<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>						
Resources									<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Project administration; overall supervision										<input checked="" type="checkbox"/>

1245

1246 **Conflict of interest**

1247 The authors declare no competing financial interests.

1248 **References**

1249 Alcock KJ, Wade D, Anslow P, Passingham RE. 2000. Pitch and timing abilities in adult left-
1250 hemisphere-dysphasic and right-hemisphere-damaged subjects. *Brain Lang.* 75(1):47-65.

1251

1252 Amalric M, Dehaene S. 2018. Cortical circuits for mathematical knowledge: evidence for a
1253 major subdivision within the brain's semantic networks. *Philos Trans R Soc Lond B Biol Sci.*
1254 373(1740):20160515.

1255

1256 Apperly IA, Samson D, Carroll N, Hussain S, Humphreys G. 2006. Intact first-and second-order
1257 false belief reasoning in a patient with severely impaired grammar. *Soc Neurosci.* 1(3-4):334-
1258 348.

1259

1260 Asano R, Boeckx C, Seifert U. 2021. Hierarchical control as a shared neurocognitive mechanism
1261 for language and music. *Cognition.* 216:104847.

1262

1263 Assem M, Glasser MF, Van Essen DC, Duncan J. 2020. A domain-general cognitive core
1264 defined in multimodally parcellated human cortex. *Cereb Cortex.* 30(8):4361-4380.

1265

1266 Baillet S. 2014. Forward and Inverse Problems of MEG/EEG. In: Jaeger D, Jung R, editors.
1267 Encyclopedia of Computational Neuroscience. New York (NY): Springer. p.1-8.

1268

1269 Baroni M, Maguire S, Drabkin W. 1983. The concept of musical grammar. *Music Anal.*
1270 2(2):175-208.

1271

1272 Basilakos A, Rorden C, Bonilha L, Moser D, Fridriksson J. 2015. Patterns of poststroke brain damage
1273 that predict speech production errors in apraxia of speech and aphasia dissociate. *Stroke*. 46(6):1561-
1274 1566.

1275

1276 Basso A, Capitani E. 1985. Spared musical abilities in a conductor with global aphasia and
1277 ideomotor apraxia. *J Neurol Neurosurg Psychiatry*. 48(5):407-412.

1278

1279 Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4.
1280 *J Stat Softw*. 67(1):1-48.

1281

1282 Bautista A, Wilson SM. 2016. Neural responses to grammatically and lexically degraded speech.
1283 *Lang Cogn Neurosci*. 31(4):567-574.

1284

1285 Ben-Shachar M, Hender T, Kahn I, Ben-Bashat D, Grodzinsky Y. 2003. The neural reality of
1286 syntactic transformations: Evidence from functional magnetic resonance imaging. *Psychol Sci*.
1287 14(5):433-440.

1288

1289 Benn Y*, Ivanova A*, Clark O, Mineroff Z, Seikus C, Santos Silva J, Varley R^, Fedorenko E^.
1290 2021. No evidence for a special role of language in feature-based categorization. *bioRxiv*.

1291

1292 Bernstein L. 1976. The unanswered question: Six talks at Harvard. Cambridge (MA): Harvard
1293 University Press.

1294

1295 Bidelman GM, Gandour JT, Krishnan A. 2011. Musicians and tone-language speakers share
1296 enhanced brainstem encoding but not perceptual benefits for musical pitch. *Brain Cogn.* 77(1):1-
1297 10.

1298

1299 Bigand E, Tillmann B, Poulin B, D'Adamo DA, Madurell F. 2001. The effect of harmonic
1300 context on phoneme monitoring in vocal music. *Cognition.* 81(1):B11-B20.

1301

1302 Bigand E, Delb   C, Poulin-Charronnat B, Leman M, Tillmann B. 2014. Empirical evidence for
1303 musical syntax processing? Computer simulations reveal the contribution of auditory short-term
1304 memory. *Front Syst Neurosci.* 8:94.

1305

1306 Bishop DVM, Norbury CF. 2002. Exploring the borderlands of autistic disorder and specific
1307 language impairment: a study using standardised diagnostic instruments. *J Child Psychol
1308 Psychiatry.* 43(7):917-929.

1309

1310 Blank I, Kanwisher N, Fedorenko E. 2014. A functional dissociation between language and
1311 multiple-demand systems revealed in patterns of BOLD signal fluctuations. *J Neurophysiol.*
1312 112(5):1105-1118.

1313

1314 Blank I, Balewski Z, Mahowald K, Fedorenko E. 2016. Syntactic processing is distributed across
1315 the language system. *Neuroimage.* 127:307-323.

1316

1317 Blank IA, Fedorenko E. 2017. Domain-general brain regions do not track linguistic input as
1318 closely as language-selective regions. *J Neurosci*. 37(41):9999-10011.

1319

1320 Blank IA, Kiran S, Fedorenko E. 2017. Can neuroimaging help aphasia researchers? Addressing
1321 generalizability, variability, and interpretability. *Cogn Neuropsychol*, 34(6):377-393.

1322

1323 Boebinger D, Norman-Haignere SV, McDermott JH, Kanwisher N. 2021. Music-selective neural
1324 populations arise without musical training. *J Neurophysiol*, 125(6):2237-2263.

1325

1326 Boilès CL. 1973. Reconstruction of proto-melody. *Anuario Interamericano de Investigacion
1327 Musical*, 9:45-63.

1328

1329 Bortolini U, Leonard LB, Caselli MC. 1998. Specific Language Impairment in Italian and
1330 English: evaluating alternative accounts of grammatical deficits. *Lang Cogn Process*. 13(1):1-20.

1331

1332 Braga RM, DiNicola LM, Becker HC, Buckner RL. 2020. Situating the left-lateralized language
1333 network in the broader organization of multiple specialized large-scale distributed networks. *J
1334 Neurophysiol*. 124(5):1415-1448.

1335

1336 Brown DR. 1991. *Human Universals*. Philadelphia (PA):Temple University Press.

1337

1338 Brust JC. 1980. Music and language: musical alexia and agraphia. *Brain*. 103(2):367-392.

1339

1340 Brysbaert M, Stevens M. 2018. Power analysis and effect size in mixed effects models: A
1341 tutorial. *J Cogn.* 1(1):9.

1342

1343 Bybee J. 2010. Language, usage and cognition. Cambridge (UK): Cambridge University Press.

1344

1345 Caplan D, Hildebrandt N, Makris N. 1996. Location of lesions in stroke patients with deficits in
1346 syntactic processing in sentence comprehension. *Brain.* 119(3):933-949.

1347

1348 Caplan D, Stanczak L, Waters G. 2008. Syntactic and thematic constraint effects on blood
1349 oxygenation level dependent signal correlates of comprehension of relative clauses. *J Cogn
1350 Neurosci.* 20(4):643-656.

1351

1352 Caramazza A, Zurif EB. 1976. Dissociation of algorithmic and heuristic processes in language
1353 comprehension: Evidence from aphasia. *Brain Lang.* 3(4):572-582.

1354

1355 Chen G, Taylor PA, Cox RW. 2017. Is the statistic value all we should care about in
1356 neuroimaging?. *Neuroimage.* 147:952-959.

1357

1358 Chiappetta B, Patel AD, Thompson CK. 2022. Musical and linguistic syntactic processing in
1359 agrammatic aphasia: An ERP study. *J Neurolinguistics.* 62:101043.

1360

1361 Chomsky N. 1965. Aspects of the Theory of Syntax. Cambridge (MA): MIT press.

1362

1363 Chomsky N. 1995. The minimalist program. Cambridge (MA): MIT Press.

1364

1365 Collins T, Tillmann B, Barrett FS, Delb   C, Janata P. 2014. A combined model of sensory and

1366 cognitive representations underlying tonal expectations in music: from audio signals to behavior.

1367 *Psychol Rev*, 121(1):33.

1368

1369 Cooke A, Grossman M, DeVita C, Gonzalez-Atavales J, Moore P, Chen W, Gee J, Detre J. 2006.

1370 Large-scale neural network for sentence processing. *Brain Lang*, 96(1):14-36.

1371

1372 Cooper R. 1973. Propositions pour un modele transformationnel de description musicale.

1373 *Musique en Jeu*. 10:70-88.

1374

1375 Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the

1376 brain. *Nat Rev Neurosci*. 3(3):201-215.

1377

1378 Corlett PR, Mollick JA, Kober H. 2021. Substrates of Human Prediction Error for Incentives,

1379 Perception, Cognition, and Action. *psyarxiv*.

1380

1381 Crawford JR, Garthwaite PH. 2007. Comparison of a single case to a control or normative

1382 sample in neuropsychology: Development of a Bayesian approach. *Cogn Neuropsychol*. 24(4),

1383 343-372.

1384

1385 Creel SC, Weng M, Fu G, Heyman GD, Lee K. 2018. Speaking a tone language enhances
1386 musical pitch perception in 3–5-year-olds. *Dev Sci.* 21(1): e12503.

1387

1388 Crump MJ, McDonnell JV, Gureckis TM. 2013. Evaluating Amazon's Mechanical Turk as a tool
1389 for experimental behavioral research. *PLoS One.* 8(3):e57410.

1390

1391 Cohen AJ. 1982. Exploring the sensitivity to structure in music. *Can Univ Music Rev.* 3:15-30.

1392

1393 Cuddy LL, Cohen AI, Mewhort DJK. 1981. Perception of structure in short melodic sequences. *J Exp
1394 Psychol Hum Percept Perform.* 7:869-883.

1395

1396 Cumming G. 2012. *Understanding the new statistics: Effect sizes, confidence intervals, and
1397 meta-analysis.* New York (NY): Taylor & Francis.

1398

1399 Curtis ME, Bharucha JJ. 2009. Memory and musical expectation for tones in cultural context. *Music
1400 Percept.* 26:365–375.

1401

1402 Dale AM. 1999. Optimal experimental design for event-related fMRI. *Hum Brain Mapp.* 8(2–
1403 3):109-114.

1404

1405 Darwin C. 1871. *The Descent of Man, and Selection in Relation to Sex.* London (UK): John
1406 Murray.

1407

1408 Dasgupta I, Gershman SJ. 2021. Memory as a Computational Resource. *Trends Cogn Sci*,
1409 25(3):240-251.

1410

1411 Deen B, Koldewyn K, Kanwisher N, Saxe R. 2015. Functional organization of social perception
1412 and cognition in the superior temporal sulcus. *Cereb Cortex*. 25(11):4596-4609.

1413

1414 Deen B, Freiwald WA. 2021. Parallel systems for social and spatial reasoning within the cortical
1415 apex. *bioRxiv*.

1416

1417 Deutsch D, Henthorn T, Marvin E, Xu H. 2006. Absolute pitch among American and Chinese
1418 conservatory students: Prevalence differences, and evidence for a speech-related critical period. *J
1419 Acoust Soc Am*. 119(2):719-722.

1420

1421 Deutsch D, Dooley K, Henthorn T, Head B. 2009. Absolute pitch among students in an
1422 American music conservatory: Association with tone language fluency. *J Acoust Soc Am*.
1423 125(4):2398-2403.

1424

1425 Diachek E*, Blank I*, Siegelman M*, Affourtit J, Fedorenko E. 2020. The domain-general
1426 multiple demand (MD) network does not support core aspects of language comprehension: a
1427 large-scale fMRI investigation. *J Neurosci*. 40(23):4536–4550.

1428

1429 Dick F, Bates E, Wulfeck B, Utman JA, Dronkers N, Gernsbacher MA. 2001. Language deficits,
1430 localization, and grammar: evidence for a distributive model of language breakdown in aphasic
1431 patients and neurologically intact individuals. *Psychol Rev*, 108(4):759-788.

1432

1433 Ding J, Martin RC, Hamilton AC, Schnur TT. (2020). Dissociation between frontal and
1434 temporal-parietal contributions to connected speech in acute stroke. *Brain*. 143(3), 862-876.

1435

1436 Duncan J, Owen AM. 2000. Common regions of the human frontal lobe recruited by diverse
1437 cognitive demands. *Trends Neurosci*. 23(10):475-483.

1438

1439 Duncan J. 2001. An adaptive coding model of neural function in prefrontal cortex. *Nat Rev
1440 Neurosci*. 2(11):820-829.

1441

1442 Duncan J. 2010. The multiple-demand (MD) system of the primate brain: mental programs for
1443 intelligent behaviour. *Trends Cogn Sci*. 14(4):172-179.

1444

1445 Duncan J. 2013. The structure of cognition: attentional episodes in mind and brain. *Neuron*.
1446 80(1):35-50.

1447

1448 Embick D, Marantz A, Miyashita Y, O'Neil W, Sakai KL. 2000. A syntactic specialization for
1449 Broca's area. *Proc Natl Acad Sci USA*, 97(11):6150-6154.

1450

1451 Fadiga L, Craighero L, D'Ausilio A. 2009. Broca's area in language, action, and music. *Ann N Y Acad Sci.* 1169(1):448-458.

1453

1454 Fancourt A. 2013. Exploring musical cognition in children with Specific Language Impairment.

1455 Doctoral thesis, Goldsmiths, University of London.

1456

1457 Faroqi-Shah Y, Slevc LR, Saxena S, Fisher SJ, Pifer M. 2020. Relationship between musical and

1458 language abilities in post-stroke aphasia. *Aphasiology.* 34(7):793-819.

1459

1460 Fay T. 1971. Perceived hierachic structure in language and music. *J Music Theory.* 15(1/2):112-

1461 137.

1462

1463 Fedorenko E, Patel A, Casasanto D, Winawer J, Gibson E. 2009. Structural integration in

1464 language and music: Evidence for a shared system. *Mem Cognit.* 37(1):1-9.

1465

1466 Fedorenko E, Hsieh P-J, Nieto-Castañon A, Whitfield-Gabrieli S, Kanwisher N. 2010. A new

1467 method for fMRI investigations of language: Defining ROIs functionally in individual subjects. *J*

1468 *Neurophysiol.* 104(2):1177-94.

1469

1470 Fedorenko E, Behr M, Kanwisher N. 2011. Functional specificity for high-level linguistic

1471 processing in the human brain. *Proc Natl Acad Sci USA.* 108(39):16428-16433.

1472

1473 Fedorenko E, Duncan J, Kanwisher N. 2012a. Language-selective and domain-general regions

1474 lie side by side within Broca's area. *Curr Biol.* 22(21):2059-2062.

1475

1476 Fedorenko E, Nieto-Castañon A, Kanwisher N. 2012b. Lexical and syntactic representations in

1477 the brain: An fMRI investigation with multi-voxel pattern analyses. *Neuropsychologia.*

1478 50(4):499-513.

1479

1480 Fedorenko E, McDermott J, Norman-Haignere S, Kanwisher N. 2012c. Sensitivity to musical

1481 structure in the human brain. *J Neurophysiol.* 108(12):3289-3300.

1482

1483 Fedorenko E, Duncan J, Kanwisher N. 2013. Broad domain-generality in focal regions of frontal

1484 and parietal cortex. *Proc Natl Acad Sci USA.* 110(41):16616-16621.

1485

1486 Fedorenko E. 2014. The role of domain-general cognitive control in language comprehension.

1487 *Front Psychol.* 5:335.

1488

1489 Fedorenko E, Thompson-Schill SL. 2014. Reworking the language network. *Trends Cogn Sci.*

1490 18(3):120-126.

1491

1492 Fedorenko E, Varley, R. 2016. Language and thought are not the same thing: Evidence from

1493 neuroimaging and neurological patients. *Ann N Y Acad Sci.* 1369(1):132-153.

1494

1495 Fedorenko E, Blank I. 2020. Broca's Area Is Not a Natural Kind. *Trends Cogn Sci.* 24(4):270-
1496 284.

1497

1498 Fedorenko E, Blank I, Siegelman M, Mineroff Z. 2020. Lack of selectivity for syntax relative to
1499 word meanings throughout the language network. *Cognition.* 203:104348.

1500

1501 Fedorenko E. 2020. The brain network that supports high-level language processing. In
1502 Gazzaniga M, Ivry RB, Mangun GR, editors. *Cognitive Neuroscience: The Biology of the Mind*
1503 (5th edition). New York (NY): WW Norton and Company.

1504

1505 Fedorenko E. 2021. The early origins and the growing popularity of the individual-subject
1506 analytic approach in human neuroscience. *Curr Opin Behav Sci.* 40:105-112.

1507

1508 Fedorenko E, Shain C. 2021. Similarity of computations across domains does not imply shared
1509 implementation: The case of language comprehension. *Curr Dir Psychol Sci.* 30(6):526-534.

1510

1511 Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K, Zilles
1512 K. 2008. Cortical folding patterns and predicting cytoarchitecture. *Cereb Cortex.* 18(8):1973-
1513 1980.

1514

1515 Fitch WT, Martins MD. 2014. Hierarchical processing in music, language, and action: Lashley
1516 revisited. *Ann N Y Acad Sci.* 1316(1):87-104.

1517

1518 Fodor JD. 1983. Phrase structure parsing and the island constraints. *Linguist Philos.* 6(2):163-

1519 223.

1520

1521 Fouragnan E, Retzler C, Philiastides MG. 2018. Separate neural representations of prediction

1522 error valence and surprise: Evidence from an fMRI meta-analysis. *Hum Brain Mapp.*

1523 39(7):2887-2906.

1524

1525 Franklin S, Turner JE, Ellis AW. 1992. ADA Comprehension Battery. York (UK): University of

1526 York.

1527

1528 Friederici AD, Fiebach CJ, Schlesewsky M, Bornkessel ID, Von Cramon DY. 2006. Processing

1529 linguistic complexity and grammaticality in the left frontal cortex. *Cereb Cortex.* 16(12):1709-

1530 1717.

1531

1532 Friederici AD, Kotz SA, Scott SK, Obleser J. 2010. Disentangling syntax and intelligibility in

1533 auditory language comprehension. *Hum Brain Mapp.* 31(3):448-457.

1534

1535 Friederici AD. 2011. The brain basis of language processing: from structure to function. *Physiol*

1536 *Rev.* 91(4):1357-1392.

1537

1538 Friederici AD. 2018. The neural basis for human syntax: Broca's area and beyond. *Curr Opin*

1539 *Behav Sci.* 21:88-92.

1540

1541 Frost MA, Goebel R. 2012. Measuring structural-functional correspondence: spatial variability
1542 of specialised brain regions after macro-anatomical alignment. *Neuroimage* 59(2):1369-1381.

1543

1544 Giesbrecht F, Burns J. 1985. Two-Stage Analysis Based on a Mixed Model: Large-Sample
1545 Asymptotic Theory and Small-Sample Simulation Results. *Biometrics*. 41(2):477-486.

1546

1547 Goldberg AE. 2002. Construction Grammar. In: Nadel L, editor. *Encyclopedia of Cognitive
1548 Science*. Stuttgart (Germany): Macmillan.

1549

1550 Green DM, Swets JA. 1966. *Signal detection theory and psychophysics*. New York (NY): Wiley.

1551

1552 Guenther FH. 2016. Neural control of speech. Cambridge (MA): MIT Press.

1553

1554 Hagoort P, Indefrey P. 2014. The neurobiology of language beyond single words. *Ann Rev
1555 Neurosci*, 37:347-362.

1556

1557 Hasson U, Chen J, Honey CJ. 2015. Hierarchical process memory: memory as an integral
1558 component of information processing. *Trends Cogn Sci*. 19(6):304-313.

1559

1560 Herholz SC, Zatorre RJ. 2012. Musical training as a framework for brain plasticity: behavior,
1561 function, and structure. *Neuron*. 76(3):486-502.

1562

1563 Herrmann B, Obleser J, Kalberlah C, Haynes JD, Friederici AD. 2012. Dissociable neural
1564 imprints of perception and grammar in auditory functional imaging. *Hum Brain Mapp.*
1565 33(3):584-595.

1566

1567 Hoch L, Poulin-Charronnat B, Tillmann B. 2011. The influence of task-irrelevant music on
1568 language processing: syntactic and semantic structures. *Front Psychol.* 2:112.

1569

1570 Hrong-Tai Fai A, Cornelius PL. 1996. Approximate F-tests of multiple degree of freedom
1571 hypotheses in generalized least squares analyses of unbalanced split-plot experiments. *J Stat
1572 Comput Simul.* 54(4):363-378.

1573

1574 Ivanova A, Srikant S, Sueoka Y, Kean H, Dhamala R, O'Reilly U-M, Bers MU, Fedorenko E.
1575 2020. Comprehension of computer code relies primarily on domain-general executive resources.
1576 *eLife.* 9:e58906.

1577

1578 Ivanova A, Mineroff Z, Zimmerer V, Kanwisher N, Varley R, Fedorenko E. 2021. The language
1579 network is recruited but not required for non-verbal semantic processing. bioRxiv.

1580

1581 Jackendoff R. 2002. English particle constructions, the lexicon, and the autonomy of syntax. In
1582 Dehé N, Jackendoff R, McIntyre A, Urban S, editors. *Verb-particle explorations.* Berlin
1583 (Germany): De Gruyter. p. 67-94.

1584

1585 Jackendoff R. 2007. A parallel architecture perspective on language processing. *Brain Res.*

1586 1146:2-22.

1587

1588 Jackendoff R. 2009. Parallels and nonparallels between language and music. *Music Percept.*

1589 26(3):195-204.

1590

1591 Jackendoff R, Audring J. 2020. The texture of the lexicon: relational morphology and the parallel

1592 architecture. Oxford (UK): Oxford University Press.

1593

1594 Janata P. 1995. ERP measures assay the degree of expectancy violation of harmonic contexts in

1595 music. *J Cogn Neurosci.* 7(2):153-164.

1596

1597 Jentschke S, Koelsch S, Sallat S, Friederici AD. 2008. Children with specific language

1598 impairment also show impairment of music-syntactic processing. *J Cogn Neurosci.* 20(11):1940-

1599 1951.

1600

1601 Jouravlev O, Zheng D, Balewski Z, Pongos A, Levan Z, Goldin-Meadow S, Fedorenko E. 2019.

1602 Speech-accompanying gestures are not processed by the language-processing mechanisms.

1603 *Neuropsychologia.* 132:107132.

1604

1605 Jouravlev O, Kell A, Mineroff Z, Haskins AJ, Ayyash D, Kanwisher N, Fedorenko E. 2020.

1606 Reduced language lateralization in autism and the broader autism phenotype as assessed with

1607 robust individual-subjects analyses. *Autism Res.* 13(10):1746-1761.

1608

1609 Just MA, Carpenter PA, Keller TA, Eddy WF, Thulborn KR. 1996. Brain activation modulated
1610 by sentence comprehension. *Science*. 274(5284):114-116.

1611

1612 Kaplan E, Goodglass H, Weintraub S. 2001. Boston Naming Test. 2nd Ed. Philadelphia (PA):
1613 Lippincott Williams & Wilkins.

1614

1615 Kay J, Lesser R, Coltheart M. 1992. Psycholinguistic Assessments of Language Processing in
1616 Aphasia (PALPA). Hove (UK): Lawrence Erlbaum.

1617

1618 Kell AJ, Yamins DL, Shook EN, Norman-Haignere SV, McDermott JH. 2018. A task-optimized
1619 neural network replicates human auditory behavior, predicts brain responses, and reveals a
1620 cortical processing hierarchy. *Neuron*. 98(3):630-644.

1621

1622 Keller TA, Carpenter PA, Just MA. 2001. The neural bases of sentence comprehension: a fMRI
1623 examination of syntactic and lexical processing. *Cereb Cortex*. 11(3):223-237.

1624

1625 Koelsch S, Gunter T, Friederici AD, Schröger E. 2000. Brain indices of music processing:
1626 “nonmusicians” are musical. *J Cogn Neurosci*. 12(3):520-541.

1627

1628 Koelsch S, Gunter TC, Schröger E, Tervaniemi M, Sammler D, Friederici AD. 2001.
1629 Differentiating ERAN and MMN: an ERP study. *NeuroReport*. 12(7):1385-1389.

1630

1631 Koelsch S, Gunter TC, von Cramon DY, Zysset S, Lohmann G, Friederici AD. 2002. Bach
1632 speaks: A cortical" language-network" serves the processing of music. *Neuroimage*. 17(2):956-
1633 966.

1634

1635 Koelsch S. 2006. Significance of Broca's area and ventral premotor cortex for music-syntactic
1636 processing. *Cortex*. 42(4):518-520.

1637

1638 Koelsch S, Jentschke S, Sammler D, Mietchen D. 2007. Untangling syntactic and sensory
1639 processing: An ERP study of music perception. *Psychophysiology*. 44(3):476-490.

1640

1641 Koelsch S, Rohrmeier M, Torrecuso R, Jentschke S. 2013. Processing of hierarchical syntactic
1642 structure in music. *Proc Natl Acad Sci USA*. 110(38):15443-15448.

1643

1644 Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. 2009. Circular analysis in systems
1645 neuroscience: the dangers of double dipping. *Nat Neurosci*. 12(5):535.

1646

1647 Krumhansl CL, Keil FC. 1982. Acquisition of the hierarchy of tonal functions in music. *Mem
1648 Cognit.* 10(3):243-251.

1649

1650 Kunert R, Slevc LR. 2015. A Commentary on: "Neural overlap in processing music and speech".
1651 *Front Hum Neurosci*. 9:330.

1652

1653 Kunert R, Willems RM, Casasanto D, Patel AD, Hagoort P. 2015. Music and language syntax
1654 interact in Broca's area: An fMRI study. *PLoS One*. 10(11):e0141069.

1655

1656 Kunert R, Willems RM, Hagoort P. 2016. Language influences music harmony perception:
1657 effects of shared syntactic integration resources beyond attention. *R Soc Open Sci*. 3(2):150685.

1658

1659 Kuperberg GR, Holcomb PJ, Sitnikova T, Greve D, Dale AM, Caplan D. 2003. Distinct patterns
1660 of neural modulation during the processing of conceptual and syntactic anomalies. *J Cogn
1661 Neurosci*. 15(2):272-293.

1662

1663 Kuznetsova A, Brockhoff PB, Christensen RH. 2017. lmerTest package: tests in linear mixed
1664 effects models. *J Stat Softw*. 82(13):1-26.

1665

1666 LaCroix A, Diaz AF, Rogalsky C. 2015. The relationship between the neural computations for
1667 speech and music perception is context-dependent: an activation likelihood estimate study. *Front
1668 Psychol*. 6:1138.

1669

1670 Lartillot O, Grandjean D. 2019. Tempo and metrical analysis by tracking multiple metrical levels
1671 using autocorrelation. *Appl Sci*. 9(23):5121.

1672

1673 Lartillot O, Toiviainen P. 2007. September). A Matlab toolbox for musical feature extraction
1674 from audio. In: Proceedings of the 10th International Conference on Digital Audio Effects; 2007 Sep 10-
1675 15; Bordeaux, France. p. 244.

1676

1677 Lecours A, Joanette Y. 1980. Linguistic and other psychological aspects of paroxysmal aphasia.

1678 *Brain Lang.* 10(1):1-23.

1679

1680 Lerdahl F, Jackendoff R. 1977. Toward a formal theory of tonal music. *J Music Theory*.

1681 21(1):111-171.

1682

1683 Lerdahl F, Jackendoff R. 1983. An overview of hierarchical structure in music. *Music Percept*.

1684 1(2):229-252.

1685

1686 Levin B, Rappaport-Hovav M. 2005. Argument realization. Cambridge (UK): Cambridge

1687 University Press.

1688

1689 Levitin DJ, Menon V. 2003. Musical structure is processed in “language” areas of the brain: a

1690 possible role for Brodmann Area 47 in temporal coherence. *Neuroimage*. 20(4):2142-2152.

1691

1692 Linebarger MC, Schwartz MF, Saffran EM. 1983. Sensitivity to grammatical structure in so-

1693 called agrammatic aphasics. *Cognition*. 13(3):361-392.

1694

1695 Lindblom B, Sundberg J. 1969. Towards a generative theory of melody. *Speech Transmission*

1696 *Laboratory. Quarterly Progress and Status Reports*. 10:53-86.

1697

1698 Lipkin B, Tuckute G, Affourtit J, Small H, Mineroff Z, Jouravlev O, Rakocevic L, Pritchett B, et al.

1699 2022. Probabilistic atlas for the language network based on precision fMRI data from > 800

1700 individuals. *Sci Data*. 9(1):1-10.

1701

1702 Liu YF, Kim J, Wilson C, Bedny M. 2020. Computer code comprehension shares neural

1703 resources with formal logical inference in the fronto-parietal network. *Elife*. 9:e59340.

1704

1705 Liu J, Hilton CB, Bergelson E, Mehr SA. 2021. Language experience shapes music processing

1706 across 40 tonal, pitch-accented, and non-tonal languages. *bioRxiv*.

1707

1708 Luria AR, Tsvetkova LS, Futer DS. 1965. Aphasia in a composer. *J Neurol Sci*. 2(3):288-292.

1709

1710 Maess B, Koelsch S, Gunter TC, Friederici AD. 2001. Musical syntax is processed in Broca's

1711 area: an MEG study. *Nat Neurosci*. 4(5):540-545.

1712

1713 Mahowald K, Fedorenko E. 2016. Reliable individual-level neural markers of high-level

1714 language processing: A necessary precursor for relating neural variability to behavioral and

1715 genetic variability. *Neuroimage*. 139:74-93.

1716

1717 Makowski D. 2018. The psycho Package: An Efficient and Publishing-Oriented Workflow for

1718 Psychological Science. *J Open Source Softw*. 3(22):470.

1719

1720 Malik-Moraleda S, Ayyash D, Gallée J, Affourtit J, Hoffmann M, Mineroff Z, Jouravlev O,

1721 Fedorenko E. 2022. An investigation across 45 languages and 12 language families reveals a

1722 universal language network. *Nat Neurosci.* 25(8):1014-1019.

1723

1724 Marin OSM. 1982. Neurological Aspects of Music Perception and Performance. New York

1725 (NY): Academic Press.

1726

1727 Matchin W, Hickok G. 2020. The cortical organization of syntax. *Cereb Cortex.* 30(3):1481-

1728 1498.

1729

1730 Mehr SA, Krasnow MM. 2017. Parent-offspring conflict and the evolution of infant-directed

1731 song. *Evol Hum Behav.* 38(5):674-684.

1732

1733 Mehr SA, Singh M, Knox D, Ketter DM, Pickens-Jones D, Atwood S, Lucas C, Jacoby N, Egner

1734 AA, Hopkins EJ, et al. (2019). Universality and diversity in human song. *Science.*

1735 366(6468):eaax0868.

1736

1737 Mehr S, Krasnow M, Bryant G, Hagen E. 2020. Origins of music in credible signaling. *Behav*

1738 *Brain Sci.* 44:e60.

1739

1740 Mesulam MM, Rogalski EJ, Wienke C, Hurley RS, Geula C, Bigio EH, Thompson CK,

1741 Weintraub S. 2014. Primary progressive aphasia and the evolving neurology of the language

1742 network. *Nat Rev Neurol.* 10(10):554.

1743

1744 Mesulam MM, Thompson CK, Weintraub S, Rogalski EJ. 2015. The Wernicke conundrum and
1745 the anatomy of language comprehension in primary progressive aphasia. *Brain*. 138(8):2423-
1746 2437.

1747

1748 McDermott J. 2008. The evolution of music. *Nature*. 453(7193):287-288.

1749

1750 Mineroff Z*, Blank I*, Mahowald K, Fedorenko E. 2018. A robust dissociation among the
1751 language, multiple demand, and default mode networks: evidence from inter-region correlations
1752 in effect size. *Neuropsychologia*. 119:501-511.

1753

1754 Mollica F, Shain C, Affourtit J, Kean H, Siegelman M, Fedorenko E. 2020. Another look at the
1755 constituent structure of sentences in the human brain [Poster presentation]. SNL 2020; October
1756 21-24; virtual.

1757

1758 Monti MM, Parsons LM, Osherson DN. 2009. The boundaries of language and thought in
1759 deductive inference. *Proc Natl Acad Sci USA*. 106(30):12554-12559.

1760

1761 Monti MM, Parsons LM, Osherson DN. 2012. Thought beyond language: Neural dissociation of
1762 algebra and natural language. *Psychol Sci*. 23(8):914-922.

1763

1764 Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. 2001. Human
1765 primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference
1766 system. *Neuroimage*. 13(4):684-701.

1767

1768 Musso M, Weiller C, Horn A, Glauche V, Umarova R, Hennig J, Schneider A, Rijntjes M. 2015.
1769 A single dual-stream framework for syntactic computations in music and language. *Neuroimage*.
1770 117:267-283.

1771

1772 Nettl B. 2015. *The study of ethnomusicology: Thirty-three discussions*. Champaign (IL):
1773 University of Illinois Press.

1774

1775 Newman AJ, Pancheva R, Ozawa K, Neville HJ, Ullman MT. 2001. An event-related fMRI
1776 study of syntactic and semantic violations. *J Psycholinguist Res*. 30(3):339-364.

1777

1778 Ngo MK, Vu KPL, Strybel TZ. 2016. Effects of music and tonal language experience on relative
1779 pitch performance. *Am J Psychol*. 129(2):125-134.

1780

1781 Nieto-Castañon A, Fedorenko E. 2012. Subject-specific functional localizers increase sensitivity
1782 and functional resolution of multi-subject analyses. *Neuroimage*. 63(3):1646-1669.

1783

1784 Norman-Haignere S, Kanwisher N, McDermott JH. 2013. Cortical pitch regions in humans
1785 respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior
1786 auditory cortex. *J Neurosci*. 33(50):19451-19469.

1787

1788 Norman-Haignere S, Kanwisher NG, McDermott JH. 2015. Distinct cortical pathways for music
1789 and speech revealed by hypothesis-free voxel decomposition. *Neuron*. 88(6):1281-1296.

1790

1791 Norman-Haignere SV, Feather J, Boebinger D, Brunner P, Ritaccio A, McDermott JH, Schalk G,
1792 Kanwisher N. 2022. A neural population selective for song in human auditory cortex. *Curr Biol*.
1793 32(7):1470-1484.

1794

1795 Oldfield RC. 1971. The assessment and analysis of handedness: the Edinburgh inventory.
1796 *Neuropsychologia*. 9(1):97-113.

1797

1798 Omigie D, Samson S. 2014. A protective effect of musical expertise on cognitive outcome
1799 following brain damage?. *Neuropsychol Rev*. 24(4):445-460.

1800

1801 Overath T, McDermott JH, Zarate JM, Poeppel D. 2015. The cortical analysis of speech-specific
1802 temporal structure revealed by responses to sound quilts. *Nat Neurosci*. 18(6):903-911.

1803

1804 Pallier C, Devauchelle AD, Dehaene S. 2011. Cortical representation of the constituent structure
1805 of sentences. *Proc Natl Acad Sci USA*. 108(6):2522-2527.

1806

1807 Patel AD, Gibson E, Ratner J, Besson M, Holcomb PJ. 1998. Processing syntactic relations in
1808 language and music: An event-related potential study. *J Cogn Neurosci*. 10(6):717-733.

1809

1810 Patel AD. 2003. Language, music, syntax and the brain. *Nat Neurosci.* 6(7):674-681.

1811

1812 Patel AD. 2008. Music, Language, and the Brain. Oxford (UK): Oxford University Press.

1813

1814 Patel AD, Iversen JR, Wassenaar M, Hagoort P. 2008a. Musical syntactic processing in

1815 agrammatic Broca's aphasia. *Aphasiology.* 22(7-8):776-789.

1816

1817 Patel AD, Wong M, Foxton J, Lochy A, Peretz I. 2008b. Speech intonation perception deficits in

1818 musical tone deafness (congenital amusia). *Music Percept.* 25(4):357-368.

1819

1820 Patel AD. 2012. Language, music, and the brain: a resource-sharing framework. In: Rebuschat P,

1821 Rohrmeier M, Hawkins J, Cross I, editors. *Language and Music as Cognitive Systems.* Oxford

1822 (UK): Oxford University Press. p. 204-223.

1823

1824 Patel AD, Morgan E. 2017. Exploring cognitive relations between prediction in language and

1825 music. *Cogn Sci.* 41:303-320.

1826

1827 Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD. 2002. The processing of temporal pitch

1828 and melody information in auditory cortex. *Neuron.* 36(4):767-776.

1829

1830 Paunov A, Blank IA, Fedorenko E. 2019. Functionally distinct language and Theory of Mind

1831 networks are synchronized at rest and during language comprehension. *J Neurophysiol.*

1832 121:1244-1265.

1833

1834 Paunov AM, Blank IA, Jouravlev O, Mineroff Z, Gallée J, Fedorenko E. 2022. Differential
1835 tracking of linguistic vs. mental state content in naturalistic stimuli by language and Theory of
1836 Mind (ToM) brain networks. *Neurobiol Lang*. 3(3):413-440.

1837

1838 Peelle JE, Troiani V, Wingfield A, Grossman M. 2010. Neural processing during older adults'
1839 comprehension of spoken sentences: age differences in resource allocation and connectivity.
1840 *Cereb Cortex*. 20(4):773-782.

1841

1842 Penagos H, Melcher JR, Oxenham AJ. 2004. A neural representation of pitch salience in
1843 nonprimary human auditory cortex revealed with functional magnetic resonance imaging. *J
1844 Neurosci*. 24(30):6810-6815.

1845

1846 Peretz I. 1990. Processing of local and global musical information by unilateral brain-damaged
1847 patients. *Brain*. 113(4):1185-1205.

1848

1849 Peretz I, Kolinsky R, Tramo M, Labrecque R, Hublet C, Demeurisse G, Belleville S. 1994.
1850 Functional dissociations following bilateral lesions of auditory cortex. *Brain*. 117(6):1283-1301.

1851

1852 Peretz I, Belleville S, Fontaine S. 1997. Dissociations between music and language functions
1853 after cerebral resection: a new case of amusia without aphasia. *Can J Exp Psychol* 51(4):354-368.

1854

1855 Peretz I, Champod AS, Hyde K. 2003. Varieties of musical disorders: the Montreal Battery of
1856 Evaluation of Amusia. *Ann N Y Acad Sci.* 999(1):58-75.

1857

1858 Peretz I, Coltheart M. 2003. Modularity of music processing. *Nat Neurosci.* 6(7):688-691.

1859

1860 Peretz I, Vuvan D, Lagrois MÉ, Armony JL. 2015. Neural overlap in processing music and
1861 speech. *Philos Trans R Soc Lond B Biol Sci.* 370(1664):20140090.

1862

1863 Perrachione TK, Fedorenko EG, Vinke L, Gibson E, Dilley LC. 2013. Evidence for shared
1864 cognitive processing of pitch in music and language. *PLoS One.* 8(8):e73372.

1865

1866 Perruchet P, Poulin-Charronnat B. 2013. Challenging prior evidence for a shared syntactic
1867 processor for language and music. *Psychon Bull Rev.* 20(2):310-317.

1868

1869 Piccirilli M, Sciarma T, Luzzi S. 2000. Modularity of music: evidence from a case of pure
1870 amusia. *J Neurol Neurosurg Psychiatry.* 69(4):541-545.

1871

1872 Pinker S, Prince A. 1988. On language and connectionism: Analysis of a parallel distributed
1873 processing model of language acquisition. *Cognition.* 28(1-2):73-193.

1874

1875 Pinker S. 1991. Rules of language. *Science.* 253(5019):530-535.

1876

1877 Pinker S. 1994. *The Language Instinct: How the Mind Creates Language*, New York (NY):
1878 Harper Collins Publishers, Inc.

1879

1880 Pinker S. 1999. Out of the minds of babes. *Science*. 283(5398):40-41.

1881

1882 Poldrack RA. 2006. Can cognitive processes be inferred from neuroimaging data?. *Trends Cogn
1883 Sci.* 10(2):59-63.

1884

1885 Poldrack RA. 2011. Inferring mental states from neuroimaging data: from reverse inference to
1886 large-scale decoding. *Neuron*. 72(5):692-697.

1887

1888 Polk M, Kertesz A. 1993. Music and language in degenerative disease of the brain. *Brain Cogn.*
1889 22(1):98-117.

1890

1891 Poulin-Charronnat B, Bigand E, Madurell F, Peereman R. 2005. Musical structure modulates
1892 semantic priming in vocal music. *Cognition*. 94:B67-B78.

1893

1894 Pritchett B, Hoeflin C, Koldewyn K, Dechter E, Fedorenko E. 2018. High-level language
1895 processing regions are not engaged in action observation or imitation. *J Neurophysiol.*
1896 120(5):2555-2570.

1897

1898 Riemann H. 1877. *Musikalische Syntaxis: Grundriss einer harmonischen Satzbildungslehre*.
1899 Leipzig: Breitkopf und Härtel.

1900

1901 Roads C, Wieneke P. 1979. Grammars as representations for music. *Comput Music J.* 3(1):48-55.

1902

1903 Roberts I. 2012. Comments and a conjecture inspired by Fabb and Halle. In: Rebuschat P,

1904 Rohrmeier M, Hawkins JA, Cross I, editors. *Language and Music as Cognitive Systems*. Oxford:

1905 Oxford University Press. p. 51-66.

1906

1907 Röder B, Stock O, Neville H, Bien S, Rösler F. 2002. Brain activation modulated by the

1908 comprehension of normal and pseudo-word sentences of different processing demands: a

1909 functional magnetic resonance imaging study. *Neuroimage*. 15(4):1003-1014.

1910

1911 Rogalsky C, Hickok G. 2011. The role of Broca's area in sentence comprehension. *J Cogn*

1912 *Neurosci*. 23(7):1664-1680.

1913

1914 Rueffler C, Hermisson J, Wagner GP. 2012. Evolution of functional specialization and division

1915 of labor. *Proc Natl Acad Sci USA*. 109(6):E326-E335.

1916

1917 Sag I, Wasow T, Bender E. 2003. Formal syntax, an introduction. CSLI publication.

1918

1919 Sammler D, Koelsch S, Ball T, Brandt A, Elger CE, Friederici AD, Grigutsch M, Huppertz H-J,

1920 Knosche TR, Wellmer J, Widman G, Schulze-Bonhaged A. 2009. Overlap of musical and

1921 linguistic syntax processing: intracranial ERP evidence. *Ann N Y Acad Sci*. 1169(1):494-498.

1922

1923 Sammler D, Koelsch S, Friederici AD. 2011. Are left fronto-temporal brain areas a prerequisite
1924 for normal music-syntactic processing?. *Cortex*. 47(6):659-673.

1925

1926 Sammler D, Koelsch S, Ball T, Brandt A, Grigutsch M, Huppertz HJ, Wellmer J, Widman G,
1927 Elger CE, Friederici AD, Schulze-Bonhaged A. 2013. Co-localizing linguistic and musical
1928 syntax with intracranial EEG. *Neuroimage*. 64:134-146.

1929

1930 Savage PE, Loui P, Tarr B, Schachner A, Glowacki L, Mithen S, Fitch WT. 2021. Music as a
1931 coevolved system for social bonding. *Behav Brain Sci*. 44(e59):1-22.

1932

1933 Schmidt S. 2009. Shall We Really Do It Again? The Powerful Concept of Replication Is
1934 Neglected in the Social Sciences. *Rev Gen Psychol*. 13(2):90-100.

1935

1936 Scott TL, Gallée J, Fedorenko E. 2017. A new fun and robust version of an fMRI localizer for
1937 the frontotemporal language system. *Cogn Neurosci*. 8(3):167-176.

1938

1939 Shain C*, Blank I*, Van Shijndel M, Schuler W, Fedorenko E. 2020. fMRI reveals language-
1940 specific predictive coding during naturalistic sentence comprehension. *Neuropsychologia*.
1941 138:107307.

1942

1943 Shain C, Kean H, Lipkin B, Affourtit J, Siegelman M, Mollica F, Fedorenko E. 2021.
1944 'Constituent length' effects in fMRI do not provide evidence for abstract syntactic processing.
1945 *bioRxiv*.

1946

1947 Shain C, Blank IA, Fedorenko E, Gibson E, Schuler W. 2022. Robust effects of working
1948 memory demand during naturalistic language comprehension in language-selective cortex. *J
1949 Neurosci.* 42(39):7412-7430.

1950

1951 Shashidhara S, Mitchell DJ, Erez Y, Duncan J. 2019. Progressive recruitment of the
1952 frontoparietal multiple-demand system with increased task complexity, time pressure, and
1953 reward. *J Cogn Neurosci.* 31(11):1617-1630.

1954

1955 Sihvonen AJ, Särkämö T, Leo V, Tervaniemi M, Altenmüller E, Soinila S. 2017. Music-based
1956 interventions in neurological rehabilitation. *Lancet Neurol.* 16(8):648-660.

1957

1958 Slevc LR, Rosenberg JC, Patel AD. 2009. Making psycholinguistics musical: Self-paced reading
1959 time evidence for shared processing of linguistic and musical syntax. *Psychon Bull Rev.*
1960 16(2):374-381.

1961

1962 Slevc LR, Reitman J, Okada B. 2013. Syntax in music and language: the role of cognitive
1963 control. In: Proceedings of the Annual Meeting of the Cognitive Science Society; 2013 Jul 31-Aug
1964 3; Berlin, Germany; p. 3414-3419.

1965

1966 Slevc LR, Okada BM. 2015. Processing structure in language and music: a case for shared
1967 reliance on cognitive control. *Psychon Bull Rev.* 22(3):637-652.

1968

1969 Slevc LR, Faroqi-Shah Y, Saxena S, Okada BM. 2016. Preserved processing of musical structure
1970 in a person with agrammatic aphasia. *Neurocase*. 22(6):505-511.

1971

1972 Stromswold K, Caplan D, Alpert N, Rauch S. 1996. Localization of syntactic comprehension by
1973 positron emission tomography. *Brain Lang*. 52(3):452-473.

1974

1975 Sueoka Y, Paunov A, Ivanova A, Blank IA, Fedorenko E. 2022. The language network reliably
1976 ‘tracks’ naturalistic meaningful non-verbal stimuli. bioRxiv

1977

1978 Sullivan GM, Feinn R. 2012. Using effect size—or why the P value is not enough. *J Grad Med
1979 Educ.* 4(3):279-282.

1980

1981 Sundberg J, Lindblom B. 1976. Generative theories in language and music descriptions.
1982 *Cognition*. 4(1):99-122.

1983

1984 Swain JP. 1995. The concept of musical syntax. *Music Q*. 79(2):281-308.

1985

1986 Tahmasebi AM, Davis MH, Wild CJ, Rodd JM, Hakyemez H, Abolmaesumi P, Johnsrude IS.
1987 2012. Is the link between anatomical structure and function equally strong at all cognitive levels
1988 of processing?. *Cereb Cortex*. 22(7):1593-1603.

1989

1990 Tarantola A. 2005. *Inverse problem theory and methods for model parameter estimation*.
1991 Philadelphia (PA): Society for Industrial and Applied Mathematics.

1992

1993 Temperley D. 2022. Music and Language. *Annu Rev Linguist.* 8:153-170.

1994

1995 te Rietmolen NA, Mercier M, Trebuchon A, Morillon B, Schon D. 2022. Speech and music

1996 recruit frequency-specific distributed and overlapping cortical networks. *bioRxiv*.

1997

1998 Tillmann B, Janata P, Bharucha JJ. 2003. Activation of the inferior frontal cortex in musical

1999 priming. *Cogn Brain Res.* 16(2):145-161.

2000

2001 Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici AD, von Cramon DY. 2006.

2002 Cognitive priming in sung and instrumental music: activation of inferior frontal cortex.

2003 *Neuroimage.* 31(4):1771-1782.

2004

2005 Tillmann B. 2012. Music and Language Perception: Expectations, Structural Integration, and

2006 Cognitive Sequencing. *Top Cogn Sci.* 4(4):568-584.

2007

2008 Trehub SE. 2003. The developmental origins of musicality. *Nat Neurosci.* 6(7):669-673.

2009

2010 Tyler LK, Marslen-Wilson WD, Randall B, Wright P, Devereux BJ, Zhuang J, Papoutsi M,

2011 Stamatakis EA. 2011. Left inferior frontal cortex and syntax: function, structure and behaviour in

2012 patients with left hemisphere damage. *Brain.* 134(2):415-431.

2013

2014 Van de Cavey J, Hartsuiker RJ. 2016. Is there a domain-general cognitive structuring system?

2015 Evidence from structural priming across music, math, action descriptions, and language.

2016 *Cognition*. 146:172-184.

2017

2018 Varley R, Siegal M. 2000. Evidence for cognition without grammar from causal reasoning and

2019 ‘theory of mind’ in an agrammatic aphasic patient. *Curr Biol*. 10(12):723-726.

2020

2021 Varley RA, Klessinger NJ, Romanowski CA, Siegal M. 2005. Agrammatic but numerate. *Proc Natl Acad Sci USA*. 102(9):3519-3524.

2023

2024 Vázquez-Rodríguez B, Suárez LE, Markello RD, Shafiei G, Paquola C, Hagmann P, van den

2025 Heuvel MP, Bernhardt BC, Spreng RN, Misic B. 2019. Gradients of structure–function tethering

2026 across neocortex. *Proc Natl Acad Sci USA*. 116(42):21219-21227.

2027

2028 Vuust P, Heggli OA, Friston KJ, Krriegelbach ML. 2022. Music in the brain. *Nat Rev Neurosci*.

2029 23(5):287-305.

2030

2031 Wehbe L, Blank I, Shain C, Futrell R, Levy R, Malsburg T, Smith N, Gibson E, Fedorenko E.

2032 2021. Incremental language comprehension difficulty predicts activity in the language network

2033 but not the multiple demand network. *Cereb Cortex*. 31(9):4006-4023.

2034

2035 Westfall J, Kenny DA, Judd CM. 2014. Statistical power and optimal design in experiments in

2036 which samples of participants respond to samples of stimuli. *J Exp Psychol*. 143(5):2020-2045.

2037

2038 Willems RM, Van der Haegen L, Fisher SE, Francks C. 2014. On the other hand: including left-
2039 handers in cognitive neuroscience and neurogenetics. *Nat Rev Neurosci.* 15(3):193-201.

2040

2041 Wilson SM, Saygin AP. 2004. Grammaticality judgment in aphasia: Deficits are not specific to
2042 syntactic structures, aphasic syndromes, or lesion sites. *J Cogn Neurosci.* 16(2):238-252.

2043

2044 Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. 2012. The neural basis of
2045 syntactic deficits in primary progressive aphasia. *Brain Lang.* 122(3):190-198.

2046

2047 Wong PC, Perrachione TK. 2007. Learning pitch patterns in lexical identification by native
2048 English-speaking adults. *Appl Psycholinguist.* 28(4):565-585.

2049

2050 Woolgar A, Duncan J, Manes F, Fedorenko E. 2018. Fluid intelligence is supported by the
2051 multiple-demand system not the language system. *Nat Hum Behav.* 2(3):200-204.

2052

2053 Zatorre RJ. 1984. Musical perception and cerebral function: A critical review. *Music Percept.*
2054 2(2):196-221.