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ABSTRACT

A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful14

tools to understand individual differences in intrinsic brain function by mapping spontaneous brain15

activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of16

methodologies applied across the ifNN studies - with respect to node definition, edge construction, and17

graph measurements- makes it difficult to directly compare findings and also challenging for end users to18

select the optimal strategies for mapping individual differences in brain networks. Here, we aim to19

provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of20

individual differences under different ifNN analytical strategies using the test-retest design of the Human21
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Connectome Project. The results uncovered four essential principles to guide ifNN studies: 1) use a22

whole brain parcellation to define network nodes, including subcortical and cerebellar regions, 2)23

construct functional networks using spontaneous brain activity in multiple slow bands, 3) optimize24

topological economy of networks at individual level, 4) characterise information flow with specific25

metrics of integration and segregation. We built an interactive online resource of reliability assessments26

for future ifNN (ibraindata.com/research/ifNN).27

AUTHOR SUMMARY

It is an essential mission for neuroscience to understand the individual differences in brain function.28

Graph or network theory offer novel methods of network neuroscience to address such a challenge. This29

article documents optimal strategies on the test-retest reliability of measuring individual differences in30

intrinsic brain networks of spontaneous activity. The analytical pipelines are identified to optimize for31

highly reliable, individualized network measurements. These pipelines optimize network metrics for high32

inter-individual variances and low inner-individual variances by defining network nodes with whole-brain33

parcellations, deriving the connectivity with spontaneous high-frequency slow-band oscillations,34

constructing brain graphs with topology-based methods for edge filtering, and favoring multi-level or35

multi-modal metrics. These psychometric findings are critical for translating the functional network36

neuroscience into clinical or other personalized practices requiring neuroimaging markers.37

INTRODUCTION

Over the past two decades, network neuroscience has helped transform the field of neuroscience38

(D. Bassett et al., 2020), providing a quantitative methodology framework for modeling brains as graphs39

(or networks) composed of nodes (brain regions) and edges (their connections), namely connectomics40

(Sporns, 2013a). The organization and topology of macro-scale brain networks can be characterized by a41

growing suite of connectomic measurements including efficiency, centrality, clustering, small-word42

topology, rich-club, etc (Craddock et al., 2013). In parallel, resting-state fMRI (rfMRI) has opened up43

new avenues towards understanding the intrinsic human brain function (Biswal et al., 2010). In44

conjunction with network neuroscience, rfMRI has led to the emergence of a multidisciplinary field,45
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intrinsic functional connectomics or network neuroscience (ifNN), in which the brain’s intrinsic,46

interregional connectivity is estimated from rfMRI recordings. It has been widely used to investigate the47

system-level organization of the human brain function and its relationship with individual differences48

(Dubois & Adolphs, 2016) in developmental (Zuo et al., 2017), socio-cultural (Pessoa, 2018) and clinical49

conditions (Fornito, Zalesky, & Breakspear, 2015).50

Highly reliable measurements are essential for studying individual differences. In general, reliability51

characterises a proportion of measurement variability between different subjects relative to the overall52

variability including both between-subject and within-subject (i.e., random) components (Xing & Zuo,53

2018). It is commonly used to assess the consistency or agreement between measurements, or the ability54

to obtain consistent measures over time. Beyond that, it can also serve as a measure of discriminablity55

(Xing & Zuo, 2018; Zuo, Biswal, & Poldrack, 2019; Zuo, Xu, & Milham, 2019). For example, if a56

measurement can more sufficiently capture individual characteristics (i.e., better differentiate a group of57

individuals), it will produce higher between-subject variability and thus higher reliability than a58

measurement underestimating the between-subject variability. Such reliability concept has59

well-established statistical theory and applications in fields such as psychology (Elliott, Knodt, Caspi,60

Moffitt, & Hariri, 2021) and medicine (Kraemer, 2014) where it is used in psychometric theory and61

diagnosis theory, respectively. Specifically, in psychology, reliability is important for assessing the62

validity of psychological tests, and in medicine, it is important for accurately diagnosing and treating63

patients. In the field of human brain mapping, more recent studies have demonstrated that the64

measurement reliability is equivalent to the ”fingerprint” or discriminability of the measurement under65

the Gaussian distribution (Bridgeford et al., 2021; Milham, Vogelstein, & Xu, 2021). Therefore, the66

optimization of measurement reliability of the individual differences can help guide ifNN processing and67

analysis pipelines for individualized or personalized (e.g., neurodevelopmental (Herting, Gautam, Chen,68

Mezher, & Vetter, 2018) or clinical (Matthews & Hampshire, 2016)) research.69

Previous studies have demonstrated that many functional network measurements with rfMRI have70

limited reliability (Noble, Scheinost, & Constable, 2019; Zuo & Xing, 2014). These low levels of71

reliability could be an indication of failure in handling individual variability at different levels (Elliott,72

Knodt, & Hariri, 2021; Hallquist & Hillary, 2019). In particular, experimental design and processing73

decisions related to scan duration, determining frequency range, and regressing global signal have74

–3–

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Optimal Network Neuroscience Pipelines

Authors: Jiang C, He Y, Betzel R, Wang YS, Xing XX and Zuo XN

impacts on rfMRI measurements and thus their reliability (Noble et al., 2019; Zuo et al., 2013). Although75

less focused on reliability, existing network neuroscience studies revealed that their findings are76

influenced by choices of parcellation templates (Bryce et al., 2021; Wang et al., 2009), edge construction77

and definition, and choice of graph metrics (Liang et al., 2012). How these decisions affect the78

measurement reliability in ifNN deserves further investigation. These analytical choices have been79

implemented in different software packages but can vary from one package to another, and thus introduce80

more analytic variability (Botvinik-Nezer et al., 2020). Beyond limited examinations on reliability81

(Aurich, Filho, da Silva, & Franco, 2015; Braun et al., 2012; Termenon, Jaillard, Delon-Martin, &82

Achard, 2016), a systematic investigation into the measurement reliability is warranted to guide ifNN83

software use and analyses.84

We conducted a systematic ifNN reliability analysis using the test-retest rfMRI data from the Human85

Connectome Project (HCP). The HCP has developed its imaging acquisition and data pre-processing86

(Glasser et al., 2013) by integrating various strategies optimized for reliability in previous studies (Noble87

et al., 2019; Noble, Scheinost, & Constable, 2021; Zuo & Xing, 2014; Zuo et al., 2013). We thus analyzed88

the minimally pre-processed HCP rfMRI data and focused our work on four key post-analytic stages:89

node definition, edge construction, network measurement, and reliability assessments. In the end, we90

propose a set of principles to guide researchers in performing reliable ifNN, advancing the field-standard91

call for the best practices in network neuroscience. We released all the codes and reliability data by92

building an online platform for sharing the data and computational resources to foster future ifNN.93

MATERIALS AND METHODS

A typical analysis pipeline in ifNN includes steps for node definition (parcellations) and edge108

construction (frequency bands, connectivity estimation and filtering schemes) (Fig. 1a). To determine an109

optimal pipeline, we combine the most reliable strategies across different parts of the analysis by110

comparing the reliability of derived global network metrics. The HCP test-retest data were employed for111

reliability evaluation (Fig. 1b) using the intraclass correlation (ICC) statistics on the measurement112

reliability. Overall reliability assessments associated with the various analytic strategies as well as their113

impact on between- and within-subject variability (Fig. 1c) are investigated. We calculated the114

between-subject variability (Vb) and within-subject variability (Vw) and normalized them to values115
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Figure 1. Analytical pipelines for reliable ifNN. a) There are five stages during our analyses: (1) test-retest dataset (white box) downloaded from HCP

website, (2) node definition (green box) defining nodes using a set of brain areas of 24 different partitions of the human brain, (3) edge construction (yellow

box) estimating individual correlation matrices using the six frequency bands (slow 1-6) from Buzsaki’s theoretical framework on the brain oscillations as

well as the widely used empirical frequency band (Slow-emp) and transferring these matrices into adjacency matrices using 7× 4× 12 different strategies on

edge construction including band-pass filtering, connectivity estimation and edge filtering, (4) network analysis (blue box) systematically calculating various

brain graph metrics on measurements of information flow, and (5) reliability assessment (red box) evaluating test-retest reliability with massive linear mixed

models. b) The test-retest data shared multimodal MRI datasets of 46 subjects in the HCP S1200 release and the HCP Retest release. Each subject underwent

the first four test scans on two days (two scans per day: Rest1 and Rest2) and return several months later to finish the four retest scans on another two

days. c) Measurement reliability refers to the inter-individual or between-subject variability Vb relative to the intra-individual or within-subject variability Vw .

Variability of both between-subject (Vb) and within-subject (Vw) are normalized into between 0 and 1 by the total sample variances. Their changes (∆Vb and

∆Vw) introduce a reliability gradient as represented by the vector (the black arrow). The length of the arrow reflects the amplitude of reliability changes when

the reliability assessment from one choice (pink circle, J) to another choice (red circle, K). Further, the arrow’s direction (JK) indicates the sources of this

reliability change. Here the reliability becomes from moderate to substantial level with increases of between-subject variability (∆Vb > 0) and decreases of

within-subject variability (∆Vw < 0).
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between 0 and 1 by the total sample variances. The changes in these variability measures, ∆Vb and ∆Vw,116

were used to create a reliability gradient represented by a vector. The length of the arrow reflects the117

amplitude of the change in reliability when comparing one choice (pink circle, J) to another choice (red118

circle, K). The direction of the arrow, JK, indicates the sources of the change in reliability. In this case,119

the reliability increases from a moderate to a substantial level with an increase in between-subject120

variability (∆Vb > 0) and a decrease in within-subject variability (∆Vw < 0). We then determine the121

optimized pipelines based on the highest reliability measurements, while documenting the derived both122

global and local network metrics and both their reliability and variability at an individual level.123

Specifically, using the HCP test-retest dataset, our analytic procedure implemented the four124

post-analytic stages: node definition, edge construction, network measurement and reliability125

assessments. The test-retest rfMRI dataset underwent the standardized preprocessing pipeline developed126

by the HCP team (Glasser et al., 2013). The second step defines nodes (green box) using sets of brain127

areas based on 24 partitions, and then extracts the nodal time series. During the third step (yellow box),128

individual correlation matrices are first estimated based upon the six frequency bands derived from129

Buzsaki’s theoretical framework on brain oscillations (Buzsaki & Draguhn, 2004) along with the130

classical band widely used (0.01 - 0.08 Hz). These matrices are then converted into adjacency matrices131

using 4× 12 = 48 strategies on edge filtering. In the fourth step, we performed graph analyses (blue box)132

by systematically calculating the brain graph metrics at global, modular and nodal scales. Finally,133

test-retest reliability was evaluated (red box) as ICCs with the linear mixed models. We present details of134

these analyses in the following sections.135

Test-Retest Dataset136

The WU-Minn Consortium in HCP shared a set of test-retest multimodal MRI datasets of 46 subjects137

from both the S1200 release and the Retest release. These subjects were retested using the full HCP 3T138

multimodal imaging and behavioral protocol. Each subject underwent the four scans on two days (two139

scans per day: Rest1 versus Rest2 ) during the first visit and returned several months later to finish the140

four scans on another two days during the second visit (Fig. 1b). The test-retest interval ranged from 18141

to 328 days (mean: 4.74 months, standard deviation: 2.12 months). Only 41 subjects (28 females, age142

range: 26-35 years; 13 males, age range: 22-33 years) had full length rfMRI data across all the eight143
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scans, 2 visits × 2 days × 2 (LR and RL ecoding directions), and were included in the subsequent144

analyses. Then we averaged across the RL and LR encodings for each day, so each subject had 4 repeated145

measurements in the ICC estimation. This sample size is larger that the minimal sample size (N = 35)146

for fair reliability with 80% power and significance level of 0.05 based on the above mentioned test-retest147

design (4 observations per subject) (Bujang & Baharum, 2017). The HCP rfMRI protocols for scanning148

and preprocessing images have been optimized for reliability .149

During the scanning, participants were instructed to keep their eyes open and to let their mind wander150

while fixating on a cross-hair projected on a dark background. Data were collected at the 3T Siemens151

Connectome Skyra MRI scanner with a 32-channel head coil. All functional images were acquired using152

a multiband gradient-echo EPI imaging sequence (2mm isotropic voxel, 72 axial slices, TR = 720ms, TE153

= 33.1ms, flip angle = 52◦, field of view = 208× 180 mm2, matrix size = 104× 90 and a multiband factor154

of 8). A total of 1200 images was acquired for a duration of 14 min and 24 s. Details on the imaging155

protocols can be found in (Smith et al., 2013).156

The protocols of rfMRI image preprocessing and artifact-removal procedures are documented in detail157

elsewhere and generated the minimally preprocessed HCP rfMRI images. Artifacts were removed using158

the ICA-based X-noiseifier (ICA + FIX) procedure, followed by MS-MAll for inter-subject registration.159

The preprocessed rfMRI data were represented as a time series of grayordinates (4D), combining both160

cortical surface vertices and subcortical voxels (Glasser et al., 2013).161

Node Definition162

A brain graph defines a node as a brain area, which is generally derived by an element of brain163

parcellation (parcel) according to borders or landmarks of brain anatomy, structure or function as well as164

an element of volume (voxel) in imaging signal acquisition or a cluster of voxels (Sporns, 2013b). Due to165

the high computational demand of voxel-based brain graph, in this study we defined nodes as parcels166

according to the following brain parcellation strategies (Fig. 2a). A surface-based approach has been167

demonstrated to outperform other approaches for fMRI analysis (Coalson, Van Essen, & Glasser, 2018;168

Zuo et al., 2013) and thus the nodes are defined in the surface space (total 24 surface parcellation169

choices). Of note, we adopted a naming convention for brain parcellations as follows:170

‘ParcAbbr-NumberOfParcels’ (e.g., LGP-100 or its whole-brain version wbLGP-458).171
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HCP Multi-Modal Parcellation (MMP) A cortical parcellation generated from multi-modal images of172

210 adults from the HCP database, using a semi-automated approach (Glasser et al., 2016). Cortical173

regions are delineated with respect to their function, connectivity, cortical architecture, and174

topography, as well as, expert knowledge and meta-analysis results from the literature (Glasser et175

al., 2016). The atlas contains 180 parcels for each hemisphere.176

Local-Global Parcellation (LGP) A gradient-weighted Markov Random Field model integrating local177

gradient and global similarity approaches produces the novel parcellations (Schaefer et al., 2018).178

The final version of LGP comes with a multi-scale cortical atlas including 100, 200, 300, 400, 500,179

600, 700, 800, 900, and 1000 parcels (equal numbers across the two hemispheres). One benefit of180

using LGP is to have nodes with almost the same size, and these nodes are also assigned to the181

common large-scale functional networks (Thomas Yeo et al., 2011).182

Brainnetome Parcellation (BNP) Both anatomical landmarks and connectivity-driven information are183

employed to develop this volumetric brain parcellation (Fan et al., 2016). Specifically, anatomical184

regions defined as in (Desikan et al., 2006) are parcellated into subregions using functional and185

structural connectivity fingerprints from HCP datasets. Cortical parcels are obtained by projecting186

their volume space to surface space. It is noticed that the original BNP contains both cortical (105187

areas per hemisphere) and subcortical (36 areas) regions but only the 210 cortical parcels are188

included for the subsequent analyses.189

Whole-Brain Parcellation (wb) Inclusion of subcortical areas has been shown unignorable influences190

on brain graph analyses (D. Greene et al., 2020; Noble et al., 2019), and we thus also constructed191

brain graphs with subcortical structures in volume space as nodes by adding these nodes to the192

cortical brain graphs. To get a high-resolution subcortical parcellation, we adopted the 358193

subcortical parcels in (Ji et al., 2019). The authors employed data of 337 unrelated HCP healthy194

volunteers and extended the MMP cortical network partition into subcortex. This results a set of195

whole-brain parcellations by combining these subcortical parcels with the aforementioned cortical196

parcellations, namely wbMMP,wbLGP and wbBNP. We noticed that the wbMMP-718 has been197

named by the authors of (Ji et al., 2019) as the Cole-Anticevic Brain-wide Network Partition, and198

we thus renamed the wbMMP-718 as wbCABP-718 for consistency.199

Edge Construction200
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After defining the node with each parcellation, in each parcel, regional mean time series were estimated201

by averaging the vertex time series at each time point. To construct an edge between a pair of nodes, their202

representative time series entered into the following steps in order: band-pass filtering, inter-node203

connectivity transformation, and edge filtering.204

Band-Pass Filtering Resting-state functional connectivity studies have typically focused on fluctuations205

below 0.08 Hz or 0.1 Hz (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Fox & Raichle, 2007), and206

assumed that only these frequencies contribute significantly to inter-regional functional connectivity (FC)207

while other frequencies are artifacts (Cordes et al., 2001). In contrast, however, other studies have found208

that specific frequency bands of the rfMRI oscillations make unique and neurobiologically meaningful209

contributions to resting-state functional connectivity (Salvador et al., 2005; Zuo & Xing, 2014). More210

recently, with fast fMRI methods, some meaningful FC patterns were reported across much higher211

frequency bands (Boubela et al., 2013). These observations motivate exploring a range of frequency212

bands beyond those typically studied in resting-state functional connectivity studies.213

Buzsaki and Draguhn (Buzsaki & Draguhn, 2004) proposed a hierarchical organization of frequency214

bands driven by the natural logarithm linear law. This offers a theoretical template for partitioning rfMRI215

frequency content into multiple bands (Fig. 3a). The frequencies occupied by these bands have a216

relatively constant relationship to each other on a natural logarithmic scale and have a constant ratio217

between any given pair of neighboring frequencies (Buzsáki, 2009). These different oscillations are218

linked to different neural activities, including cognition, emotion regulation, and memory (Achard,219

Salvador, Whitcher, Suckling, & Bullmore, 2006; Buzsáki, 2009; Fox & Raichle, 2007). Advanced by220

the fast imaging protocols offered by the HCP scanner, the short scan interval (TR = 720ms) allows us to221

obtain more oscillation classes that the traditional rfMRI method. We incorporate the Buzsaki’s222

framework (Buzsaki & Draguhn, 2004; Penttonen & Buzsáki, 2003) with the HCP fast-TR datasets by223

using the DREAM toolbox (Gong et al., 2021) in the Connectome Computation System (Xing, Xu, Jiang,224

Wang, & Zuo, 2022; Xu, Yang, Jiang, Xing, & Zuo, 2015). It decomposed the time series into the six225

slow bands as illustrated in Fig. 3a.226
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Connectivity Transformation For each scan, individual nodal representative time series were band-pass227

filtered with each of the six frequency bands, and another empirical frequency band, slow-emp228

(0.01-0.08Hz). The Pearson’s correlation rij ∈ [−1, 1] between the filtered time series of each pair of229

nodes i = 1, ..., N, j = 1, ..., N was calculated (N is the number of nodes). These correlation values230

provided an estimation on the edge strengths between the two nodes, and formed a N ×N symmetric231

correlation matrix R = (rij) for each given subject, scan, parcellation, and frequency band.232

Many network metrics are not well defined for negatively weighted connections. In order to ensure that

the connection weights are positive only, we applied four types of transformations to the symmetric

correlation matrix: the positive (Eq.pos), absolute (Eq.abs), exponential (Eq.exp) and distance-inverse

(Eq.div) functions, respectively. This avoids the negative values in the inter-node connectivity matrix

W = (wij) where zij = tanh−1 (rij) is Fisher’s z−transformation.

wij =
zij + |zij|

2
∈ [0,∞) (pos)

wij = |zij| ∈ [0,∞) (abs)

wij = ezij ∈ [0,∞) (exp)

wij =
2√

2× (1− rij)
∈ (0,∞) (div)

The connectivity matrix represents a set of the node parcels and relational quantities between each pair233

of the nodes, and will serve as the basis of following edge filtering procedure for generation of the final234

brain graphs.235

Edge Filtering In a graph, edges represent a set of relevant interactions of crucial importance to obtain236

parsimonious descriptions of complex networks. Filtering valid edges can be highly challenging due to237

the lack of ‘ground truth’ of the human brain connectome. To provide a reliable way of building238

candidate edges, we sampled the following 12 schemes on edge filtering and applied them to the239

connectivity matrices.240
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Absolute Weight Thresholding (ABS) This approach selects those edges that exceed a manually241

defined absolute threshold (e.g., correlations higher than 0.5), setting all correlations smaller than242

0.5 to 0 (ABS05). This is a simple approach to reconstruct networks Hagmann et al. (2007).243

Proportional Thresholding (PROP) It is a common step in the reconstruction of functional brain244

networks to ensure equal edge density across subjects (D. Bassett et al., 2009; Rubinov, Sporns, van245

Leeuwen, & Breakspear, 2009; van den Heuvel et al., 2017). It keeps the number of connections246

fixed across all individuals to rule out the influence of network density on the computation and247

comparison of graph metrics across groups. This approach includes the selection of a fixed248

percentage of the strongest conncections as edges in each individual network or brain graph.249

Compared to ABS, PROP has been argued to reliably separate density from topological effects250

(Braun et al., 2012; Ginestet, Nichols, Bullmore, & Simmons, 2011) and to result in more stable251

network metrics (Garrison, Scheinost, Finn, Shen, & Constable, 2015). This makes it a commonly252

used approach for network construction and analysis in disease-related studies. Here, we focused on253

two threshholds that are commonly reported in the literature: 10% (PROP10) and 20% (PROP20).254

Degree Thresholding (DEG) The structure of a graph can be biased by the number of existing edges.255

Accordingly, statistical measures derived from the graph should be compared against graphs that256

preserve the same average degree, K. A threshold of the degree can be chosen to produce graphs257

with a fixed mean degree (e.g., K = 5, DEG5), which is the average nodal degrees of an individual258

graph from a single subject’s scan. Many network neuroscience studies have taken this choice for259

K = 5 (S. I. Dimitriadis, Laskaris, Del Rio-Portilla, & Koudounis, 2009; Micheloyannis et al.,260

2006; Milo et al., 2002; Stam, Jones, Nolte, Breakspear, & Scheltens, 2006). We also include the261

DEG15 for denser graphs of the brain networks.262

Global Cost Efficiency Optimization (GCE) Given a network with a cost ρ, its global efficiency is a263

function of the cost Eg(ρ), and its GCE is J(ρ) = Eg(ρ)− ρ. Several studies suggested that brain264

networks, in particular those with small-world topology, maximize their global-cost efficiency265

(D. S. Bassett et al., 2008), i.e., Jmax = maxρ J(ρ). Computationally, this scheme is implemented266

by looping all network costs (e.g., adding edges with weights in order) to find the Jmax (see Fig. 2b)267

where the corresponding edge weight was determined as the threshold for edge filtering. In this268
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sense, GCE is an individualised and optimised version of ABS, PROP and DEG while the latter269

three are commonly employed with a fixed threshold for all individuals.270

Overall Efficiency Cost Optimization (ECO) Both global and local efficiency are important graph271

features to characterize the structure of complex systems in terms of integration and segregation of272

information (Latora & Marchiori, 2001). ECO was proposed to determine a network density273

threshold for filtering out the weakest links (De Vico Fallani, Latora, & Chavez, 2017). It maximizes274

an extension of Jmax, the ratio between the overall (both global and local) efficiency and its wiring275

cost maxρ J
ext(ρ) = (Eg(ρ) + Eloc(ρ))/ρ where Eloc denotes the network local efficiency. The276

study (Latora & Marchiori, 2001) also demonstrated that, to maximize J , these networks have to be277

sparse with an average node degree K ≃ 3.278

Minimum Spanning Tree (MST) This is an increasingly popular method for identifying the smallest279

and most essential set of connections while ensuring that the network forms a fully connected graph280

(Guo, Qin, Chen, Xu, & Xiang, 2017; Meier, Tewarie, & Van Mieghem, 2015; Otte et al., 2015; van281

Nieuwenhuizen et al., 2018). The tenet of using MST is to summarize information and index282

structure of the graph, and thus remove edges with redundant information (Mantegna, 1999).283

Specifically, an MST filtered graph will contain N nodes connected via N − 1 connections with284

minimal cost and no loops. This addresses key issues in existing topology filtering schemes that rely285

on arbitrary and user-specified absolute thresholds or densities.286

Orthogonal Minimum Spanning Tree (OMST) This topological filtering scheme was proposed

recently (S. Dimitriadis, Antonakakis, Simos, Fletcher, & Papanicolaou, 2017) to maximize the

information flow over the network versus the cost by selecting the connections via the OMSTs. It

samples the full-weighted brain network over consecutive rounds of MST that are orthogonal to

each other (see Fig. 2b). Practically, we extracted the 1st MST, and then we cleared their

connections and we tracked the 2nd MST from the rest of the network connections, etc. Such an

iterative procedure (stopped by the M th MST) can get orthogonal MSTs and topologically filter

brain network by optimizing the GCE under the constrains by the MST, leading to an integration of

both GCE and MST

max
n∈[1,M ]

J(ρ(nMSTs)) = Eg(ρ(nMSTs))− ρ(nMSTs)
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Planar Maximally Filtered Graph (PMFG) The idea underneath PMFG (Tumminello, Aste,287

Di Matteo, & Mantegna, 2005) is to filter a dense matrix of weights by retaining the largest possible288

subgraph while imposing global constraints on the derived network topology. Edges with the strong289

connection weights are retained while constraining the subgraph to be a (spanning) tree globally.290

Similarly, during the PMFG construction, the largest weights are retained while constraining the291

subgraph to be a planar graph globally. The PMFG algorithm searches for the maximum weighted292

planar subgraph by adding edges one by one. The resulting matrix is sparse with 3(N − 2) edges. It293

starts by sorting all the edges of a dense matrix of weights in non-increasing order and tries to insert294

every edge in the PMFG. Edges that violate the planarity constraint are discarded.295

Triangulated Maximally Filtered Graph (TMFG) The algorithm for implementing PMFG is296

computationally expensive, and is therefore impractical when applied to large brain networks297

(Massara, Di Matteo, & Aste, 2016). A more efficient algorithms, TMFG, was developed that298

exhibited greatly reduced computational complexity compared to PMFG. This method captures the299

most relevant information between nodes by approximating the network connectivity matrix with300

the endorsement association matrix and minimizing spurious associations. The TMFG derived301

network contains 3-node (triangle) and 4-node (tetrahedron) cliques, imposing a nested hierarchy302

and automatically generates a chordal network (Massara et al., 2016; Song, Di Matteo, & Aste,303

2012). Although TMFG is not widely applied in network neuroscience studies, it as been applied304

elsewhere and proven to be a suitable choice for modeling interrelationships between psychological305

constructs like personality traits (Christensen, Kenett, Aste, Silvia, & Kwapil, 2018).306

Orthogonal TMF Graph (OTMFG) To combine both the TMFG’s efficiency and OMST’s accuracy,307

we propose OTMFG to maximize the information flow over the network versus the cost by selecting308

the connections of the orthogonal TMFG. It samples the full-weighted brain network over309

consecutive rounds of TMFG that are orthogonal to each other.310

In summary, as illustrated in Fig. 4a, the 12 edge filtering schemes transform a fully weighted matrix311

into a sparse matrix to represent the corresponding brain network. They can be categorized into two312

classes: threshold-based versus topology-based schemes. ABS05, PROP10, PROP20, DEG5, DEG15, ECO313

and GCE rely on a threshold for filtering and retaining edges with higher weights than the threshold.314

These schemes normally ignore the topological structure of the entire network and can result in isolated315
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nodes. In contrast, the topology-based methods including MST, OMST, PMFG, TMFG and OTMFG, all316

consider the global network topology in determining which edges to retain. As illustrated in Fig. 4b, all317

the schemes are plotted in the ρ− Jmax plane for their network economics.318

Table 1. A list of the employed network metrics derived with graph theory319

Scale Measure Attribute Symbol Reference

Global

integration

global efficiency of the network Eg Latora & Marchiori, 2001

average shortest path length of the network Lp Watts & Strogatz, 1998

pseudo diameter of the network D Bouttier, Di Francesco, & Guitter, 2003

segregation

clustering coefficient of the network Cp Watts & Strogatz, 1998

local efficiency of the network Elocal Latora & Marchiori, 2001

modularity of the network Q Newman, 2004

transitivity of the network Tr Newman, 2003

Nodal centrality

local characteristic path length of nodes Lpi Watts & Strogatz, 1998

efficiency of nodes Enodal,i Latora & Marchiori, 2001

local efficiency of nodes Elocal,i Latora & Marchiori, 2001

clustering coefficient of nodes Cpi Watts & Strogatz, 1998

pagerank centrality of nodes Pci Page, Brin, Motwani, & Winograd, 1999

degree centrality of nodes Dci Pastor-Satorras, Vázquez, & Vespignani, 2001

eigenvector centrality of nodes Eci Newman, 2008

resolvent centrality of nodes Rci Estrada & Higham, 2010

subgraph centrality of nodes Sci Estrada & Rodriguez-Velazquez, 2005

betweenness centrality of nodes Bci Freeman, 1978

Network Analysis320

We performed graph-theory-driven network analysis by calculating several common graph-based metrics321

for the resulting graphs. These measures, broadly, can be interpreted based on whether the characterize322
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the extent to which network structure allows for integrated or segregation information flow. Examples of323

integrative measures include average shortest path length (Lp), global efficiency (Eg), and pseudo324

diameter (D). Segregation measures include clustering coefficient (Cp), local efficiency (Elocal),325

transitivity (Tr), modularity (Q), and a suite of nodal centrality measures (Table 1). All the metrics are326

calculated using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). We employed graph-tool327

(https://graph-tool.skewed.de) and NetworKit (https://networkit.github.io) to328

achieve high performance comparable (both in memory usage and computation time) to that of a pure329

C/C++ library. We treated these metrics as the network measurements for subsequent reliability analysis.330

Reliability Assessments331

Measurement reliability is defined as the extent to which measurements can be replicated across multiple332

repeated measures. Test-retest reliability is the closeness of the agreement between the results of333

successive measurements of the same measure and carried out under the same conditions of334

measurement.335

Linear mixed models As a group-level statistic, reliability refers to the inter-individual or

between-subject variability Vb relative to the intra-individual or within-subject variability Vw. Both the

intra- and inter-individual variances can be estimated using linear mixed model (LMM). In this study,

given a functional graph metric ϕ, we considered a random sample of P subjects with N repeated

measurements of a continuous variable in M visits. ϕijk (for i = 1, · · · , N and j = 1, · · · ,M , and

k = 1, · · · , P ) denotes the metric from the kth subject’s jth visit and ith measurement occasions. The

three-level LMM models ϕijk as the following equations:

Graph metric︷︸︸︷
ϕijk = γ000︸︷︷︸

fixed
intercept

+ p0k︸︷︷︸
random intercepts
level 3, subjects

+ v0jk︸︷︷︸
random intercepts

level 2, visits

+ eijk︸︷︷︸
random
residuals

where γ000 is a fixed parameter (the group mean) and p0k, v0jk and eijk are independent random effects336

normally distributed with a mean of 0 and variances σ2
p0, σ2

v0, and σ2
e . The term p0k is the subject effect,337

v0jk is the visit effect and eijk is the measurement residual. Age, gender and interval (∆t) between two338

visits are covariants.339
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ICC Estimation These variances are used to calculate the test-retest reliability, which is measured by

the dependability coefficient and reflects the absolute agreement of measurements. The dependability

coefficient is a form of ICC commonly, which is the ratio of the variances due to the object of

measurement versus sources of error. To avoid negative ICC values and obtain more accurate estimation

of the sample ICC, the variance components in model are usually estimated with the restricted maximum

likelihood (ReML) approach with the covariance structure of an unrestricted symmetrical matrix (Zuo et

al., 2013).

Reliability(ϕ) =
Vb

Vb + Vw

=
σ2
p0

σ2
p0 + σ2

e

(ICC)

The ICC statistics on the measurement reliability are categorized into five common levels:340

0 < ICC ≤ 0.2 (slight); 0.2 < ICC ≤ 0.4 (fair); 0.4 < ICC ≤ 0.6 (moderate); 0.6 < ICC ≤ 0.8341

(substantial); and 0.8 < ICC < 1.0 (almost perfect). A metric with moderate to almost perfect342

test-retest reliability (ICC ≥ 0.4) is commonly expected in practice. The ICC level should not be judged343

only based upon the point statistical estimation of ICC but its confidence intervals (CI) (Koo & Li, 2016).344

We employed the nonparametric conditional bootstrap method for 1000 times to estimate their 95% CIs.345

Statistics Evaluation Our analyses can produce big data of 524,160 ICCs (419,328 for the global346

network metrics). These ICCs are grouped into four categories (parcellation, frequency band,347

connectivity transformation and edge filtering scheme), each of which has different choices. Given each348

choice of a category, we estimated its density distributions of ICCs and calculated two descriptive349

statistics: 1) mean ICC values, which measures the general reliability under the given choice; 2) number350

of almost perfect (noap) ICC values, which measures the potential reliability under the given choice.351

We further perform Friedman rank sum test to evaluate whether the location parameters of the352

distribution of ICCs are the same in each choice. Once the Friedman test is significant, we employ the353

pairwise Wilcoxon signed rank test for post-hoc evaluations to compare ICCs between each pair of the354

distributions under different choices. The statistical significance levels are corrected with Bonferroni355

method for controlling the family wise error rate at a level of 0.05. We develop a method to visualize and356

evaluate the change of ICCs (i.e., reliability gradient) between different choices (Fig. 1c). Specifically,357

the reliability can be plotted as a function of Vb and Vw in its anatomy plane (Xing & Zuo, 2018; Zuo, Xu,358

& Milham, 2019). The gradient of reliability between two choices is modeled by the vector (i.e., the359
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black arrow), and decomposed into changes of individual variability. The systematic evaluation on the360

reliability of the global network metrics determines the optimal network neuroscience by combining the361

most reliable pipeline choices, which further generated the nodal metrics’ reliability.362

RESULTS

Whole brain networks are more reliable than cortical networks363

We evaluated reliability based on 24 different parcellation choices (Fig. 2a). In the following parts of the364

paper, we name a parcellation as ‘ParcAbbr-NumberOfParcels’ (e.g., LGP-100 or its whole-brain version365

wbLGP-458). We found significant differences in ICC distributions across the 24 parcellation choices366

(Fig. 2b, Friedman rank sum test: χ2 = 20379.07, df = 23, p < 2.2× 10−16, effect size367

WKendall = 0.377). The mean ICCs range from slight (LGP-1000) to substantial (wbLGP-458). Given a368

particular parcellation and definition of nodes, we illustrate the density distribution of its ICCs under all369

other strategies (edge definition and metric derivation). Notably, whole-brain parcellations yield higher370

measurement reliability than parcellations of cerebral cortex on their own (the effect sizes > 0.65). This371

improvement in reliability seems not simply a bi-product of having more parcels. We chose the372

parcellations in which the number of parcels (400 ≤ n ≤ 1000) almost overlapped between the cortex373

and the whole brain, and found no correlation between the number of parcels and the median ICCs374

(r = −0.11, p = 0.7). We report the mean ICC and the number of almost perfect (noap) ICCs (≥ 0.8) as375

the descriptive statistics for the density distributions. The wbLGP-458 (mean ICC: 0.671; noap ICC:376

519), wbLGP-558 (mean ICC: 0.671; noap ICC: 540) and The wbBNP-568 (mean ICC: 0.664; noap377

ICC: 511) are the three most reliable choices (see more details of the post-hoc Wilcoxon signed rank test378

in Table S7). Among the cortical parcellations, the LGP-500 (mean ICC: 0.362; noap ICC: 0), LGP-400379

(mean ICC: 0.342; noap ICC: 0) and LGP-600 (mean ICC: 0.340; noap ICC: 0) are the three most380

reliable choices (Table S3).381

To better understand the effect of introducing 358 subcortical parcels into the cortical parcellations, we394

decomposed the reliability changes into a two-dimensional representation of changes of individual395

variability (Fig. 2c,d). This idea was motivated by the analysis of reliability derived with individual396

variability (Xing & Zuo, 2018; Zuo, Xu, & Milham, 2019) as in Fig. 1c. For each ICC under a given397

parcellation choice, we calculated the related between-subject variability Vb and within-subject variability398
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Figure 2. Parcellation choices impact measurement reliability and individual variability. a) Node definitions are derived from the process of spatially

partitioning the human cortex and whole brain (including both cortical and subcortical nodes) at various resolutions, see more details of these name abbre-

viations in Methods. b) Density plots are visualized for distributions of the ICCs under the various parcellation choices on node definition. These density

distributions are ranked from top to bottom according to decreases of the mean ICCs while the four colors depict the four quantiles. c) Reliability gradient

between any one whole-brain parcellation choice and its corresponding cortical parcellation choice is decomposed into the axis of changes of the between-

subject variability (∆Vb) and the axis of changes of the within-subject variability (∆Vw). This gradient can be represented as an vector, which is the black

arrow from the origin with an angle θ with the x−axis while the color encodes this angle and the transparency or the length reflects the magnitude of the

degree of ICC improvement. According to the anatomy of reliability, the optimal space is in the second quadrant (quadII) while the first and third quadrant

(quadI and quadIII) are suboptimal for reliability. d) The improvement in the reliability of the pipeline, which is defined from the cortical parcellations to the

corresponding whole-brain parcellations (including the subcortex), is illustrated by gradient arrows in the plane of individual variability, while controlling for

all other processing steps. Each arrow represents a specific global metric, while controlling for all other processing steps. The position of the arrows reflects

the magnitude of between- and within-subject variability changes (∆Vb, ∆Vw), and the size of the arrows indicates the magnitude of ICC changes.
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Vw. Changes in the individual variability associated with the reliability improvements from cortical to399

whole-brain pipelines were plotted along with ∆Vb and ∆Vw as arrows. These arrows are distributed400

across the three quadrants (quadI: 0.94%; quadII: 59.99%; quadIII: 39.07%). We noticed that most of401

these arrows were distributed into the optimal quadrant where the improvements of test-retest reliability402

by the whole-brain parcellation choices largely attributing to the increases of between-subject variability403

and decreases of within-subject variability. The decreases of both between-subject and within-subject404

variability may also strengthen the measurement reliability (the suboptimal quadIII in Fig. 2).405

Spontaneous brain activity portrays more reliable networks in higher slow bands406

Brain oscillations are hierarchically organized, and their frequency bands were theoretically driven by the407

natural logarithm linear law (Buzsaki & Draguhn, 2004). By analogy, rfMRI oscillations can, similarly,408

be partitioned into distinct frequency bands. Advanced by the fast imaging protocols (TR = 720ms), HCP409

test-retest data allows to obtain more oscillation classes than traditional rfMRI acquisitions (typical TR =410

2s). We incorporate the Buzsaki’s framework with the HCP dataset using the DREAM toolbox (Gong et411

al., 2021) in the Connectome Computation System to decompose the time series into the six slow bands412

(Fig. 3a): slow-6 (0.0069-0.0116 Hz),slow-5 (0.0116-0.0301 Hz), slow-4 (0.0301-0.0822 Hz), slow-3413

(0.0822-0.2234 Hz), slow-2 (0.2234-0.6065 Hz), slow-1− (0.6065-0.6944 Hz).414

We noticed that, due to the limited sampling rate (TR), this slow-1− only covers a small part of the full422

slow-1 band (0.6065-1.6487 Hz) – we indicate this above. We also included the frequency band,423

slow-emp (0.01-0.08 Hz) for the sake of comparison, as it is covers a range commonly used in rfMRI424

studies. A significant effect on order (χ2 = 9283.536, df = 6, p < 2.2× 10−16,WKendall = 0.192) across425

the frequency bands was revealed based on the density distributions of ICC (Fig. 3b): slow-2, slow-1−,426

slow-3, slow-emp, slow-4, slow-5, slow-6. Post-hoc paired tests indicated that any pairs of neighbouring427

bands are significantly different from one another, with measurement reliability increasing with faster428

frequency bands. Note, however, that slow-1− (mean ICC: 0.564) did not fit into this trend, possibly due429

to its limited coverage of the full band. But remarkably, slow-1− exhibited the largest number of almost430

prefect ICCs for potential reliability (noap ICC: 1746). Slow-emp (mean ICC: 0.519; noap ICC: 434)431

contains overlapping frequencies with both slow-4 (mean ICC: 0.560; noap ICC: 441) and slow-5 (mean432

ICC: 0.494; noap ICC: 285), and higher ICCs than the two bands but the effect sizes are small to433
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Figure 3. Reliability gradient across the slow bands and changes of related individual variability. a) Classes of frequency bands for slow oscillations

derived from the natural logarithm linear law. b) Density plots are visualized for the ICC distributions under the various frequency bands. These density

distributions are ranked from top to bottom according to decreases of the mean ICCs while the vertical lines depict the four quartiles. c) Network measurements

are projected onto the reliability anatomy plane coordinated by both between- and within-subject variability. These dot plots are fitted into the topographic

(contour) maps where the local maxima for each band is labeled as a circle. To highlight the trend of increasing reliability as the frequency band increases,

a fourth-order polynomial curve (represented by a red line) is fitted to the frequency contour plot peak points, tracing the reliability flow along slow-to-fast

oscillations in the cortex and whole brain.
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moderate (slow-emp vs. slow-4: 0.193; slow-emp vs. slow-5: 0.485). Slow-6 is the choice with the434

lowest ICCs (mean ICC: 0.331; noap ICC: 154) compared to other bands (large effect sizes: r > 0.57).435

To visualize reliability variation across frequency bands, we plotted a trajectory tracing reliability flow436

along the five full (slow-6 to slow-2) bands in the reliability plane, whose axes correspond to between-437

versus within-subject variability (Fig. 3c). As expected, this nonlinear trajectory contains two stages of438

almost linear changes of the network measurement reliability from slow to fast oscillations: whole brain439

versus cortex. In each case, the reliability improvements attribute to both increases of between-subject440
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variability and decreases of within-subject variability while the improvements of whole-brain network441

measurement reliability were largely driven by the increased variability between subjects.442

Topological economics individualize highly reliable functional brain networks443

Estimating functional connections can be highly challenging due to the absence of a ‘ground truth’444

human functional connectome. To provide a reliable way of building candidate edges of the connections,445

we sampled the 12 schemes on graph edge filtering (Fig. 4a), which turn a fully connected matrix into a446

sparse graphical representation of the corresponding brain network. These schemes can be categorized447

into two classes: threshold-based versus topology-based schemes. Threshold-based schemes usually use448

a threshold to preserve those edges whose strengths are above a cutoff value, such as ABS05, PROP10,449

PROP20, DEG5, DEG15. Threshold-based schemes are widely used in network neuroscience and ignore450

the intrinsic topological structure of the entire brain network (e.g, leading to multiple connected451

components or isolated nodes). In contrast, topology-based schemes such as MST, OMST, PMFG and452

TMFG come from other scientific disciplines and are optimized based on the entire network topology453

(see Materials and Methods). To combine both the TMFG’s efficiency and OMST’s accuracy, we454

proposed the OTMFG. All the schemes are plotted in the plane of cost versus global-cost efficiency to455

better visualize the economical properties of the derived networks (Fig. 4b). These plots are fitted into456

the topographic (contour) maps where the local maxima for each filtering choice is labeled as a circle.457

The human brain networks achieve higher global efficiency with lower cost using topology-based458

schemes compared to threshold-based schemes, suggesting increasingly optimal economics.459

Significant differences in test-retest reliability were detectable across these 12 edge-filtering schemes469

(χ2 = 9784.317, df = 11, p < 2.2× 10−16,WKendall = 0.189, see Fig. 4c). Among the topology-based470

schemes, OMST (mean ICC: 0.608; noap ICC: 765), OTMFG (mean ICC: 0.602; noap ICC: 781) and471

TMFG (mean ICC: 0.570; noap ICC: 767) were the three most reliable choices. They showed472

significantly greater reliability than the three most reliable threshold-based, respectively: PROP20 (mean473

ICC: 0.593; noap ICC: 632), PROP10 (mean ICC: 549; noap ICC: 445) and GCE (mean ICC: 0.533; noap474

ICC: 352). Mean reliability of MST are slight to fair (mean ICC: 0.309) but its number of almost perfect475

reliability (noap ICC:362) is still higher than all threshold-based schemes except PROP10 and PROP20.476
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Figure 4. Edge filtering schemes and their networking performance. (a) Twelve schemes of filtering edge are applied to an individual connectivity

matrix, resulting in the 12 brain networks with their nodes colored as the Yeo2011-7Networks (Thomas Yeo et al., 2011). (b) Global cost efficiency are plotted

against network wiring costs of all the brain networks derived with the 12 edge filtering schemes from all the individual rfMRI scans. Red dots represent the

topology-based while blue dots are for threshold-based networks. These dot plots are fitted into the topographic (contour) maps where the local maxima for

each filtering choice is labeled as a circle. (c) Density plots are for ICC distributions under various the 12 edge filtering schemes. These density distributions are

ranked from top to bottom according to decreases of the mean ICCs while the two colors depict the topology-based and threshold-based schemes. Four quartiles

were indicated by vertical lines. (d) Network measurements are projected onto the reliability anatomy plane coordinated by both between- and within-subject

variability. Red dots represent the topology-based while blue dots are for threshold-based networks. The topographic (contour) maps fit the dots and label the

local maxima as a circle for each scheme and the global maxima as a triangle for the topology and threshold groups, respectively.
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Network measurements are labeled based on topology and threshold groups and projected onto the477

reliability anatomy plane, whose axes represent between- and within-subject variability (Fig. 4d). The478

contour maps are reconstructed for each scheme based upon the individual variability of all the related479

network measurements. The topology-based methods (red) showed overall higher ICCs than the480

threshold-based methods (blue), improvements that could be attributed to increases in between-subject481

variability and decreases of within-subject variability. These observations are consistent between cortex482

and whole brain networks while topology-based whole brain network are almost perfectly reliable483

(meaning almost perfect reliability, i.e., ICC ≥ 0.8).484

We also explored connection transformation and edge weights, two factors included in edge filtering,485

the choices of connectivity transformation and weighing edges, regarding their measurement reliability.486

Positive (Eq.pos) (mean ICC: 0.512; noap ICC: 1,031) and exponential (Eq.exp) transformation (mean487

ICC: 0.509; noap ICC: 1,855) were the two most reliable choices. Comparing to the positive and absolute488

(Eq.abs) (mean ICC: 0.508; noap ICC: 1,050) transformation, the exponential and distance-inverse489

(Eq.div) (mean ICC: 0.500; noap ICC: 1,031) transformation show larger number of almost perfect ICCs.490

Weighted graphs are also more reliable than the binary graphs while the normalized weighted graphs491

demonstrated the highest ICCs, reflecting both the increased between-subject variability and decreased492

within-subject variability.493

Network integration and segregation can serve reliable metrics of information flow494

The previous extensive data analysis suggests that the optimally reliable pipeline should: 1) define495

network nodes using a whole-brain parcellation, 2) filter the time series with higher frequency bands, 3)496

transform the connectivity using positive transformation, 4) construct network edges using497

topology-based methods and normalized weights. Using the optimal pipelines, we evaluated the498

reliability levels of various metrics from network neuroscience and their differences across individuals.499

Focusing on the optimized pipeline with the highest ICCs of the various choices (wbLGP-458, slow-2,500

pos, normalized weights, OMST), we reported test-retest reliability of the measurements as well as their501

corresponding individual variability. In Fig. 5a, we found that the global network measurements of502

information segregation and integration are at the level of almost perfect reliability except for the503

modularity Q (ICC=0.46, 95% CI = [0.252,0.625]). These high-level ICCs are derived with large504
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between-subject variability and small within-subject variability (Fig. 5b). These findings are505

reproducible across the other two parcellation choices (wbCABP-718, wbBNP-458). In consideration of506

“Ease-of-Use” for researchers and higher cortical resolution, we mapped the “Out-of-the-Box”507

Cole-Anticevic Brain-wide Network Partition (wbCABP-718) for nodal metrics visualization.508

Similar to the global metrics, shortest path length Lp and nodal efficiency Enodal exhibited the highest517

ICCs (almost perfect test-retest reliability) while ICCs of other nodal metrics remained less than 0.6. To518

visualize node-level network metrics, we reported results derived from the wbCABP-718 choice. To519

improve spatial contrasts of reliability, we ranked the parcels according to their ICCs and visualized the520

ranks in Fig. 5c. Most nodal metrics are more reliable across the 360 cortical areas than the 358521

subcortical areas (Wilcoxon tests: all p-values less than 0.001, corrected for multiple comparisons).522

However, Lp, Enodal and Bc exhibited higher across subcortical areas than cortical areas (corrected523

p < 0.001). Across the human cerebral cortex, the right hemispheric areas demonstrated more reliable Cp524

(corrected p < 0.0036) than the left hemispheric areas. Interesting patterns of the reliability gradient are525

also observable along large-scale anatomical directions (dorsal>ventral, posterior>anterior) across the526

nodal metrics of information segregation and centrality. These spatial configuration profiles on the527

reliability reflected their correspondence on inter-individual variability of these metrics, characterising528

the network information flow through the slow-2 band.529

Building an open resource for reliable network neuroscience530

The results presented here represent huge costs in terms of computational resources (more than 1,728,000531

core-hours on CNGrid, supported by Chinese Academy of Sciences (http://cscgrid.cas.cn).532

Derivations of the ICCs and their linear mixed models were implemented in R and Python. As our533

practice in open science, we have started to provide an online platform on the reliability assessments534

(http://ibraindata.com/research/ifNN/reliabilityassessment). The big535

reliability data were designed into an online database for providing the community a resource to search536

reliable choices and help the final decision-making. The website for this online database provided more537

details of the reliability data use. We shared all the codes, figures and other reliability resources via the538

website (http://ibraindata.com/research/ifNN/database).539

–24–

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

http://cscgrid.cas.cn
http://ibraindata.com/research/ifNN/reliabilityassessment
http://ibraindata.com/research/ifNN/database
https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Optimal Network Neuroscience Pipelines

Authors: Jiang C, He Y, Betzel R, Wang YS, Xing XX and Zuo XN

Figure 5. Measurement reliability and variability of global/nodal network metrics under the optimized pipeline. (a) Spider plots are visualized for

ICCs (test-retest) with the 95% confidence intervals (CIs, shadow bands) for the global metrics of network integration, segregation. Integrative measures

include average shortest path length (Lp), global efficiency (Eg), and pseudo diameter (D). Segregation measures include clustering coefficient (Cp), local

efficiency (Eloc), transitivity (Tr), modularity (Q). (b) The reliability anatomy was plotted as a function of between-subject variability (Vb) and within-subject

variability (Vw). (c) Ranks of ICCs across the 360 cortical parcels and the 358 subcortical parcels in the optimal pipeline (wbCABP-718, slow-2, pos, OMST)

are depicted. Ten nodal metrics are assessed including local characteristic path length of node (Lplcoal), nodal efficiency (Enodal), local efficiency of nodes

(Elocal), nodal clustering coefficient (Cp), pagerank centrality (Pc), degree centrality (Dc), eigenvector centrality (Ec), resolvent centrality (Rc), subgraph

centrality (Sc) and betweeness centrality (Bc).
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DISCUSSION

This study examined the series of processing and analysis decisions in constructing graphical540

representations of brains’ intrinsic spontaneous activity. The focus, here, was on identifying the pipeline541

that generated reliable, individualized networks and network metrics. The results of our study suggest542

that to derive reliable global network metrics showing higher inter-individual variances and lower543

intra-individual variances, one should use whole-brain parcellations to define network nodes, focus on544

higher frequencies in the slow band for time-series filtering to derive the connectivity, and use the545

topology-based methods for edge filtering to construct sparse brain graphs. Regarding network metrics,546

multi-level or multi-modal metrics appear more reliable than single-level or single-model metrics. Derive547

reliable measurements is critical in network neuroscience, especially for translating network548

neuroscience into personalized practice. Based on these results, we provide four principles towards549

optimal functional network neuroscience for reliability of measuring individual differences.550

Principle I: Use a whole brain parcellation to define network nodes551

The basic unit of a graph is the node. However, variability across brain parcellations can yield different552

graphs, distorting network metrics and making it difficult to compare findings across studies (Wang et al.,553

2009; Zalesky et al., 2010). In many clinical applications (Fornito et al., 2015; Matthews & Hampshire,554

2016), researchers aim to identify disease-specific connectivity profiles of the whole brain, including555

cortical and subcortical structures, as well as cerebellum. A recent review has raised the concern that556

many studies have focused on restricted sets of nodes, e.g., cortex only, and called a field standard for the557

best practices in clinical network neuroscience (Hallquist & Hillary, 2019), which requires almost558

perfectly reliable measurements (Xing & Zuo, 2018). Our meta-reliability assessments revealed such559

high reliability of measurements made involving functional brain networks can be achieved, through the560

inclusion of high-resolution subcortical nodes. This provides strong evidences that the whole-brain node561

use should be part of the standard analysis pipeline for network neuroscience applications. These562

improvements of reliability can be attributed to increases in between-subject variability coupled with563

reductions in within-subject variability relative to networks of cortical regions alone. One possible564

neuroanatomical explanation is that distant areas of cerebral cortex are interconnected by the basal565

ganglia and thalamus while also communicating with different regions of the cerebellum via polysynaptic566

circuits, forming an integrated connectome (Bostan & Strick, 2018). These subcortical structures have567
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been suggested to play a role in both primary (e.g., motor) and higher-order function (e.g., learning and568

memory) while studies using rfMRI have delineated the resting-state functional connectivity (RSFC)569

maps between these subcortical structures and cortical networks of both primary and high-order570

functions. Interestingly, a recent work revealed that inter-individual variance in cerebellar RSFC571

networks exceeds that of cortex (Marek et al., 2018). Meanwhile, these RSFC maps are highly572

individualized and stable within individuals (D. Greene et al., 2020), indicating that they possess reliable573

characteristics. In line with our observations, we argue that inclusion of the subcortical structures as574

network nodes can enhance the between-subject variability and stabilize the within-subject variability by575

providing a more comprehensive measurements on the entirety of the brain connectivity.576

Principle II: Generate functional networks using spontaneous brain activity in multiple slow bands577

It has been a common practice in rfMRI research to estimate the RSFC profile based on BOLD time578

series of the intrinsic spontaneous brain activity from the low-frequency (0.01 - 0.1 Hz or 0.01 - 0.08 Hz).579

However, the test-retest reliability of RSFC measurements derived from this frequency band has been580

limited, with ICCs less than 0.4 (Noble et al., 2019; Zuo & Xing, 2014). Still existing studies, however,581

have advocated adopting a multi-frequency perspective to examine the amplitude of brain activity at rest582

(Zuo et al., 2010) and its network properties (Achard et al., 2006). This approach has been spurred along583

by recent advances in multi-banded acquisitions and fast imaging protocols, offering rfMRI studies a way584

to examine spontaneous brain activity at much higher frequencies that may contain neurobiologically585

meaningful signals (Gong et al., 2021). Our study provides strong evidence of highly reliable signals586

across higher slow-frequency bands, which are derived with the hierarchical frequency band theory of587

neuronal oscillation system (Buzsaki & Draguhn, 2004). Specifically, a spectrum of reliability increases588

was evident from slow bands to fast bands. This reflects greater variability of the network measurements589

between subjects and less measurement variability within subject between the higher and lower bands of590

the slow frequencies. In theory, each frequency band has an independent role in supporting brain591

function. Lower frequency bands are thought to support more general or global computation with592

long-distance connections to integrate specific or local computation, which are driven by higher slow593

bands based on short-distance connections (Buzsáki, 2009). Our findings of high reliability594

(inter-individual differences) are perfectly consistent with this theory from a perspective of individual595

variability. Previous findings have found that high-order associative (e.g., default mode and cognitive596
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control) networks are more reliable than the primary (e.g., somatomotor and visual) networks (Noble et597

al., 2019; Zuo & Xing, 2014; Zuo, Xu, & Milham, 2019). A novel frequency-based perspective on these598

network-level individual differences can be inspired directly by our observations on the multiple bands.599

Principle III: Optimize topological economy to construct network connections at individual level600

There is no gold standard on for human functional connectomes, leading to plurality of approaches for601

inferring and constructing brain network connections. Threshold-based methods focus on the absolute602

strength of connectivity, retaining connections that are above some user-defined threshold and oftentimes603

involve applying the same threshold to all subjects. Although this approach mitigate potential biases in604

network metrics associated with differences in network density, it may inadvertently also lead to605

decreased variability between subjects. This is supported by our results showing that threshold-based606

method yield low reliability of network measurements. On the other hand, the human brain is a complex607

network that is also near-optimal in terms of connectional economy, balancing tradeoffs of cost with608

functionality (Bullmore & Sporns, 2012). In line with this view, certain classes of topology-based609

methods for connection definition may hold promise for individualized network construction.610

Specifically, each individual brain optimizes its economic wiring in terms of cost and efficiency, reaching611

a trade-off between minimizing costs and allowing the emergence of adaptive topology. Our results612

demonstrate that such highly individualized functional connectomes generated by the topology-based613

methods are more reliable than those by the threshold-methods. This reflects the increases of individual614

differences in functional connectomes attributing to the optimal wiring economics at individual level.615

The topological optimization also brings other benefits such as ensuring that a graph forms a single616

connected component and preserving weak connections. Indeed ,there is increasing evidence supporting617

the hypothesis that weak connections are neurobiologically meaningful and explain individual618

differences in mind, behavior and demographics as well as disorders (Santarnecchi, Galli, Polizzotto,619

Rossi, & Rossi, 2014). Weak connections in a graph may be consistent across datasets and reproducible620

within the same individual over multiple scanning sessions and therefore be reliable. Weak connections621

might also play non-trivial roles in transformed versions of the original brain network, e.g. so-called622

“edge-based functional connectivity” (Faskowitz, Esfahlani, Jo, Sporns, & Betzel, 2020). Among these623

topology-based methods, MST is the simplest and promising filtering method if computational efficiency624

is the priority. MST can obtain a graph with the same number of nodes and edges, and it is not sensitive625
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to scaling effects, because its structure only depends on the order rather than the absolute values of the626

edges. Although MST loses some local network measurements due to the limited number of edges, it has627

some other unique metrics that can be calculated (e.g., leaf fraction, tree hierarchy). A better alternative628

might be TMFG which is computationally very efficient and statistically robust, while the OMST and629

OTMFG are the most reliable choices by prioritizing significant individual differences.630

Principle IV: Characterise information flow with both network integration and segregation metrics631

Intrinsic functional networks reflect the outcomes of communication processes and information flows632

between pairs of brain regions. How the information and other signals propagate between pairs of brain633

regions can be assayed using network neuroscientific metrics and is essential to understanding normative634

connectome function and its variation in clinical settings. While the ground truth of functional635

connectome remains unknown (and may not exist), network models can help validate the imaging-based636

reconstructions of human functional networks (D. Bassett et al., 2020). From a perspective of individual637

differences, reliable network measures are the basis of achieving valid ifNN measurements (Zuo, Xu, &638

Milham, 2019). Our findings indicated that both the brain network segregation and integration could be639

reliably measured with functional connectomics using rfMRI by the optimized pipelines. At the global640

level, measures of information integration, e.g. characteristic path length and efficiency, were more641

reliable than those of information segregation, e.g. modularity and clustering coefficient. Our results also642

revealed that measures of integration were more stable across different scan sessions (i.e., the test-retest)643

for an individual subject than the segregation measurements while the inter-individual variability are644

measured at the similar level for both integration and segregation metrics. At nodal level, mapping645

reliability of the network measurements revealed interesting spatial patterns. Specifically, we found that646

cortical areas were generally associated with more reliable local measurements compared to subcortical647

areas. This may reflect different functional roles for human cortex and subcortex. For example, the648

differences in reliability of path-based metrics might reflect the fact that there are more cortical649

within-community paths while between-community paths are more common in subcortex. Beyond this650

cortical-subcortical gradient, reliability of the nodal information flow also fit the left-right asymmetry and651

dorsal-ventral as well as posterior-anterior gradient, implying the potential validity of individual652

differences in information flow attributing to evolutionary, genetic and anatomical factors (Chen et al.,653

2013; Rakic, 2009). To facilitate the utility of reliable network integration and segregation metrics in654
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ifNN, we integrated all the reliability resources into an online platform for reliability queries on specific655

metrics of information flow (http://ibraindata.com/research/ifNN).656

REPRODUCIBILITY, GENERALIZABILITY AND CONCLUSION

Both reproducibility and generalizability are cornerstones of modern sciences, and remain challenging as657

a scientific research frontier (Munafo et al., 2017; Yarkoni, 2022). In this research, we adopt a big data658

approach by deeply sampling the parameters (more than 524k parametric settings) of various steps in the659

network construction and analysis pipeline to systematically explore the reliability of functional brain660

network measurements. This provided robust experimental evidence supporting four key principles that661

will foster optimal ifNN research and application. These principles can serve as the base for building662

guidelines on the use of ifNN to map individual differences. Standard guidelines are essential for663

improvements of reproducibility and generalizability in the research practice, and our work provide basic664

resources initiating such standardization in future network neuroscience. We note, however, that while665

our approach was extensive, it was not exhaustive (likely impossible) – the analytical sampling procedure666

could miss many other existing choices. The processing decisions that yield reliable connectomic667

measurements may yield the most reliable network statistics, but there may be another way to process668

data that yields overall a higher level of reliability in network measures. Regarding the statistical benefits669

of our sampling analytics in the parametric space of the ifNN pipelines, we discuss about the implications670

of the present research for reproducible and generalizable network neuroscience as following.671

The rfMRI datasets minimally preprocessed by the HCP pipeline are employed for our study while672

many different pipelines are available for rfMRI data preprocessing (see a list of pipelines in (Xu et al.,673

2015)). These different pipelines vary across parametric settings and orders of various steps of674

preprocessing, and thus can have different impacts on the reliability of measuring spontaneous brain675

activity (Li et al., 2022). Therefore, it is very important to validate whether the present findings are676

reproducible under another preprocessing pipeline. Accordingly, we repeated our analyses by leveraging677

another widely-accepted preprocessing pipeline, fMRIPrep (Esteban et al., 2019). As documented in the678

supplementary materials, the major findings supporting the principal guidelines are reproducible while679

the measurement reliability derived with fMRIPrep are generally lower than those with the HCP pipeline.680

Various within-pipeline parametric settings also exist other choices not sampled by our experimental681
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design but remain potentials for further investigation. For example, edge filtering methods are commonly682

used to identify and retain only the most important edges in a graph, based on criteria such as statistical683

significance or functional relevance. However, this approach has the potential to introduce bias and684

subjectivity in the selection process, and may not fully capture the higher-order structure of a network685

system. Algebraic topology, as demonstrated by Giusti, Ghrist, and Bassett (2016) and other recent686

studies, offers a promising alternative for high-order edge filtering. By representing relationships687

between objects as higher-dimensional simplices instead of edges, simplicial complexes can characterize688

polyadic interactions and capture more nuanced aspects of the complex network organization. With the689

increasing availability of computational tools for the application of algebraic topology to real data, this690

framework has the potential to surpass graph theory in understanding the complexities of neural systems.691

Pipelines of generating highly reliable measurements are central to experimental design of studying692

individual differences (Matheson, 2019; Zuo, Xu, & Milham, 2019). Given a statistical power, for a fixed693

sample size, experiments designed with more reliable pipelines can detect bigger effects of interests. On694

the other side, to detect a fixed effect size, experiments designed with more reliable pipelines would be695

more powerful or logistically economical (e.g., need less samples). This has very important implications696

on the recent arguments about ‘big data versus small data’ (Marek et al., 2022; Rosenberg & Finn, 2022;697

Tibon, Geerligs, & Campbell, 2022), which must take the reliability into account at first place of698

designing an experiment (Gratton, Nelson, & Gordon, 2022), and has been increasingly appreciated by699

the field of network neuroscience (Helwegen, Libedinsky, & van den Heuvel, 2023). From a perspective700

of experimental design, reliability is more straightforward to reproducibility but validity is related to701

generalizability. Therefore, we clarify that the measurement reliability is not the final goal but the702

validity (Finn & Rosenberg, 2021; Noble et al., 2021), which is not easily ready for a direct examination703

as reliability assessment (Zuo, Xu, & Milham, 2019). The reliable pipeline we proposed produced704

biologically plausible findings according to the four principles as we discussed, likely reflecting its705

potential validity of measuring individual differences in intrinsic brain functional organization.706

Validation on the use of our proposed principles represents a promising arena for fostering future network707

neuroscience studies such as personality (Hilger & Markett, 2021) or brain developmental charts708

(Bethlehem et al., 2022), with potential novel fMRI paradigms (Elliott, Knodt, & Hariri, 2021; Finn,709

Glerean, Hasson, & Vanderwal, 2022) or more precise neuroimaging technology (Toi et al., 2022).710
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Reliability does not necessarily equate to but indeed provides an up bound of validity. In some cases,711

increasing reliability may cause a decrease in validity, particularly if the sources of reliability are not712

related to the underlying construct of interests. For example, physiological noise and head motion can be713

highly reliable as biological traits, but may not be involved in the investigated cognitive processes.714

Previous studies have shown that head motion can introduce artifacts into the fMRI data, which can affect715

the reliability of functional connectivity measures (Power et al., 2014). In particular, head motion may716

have a non-uniform impact on different edge filtering methods and network metrics. Certain methods that717

rely on the strength of functional connections, such as threshold-based approaches, may be more718

sensitive to head motion artifacts than topology-based methods that focus on the overall structure of the719

network. Measures that are highly reliable due to the inclusion of these contaminants may not be valid720

indicators of the underlying construct. However, head motion may not always be purely noise and may721

contain some neurobiologically meaningful signals (Zeng et al., 2014; Zhou et al., 2016). Therefore, it is722

important to carefully consider the potential impact of head motion when choosing an edge filtering723

method and interpreting the resulting functional connectivity measures, as well as the trade-off between724

controlling for motion artifacts and preserving potentially meaningful signal in the data. In the context of725

graph theory, noise can affect both the reliability and validity of graph metrics. For example, noise in the726

data can result in higher reliability of certain graph metrics, but this may not necessarily reflect the true727

underlying network structure. This is because noise may lead to inflated correlations between certain728

regions, resulting in over-estimations of network connectivity and thus higher reliability. However, these729

measurements may not be valid indicators of the true network structure and may not accurately reflect the730

underlying cognitive processes being studied. On the other hand, the removal of noise may lead to731

decreased reliability, but may improve the validity of the measurement by reducing the influence of732

unrelated sources of variance. The optimal choices for maximizing reliability in our study may also have733

implications for interpretability and generalizability. For example, the inclusion of subcortical structures734

in the parcellation scheme may increase the interpretability of the results, as these structures play a key735

role in the functional organization of the brain. On the other hand, the choice of connectivity736

transformation and edge weighting may have implications for the generalizability of the results, as737

different methods may produce different results depending on the specific characteristics of the data.738

Further research is warranted to fully understand the consequences of these choices on interpretability,739

generalizability, and other aspects of the measurement process.740
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The guidelines we proposed for rfMRI-based network neuroscience may also provide insights for741

network neuroscience computation by leveraging task-fMRI or movie-fMRI. These two paradigms have742

gained increasing attention in recent years as a means of measuring functional connectomes (Cole,743

Bassett, Power, Braver, & Petersen, 2014; Cole et al., 2013; Finn et al., 2022). The reliability and744

predictive power of these measures have been the subject of a number of studies. For instance, a study by745

Gao et al. (2020) found that the reliability of movie-fMRI connectivity was influenced by the complexity746

and duration of the movie stimulus, with more complex and longer stimuli resulting in higher test-retest747

reliability. The results support the notion that task-fMRI and movie-fMRI can produce more reliable748

connectivity measures with greater predictive power for individual differences in cognitive and mental749

health measures compared to rfMRI, particularly for tasks and stimuli that elicit strong and sustained750

activation. According to the relationships among rest, task and movie as well as other naturalistic states751

of the human brain as a systems entity (Cole, Ito, Bassett, & Schultz, 2016; Finn, 2021; McCormick,752

Arnemann, Ito, Hanson, & Cole, 2022), we speculate that the four principles are generalizable to753

functional network neuroscience based on these non-rest brain states. However, we note that more754

research is warranted to fully understand the underlying mechanisms and generalizability of these755

findings to different task and movie paradigms as well as their translational applications (Eickhoff,756

Milham, & Vanderwal, 2020; Finn & Rosenberg, 2021).757

Population diversity plays a critical factor of assuring the generalizability in studying individual758

differences (A. S. Greene et al., 2022; Ricard et al., 2023). This has been responded by the emerging new759

stage of cognitive neuroscience, namely population neuroscience (Falk et al., 2013; Paus, 2010).760

Psychometric studies are particularly required for population neuroscience due to the core aim of761

measuring individual differences in brain and mind developmental during the life span (Zuo et al., 2017,762

2018). The design of a psychometric study is normally recommended to recruit a group of participants763

who are stable across the duration of investigation. This makes the interpretation of within-subject764

variability straightforward as the subject-independent random noise, and the reliability assessment more765

precisely; and also is why most psychometric studies were done in adults although some in children (but766

with very short duration). When studying the lifespan development, one must consider the specific767

research aims and the underlying assumptions of the study for addressing the reliability trade-off between768

maximizing between-individual variability and minimizing within-individual variability. For example, if769
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the goal of the study is to identify developmental or lifespan-related trajectories, it may be more770

important to prioritize maximizing between-individual variability in order to capture the full range of771

individual differences. In this case, techniques such as motion scrubbing or outlier detection may be772

employed to minimize within-individual variance, even if this leads to a decrease in overall reliability. On773

the other hand, if the focus of the study is on assessing within-subject changes over time, it may be more774

important to minimize within-individual variance in order to accurately capture changes in brain function.775

In this case, techniques such as temporal smoothing or denoising may be employed to increase reliability,776

even if this leads to a decrease in between-individual variability. It is also important to consider the777

potential impacts of these choices on the validity of the measurement. For example, if motion scrubbing778

or outlier detection leads to the exclusion of a large number of subjects or time points, this may introduce779

bias and reduce the generalizability of the results regarding the limited diversity. Careful consideration of780

these trade-offs is therefore essential in order to ensure that the chosen approach is appropriate for the781

specific research aims and assumptions of the study, especially the population neuroscience research.782
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