

1 **Ankrd26 is critical for cell differentiation and cancer-linked mutations affect its
2 key properties**

3

4

5 Sarah A. Hofbrucker-MacKenzie^{1#}, A. Sofie Englisch^{1#}, Maryam Izadi¹, Klara Metzner¹, Michael M.
6 Kessels^{1*}, Britta Qualmann^{1*}

7

8 ¹ Institute of Biochemistry I, Jena University Hospital – Friedrich Schiller University Jena, 07743
9 Jena, Germany

10

11 [#] contributed equally

12

13 * Correspondence and equal contributions

14 Britta.Qualmann@med.uni-jena.de & Michael.Kessels@med.uni-jena.de

15

16

17 **Word count**

18 6706 words (main text, i.e. intro to discussion)

19

20

21 **Short title**

22 Functions and disease mutants of Ankrd26

23

24

25 **Abstract**

26 Derailed signaling originating from the plasma membrane is associated with many types of cancer.
27 Different human cancers and thrombocytopenia are linked to *ANKRD26* mutations. We unveil that
28 *Ankrd26* is a plasma membrane-localized protein forming nanoclusters and that *Ankrd26* is critical
29 for retinoic acid/BDNF-induced neuroblastoma differentiation. An N-terminal amphipathic structure
30 lacking in an AML-associated *Ankrd26* mutant is indispensable for membrane binding and bending
31 by partial membrane insertion and renders *Ankrd26* inactive in both gain-of-function and loss-of-
32 function/rescue studies addressing cellular differentiation. In a papillary thyroid carcinoma-linked
33 mutant, truncated *Ankrd26* is fused with the kinase domain of the protooncogene RET. Our data show
34 that the *Ankrd26* part of this fusion mutant mediates anchoring of the RET kinase domain to the
35 plasma membrane and self-association by the coiled coil domain of *Ankrd26*. *Ankrd26*-RET fusion
36 led to massively increased ERK1/2 activity and RET autophosphorylation at both Y905 and Y1015,
37 i.e. caused aberrant RET signaling. Our results highlight the importance and molecular details of
38 *Ankrd26*-mediated organizational platforms for cellular differentiation and signaling pathways from
39 the plasma membrane, which, if derailed, lead to cancer-associated pathomechanisms involving the
40 unveiled *Ankrd26* properties.

41

42

43 **Keywords**

44 acute myeloid leukemia / *Ankrd26* functions in neuroblastoma differentiation / ERK1/2 signaling /
45 molecular properties of disease mutants / N-Ank-mediated membrane binding shaping and curvature
46 sensing / papillary thyroid carcinoma / plasma membrane *Ankrd26* nanodomains / RET kinase
47 autophosphorylation

48

49 **Introduction**

50 The plasma membrane represents the cellular interface to the outer world and thus transmits and
51 integrates a plethora of signals towards the cytoplasm. Plasma membrane-originating signal
52 transduction pathways in turn also modulate the organization and shape of the plasma membrane
53 when cells adapt and respond to such signals. Derailed signaling pathways originating from the
54 plasma membrane are associated with many types of cancer. Thus, proteins linked to signaling
55 pathways that might furthermore spatially organize signaling-competent membrane domains and/or
56 modulate the topology of membranes take center stage in contemporary research.

57 Several, yet molecularly seemingly very distinct mutations in *ANKRD26* have been linked to different
58 human cancers (Cerami et al., 2012; Marconi et al., 2017; Staubitz et al., 2019) and also to
59 thrombocytopenia (Noris et al., 2011; Pippucci et al., 2011; Bluteau et al., 2014; Wahlster et al.,
60 2021). These mutations include a deletion of a more C terminal part of Ankrd26 leading to a
61 disruption of Ankrd26's binding to PIDD1 – a component of a multi-protein complex (PIDDosome)
62 involved in the cellular response to extra centrosomes (Cerami et al., 2012; Fava et al., 2017; Evans et
63 al., 2021; Burigotto et al., 2021). More recently, an N-terminal truncation has been found to be
64 associated with acute myeloid leukemia (AML) (Marconi et al., 2017). Furthermore, the cancer-linked
65 Ankrd26 mutations include a C terminal Ankrd26 truncation and fusion with a part of the protein
66 product of the protooncogene *RET* (*rearranged during transfection*) (Staubitz et al., 2019) – the
67 tyrosine kinase signaling component of multisubunit receptor complexes for glia cell line-derived
68 neurotrophic factor (GDNF) family ligands (GFLs), which frequently shows partial recombination
69 with other genes in a variety of cancers (Shaw et al., 2013; Liu et al., 2021).

70 The cancer-associated Ankrd26 mutations found up to today are molecularly heterogeneous and
71 therefore do not provide an easy avenue to understanding Ankrd26-associated diseases. Similarly,
72 although Ankrd26 was first described as protein with similarities to POTEs (expressed in prostate,

ovary, testis, and placenta) (Bera et al., 2002; Bera et al., 2008), which are considered as potential biomarkers and therapeutic targets based on their association with poor prognosis in ovarian and other cancers (Bera et al., 2006; Redfield et al., 2013), the comparison of Ankrd26 to POTE proteins is unrewarding. First, also functions and molecular properties of POTEs are largely unknown. Second, the suggested similarity of POTEs to Ankrd26 is in fact very limited. Although both contain ankyrin repeats, they reside in the middle in POTEs (Bera et al., 2002) but in the N terminal part in Ankrd26. Also, Ankrd26 lacks the cysteine-rich domain typical for POTEs (Bera et al., 2002). Due to this lack of knowledge about the properties and molecular characteristics of Ankrd26, Ankrd26 dysfunctions in pathophysiological processes in human patients largely remained elusive.

We unveil that Ankrd26 is a partially clustered, plasma membrane-localized protein that has the ability to shape membranes by employing an N terminal, membrane-inserted amphipathic structure and a membrane curvature-sensing ankyrin repeat array. Furthermore, Ankrd26 is able to form larger, membrane-associated arrays by self-association. Ankrd26 loss-of-function studies unveiled a strong impairment in the morphological differentiation of neuroblastoma cells. Its properties and their underlying molecular mechanisms demonstrate that Ankrd26 is a member of the recently suggested N-Ank protein superfamily (Wolf et al., 2019). The AML-associated mutation of Ankrd26 disrupted the membrane binding and shaping capability of Ankrd26 and its functions in cellular differentiation. The cancer-associated RET fusion led to a protein that is fully self-association-competent, is constitutively targeted to the plasma membrane and results in aberrant RET signaling by a massive increase in two forms of RET autophosphorylation as well as to activation of ERK1/2. Understanding the cellular functions and molecular mechanistic properties of Ankrd26 significantly advances our understanding of Ankrd26-associated pathomechanisms in human cancer patients.

95

96 **Results**

97 **Ankrd26 associates with the plasma membrane using an N-Ank module**

98 Ankrd26 is involved in several types of cancer (Cerami et al., 2012; Marconi et al., 2017; Staubitz et
99 al., 2019). Yet, the molecular properties and the functions of Ankrd26 largely remained elusive.
100 Ankrd26-associated thrombocytopenia is caused by 5'UTR mutations that seem to lead to some N
101 terminal truncation. Also an AML-associated mutation of Ankrd26 is marked by an N-terminal
102 truncation of Ankrd26 (Marconi et al., 2017). These findings urgently call for thus far lacking in-
103 depth-analyses of Ankrd26's N terminal part to understand the underlying pathomechanisms.

104 Although Ankrd26 has been described as cytosolic protein in neurons and glia cells (Acs et al., 2015)
105 and more recent studies described it as centriolar protein despite the fact that neither ciliogenesis nor
106 centriole duplication was disrupted in cells lacking Ankrd26 (Yan et al., 2020; Evans et al., 2021;
107 Burigotto et al., 2021), our subcellular fractionation studies unveiled a strong membrane association.
108 Similar to farnesylated mCherry (CherryF) coexpressed as marker for constitutively plasma
109 membrane-associated proteins, a significant Ankrd26 portion was detected in the fractions P2 and P2'
110 (**Figure 1A,B**).

111 Also in intact cells, Ankrd26-GFP specifically localized to CherryF-marked folds of the plasma
112 membrane (**Figure 1C,D; Figure 1-figure supplement 1A,B**). Importantly, membrane association
113 was also demonstrated for endogenous Ankrd26, which clearly was detectable in fractions P2 and P2'
114 (**Figure 1E**).

115 Sequence analyses and structure predictions of human Ankrd26 unveiled five N terminal ankyrin
116 repeats between amino acid 46 and 207 and an N terminal amphipathic structure, which together may
117 represent an N-Ank module (**Figure 1F,G; Figure 1-figure supplement 1C,D**). Indeed, purified,
118 recombinant human Ankrd26¹⁻²¹⁷ (hu Ankrd26^{N-Ank}) coprecipitated with liposomes in *in vitro*
119 reconstitutions (**Figure 1H**). In contrast, an N terminal deletion mutant of Ankrd26 lacking the

120 suggested amphipathic structure (hu Ankrd26^{Ank}, hu Ankrd⁴⁵⁻²¹⁷) was significantly impaired in
121 liposome binding (**Figure 1I,J**). The N terminus of Ankrd26 thus is important for Ankrd26's
122 membrane association. Similar results were obtained for the mouse Ankrd26 N-Ank module (ms
123 Ankrd26^{N-Ank}, ms Ankrd26¹⁻²⁰⁸) and the respective deletion mutant (ms Ankrd26^{Ank}, ms Ankrd26¹¹⁻
124 ²⁰⁸). Deletion of the N terminus suppressed the membrane binding almost completely (**Figure 1K-N**).
125 Also in cells, both mouse and human Ankrd26 N-Ank modules clearly colocalized with CherryF at
126 the plasma membrane, whereas both corresponding N terminal deletion mutants failed to show any
127 specific membrane localization (**Figure 1O,P; Figure 1-figure supplement 2**).
128 Ankrd26 thus is a membrane-binding protein, associates with membranes directly, as proven by *in*
129 *vitro* reconstitution using purified components, and this ability is brought about by an N terminal
130 domain that may resemble an N-Ank module.

131

132 **A mutated Ankrd26 N-Ank domain found in AML patients is deficient for membrane binding**

133 Our data suggested that an *ANKRD26* mutation found in AML patients, which gives rise to an N
134 terminal deletion (Marconi et al., 2017), is likely to represent a loss-of-function mutation for
135 Ankrd26's N-Ank-mediated membrane binding (**Figure 2A**). Indeed, the disease mutation identified
136 in AML rendered the N-Ank module (hu Ankrd26^{N-Ank_oAML}; Ankrd26⁷⁸⁻²¹⁷) completely unable to
137 associate with membranes in *in vitro* reconstitutions (**Figure 2B-D**). In fractionation studies,
138 Ankrd26^{N-Ank_oAML} was absent from the membrane fractions P2 and P2', whereas the corresponding
139 WT protein (Ankrd26^{N-Ank}) was detectable in both P2 and P2' (**Figure 2E,F**). Consistently,
140 immunofluorescence analyses demonstrated that Ankrd26^{N-Ank_oAML} failed to properly localize to the
141 plasma membrane. Instead, Ankrd26^{N-Ank_oAML} was distributed aberrantly in the cytosol (**Figure 2G**).
142 Importantly and in line with a critical role of the N terminal helix of the proposed N-Ank module for
143 membrane association, AML mutation in the full-length protein context (hu Ankrd26^oAML; Ankrd26⁷⁸⁻

144 ¹⁷¹⁰) led to a protein that was unable to bind to membranes. Both membrane fractions, P2 and P2',
145 were devoid of the AML mutant of full-length Ankrd26 (**Figure 2H**). Thus, Ankrd26's involvement
146 in AML seems to be related to a defective membrane targeting of the Ankrd26 mutant found in AML
147 patients.

148

149 **The part lacking in the Ankrd26 AML mutant responsible for Ankrd26's tight membrane**
150 **binding comprises an amphipathic helix**

151 We next addressed the mechanisms of Ankrd26's membrane association disrupted by the N terminal
152 deletion in the Ankrd26 AML mutant. An N terminal amphipathic structure may mediate integration
153 into the membrane instead of mere electrostatic surface association. Indeed, the WT Ankrd26 N-Ank
154 module was not sensitive to suppressing electrostatic interactions by rising salt concentrations but
155 showed full salt resistance even at 250 mM NaCl (**Figure 3A,B**). Similarly, also the membrane-
156 binding of mouse Ankrd26^{N-Ank} was resistant to suppression of electrostatic interactions (**Figure 3-**
157 **figure supplement 1**). In contrast, the (reduced) membrane binding of Ankrd26^{Ank} (compare also
158 **Figure 1I,J**) was sensitive to rising salt concentrations and therefore apparently predominantly based
159 on electrostatic interactions (**Figure 3C,D**).

160 The amphipathic nature of the N terminal key element for Ankrd26's tight membrane association was
161 then proven by two sets of mutations erasing on one side two fully conserved hydrophobic residues
162 (I4E, F5E) and on the other side seven hydrophilic, positively charged residues (**Figure 3E**). Both
163 mutants showed significantly reduced membrane binding in quantitative studies (**Figure 3F-K**).

164 Importantly, mutation of the two hydrophobic residues isoleucine 4 and phenylalanine 5 to
165 hydrophilic amino acids (glutamate) was sufficient to render Ankrd26 susceptible to electrostatic
166 suppression of membrane association (**Figure 3L,M**). It can therefore be concluded that the ability of
167 Ankrd26^{N-Ank} to tightly bind to membranes relies on hydrophobic membrane associations and

168 embedding into the hydrophobic phase of the membrane mediated by an amphipathic structure at the
169 N terminus of Ankrd26.

170

171 **Endogenous Ankrd26 resides inside the cytosolic leaflet of freeze-fractured plasma membranes**
172 Partial membrane insertion as molecular mechanism of Ankrd26's membrane binding suggested that
173 it might be possible to establish a detection of endogenous Ankrd26 in cellular membranes by freeze-
174 fracturing, immunogold labeling and transmission electron microscopy (TEM) similar to methods,
175 which we were able to successfully establish for other membrane-inserted proteins, such as caveolins
176 (Koch et al., 2012; Seemann et al., 2017), syndapins (Schneider et al., 2014; Seemann et al., 2017;
177 Izadi et al., 2021), and the N-Ank protein ankycorbin (Wolf et al., 2019). Freeze-fractured plasma
178 membranes of SK-N-SH neuroblastoma cells differentiated with retinoic acid and BDNF according to
179 Encinas et al. (2000) were successfully immunogold labeled with antibodies against Ankrd26 (**Figure**
180 **3N**). The labeling was specific, as control surfaces in the same samples, i.e. the E-face of the
181 membrane and ice surfaces, were almost devoid of immunolabeling (**Figure 3O,P**). Quantitative
182 analyses of labeling densities over wide ranges of systematically imaged areas confirmed the
183 specificity of the anti-Ankrd26 immunolabeling at the plasma membrane of neuroblastoma cells
184 (**Figure 3Q**).

185 Ankrd26 was present across wide areas of the plasma membrane and did not show correlation with
186 any membrane protein complexes already structurally visible by platinum shadowing (**Figure 3N**).
187 Also, anti-Ankrd26 immunolabeling was not correlated with the rare sites of circular membrane
188 invagination of different depth we observed (**Figure 3N',N''**) but occurred at various areas of the
189 membrane (**Figure 3N**).

190 Besides at the plasma membrane, also a rare case of intracellular fracture showed some, albeit low
191 anti-Ankrd26 labeling suggesting that Ankrd26 functions may not exclusively be reflected by the

192 plasma membrane-anchored Ankrd26 prominently observed in our electron microscopical
193 examinations (**Figure 3N-N'**).

194

195 **Ankrd26's ankyrin repeat array is able to sense membrane curvature and prefers to associate**
196 **with stronger convexly curved membrane surfaces**

197 3D-modeling of Ankrd26's ankyrin repeat array suggested a curved and rotationally twisted structure
198 brought about by tight lateral stacking of the individual ankyrin repeats (**Figure 4A**). This suggested
199 that Ankrd26's ankyrin repeat array may prefer membrane surfaces, which offer better fitting
200 curvatures, while the full N-Ank module with its ability to intercalate an amphipathic structure into
201 one leaflet of the membrane may have the power to actively shape membranes into bent topologies,
202 which may then also fit the curved ankyrin repeats. According to this hypothesis, the ankyrin repeats
203 of Ankrd26 may thus be able to discriminate different curvatures of membranes. Offering small
204 unilamellar vesicles (SUVs; average size ~50 nm (Wolf et al., 2019)) versus large ones (LUVs) indeed
205 led to an enhanced membrane binding of Ankrd26^{Ank} (**Figure 4B,C**). Similarly, the mouse Ankrd26
206 ankyrin repeat array with its very weak membrane binding also was able to sense the curvature of
207 membranes and strongly preferred SUVs (170% above LUV binding; $P<0.01$; **Figure 4-figure**
208 **supplement 1**).

209 The very weak membrane binding of Ankrd26^{N-Ank_oAML} carrying the disease mutation also was
210 significantly enhanced upon offering strongly curved membrane surfaces represented by SUVs instead
211 of the only very moderately curved LUVs (**Figure 4D,E**). The Ankrd26 ankyrin repeat array thus is
212 able to sense more strongly convex membrane curvature and this ability is retained in the ankyrin
213 repeat array of Ankrd26^{N-Ank_oAML}, which lacks one of the five ankyrin repeats when compared to wild-
214 type Ankrd26.

215

216 **Ankrd26 is a membrane shaping protein and this function relies on the amphipathic N terminus**

217 Using liposomes, we next analyzed whether Ankrd26 N-Ank membrane association and partial
218 insertion leads to induction of membrane curvature (**Figure 4F-I**). Control incubations with buffer
219 alone or with an unrelated protein (GST) mostly showed larger liposomes when analyzed by freeze-
220 fracturing and TEM (**Figure 4F,G**). In contrast, liposomes incubated with Ankrd26^{N-Ank} were marked
221 by an ample presence of small liposomes (**Figure 4H-J**).

222 Freeze-fracturing and TEM has the advantage that liposomes with sizes over several orders of
223 magnitudes can reliably be visualized. Quantitative determinations clearly demonstrated that
224 Ankrd26^{N-Ank} had a strong and highly statistically significant effect on membrane topology. Ankrd26^{N-}
225 ^{Ank}-incubated liposomes with in average ~300 nm diameter showed only about half the diameter of
226 controls or incubations with the deletion mutant Ankrd26^{Ank} (mean, ~600 nm) (**Figure 4J**). Thus, the
227 complete N-Ank module has the power to actively convert membrane topologies into more strongly
228 curved ones and the amphipathic N terminus is absolutely crucial for the membrane shaping ability of
229 Ankrd26.

230 Distribution analyses of liposome diameters observed in incubations without protein, with unrelated
231 protein, with Ankrd26^{N-Ank} and with Ankrd26^{Ank}, respectively, clearly showed that especially
232 liposomes with small diameters were much more abundant in incubations with Ankrd26^{N-Ank} than in
233 controls. Especially in the size categories of 100 nm and beneath, their frequencies were 2-5fold as
234 high as those of liposomes incubated with Ankrd26^{Ank} or as those of the control incubations (**Figure**
235 **4K**).

236 SUVs generated by sonication of LUVs roughly have diameters around 50 nm (Wolf et al., 2019).
237 The curvatures of the more abundant small liposomes observed in EM analyses of liposomes
238 incubated with Ankrd26^{N-Ank} thus were in the same order of magnitude as those of the SUVs that were

239 preferred by the Ankrd26 ankyrin repeat array in the SUV versus LUV binding studies (**Figure 4B,C**;
240 **Figure 4-figure supplement 1**).

241

242 **Ankrd26 plays a critical role in cellular differentiation processes**

243 Our analyses of Ankrd26 at the plasma membrane of SK-N-SH neuroblastoma cells during retinoic
244 acid/BDNF-induced differentiation indicated that impairment of Ankrd26's integration into the
245 plasma membrane is linked to AML. We thus asked whether Ankrd26 may have any role in cellular
246 differentiation processes. Interestingly, SK-N-SH neuroblastoma cells subjected to Ankrd26 RNAi
247 showed impairments in morphogenesis processes triggered by retinoic acid/BDNF-induced cell
248 differentiation. Retinoic acid/BDNF treatment leads the induction and extension of cellular
249 protrusions extending from the cell bodies (Encinas et al., 2000). Ankrd26-deficient cells, however,
250 had less elaborate processes when compared to control cells (**Figure 5A-C**). Quantitative analyses
251 showed that RNAi1 (Yan et al., 2020) led to a reduction of protrusion number by about a third
252 (**Figure 5D**). Using another established RNAi site (RNAi2; Yan et al., 2020) even led to less than half
253 of the protrusion numbers observed in control SK-N-SH neuroblastoma cells transfected with a GFP-
254 reported plasmid expressing scrambled RNAi (**Figure 5E**). The identified Ankrd26 loss-of-function
255 phenotype thus was consistent when two different RNAi sites were employed (**Figure 5D,E**).
256 Further quantitative evaluations unveiled that also the total length of the protrusions was reduced upon
257 Ankrd26 deficiency (**Figure 5F,G**). The reduction in total length reached about 50% using RNAi2
258 when compared to control (**Figure 5G**) and thereby was closely related to the reduction in protrusion
259 number (also approx. -50%) (**Figure 5E**).
260 Ankrd26 deficiency thus led to strong impairments in the retinoic acid/BDNF-triggered differentiation
261 of SK-N-SH neuroblastoma cells.

262

263 **Ankrd26 but not the AML-associated Ankrd26 mutant leads to enhanced cellular
264 differentiation of neuroblastoma cells**

265 We next asked whether Ankrd26 is not just critically involved in neuroblastoma cell differentiation
266 but would also be able to effectively drive the process. Overexpression of Ankrd26 indeed promoted
267 the extension of neuroblastoma cells (**Figure 6A-E**). In detailed quantitative examinations using
268 IMARIS 3D-morphology tracing software parameters that ensured that also smaller effects should be
269 covered, we observed that the numbers of protrusions determined as numbers of terminal points
270 increased by more than 40% when compared to GFP controls (**Figure 6D**). Additionally, an excess of
271 Ankrd26 led to a strong increase of the overall extension of IMARIS traces (“filament”) representing
272 the cellular morphologies. With an increase of about 60%, also this parameter of cellular morphology
273 was pronounced and statistically significant (**Figure 6E**).

274 Interestingly, the AML-associated Ankrd26 mutant, which we demonstrated to be membrane-
275 association-deficient, was unable to bring about Ankrd26-mediated cellular effects during retinoic
276 acid/BDNF-induced differentiation of neuroblastoma cells. In contrast to WT Ankrd26, Ankrd26^{AML}
277 expression failed to lead to any additional protrusions; this difference was highly statistically
278 significant (**Figure 6A,C,D**). In addition, also the total length of the IMARIS filament remained at the
279 level of GFP-transfected control cells (**Figure 6A,C-E**). Thus, in contrast to WT Ankrd26, the AML-
280 associated Ankrd26 mutant completely failed to boost neuroblastoma cell differentiation.

281

282 **The N terminus missing in the AML-associated Ankrd26 mutant and the coiled coil domain of
283 Ankrd26 are both critical for differentiation of neuroblastoma cells**

284 In order to address, whether the AML-associated mutant of Ankrd26 is unable to maintain Ankrd26
285 functions in cell differentiation, and to reveal, whether beyond a functional N-Ank module also the
286 coiled coil domain located in the C terminal half of Ankrd26 is required for Ankrd26 functions, we

287 next conducted rescue attempts of the Ankrd26 loss-of-function phenotype (**Figure 7A-G**). Both the
288 reduction of the number of protrusion and also a reduction in the total length of the 3D-IMARIS-
289 based cell morphology reconstruction (IMARIS filament) caused by Ankrd26 RNAi were fully
290 rescued by coexpression of an RNAi-insensitive Ankrd26 (Ankrd26*-GFP) (**Figure 7A-C,F,G**). This
291 successful rescue by Ankrd26*-GFP firmly demonstrated that the identified Ankrd26 RNAi
292 phenotypes are specifically caused by a lack of Ankrd26 (**Figure 7A-C,F,G**).

293 In contrast, the AML-associated mutant of Ankrd26 completely failed to restore the WT situation of
294 retinoic acid/BDNF-induced neuroblastoma cell differentiation. The strongly reduced number of
295 protrusions in Ankrd26*^{o_{AML}}-GFP-reexpressing cells was highly significantly different from both,
296 control cells and RNAi2/Ankrd26*-GFP rescue cells. When compared to Ankrd26 RNAi, no positive
297 effects of reexpression of Ankrd26*^{o_{AML}}-GFP could be observed (**Figure 7B-D,F**). A similar failure
298 of the AML-associated Ankrd26 mutant to rescue Ankrd26 RNAi phenotypes was observed for the
299 second cell morphology parameter. Also the overall length of the 3D morphology reconstructions was
300 not rescued by Ankrd26*^{o_{AML}}-GFP.

301 Intriguingly, also an Ankrd26 deletion mutant that comprised an intact N-Ank domain but lacked the
302 entire more C terminal part of Ankrd26 including the coiled coil domain resulted in a complete failure
303 of rescuing the Ankrd26 loss-of-function phenotypes (**Figure 7E-G**).

304 Therefore, the thus far studied, critical N-Ank functions need to be combined with yet to be revealed
305 functions of the coiled coil domain-containing C terminal part of Ankrd26 in order to bring about
306 Ankrd26's critical role in cell differentiation.

307

308 **The papillary thyroid carcinoma-associated fusion of parts of Ankrd26 and RET exhibits a**
309 **membrane localization mediated by the Ankrd26 portion**

310 Alterations in Ankrd26's plasma membrane association and/or defects in Ankrd26's yet largely
311 uncharacterized coiled coil domain functions may also play a role in the pathophysiology of the
312 Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ fusion mutant found in papillary thyroid carcinoma. This Ankrd-RET fusion
313 comprises a C terminally truncated version of Ankrd26 (lacking parts of Ankrd26's coiled coil
314 domain) together with the kinase domain of RET. RET is normally anchored in the membrane by a
315 transmembrane domain and RET kinase signaling thus originates from the plasma membrane. The
316 entire N terminal half of RET including its transmembrane domain, however, is lacking in the piece of
317 RET included in the Ankrd26-RET fusion found in papillary thyroid carcinoma. Instead, only the C
318 terminal tyrosine kinase domain of RET was present in the Ankrd26-RET fusion (Straubitz et al.,
319 2019). We therefore first addressed the membrane binding of RET and RET⁷¹²⁻¹¹¹⁴ (**Figure 8A-D**;
320 **Figure 8-figure supplement 1**). Wild-type RET-GFP was found along the secretory pathway (ER,
321 Golgi) – as expected for a transmembrane protein – and showed a good spatial overlap with CherryF
322 at the plasma membrane (**Figure 8A**). Cofractionation with CherryF (**Figure 8B**) clearly confirmed
323 the plasma membrane association of RET-GFP. In contrast, RET⁷¹²⁻¹¹¹⁴-GFP did neither localize with
324 CherryF at the plasma membrane nor cofractionated with this plasma membrane marker (**Figure**
325 **8C,D**).
326 RET signaling normally originates from the plasma membrane. Interestingly, fusion of Ankrd26¹⁻¹⁴⁰⁵
327 with RET⁷¹²⁻¹¹¹⁴ restored a plasma membrane-targeting of the RET kinase domain, as the Ankrd
328 fragment Ankrd26¹⁻¹⁴⁰⁵ turned out to be fully membrane binding-competent and by fusion conferred
329 this ability to RET⁷¹²⁻¹¹¹⁴, as evidenced by colocalization and cofractionation of the papillary thyroid
330 carcinoma-associated Ankrd26-RET fusion with CherryF (**Figure 8E-H**; **Figure 8-figure**
331 **supplement 1**).
332 Thus, in papillary thyroid carcinoma expressing Ankrd26-RET, aberrant signaling pathways seem not
333 to originate from the fact that Ankrd26 was not correctly anchored at the plasma membrane or that

334 RET was not localized to the plasma membrane. Rather, it seemed that some other mechanisms are
335 involved in the aberrant signaling of the Ankrd26-RET fusion leading to papillary thyroid cancer.

336

337 **Self-association of RET is restored by a related property of Ankrd26 in the Ankrd26-RET**
338 **fusion found in papillary thyroid carcinoma**

339 The fusion of the protooncogene *RET* with *ANKRD26* found in papillary thyroid carcinoma patients
340 only comprises the sequence encoding for the RET amino acids 712 to 1114 (Staubitz et al., 2019),
341 which - quite common in *RET* fusions identified in cancer (Shaw et al., 2013; Liu et al., 2021) -
342 encodes for the kinase domain of RET (Takahashi and Cooper, 1987) (**Figure 9A,B**). The lacking N
343 terminal half of RET encodes for its extracellular part and the transmembrane domain. Membrane
344 association is normally ensured by the transmembrane domain of RET and this aspect of RET
345 signaling was restored by fusing the C terminal RET fragment to Ankrd26¹⁻¹⁴⁰⁵ (**Figure 8**), which
346 comprises a fragment of the predicted extended coiled coil domain of Ankrd26 and the membrane-
347 binding N-Ank module (**Figure 9C,D**). Another aspect important for RET signaling is the assembly
348 of RET in multireceptor complexes (Mulligan, 2014). Crosslink studies with RET-GFP and the zero-
349 length crosslinker EDC demonstrated this RET property in HEK293 cells (**Figure 9E**). EDC crosslink
350 led to a high molecular weight band at above 460 kD reflecting RET self-association products. These
351 RET self-association products increased with rising crosslinker concentrations and were to some
352 extent even visible without crosslinker suggesting that they are in part even SDS-resistant (**Figure**
353 **9E**).

354 In contrast, the RET fragment (RET⁷¹²⁻¹¹¹⁴), which is fused to Ankrd26 in the papillary thyroid
355 carcinoma-linked Ankrd26-RET fusion, was unable to self-associate. Only the monomeric band of
356 RET⁷¹²⁻¹¹¹⁴-GFP was seen irrespective of the concentration of crosslinker used (**Figure 9F**). The RET

357 fragment remaining in the papillary thyroid carcinoma Ankrd-RET fusion thus lacks the RET self-
358 association ability critical for RET signaling.

359 Interestingly, related experiments with Ankrd26-GFP clearly demonstrated that similar to RET also
360 Ankrd26 gave rise to high molecular weight self-association products upon incubations with EDC
361 analyzed by immunoblotting analyses (**Figure 9G**). Corresponding to the increasing high molecular
362 weight self-association products, the band reflecting monomeric full-length Ankrd26-GFP (about 240
363 kD) and also the bands reflecting GFP-containing proteolytic fragments of Ankrd26 declined with
364 rising EDC concentrations (**Figure 9G**).

365 The use of deletion mutants demonstrated that the self-association capability of Ankrd26 we observed
366 was not mediated by Ankrd26's N-Ank module (**Figure 9H**). Instead, it clearly was a property of the
367 C terminal coiled coil domain of Ankrd26 (**Figure 9I**). Instead of dimers, it mostly were higher order
368 assemblies with apparent molecular weights above 500 kD that were formed (**Figure 9I**).

369 The fusion at the position of aa1405 of Ankrd26 with RET found in papillary thyroid carcinoma
370 represents a disruption of Ankrd26's coiled coil domain, which spans the region between aa500 and
371 aa1600 (**Figure 9C,D**). Interestingly, both Ankrd26^{1-1405} as well as $\text{Ankrd26}^{490-1405}$ still were able to
372 efficiently self-associate despite the deletion of all coiled coil domain residues beyond the RET fusion
373 point (**Figure 9J,K**). This suggested that, despite the partial disruption of Ankrd26's coiled coil
374 domain, the remaining part of Ankrd26 still is able to self-associate and could therefore also confer
375 such functions to the papillary thyroid carcinoma-linked Ankrd26/RET fusion. Studies with Ankrd26^{1-}
376 $^{1405}\text{-RET}^{712-1114}$ indeed showed that the fusion product was able to self-associate. Self-association
377 products at a size of about 500 kD were clearly detectable and rose with rising EDC concentration,
378 while low molecular weight bands of the $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$ fusion declined correspondingly
379 (**Figure 9L**).

380

381 **Ankrd26 forms nanoclusters at the plasma membrane**

382 Self-association could be an important aspect in Ankrd26 functions. Freeze-fractured plasma
383 membranes of retinoic acid/BDNF-treated SK-N-SH neuroblastoma cells indeed showed a frequent
384 occurrence of multiple anti-Ankrd26 immunogold labels in close proximities of 5-40 nm to each other
385 (**Figure 9M-M''**).

386 Quantitative analyses of in total 1388.9 μm^2 of P-faces (i.e. cytosolic faces) showed that about a
387 third of all anti-Ankrd26 immunogold labels occurred in form of single gold particles, another third in
388 form of doublets and the last third in form of clusters of three or more gold particles (**Figure 9N**).
389 Some of the Ankrd26 clusters were up to \sim 200 nm in extension (for examples see **Figure 9M** and
390 **Figure 9M'**). Superclusters contained up to 17 gold particles. The maximal labeling frequency of 100
391 nm ROI clusters was 10 gold particles. The Ankrd26 molecules detected in form of nanoclusters thus
392 were in intimate contact with each other.

393

394 **The Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ fusion found in papillary thyroid carcinoma leads to increased
395 ERK1/2 activation**

396 Our studies so far demonstrated that both key aspects of RET signaling, the self-association and the
397 membrane localization of RET are disrupted in RET⁷¹²⁻¹¹¹⁴ but fully restored by fusion to Ankrd26¹⁻
398 ¹⁴⁰⁵. In fact, determinations of the levels of phosphorylated ERK1/2 demonstrated that the ERK1/2
399 pathway was neither activated in RET kinase domain-expressing cells nor in Ankrd26¹⁻¹⁴⁰⁵-expressing
400 cells. Also overexpression of full-length Ankrd26 did not cause any obvious activation of the ERK
401 pathway but pERK1/2 levels were very low (**Figure 10A-D**).

402 Fusion of the two fragments from RET and Ankrd26, however, led to pERK/ERK levels that by far
403 exceeded those of full-length RET overexpression (**Figure 10A-D**). Normalized to GFP control, RET-
404 GFP overexpression led to an about 100fold activation of the ERK1/2 pathway when compared to

405 control. Overexpression of the papillary thyroid carcinoma-associated $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$
406 mutant led to phosphoERK1/2 levels that were almost 2000fold above control. This increase of
407 ERK1/2 activation caused by the $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$ fusion mutant was highly statistically
408 significant when compared to all other conditions tested (**Figure 10D**).
409 The $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$ fusion found in papillary thyroid carcinoma patients thus did not seem
410 to reflect dominant-negative RET functions. Instead, fusion of $\text{RET}^{712-1114}$ with Ankrd26^{1-1405} caused a
411 strong activation of the ERK pathway. It hereby was specifically the fusion, but not the involved
412 Ankrd26 fragment by itself, which caused the massive increase in ERK/MAPK signaling.
413

414 **The papillary thyroid carcinoma-associated $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$ fusion shows increased**
415 **RET autophosphorylation**

416 A molecular mechanism underlying the observed activation of ERK1/2 signaling could be the
417 generation of a constitutively active form of RET, which would be decoupled from ligand binding due
418 to the deletion of the RET N terminus. GFL-binding of one of the four GDNF receptor- α (GFR α)
419 family members serving as coreceptors leads to RET recruitment, RET dimerization and subsequent
420 RET autophosphorylation at multiple tyrosines including e.g. Y753, Y905, Y981, Y1015 and Y1062.
421 RET autophosphorylation then leads to a recruitment of a variety of signaling components responsive
422 to phosphorylated tyrosines and to the assembly of larger signaling complexes (Mulligan, 2014). RET
423 phosphorylations thereby reliably reflects the activity of RET signaling. Quantitative (fluorescence-
424 based) determination of anti-RET pY905 and anti-RET pY1015 immunoblotting signals in relation to
425 anti-RET and anti-GFP immunoblotting thus allowed us to directly address and compare the levels of
426 autophosphorylation of RET, of the $\text{RET}^{712-1114}$ fragment and of the $\text{Ankrd26}^{1-1405}\text{-RET}^{712-1114}$ fusion
427 found in papillary thyroid cancer and to thereby compare the RET kinase signaling activities elicited
428 by these three proteins. Importantly, lysates obtained from cells transfected with the papillary thyroid

429 carcinoma fusion mutant Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ demonstrated that, despite the low expression of
430 the mutant consistently shown by both anti-GFP and anti-RET antibodies, fusing the membrane
431 targeting- and self-association-competent Ankrd26 part with the kinase domain of RET led to strong
432 RET signaling, as determined by Y1015 phosphorylation (**Figure 11A-C**). Related results were
433 obtained with an anti-RET antibody directed against phosphorylated Y905 (pY095) (**Figure 11-figure**
434 **supplement 1**).

435 Quantitative determinations of the pY1015 phosphorylation in RET, in RET⁷¹²⁻¹¹¹⁴ and in Ankrd26¹⁻
436 ¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ in relation to the anti-GFP-detected protein expression levels showed that RET kinase
437 activity levels of the disease mutant Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ were 15-27fold higher than those of
438 RET or the RET kinase domain alone (**Figure 11D**). Similar differences were obtained when pRET
439 data were expressed as pRET/RET signals. Again, the Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ fusion mutant
440 showed autophosphorylation levels that were more than 5-15times higher than those of RET or the
441 RET kinase domain. Statistical analyses demonstrated that, in both quantitative determinations, the
442 increase in pY1015 levels was highly significant when compared to RET-GFP or to RET⁷¹²⁻¹¹¹⁴-GFP
443 (**Figure 11E**).

444 Similar results were obtained when Y905 phosphorylation was determined quantitatively. Also this
445 RET kinase autophosphorylation site showed strongly increased activity in the papillary thyroid
446 carcinoma mutant Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ (**Figure 11F,G**). Fusion of the membrane-binding and
447 self-association-competent part of Ankrd26 with the kinase domain of RET, as found in papillary
448 thyroid carcinoma patients (Staubitz et al., 2019), thus leads to a fusion protein with a massively
449 increased autophosphorylation of RET.

450 Interestingly, dissection of the Ankrd26 properties involved in the strongly increased
451 autophosphorylation of the papillary thyroid carcinoma mutant Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ by the use of
452 mutants lacking the coiled coil domain-mediated Ankrd26 self-association ability (Ankrd26¹⁻²¹⁷-

453 RET⁷¹²⁻¹¹¹⁴) or lacking the N terminal part including the N-Ank module (Ankrd26⁴⁹⁰⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴)
454 both still led to some moderately elevated Y1015 phosphorylation but the Y1015-autophosphorylation
455 levels of both mutants were less than half of those found in the papillary thyroid carcinoma mutant
456 Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ (**Figure 11H**). Interestingly, deletion of the amphipathic helix was
457 sufficient for the reduction of autophosphorylation levels (**Figure 11H**).
458 This suggested that i) membrane binding and ii) self-association both together promote RET kinase
459 domain autophosphorylation in Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴. It seems likely that these Ankrd26
460 properties relate to the Ankrd26-enriched membrane nanodomains we observed at the plasma
461 membrane (**Figure 9M,N**). To vigorously address this conclusion, we constructed a palmitoylated
462 GFP and fused it to the RET kinase domain. Without relying on self-association as a molecular
463 mechanism, palmitoylation should ensure both efficient plasma membrane anchoring and nanodomain
464 formation by its preference for lipid rafts (Arni et al., 1998). Indeed, the Y1015 phosphorylation
465 levels of PM-GFP-RET⁷¹²⁻¹¹¹⁴ were strongly elevated suggesting that the molecular properties at work
466 in the papillary thyroid carcinoma Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ were successfully mimicked (**Figure**
467 **11H**). These results may relate to RET activation achieved by a combination of artificially added
468 dimerization and myristylation moieties to the RET kinase domain (Richardson et al., 2009) and
469 suggest that indeed efficient membrane targeting and the formation of RET kinase domain-enriched
470 membrane nanodomains by the membrane-binding and self-associating part of Ankrd26 are the
471 molecular mechanisms underlying the pathophysiological signaling found in papillary thyroid
472 carcinoma expressing Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴.

473

474 **Discussion**

475 Derailed signaling pathways associated with many types of cancer often originate from the plasma
476 membrane. The development of causal therapies relies on knowledge of the involved
477 pathomechanisms of the different types of cancer. During the last years, a variety of *ANKRD26*
478 mutations have been described as linked to different malignancies (Cerami et al., 2012; Marconi et al.,
479 2017; Staubitz et al., 2019). In line with some crucial importance of the N terminus of Ankrd26 for
480 proper function, monoallelic single nucleotide substitutions in the 5'UTR of the *ANKRD26* gene
481 leading to the use of another start codon further 3' and thereby to N terminal truncation of Ankrd26
482 are linked to thrombocytopenia – an autosomal dominant bleeding disorder – and AML (Pippucci et
483 al., 2011; Noris et al., 2011; Bluteau et al., 2014; Marconi et al., 2017). Fusion of a C terminally
484 truncated Ankrd26 with RET also leads to cancer (Straubitz et al., 2019). Yet, little was known about
485 the properties of the Ankrd26 protein as such. Our analyses unveil several molecular Ankrd26
486 functions affected by the disease mutations and thereby shed light on Ankrd26-related
487 pathomechanisms. We furthermore show that Ankrd26 is critical for cellular differentiation processes
488 and our detailed phenotypical analyses revealed that particularly the induction of protrusions is
489 affected by Ankrd26 deficiency. Ankrd26 overexpression consistently led to the opposite phenotype,
490 i.e. to a surplus of protrusions during retinoic acid/BDNF-induced cellular differentiation of
491 neuroblastoma cells.

492 Our biochemical and cell biological examinations unveiled that Ankrd26 is a plasma membrane-
493 binding protein, whose ankyrin repeats are part of a functional N-Ank module for membrane binding
494 as well as for membrane curvature induction and sensing. The critical physiological relevance of N-
495 Ank module-mediated functions of Ankrd26 is reflected by the finding that the N-Ank domain was
496 found to be dysfunctional in the analyzed AML-associated Ankrd26 mutant protein. In line, the
497 *Ankrd26^oAML* mutant was neither able to elicit the gain-of-function phenotypes we identified for WT

498 Ankrd26 nor was the Ankrd26*^o^{AML} mutant able to rescue any of the identified Ankrd26 loss-of-
499 function phenotypes.

500 The molecular reason for this functional impairment was the deletion of the amphipathic N terminus
501 of Ankrd26, which we demonstrated to insert itself into the hydrophobic part of the membrane, as
502 demonstrated by its insensitivity to suppression of electrostatic interactions and by mutagenesis of
503 hydrophilic and hydrophobic amino acid residues, respectively. Ankrd26 thus shares some properties
504 with ankycorbin, the founding member of the recently suggested superfamily of N-Ank proteins
505 (Wolf et al., 2019). Within the N-Ank superfamily, Ankrd26 phylogenetically belongs to a mostly
506 human or primate-specific subfamily, whose functions are mostly completely unknown.

507 Our functional and molecular studies demonstrated that the *ANKRD26* mutant identified in AML
508 (Marconi et al., 2017) is a clear loss-of-function mutant in terms of Ankrd26's critical role in cellular
509 differentiation and in terms of Ankrd26's N-Ank module-mediated membrane binding. Impairments
510 in Ankrd26-mediated cellular differentiation and in Ankrd26's membrane anchoring and the resulting
511 lack of its spatial confinement to the plasma membrane thus seem to be major aspects associated with
512 thrombocytopenia and with malignancies, such as AML.

513 Ankrd26 also was reported to be involved in the organization of distal appendages of parent centrioles
514 (Evans et al., 2021; Burigotto et al., 2021). Distal appendages are required for basal body docking to
515 the plasma membrane and thereby enable ciliogenesis (Tanos et al., 2013). While the exact role of
516 Ankrd26 in centriolar and/or ciliary functions remains somewhat elusive, as neither ciliogenesis nor
517 centriole duplication was disrupted in cells lacking Ankrd26 (Yan et al., 2020; Evans et al., 2021;
518 Burigotto et al., 2021), at least Ankrd26's role in gating ciliary entry of receptors when additionally
519 the centrosomal protein TALPID3 was knocked down (Yan et al., 2020) may relate to the membrane
520 association of Ankrd26 we identified.

521 It however needs to be emphasized that Ankrd26's localization is not restricted to centrosomes.
522 Instead, Ankrd26 was shown to be present throughout the soma of cells (Acs et al., 2015). Also our
523 fractionation data showed a significant portion of endogenous Ankrd26 in fraction S2 representing
524 predominantly soluble proteins. Additionally, our fractionation analyses of endogenous as well as of
525 GFP-tagged Ankrd26, our immunofluorescence studies and our electron microscopical detections of
526 endogenous Ankrd26 clearly demonstrated that Ankrd26 is in fact present at wide areas of the plasma
527 membrane. As tumor cells frequently show dysregulated centriole numbers (either loss or extra
528 copies) (Nigg and Holland, 2018), it seems possible that ciliary length alterations described in mice
529 expressing a β -galactosidase gene trap fusion of Ankrd26 may in fact mostly relate to altered
530 signaling pathways. In line with this, these Ankrd26 mutant mice were obese and much larger than
531 WT mice and for some reasons showed increased Akt, mTOR, insulin receptor and insulin growth
532 factor 1 receptor signaling (Bera et al., 2008).

533 Our analyses of Ankrd26-related pathomechanisms demonstrated that not only Ankrd26's membrane
534 interaction is an important aspect but that Ankrd26 also is able to self-associate and that an Ankrd26
535 mutant lacking the coiled coil domain-containing C terminal part of Ankrd26 is unable to rescue any
536 of the Ankrd26 loss-of-function defects in cellular differentiation of neuroblastoma cells. Our data
537 hereby are fully in line with the detection of Ankrd26 clusters at the plasma membranes of freeze-
538 fractured cells. The small distances of immunogold labels inside of these clusters hereby were in the
539 theoretical extension range of two neighboring Ankrd26 proteins and/or of two Ankrd26-detecting
540 probes. Ankrd26 self-association into multimeric clusters at the plasma membrane suggests that
541 Ankrd26 can provide signaling and/or organizational hubs at cellular membranes.

542 RET is a plasma membrane-localized receptor tyrosine kinase connected to a variety of down-stream
543 signaling pathways controlling cellular proliferation (Morandi et al., 2011; Shaw et al., 2013;
544 Mulligan, 2014; Salvatore et al., 2021). Plasma membrane anchoring of RET is mediated by the RET

545 transmembrane domain lacking in the Ankrd26-RET fusion. Furthermore, ligand-induced
546 multisubunit receptor complex formation, which is normally mediated by extracellular interactions, is
547 required for efficient activation of RET signaling (Morandi et al., 2011; Shaw et al., 2013; Mulligan,
548 2014; Salvatore et al., 2021). Downstream signaling seems to in part also require endocytosis and
549 endosomal trafficking of activated RET (Richardson et al., 2006). Since the RET piece of the
550 Ankrd26-RET fusion solely represents the intracellular kinase domain of RET (Staubitz et al., 2019),
551 important aspects in RET functions seem to be disrupted in the RET fragment included in the
552 Ankrd26-RET fusion product found in papillary thyroid carcinoma patients. Our results show that the
553 papillary thyroid carcinoma-associated Ankrd26-RET fusion obviously does have both of these
554 capabilities, membrane anchoring and clustering. Efficient membrane targeting was ensured by
555 Ankrd26's intact N-Ank module and self-association surprisingly was maintained by the fragment of
556 the coiled coil domain of Ankrd26 still present in the papillary thyroid carcinoma-associated
557 Ankrd26-RET fusion mutant.

558 The expression of the carcinoma-associated Ankrd26-RET fusion mutant led to an aberrantly strong
559 increase of ERK1/2 activation. This is in line with the ERK cascade functioning in cellular
560 proliferation, differentiation, and survival, and its inappropriate activation being a common
561 occurrence in human cancers. The ERK cascade can be triggered by RET activation in different
562 cancers (Shaw et al., 2013; Liu et al., 2021). In line, we observed that the papillary thyroid carcinoma-
563 associated Ankrd26-RET fusion showed a strong autophosphorylation of the RET kinase domain.
564 RET signaling, which is thought to be organized in lipid rafts as signaling hubs (Tansey et al., 2000),
565 thus seems to be successfully mimicked by Ankrd26-RET and by the Ankrd26 properties we
566 identified. As a membrane binding protein, Ankrd26 mimics the membrane association of RET in a
567 very effective, probably constitutive manner when a fragment of Ankrd26 including the membrane-
568 binding N-Ank module is fused to the RET kinase domain.

569 We did not only observe that the Ankrd26 part of the Ankrd26-RET fusion can mimic RET functions
570 successfully. Strikingly, we determined a very high autophosphorylation of the papillary thyroid
571 carcinoma-associated Ankrd26-RET fusion mutant that exceeded that of full-length RET. Similarly,
572 the activity of the ERK signaling cascade was much higher for expression of the Ankrd26-RET fusion
573 mutant than for expression of wild-type and full-length RET. Therefore, the Ankrd26-RET fusion
574 mutation represents a completely derailed RET signaling because it was both grossly exaggerated and
575 furthermore completely decoupled from any extracellular ligand binding.

576 The additional analyses of Ankrd26-RET fusion mutants deficient for selective Ankrd26 properties,
577 which we identified in our studies, highlighted that both effective membrane anchoring as well as
578 confined spatial organization in small subdomains in the plasma membrane add to the grossly
579 exaggerated RET autophosphorylation. Interestingly, the strongly elevated RET kinase domain
580 autophosphorylation caused by fusion with a palmitoylation site-containing GFP demonstrated that
581 the pathomolecular insights obtained by studying the functions of Ankrd26 and its fragment fused to
582 RET can be generalized and also lead to insights into RET signaling and associated pathomechanisms.
583 Constitutive plasma membrane-association and the formation of RET kinase domain-enriched
584 signaling hubs at the plasma membrane seem to be sufficient for grossly exaggerated RET
585 autophosphorylation and its decoupling from extracellular ligand cues.

586 Taken together, Ankrd26, thus is a member of the novel N-Ank superfamily, that is able to self-
587 associate, to insert itself into the cytosolic membrane leaflet of the plasma membrane by amphipathic
588 interactions and to shape membranes into convex membrane topologies by the use of its ankyrin
589 repeat array. The resulting Ankrd26-mediated organizational platforms seem to be of utmost
590 importance for cellular differentiation processes and signaling pathways originating from the plasma
591 membrane, which, if derailed, lead to cancer-associated pathomechanisms involving the Ankrd26
592 properties we identified.

594 **Material and Methods**

595 **DNA constructs**

596 Plasmids encoding human Ankrd26-GFP were cloned by PCR using EST clone 6830677
597 (NM_014915.2) as template and subcloned into pEGFP-N3 (Clontech) using KpnI und BamHI as
598 restriction sites. Human Ankrd26 deletion mutants were generated by PCR introducing appropriate
599 stop codons and restriction sites. These mutants included the Ankrd26 N-Ank module (Ankrd26^{N-Ank}-
600 GFP) (aa1-217), an N terminally shortened version only comprising the ankyrin repeats, Ankrd26^{Ank}-
601 GFP (aa45-217), Ankrd26^{N-Ank^oAML}-GFP (aa78-217), Ankrd26^oAML-GFP (aa78-1710), Ankrd26⁴⁹⁰⁻
602¹⁷¹⁰-GFP, Ankrd26¹⁻¹⁴⁰⁵-GFP and Ankrd26⁴⁹⁰⁻¹⁴⁰⁵-GFP as well as two different sets of Ankrd26 point
603 mutants in the amphipathic N terminus generated by two different mutation-introducing forward
604 primers. For full primer list, please see **Table 1**.

605 Mouse Ankrd26^{N-Ank}-GFP (aa1-208) and an N terminally deleted construct (Ankrd26^{Ank}-GFP (aa11-
606 208) were cloned from cDNA prepared from brain of 8 weeks old mice. RNA isolation and reverse
607 transcription PCRs were done according to procedures described previously (Haag et al., 2012; Haag
608 et al., 2018). For primers used see **Table 1**.

609 Plasmids encoding for GST-fused, WT and mutant Ankrd26 N-Ank modules were generated by
610 cloning into pGEX-6P-1 (GE Healthcare).

611 RNAi tools against Ankrd26 were generated by annealing phosphorylated primers targeting
612 established RNAi sites (Yan et al., 2020) and insertion into pRNAT H1.1-GFP. For primers used
613 please see **Table 1**. A corresponding pRNAT vector expressing a scrambled RNAi sequence served as
614 control (Pinyol et al., 2007).

615 An RNAi-insensitive Ankrd26-GFP (Ankrd26*-GFP) was generated by introducing several silent
616 mutations into the RNAi2 site (bp 2279 to 2288). The mutations were initially introduced into the
617 Ankrd26-GFP plasmid. For primers used please see **Table 1**. The resulting Ankrd26*-GFP sequence

618 was then used to replace the GFP-encoding sequence in the pRNAT H1.1-based RNAi2 plasmid
619 (NheI/blunted NotI-cut inset into NheI/SmaI-digested RNAi2).

620 RNAi2 rescue plasmids coexpressing either the AML-associated Ankrd26 mutant (Ankrd26*^o^{AML}-
621 GFP; i.e. Ankrd26^{Δ1-77}-GFP) or Ankrd26*¹⁻²¹⁷-GFP instead of full-length Ankrd26* were generated
622 by subcloning from the respective GFP-N vectors into the RNAi2 plasmid using a similar strategy.

623 Human RET-GFP and RET⁷¹²⁻¹¹¹⁴-GFP were cloned by PCR using a cDNA clone (GenScript Biotech;
624 NM_020975.6) as template. The PCR products were inserted into pEGFP-N1. For full primer list,
625 please see **Table 1**.

626 Human Ankrd26¹⁻¹⁴⁰⁵ and RET⁷¹²⁻¹¹¹⁴ were fused by complementing Ankrd26¹⁻¹⁴⁰⁵ with RET⁷¹²⁻¹¹¹⁴
627 using the internal AgeI site of the RET-encoding DNA sequence to yield a fusion protein with an
628 amino acid sequence identical to the Ankrd26-RET fusion identified in papillary thyroid carcinoma
629 patients (Staubitz et al., 2019). Ankrd26-RET fusions with mutated Ankrd26 portions were generated
630 by subcloning (Ankrd26⁴⁹⁰⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴; Ankrd26⁴⁵⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴) and by cloning and fusing the
631 Ankrd26 N-Ank sequence to RET⁷¹²⁻¹¹¹⁴ (Ankrd26¹⁻²¹⁷-RET⁷¹²⁻¹¹¹⁴), respectively. For primers, see
632 **Table 1**.

633 Correct cloning by PCR was verified by sequencing in all cases.

634

635 The vector expressing PM-targeted, farnesylated monomeric Cherry (CherryF) was originally
636 provided by M. Korte (TU Braunschweig, Germany) and has been described before to specifically
637 outline the plasma membrane (Hou et al., 2015; Izadi et al., 2018; Wolf et al., 2019).

638 The vector expressing palmitoylated GFP used to generate PM-GFP-RET⁷¹²⁻¹¹¹⁴ by subcloning has
639 been described previously (Dharmalingam et al., 2009).

640

641 **Antibodies**

642 Rabbit anti-Ankrd26 antibodies (RRID:AB_867671 and ab183846) and anti-Cherry
643 (RRID:AB_2571870) antibodies were from Abcam and monoclonal mouse anti-GFP antibodies were
644 from Covance (JL-8; RRID AB_10013427). Monoclonal mouse anti- β -actin antibodies were from
645 Sigma (RRID:AB_476744). Mouse monoclonal anti-RET antibodies were from Santa Cruz (6E4C4;
646 RRID:AB_2269604). Rabbit anti-pRET antibodies were from Cell Signaling Technology (pY905;
647 RRID:AB_2179887) and from Abcam (pY1015; RRID:AB_1524311), respectively. Rabbit anti-
648 p44/42 MAPK (ERK1/2) antibodies (RRID:AB_330744) and monoclonal mouse anti-phospho-p44/42
649 MAPK antibodies (pERK1/2; pT202/pY204) (RRID:AB_331768) were from Cell Signaling.
650 Secondary antibodies used included DyLight800-conjugated goat anti-rabbit and anti-mouse
651 antibodies (RRID:AB_141725 and RRID:AB_1965956) from Thermo Fisher Scientific. Further
652 secondary antibodies coupled to AlexaFluor680, were from LI-COR Bioscience (anti-rabbit,
653 RRID:AB_2535758; anti-mouse, RRID:AB_1965956). EM grade 10 nm gold anti-rabbit conjugates
654 were from BBI Solutions (EM.GAR10/2).

655

656 **Purification of recombinant proteins and tag cleavage**

657 GST-tagged fusion protein purification and PreScission Protease (GE Healthcare) cleavage of pGEX-
658 6P-1-encoded GST-fusion proteins was performed at 4°C during dialysis against HN buffer (150 mM
659 NaCl, 2 mM DTT, 20 mM HEPES pH 7.4) overnight essentially as described (Seemann et al., 2017;
660 Wolf et al., 2019).

661 Cleaved off GST and putatively remaining uncut GST-fusion proteins were subsequently removed by
662 affinity purification with glutathione-agarose (Antibodies-Online) and proteins of interest were
663 collected as flow-through by centrifugation.

664 Protein concentrations were determined by the Bradford method. Successful proteolytic cleavage and
665 protein integrity were verified by SDS-PAGE and Coomassie staining.

666

667 **Liposome preparation and sizing**

668 Large unilamellar vesicles (LUVs; liposomes) were prepared from Folch fraction I lipids (Sigma
669 Aldrich) essentially as described (Koch et al., 2011). The mean diameters of LUV preparations can
670 differ in independent liposome preparations. Therefore, all size determinations and liposome size-
671 changing assays were always performed with full set of conditions and controls in each assay.

672 Small unilamellar vesicles (SUVs) were generated by sonication of liposomes, as described (Zobel et
673 al., 2015). Briefly, liposomes were sonicated 3 times (50 s each, 1 min pause in between) on ice using
674 an ultrasonicator UP50H (Dr. Hielscher). SUVs prepared under these conditions have a mean
675 diameter of about 50 nm, as determined by quantitative electron microscopical examinations (Wolf et
676 al., 2019).

677

678 **Liposome cosedimentations (membrane binding, salt resistance, curvature sensing of proteins)**

679 Liposome coprecipitation assays were essentially done as described previously (Wolf et al., 2019). In
680 brief, 4 μ M of untagged WT Ankrd26 N-Ank modules or to be tested mutant proteins, respectively, in
681 25 μ l HN buffer were prespun for 5 min at 200000xg to remove putative precipitates. The supernatant
682 was transferred to a fresh tube and incubated with 50 μ g of Folch fraction I liposomes (2 mg/ml) for
683 30 min at RT. Liposomes were pelleted by 200000xg centrifugation (20 min, 28°C). The resulting
684 supernatants (S) were collected immediately. The pellets (P) were resuspended in volumes equal to
685 the supernatant. All fractions were then analyzed by SDS-PAGE and Coomassie staining. Gels were
686 visualized with a LI-COR Odyssey imager and the lane intensities quantified using the LI-COR
687 Odyssey software (LI-COR Bioscience).

688 The amount of protein coprecipitated with liposomes was expressed as percent of total protein after
689 subtraction of any putative unspecific background of precipitation in HN buffer control, i.e. liposome
690 binding [%] = [($(P/(S+P))$ Sample - $(P/(S+P))$ HN buffer control)] $\times 100$.

691 Salt extraction experiments were essentially performed as described above, except that 5 min prior to
692 centrifugation at 200000xg the final NaCl concentration was increased from 150 mM (HN buffer) to
693 200 mM and 250 mM, respectively. Liposome binding in relation to the mean of the respective
694 binding in 150 mM NaCl set to 100%.

695 Curvature sensing activities were analyzed by slightly modified cosedimentation assays using LUVs
696 versus SUVs, as essentially described previously (Wolf et al., 2019). Due to decreased sedimentation
697 efficiencies of SUVs and the accordingly lose pellets, only the upper 35 μ l of the 200000xg
698 centrifugation supernatant were collected and supplemented with 4x SDS-PAGE sample buffer
699 yielding 47 μ l of sample. For direct comparison, the pellet-containing fraction was also resuspended
700 in a final volume of 47 μ l. Both samples were then analyzed by SDS-PAGE and Coomassie staining.

701 The signals were quantified and, as in LUV binding experiments described above, traces of protein
702 precipitating in control incubations without any liposomes added were subtracted from the data of
703 liposome binding as unspecific background. The data were then expressed as deviation from mean
704 LUV binding.

705

706 **Culturing, transfection, immunostaining and fluorescence microscopy of cells**

707 Culturing of HEK293 (RRID:CVCL_0045) and HeLa cells (RRID:CVCL_0030) and their
708 transfection using TurboFect (Thermo Fisher Scientific) was essentially done as described (Kessels et
709 al., 2001; Haag et al., 2012).

710 SK-N-SH cells (RRID:CVCL_0531) were cultured on poly-D-lysine-coated coverslips in 24-well
711 plates and were differentiated by adding 10 μ M all-trans retinoic acid (Sigma; R2625) on day 2 and

712 conducting a media exchange to brain-derived neurotrophic factor (BDNF)-containing media (DMEM
713 with 50 ng/ml BDNF, PreproTech; 080861) at day 5. At day 8, cells were transfected using TurboFect
714 as described before (Haag et al., 2018; Izadi et al., 2021). Prior to fixation two days later, cells were
715 washed with PBS and incubated with 0.05% (w/v) tetramethylrhodamine-coupled wheat germ
716 agglutinin (WGA) (Molecular Probes) in PBS for 30 min at RT. After washing with PBS, cells were
717 fixed and stained with Alex Flour 647-coupled phalloidin (Molecular Probes) and DAPI essentially as
718 described before (Izadi et al., 2018).

719 Images were recorded as z-stacks using a Zeiss AxioObserver.Z1 microscope equipped with an
720 ApoTome for pseudo-confocal image recording (Zeiss), Plan-Apochromat 63x/1.4, and 40x/1.3
721 objectives (Zeiss) and an AxioCam MRm CCD camera (Zeiss).

722 Digital images from Zeiss microscopes were recorded by ZEN2012 (PRID:SCR_013672). Image
723 processing was done by Adobe Photoshop (RRID:SCR_014199).

724

725 **Quantitative morphometric analyses of differentiated SK-N-SH neuroblastoma**

726 For quantitative analyses, 2-3 independent coverslips per condition per assay and transfected cells of
727 2-4 independent preparations were analyzed based on the WGA and F-actin staining of the cells.
728 Transfected cells were sampled systematically on each coverslip.

729 Phenotypical analyses were conducted using IMARIS 8.4 software (RRID:SCR_007370) to construct
730 a 3D-morphological trace (“filament”) of each cell. Initial phenotype screening analyses were based
731 on tracking protrusion number and protrusion length from the cell perimeter using the following
732 IMARIS 8.4 software settings: thinnest diameter, 0.2 μ m; minimum protrusion size, 10 μ m;
733 disconnected points, 2 μ m.

734 Subsequent analyses were done by a different experimenter to validate phenotypes independently.
735 These analyses addressed both gain- and loss-of-function phenotypes and employed IMARIS 8.4

736 software settings designed to also cover smaller cellular protrusions. Using the IMARIS start seed
737 point as start of protrusions, the IMARIS 8.4 software settings were as follows: thinnest diameter, 0.2
738 μm ; minimum protrusion size, 5 μm ; disconnected points, 2 μm .

739 Immunopositive areas that were erroneously spliced by IMARIS or protrusions belonging to different
740 cells as well as points that the software erroneously placed inside of a cell body were manually
741 corrected. Parameters determined were exported and saved as Excel files. Statistical significance
742 calculations were done using GraphPad Prism8 (RRID:SCR_002798) software.

743

744 **Freeze-fracturing and TEM of freeze-fracture replica**

745 For determinations of size changes of liposomes by Ankrd26 proteins, 100 μg liposomes were
746 incubated with a final protein concentration of 6 μM Ankrd26 N-Ank module and mutants thereof,
747 respectively, and compared to the results obtained by incubation without protein and with 6 μM GST
748 as unrelated protein control, respectively, in a final volume of 100 μl for 15 min at 37°C. To avoid
749 liposomal aggregation during sample preparation, the suspension was subsequently incubated with 30
750 μg proteinase K for 25 min at 45°C. Liposomes were centrifuged for 15 min at 200000xg and the
751 pellet was resuspended in 20 μl of the supernatant to obtain a concentrated liposome preparation for
752 freeze-fracture (Beetz et al., 2013).

753 Freeze-fracturing of liposomes was done using two 0.6 mm high copper profiles with 2 μl of the
754 liposome solution placed between them essentially as described previously (Seemann et al., 2017;
755 Wolf et al., 2019).

756 Freeze-fracturing of SK-N-SH cells was done as follows: cells were seeded onto collagen-coated
757 (Sigma) sapphire discs in 24-well cell culture plates and differentiated using retinoic acid and BDNF
758 as described above. After a media change at day 8, cells were subjected to freeze-fracturing on day 9.
759 After washing with PBS, cells were covered with 20% (w/v) BSA (in PBS) and a copper head

760 sandwich profile and then immediately plunge-frozen in liquid propane:ethane (1:1) cooled in liquid
761 nitrogen. Sandwiches were placed in a double-replica specimen table cooled by liquid nitrogen that
762 was then transferred into the freeze-fracture machine BAF400T (Leica) cooled to -140°C. Freeze-
763 fracturing was done at $\leq 10^{-6}$ mbar.

764 Immediately after freeze-fracturing, 2 nm platinum/carbon was evaporated onto the samples (angle,
765 35°). The replica were then stabilized by evaporating a carbon coat of 15-20 nm onto the samples
766 (angle, 90°). The samples were then carefully extracted from the freeze-fracture machine, thawed and
767 floated onto ddH₂O. Replica were then incubated for 15 min in 3% (v/v) sodium hypochlorite warmed
768 to 50°C, washed twice with ddH₂O for 10 min, transferred onto uncoated copper grids (300 mesh) and
769 dried.

770 For immunogold labeling of freeze-fractured replica, the replica were washed three times with PBS
771 and incubated in blocking buffer (1% (w/v) BSA, 0.5% (w/v) fish gelatin, 0.005% (v/v) Tween 20 in
772 PBS) for 30 min at RT, followed by incubation with the primary rabbit antibody (anti-Ankrd26
773 ab183846 (Abcam); 1:50 in blocking buffer) at 4°C overnight. The next day, unbound antibody was
774 removed by washing the samples with PBS three times and anti-rabbit 10 nm gold-conjugated
775 secondary antibody (1:50) was added for 1.5 h at RT. Afterwards, the samples were washed two times
776 with PBS and fixed with 0.5% (v/v) glutaraldehyde in PBS and washed two times with ddH₂O for 10
777 min and transferred onto uncoated copper grids.

778 Imaging of freeze-fracture replica was done by TEM (EM902A, Zeiss). The electron microscope was
779 operated at 80 keV.

780 Imaging was done by systematic explorations of the grids. Images were recorded with a CCD camera
781 (TVIPS; EM-Menu 4) and processed with Adobe Photoshop.

782

783 **Quantitative EM analyses of liposomes**

784 Diameters of freeze-fractured liposomes were measured using ImageJ (RRID:SCR_003070), as
785 described previously (Wolf et al., 2019). Irregular structures were excluded from analysis.
786 All TEM studies of liposomes were conducted in a fully blinded manner.

787

788 **Quantitative analyses of Ankrd26 immunogold labeling at freeze-fracture replica of SK-N-SH**
789 **cells**

790 Images were collected by systematic grid explorations. All analyses were done with two independent
791 cell preparations. For determinations of labeling densities, membrane areas for P face, E face and ice
792 were distinguished by their visible topologies and measured using ImageJ.

793 Cluster analyses were conducted using circular ROIs of 100 nm diameter. In the rare cases of
794 superclusters exceeding the size of 100 nm in diameter, these extended nanodomains were split into
795 100 nm subclusters and considered as several merged clusters. Gold particles per ROI were counted
796 and single, paired, and clustered particles were analyzed (categories of clustered particles, 3-5 and
797 >5).

798

799 **Preparation of membrane-enriched fractions from HEK293 cells**

800 HEK293 cells were either left untreated (fractionations addressing endogenous Ankrd26) or were
801 transfected with GFP, GFP-tagged Ankrd26 and mutants thereof as well as with RET-GFP and
802 mutants thereof in combination with mCherryF as plasma membrane marker. 24 h post transfection,
803 the cells were washed with PBS, harvested, collected by centrifugation (1000xg 5 min, 4°C),
804 resuspended in homogenization buffer (0.32 M sucrose, 5 mM HEPES pH 7.4, 1 mM EDTA)
805 containing protease inhibitor Complete (Roche) and then homogenized by multiple passing through a
806 0.24 mm syringe.

807 The resulting homogenates were fractionated essentially as described (Wolf et al., 2019). In brief, the
808 homogenates were subjected to centrifugation at 4°C for 10 min at 1000xg yielding fractions S1 and
809 P1. S1 was then centrifuged further for 20 min at 118000xg. After removal of the supernatant S2, the
810 resulting membrane-containing pellet P2 was resuspended in homogenization buffer und again
811 centrifuged at 11800xg for 20 min resulting in fractions S2' and P2'. P2' thus represents a washed
812 membrane-containing fraction P2.

813 All pellet fractions were resuspended in volumes equal to those of the corresponding supernatants.
814 SDS-PAGE was performed with equal amounts of supernatant and pellet fractions and analyzed by
815 (quantitative) immunoblotting using a LI-COR Odyssey System for fluorescence detection (LI-COR
816 Biosciences GmbH).

817

818 **Crosslink studies**

819 Crosslink studies with lysates of HEK293 cells overexpressing different GFP fusion proteins were
820 essentially done as described for endogenous proteins (Kessels and Qualmann, 2006). The cell lysates
821 were incubated in the presence of increasing amounts of the heterobifunctional crosslinker 1-ethyl-3-
822 [dimethylaminopropyl]carbodiimide (EDC) (Pierce) in 20 mM HEPES, pH 7.4, 0.2 mM MgCl₂, and 2

823 mM EGTA for 20 min at 30°C. Subsequently, the crosslinking reaction was stopped by adding 4x
824 SDS-PAGE sample buffer and incubating the samples at 95°C for 5 min. The samples then were
825 analyzed by immunoblotting (tank blotting to PVDF membranes).

826

827 **ERK and RET activity determinations by quantitative immunoblotting of pERK1/2 and**
828 **ERK1/2 as well as by quantitative determinations of RET Y905 and RET Y1015**
829 **phosphorylations**

830 HEK293 cells were transfected with plasmids encoding for different GFP-tagged proteins and
831 harvested 48 h later. Cell lysis was conducted in radioimmunoprecipitation (RIPA) buffer (150 mM
832 NaCl, 10 mM Na₃PO₄ pH 7.2, 1% (w/w) Nonidet P-40, 0.5% (w/v) sodium desoxycholate, 2 mM
833 EDTA, 50 mM NaF, protease inhibitor cocktail Complete EDTA-free (Roche), phosphatase inhibitor
834 cocktail PhosSTOP (Roche)) for 20 min at 4°C and by sonication (5 pulses of each 1 s). The lysates
835 were centrifuged at 10000xg for 10 min at 4°C. The supernatants were incubated at 95°C with SDS-
836 PAGE sample puffer for 5 min and were analyzed by immunoblotting. Anti-GFP and anti-RET
837 antibodies, respectively, were used to determine the expression levels of the proteins to be analyzed.
838 Anti-pERK1/2 antibodies (anti-T202/Y204) and anti-pRET antibodies (anti-pY905 and anti-pY1015,
839 respectively) served to determine the phosphorylation status of ERK1/2 and the autophosphorylation
840 of RET, respectively. The immunosignals were quantitatively analyzed using fluorescent antibodies, a
841 LI-COR Odyssey System and Image Studio Lite V5.2 software (RRID:SCR_015795) for band
842 intensity determinations.

843

844 ***In silico* analyses**

845 Amphipathic helical wheel representations were done using HELIQUEST (Gautier et al., 2008). The
846 ankyrin repeat array of human Ankrd26 was modeled in two rotational views employing

847 https://swissmodel.expasy.org/viewer/ngl/. Coiled coil predictions were done with COILS
848 (RRID:SCR_008440; <https://www.expasy.org/resources/coils>). Alignments were done using Clustal
849 Omega (RRID:SCR_001591; <https://www.ebi.ac.uk/Tools/msa/clustalo/>).

850

851 **Data reporting and statistical analyses**

852 No statistical methods were used to predetermine sample size. All TEM experiments with liposomes
853 were randomized and the investigators were blinded to allocation during experiments and outcome
854 assessment.

855 No outlier suggestions were computed. All quantitative evaluation data points were taken into account
856 and averaged to fully represent biological and technical variabilities. Wherever useful, the bar plots in
857 the figures have been overlayed with dot plots showing all individual data points measured.

858 Except distribution analyses (**Figure 4K; Figure 9N**), all quantitative data shown represent mean and
859 SEM. Statistical analyses were done using GraphPad Prism software. Statistical significances were
860 marked by $*P<0.05$; $**P<0.01$; $***P<0.001$; $****P<0.0001$ throughout.

861 Determinations of liposome binding, SUV versus LUV preference in binding as well as differences in
862 liposome diameters were analyzed for significances by either Mann-Whitney-U-test or two-tailed,
863 unpaired Student's t-test (depending on normal data distribution; comparisons of two conditions) or
864 by two-way ANOVA or by Kruskal Wallis (multiple conditions), respectively.

865 Quantitative data from extractions of liposome-bound proteins with salt were tested using one-way
866 ANOVA with Tukey post hoc test.

867 Comparisons of anti-Ankrd26 labeling densities were also done using one-way ANOVA with Tukey
868 post hoc test.

869 Phenotypes of Ankrd26 deficiency compared to scrambled RNAi were analyzed for statistical
870 significances by two-tailed, unpaired Student's t-tests. The results of RNAi rescue experiments with

871 Ankrd26 mutants instead of full-length Ankrd26 were analyzed by one-way ANOVA with Tukey post
872 hoc test. Similarly, overexpression experiments with Ankrd26-GFP and the AML-associated mutant
873 thereof in comparison to GFP were analyzed for statistical significances using one-way ANOVA with
874 Tukey post hoc test.

875 Determinations of pY905 and pY1015 autophosphorylation levels of the RET kinase domain included
876 in different fusion proteins and mutants were tested by Bartlett's test and Tukey post hoc test.
877 Examinations of ERK1/2 activation levels by quantitative Western blot analyses were tested using
878 one-way ANOVA with Tukey post hoc test.

879

880

881 **Data availability**

882 This study includes no data deposited in external repositories. All data generated or analyzed during
883 this study are included in this published article (and its supplementary information files). Numerical
884 data of all quantitative analyses are provided as Supplementary Data.

885

886

887

888 **Acknowledgments**

889 We thank D. Wolf for valuable initial observations. We furthermore thank B. Schade, M. Roeder, S.
890 Berr, K. Gluth and S. Linde for technical assistance, E. Seemann for EM instructions, advice and
891 practical help and M. Westermann for access to freeze-fracturing and TEM.

892 This work was supported by *DFG* grants to M.M.K. (KE685/7-1) and B.Q. (QU116/9-1).

893

894

895 **Competing interests**

896 The authors declare no competing financial interests.

897

898

899 **References**

900 Acs P, Bauer PO, Mayer B, Bera T, MacAllister R, Mezey E, Pastan I. A novel form of ciliopathy
901 underlies hyperphagia and obesity in *Ankrd26* knockout mice. *Brain Struct Funct* (2015) 220: 1511-
902 1528.

903 Arni S, Keilbaugh SA, Ostermeyer AG, Brown DA. Association of GAP-43 with detergent-resistant
904 membranes requires two palmitoylated cysteine residues. *J Biol Chem* (1998) 273: 28478-28485.

905 Beetz C, Koch N, Khundadze M, Zimmer G, Nietzsche S, Hertel N, Huebner AK, Mumtaz R,
906 Schweizer M, Dirren E, Karle KN, Irinchev A, Alvarez V, Redies C, Westermann M, Kurth I, Deufel
907 T, Kessels MM, Qualmann B, Hübner CA. A spastic paraplegia mouse model reveals REEP1-
908 dependent ER shaping. *J Clin Invest* (2013) 123: 4273-4282.

909 Bera TK, Zimonjic DB, Popescu NC, Sathyanarayana BK, Kumar V, Lee B, Pastan I. POTE, a highly
910 homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis,
911 placenta, and prostate cancer. *Proc Natl Acad Sci USA* (2002) 99: 16975-16980.

912 Bera TK, Saint Fleur A, Lee Y, Kydd A, Hahn Y, Popescu NC, Zimonjic DB, Lee B, Pastan I POTE
913 paralogs are induced and differentially expressed in many cancers. *Cancer Res* (2006) 66: 52-56.

914 Bera TK, Liu XF, Yamada M, Gavrilova O, Mezey E, Tessarollo L, Anver M, Hahn Y, Lee B, Pastan
915 I. A model for obesity and gigantism due to disruption of the *Ankrd26* gene. *Proc Natl Acad Sci USA*
916 (2008) 105: 270-275.

917 Bluteau D, Balduini A, Balayn N, Currao M, Nurden P, Deswarte C, Leverger G, Noris P, Perrotta S,
918 Solary E, Vainchenker W, Debili N, Favier R, Raslova H. Thrombocytopenia-associated mutations in
919 the ANKRD26 regulatory region induce MAPK hyperactivation. *J Clin Invest* (2014) 124: 580-591.

920 Burigotto M, Mattivi A, Migliorati D, Magnani G, Valentini C, Rocuzzo M, Offterdinger M, Pizzato
921 M, Schmidt A, Villunger A, Maffini S, Fava LL. Centriolar distal appendages activate the
922 centrosome-PIDDosome-p53 signalling axis via ANKRD26. *EMBO J* (2021) 40: e104844.

923 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML,
924 Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal:
925 an open platform for exploring multidimensional cancer genomics data. *Cancer Discov* (2012) 2: 401-
926 404.

927 Dharmalingam E, Haeckel A, Pinyol R, Schwintzer L, Koch D, Kessels MM, Qualmann B. F-BAR
928 proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis.
929 *J Neurosci* (2009) 29: 13315-13327.

930 Encinas M, Iglesias M, Liu Y, Wang H, Muñaisen A, Ceña V, Gallego C, Comella JX. Sequential
931 treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully
932 differentiated, neurotrophic factor-dependent, human neuron-like cells. *J Neurochem* (2000) 75: 991-
933 1003.

934 Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J, Holland AJ. ANKRD26 recruits PIDD1 to
935 centriolar distal appendages to activate the PIDDosome following centrosome amplification. *EMBO J*
936 (2021) 40: e105106.

937 Fava LL, Schuler F, Sladky V, Haschka MD, Soratroi C, Eiterer L, Demetz E, Weiss G, Geley S,
938 Nigg EA, Villunger A. The PIDDosome activates p53 in response to supernumerary centrosomes.
939 *Genes Dev* (2017) 31: 34-45.

940 Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with
941 specific alpha-helical properties. *Bioinformatics* (2008) 24: 2101-2102.

942 Haag N, Schwintzer L, Ahuja R, Koch N, Grimm J, Heuer H, Kessels MM, Qualmann B. The actin
943 nucleator Cobl is crucial for Purkinje cell development and works in close conjunction with the F-
944 actin binding protein Abp1. *J Neurosci* (2012) 32: 17842-17856.

945 Haag N, Schüler S, Nietzsche S, Hübner CA, Strenzke N, Qualmann B, Kessels MM. (2018) The
946 Actin Nucleator Cobl Is Critical for Centriolar Positioning, Postnatal Planar Cell Polarity Refinement,
947 and Function of the Cochlea. *Cell Rep* (2018) 24: 2418-2431.

948 Hou W, Izadi M, Nemitz S, Haag N, Kessels MM, Qualmann B. The actin nucleator Cobl is
949 controlled by calcium and calmodulin. *PLoS Biol* (2015) 13: e1002233.

950 Izadi M, Schlobinski D, Lahr M, Schwintzer L, Qualmann B, Kessels MM. Cobl-like promotes actin
951 filament formation and dendritic branching using only a single WH2 domain. *J Cell Biol* (2018)
952 217:211-230.

953 Izadi M, Seemann E, Schlobinski D, Schwintzer L, Qualmann B, Kessels MM. Functional
954 interdependence of the actin nucleator Cobl and Cobl-like in dendritic arbor development. *eLIFE*
955 (2021) 10: e67718.

956 Kessels MM, Qualmann B. Syndapin oligomers interconnect the machineries for endocytic vesicle
957 formation and actin polymerization. *J Biol Chem* (2006) 281: 13285-13299.

958 Kessels MM, Engqvist-Goldstein AEY, Drubin DG, Qualmann B. Mammalian Abp1, a signal-
959 responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase
960 dynamin. *J Cell Biol* (2001) 153: 351-366.

961 Koch D, Westermann M, Kessels MM, Qualmann B. Ultrastructural freeze-fracture immunolabeling
962 identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. *Histochem
963 Cell Biol* (2012) 138: 215-230.

964 Koch D, Spiwoks-Becker I, Sabanov V, Sining A, Dugladze T, Stellmacher A, Ahuja R, Grimm J,
965 Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R,
966 Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B. Proper
967 synaptic vesicle formation and neuronal network activity critically rely on syndapin I. *EMBO J* (2011)
968 30: 4955-4969.

969 Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions:
970 roles and therapeutic value in progressive and refractory papillary thyroid cancer. *J Cancer Res Clin
971 Oncol* (2021) 147: 323-337.

972 Marconi C, Canobbio I, Bozzi V, Pippucci T, Simonetti G, Melazzini F, Angori S, Martinelli G,
973 Saglio G, Torti M, Pastan I, Seri M, Pecci A. 5'UTR point substitutions and N-terminal truncating
974 mutations of ANKRD26 in acute myeloid leukemia. *J Hematol Oncol* (2017) 10: 18.

975 Morandi A, Plaza-Menacho I, Isacke CM (2011) RET in breast cancer: functional and therapeutic
976 implications. *Trends Mol Med* 17: 149-157.

977 Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for
978 protein recognition. *Protein Sci* (2004) 13: 1435-1448.

979 Mulligan LM. RET revisited: expanding the oncogenic portfolio. *Nat Rev Cancer* (2014) 14: 173-186

980 Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their
981 deregulation in disease. *Nat Rev Mol Cell Biol* (2018) 19: 297-312.

982 Noris P, Perrotta S, Seri M, Pecci A, Gnan C, Loffredo G, Pujol-Moix N, Zecca M, Scognamiglio F,
983 De Rocco D, Punzo F, Melazzini F, Scianguetta S, Casale M, Marconi C, Pippucci T, Amendola G,
984 Notarangelo LD, Klersy C, Civaschi E, Balduini CL, Savoia A. Mutations in ANKRD26 are
985 responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21
986 families. *Blood* (2011) 117: 6673-6680.

987 Pinyol, R Haeckel A, Ritter A, Qualmann B, Kessels MM. Regulation of N-WASP and the Arp2/3
988 complex by Abp1 controls neuronal morphology. *PLoS One* (2007) 2: e400.

989 Pippucci T, Savoia A, Perrotta S, Pujol-Moix N, Noris P, Castegnaro G, Pecci A, Gnan C, Punzo F,
990 Marconi C, Gherardi S, Loffredo G, De Rocco D, Scianguetta S, Barozzi S, Magini P, Bozzi V,
991 Dezzani L, Di Stazio M, Ferraro M, Perini G, Seri M, Balduini CL. Mutations in the 5' UTR of
992 ANKRD26, the ankyrin repeat domain 26 gene, cause an autosomal-dominant form of inherited
993 thrombocytopenia, THC2. *Am J Hum Genet* (2011) 88: 115-120.

994 Redfield SM, Mao J, Zhu H, He Z, Zhang X, Bigler SA, Zhou X. The C-terminal common to group 3
995 POTES (CtG3P): a newly discovered nucleolar marker associated with malignant progression and
996 metastasis. *Am J Cancer Res* (2013) 3: 278-289.

997 Richardson DS, Lai AZ, Mulligan LM. RET ligand-induced internalization and its consequences for
998 downstream signaling. *Oncogene* (2006) 25: 3206-3211.

999 Richardson DS, Gujral TS, Peng S, Asa SL, Mulligan LM. Transcript level modulates the inherent
1000 oncogenicity of RET/PTC oncoproteins. *Cancer Res* (2009) 69: 4861-4869.

1001 Salvatore D, Santoro M, Schlumberger M. The importance of the RET gene in thyroid cancer and
1002 therapeutic implications. *Nat Rev Endocrinol* (2021) 17: 296-306.

1003 Schneider K, Seemann E, Liebmann L, Ahuja R, Koch D, Westermann M, Hübner CA, Kessels MM,
1004 Qualmann B. ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse
1005 formation and function. *J Cell Biol* (2014) 205: 197-215.

1006 Seemann E, Sun M, Krueger S, Tröger J, Hou W, Haag N, Schüler S, Westermann M, Huebner CA,
1007 Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO-mediated
1008 impairment of caveolar invagination. *eLife* (2017) 6: pii: e29854.

1009 Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial
1010 malignancies. *Nat Rev Cancer* (2013) 13: 772-787.

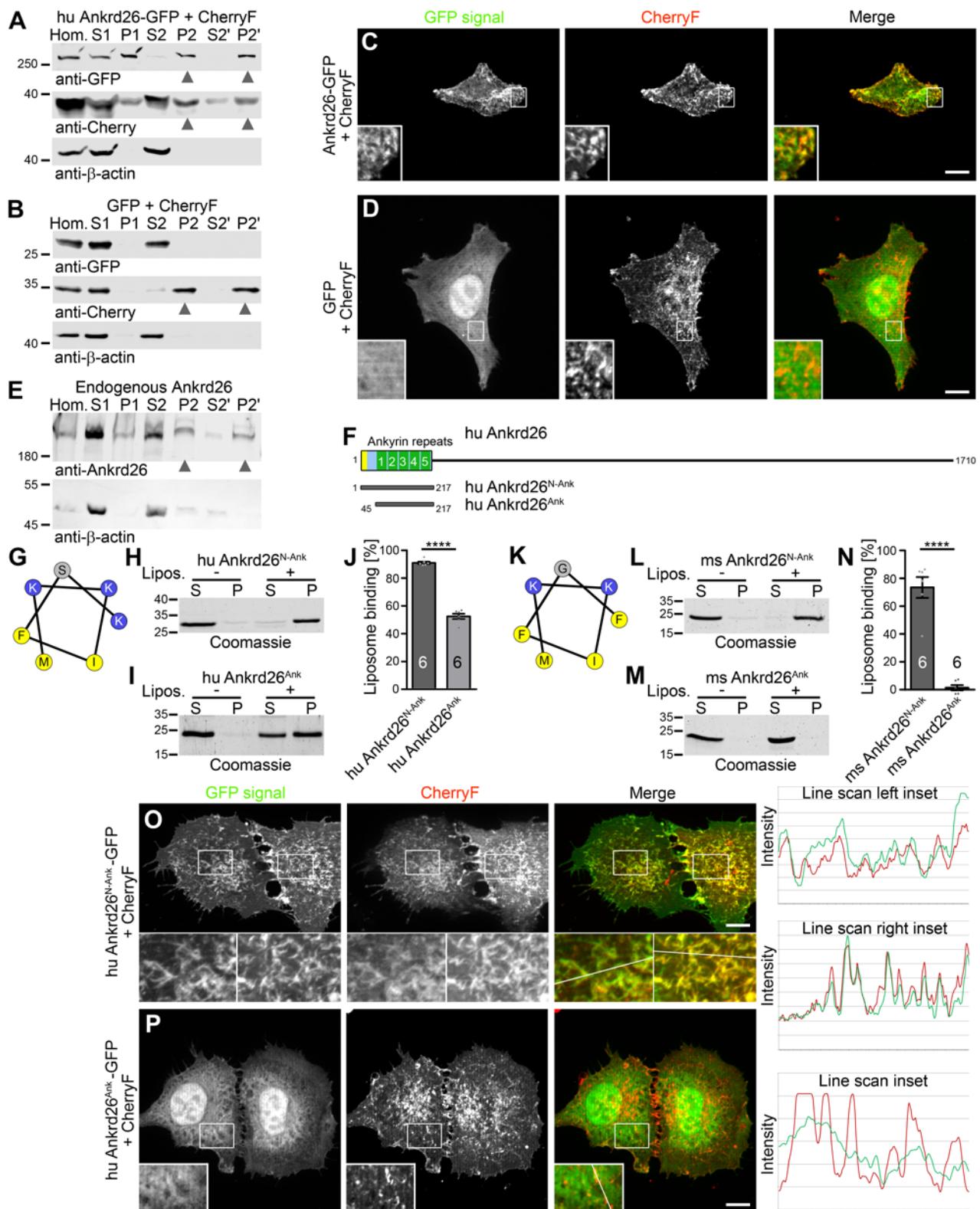
1011 Staubitz JI, Musholt TJ, Schad A, Springer E, Lang H, Rajalingam K, Roth W, Hartmann N.
1012 ANKRD26-RET - A novel gene fusion involving RET in papillary thyroid carcinoma. *Cancer Genet*
1013 (2019) 238: 10-17.

1014 Takahashi M, Cooper GM. Ret transforming gene encodes a fusion protein homologous to tyrosine
1015 kinases. *Mol Cell Biol* (1987) 7: 1378-1385.

1016 Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF. Centriole distal
1017 appendages promote membrane docking, leading to cilia initiation. *Genes Dev* (2013) 27: 163-168.

1018 Tansey MG, Baloh RH, Milbrandt J, Johnson EM Jr. GFRalpha-mediated localization of RET to lipid
1019 rafts is required for effective downstream signaling, differentiation, and neuronal survival. *Neuron*
1020 (2000) 25: 611-623.

1021 Wahlster L, Verboon JM, Ludwig LS, Black SC, Luo W, Garg K, Voit RA, Collins RL, Garimella K,
1022 Costello M, Chao KR, Goodrich JK, DiTroia SP, O'Donnell-Luria A, Talkowski ME, Michelson AD,
1023 Cantor AB, Sankaran VG. Familial thrombocytopenia due to a complex structural variant resulting in
1024 a WAC-ANKRD26 fusion transcript. *J Exp Med* (2021) 218: e20210444.

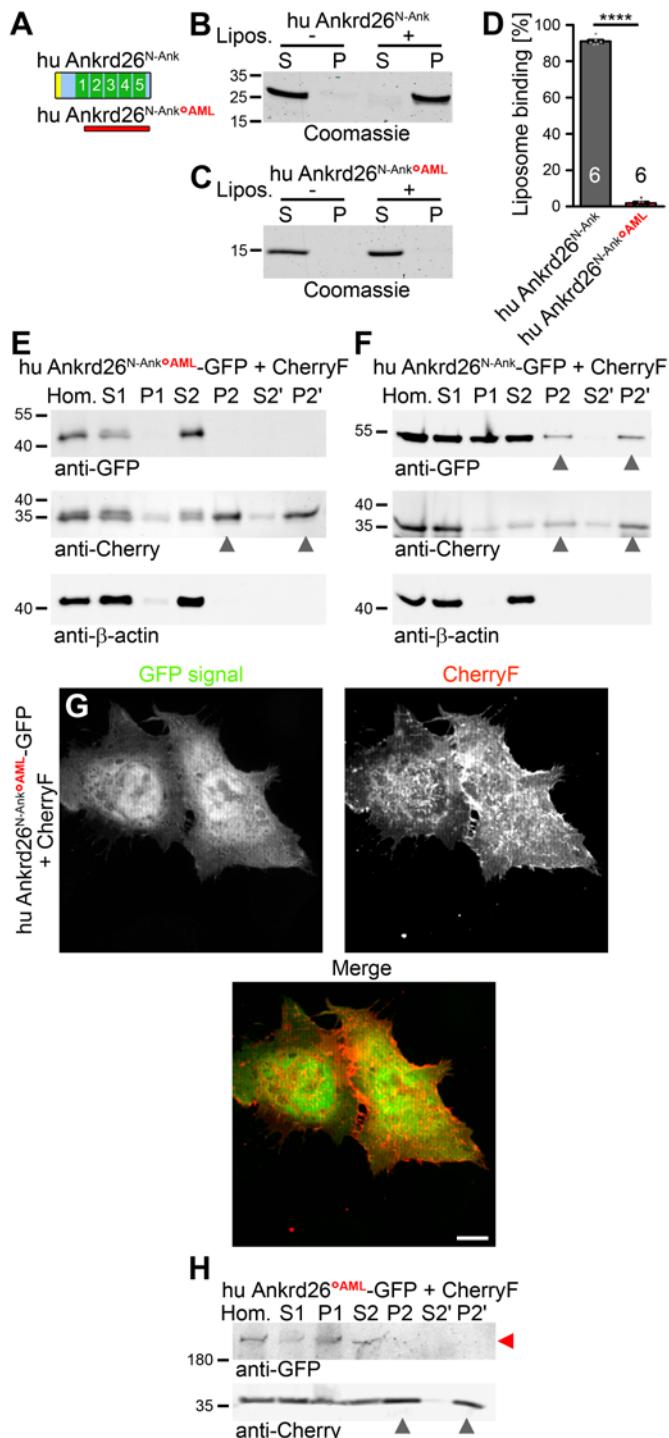

1025 Wolf D, Hofbrucker-MacKenzie SA, Izadi M, Seemann E, Steiniger F, Schwintzer L, Koch D,
1026 Kessels MM, Qualmann B. Ankyrin repeat-containing N-Ank proteins shape cellular membranes. *Nat
1027 Cell Biol* (2019) 21: 1191-1205.

1028 Yan H, Chen C, Chen H, Hong H, Huang Y, Ling K, Hu J, Wei Q. TALPID3 and ANKRD26
1029 selectively orchestrate FBF1 localization and cilia gating. *Nat Commun* (2020) 11: 2196.

1030 Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM,
1031 Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-
1032 cadherin in epithelial morphogenesis. *J Cell Sci* (2015) 128: 499-515.

1033

1034

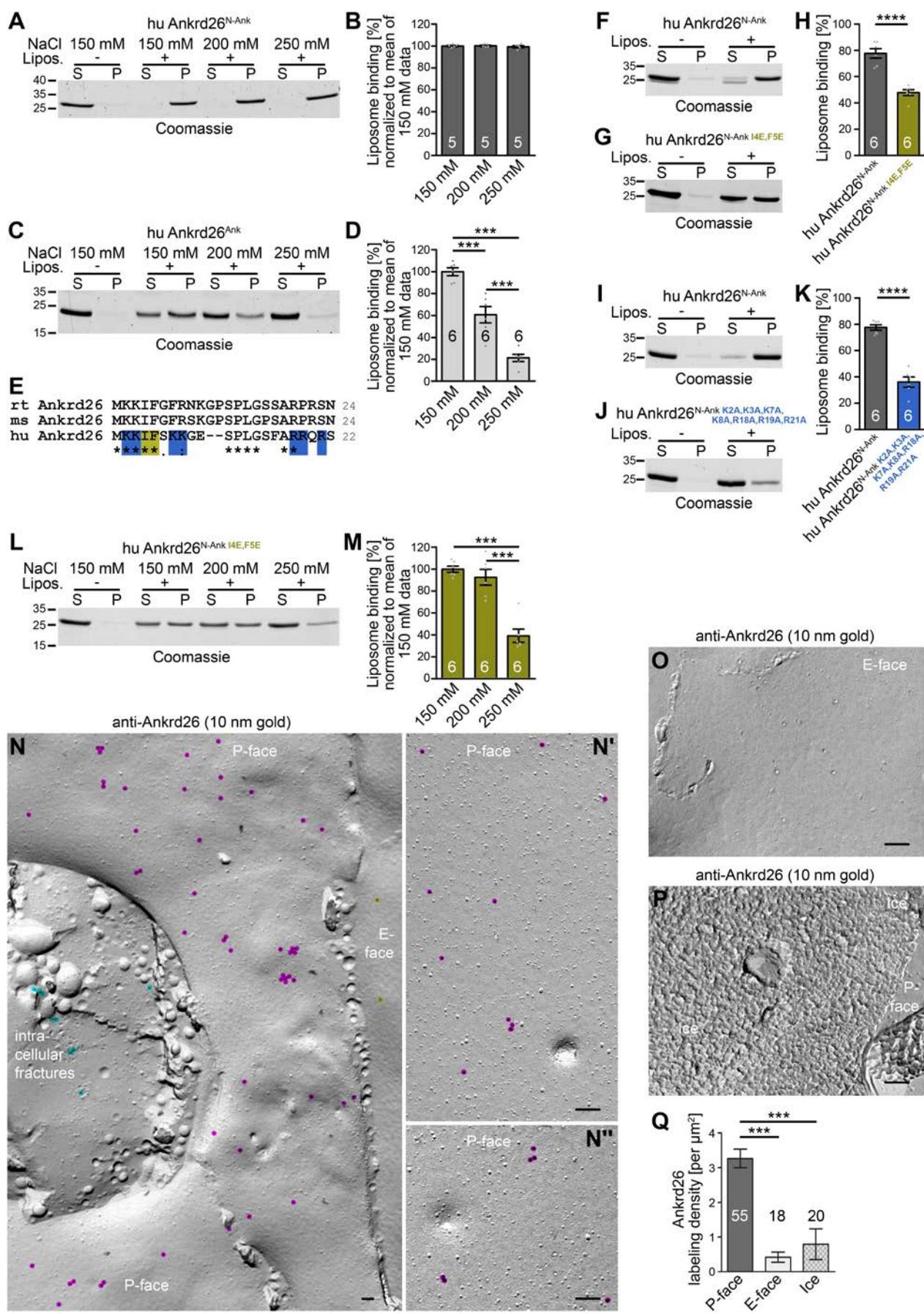

1035

1036 **Figure 1. Ankrd26 is a plasma membrane-binding protein using a putative N-Ank module for**
1037 **membrane association**

1038 **(A,B)** Subcellular fractionations of human (hu) Ankrd26-GFP- and GFP-transfected HEK293 cells
1039 coexpressing CherryF. Arrowheads highlight proteins detected in P2 and P2' membrane fractions.
1040 CherryF represents plasma membrane-integrated proteins; endogenous β -actin represents cell cortex-
1041 associated and cytosolic proteins. **(C,D)** Maximum intensity projections (MIPs) of Ankrd26-GFP and
1042 GFP in HeLa cells cotransfected with CherryF. Insets represent magnifications of boxed areas. See
1043 **Figure 1-figure supplement 1** for additional intensity plots of the red and green fluorescent channel
1044 along the randomly positioned lines. Bars, 10 μ m. **(E)** Anti-Ankrd26 and anti- β -actin
1045 immunoblottings of a subcellular fractionation of HEK293 cells. Arrowheads highlight endogenous
1046 Ankrd26 in membrane fractions P2 and P2'. **(F)** Schematic representation of human Ankrd26
1047 (UniProt Q9UPS8) with its apparent N terminal N-Ank module containing five ankyrin repeats
1048 (UniProt; see **Figure 1-figure supplement 1** for comparison of all suggested repeats with a general
1049 ankyrin repeat consensus). **(G-N)** *In silico* analyses of putative amphipathic structures at the N termini
1050 of human **(G)** and mouse (ms) Ankrd26 **(K)** (helical wheel representations using HELIQUEST; amino
1051 acid color coding: blue, positively charged; yellow, hydrophobic; grey, other) and representative
1052 example images of Coomassie-stained SDS-PAGE analyses of liposome coprecipitation studies (S,
1053 supernatant; P, pellet) addressing a membrane binding of recombinant purified human and mouse
1054 Ankrd26 (UniProt D3Z482) N-Ank modules ($\text{Ankrd26}^{\text{N-Ank}}$) and deletion mutants thereof comprising
1055 only the ankyrin repeat arrays ($\text{Ankrd26}^{\text{Ank}}$), i.e. lacking the putative amphipathic structures at the N
1056 termini **(H,I,L,M)** as well as corresponding quantitative analyses of liposome binding **(J,N)**. Data
1057 represent mean \pm standard error of means (SEM) of quantitative analyses with two independent
1058 liposome preparations (n=6 experiments each condition). Shown are bar plots with individual data
1059 points (dot plots). Two-tailed, unpaired Student's t-test. *** $P<0.0001$. **(O,P)** Analysis of the
1060 localization of human $\text{Ankrd26}^{\text{N-Ank}}$ **(O)** and of the $\text{Ankrd26}^{\text{Ank}}$ deletion mutant **(P)** in HeLa cells
1061 coexpressing CherryF. Shown are MIPs and line scans along lines depicted in the inset representing

1062 magnifications of boxed areas. For GFP control and related analyses with murine proteins see **Figure**
1063 **1-figure supplement 2.** Bars, 10 μ m.

1064

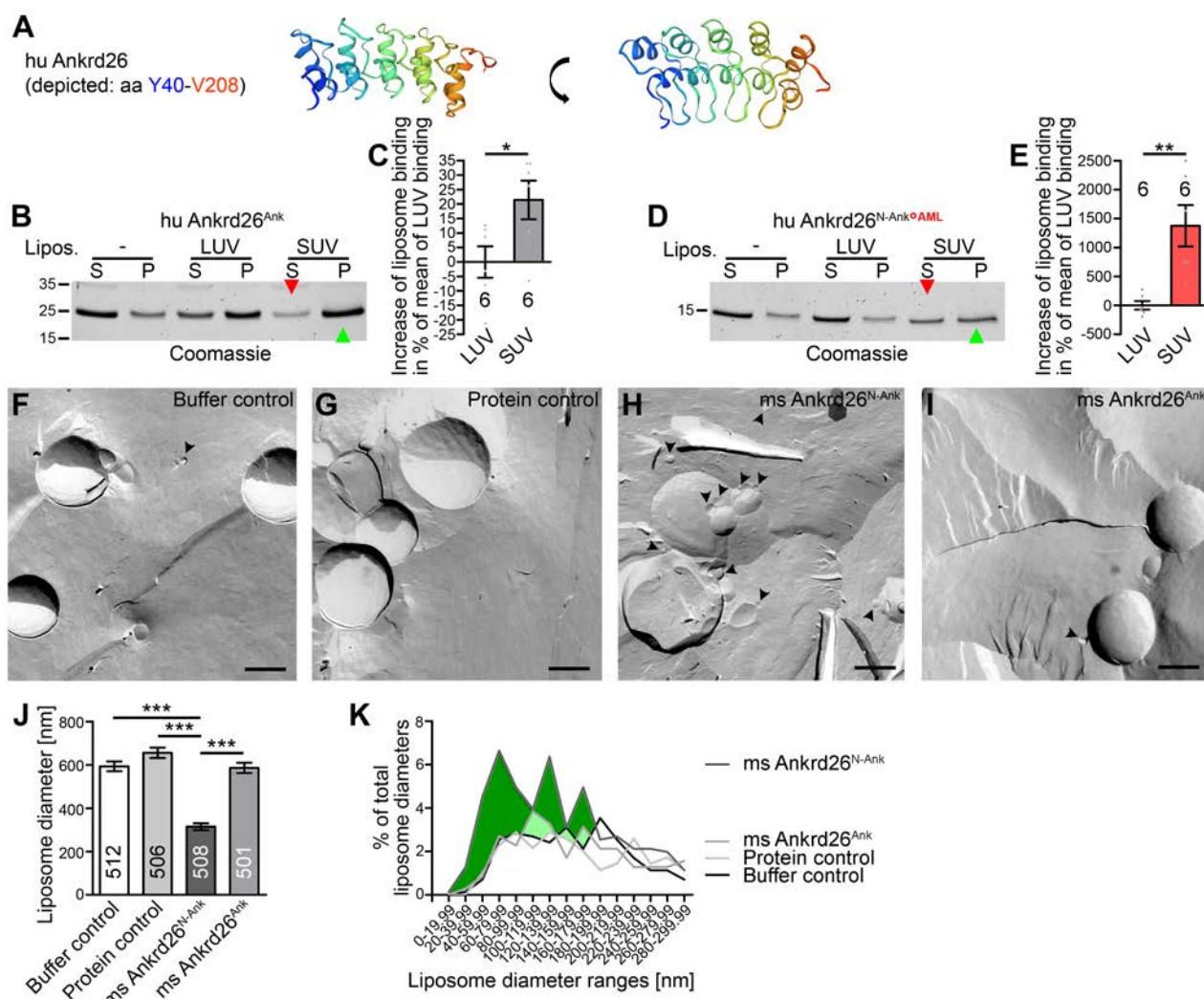


1065

1066 **Figure 2. An N terminal truncation of the suggested N-Ank module of Ankrd26 found in AML**
1067 **patients completely disrupts membrane binding *in vitro* and *in vivo***

1068 (A) Schematic representation of the ankyrin repeats-containing N termini of human Ankrd26 and of a
1069 corresponding mutant found in AML patients, which results in an N terminally truncated protein
1070 (Ankrd26⁷⁸⁻²¹⁷; Ankrd26^{N-Ank_oAML}). (B-D) Representative images of Coomassie-stained gels of
1071 liposome coprecipitation analyses with Ankrd26^{N-Ank} and Ankrd26^{N-Ank_oAML} (side-by-side analyses
1072 using the same preparation of liposomes) (B,C) and quantitative liposome binding evaluations thereof
1073 (D). (E,F) Immunoblotting analyses of subcellular fractionations of lysates of HEK293 cells that were
1074 transfected with Ankrd26^{N-Ank_oAML}-GFP (E) and Ankrd26^{N-Ank}-GFP (F), respectively, and
1075 coexpressed CherryF. Arrowheads highlight proteins detected in P2 and P2' membrane fractions (WT
1076 Ankrd26^{N-Ank} and CherryF only). (G) MIP showing that Ankrd26^{N-Ank_oAML}-GFP did not localize to the
1077 plasma membrane of HeLa cells marked by coexpressed CherryF. (H) Immunoblotting analyses of
1078 subcellular fractionations of lysates of HEK293 cells that were transfected with Ankrd26^o_{AML}-GFP
1079 and CherryF. Grey arrowheads highlight P2 and P2' membrane fractions (containing the plasma
1080 membrane marker CherryF but being devoid of Ankrd26^o_{AML}-GFP (red arrowhead)). Bar, 10 μ m.
1081 Data, mean \pm SEM. Quantitative analyses with two independent liposome preparations (n=6
1082 experiments each condition) (D). Bar plots with individual data points (dot plots). Two-tailed,
1083 unpaired Student's t-test. ****P<0.0001.

1084

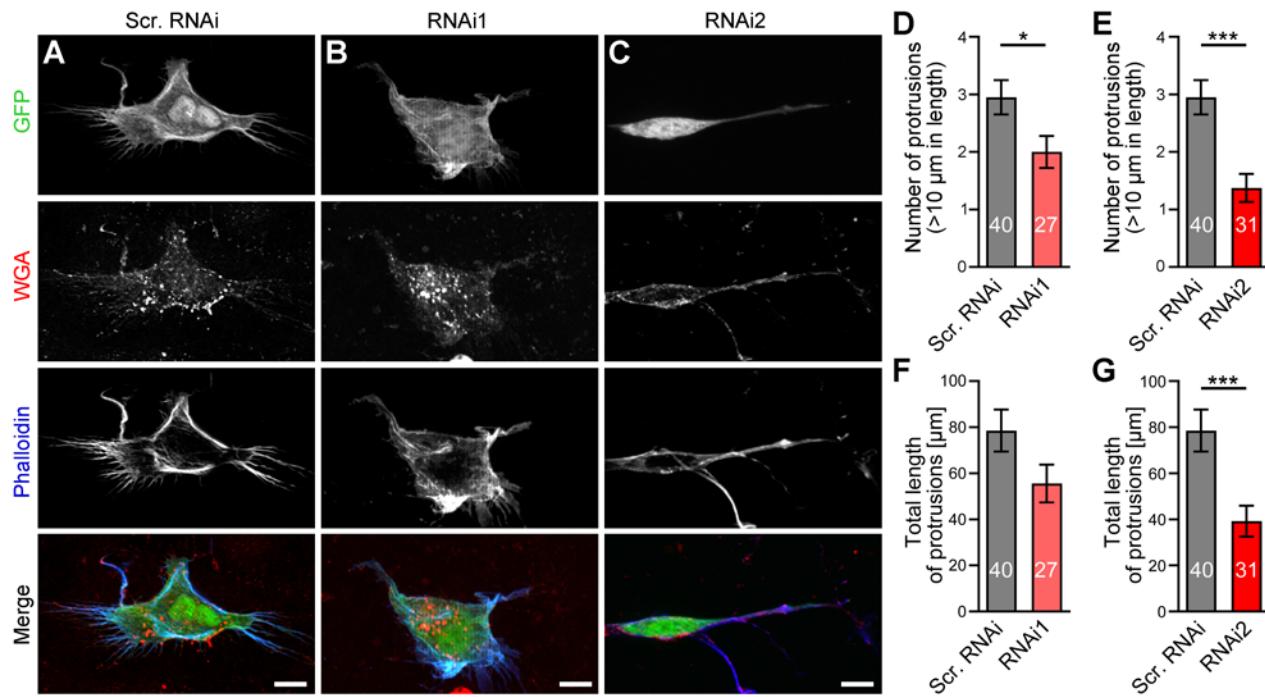


1086 **Figure 3. Ankrd26 is a plasma membrane-localized and –embedded N-Ank protein**

1087 **(A-D)** Representative images of Coomassie-stained SDS-PAGE gels **(A,C)** of attempts of extraction
1088 of liposome-bound human Ankrd26^{N-Ank} **(A,B)** and the corresponding Ankrd26^{Ank} deletion mutant
1089 **(C,D)** by increasing salt concentrations (S, supernatant; P, pellet) and quantitative analyses thereof
1090 showing that the liposome binding of Ankrd26^{N-Ank} is fully salt-resistant, whereas the weaker
1091 membrane association of Ankrd26^{Ank} was merely based on electrostatic interactions suppressible by
1092 increasing salt **(B,D)**. **(E)** Alignment of the N termini of rat (rt; UniProt, M0R3T8), mouse (ms;
1093 UniProt, D3Z482) and human (hu; UniProt, Q9UPS8) Ankrd26 with a high conservation of both
1094 hydrophobic and positively charged amino acids. Positively charged residues are highlighted in blue
1095 and mutated hydrophobic residues are highlighted in dark yellow. **(F-K)** Liposome binding analyses
1096 with mutant N-Ank modules of Ankrd26 with either two hydrophobic residues turned into hydrophilic
1097 ones (Ankrd26^{N-Ank I4E,F5E}) and with all positive residues of the Ankrd26 N terminal sequence erased
1098 (Ankrd26^{N-Ank K2A,K3A,K7A,K8A,R18A,R19A,R21A}), respectively. **(L,M)** Salt extraction trials with Ankrd26^{N-}
1099 ^{Ank I4E,F5E} demonstrating a disruption of the salt resistance of the membrane binding of Ankrd26's N-
1100 Ank module by mutating isoleucine 4 and phenylalanine 5. **(N-N')** Transmission electron
1101 microscopical images of freeze-fractured SK-N-SH cells that were differentiated with retinoic
1102 acid/BDNF and immunolabeled with anti-Ankrd26 antibodies (immunolabeling, 10 nm gold) at low
1103 (**N**) and high magnification (**N',N''**). Bars, 100 nm. Gold particles were overlayed with enlarged
1104 colored dots to improve visibility (magenta, anti-Ankrd26 labeling at the P-face of plasma membrane
1105 (cytosolic face); turquoise, anti-Ankrd26 labeling at intracellular membranes; orange, (background)
1106 labeling at E-face). **(O,P)** Representative images of E-face membrane areas and ice surfaces devoid of
1107 anti-Ankrd26 immunogold labeling. Bars, 100 nm. **(Q)** Quantitative analysis of Ankrd26 labeling
1108 densities at P-face areas, E-faces areas and ice. Data represent mean±SEM. **(B,D,H,K,M)** Bar plots
1109 with individual data points (dot plots). **(B)** n=5 assays; **(D,H,K,M)** n=6 assays each. **(Q)** n=55 (P-

1110 face), 18 (E-face) and 20 (ice) of $1085 \mu\text{m}^2$ (P-face), $240 \mu\text{m}^2$ (E-face) and $62 \mu\text{m}^2$ (ice) total area.
1111 **(B,D,M,Q)** one-way ANOVA with Tukey post hoc test; **(H,K)** two-tailed, unpaired Student's t-test.
1112 *** $P<0.001$; **** $P<0.0001$.

1113

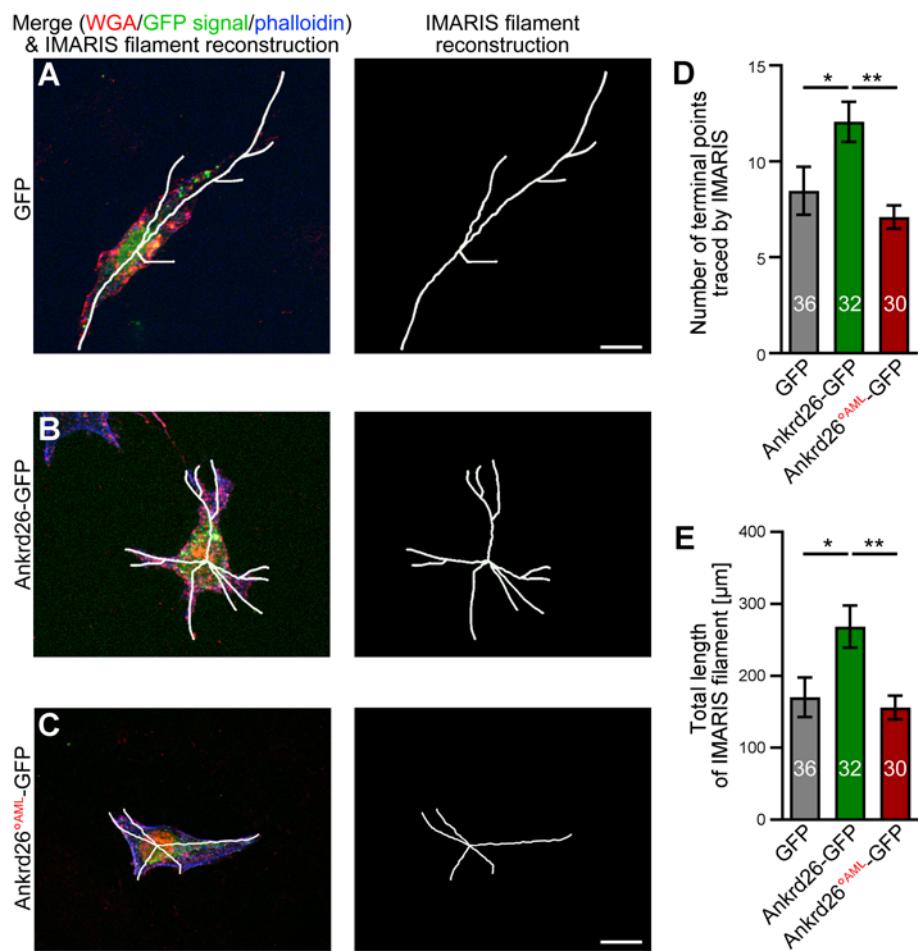

1114

1115 **Figure 4. Ankrd26's N-Ank domain recognizes membrane curvature by its ankyrin repeat**
1116 **arrays and shapes membrane topology**

1117 (A) The ankyrin repeat array of human Ankrd26 in two rotational views (modeling,
1118 <https://swissmodel.expasy.org/viewer/ngl/>; Y40 blue to V208 red). (B-E) Liposome coprecipitation
1119 studies with the wild type Ankrd26's ankyrin repeat array (B) and an AML-associated mutant N-Ank

1120 module Ankrd26^{N-Ank_oAML} (**D**), respectively, with LUVs versus SUVs - and quantitative comparisons
1121 thereof expressed as relative increase (in percent) of binding to LUVs (**C,E**). (**F-I**) Representative
1122 TEM images of freeze-fractured liposomes incubated with HN buffer (buffer control) (**F**), GST as an
1123 unrelated protein control (**G**), ms Ankrd26^{N-Ank} shaping liposomes to smaller structures (arrowheads)
1124 (**H**) or ms Ankrd26^{Ank} (**I**) and quantitative analyses of mean liposome diameters (**J**) as well as
1125 distribution analysis of liposome diameters (**K**) (data range shown, 0 to 300 nm). Bars in **F-I**, 200 nm.
1126 Colored areas in **K** mark overrepresentations of smaller liposomes upon incubation with Ankrd26^{N-Ank}
1127 when compared to all other curves (green) and to all except one of the other curves (lighter shade of
1128 green), respectively. Data in **C,E,J**, mean±SEM. Data in **K**, absolute percent numbers. (**C,E**) Bar plots
1129 with individual data points (dot plots); n=6 assays each; two-tailed, unpaired Student's t-test. (**J**)
1130 n=512 (buffer control); n=506 (unrelated protein control); n=508 (ms Ankrd26^{N-Ank}); n=501 (ms
1131 Ankrd26^{Ank}) liposomes from two independent experiments and liposome preparations. Kruskal-Wallis
1132 test with Dunn's multiple comparison test. *P<0.05; **P<0.01; ***P<0.001.

1133

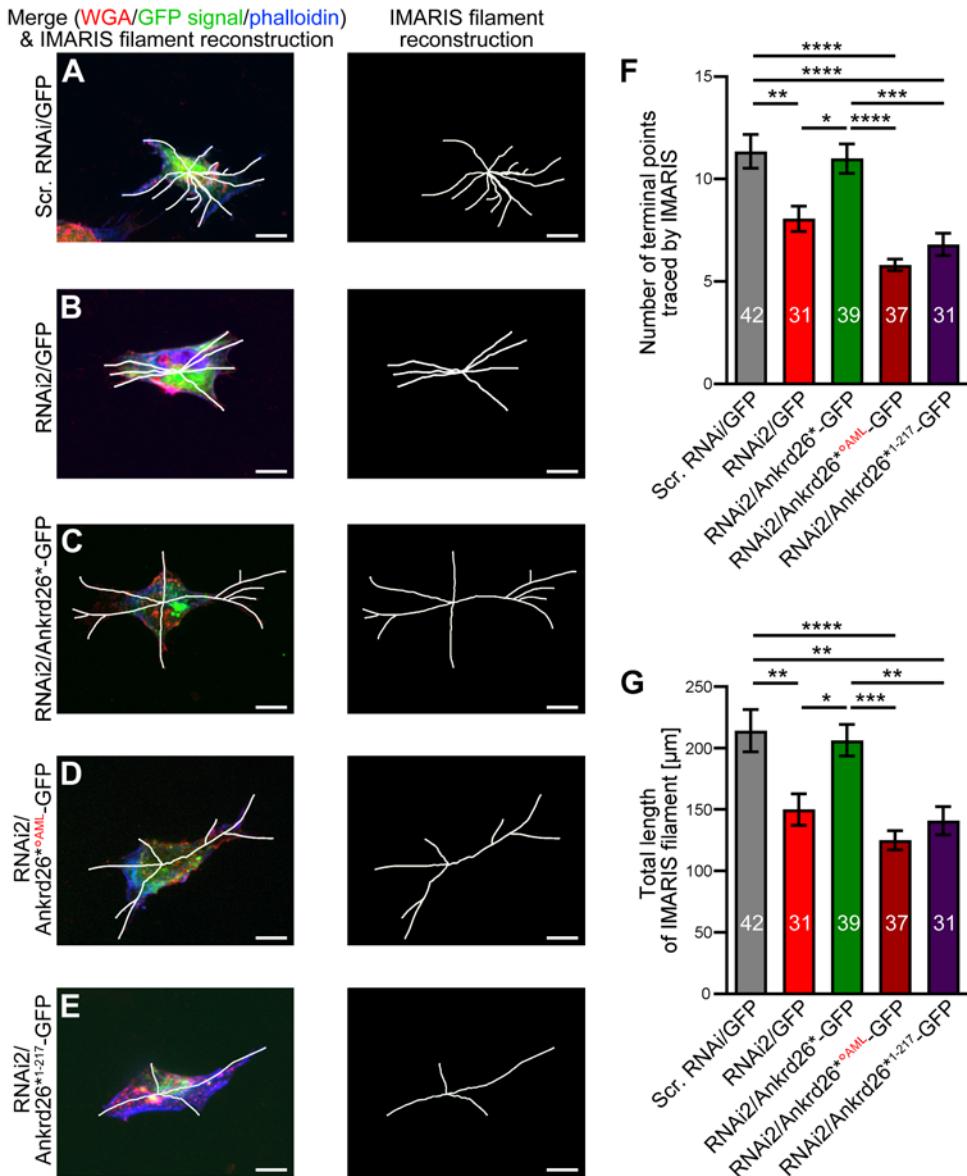


1134

1135 **Figure 5. Ankrd26 is critical for retinoic acid/BDNF-induced differentiation of neuroblastoma**
1136 **cells**

1137 **(A-C)** MIPs of SK-N-SH neuroblastoma cells that were differentiated with retinoic acid/BDNF and
1138 transfected with GFP-reported scrambled RNAi **(A)** and Ankrd26 RNAi1 and 2 **(B,C)**, respectively.
1139 The cells were additionally stained with fluorescent wheat germ agglutinin (WGA; cell surface
1140 labeling; red in merge) and phalloidin (F-actin labeling; blue in merge). Note that Ankrd26 RNAi-
1141 transfected cells fail to adopt the morphology of differentiated cells with their protrusions. Bars, 10
1142 μm. **D-G** Quantitative assessments of the numbers of protrusions **(D,E)** as well as of the total length
1143 of protrusions **(F,G)** of Ankrd26 RNAi1 **(D,F)** and RNAi2 **(E,G)** cells compared to control cells
1144 expressing scrambled RNAi (Scr. RNAi) (data set of phenotypical analyses repeated in RNAi2
1145 comparisons). Data represent mean±SEM. n=27 (Ankrd26 RNAi1), n=31 (Ankrd26 RNAi2) and n=40
1146 (Scr. RNAi) cells from 2-3 independent coverslips each per assay and two independent assays. Two-
1147 tailed, unpaired Student's t-tests. *P<0.05; ***P<0.001.

1148

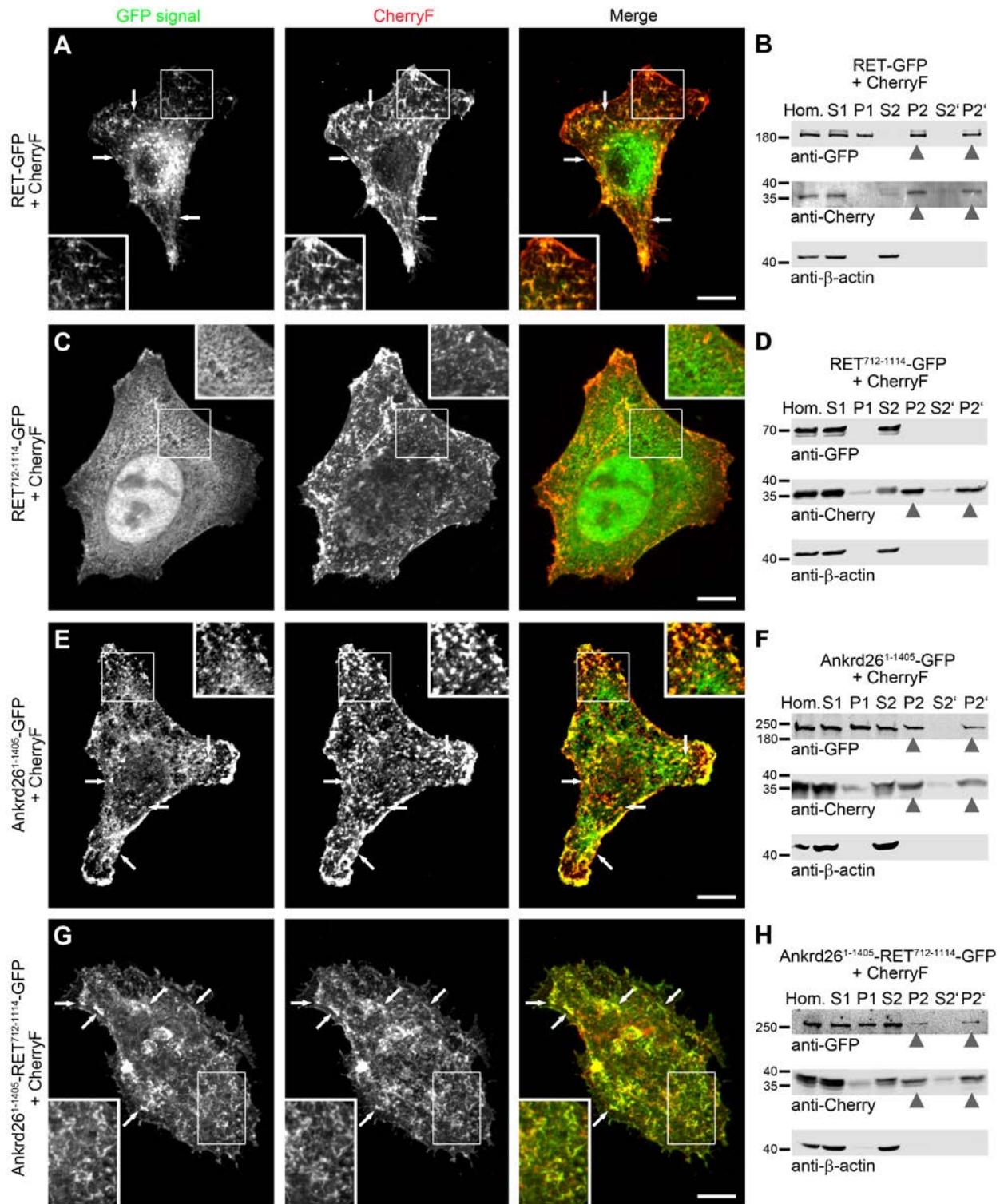

1149

1150 **Figure 6. Ankrd26 but not the AML-associated Ankrd26 mutant leads to enhanced cellular**
1151 **differentiation of neuroblastoma cells**

1152 **(A-C)** MIPs of retinoic acid/BDNF-incubated SK-N-SH neuroblastoma cells that were transfected
1153 with GFP **(A)**, Ankrd26-GFP **(B)** and Ankrd26^{AML}-GFP **(C)**, respectively. The cells were
1154 additionally stained with fluorescent wheat germ agglutinin (WGA; cell surface labeling; red in
1155 merge) and phalloidin (F-actin labeling; blue in merge). Additionally, representations of the IMARIS
1156 software-based 3D-reconstructions of the morphology of cells (IMARIS filaments) are shown. Bars,
1157 10 μm. **(D,E)** Quantitative assessments of the numbers of protrusions determined by the number of
1158 terminal points **(D)** as well as of the total length of the IMARIS filament **(E)**. Data represent
1159 mean±SEM. n=36 (GFP), n=32 (Ankrd26-GFP) and n=30 (Ankrd26^{AML}-GFP) cells from 2-3

1160 independent coverslips each per assay and four independent assays. One-way ANOVA with Tukey
1161 post hoc test. * $P<0.05$; ** $P<0.01$.

1162

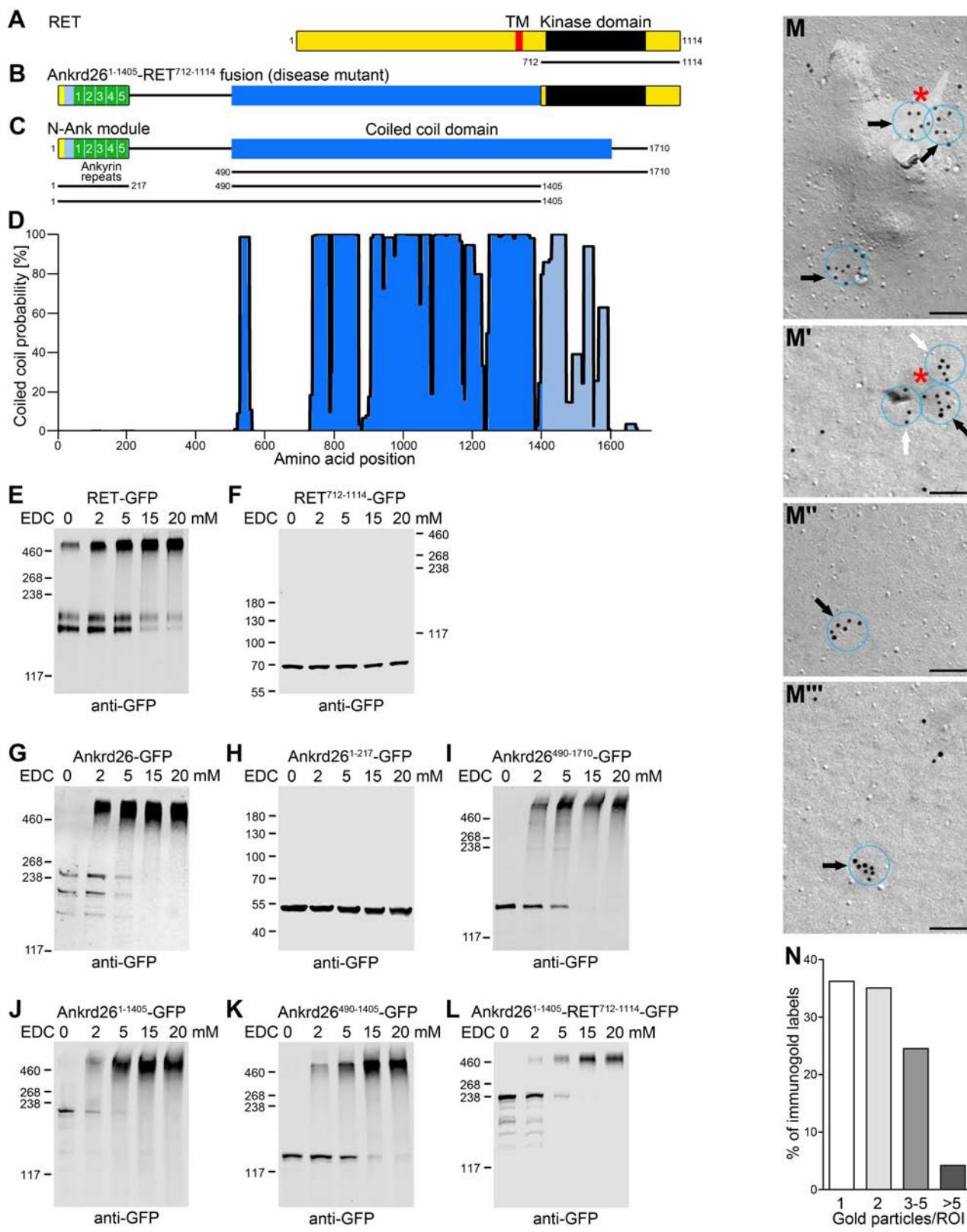


1163

1164 **Figure 7. The N terminus missing in the AML-associated Ankrd26 mutant and the coiled coil**
1165 **domain of Ankrd26 are both critical for differentiation of neuroblastoma cells**
1166 (A-E) MIPs of SK-N-SH neuroblastoma cells differentiated with retinoic acid/BDNF and transfected
1167 with GFP-reported scrambled RNAi (Scr. RNAi) (A), with GFP-reported Ankrd26 RNAi2 (RNAi2)

1168 (B), Ankrd26 RNAi2 coexpressing a RNAi-insensitive (silent mutations) Ankrd26 (Ankrd26*)
1169 (RNAi2/Ankrd26*-GFP; WT rescue) (C) and two RNAi-insensitive mutant Ankrd26 proteins,
1170 respectively (D; RNAi2/Ankrd26*^{o_{AML}}-GFP; E; RNAi2/Ankrd26*¹⁻²¹⁷-GFP, i.e. a deletion mutant
1171 lacking the coiled coil domain-containing C terminal part of Ankrd26). The cells were additionally
1172 stained with fluorescent wheat germ agglutinin (WGA; cell surface labeling; red in merge) and
1173 phalloidin (F-actin labeling; blue in merge). Note that Ankrd26 RNAi-transfected cells fail to adopt
1174 the morphology of differentiated cells with their protrusions and that this defect was rescued by
1175 replenishing the cells with Ankrd26* but not with the two mutants analyzed. Bars, 10 μ m. (F-G)
1176 Quantitative assessments of the numbers of protrusions (F) as well as of the total length of the
1177 IMARIS filament (G). Data represent mean \pm SEM. n=42 (Scr. RNAi), n=31 (RNAi2), n=39
1178 (RNAi2/Ankrd26*-GFP), n=37 (RNAi2/Ankrd26*^{o_{AML}}-GFP) and n=31 (RNAi2/Ankrd26*^{N-Ank}-GFP)
1179 cells from 2-3 independent coverslips each per assay and four independent loss-of-function/rescue
1180 assays. One-way ANOVA with Tukey post hoc test. *P<0.05; **P<0.01; ***P<0.001;
1181 ****P<0.0001.

1182



1183

1184 **Figure 8. The papillary thyroid carcinoma-associated fusion of Ankrd26 and RET exhibits a**
 1185 **membrane localization mediated by the included Ankrd26 portion**

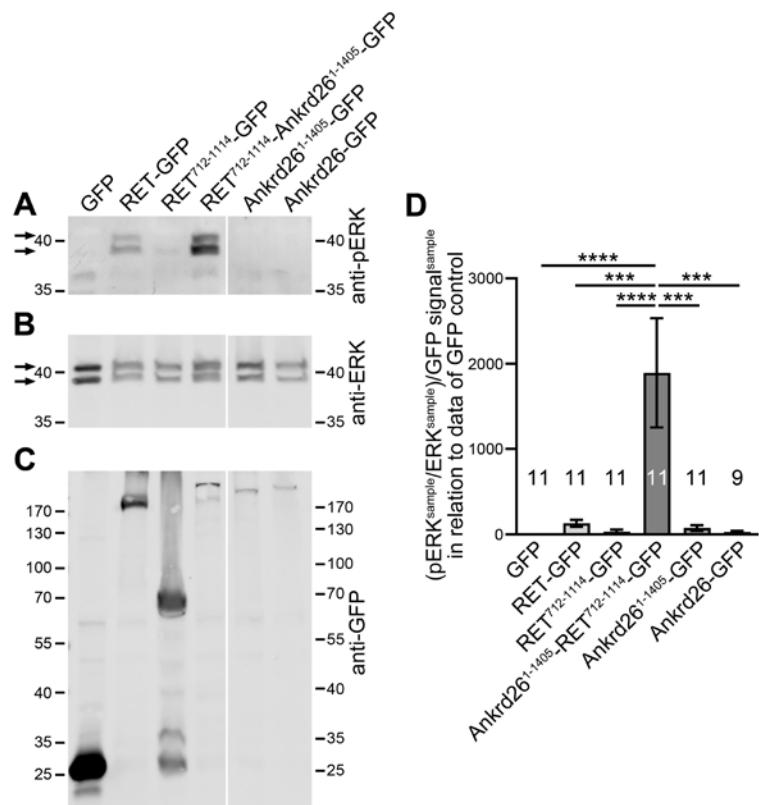
1186 (A-H) MIPs of indicated proteins in CherryF-cotransfected HeLa cells (A,C,E,G) and subcellular
1187 fractionations of lysates of HEK293 cells expressing the indicated proteins (B,D,F,H). Analyzed were
1188 RET-GFP (full-length; aa1-1114) (A,B), the RET fragment RET⁷¹²⁻¹¹¹⁴-GFP (C,D), the Ankrd26
1189 fragment Ankrd26¹⁻¹⁴⁰⁵-GFP (E,F) and the papillary thyroid carcinoma-associated fusion Ankrd26¹⁻
1190¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴-GFP (G,H). Arrows in A, E and G mark some examples of colocalization of RET-
1191 GFP (A), Ankrd26¹⁻¹⁴⁰⁵-GFP (E) and Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴-GFP (F), respectively, with the
1192 plasma membrane marker CherryF. Bars, 10 μ m. Insets are magnifications of boxed areas
1193 highlighting colocalizations with the membrane marker CherryF (A,E,G). For additional fluorescence
1194 intensity plots for the red and the green fluorescence channel highlighting colocalizations of RET-
1195 GFP, Ankrd26¹⁻¹⁴⁰⁵-GFP and Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴-GFP but not RET⁷¹²⁻¹¹¹⁴-GFP with the plasma
1196 membrane marker CherryF see **Figure 8-figure supplement 1**. Proteins detected in the
1197 immunobotted membrane fractions P2 and P2' are marked by arrowhead (B,D,F,H).

1198

1199

1200 **Figure 9. Ankrd26 is able to self-associate, the Ankrd26 fragment included in the Ankrd26¹⁻¹⁴⁰⁵-**

1201 RET⁷¹²⁻¹¹¹⁴ fusion mutant confers this function to the fusion mutant thereby mimicking RET


1202 **dimerization and this self-association capability of Ankrd26 is reflected by Ankrd26 clusters at**
1203 **the plasma membrane**

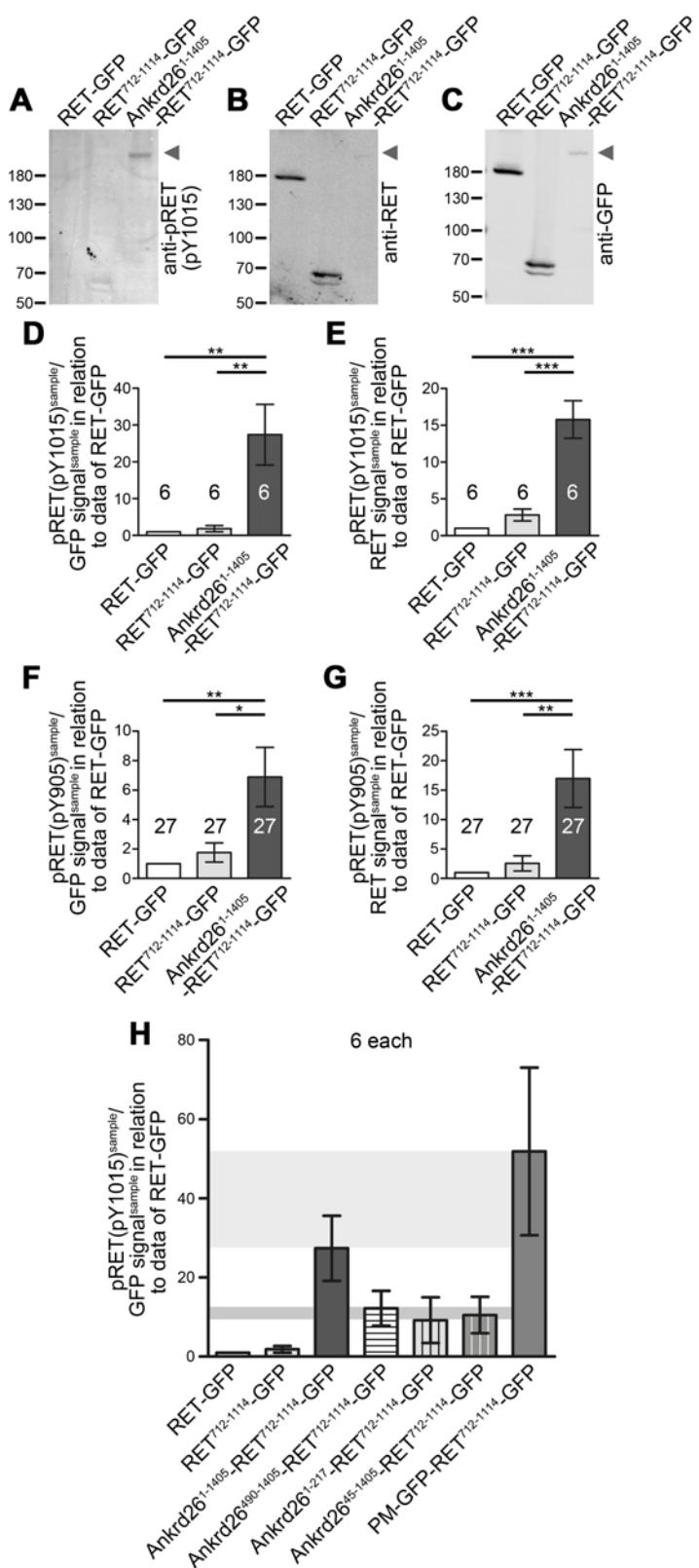
1204 **(A,B)** Schematic representations of RET **(A)** and the papillary thyroid carcinoma-associated Ankrd26-
1205 RET fusion **(B)**. TM, transmembrane domain. **(C)** Schematic representation of human Ankrd26 with
1206 its N terminal N-Ank module and C terminal coiled coil domain. Black lines represent additional
1207 deletion mutants tested for self-association. **(D)** Coiled coil prediction by COILS (blue). The coiled
1208 coil domain part lacking in the Ankrd26-RET mutant is in light blue. **(E-L)** Immunoblot analyses of
1209 experiments with increasing concentrations of the crosslinker EDC added to cell lysates containing
1210 overexpressed RET-GFP **(E)**, the C terminal RET fragment found in papillary thyroid carcinoma
1211 (RET⁷¹²⁻¹¹¹⁴-GFP) **(F)**, full-length Ankrd26-GFP **(G)**, Ankrd26¹⁻²¹⁷-GFP encompassing Ankrd26's N-
1212 Ank module **(H)**, the complete coiled coil domain (Ankrd26⁴⁹⁰⁻¹⁷¹⁰-GFP) **(I)**, the part of Ankrd26 up
1213 to the fusion point in Ankrd26-RET (Ankrd26¹⁻¹⁴⁰⁵-GFP) **(J)** and the part of only Ankrd26's coiled
1214 coil domain included in the papillary thyroid carcinoma-associated Ankrd26-RET mutant **(K)**. Note
1215 the EDC-induced high-molecular weight bands except for the N-Ank module **(H)** and the RET kinase
1216 domain **(F)**. **(L)** Crosslink studies with the papillary thyroid carcinoma-associated Ankrd26¹⁻¹⁴⁰⁵-
1217 RET⁷¹²⁻¹¹¹⁴ fusion mutant showing that fusion to Ankrd26¹⁻¹⁴⁰⁵ efficiently brings about self-
1218 association. **(M-M'')** Examples of transmission electron microscopical detections of Ankrd26 at
1219 platinum-shadowed, freeze-fractured plasma membranes of retinoic acid/BDNF-stimulated SK-N-SH
1220 neuroblastoma cells in form of single and double labels (not marked) as well as of clustered anti-
1221 Ankrd26 immunogold labels (arrows) (ROI, transparent blue circles, diameter, 100 nm). Bar, 100 nm.
1222 White arrows, clusters of 3-5 gold labels/ROI; black arrows, clusters of more than 5 gold labels; red
1223 asterisks, Ankrd26 superclusters with overall diameters >100 nm (separated into several ROIs, i.e.
1224 subclusters, in quantitative cluster analyses). **(N)** Relative distribution (in percent) of all anti-Ankrd26
1225 immunogold labels imaged with respect to clustering (single, double, 3-5, >5 gold particles/ROI).

1226 Absolute numbers of labels per group, single (1), n=1091; double (2), n=1056; 3-5, n=739; >5, n=127
1227 from 94 images from 2 independent experiments.

1228

1229

1230


1231 **Figure 10. The papillary thyroid carcinoma-associated fusion of Ankrd26 and RET leads to**
1232 **strong activation of ERK1/2**

1233 (A-C) Western blot analyses of phosphoERK (pERK) (A) and ERK levels (B) as well as of the GFP
1234 immunosignals (C) in lysates of HEK293 cells transfected with GFP, RET-GFP, RET⁷¹²⁻¹¹¹⁴-GFP
1235 (RET kinase domain fragment) and GFP fusion proteins of the papillary thyroid carcinoma-associated
1236 Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ mutant as well as of the Ankrd26¹⁻¹⁴⁰⁵ fragment and of full-length Ankrd26.

1237 (D) Quantitative immunoblotting determination of pERK/ERK activity normalized to the expression
1238 levels of the GFP fusion proteins, as determined by anti-GFP immunoblotting, and expressed in

1239 relation to the data for the GFP control set to 1. Data represent mean \pm SEM. n=11 and 9 assays each,
1240 respectively, as indicated in the figure. One-way ANOVA and Tukey post hoc test. *** P <0.001;
1241 **** P <0.0001.

1242

1243

1244 **Figure 11. Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ fusion leads to strongly increased autophosphorylation of**
 1245 **the RET kinase domain – an effect involving both N-Ank and coiled coil domain functions**

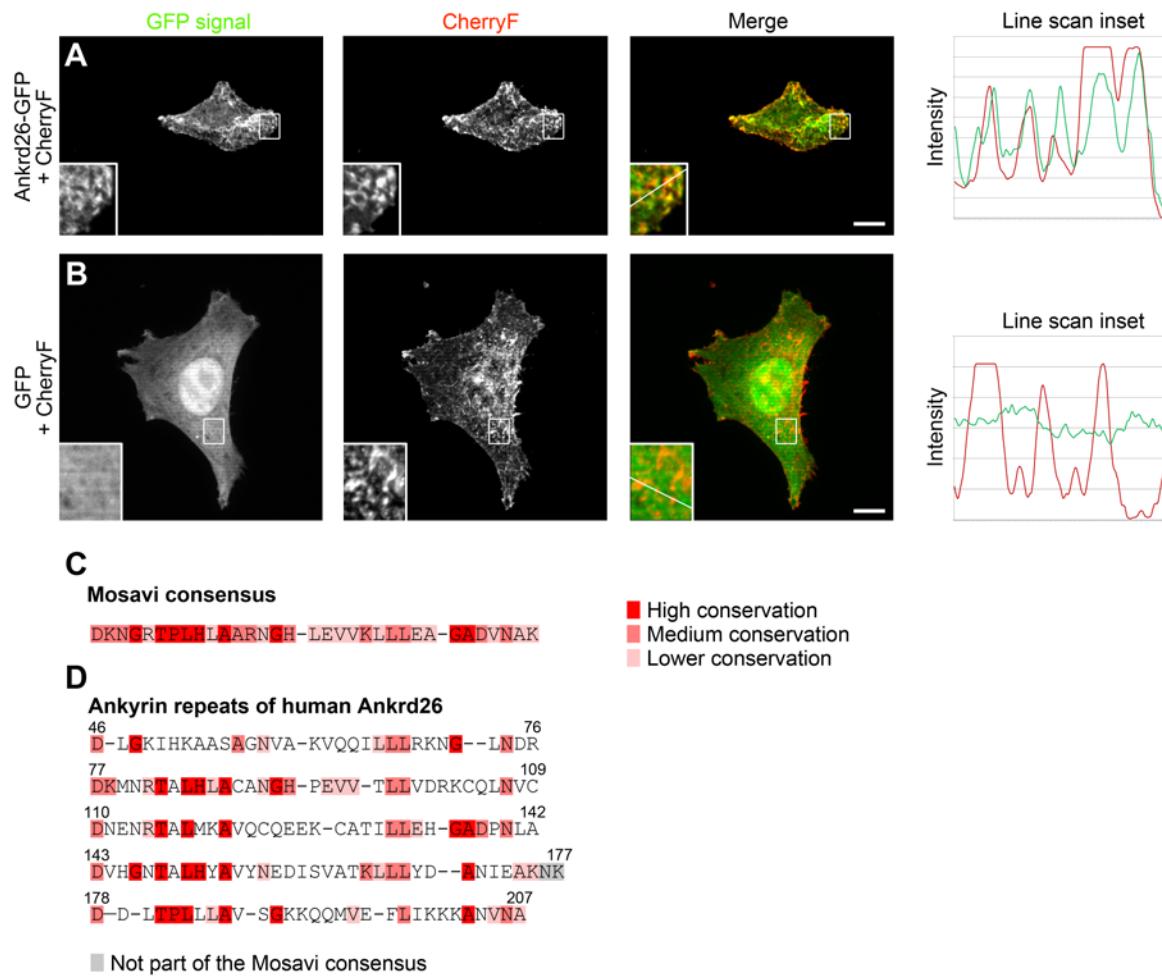
1246 (A-C) Representative images of lysates of HEK293 cells transfected with GFP-tagged full-length
1247 RET (RET¹⁻¹¹¹⁴), RET⁷¹²⁻¹¹¹⁴ and the papillary thyroid carcinoma-associated fusion Ankrd26¹⁻¹⁴⁰⁵-
1248 RET⁷¹²⁻¹¹¹⁴, respectively, that were immunoblotted with antibodies specifically detecting pRET
1249 (pY1015) (A), with antibodies against the C terminal domain of RET (B) and with anti-GFP
1250 antibodies (C), respectively. Arrowheads mark the positions of the highly Y1015 phosphorylated
1251 Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴-GFP. (D,E) Relative quantitative determination of RET activity by anti-
1252 Y1015 immunoblotting normalized to expression, as determined by anti-GFP immunoblotting (D) and
1253 anti-RET immunoblotting (E), respectively. For comparability, anti-pRET/anti-GFP and anti-
1254 pRET/anti-RET ratios of GFP-tagged RET-GFP, RET⁷¹²⁻¹¹¹⁴ and the papillary thyroid carcinoma-
1255 associated Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ fusion mutant were normalized to the average of the of full-
1256 length RET-GFP data obtained from each assay. Note that the papillary thyroid carcinoma-associated
1257 Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴-GFP mutant showed a much higher RET Y1015 autophosphorylation than
1258 RET or the RET kinase domain alone (D,E). (F,G) Related quantitative immunoblotting analyses of
1259 phosphorylated RET Y905 (see **Figure 11-figure supplement 1** for examples of blot images). (H)
1260 Quantitative immunoblotting analyses of RET Y1015 autophosphorylation/GFP levels of 3 different
1261 Ankrd26 mutants and PM-GFP (palmitoylated GFP) fused to RET⁷¹²⁻¹¹¹⁴ in comparison to the data
1262 obtained for GFP-tagged RET-GFP, RET⁷¹²⁻¹¹¹⁴ and Ankrd26¹⁻¹⁴⁰⁵-RET⁷¹²⁻¹¹¹⁴ (data from D repeated
1263 for comparison). Note that lack of the N-Ank-containing N terminus of Ankrd26 (Ankrd26⁴⁹⁰⁻¹⁴⁰⁵),
1264 lack of Ankrd26's self-association capability (Ankrd26¹⁻²¹⁷) and lack of the N terminal amphipathic
1265 helix of Ankrd26 (Ankrd26⁴⁵⁻¹⁴⁰⁵) each led to strongly reduced RET Y1015 autophosphorylation
1266 levels when compared to the disease mutant, whereas PM-GFP fusion led to strong RET Y1015
1267 autophosphorylation. Data represent mean±SEM. n=6 assays each (D,E,H) and n=27 assays each
1268 (F,G), respectively. Bartlett's test and Tukey post hoc test. *P<0.05; ** P<0.01; ***P<0.001.

1269

1270

1271 **Tables**

Lab #	Sequence	Protein (accession number)	Alignment to bp # (ORF)	added restriction site(s)
BQ2671	5'-ataGAATTCatgaagaagatttggc	Ankrd26 mouse (D3Z482)	f: 1-18	EcoRI
BQ2672	5'-tatGTCGACtgcgtgaatacttgctt	Ankrd26 mouse (D3Z482)	r: 607-624	SalI
BQ2737	5'-ataGAATTGCCACCATGGCCCATGCCCTAGGCC	Ankrd26 mouse (D3Z482)	f: 33-53	EcoRI
BQ3150	5'-ataGAGCTCaccatggagagatcttcactgaa	Ankrd26 human (Q9UPS8)	f: 1471-1490	SacI
BQ3151	5'-atttcaatctccctttgttggaaa	Ankrd26 human (Q9UPS8)	r: 2647-2672	-
BQ3156	5'-tatGGATCCgatcatataattttctt	Ankrd26 human (Q9UPS8)	r: 5112-5130	BamHI
BQ3185	5'-tatGTCGACtcatagttggactgct	Ankrd26 human (Q9UPS8)	r: 637-651	SalI
BQ3186	5'-ataGGATCCatgaagaagattttagt	Ankrd26 human (Q9UPS8)	f: 1-18	BamHI
BQ3188	5'-ataGGATCCcgagatctcgcaag	Ankrd26 human (Q9UPS8)	f: 135-149	BamHI
BQ3189	5'-tatGGATCCtagttggactgct	Ankrd26 human (Q9UPS8)	r: 637-651	BamHI
BQ3190	5'-ataGGTACCatgaagaagattttagt	Ankrd26 human (Q9UPS8)	f: 1-18	KpnI
BQ3192	5'-ataGGTACCatgcgagatctcgcaag	Ankrd26 human (Q9UPS8)	f: 135-149	KpnI
BQ3193	5'-ataGCTAGCaccatgaagaagattttagt	Ankrd26 human (Q9UPS8)	f: 1-18	NheI
BQ3194	5'-tatGTCGACccttatgttttagcttatt	Ankrd26 human (Q9UPS8)	r: 4197-4214	SalI
BQ3204	5'-ataGGATCCatgaacaggacggctcta	Ankrd26 human (Q9UPS8)	f: 234-251	HindIII
BQ3205	5'-ataGGTACCatgaacaggacggctcta	Ankrd26 human (Q9UPS8)	f: 234-251	KpnI
BQ3219	5'-tatGGATCCccttatgttttagcttatt	Ankrd26 human (Q9UPS8)	r: 4197-4214-	BamHI
BQ3259	5'-ataGGATCCatgaagaagaaagtaag	Ankrd26 human (Q9UPS8)	f: 1-21 (mut I4E,F5E)	BamHI
BQ3322	5'-tatGTCGACtagttggactgct	Ankrd26 human (Q9UPS8)	r: 636-651	SalI
BQ3355	5'-ataGGATCCatggcgccgattttagtgcggcgccgagtcgccttggctctcgccggcgcaggcgcaggcgcaggcgcgg	Ankrd26 human (Q9UPS8)	f: 1-39 (mut K2A,K3A,K7A,K8A,R18A,	BamHI


			R19A,R21A)	
BQ3515	5'-GATCC gaatcaagactatgaattttgatatccgaaattcatagtcttgatttttA	Ankrd26 human (Q9UPS8)	f: 3261-3279 / RNAi1	partial BamH1 and Hind III, respectively
BQ3516	5'- AGCTTaaaaaagaatcaagactatgaatttcggatataaaaaattcat agtcttgattcG	Ankrd26 human (Q9UPS8)	r: 3261-3279 / RNAi1	partial BamH1 and Hind III, respectively
BQ3517	5'- GATCCcaaggtaatgtactacaattgatatccgttagtacattaac cttgttttA	Ankrd26 human (Q9UPS8)	f: 2274-2292 / RNAi2	partial BamH1 and Hind III, respectively
BQ3518	5'- AGCTTaaaaaacaaggtaatgtactacaacggatataattgtatca cattaaccttgG	Ankrd26 human (Q9UPS8)	r: 2274-2292 / RNAi2	partial BamH1 and Hind III, respectively
BQ3519	5'-ataGGTACCatgattcagaatataaagaa	Ankrd26 human (Q9UPS8)	f: 652-669	KpnI
BQ3546	5'-ctcccttggttacacgttaccctgtcttc	Ankrd26 human (Q9UPS8)	r: 2269-2299 (silent mut of codons Bp 2279 to 2288)	-
BQ3573	5'-gaagacaaggtaaacgtgttacaaaggag	Ankrd26 human (Q9UPS8)	f: 2269-2299 (silent mut of codons Bp 2279 to 2288)	-
BQ3220	5'-tatACCGGTaaactatcaaacgtgtccatt	RET human (P07949)	r: 3324-3342	AgeI
BQ3196	5'-tatGGTACCActatcaaacgtgtccatt	RET human (P07949)	r: 3324-3342	KpnI
BQ3201	5'-ataGCTAGCaccatggcgaaggcgacgtccg	RET human (P07949)	f: 1-19	NheI
BQ3203	5'-tatAAGCTTactatcaaacgtgtccatt	RET human (P07949)	r: 3324-3342	HindIII
				-

1272

1273 **Table 1. List of primers used.** (Partial) restriction sites added are in capital letters. Abbreviations: f,
1274 forward; r, reverse. Accession numbers, UniProt.

1275

1276 **Supplementary Information**

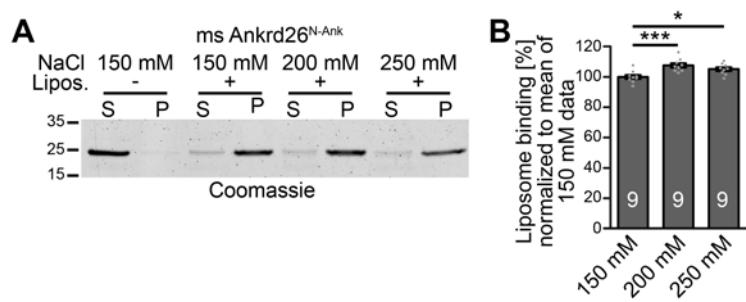

1277

1278 **Figure 1-figure supplement 1. Human Ankrd26 is a membrane-binding, five ankyrin repeat-
1279 containing protein**

1280 **(A,B)** Maximum intensity projections (MIPs) of Ankrd26-GFP and GFP in HeLa cells cotransfected
1281 with the plasma membrane marker CherryF shown in **Figure 1C,D** with intensity plots of the red and
1282 green fluorescent channel along randomly positioned lines marked in the insets, which represent
1283 magnifications of boxed areas. Note that in **A** both fluorophores show synchronous intensity changes
1284 (coenrichment), whereas the control shown in **B** does not show any correlation. Bars, 10 μ m. **(C)**

1285 Ankyrin repeat consensus according to Mosavi et al. (2004). **(D)** The five suggested ankyrin repeats of
1286 human Ankrd26 (according to UniProt) and their overlap with the Mosavi consensus. Residues of
1287 high, medium and lower conservation in the Mosavi consensus are highlighted in different shades of
1288 red, as indicated. Grey marks residues that are not following the consensus and are located between the
1289 ankyrin repeats of Ankrd26 (included only to report a continuous sequence of the complete ankyrin
1290 repeat array).

1291

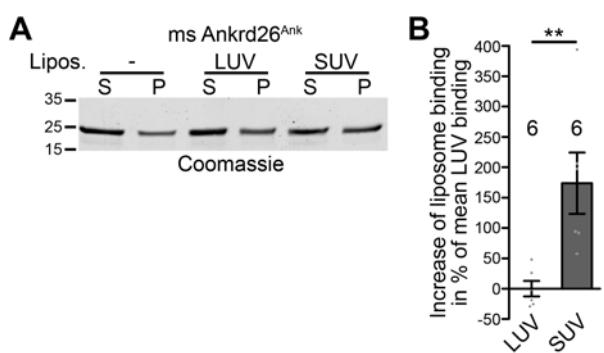


1292

1293 **Figure 1-figure supplement 2. Mouse Ankrd26^{N-Ank} but not a mutant lacking the Ankrd26 N**
1294 **terminus colocalizes with the plasma membrane marker CherryF**

1295 (A-C) MIPs of GFP (A), mouse Ankrd26^{N-Ank}-GFP (B) and mouse Ankrd26^{Ank}-GFP (C),
1296 respectively, in HeLa cells cotransfected with CherryF to mark the plasma membrane. Note the spatial
1297 overlap of ms Ankrd26^{N-Ank} with CherryF. Insets in B and C represent enlargements of boxed areas.
1298 Lines in insets mark positions of intensity analyses (see line plots of the red and green fluorescent
1299 channel). Bars, 10 μ m.

1300

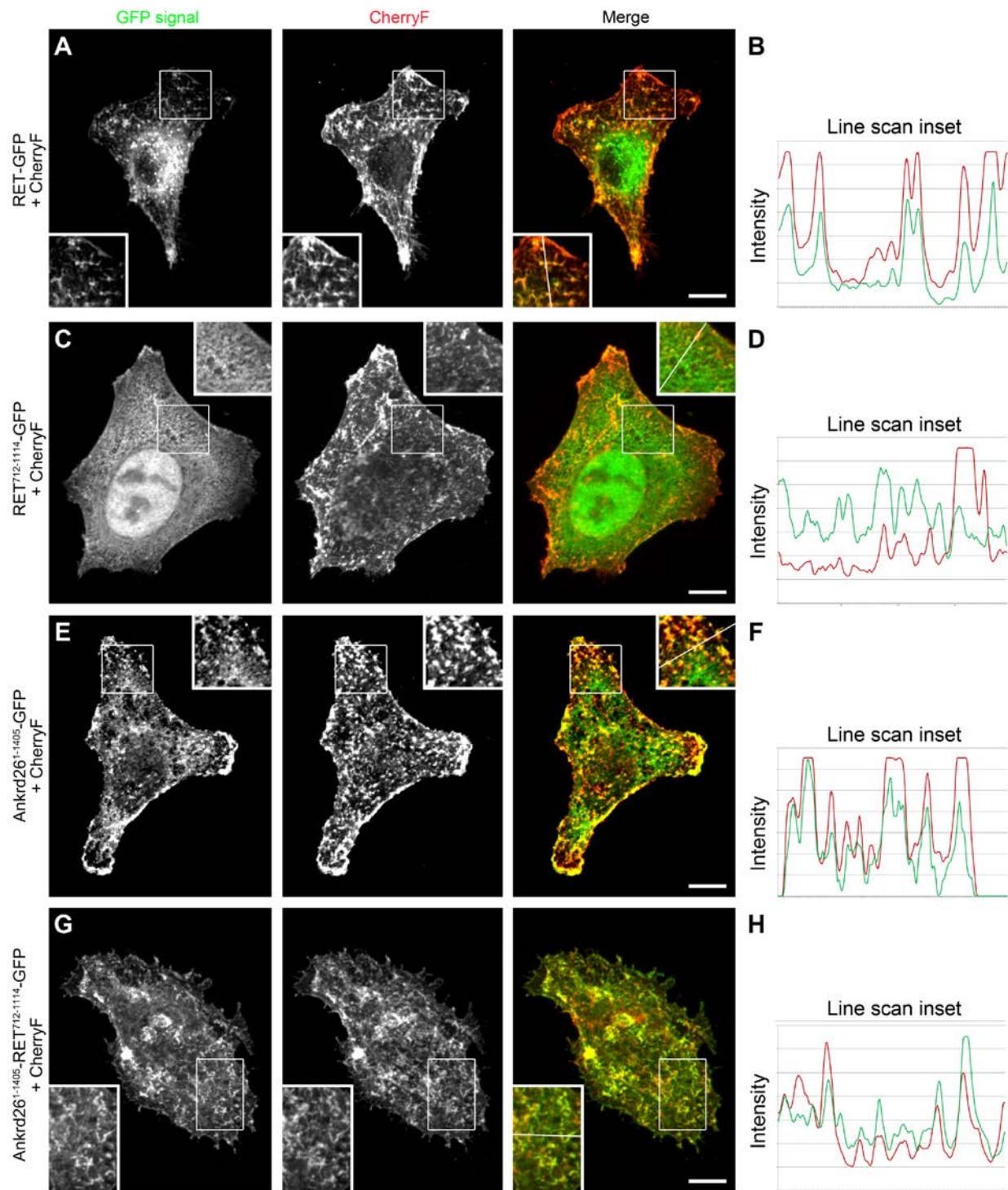


1301

1302 **Figure 3-figure supplement 1. Mouse Ankrd26 binds to membranes via non-electrostatic**
1303 **interactions critically relying on its amphipathic N terminal structure**

1304 (A,B) Attempts of extraction of liposome-bound mouse Ankrd26^{N-Ank} using increasing salt
1305 concentrations. (A) Representative image of a Coomassie-stained SDS-PAGE gel. (B) Quantitative
1306 analyses (B) confirming that also the liposome binding of ms Ankrd26^{N-Ank} is fully salt-resistant. Data
1307 represent mean \pm SEM. Bar plots with individual data points (dot plots). n=9 experiments each; one-
1308 way ANOVA with Tukey post hoc test. *P<0.05; ***P<0.001.

1309

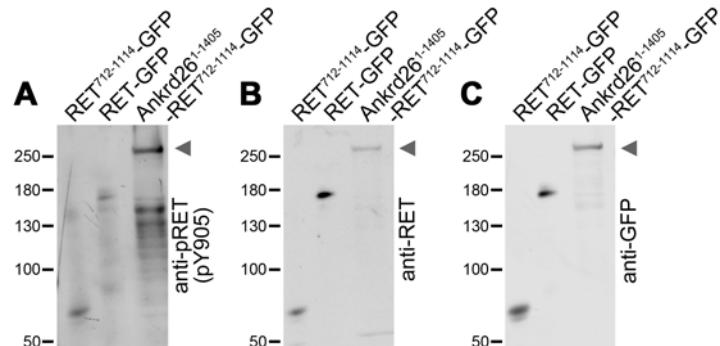

1310

1311 **Figure 4-figure supplement 1. Mouse Ankrd26 recognizes membrane curvatures by its ankyrin
1312 repeat array**

1313 **(A,B)** The ankyrin repeat array of mouse Ankrd26 prefers the highly curved membranes of SUVs over
1314 the more shallowly curved membrane surfaces of LUVs, as demonstrated by comparative
1315 coprecipitations **(A)** and quantitative analyses thereof **(B)**. Data represent mean \pm SEM. Bar plots with
1316 individual data points (dot plots). n=6 experiments each; two tailed, unpaired Student's t-test.

1317 $^{**}P<0.01$.

1318



1319

1320 **Figure 8-figure supplement 1. The papillary thyroid carcinoma-associated fusion of Ankrd26**
1321 **and RET exhibits a membrane localization mediated by the included Ankrd26 portion**
1322 **(A-H) MIPs of indicated proteins in CherryF-cotransfected HeLa cells (A,C,E,G), as in Figure 8,**
1323 **supplemented with fluorescence intensity plots (arbitrary units) for the red and the green fluorescence**

1324 channel (**B,D,F,H**) along the lines indicated in the insets (see line added), which are magnifications of
1325 boxed areas. Bars, 10 μ m.

1326

1327

1328 **Figure 11-figure supplement 1. The papillary thyroid carcinoma-associated Ankrd26-RET**
1329 **fusion mutant exhibits a strongly increased RET Y905 autophosphorylation**

1330 (A-C) Representative images of lysates of HEK293 cells transfected with GFP-tagged RET⁷¹²⁻¹¹¹⁴,
1331 full-length RET (RET¹⁻¹¹¹⁴) and the papillary thyroid carcinoma-associated fusion Ankrd26¹⁻¹⁴⁰⁵-
1332 RET⁷¹²⁻¹¹¹⁴, respectively, that were immunoblotted with antibodies specifically detecting pRET
1333 (pY905) (A), with antibodies against the C terminal domain of RET (B) and with anti-GFP antibodies
1334 (C), respectively. Arrowheads mark the positions of the highly Y905 phosphorylated Ankrd26¹⁻¹⁴⁰⁵-
1335 RET⁷¹²⁻¹¹¹⁴-GFP.