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Summary 

Many gene signatures have been developed by applying machine learning (ML) on omics profiles, however, their clinical 

utility is often hindered by limited interpretability and unstable performance in different datasets. Here, we show the 

importance of embedding prior biological knowledge in the decision rules yielded by ML approaches to build robust 

classifiers. We tested this by applying different ML algorithms on gene expression data to predict three difficult cancer 

phenotypes: bladder cancer progression to muscle invasive disease; response to neoadjuvant chemotherapy in triple-

negative breast cancer, and prostate cancer metastatic progression. We developed two sets of classifiers: mechanistic, 

by restricting the training process to features capturing a specific biological mechanism; and agnostic, in which the 

training didn’t use any a priori biological information. Mechanistic models had a similar or better performance to their 

agnostic counterparts in the testing data, with enhanced stability, robustness, and interpretability. Our findings support 

the use of biological constraints to develop robust and interpretable gene signatures with high translational potential. 

 

 

Keywords: cancer, precision medicine, omics, gene signatures, overfitting, machine learning, interpretability, 

mechanistic models.  

 

 

Motivation 

Omics-based gene signatures often suffer from overfitting and reduced performance when tested on independent data. 

This usually results from the discrepancy between the high number of features compared to the much smaller number of 

samples used in the training process, which results in the machine learning algorithm perfectly fitting the training data 

with a subsequent deterioration in performance in independent cohorts. We introduce a mechanistic framework to 

mitigate overfitting and improve interpretability by constraining the training process to simple rank-based decision rules 

recapitulating relevant, cancer-related, biological mechanisms. Our approach aims at reducing the number of training 

variables to a pre-defined set of biologically important features in the form of gene pairs. The classification mechanism 

depends entirely on the relative ordering of these pairs, making it robust to data preprocessing techniques, improving the 

overall interpretability of the resulting models with significant translational implications. Most importantly, these pairs are 

configured in such a way that the decision rules resulting from the genes relative order embed and recapitulate specific 

biological mechanism, inherently enhancing the classifiers interpretability. 
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Introduction 

In oncology, machine learning (ML) algorithms are actively used to decipher gene expression data and identify predictive 

or prognostic gene signatures for specific cancer phenotypes like tumor progression or therapeutic response. Some of 

these signatures are currently being used in clinical settings to predict the prognosis and to guide further treatment 

(Cardoso et al., 2016; Knezevic et al., 2013). The process of gene signatures discovery and validation is hindered by 

relevant challenges (Mirza et al., 2019). The most striking one is the unstable performance of the discovered signatures 

when tested on different data than the ones used in their training. The main reason for this is the great discrepancy 

between the number of features or genes used for prediction (tens of thousands) and the number of observations or 

samples (tens to hundreds). In these settings, what can easily happen is that the ML model misinterprets "noise" as 

"signal" and ends up memorizing all the details in the training data which in turn cannot be generalized to other datasets, 

this is known as overfitting (Keogh and Mueen, 2010). There are several approaches to reduce overfitting and increase 

robustness, the most important of which is increasing the number of samples; however, this is not always feasible in 

biomedical research due to financial limitations or rarity of the studied disease phenotypes. Other options include using 

simple algorithms which are less susceptible to overfitting (Hand, 2006), using regularization with complex ones (Chicco, 

2017; Neumaier, 1998), and reducing dimensionality by filtering out non-informative features or by using feature selection 

methods (Mahendran et al., 2020).  

We hypothesize that embedding biological, mechanistic constraints in the decision rules during the training process will 

guide the ML algorithm to a set of features important for the phenotype being predicted, which in turn can reduce 

overfitting, and improve the performance, robustness, and interpretability of the resulting models. These constraints take 

the form of gene pairs which are derived from existing biological knowledge from the literature or pre-curated databases, 

and whose relative ordering determines the predicted class (Geman et al., 2004; Marchionni et al., 2013; Tan et al., 

2005). Here, we test if this method can yield more interpretable gene signatures with a comparable performance to 

agnostic methods (i.e., not based on prior biological knowledge) by using gene expression data to develop predictive 

classifiers in three distinct and hard prediction cases: 1. predicting the progression of non-muscle invasive bladder cancer 

(NMIBC) (stage T1) to muscle-invasive disease (MIBC) (stages T2-T4); 2. the response to neoadjuvant chemotherapy 

(NACT) in triple negative breast cancer (TNBC); and 3. prostate cancer (PCa) metastasis from primary tumor samples. 

In each of these three cases, we use four different ML algorithms: k-Top Scoring Pairs (k-TSPs), Support Vector Machine 

(SVM), Random Forest (RF), and Extreme Gradient Boosting (XGB). 

To build mechanistic models, we restrict the training process to a specific biological mechanism relevant to the phenotype 

under study. For bladder cancer (BLCA) progression, we use feed-forward loops (FFLs) which consist of transcription 

factors (TFs) and microRNAs (miRNAs) target genes. TFs regulate the expression of their target genes through various 

mechanisms (Lambert et al., 2018), while miRNAs – a class of small, non-coding RNAs – play an important role in post-

transcriptional gene regulation through the modulation of mRNA degradation (O’Brien et al., 2018). Current evidence 

shows that both TFs and miRNAs regulate the expression of common target genes and the expression of each other 

through feed-back (FBLs) and feed-forward loops (FFLs) (Friard et al., 2010; Hausser and Zavolan, 2014; Martinez et al., 

2008; Re et al., 2009). Moreover, other studies have shown that the interaction between miRNAs targets and TFs is 

involved in the progression of several cancers including bladder cancer (Dong et al., 2017; Guo et al., 2013; Li et al., 2011; 

Liu et al., 2014; Mullany et al., 2018). Using the same principle for the TNBC case, we restrict the training process to 

mechanisms involving gene targets downstream to the Notch and MYC pathways, owing to the role these play in mediating 

cancer chemoresistance. Notch signaling pathway is involved in promoting cancer angiogenesis and epithelial-
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mesenchymal transition (EMT) (Abdullah and Chow, 2013). It also promotes chemoresistance in several cancers including 

breast cancer by inhibiting apoptosis and mediating cancer stem cells (CSC) self-renewal capacity (Ranganathan et al., 

2011). Similarly, MYC promotes chemoresistance by mediating CSC self-renewal and proliferation (Wang et al., 2008; 

Zhang et al., 2019), and also by dysregulating the expression of some ATP-binding cassette (ABC) transporters necessary 

for cellular drug transport (Porro et al., 2010). Finally, since metastatic progression is mediated by several known biological 

processes, including loss of cell-cell adhesion and hypoxia in the tumor microenvironment (TME) (Bhandari et al., 2019; 

Oppenheimer, 2006), we designed a set of mechanistic pairs capturing such processes for predicting PCa metastasis. 

In summary, here we embed prior knowledge of cancer biology directly into the algorithmic process to identify robust 

decision rules. We show that such mechanistic models, even with a relatively small number of features, have a similar 

or even superior performance and robustness, and an enhanced interpretability compared to agnostic models based on 

hundreds of genes solely selected based on statistical significance. 

 

Results 

 

Building mechanistic classifiers by embedding prior knowledge in the predictive decision rules 

We hypothesized that integrating existing biological knowledge in the training process can yield robust and interpretable 

models the translational potential of which can surpass that of agnostic methods. For each classification task, we 

identified several biological processes related to the phenotype under study and used these to build corresponding 

biological mechanisms. To simplify the decision rules, we designed each mechanism as a list of gene pairs, each 

consisting of a gene associated with bad prognosis (e.g., progression or chemo-resistance) and another associated with 

good prognosis. Specifically, for predicting BLCA progression, we built a mechanism based on feed-forward loops (FFLs) 

consisting of a TF which inhibits a downstream miRNA target gene (Figure S1). For the TNBC task, we based the 

mechanistic constraints on NOTCH and MYC signaling based on their involvement in mediating chemoresistance 

(Abdullah and Chow, 2013; Ranganathan et al., 2011; Wang et al., 2008; Zhang et al., 2019). Specifically, the mechanistic 

constraints were built by pairing the genes up-regulated with those down-regulated by NOTCH or MYC. Finally, for 

predicting PCa metastasis, we restricted the training process to gene pairs orchestrating cellular adhesion and O2 

response. 

We used such mechanistic pairs to train biologically-constrained, rank-based models (Geman et al., 2004; Tan et al., 

2005), and then compared their performance to agnostic ones trained without biological constrains, starting from 

differentially-expressed genes or their pairwise combinations (Figure 1). Furthermore, we performed such a comparison 

using two distinct designs: training bootstrap and cross-study validation. In the bootstrap design, we proceeded as 

follows: we a) divided the data into training and testing sets; b) bootstrapped the training set 1000 times with a sample 

size equal to that of the training set (resampling with replacement); c) trained agnostic and mechanistic models on each 

training resample; and d) evaluated their performance on the untouched testing set. In the cross-study validation design, 

we used all but one study (n-1) for training, while the left-out study was used for testing, this process being repeated n 

times so that each study was used for testing. 
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Mechanistic models based on FFLs outperform agnostic ones in predicting bladder cancer progression 

In the BLCA task, we used gene expression profiles from 350 patients with NMIBC (stage T1) to train predictive models 

for cancer progression to MIBC (stage T2 or higher). We trained mechanistic classifiers using FFLs (37 unique 

mechanistic pairs) and compared their performance and robustness to agnostic models trained on the top differentially 

expressed genes, or the pairwise combinations of their ranks, without any prior biological consideration. Since the number 

of features used in the training process can be a major contributor to overfitting, we restricted the initialization of the 

agnostic models to the top 74 DEGs, matching the starting number of features used for training in the mechanistic case. 

Figure 1. Building mechanistic classifiers by embedding prior knowledge in the classification decision 

rules. Three prediction cases were considered: predicting bladder cancer progression, the response to 

neoadjuvant chemotherapy in patients with triple-negative breast cancer, and prostate cancer metastatic 

progression. We adopted two different experimental designs: the training bootstrap and cross-study validation. In 

the bootstrap design, all datasets were pooled together after normalization and preprocessing, then split into 

training and testing sets. The training set was bootstrapped 1000 times and on each resample, we trained 

agnostic and mechanistic models then evaluated their performance on the testing set. In the cross-study 

validation, the analysis included n iterations where n corresponds to the number of studies. In each iteration, we 

used all, but one study for training the models and evaluated their performance on the left-out study. k-TSPs: k-

top scoring pairs, RF: random forest, SVM: support vector machine, XGB: extreme gradient boosting, DEGs: 

differentially expressed genes. 
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Additionally, we also combined such top DEGs into 37 rank-based pairs to examine if this could improve the performance. 

In the bootstrap design, using the Area Under the ROC Curve (AUC) as evaluation metric, the agnostic and mechanistic 

k-TSPs models had a similar performance at predicting bladder cancer progression in the independent testing set (Figure 

2). However, the mechanistic k-TSPs models were more parsimonious yielding on average five gene pairs compared to 

16 pairs used by the agnostic ones. Importantly, the testing performance of the mechanistic models was more 

comparable with what was observed in the training. For the other three algorithms (RF, SVM, and XGB), the mechanistic 

models showed, on average, a higher testing performance than agnostic ones trained using the top DEGs (Figure 2). 

Interestingly, using pairwise comparisons derived from the top DEGs – instead of using their individual expression values 

– improved the performance of the agnostic models, slightly reducing the gap between training and testing. In secondary 

analyses, we also tested whether increasing the number of starting features in the agnostic case could improve their 

performance by training additional models using either the top 100, 200, and 500 DEGs or their pairwise comparisons 

(50, 100, and 250 pairs). Our results show that mechanistic classifiers still had a comparable or superior performance 

and robustness to agnostic ones, even when increasing the number of features (Figure S2). In addition, we also 

confirmed that mechanistic models held a clear advantage over agnostic ones trained using randomly selected genes 

(see Figure S3).  
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To examine the consistency of gene signatures across the 1000 bootstraps, we ranked the gene pairs returned by the 

agnostic and mechanistic k-TSPs classifiers by their frequency. Interestingly, the mechanistic models tended to return 

more frequent pairs across the different training data resamples compared to the agnostic models, in which the selected 

pairs differed significantly with each training iteration (Figure 3A). For example, the most frequent gene pairs selected by 

the mechanistic k-TSPs models were ARHGEF11-RAD21 (n=564), CNOT3-RNF44 (n=422), CHD4-DFFA (n=380), 

HNRNPF-TP53 (n=324), and EPB41-GTF2B (n=280) (Figure 3B). On the other hand, the five most frequently selected 

pairs by the agnostic k-TSPs were MDC1-DECR1 (n=75), MDC1-USP31 (n=50), CPSF4-RPP40 (n=43), CHSY1-NIF3L1 

(n=41), and SAC3D1-RPP40 (n=37) (Figure 3B). Each TSP gives a vote for a particular class (BLCA progression vs no-

progression) if gene1 is more expressed than gene2. This means that the first gene in each pair can be interpreted as a 

Figure 2.  Mechanistic models based on FFLs outperform agnostic ones in predicting bladder cancer 

progression. The figure depicts the performance of the agnostic and mechanistic models as obtained using 

the described bootstrap design. Briefly, all models were trained on 1000 bootstraps of the training data 

(transparent colors), then evaluated on untouched testing data (solid colors) using the Area Under the ROC 

Curve (AUC) as performance metric. Mechanistic models were based on the feed-forward loops (37 pairs) 

(purple) and agnostic models were trained either using the top differentially expressed genes (74 genes) 

(green) or the corresponding pairwise comparisons (37 pairs) (yellow). Curves represent the smoothed 

density distributions of the AUC values, and each panel corresponds to one of the four algorithms used. 

KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient 

boosting; FFLs: feed-forward loops; DEGs: differentially expressed genes. 
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gene associated with cancer progression, while the second would be expected to have an opposite role. With this notion 

in mind, we obtained – and then compared – the networks representing the frequency of each TSPs and that of each 

individual gene (across unique pairs), for both the agnostic and mechanistic k-TSPs approaches. The agnostic network 

was dominated by several genes associated with progression (mainly MDC1, RBP1, MMP11, CHD1L, and CDC25B) 

and no-progression (RPL12, RPP40, PSMB10, and PTGES2) (Figure 3C). In contrast, the mechanistic network was 

found to be more coherent, being dominated mainly by EZH2 serving as progression-associated gene (gene1) and 

RAD21, followed by TP53, serving as non-progression associated genes (gene2) (Figure 3D). 
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To examine the functional states of genes associated with BLCA progression compared to those associated with no-

progression, we performed gene set enrichment analysis (GSEA) on all the genes positioned as either gene1 (i.e., the 

“bad” genes) or gene 2 (i.e., the “good” genes) in the TSPs, separately for mechanistic and agnostic classifiers. 

Interestingly, genes in the mechanistic signatures (55 unique genes) were significantly enriched in 62 biological 

processes, many of which are related to invasion and progression including EMT, cell proliferation, and cell cycle 

transition (Table S1). On the other hand, genes in the agnostic signatures were significantly enriched in only one 

biological process despite their larger number (74 unique genes) (Table S1).  

Finally, in the cross-study validation design, we found that both the mechanistic and agnostic k-TSPs models had a similar 

average AUC in the testing data, while the mechanistic one outperformed its agnostic counterpart on multiple metric 

(balanced accuracy, sensitivity, and MCC (Chicco et al., 2021) , see Table S2). In agreement with the bootstrap results, the 

testing performance of the mechanistic k-TSPs was also highly comparable with that of the training, suggesting improved 

generalizability. Similar results were also seen with the other three ML algorithms (RF, SVM, and XGB, see Table S2). 

 

NOTCH-MYC-based models outperform their agnostic counterparts in predicting response to neoadjuvant 

chemotherapy in TNBC 

For predicting the response to NACT in patients with TNBC, we used the pre-treatment gene expression profiles of 369 

patients with TNBC. Mechanistic models were trained using the NOTCH-MYC mechanism (241 unique pairs), while 

agnostic models were trained using the top 500 DEGs, or their corresponding pairwise-ranks (250 pairs). Performance 

was compared with the same two designs described for the bladder cancer case.  

In the bootstrap approach, our results show that the mechanistic k-TSPs models have similar testing performance to the 

agnostic ones, however, the mechanistic RF, SVM, and XGB still slightly outperformed their agnostic counterparts (Figure 

4). Furthermore, changing the number of training features only improved the testing performance of the agnostic models 

based on pairwise-ranks, while still falling short of the mechanistic ones (Figure S4). Finally, mechanistic models clearly 

outperformed those trained on random genes (Figure S5).  

Figure 3. Mechanistic and agnostic k-TSPs signatures for predicting bladder cancer progression 

from non-muscle- to muscle-invasive stages. A) Bar plot showing the frequency of the agnostic (red) 

and mechanistic (blue) scoring pairs across the different bootstraps. The bar plot includes all the 

mechanistic pairs (n=93) and the most frequent agnostic pairs (n=93), both sorted by their frequency across 

the different bootstraps. B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by 

their frequency. C-D) Networks of the top 93 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair 

consists of a gene voting for BLCA progression (red) and no progression (yellow). The vertex size 

corresponds to 2*log2 of the individual gene frequency across unique pairs while the edge thickness 

corresponds to the log2 of the top scoring pair frequency.  
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Ranking out pairs by their frequency across the different iterations showed that a similar and more robust set of mechanistic 

pairs get selected much more often than agnostic ones (Figure 5A). For instance, the five most frequently returned pairs 

by the mechanistic k-TSPs models included DDIT3-DDX18 (n=531), TSC2-PLK4 (n=499), COL5A1-ITGA6 (n=442), 

GARS-PDCD10 (n=385), and NDE1-EZR (n=347) (Figure 5B). However, the five most frequent pairs returned by the 

agnostic k-TSPs models included SLC43A1-ABT1 (n=204), ITGA5-EPHB3 (n=119), METRN-MCM5 (n=116), PARM1-

MAPK9 (n=97), and SLC22A5-DCAF7 (n=96) (Figure 5B). Here, the decision rules follow the same pattern discussed in 

the BLCA case, with each pair voting for either residual disease (RD) or pathological complete response (pCR) based on 

the expression of the two genes. In agnostic models, the most frequent gene associated with RD (gene1 in the TSP) was 

MAST3 while RPL39L was the most frequent gene associated with pCR (gene2 in the TSP) (Figure 5C). For the 

mechanistic models, the oncogene CCND1 was the most frequent gene overexpressed in samples from patients with RD 

Figure 4. NOTCH-MYC-based models outperform their agnostic counterparts in predicting response to 

neoadjuvant chemotherapy in patients with triple-negative breast cancer. Models were trained on 1000 

bootstraps of the training data (transparent colors) and evaluated on the untouched testing data (solid colors) 

using the Area Under the ROC curve (AUC) as metric. Mechanistic models were based on the NOTCH-MYC 

mechanism (241 pairs) (purple) while agnostic models were trained either using the top differentially 

expressed genes (500 genes) (green) or the corresponding pairwise comparisons (250 pairs) (yellow). Shown 

are the smoothed density distributions of the AUC values with each panel corresponding to one of the four 

algorithms used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme 

gradient boosting; DEGs: differentially expressed genes; TNBC: triple-negative breast cancer.  
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(gene1 in the TSP) while the WNT antagonist SFRP1 (Veeck et al., 2006) was the most frequently overexpressed in 

samples from patients who had pCR (gene2 in the TSP) (Figure 5D).  

 

Figure 5. Mechanistic and agnostic k-TSPs signatures for predicting the response to neoadjuvant 

chemotherapy in patients with triple-negative breast cancer. A) Bar plot showing the frequency of the 

top 100 agnostic (red) and mechanistic (blue) scoring pairs across the different bootstraps. B) The top 10 

most frequent agnostic (red) and mechanistic (blue) pairs sort by their frequency. C-D) Networks of the top 

100 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair consists of a gene voting for RD (red) 

and pCR (yellow). The vertex size corresponds to 2*log2 of the individual gene frequency across unique 

pairs while the edge thickness corresponds to the log2 of the top scoring pair frequency.  
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The genes from the mechanistic classifiers (656 unique genes) were significantly enriched in 780 different pathways and 

processes including those used to build the priori mechanism (NOTCH and MYC signaling) (Table S3). They were also 

enriched in other cancer-related pathways like regulation of apoptosis, beta-catenin-TCF complex assembly, TGF-B 

signaling, T-cells activation and differentiation. While genes from agnostic classifiers were larger in number (1335 unique 

genes), they were significantly enriched in only 49 gene sets without a strong association with cancer biology. Altogether, 

these results reflect the signatures selected by the k-TSPs models are consistent and more associated with the biological 

processes underlying chemotherapeutic resistance compared to those returned by agnostic models (Table S3). 

Lastly, also in the cross-study validation case, we did not observe significant differences in performance between the 

model types, however, the mechanistic classifiers showed slightly more consistency in performance metrics like the AUC 

between training and testing, especially using the k-TSPs and XGB algorithms (Table S4). While using biological 

constraints did not offer a clear advantage in terms of performance, it significantly enhanced interpretability, and reduced 

the computational costs by limiting the training to a few hundred features instead several thousand used for the agnostic 

models. 

 

Mechanistic models based on cellular adhesion and oxygen response have a similar performance to their agnostic 

counterparts in predicting prostate cancer metastatic progression 

For predicting metastatic progression in prostate cancer, we used seven gene expression datasets comprising 1239 

primary tumor samples including 399 with metastatic events.  

In the bootstrap approach, mechanistic models using 50 pairs had a similar performance to their agnostic counterparts 

and incurred in less overfitting irrespective to the number of training features (Figure 6). Additionally, these mechanistic 

classifiers still maintained their performance even when more features were used for training the agnostic models (Figure 

S6), or when random genes were used in the training process (Figure S7).  
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Mechanistic TSPs showed high frequency (Figure 7A) with the five most frequent pairs including S100A10-PTN (n=540), 

CD74-SATB1 (n=455), CBX3-AZGP1 (n=414), CXCR4-PCDH18 (n=237), and STAT1-DPP4 (n=214) (Figure 7B). 

Agnostic models on the other hand frequently returned CAMK2N1-CDC42EPS (n=389), CXCR4-LPAR3 (n=230), ENO1-

CDC42EPS (n=217), RFTN1-DPT (n=202), and GNPTAB-CTBS (n=190) (Figure 7B-C). Interestingly, in the mechanistic 

TSPs, genes related to PCa progression and metastases like THBS2 (Chen et al., 2017), NRP1(Tse et al., 2017), and 

WNT5A (Dai et al., 2008) were frequently represented as metastases-voting genes (gene1 in the TSPs) (Figure 7D).  

Figure 6. Mechanistic models based on cellular adhesion and oxygen response have similar 

performance to their agnostic counterparts in predicting prostate cancer metastatic progression. 

The figure depicts the results from the bootstrap design in which the training set (transparent colors) was 

resampled 1000 times. On each resample, models were trained to predict metastatic progression in prostate 

cancer and their performance was evaluated on the untouched testing set (dark colors) using the Area 

Under the ROC Curve (AUC) as evaluation metric. Mechanistic models were based on the cellular adhesion 

and O2 response mechanism (50 pairs) (purple) while agnostic models were trained using either the top 

differentially expressed genes (100 genes) (green) or the corresponding pairwise comparisons (50 pairs) 

(yellow). Shown are the smoothed density distributions of the AUC values and each panel corresponds to 

one of the four algorithms used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector 

machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes. 
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Gene set Enrichment analysis showed that genes derived from the mechanistic signatures (906 unique genes) were 

significantly enriched in 1920 gene sets, many of which are associated with cell migration, motility, adhesion, and 

proliferation (Table S5). They were also enriched in other important pathways involved in PCa progression and metastases 

Figure 7. Mechanistic and agnostic k-TSPs signatures for predicting prostate cancer metastases. A) 

Bar plot showing the frequency of the top 100 agnostic (red) and mechanistic (blue) scoring pairs across the 

different bootstraps. B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by their 

frequency. C-D) Networks of the top 100 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair 

consists of a gene voting for metastasis (red) and no-metastasis (yellow). The vertex size corresponds to the 

2*log2 of the individual gene frequency across unique pairs while the edge thickness corresponds to the log2 

of the top scoring pair frequency.  
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including regulation of MAPK and ERK cascades, NF-kappaB, STAT, TGF-beta, and RAS signaling pathways. Similarly, 

genes from the agnostic models (1622 unique genes) were enriched in 96 gene sets, some of which included regulation 

of cell migration and motility and PCa related pathways like WNT signaling (Table S5).   

Finally, these results were also confirmed in the cross-study validation analysis, in which the mechanistic models had 

similar performance compared to the agnostic ones, but provided superior interpretability and improved computational 

efficiency, due to reduced number of features (tens versus thousands) used in the training process (Table S6). 

 

The right mechanism for the right task: mechanistic constraints should be related to the phenotype under 

consideration 

We have shown that using biological constraints in the training process can improve the performance of the resulting gene 

signatures, however, we hypothesized that this is contingent on using a mechanism related to the phenotype under-study. 

To investigate this, we assessed the performance of several different mechanisms in each of the three classification tasks 

we considered. This analysis included the three afore-mentioned cancer-related mechanisms (FFLs, NOTCH-MYC 

signaling, and cellular adhesion and O2 response), together with three other, non-cancer related ones, constructed from 

molecular profiles involved in: a) Alzheimer disease (266 pairs); b) diabetes (6776 pairs); and c) viral infection (6384 pairs). 

For each cancer phenotype, models trained on the relevant mechanism of choice showed the best performance (Table 1). 

Specifically, classifiers trained using the FFLs had higher testing AUCs for predicting bladder cancer progression 

compared to those based on the other mechanisms. Similar results were also obtained for NACT response prediction in 

TNBC using NOTCH-MYC signaling, and for prostate cancer metastatic progression using cellular adhesion and O2 

response. 

Notably, the three cancer related mechanisms maintained a superior performance over the non-cancer related ones in 

each of the three prediction tasks. For example, while the FFLs-based classifiers had the best performance at predicting 

bladder cancer progression, the NOTCH-MYC signaling and cellular adhesion/O2 response mechanisms also achieved a 

good testing performance. On the other hand, the Alzheimer, diabetes, and viral infection mechanisms performed poorly 

in the three classification cases (Table 1), highlighting the fact that choosing the right mechanism for the prediction task is 

essential for achieving an optimal performance. 

 

Discussion 

Overfitting and lack of generalization remain among the most difficult problems in machine learning especially in 

transcriptomics owing to the very large number of features and the much smaller number of samples (Keogh and Mueen, 

2010; Mirza et al., 2019). The inconsistency of performance of genomic predictive models is one of the reasons why their 

clinical usage has not been widely implemented, and it represents a major obstacle towards personalizing health care. 

While some approaches like increasing the sample size may help improve the performance and stability of such models, 

these may not always be feasible in medical research, owing to financial limitations or the unavailability of samples in 

cases of rare cancer phenotypes. 
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Some studies have shown that using prior knowledge can help to choose the input data or the correct algorithm (Libbrecht 

and Noble, 2015; Yip et al., 2012). In this study, we employed a similar concept to train robust and interpretable predictive 

models by adding biological constraints to the decision rules used for classification. We examined this approach in three 

clinically important classification cases: predicting bladder cancer progression from non-muscle invasive to muscle 

invasive stages, predicting the response to neoadjuvant chemotherapy in TNBC, and predicting prostate cancer 

progression to metastasis disease. In each setting, we employed multiple algorithms and compared the performance of 

mechanistically constrained models to agnostic ones. In the bladder cancer case, we used FFLs based on the evidence 

supporting their involvement in cancer progression and invasion (Dong et al., 2017; Guo et al., 2013, p.; Li et al., 2011; Liu 

et al., 2014; Mullany et al., 2018). In the TNBC case, we focused on NOTCH and c-MYC targets based on their role in 

mediating cancer stem cells self-renewal and chemo-resistance (Ranganathan et al., 2011; Wang et al., 2008; Zhang et 

al., 2019). Finally, for predicting prostate cancer metastasis, we used gene pairs capturing cell-cell adhesion and the 

cellular response to O2 (Bhandari et al., 2019; Oppenheimer, 2006). Since each of these priori mechanisms is already 

known to be associated with the corresponding phenotype, the features constituting the mechanism are expected to be of 

high quality for the prediction task undertaken. In this case, the ML algorithm is essentially used to extract the smallest 

number of features that can serve as a gene signature and has more potential to generalize to other datasets. It is true 

that agnostic models can also extract a number of features with a similar performance if not better. However, in that case, 

the search process would be applied on all genes and has more risk to overfit to the training data and select non-informative 

features that can’t be generalized. When evaluated on the testing data, the mechanistic models yielded a similar or superior 

performance than the agnostic ones.  Moreover, especially in the bladder cancer case, and for the K-TSP algorithm, 

mechanistic models demonstrated better generalization from training to testing, even in situations where there was a small 

number of samples available for training. Furthermore, these results were not dependent on any specification or 

characteristics pertaining to the training data, as shown by results from both the bootstrap and the cross-validation 

analyses.  

It is important to note that the mechanism used in the training should be biologically related to the phenotype being 

predicted. We demonstrated this by assessing the performance of different mechanisms in each classification case and 

noticed that the mechanisms we designed based on prior knowledge had the best performance at predicting their 

corresponding phenotype. Interestingly, the three cancer related mechanisms we have considered achieved optimal 

performance in each cancer phenotype, while the non-cancer ones performed poorly, which further support our rationale 

for using prior related biological knowledge to develop robust classifiers. 

Overall, these results show that models using a small number of biologically important features can have a similar or better 

performance metrics compared to those using hundreds or thousands of genes. Furthermore, mechanistic rank-based 

decision rules greatly enhance the interpretability of the resulting predictive models, which is crucial to their clinical 

adaptation. Specifically, the priory mechanism is designed beforehand by pairing genes from pathways positively and 

negatively associated with the phenotype of interest. In this case, the mechanism consists of multiple gene pairs belonging 

to opposing pathways or biological processes. Subsequently, we use the k-top scoring pairs (k-TSPs) algorithm which is 

rank based and serves by selecting the gene pairs whose expression consistently switch between the two classes of 

interest. For example, the NOTCH mechanism consists of hundreds of gene pairs up- and down-regulated by NOTCH 

signaling and we use this mechanism to design a classifier to predict the response to chemotherapy in breast cancer. The 

resulting classifier consists of a number of gene pairs with each consisting of a gene up- and another down-regulated by 

NOTCH signaling. Each of these pairs votes for a particular class (sensitive versus resistant) based on the order of 
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expression of the two genes and the final prediction of a patient/sample is determined by the majority of votes. As such, 

the classifier is interpretable because its decision rules and the function of its genes are known beforehand. Also, such 

models are more robust to preprocessing techniques, and can be more easily implemented using other technologies 

already being used for clinical applications. For example, we have shown that such mechanistic signatures derived from 

microarrays or RNA-Seq studies can be implemented using technologies like RT-PCR, which further increases their 

translational value (Ghantous et al., 2022). 

Together with their good performance, the mechanistic signatures captured the underlying biology of the associated cancer 

phenotype as expected. Since we used TF-miRNA targets as a priori mechanism to train ML models capable of predicting 

bladder cancer progression, the resulting signatures were always gene pairs with the 1st gene being a TF while the second 

is a miRNA target gene mirroring the priori mechanism. Even with different training data resampling, these signatures were 

often consistent indicating their predictive value rather than perfectly fitting the training data. For instance, ARHGEF11-

RAD21 was present in more than 50% of the mechanistic BLCA progression signatures voting for progression if 

ARHGEF11 is more expressed relative to RAD21. While the role ARHGEF11 in bladder cancer is not well-defined, it was 

found to be associated with the invasiveness of progression of glioblastoma (Ding et al., 2018) and hepatocellular 

carcinoma (Du et al., 2020). Across all mechanistic pairs, the transcriptional repressor EZH2 was prominent as a 

progression voting gene being present in 41 unique TSPs in which its expression relative to the second gene determines 

the vote given by the TSP (progression if EZH2 is more expressed than gene2). This is consistent with existing evidence 

linking EZH2 to progression and poor prognosis in several cancers including BLCA (Wang et al., 2012; Zhou et al., 2018). 

Similarly, predicting the response to NACT in patients with TNBC relied on a priori mechanism of gene pairs regulated by 

NOTCH and MYC signaling. Expectedly, the resulting signatures consisted of a small subset of gene pairs up- and down—

regulated by either NOTCH or MYC, and among these, genes down-regulated by either TF (e.g., SFRP1, ITGB4, and 

ITGA6) were predominantly associated with pCR. The same pattern was seen in predicting PCa metastases in which the 

mechanistic signatures frequently included genes known to be involved in mediating EMT and distant metastases e.g., 

THBS2 (Chen et al., 2017) and WNT5A (Dai et al., 2008). Gene set enrichment analyses showed that genes from the 

mechanistic signatures were significantly enriched in many more coherent biological processes and pathways compared 

to the genes from their agnostic counterpart, despite the latter being in much larger numbers. Moreover, In the three 

classification tasks, genes from the mechanistic classifiers were enriched in the pathways used to build the priori 

mechanism (as to be expected), together with other pathways associated with the phenotype under study. Altogether, 

these results show that mechanistic signatures tend to capture important cancer biology related to their corresponding 

phenotypes.  

It is important to note that our study has some inherent limitations. First, the biological mechanisms we used take the 

form of contrasting gene pairs, but this pairwise relationships may not completely capture the complexity of the underlying 

biology compared to other formulations like gene networks. However, this lack of sophistication in the design of the 

biological mechanism was deemed necessary for the interpretability of the resulting predictive models. Moreover, such 

pairwise comparisons, which are used by the k-TSPs algorithm, can also be used as input to other more complex 

approaches (e.g., SVM, RF, and XGB), with the advantage of increasing the level of interpretability of the resulting 

models. Finally, while our study was focused on cancer, the same conceptual framework can be also applied to other 

diseases, provided there is available prior knowledge about the underlying pathophysiological mechanisms. 
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Despite these limitations, our work supports the adoption of mechanistically constrained decision rules for the 

development of robust prognostic and predictive models. Their high performance and intrinsic interpretability will promote 

a wider integration into clinical practice, bringing routine personalized medicine one step closer to reality. 
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Figure legends 

Figure 1. Building mechanistic classifiers by embedding prior knowledge in the predictive decision rules. Three 

different cancer cases were considered: predicting bladder cancer progression, predicting the response to neoadjuvant 

chemotherapy in patients with triple-negative breast cancer, and predicting prostate cancer metastatic progression. We 

adopted two different experimental designs: the balanced stratification (training bootstrap) and cross-study validation. In 

the balanced stratification design, all datasets were pooled together after normalization and preprocessing then split into 

training and testing sets. The training set was bootstrapped 1000 times and on each resample, we trained agnostic and 

mechanistic models then evaluated their performance on the testing set. In the cross-study validation, the analysis included 

n iterations where n corresponds to the number of studies. In each iteration, we used all, but one study for training agnostic 

and mechanistic models then evaluated their performance on the left-out study. k-TSPs: K-top scoring pairs, RF: random 

forest, SVM: support vector machine, XGB: extreme gradient boosting, DEGs: differentially expressed genes. 

Figure 2.  Mechanistic models based on FFLs outperform agnostic ones in predicting bladder cancer 

progression. The figure depicts the performance of the agnostic and mechanistic models as obtained using the 

described bootstrap design. Briefly, all models were trained on 1000 bootstraps of the training data (transparent colors), 

then evaluated on untouched testing data (solid colors) using the Area Under the ROC Curve (AUC) as performance 

metric. Mechanistic models were based on the feed-forward loops (37 pairs) (purple) and agnostic models were trained 

either using the top differentially expressed genes (74 genes) (green) or the corresponding pairwise comparisons (37 

pairs) (yellow). Curves represent the smoothed density distributions of the AUC values, and each panel corresponds to 

one of the four algorithms used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: 

extreme gradient boosting; FFLs: feed-forward loops; DEGs: differentially expressed genes. 

Figure 3. Mechanistic and agnostic k-TSPs signatures for predicting bladder cancer progression from non-

muscle- to muscle-invasive stages. A) Bar plot showing the frequency of the agnostic (red) and mechanistic (blue) 

scoring pairs across the different bootstraps. The bar plot includes all the mechanistic pairs (n=93) and the most frequent 

agnostic pairs (n=93), both sorted by their frequency across the different bootstraps. B) The top 10 most frequent agnostic 

(red) and mechanistic (blue) pairs sort by their frequency. C-D) Networks of the top 93 agnostic (C) and mechanistic (D) 

top-scoring pairs. Each pair consists of a gene voting for BLCA progression (red) and no progression (yellow). The vertex 

size corresponds to 2*log2 of the individual gene frequency across unique pairs while the edge thickness corresponds 

to the log2 of the top scoring pair frequency.  

Figure 4. NOTCH-MYC-based models outperform their agnostic counterparts in predicting response to 

neoadjuvant chemotherapy in patients with triple-negative breast cancer. Models were trained on 1000 bootstraps 

of the training data (transparent colors) and evaluated on the untouched testing data (solid colors) using the Area Under 

the ROC curve (AUC) as metric. Mechanistic models were based on the NOTCH-MYC mechanism (241 pairs) (purple) 

while agnostic models were trained either using the top differentially expressed genes (500 genes) (green) or the 

corresponding pairwise comparisons (250 pairs) (yellow). Shown are the smoothed density distributions of the AUC 

values with each panel corresponding to one of the four algorithms used. KTSP: K-top scoring pairs; RF: random forest; 

SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes; TNBC: triple-

negative breast cancer.  

Figure 5. Mechanistic and agnostic k-TSPs signatures for predicting the response to neoadjuvant chemotherapy 

in patients with triple-negative breast cancer. A) Bar plot showing the frequency of the top 100 agnostic (red) and 
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mechanistic (blue) scoring pairs across the different bootstraps. B) The top 10 most frequent agnostic (red) and 

mechanistic (blue) pairs sort by their frequency. C-D) Networks of the top 100 agnostic (C) and mechanistic (D) top-

scoring pairs. Each pair consists of a gene voting for RD (red) and pCR (yellow). The vertex size corresponds to 2*log2 

of the individual gene frequency across unique pairs while the edge thickness corresponds to the log2 of the top scoring 

pair frequency.  

Figure 6. Mechanistic models based on cellular adhesion and oxygen response have similar performance to 

their agnostic counterparts in predicting prostate cancer metastatic progression. The figure depicts the results 

from the bootstrap design in which the training set (transparent colors) was resampled 1000 times. On each resample, 

models were trained to predict metastatic progression in prostate cancer and their performance was evaluated on the 

untouched testing set (dark colors) using the Area Under the ROC Curve (AUC) as evaluation metric. Mechanistic models 

were based on the cellular adhesion and O2 response mechanism (50 pairs) (purple) while agnostic models were trained 

using either the top differentially expressed genes (100 genes) (green) or the corresponding pairwise comparisons (50 

pairs) (yellow). Shown are the smoothed density distributions of the AUC values and each panel corresponds to one of 

the four algorithms used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme 

gradient boosting; DEGs: differentially expressed genes. 

Figure 7. Mechanistic and agnostic k-TSPs signatures for predicting prostate cancer metastases. A) Bar plot 

showing the frequency of the top 100 agnostic (red) and mechanistic (blue) scoring pairs across the different bootstraps. 

B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by their frequency. C-D) Networks of the 

top 100 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair consists of a gene voting for metastasis (red) and 

no-metastasis (yellow). The vertex size corresponds to the 2*log2 of the individual gene frequency across unique pairs 

while the edge thickness corresponds to the log2 of the top scoring pair frequency.  
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Tables 
 
Table 1. The performance of different mechanisms at predicting each of the three cancer phenotypes assessed 

by the Area under the ROC curve (AUC). Three important cancer phenotypes were considered for prediction: bladder 

cancer progression from non-muscle invasive to muscle-invasive stages, response to neoadjuvant chemotherapy (NACT) 

in patients with triple-negative breast cancer (TNBC), and metastatic progression in prostate cancer. For each phenotype, 

we built a priori mechanism capturing the underlying biology (bold text) and used it for prediction in the main analysis. 

Feed-Forward Loops (FFLs) were designed for predicting bladder cancer progression while the NOTCH-MYC signaling 

and cellular adhesion and O2 response mechanisms were developed for predicting the response to NACT in TNBC and 

prostate cancer metastatic progression, respectively. We also collected three cancer unrelated mechanisms and used 

them as negative controls. These include the Alzheimer, diabetes, and viral infection mechanisms. The performance of 

the different cancer-related and unrelated mechanisms at predicting each of the three cancer phenotypes was assessed 

using the Area Under the ROC Curve (AUC). FFLs: feed-forward loops, NACT: neoadjuvant chemotherapy, TNBC: triple-

negative breast cancer.  

Prediction Task Mechanism k-TSPs RF SVM XGB 

 Train Test Train Test Train Test Train Test 

 

 

 

Bladder cancer 

progression 

FFLs* 0.75 0.73 0.98 0.79 0.91 0.82 0.88 0.78 

NOTCH-MYC  0.85 0.72 1.00 0.70 0.98 0.68 1.0 0.67 

Cell adhesion/O2 response 0.89 0.76 1.00 0.70 1.0 0.64 1.0 0.71 

Alzheimer 0.60 0.49 0.61 0.52 0.54 0.43 0.59 0.52 

Diabetes 0.82 0.65 0.96 0.68 0.86 0.60 0.75 0.52 

Viral infection 0.81 0.63 0.96 0.59 0.90 0.50 0.82 0.57 

 

 

 

Response to NACT in 

TNBC 

FFLs 0.74 0.64 0.85 0.73 0.79 0.66 0.75 0.69 

NOTCH-MYC** 0.86 0.75 1.00 0.86 1.0 0.87 1.0 0.87 

Cell adhesion/O2 response 0.88 0.79 1.00 0.85 1.0 0.82 1.0 0.82 

Alzheimer 0.68 0.61 0.77 0.66 0.77 0.59 0.69 0.64 

Diabetes 0.78 0.75 0.94 0.79 0.98 0.74 0.84 0.72 

Viral infection 0.81 0.73 0.96 0.77 0.95 0.69 0.89 0.70 

 

 

 

Prostate cancer 

metastasis 

FFLs 0.61 0.63 0.64 0.62 0.62 0.60 0.61 0.60 

NOTCH-MYC 0.73 0.73 0.99 0.69 1.0 0.73 0.83 0.71 

Cell adhesion/O2 

response*** 

0.80 0.75 0.97 0.73 0.97 0.71 0.85 0.73 

Alzheimer 0.58 0.50 0.59 0.53 0.50 0.50 0.60 0.53 
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Diabetes 0.69 0.67 0.89 0.69 0.70 0.68 0.71 0.69 

Viral infection 0.68 0.65 0.81 0.64 0.73 0.63 0.72 0.67 

* The feed-forward loops mechanism was used for predicting bladder cancer progression in the main analysis. 

** The NOTCH-MYC signaling mechanism was used for predicting the response to neoadjuvant chemotherapy in triple-negative breast cancer. 

*** The cell-cell adhesion and O2 response mechanism was used for predicting prostate cancer metastasis  
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STAR Methods 

Resource availability 

 

Lead contact 

Further information and requests for resources and reagents should be directed to the lead contact, Dr. Luigi Marchionni 

(lum4003@med.cornell.edu). 

 

Material Availability 

This study did not generate new materials. 

 

Data and Code Availability 

This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key 

resources table. All original code together with our curated biological mechanisms have been deposited at 

https://github.com/MohamedOmar2020/Biological_Constraints and are publicly available.  

 

Method details 

 

Data collection 

 

Bladder cancer 

We used both the NCBI Gene Expression Omnibus (GEO) (Barrett et al., 2007) and ArrayExpress (Kolesnikov et al., 

2015) to identify gene expression datasets containing primary tumor samples from non-muscle invasive bladder cancer 

(NMIBC). We refined the initial results to keep only the datasets with information about the progression status 

(progression to MIBC versus no progression). Five datasets met our inclusion criteria, four of which are microarray-based 

(GSE57813 (van der Heijden et al., 2016), GSE13507 (Kim et al., 2010), GSE32894 (Sjodahl et al., 2012) and 

pmid15930337 (Dyrskjøt et al., 2005)) and the fifth is RNA-Seq based dataset (E-MTAB-4321 (Hedegaard et al., 2016)). 

 

Breast cancer 

We identified seven datasets with pre-treatment gene expression profiles from patients with breast cancer who received 

neoadjuvant chemotherapy: GSE25055 (Hatzis et al., 2011), GSE25065, GSE140494 (Edlund et al., 2021), GSE103668 

(Birkbak et al., 2018), GSE20194 (Popovici et al., 2010; Shi et al., 2010), GSE20271 (Shen et al., 2012; Tabchy et al., 

2010), and GSE32646 (Miyake et al., 2012). 

 

Prostate cancer 

For predicting PCa metastatic progression, we identified seven gene expression datasets containing primary tumor 

samples from PCa patients: GSE116918 (Jain et al., 2018), GSE55935 (Ragnum et al., 2015), GSE51066 (Ross et al., 
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2014), GSE46691 (Erho et al., 2013), GSE41408 (Boormans et al., 2013), JHU natural history cohort (Ross et al., 2016), 

and GSE70769 (Ross-Adams et al., 2015).  

 

Data preprocessing 

 

Bladder cancer 

In each dataset, we removed non-invasive papillary carcinoma (Ta) and carcinoma in situ (Tis) samples and kept only 

T1 lesions with information about the progression status. To remove uninformative features in the microarray datasets, 

we kept genes with raw intensity greater than 100 in at least 50% of the samples. Similarly, in E-MTAB-4321 (RNA-Seq) 

we kept genes with more than one count per million (CPM) in at least 50% of the samples. The four microarray datasets 

were normalized and log2-scaled upon retrieval from GEO. For E-MTAB-4321, the read counts were normalized using 

trimmed mean of M-values (TMM) and transformed to log2-counts per million (log-CPM). Next, we performed Z-score 

transformation (by gene) of each normalized dataset separately to ensure that the datasets from both technologies 

(microarrays and RNA-Seq) are on a similar scale. 

 

Breast cancer 

The seven breast cancer datasets originally included 1013 samples which we filtered to keep only samples in which ER, 

PR, and HER2 were all negative by immunohistochemistry (IHC) and with available information about the response to 

NACT whether pathological complete response (pCR) or residual disease (RD). This reduced the number of samples used 

in downstream analysis to 369 TNBC samples. All datasets were normalized and log2-scaled when retrieved from GEO, 

except for GSE20271 in which the expression values were not logged and so was log2-transformed. Finally, we mapped 

each probe ID to the corresponding gene symbol and filtered the expression matrices to the gene symbols in common 

(13299 genes). 

 

Prostate cancer 

In each of the seven PCa datasets, we kept primary tumor samples with information about metastatic events resulting in 

1239 primary tumor samples eligible for downstream analysis. Normalization and preprocessing were performed as 

described above followed by z-score transformation for each dataset separately. Finally, probe IDs were mapped to their 

corresponding gene symbols and expression matrices were restricted to the genes in common. 

 

Platform harmonization 

For the prediction tasks in bladder and prostate cancers, which included data obtained across different platforms and 

technologies (microarrays and RNAseq), we harmonized the final datasets by identifying a subset of cross-study 

reproducible genes using integrative correlation coefficient (ICC) (Cope et al., 2014; Parmigiani et al., 2004) keeping only 

genes whose ICC was greater than 0.15 or the 33rd percentile. In summary, the ICC is computed by calculating the 

Pearson correlation coefficient of the expression values of each pair of genes within and across studies (correlation of 

correlation). Although the integrative correlation analysis was performed on all data before division into training and 

testing, this does not violate the validation process since this method only uses the expression data and does not consider 
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the phenotype information. Using the ICC threshold mentioned above, 3109 and 4055 genes were identified and used in 

the bladder and prostate cases, respectively. 

 

 

Mechanistic pairs assembly 

 

Feedforward loops 

The TF-miRNA mediated gene regulatory loops that we are interested in are the coherent feed-forward loops in which a 

TF (e.g., MYC) inhibits a target gene (e.g., CD164) directly and indirectly via activation of a hub miRNA (e.g., has-miR-

346). The TF and target gene have an inverse relationship; over-expression of the TF results in down-regulation of the 

target gene and vice versa (Figure S1). This inverse relationship makes these pairs suitable for classification. To 

construct these loops, three different interaction types must be obtained: the interaction between the TF and target gene 

(TF-target), the interaction between the TF and miRNA (TF-miRNA), and the interaction between miRNA and target gene 

(miRNA-target). The TF-target interactions were obtained from Harmonizome (Rouillard et al., 2016) using the following 

databases: ENCODE, ESCAPE, CHEA, JASPAR, MotifMap and TRANSFAC. The TF-miRNA interactions were obtained 

from the same databases as above together with TransmiR v2.0 database(Tong et al., 2019). Finally, the miRNA-target 

interactions were obtained from TargetScan (Agarwal et al., 2015), miRTarBase (Chou et al., 2021) and miRWalk (Sticht 

et al., 2018). 

 

The loops were constructed by merging the three different interaction types. It was assumed that the TF always activates 

the miRNA and always inhibits the target gene. This assumption could be made since loops in which the TF does not 

activate the miRNA and/or inhibit the target gene, will not be selected as top scoring pairs by the k-TSPs algorithm, as 

described below. Finally, we chose TF-miRNA and TF-target interactions which were present in at least one of the 

databases and miRNA-target interactions which were present in at least two databases. This resulted in 985 gene pairs 

which were used for predicting BLCA progression. 

 

The NOTCH-MYC signaling mechanism 

We used the Molecular Signature Database (MsigDB)(Liberzon et al., 2011) to retrieve gene sets associated with the 

regulation of the NOTCH signaling pathway or including genes up and downregulated by NOTCH. The NOTCH mechanism 

was constructed by pairing the genes involved in the positive regulation of NOTCH signaling pathway or genes up-

regulated by NOTCH with those involved in the downregulation of the NOTCH signaling pathway or those down-regulated 

by NOTCH. Similarly, the MYC mechanism was constructed by pairing the genes up-regulated with those down-regulated 

by MYC. Finally, both mechanisms were combined into a single mechanism consisting of 78672 pairs which was further 

used in the TNBC classification case. 

 

The cell-cell adhesion, activation, and oxygen response mechanism 

We used three gene ontology (GO) biological processes to build a mechanism that can capture the biology of metastasis. 

These processes included: GOBP_CELL_CELL_ADHESION, GOBP_CELL_ACTIVATION, and 
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GOBP_CELLULAR_RESPONSE_TO_OXYGEN. Unique genes were paired together resulting in 409965 gene pairs 

which we used as biological constraints for training classifiers to predict PCa metastatic progression.  

 

Non-cancer related mechanisms 

As negative controls, we designed three non-cancer related mechanisms and assessed their performance at predicting 

each of the three main phenotypes. First, we built a mechanism for Alzheimer disease using two gene sets including 

genes up- and down-regulated in the brain endothelial cells of patients with Alzheimer disease (Wu et al., 2005). Up- and 

down-regulated genes were paired together to form a mechanism consisting of 266 pairs. Second, we built a diabetes 

mechanism consisting of 6776 pairs by pairing up- and down-regulated genes in the peripheral blood monocytes from 

patients with diabetes at the time of the diagnosis versus 1-4 months later (Kaizer et al., 2007). Finally, we designed a 

mechanism consisting of 6384 pairs representing the changes in the gene expression profiles of immune cells following 

viral infections (Akl et al., 2007, p. 1; Dorn et al., 2005; Marshall et al., 2005). It is important to note that these three 

mechanisms were chosen randomly with the aim of using them as negative controls to test our hypothesis. 

 

Data splitting for training and testing 

In each classification case, we implemented two data splitting designs: bootstrap and cross-study validation (Xu and 

Goodacre, 2018) (see Figure 1). In the bootstrap design, all datasets were combined based on the set of reproducible 

genes. The data was then divided into 75% training and 25% testing using balanced stratification. This was done to ensure 

a balanced representation of the parent datasets together with important clinical and pathological variables. In the BLCA 

case, the clinical variables used in the stratification included age, sex, tumor grade, recurrence status, and intra-vesical 

therapy while in the breast cancer case, we included age, tumor grade, T and N stages. Finally, in the PCa case, we 

focused on age, Gleason score, tumor stage, and prostate-specific antigen (PSA) levels. Subsequently, models were 

trained to predict the phenotype of interest on 1000 bootstraps of the training data and their performance was evaluated 

on the unseen testing data using the Area Under the ROC Curve (AUC) as evaluation metric.  

In the cross-study validation design, we used all but one dataset (n-1) for models training and the left-out dataset was 

used for testing. This process was repeated n times so that each dataset was used for testing once (see Figure 1).  

 

Training and evaluating the performance of mechanistic versus agnostic models 

In each classification case, we used four different algorithms: k-TSPs, RF, SVM, and XGB. Each algorithm was trained 

using three different model types: 1. mechanistic: using a manually curated biological mechanism in the form of pairwise 

comparisons (see below), 2. agnostic: using the top 2*k differentially expressed genes (DEGs) (agnostic-genes) where 

k is the number of pairs used in the mechanistic models or their corresponding k pairwise comparisons (agnostic-pairs), 

3. random genes: using a set of 2*k randomly selected genes.  

It should be noted that a pairwise comparison is based on the relative ordering of the expression of two genes. For 

example, in a particular sample, a given gene pair consisting of gX and gY would be assigned a value of ’1’ if gX is more 

expressed than gY in that sample, and a value of ’0’ if the opposite is true. Such pairwise comparisons were then used 

as features in the training process of mechanistic and agnostic-pairs models. 
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Importantly, all model types were trained and tested on the corresponding training and testing data, respectively. In the 

bootstrap approach, the AUC of each model was computed in both the training and testing data. The distribution of the 

AUC values of the mechanistic was plotted against those of the agnostic and random genes models to compare their 

average performance. In the cross-study validation, the average performance across all n iterations of training and testing 

was computed. Different metrics were used including: the AUC, accuracy, balanced accuracy, sensitivity, specificity, and 

Matthews correlation coefficient (MCC). 

 

The k-TSPs classifier 

The k-TSPs is a rank-based classification method that selects gene pairs (k) whose expression levels switch their ranking 

between the two classes of interest(Geman et al., 2004; Tan et al., 2005). More specifically, in the training process, if 

gene X is consistently more expressed relative to gene Y in samples belonging to a particular class compared to the 

other, it will be selected as a top scoring pair (TSP) and used for classification. In this sense, the output of this algorithm 

is a number of gene pairs with each voting for a specific class based on the relative ordering of expression values and 

the final class prediction is determined by the sum of votes. This rank assessment process used by the algorithm during 

the training can be applied to all genes or can be restricted to the top DEGs (agnostic) or to certain predetermined pairs 

chosen based on prior knowledge (mechanistic). The agnostic k-TSPs models were trained on the top DEGs by Wilcoxon 

rank sum test using different number of top features: the top 74, 100, 200, and 500 DEGs in the bladder and the top 25, 

50, 100, 200, and 500 DEGs in both the TNBC and prostate cancer cases. The training of the mechanistic k-TSPs models 

was restricted to the mechanism of choice. In all cases, we restricted the number of output pairs (the final signature) to 

a range between 3 and 25 pairs. Finally, for each clinical problem, we obtained a matrix of binary values (i.e., 0,1) 

representing the relative order of expression between genes pairs across individual samples (i.e, samples by gene pairs), 

which we subsequently used for training purposes with the other three prediction algorithms besides k-TSP. Such 

matrices of pairwise gene comparisons were generated to match the maximum number of unique starting pairs used as 

input to train the mechanistic k-TSPs models (37 in the bladder, 241 in the TNBC, and 50 in the prostate), selecting an 

appropriate number of differentially expressed genes via Wilcoxon rank sum test for the agnostic case. 

 

Support Vector Machine 

SVM is an algorithm that aims at identifying a hyper-plane separating data points distinctively (Noble, 2006). We trained 

the agnostic and mechanistic SVM models using polynomial kernel and used a repeated 10-fold cross-validation (CV) of 

the training data to identify the best parameter (degree, scale, and cost) values for each model. The final models were 

trained on the entire training data using the best parameters resulting from the repeated CV process. 

 

Random Forest 

RF is an ensemble ML algorithm that consists of a large number of decision trees (Breiman, 2001). Each tree in the 

forest votes for a specific class and the final predicted class is the one with the majority of votes. To determine the best 

number of variables randomly selected by the algorithm at each split (mtry), each model was tuned by the tuneRF function 

using the following parameters: mtryStart = 1, ntreeTry = 500, stepFactor = 1, and improve = 0.05. To deal with class 
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imbalance, the final model was instructed to draw an equal number of samples from both classes for each tree. This 

number was set to be equal to the number of samples in the minority class of each of the training data re-samples (in 

the bootstrap approach) or the training data as a whole (in the cross-study validation approach). 

 

Extreme gradient boosting 

Similar to RF, XGB is another ensemble ML algorithm but unlike RF in which each tree is built on a random subset of 

predictors, XGB sub-models (sub-trees) sequentially add weight or more focus on instances with high error rates(Chen 

and Guestrin, 2016). We divided the training data itself into 70% "actual training" and 30% "internal validation". We set the 

number of iterations to 500 with an early stopping threshold of 50 meaning that the training process will stop if the AUC in 

the internal validation set did not improve over 50 iterations. This step was necessary to minimize overfitting. 

Hyperparameters including gamma, lambda, alpha, and subsample were tuned using grid search process on the training 

data while stabilizing the learning rate and maximum depth. In the bootstrap analysis, this process was done on the training 

data before resampling. In the cross-study validation analysis, the hyperparameters were tuned on each training data 

partition 

 

Gene Set Enrichment Analyses 

To characterize the functional roles associated with the agnostic and mechanistic signatures, we performed GSEA to 

compute the overlap between the genes derived from the k-TSPs signatures and gene sets from the gene ontology (GO) 

biological processes database. In each prediction task, all unique mechanistic TSPs from the bootstrap processes were 

identified together with an equal number of agnostic TSPs. The GSEA analysis was performed on the genes associated 

with bad prognosis (positioned as gene1 in the TSPs) and those associated with good prognosis (positioned as gene2 in 

the TSPs), separately. P-values were calculated using Fisher’s exact test (Fisher, 1992, 1922) and were corrected using 

the Benjamini-Hochberg (BH) method for multiple hypotheses testing (Benjamini and Hochberg, 1995). Finally, gene sets 

with an adjusted p-value greater than 0.05 were considered insignificant and removed.  

 

Quantification and statistical analysis 

All steps of this analysis were performed using R version 4.0.3 (2020-10-10). The integrative correlation analysis was 

performed using the MergeMaid package (Cope et al., 2004). The k-TSPs models were trained using the SwitchBox R 

package (Afsari et al., 2015). The SVM models were trained using both the Caret (Kuhn, 2008) and Kernlab (Karatzoglou 

et al., 2004) packages. The RF and XGB models were trained using the RandomForest (Liaw and Wiener, 2007) and 

xgboost (Chen and Guestrin, 2016) packages, respectively. Bootstrapping (resampling with replacement) was performed 

using the Boot package (Davison and Hinkley, 1997). The values plotted in Figures 2, 4, and 6 (and supplementary 

figures S2:S7) represent the training and testing AUC values of the models trained on 1000 bootstraps of the training 

data and tested on the untouched testing data (not resampled). The values reported in Tables S2, S4, and S6 represent 

the average performance across all iterations of the cross-study validation process. The AUC values were computed 

using the prediction probabilities (RF, SVM, and XGB) or the votes (k-TSPs) returned by the classifier. The prediction 

probabilities were converted to predicted class labels using the optimal threshold which was determined from the training 

data using the ROC curve. The accuracy, balanced accuracy, sensitivity, specificity and MCC were computed by 
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comparing the predicted class labels to the ground truth labels. The k-TSPs pairs returned from each bootstrap were 

ranked based on their frequency and individual genes were ranked based on their frequency in unique pairs. In the BLCA 

case, all mechanistic (n=93) and an equal number of agnostic pairs were used to plot the networks shown in Figure 3C-

D while in the TNBC and PCa cases, the top 100 pairs were used to plot the networks shown in Figures 5 and 7C-D. All 

networks were built using the igraph R software package (Csardi and Nepusz, 2005). The size of the network vertices 

corresponds to twice the log2 of the gene frequency in unique pairs while the edge thickness corresponds to the log2 of 

frequency of the gene pair across the 1000 bootstraps. Enrichment analyses were performed using the enrichR package 

(Jawaid, 2022; Xie et al., 2021) by computing the overlap between our gene lists and gene sets from the 

“GO_Biological_Process_2021” database with Benjamini-Hochberg (BH) method for multiple hypotheses testing 

(Benjamini and Hochberg, 1995). 

 

Supplementary Figures 

Figure S1. An example of the coherent feed-forward loops (FFLs) used in predicting bladder cancer 

progression. Here, MYC is a transcription factor repressing a downstream target gene (CD164) directly and indirectly 

by activating a miRNA hub (has-miR-346). 

 

Figure S2. The testing performance of mechanistic and agnostic models at predicting bladder cancer progression. 

Models were trained on 1000 bootstraps of the training data (not shown) and evaluated on the testing data using the AUC 

as evaluation metric. Mechanistic models were based on the feed-forward loops mechanism (37 pairs). Agnostic models 

were built using either the top differentially expressed genes (top 74, 100, 200, or 500 DEGs) or the corresponding pairwise 

comparisons (37, 50, 100, or 250 pairs). k-TSPs: k-top scoring pairs; RF: random forest; SVM: support vector machine; 

XGB: extreme gradient boosting; DEGs: differentially expressed genes; AUC: Area Under the ROC Curve. 

 

Figure S3. Comparing the testing performance of the mechanistic and models trained on different numbers of 

randomly selected genes at predicting bladder cancer progression. Models were trained on 1000 bootstraps of the 

training data (not shown) and evaluated on the testing data using the AUC as evaluation metric. Mechanistic models were 

based on the feed-forward loops mechanism (37 pairs). Random genes models were trained using different sets of 

randomly selected genes (74, 100, 200, and 500 genes). k-TSPs: K-top scoring pairs; RF: random forest; SVM: support 

vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes; AUC: Area Under the ROC Curve. 

 

Figure S4. The testing performance of the mechanistic and agnostic models at predicting triple-negative breast 

cancer response to neoadjuvant chemotherapy. Models were trained on 1000 bootstraps of the training data (not 

shown) and evaluated on the untouched testing data using the AUC as evaluation metric. Mechanistic models were 

based on the NOTCH-MYC mechanism (241 pairs). Agnostic models were built using either the top differentially 

expressed genes (top 50, 100, 200, or 500 DEGs) or the corresponding pairwise comparisons (25, 50, 100, or 250 pairs). 

k-TSPs: k-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: 
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differentially expressed genes; TNBC: triple-negative breast cancer; NACT: neoadjuvant chemotherapy; AUC: Area 

Under the ROC Curve. 

 

Figure S5. Comparing the testing performance of the mechanistic versus random genes models at predicting 

triple-negative breast cancer response to neoadjuvant chemotherapy. Models were trained on 1000 bootstraps of 

the training data (not shown) and evaluated on the untouched testing data using the AUC as evaluation metric. 

Mechanistic models were based on the NOTCH-MYC mechanism (241 pairs). Random genes models were trained using 

different numbers of randomly selected genes (50, 100, 200, or 500 genes). k-TSPs: K-top scoring pairs; RF: random 

forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes; TNBC: 

triple-negative breast cancer; NACT: neoadjuvant chemotherapy; AUC: Area Under the ROC Curve. 

 

Figure S6. The testing performance of the mechanistic and agnostic models at predicting prostate cancer 

metastatic progression. Models were trained on 1000 bootstraps of the training data (not shown) and evaluated on the 

untouched testing data using the AUC as evaluation metric. Mechanistic models were based on the cellular adhesion 

and O2 response mechanism (50 pairs). Agnostic models were built using either the top differentially expressed genes 

(top 50, 100, 200, or 500 DEGs) or the corresponding pairwise comparisons (25, 50, 100, or 250 pairs). k-TSPs: K-top 

scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially 

expressed genes; AUC: Area Under the ROC Curve. 

 

Figure S7. Comparing the testing performance of the mechanistic versus random genes models at predicting 

prostate cancer metastatic progression. Models were trained on 1000 bootstraps of the training data (not shown) and 

evaluated on the testing data using the AUC as evaluation metric. Mechanistic models were based on the cellular 

adhesion and O2 response mechanism (50 pairs). Random genes models were trained using different numbers of 

randomly selected genes (50, 100, 200, or 500 genes). k-TSPs: K-top scoring pairs; RF: random forest; SVM: support 

vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes; AUC: Area Under the ROC 

Curve. 

 

Supplementary Tables 

Table S1. Gene set enrichment analyses of genes derived from the agnostic and mechanistic classifiers used to 

predict bladder cancer progression. For both classifier types, GSEA was performed on all unique genes from the 

bootstrap design using the gene ontology biological processes. Gene1 refers to genes positioned as the 1st gene in the 

TSPs (associated with BLCA progression) while Gene2 refers to those positioned as the 2nd (associated with no-

progression). Tables include only significant gene sets (adjusted p-value <0.05). Note that agnostic 1st genes (gene1) 

were not significantly enriched in any biological processes. 

 

Table S2. The average performance of the agnostic and mechanistic models at predicting bladder cancer 

progression in the cross-study validation design. The analysis had five iterations and in each, four studies were used 
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for training while the fifth was used for testing. This table depicts the average training and testing performance at 

predicting the progression to muscle-invasive stages across the five iterations. Agnostic models were trained using either 

gene expression values (agnostic genes) or their pairwise comparisons (agnostic Pairs). Mechanistic models were based 

on the FFLs mechanism. 

 

Table S3. Gene set enrichment analyses of genes derived from the agnostic and mechanistic classifiers used to 

predict the response to neoadjuvant chemotherapy in patients with triple-negative breast cancer. For both 

classifier types, GSEA was performed on all unique genes from the bootstrap design using the gene ontology biological 

processes. Gene1 refers to genes positioned as the 1st gene in the TSPs (associated with residual disease) while Gene2 

refers to those positioned as the 2nd (associated with pathological complete response). Tables include only significant 

gene sets (adjusted p-value <0.05). 

 

Table S4.  The average performance of the agnostic and mechanistic models at predicting the response to 

neoadjuvant chemotherapy in patients with triple-negative breast cancer. Here, the analysis had seven iterations 

and in each, six of the seven studies were used for training while the seventh was used for testing. The table shows the 

average training and testing performance at predicting the response to NACT across these seven iterations. Agnostic 

models were trained using either gene expression values (Agnostic genes) or their pairwise comparisons (Agnostic 

Pairs). Mechanistic models were based on the NOTCH-MYC mechanism. 

 

Table S5. Gene set enrichment analyses of genes derived from the agnostic and mechanistic classifiers used to 

predict prostate cancer metastasis. For both classifier types, GSEA was performed on all unique genes from the 

bootstrap design using the gene ontology biological processes. Gene1 refers to genes positioned as the 1st gene in the 

TSPs (associated with metastasis) while Gene2 refers to those positioned as the 2nd (associated with no-metastasis). 

Tables include only significant gene sets (adjusted p-value <0.05). 

 

Table S6. The average performance of the agnostic and mechanistic models at predicting prostate cancer 

metastatic progression. The analysis included seven iterations and in each, six of the seven studies were used for 

training while the seventh was used for testing. The table shows the average training and testing performance at 

predicting metastatic events across these seven iterations. Agnostic models were trained using either individual gene 

expression values (Agnostic genes) or their corresponding pairwise comparisons (Agnostic Pairs). Mechanistic models 

were based on the cellular adhesion and O2 response mechanism. 
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